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ABSTRACT

Recent research has investigated the importance of both walkable urban design and social cohesion. Social
cohesion has been shown to have broad social and health benefits, and scholars have hypothesized that walkable
urban design can influence cohesion, though evidence remains limited. In this work, we leveraged a data-driven
approach that broke down design factors related to walkable design and investigated their impact on cohesion.
We used a US-wide open urban form dataset to characterize walkable urban design, and we used an open survey
dataset that measured cohesion and demographics with a total sample size of 9670 in six US cities. We leveraged
partial least squared structural equation modeling for statistical analysis. We found, controlling for de-
mographics, that land use diversity had a significant positive impact on social cohesion. We also found that
physical density, social density, and transit connectedness had significant negative impacts on cohesion, though
this association is largely driven by the very dense neighborhoods in cities. These findings shed light on different
theories of the built environment, offering insights for designers, engineers, and policymakers interested in the

social effects of the built environment.

1. Introduction

The intersection of environmental and social sustainability in the
urban built environment has received growing attention in recent years.
In the face of climate change and increased urbanization, sustainable
mobility—and particularly, active mobility including walkability—has
been increasingly recognized as an important goal for the design of cities
(Jardim and de Castro Neto, 2022; Loo, 2021; Moreno et al., 2021;
Sonta and Jain, 2020; Gao et al., 2022). Working toward walkability in
cities involves the provision of mobility infrastructure and social infra-
structure in a manner that encourages walking as a viable transportation
option (Carr et al., 2010; Liao et al., 2020; Huang and Khalil, 2022). The
environmental benefits of walking as a mode of transit are
well-understood, but it is important to note that scholars have long
postulated that there are social benefits to walkability in cities and
neighborhoods as well (Loo et al., 2017; Jun and Hur, 2015; Koohsari
etal., 2021; Leyden, 2011; Rogers et al., 2013; Lee and Tan, 2019). A key
underlying social benefit commonly associated with walkability is social
cohesion, which involves the strength of connections among people.
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However, due to the relative difficulty of measuring social outcomes at
scale, data-driven evidence for the social impacts of walkable urban
design is limited (Mazumdar et al., 2018). Nonetheless, it remains an
important task to identify how urban mobility infrastructure and urban
form impact social outcomes such as social cohesion, as this can help
urban designers, city officials, and policymakers better understand how
urban environments can be designed and managed for human-oriented
goals.

The importance of socially cohesive communities has received
growing attention among scholars and practitioners of the built envi-
ronment. Social cohesion has been argued to be a collective good in and
of itself (Coleman, 1994), it has been connected to both physical and
mental health (House et al., 1988; Kawachi and Berkman, 2001), it has
been shown to improve the ability of communities to respond and adapt
to external shocks such as natural disasters (Aldrich and Meyer, 2014;
Kawachi and Berkman, 2015), and it is often considered as an important
attribute of overall wellbeing (Delhey and Dragolov, 2016). There are
many factors that could be expected to impact the cohesiveness of
communities; one such factor is the design of the built environment.
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The creation of infrastructure in the built environment involves
many policy, design, and engineering decisions that influence the ways
in which we experience our cities. One such experience is the social
experience, broadly involving interactions and relationships that man-
ifest in built spaces. Different theories have emerged on the best way to
provide urban infrastructure vis-a-vis social factors. In recent years,
there has been renewed interest in the design philosophy most often
referred to as “new urbanism,” a framework for design that generally
emphasizes dense, walkable, and mixed-use cities (Ellis, 2010). The
“15-minute city” concept builds upon the new urbanism philosophy and
argues for local neighborhoods and infrastructure that enable residents
to reach their required destinations within a 15-mintute walk or bike
ride from their homes (Moreno et al., 2021; Allam et al., 2022). Pro-
ponents of new urbanism and the 15-minute city have argued that
walkable design would encourage more social interaction among city
dwellers, helping to improve social cohesion (Lund, 2003). Case-study
based research has offered some limited evidence supporting this
notion (e.g., that neighborhoods perceived as more walkable also have
higher social capital, as reported in a survey) (Rogers et al., 2013).
However, a systematic review focusing on the relationships between
new urbanism design characteristics and social capital outcomes found
general support for this link but also conflicting evidence (i.e., 155 total
relationships, but only 66 that were significant and only 84 in the ex-
pected direction) (Mazumdar et al., 2018). At the same time, a different
design philosophy has argued against pure urbanization, suggesting that
high density development would socially overwhelm city dwellers,
increasing the feeling of anonymity in cities and making it difficult to
form social connections (Nguyen, 2010). The evidence for this line of
argument is also limited.

These two philosophies of urban design are often viewed as
competing: new urbanists call for dense, walkable cities, and their
counterparts warn against it. But it is important to note that these are not
diametrically opposed points of view; there are subtleties in each
argument. A new urbanist neighborhood involves more than just den-
sity—it also critically depends on the diversity of land uses, the physical
design of streets and sidewalks, and many other factors. And the critique
of pure urbanization does not comment on other aspects of urban design
besides density of people. As a result, we need a more nuanced under-
standing of how urban design factors influence social experiences in
cities.

In this work, we identified the outcome of interest to be social
cohesion, which we defined through survey questions very commonly
used in the social science literature, as originally introduced by Samp-
son et al. (1997). We note that discussion of social factors in the built
environment can use many different terms and can include varied con-
cepts, as discussed in the Background section below. We also defined the
independent variables of interest to be those design features of the built
environment commonly associated with walkability. Limiting our
analysis of the built environment in this way narrowed the scope of
analysis for interpretability while reflecting important questions prev-
alent in theory and in the literature, as we discuss in detail below.

In this paper, we first discuss the relevant literature on human-
centric neighborhood sustainability, social cohesion theory and mea-
surement, the connections between social cohesion and the design of
walkable urban infrastructure, and metrics used to measure walkability
(Section 2: Background). Then, using a survey from six cities measuring
social cohesion combined with open data on urban form, we present a
nuanced statistical analysis of walkable urban design and social cohe-
sion controlling for demographic factors using the Partial Least Squares
Structural Equation Modeling (PLS-SEM) framework (Section 3: Data
and Methodology). We present the results of our statistical analysis,
which motivated us to look more closely at the interactions between
land use diversity and physical density as well as multi-group effects
across cities. We also discuss the implications of our findings for the
urban planning, engineering, and policy disciplines (Section 4: Results
and Discussion). The primary goal of this work is to leverage large open
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datasets to expand our knowledge on the empirical links between urban
design and planning—specifically as it relates to walkable urban for-
m—and social cohesion outcomes that are important to social health,
wellbeing, and resilience.

2. Background
2.1. Human-centric neighborhood sustainability

In recent work on sustainable city development, researchers have
noted the importance of explicitly studying the human experience as an
integral component of overall sustainability. The quality of our experi-
ences and well-being is an important goal in and of itself, but it also
forms a nexus with multiple aspects of a sustainable urban environ-
ment—urban form, urban energy, the urban heat island, air quality, and
flooding, to name a few.

In engineering and science-based research, the interaction between
humans and the urban built environment has typically been studied by
integrating the human perspective into analysis of the physical aspects
of cities. For example, researchers have developed frameworks for
analyzing how urban form influences pedestrian exposure to air quality
(Miao et al., 2020), flood risk (Zhu et al., 2023), urban greenery (Hua
et al., 2022), and the urban heat island (Yu and de Dear, 2022). In these
works, which provide valuable insight on human-built interactions, the
human perspective is explicitly considered in the context of the built
environment, but it is typically not directly quantified. On the other
hand, from the sociological perspective, research in this area often in-
volves the collection of data on human factors considering the context of
the urban environment, often through specific case studies (Mazumdar
etal., 2018; Yang et al., 2023). In this research, we aim to integrate these
two perspectives by investigating the links between two large open
datasets: urban data theorized to impact social aspects and social data
that can be explicitly linked to urban locations.

2.2. Social cohesion theory and measurement

In sociological theory, there has long been interest in characterizing
the set of resources that come with the ability to connect with other
people (Kawachi and Berkman, 2015). Often falling under the umbrella
term social capital (capital because it can be viewed as a resource similar
to economic forms of capital), this resource has been shown to be
associated with positive outcomes in the areas of health and wellbeing
(House et al., 1988). This resource is an interdisciplinary concept, with
contributions coming from sociology, political science, population
health, and other fields, and we continue to lack both a straightforward
definition for it as well as an agreed-upon means for measuring it
(Kawachi and Berkman, 2015). What 1is known is that
social-network-based connections have been shown to have value for
individuals and that there are many ways to conceptualize the pathways
for these benefits.

The broad notion of social capital is based on network structure and
is typically measured when access to social network structure data is
available (Moore et al., 2013). While this is often done when studying
small groups or organizations, this data can be difficult to obtain as the
scope of analysis expands. A related concept known as social cohesion is
intended to represent many of the same ideas but is typically measured
through surveys that inquire about the emergent properties of network
connections (e.g., the trust that individuals put in their neighbors)
(Kawachi and Berkman, 2015; Sampson et al., 1997). The key benefit of
the social cohesion approach is that it can be measured through
large-scale surveys when exact information on social network structure
can be difficult to find. While the cohesion approach has been criticized
for straying from the network-based definition of social capital (Car-
piano, 2008), we note that it is commonly used in research practice and
can often be the only feasible measurement item for large-scale analyses.
In this work, we hereafter use the terms neighborhood social cohesion, social
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cohesion, or simply cohesion to represent the primary outcome of interest
throughout the study.

2.3. Connections between walkable urban design and social cohesion

Over the past few decades, theories have emerged around the ways in
which the built environment impacts social cohesion and capital. These
theories often discuss different aspects of design, including issues related
to density, land use diversity, transit access, greenspace, and other fac-
tors. Theories of the effect of density and urbanization on social factors
are common, varied, and especially relevant to our present moment—in
2014, the U.N. estimated that the share of people living in cities would
increase from one-half then to two-thirds by 2050 (United Nations
2014). Additionally, social cohesion in neighborhoods has been shown
to have distinct advantages for many issues related to urban design and
engineering, including recoveries from infrastructure shocks such as
natural disasters (Aldrich and Meyer, 2014).

Ultimately, theories of the relationship between urban form and
social cohesion can reasonably be separated into two conceptual
frameworks relevant to this study: the new urbanism design paradigm
and the critique of urbanization.

The new urbanism design paradigm focuses on the benefits of mixed-
use, walkable environments, as opposed to the urban sprawl design
phenomenon that emerged in the 1950s with the rise of the personal
automobile in America. This theory posits that pedestrian-oriented en-
vironments would encourage more interaction on sidewalks as opposed
to automobile-oriented environments in which individuals are siloed in
their personal vehicles (Leyden, 2011). Even spontaneous, passing in-
teractions, when aggregated over time, could be expected to increase the
amount of social cohesion that one identifies with one’s neighborhood.
These sidewalk interactions have been theorized to foster a web of
public respect and trust which forms a resource for the neighborhood
(Jacobs, 1961), along the lines of the notions of social cohesion and
capital that we have identified above.

On the other hand, a relatively recent body of work has responded to
the critical position that the new urbanism design philosophy takes on
urban sprawl. These researchers usually identify density of the built
environment as a culprit that could explain reductions in social cohesion
variables (Koohsari et al., 2021; Nguyen, 2010; Freeman, 2007). One
long-standing theory behind this observed phenomenon stems from the
notion that a high level of density with many people and activities could
overstimulate city dwellers (Simmel, 1903). If it is logical to think that if
there are some social benefits to more dynamic neighborhoods that are
mixed use and walkable, it is also logical to think that there could be
diminishing returns (and even negative effects) if there are an over-
whelming number of people in neighborhoods.

A recent review paper (Mazumdar et al., 2018) sought to identify the
relationship between social capital and neighborhoods that could be
described by new urbanist design characteristics. The researchers
reviewed the findings of 23 papers focusing on the built environment
and social capital that included relevant case studies. The main take-
away from their work was that while there was some support for the
relationship between certain design characteristics and social capital, it
was difficult to identify statistically significant findings.

Studies that consider “urban form” in its relationship to social factors
typically consider, either explicitly or implicitly, the notion of walk-
ability. Because the concept of walkability is so prevalent in this area of
research, we position the concept as central in our study. In this work,
we focused our analysis of urban form on walkable urban design, which
gives rise to the concept of walkability. We do this for a few key reasons.
First, the notion of the connection between walkability and social
cohesion has received much theoretical attention in the literature,
though evidence remains lacking (Mazumdar et al., 2018). Second,
many theories of the relationship between the built environment and
social factors involve design features of the built environment that are
typically components of aggregated walkability metrics (e.g., land use
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diversity, density). Lastly, focusing on walkability limits the scope of the
study to a point such that the results remain interpretable. Urban form
can be described in a large variety of ways and through a variety of
lenses, meaning that an analysis of the general concept “urban form”
vis-a-vis social cohesion would likely be too broad. Focusing on the
different attributes of neighborhood walkability restricts the conceptual
space while also providing multiple possibilities for interactions among
constituent variables—helping us to potentially parse different
sub-components of walkable design.

2.4. Measuring walkability

Different studies and tools have considered the connection between
walkable urban form and social cohesion, walkable urban form and
other sociological factors, or walkability in and of itself. In these works,
different features of the built environment have been used to create
different definitions of walkability. Prior to any dedicated walkability
metrics scholars such as Talen (Talen, 2005) described walkable
neighborhoods as places with high density, diversity of land use, small
lots, and connected streets. An early dedicated metric that is common in
both research and practice is Walk Score, a metric originally developed
by a private company for real estate purposes (Carr et al., 2010). Walk
Score is based on the idea that a residence is more walkable if amenities
from 13 different categories (e.g., grocery, office) are within a specific
walking distance from that residence. In this way, Walk Score is a
generalization of many different design characteristics including land
use diversity and density. The United States government also publishes a
dedicated walkability metric, originally distributed in 2012 and updated
more recently in 2021, known as the National Walkability Index
(Chapman et al., 2021). Unlike Walk Score, which distills urban form
directly into a single metric, the National Walkability Index is func-
tionally an average of three different aspects of design: diversity of land
uses, density of physical paths, and connectedness to transit. The ability
to use transit is not always included in walkability metrics, but it does
indicate the extent to which urban dwellers can access other areas
outside of their immediate walking zone while still relying on walking as
a key means of transportation.

Based on these walkability metrics, we note that a few key ideas are
consistently discussed in the context of walkable urban design. These are
diversity of land use, some measure of density (whether describing
streets, buildings, or people), as well as occasionally connectedness to
transit. These concepts inform our approach to comparing the aspects of
walkable urban form to neighborhood-level social cohesion.

2.5. Key gaps

In our review of the literature, we have identified key research gaps
that we aim to address in this work. The most common limitation we
have observed in previous studies relating walkable urban form to social
cohesion is that most studies use relatively small case studies (sample
size on the order of 1,000) and consider individual cities in isolation. In
contrast, we leveraged open data sources to obtain a sample size on the
order of 10,000 across six different cities across the United States, each
with varying characteristics. In addition to—and perhaps as a result
of—the limited sample sizes we have observed in the literature, there
has been conflicting evidence as to the impact of walkable urban form on
social cohesion (summarized well in Mazumdar et al. (2018)). We aimed
to address this limitation not only by expanding our sample size by
leveraging big open geospatially linked data, but also by breaking down
the notion of walkability into its constituent components. Two of the
more commonly used walkability metrics, Walk Score and the National
Walkability Index, blend together multiple ideas such as land use di-
versity and density, but we note that there are conflicting theories on
how these attributed can affect social experiences, as discussed above.
Furthermore, there is no physical reason that land use diversity should
be correlated to density of street intersections, making it difficult to
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interpret an overall metric that combines them. By taking a data-driven
view of these theorized relationships, we aimed to gain a better under-
standing of how walkable urban form impacts social cohesion.

3. Data and methodology

In this section, we describe our modeling approach and the data we
used to investigate the relationships between walkable urban form and
social cohesion, controlling for demographics (overview shown in
Fig. 1). Our overarching hypothesis required a methodology for
comparing physical design characteristics with social measurements. To
make this possible, we identified both physical and social data sources
that are geographically specified. We used the Census Block Group
(CBG) as the geospatial unit for our analysis. At this geographic scale, we
compiled data describing both physical characteristics of the built
environment that have been previously related to walkability as well as
survey data including responses to questions intended to measure social
cohesion. We leveraged Partial Least Squares Structural Equation
Modeling (PLS-SEM) to investigate the statistical relationships between
the physical environment and social outcomes.

3.1. Data sources

For this modeling approach, we required each of our data sources to
be available at the CBG level. The U.S. Census Bureau defines a CBG as a
geographic boundary that has a population of 600 to 3,000 people. We
used the CBG as our geographic scale for a few key reasons. Both geo-
spatially and socially, it enables aggregation of statistics to what can
reasonably be considered a “neighborhood” level, and it is in line with
previous research (Freeman, 2007; Andris, 2016). It is also the smallest
available geospatial unit for which survey responses and certain urban
design characteristics are made public. A larger spatial unit would likely
be too large to enable the observation of subtle differences within cities.
We relied on two primary data sources:

o The United States Environmental Protection Agency (EPA) publishes
a Smart Location Database (SLD) that contains detailed data on
physical aspects of the built environment, including their own
walkability metric, the specific features used to build that walk-
ability metric, and other related metrics.

Geographic data

Sustainable Cities and Society 99 (2023) 104903

e The Baltimore Ecosystem Study (BES) is an ongoing study aimed at
ecological understanding of urban areas. One component of the
study includes a household telephone survey that includes questions
aimed at measuring neighborhood-level social cohesion and is made
publicly available.

3.1.1. Smart location database

The SLD is a data product produced by the US EPA that summarizes
demographic, employment, and built environment variables for every
CBG in the United States. It was originally released in 2012, and the
current version of the SLD (version 3.0) was released in 2021 (Chapman
et al., 2021). The SLD contains over 100 measures as well as an aggre-
gated National Walkability Index built upon three specific concepts
measured within the SLD: employment/housing mix, intersection den-
sity, and proximity to transit stops. As discussed above, our aim in this
research was to analyze the effect that each component of walkable
urban design might have on social cohesion, rather than comparing
aggregated walkability metrics with cohesion. As a result, we identified
four concepts of walkable urban design than can be measured using
statistics reported in the SLD: three metrics similar to those used in the
National Walkability Index and an additional social density metric.
Thus, our four metrics are land use diversity, physical density, social
density, and transit connectedness. A summary of all data collected from
the SLD for our study can be found in Table 1.

Land use diversity. The metrics we used for land use diversity were
based on entropy calculations built upon the mix of households and/or
employment categories. The entropy calculation is as follows:

L~Pi, (Pi
H=— Jl(—’)
N;PnP

where N is the total number of job or household categories, p; is the
number of entities within category i (e.g., households, jobs of a specific
type), and P is the total number of entities across all N categories. We
used two diversity entropy values from the SLD: mix of commercial uses
and mix of all uses. Mix of commercial uses is calculated in the SLD using
eight employment categories (retail, office, industrial, service, enter-
tainment, education, healthcare, and public administration), and mix of
all uses is calculated using five employment categories (retail, office,

Survey data

AN
@\ EPA Smart €§
Location Database {{_1>

Census Block Group

/’ 500-3,000 residents

Baltimore
Ecosystem

nedl
AR
LU T

Mini
st

PP

AR

Los Angeles

neapolis
Paul

Phoenix
Orlando

Study

6 cities
Boston n=9670

Baltimore

Demographics

- Age
+ Race
« Sex
+ Education
e . * Income
Statistical analysis:
Walkable Urban Design Partial Least
Characteristics Squares Structural l
+ Diversity (mix of use) Equation Modeling Social Cohesion
+ Physical density (streets) ) .
- Social density (people) » Close knit :
- Connectedness (transit) P cTust

+ Willingness to help
+ Number of neighbors known

Fig. 1. Overview of methodology.



A. Sonta and X. Jiang

Table 1
Summary of built environment variables taken from EPA SLD.
Variable name Minimum  Maximum  Mean Standard
deviation
Land use diversity
Mix of commercial 0.00 0.97 0.48 0.21
uses
Mix of all uses 0.00 1.00 0.56 0.20
Physical density
Intersection density 0.16 873.43 84.67 75.43
Path density 0.00 48.74 13.47 7.82
Social density
Population density 0.01 399.91 8.44 10.04
Employment density 0.00 268.60 2.05 6.83
Transit connectedness
Proximity to transit 0.00 1500.00 993.07  529.05
Transit frequency 0.00 544491 46.17 162.52

industrial, service, and entertainment) as well as a category for number
of households. These two metrics indicate the level to which different
types of land uses exist within a CBG, taking both a detailed look at non-
residential uses as well as an overall look at total mix of use. As a result,
we used these two entropy metrics as components in an overall diversity
metric, as discussed below.

Land use diversity within a relatively fine-grain geospatial area, such
as a CBG, is a common component of walkability metrics. This is because
it indicates the extent to which different types of activities (e.g., grocery
shopping, eating out, going to work) can be carried out within walking
distances. Overall, these entropy metrics describe the extent to which
the CBG can be described as mixed-use.

Physical density. We used two metrics from the SLD as indicators of
physical density: intersection density and path density. While these two
metrics are likely to be correlated, they are in fact measuring different
things and are both relevant to the concept of physical density of the
built environment. Intersection density is a common walkability metric
and refers to the number of intersections per square mile, while path
density refers to the number of miles of paths per square mile. The SLD
includes both metrics for different types of paths: auto-oriented, multi-
modal, and pedestrian-oriented. For our analysis, we used the metrics
built for multi-model and pedestrian-oriented pathways, excluding auto-
oriented pathways.

Social density. We defined the social density metric separately from
physical density, in which social density reflects the number of in-
dividuals someone within a CBG might expect to be able to interact with
as a result of the design of the built environment. We used two metrics to
build our social density metric: population density and employment
density. Population density is measured in the SLD as people per acre
and is a direct result of the number of housing units—and number of
people in each housing unit—within a CBG. Employment density is
measured as jobs per acre and is a direct result of the number of
buildings or spaces that support work within a CBG. These social density
indicators can be viewed as both demographic data as well as built
environment data, since the design of the neighborhood directly affects
the number of residents and workers within a given neighborhood.

When disaggregated spatially to the relatively fine-grain level of the
CBG, we argue that these social density variables are indicative of
walkable built environment design. The inclusion of the human-oriented
variable of social density embeds within our walkability specification
the explicit notion of human-built interaction. Walkability depends not
just on the bare physical environment, but also the actors within the
spaces. For example, physical density and land use diversity can indicate
the number of buildings and their mix of use within a neighborhood. But
if these buildings are not actually populated either as housing units or
workplaces, then the walkability benefits of mixed-use development
would be limited. Social density as a design variable can thus be
important to walkability.

Transit connectedness. Transit connectedness can be viewed as a
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walkability indicator because it enables individuals that need to travel
across neighborhoods to be able to walk to transit stops within their
neighborhoods. We used two SLD metrics as connectedness indicators:
proximity to transit and frequency of transit. We measured proximity by
taking the negative of the transit distance metric reported in the SLD.
Distance is measured as the minimum walk distance (m) between the
CBG centroid and the nearest transit stop of any route type. Transit
frequency is measured as the frequency of service for each transit route
within 0.25 miles during the weekday evening peak period (4:00 pm to
7:00 pm local time), summed for all routes.

A number of CBGs do not have realistic access to transit. These are
coded with the values -99999 in the SLD. In an effort to retain these
CBGs for analysis, we adjusted these values to the following: 1500m for
minimum walking distance to transit (a value greater than the maximum
reported value of 1205m and greater than is feasible for frequent transit
use), and O for transit frequency. These values maintained the reported
scales which allowed us to keep non-connected CBGs in the dataset for
analysis.

3.1.2. Baltimore ecosystem study

The BES is an ongoing research project that started in 1998 with
funding from the US National Science Foundation as a Long-term
Ecological Research site. The project grant is administered by the Cary
Institute of Ecosystem Studies, and the project is housed at the Univer-
sity of Maryland, Baltimore County. The key goal of the BES is to
advance the understanding of urban areas as newer types of ecosystems.
Among the core activities of the BES is the BES Household Telephone
Survey, which is intended to gather information on environmental
knowledge, perceptions, values, and behaviors, as well as how changes
in ecosystem structure impact various outcomes including social cohe-
sion. The BES telephone survey covers 6 different cities, despite being
originally Baltimore-centric: Baltimore, Boston, Miami, Minneapolis-St.
Paul, Phoenix, and Los Angeles. Data and details for the BES telephone
survey can be found on the EDI Data Portal.! Importantly, each survey
response was identified by the respondent’s home CBG, which enabled
us to fuse the social cohesion survey responses with the SLD, thereby
allowing us to attach built environment attributes to each survey
response. Through this data fusion process, we ended up with 9,670
total data points containing each attribute of interest, with 26.4% of the
valid responses coming from 2006 and 73.6% from 2011.

The BES telephone survey includes three specific questions designed
to measure neighborhood social cohesion, each adapted from the sem-
inal Project on Human Development in Chicago Neighborhoods
(Sampson et al., 1997) and thereafter used in many studies on neigh-
borhood social cohesion (Bateman et al., 2017; Stein and Griffith, 2015).
These were in response to the following phrase: “On a five-point scale,
how strongly would you agree or disagree with the following statements
about your neighborhood with a score of one being strongly disagree up
through five being strongly agree:”

e “This is a close knit neighborhood”
e “People in the neighborhood are willing to help one another”
e “People in this neighborhood can be trusted”

As the number of ties within each individual’s social network has
also been shown to be an indicator of social cohesion (Kawachi and
Berkman, 2015), the BES telephone survey included an additional
cohesion-related survey question: “About how many neighbors do you
know by name.... 1 (none), 2 (a few), 3 (about half), 4 (most of them), 5
(all of them).” We used the three questions adapted from the Project on
Human Development in Chicago Neighborhoods as well as this last
question on self-reported and relative tie numbers as our four indicators

1 https://portal.edirepository.org/nis/mapbrowse?packageid=knb-Iter-bes
.4000.180
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for neighborhood-level social cohesion.

In addition to the social cohesion questions, the telephone survey
also included important self-reported demographic information, which
we used as control variables for statistical analysis. The demographic
data available for each survey response were as follows: education level,
race, income, age, and sex. Each of the variables from the BES that we

used in this study is summarized in Table 2.

Table 2

Summary of social cohesion and demographic variables from BES household
telephone survey (n=9670).

Variable Survey question Response range Mean  Standard
name deviation
Social
cohesion
Close knit How strongly 1 (strongly 3.55 1.26
would you agree or disagree), 2, 3,4, 5
disagree with the (strongly agree)
following
statements about
your neighborhood:
This is a close-knit
neighborhood.
Trust How strongly 1 (strongly 4.02 1.09
would you agree or  disagree), 2, 3,4, 5
disagree with the (strongly agree)
following
statements about
your neighborhood:
People in this
neighborhood can
be trusted.
Willingness to  How strongly 1 (strongly 3.92 1.14
help would you agree or  disagree), 2, 3, 4, 5
disagree with the (strongly agree)
following
statements about
your neighborhood:
People in the
neighborhood are
willing to help one
another.
Number of About how many 1 (None), 2 (A 2.95 1.01
neighbors neighbors do you few), 3 (About
known know by name? half), 4 (Most of
them), 5 (All of
them).
Demographics
Education What is the highest 1 (less than high 3.51 1.13
grade of school you  school), 2 (high
have had the school graduate), 3
opportunity to (some college), 4
complete? (college graduate),
5 (postgraduate
work)
Race Do you consider 1 (White), 0.80 0.40
yourself to be... 0 (Asian, Black,
Hispanic, Native
American, Other)
Income What is your 1 (under $15K), 4.28 1.64
income? 2 ($15K to $25K),
3 ($25K to $35K),
4 ($35K to $50K),
5 ($50K to $75K),
6 ($75K to $100K),
7 ($100K to
$150K),
8 (over $150K)
Age Please stop me 1 (under 35),2 (35 3.21 1.27
when I reach the to 44), 3 (45 to 54),
category that 4 (55 to 64), 5 (65
includes your age. or over)
Sex (Respondents chose 0 (Female), 1 0.59 0.49

the response they
most identified
with.)

(Male)
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3.2. Modeling approach: structural equation modeling with partial least
squares

We required a statistical tool that enabled us to relate our measured
variables to the underlying concepts they represent and thereafter
analyze the statistical relationships among these concepts. We used
Partial Least Squares Structural Equation Modeling (PLS-SEM), a
framework for statistical modeling that combines factor analysis with
path analysis. In factor analysis, one relates an underlying concept, or
latent variable (e.g., social cohesion), to a number of indicators that are
theorized to represent aspects of the latent variable (e.g., responses to
questions on a survey); this is known as the measurement model. In this
research, many of the concepts we are interested in modeling can be
readily thought of as latent variables expressed through indicators.
Given a set of latent variables, path analysis enables multivariate
regression in which some latent variables are affected by others (e.g.,
social cohesion affected by density of the built environment); this is
known as the structural model.

The standard SEM approach is also known as covariance-based SEM,
which aims to minimize the distance between the model’s covariance
matrix and the observed covariance matrix using maximum likelihood
estimation. An alternative approach, PLS-SEM (also known as PLS Path
Modeling), uses ordinary least squares regression to maximize the
explained variance of the target endogenous latent variables.
Covariance-based SEM involves strict data assumptions, including that
the measured data follow normal distributions, which is a difficult
assumption to meet with non-experimental data. Additionally,
covariance-based SEM requires that the measurement model be in the
reflective mode. Scholars have noted that PLS-SEM can be preferred to
CB-SEM when the following conditions are met (Hair et al., 2019;
Mehmetoglu and Venturini, 2021):

o Distributions are nonnormal (while this is not a reason to choose PLS-
SEM in and of itself, PLS-SEM has been shown to perform well when
assumptions about data distributions are not met)

e The research is exploring theory development, rather than confirm-
ing an existing theory

e One or more of the latent variables is formatively measured

e When the research is based on secondary data rather than a
controlled experiment

As each of these points applies to our modeling approach, we elected
to use PLS-SEM in this research. An additional strength of PLS-SEM is
that it can create latent variable scores, which enables follow up anal-
ysis. This is particularly helpful when exploring the implications of new
theory development (Hair et al., 2019). One disadvantage of the
PLS-SEM approach for statistical analysis is that since it is nonpara-
metric, significant testing requires bootstrapping to create confidence
intervals for certain model parameters, such as weights in the mea-
surement model and coefficients in the structural model.

3.3. Model definition

The model definition for our PLS-SEM is shown graphically in Fig. 2.
In the subsections below, we define explicitly our measurement model
and structural model.

3.3.1. Measurement model

Based on our review of the literature and the urban form data
available at the CBG, we defined four urban form latent concepts to be
our primary independent variables: land use diversity, physical density,
social density, and transit connectedness. These four concepts are typi-
cally included in overall walkability metrics, such as the National
Walkability Index and Walk Score. For these four concepts, we used
formative measurement with indicators taken from the EPA SLD. We
chose to use formative measurement because, for each exogenous latent
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Fig. 2. PLS-SEM model definition. The exogenous latent variables in the structural model are measured formatively (arrow from indicator to latent variable),
whereas social cohesion is measured reflexively (arrow from latent variable to indicator).

variable, the measured indicators are more appropriately thought of as
combining to form the latent concept, rather than reflecting subtle dif-
ferences in the latent concept. For example, social density in our model
is formed by population density and employment density. While it may
be the case that these two indicators are correlated with one another,
they are in fact separate concepts measuring different things. But, when
taken together, they create an overall picture of the number of people
expected to utilize a particular neighborhood, which we call social
density in our analysis. The measurement model for the formatively
measured exogenous variables is reflected in the overall proposed PLS-
SEM model (Fig. 2).

For our endogenous variable, social cohesion, we used reflective
measurement with four indicators from the BES. Here, reflective mea-
surement is more appropriate because the survey questions are all
designed to reflect an overarching concept of social cohesion. These four
indicators—close knit, trust in neighbors, willingness to help, and
number of neighbors known—are responses to the survey questions
described above.

3.3.2. Structural model

Our structural model simply states that social cohesion is affected by
each of the four features of walkable urban form as well as demographic
covariates, as shown in Fig. 2. Because the demographic covariates do
not define a latent variable, either formatively or reflectively, we created
a dummy latent variable for each covariate (e.g., “Latent Education”
formed only by “Education”) and included a path directly from each
dummy demographic latent variable to social cohesion. We omitted this
technical detail from Fig. 2. To estimate the model, we used the “SEM-
inR” package in the statistical programming language “R” (Ray et al.,
2021). Our code for analysis is publicly available on Github.?

4. Results and discussion
Evaluation of the PLS-SEM starts with validity of the measurement
model, to ensure that the latent variables are indeed represented by the

chosen indicators. Once the measurement model is deemed valid, the
structural model can be analyzed for statistical relationships.

2 https://github.com/asonta/rethinking-walkability

4.1. Measurement model validity

Table 3 shows the metrics used to assess validity of the measurement
model. The metrics differ depending on whether the latent variable is
defined reflectively or formatively, as informed by established guide-
lines on PLS-SEM use (Hair et al., 2019; Mehmetoglu and Venturini,
2021). For the four independent variables in the measurement model,
which were measured formatively, we assessed measurement model
validity by investigating collinearity of the formative indicators as well
as statistical significance of the indicator weights. We used the Variance
Inflation Factor (VIF) to evaluate collinearity of indicators, as is common
in PLS-SEM. A VIF value above 5 indicates high collinearity among in-
dicators, and guidelines state that ideally VIF values should be close to 3
or below (Hair et al., 2019; Becker et al., 2015). This condition was met
for diversity, social density, and connectedness, while physical density
exhibited a VIF of 3.73. Because this value is below the recommended
maximum threshold of 5, we elected to accept these modeling results for

Table 3
Measurement model validity.

Latent variable Weight  95% weight confidence interval ~ VIF
Indicator variable

Independent variables
(Built environment attributes)

Diversity 1.19
Mix of commercial uses 0.948* (0.811, 1.04)
Mix of all uses 0.115 (-0.117, 0.345)

Physical density 3.73
Intersection density 0.853* (0.616, 1.07)
Path density 0.168 (-0.085, 0.420)

Social density 1.03
Population density 0.966* (0.927, 0.997)
Employment density 0.145% (0.014, 0.257)

Connectedness 1.16
Proximity to transit 0.678* (0.550, 0.785)
Transit frequency 0.526* (0.400, 0.648)

Latent variable Loading Cronbach’s alpha AVE

Indicator variable

Dependent variable

Social cohesion 0.789 0.482
Close knit 0.399
Trust 0.990
Willingness to help 0.670
Number of neighbors known 0.583
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further analysis. Because PLS-SEM is a nonparametric method, statistical
significance in general can be estimated through bootstrapping, as dis-
cussed above. After bootstrapping the model with 1000 iterations, we
were able to create a 95% confidence interval for the indicator weights
used in the formative measurement model. We found that some of these
confidence intervals did include 0, as indicated in the table. However,
we note that a non-significant weight does not necessarily indicate that
the indicator should be removed (Hair et al., 2019). Instead, for in-
dicators with non-significant weights, the indicator’s outer loading
should be considered (Cenfetelli and Bassellier, 2009). For the three
indicators with nonsignificant weights, each had an outer loading higher
than 0.5, as recommended (Mix of all uses: 0.50, Path density: 0.90). For
these reasons, we accepted the validity of the formative components of
the measurement model.

To assess the validity of the reflectively measured dependent latent
variable, social cohesion, we examined indicator loadings, consistency
reliability using Cronbach’s alpha, and convergent reliability using the
average variance extracted (AVE) metric. The standard criterion for
indicator loadings is that each loading should be at 0.7 or above, which
indicates that more than 50% of the indicator’s variance is captured by
the latent construct. We found that only one of the indicators (trust) met
this threshold. However, we note that indicator loadings between 0.4
and 0.7 are often accepted, particularly in early-stage theory develop-
ment, which we believe applies to this study (Hair et al., 2016).
Furthermore, we note that the close knit, trust, and willingness to help
variables are established indicators for social cohesion in the social
science literature, which we believe provides convincing rationale for
retaining each indicator in the model. For consistency reliability,
Cronbach’s alpha should be greater than 0.7, which we found to be the
case. And finally, the AVE metric should be 0.5 or above. While 0.482 is
below the 0.5 threshold, it is quite close, and we deemed this result
acceptable for continued analysis of the structural part of the model.

4.2. Structural model path analysis

Key results from the structural model path analysis are shown in
Table 4. As a first step in assessing the structural model, it is important to
ensure that there exists no collinearity among independent variables.
Using the VIF metric, we found that no critical collinearity issues exist in
the structural model (VIF below 5).

The most important results from the structural model are the path
coefficients, which allow us to examine the relationships between the
independent and dependent variables, and the 95% confidence internal,
which allows us to determine the significant relationships between
urban form and cohesion. We found that eight of the nine independent
latent variables had path coefficients significantly different from zero at
the 95% confidence level. Each of the demographic covariates except
education level had a significant impact on reported social cohesion. On
average, as both income and age increased, respondents reported higher
cohesion. We note that it is generally accepted that social isolation poses
a major health risk for older adults (Nicholson, 2012; Cornwell et al.,

Table 4
Structural model results.

Latent variable VIF Cohesion path coefficient 95% confidence interval
Diversity 1.05 0.051* (0.029, 0.072)

Physical Density 2.01 -0.050* (-0.079, -0.019)

Social Density 2.02 -0.085* (-0.125, -0.055)
Connectedness 2.33 -0.038* (-0.071, -0.001)
Education 1.22 0.011 (-0.013, 0.032)

Race 1.14 0.066* (0.043, 0.088)

Income 1.35 0.158* (0.134, 0.182)

Age 1.07 0.166* (0.145, 0.187)

Sex 1.01 0.041* (0.020, 0.063)

* indicates that 0 is not contained within the 95% confidence interval R? =
0.101
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2008), though some recent work has found that older age is associated
with divergent factors for different forms of social connectedness
(Cornwell et al., 2008). While we found an average positive relationship
between age and cohesion, which was an important effect to control for
in the research, we note that this was an average effect, and this work
did not focus on the demographic of older adults. For the other cova-
riates, white respondents and female respondents reported higher
cohesion than nonwhite and male respondents.

The urban design features we included as independent variables
were each found to be statistically significant, but they differ in the ef-
fect they had on social cohesion. Land use diversity was shown to have a
positive impact on social cohesion. On the other hand, both physical
density and social density were shown to have significant negative ef-
fects on social cohesion. The effect of connectedness to transit was also
negative, with greater access to transit being associated with less social
cohesion. While these coefficients are not large, it is important to note
that they would likely not be expected to have high values. Social
cohesion is a complex phenomenon influenced by many factors, one of
which may be the design of the built environment. By showing that these
relationships are statistically significant, we find evidence that these
influences do in fact exist, which is an important finding irrespective of
the raw coefficient values.

A particularly striking finding is the opposite impacts of diversity and
density, which simultaneously lends support to two arguments that are
often seen as competing:

e The positive impact of land use diversity lends partial support to the
theories associated with the new urbanism design philosophy. As we
move from purely residential communities (places where you often
need a car for daily activities) toward more mixed-use, walkable
places, it can be expected that more socially meaningful contact
becomes possible. This effect could arise from a few different
mechanisms. One is that higher diversity makes walking a more
viable transportation option, because more destinations/amenities
would be within walking distance. As more people utilize sidewalks
through walking as opposed to streets through driving, there become
more opportunities for interaction among city users, which in turn
would be expected to increase cohesion. Another possible mecha-
nism is that increased land use diversity simply creates more
vibrancy within neighborhoods (more shops, more event spaces,
etc.), and the uses of neighborhood parcels themselves create the
opportunities for meaningful social contact.

At the same time, however, the negative impact of physical and so-
cial diversity also lends partial support to the theories that have
critiqued pure urbanization. As neighborhoods become denser, we
may be seeing the hypothesized effect of increased anonymity.
Highly dense neighborhoods, in terms of both the number of build-
ings and the number of people within those buildings, could over-
whelm our social experiences. If, for example, one is walking down a
street, one might expect different outcomes depending on the num-
ber of other individuals using that space. If no one else is on the
street, interaction is not possible. If a very large number of in-
dividuals are also using that space, interaction is possible, but
meaningful interaction may not be feasible. If some moderate num-
ber of other individuals is using that sidewalk, it may be easier to
engage in socially meaningful interaction—one may start to recog-
nize the same person over and over, and eventually engage in con-
versation, for example. There may be socially diminishing returns
from increased density, an idea that our findings would support.

The theoretical behaviors embedded in these theories operate on two
different key aspects of design—density and diversity. This analysis
sheds empirical light on this density/diversity dichotomy, a light that
helps us to understand the complexities of our urbanism theories, and
one that invites further analysis of the effects of diversity and density.
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4.3. Investigating diversity and density

The opposite effects of diversity and density on cohesion invited
further investigation of the variable relationships. In Fig. 3, we show the
data relationships between diversity, physical density, and social cohe-
sion (we omit social density here for readability), along with a locally
estimated scatterplot smoothing (LOESS) regression line to aid with
visualization. The latent variables were calculated using the weight
factors of their constituent indicators. We also applied a log transform to
the physical density variable for visualization purposes. We found that
the negative relationship between physical density and cohesion is much
stronger for high-density neighborhoods than it is for lower-density
neighborhoods (as indicated by the concave shape of the curve). This
would suggest that our highest-density neighborhoods are driving the
overall negative relationship between density and cohesion. We also see
a surprising relationship between diversity and density. For lower-
density neighborhoods (on the left-hand side of the plot), we see that
increasing density is associated with increasing diversity. In other
words, as we start to increase physical density, we generally increase the
amount of diversity of buildings. However, for high-density neighbor-
hoods, we see that increasing density is actually associated with a
decrease in diversity. This would suggest that in areas with many
buildings already, as we increase the density of the urban fabric, we
generally reinforce the existing mix of land use (e.g., more office
buildings in areas with many office buildings in place). One important
takeaway from this analysis is that we have a large opportunity to
improve the social experience of the densest parts of our cities.

4.4. Exploring diversity and density interaction effects

Based on the apparent relationship between physical density and
diversity, we also conducted a post-hoc analysis using a PLS-SEM model
that included an interaction term between physical density and diversity
but was otherwise identical to our original analysis. Our hypothesis for
this additional analysis was that any effects that density might have on
cohesion would be mediated by diversity. For example, for a high-
density region, we might expect different effects on cohesion, depend-
ing on whether the region is low or high diversity—an expectation that
stems from our exploratory analysis above. The model specification and
model results can be seen in Fig. 4.

We omit in this paper many of the details of measurement model
validity for this alternate model, but we note that none of the metrics
used to assess model validity above changed significantly with the
addition of the interaction term. It is important to note that the addition
of the interaction term also does not introduce multicollinearity into the
structural model, with the VIF of the interaction term being 1.053. With
the inclusion of the interaction term, the model fit as measured through
variance explained increased by a small amount (R? increase from 0.101
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to 0.102), which indicates that the interaction term slightly improves
the model fit. We also found that the interaction term (diversity x
physical density) was significant at 0.024 (95% confidence interval:
0.004, 0.049), which supports our hypothesis that diversity mediates the
effect that physical density has on social cohesion. In other words, as
physical density increases, we see different effects on social cohesion
depending on how the diversity of those neighborhoods changes
alongside the increase in density. Neighborhoods with high diversity
and high density would have higher social cohesion than neighborhoods
with low diversity and high density. This finding lends support to the
argument that the densest parts of our cities—which would likely
include the central business districts of the cities analyzed—could be
improved by making them more mixed use. Furthermore, this finding
implies that in the densest parts of our cities, if we can implement design
with more land use diversity, we may not necessarily be limiting social
cohesion. While the interaction analysis demonstrates the opportunities
that exist regarding highly dense areas, we would also like to emphasize
the findings that relate to the more common areas of lower density.
Here, the negative effects of density seem to be less pronounced
(Fig. 3b), and when considering the direction and significance of the
interaction term, we argue that the association between density and
cohesion should continue to be investigated. One the other hand, the
positive association between mix of uses and cohesion seems to persist
across all neighborhood typologies, suggesting that adjusting mix of uses
appears to be a design and policy lever with wide applicability.

We note that we also explored the possibility of interaction between
social density and diversity, but we found that the inclusion of this
interaction did not improve overall model fit, and the interaction term
coefficient was insignificant at the 95% confidence level.

4.5. Multigroup effects for different cities

Our unique dataset includes data for six different cities, which offers
the opportunity to further investigate whether different relationships
appear in different cities. Therefore, we also conducted a post-hoc
analysis to understand if different cities have different relationships
when compared to the overall trends for the other cities in the dataset.
To do this, we used multi-group analysis in PLS-SEM (Cheah et al.,
2023). We ran six tests, where in each test we separated the data into
two groups: one group containing data from only one of the cities, and
the other group containing the data from all other five cities. We
repeated this, isolating each of the cities in turn. In each test, the group
with the individual cities still contained a large amount of data (Balti-
more: 3779, Boston: 1227, Los Angeles: 1079, Orlando: 1033, Phoenix:
1254, Twin Cities: 1298). We used this procedure to attempt to identify
the differences between average effects and individual cities’ effects. In
Fig. 5, we report how the coefficients for the structural model change
when each city is placed in a group separate from the rest of the dataset.
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Fig. 3. Data relationships between (a.) cohesion and both land use diversity and physical density, and (b.) land use diversity and physical density. Relationships are
plotted as pairwise scatterplots with LOESS regressions (span of 0.80 and confidence intervals of 0.95).
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Fig. 5. Results of PLS-SEM multi-group analysis. Each pairwise plot in the matrix shows the differences between the PLS-SEM structural model coefficients (by
column) for different cities (by row). The colored dot is for the individual city, and the black dot is for the other five cities combined.

Here again, each model was bootstrapped, enabling estimation of 95%
confidence intervals and estimations of the statistical significance of
differences between groups. We found through bootstrapping that the
only significant difference occurred between groups when analyzing Los
Angeles separately, and only for physical density. Here, the coefficient
for the Los Angeles data was 0.080, while it was -0.068 for the rest of the
data. We found none of the other group differences to be significant, and
importantly, the signs for the other differences did not change as well.
We believe that this finding demonstrates that our data has a reasonable
amount of consistency across cities and that the findings seem generally
applicable across the different cities. At the same time, the finding
related to physical density in Los Angeles raises questions about the
effect of physical density on cohesion both within Los Angeles and in the
other cities. The specific reasons for this difference related to physical

density is outside the scope of this study, but we note that if we only had
the data from Los Angeles in our study, we may have drawn different
conclusions. This could be one reason that a previous systematic review
of studies that investigated social cohesion and urban form found in-
consistencies in the literature (Mazumdar et al., 2018), as discussed
above. While acknowledging the limitations of our work and the need
for future studies, we note that our findings offer new evidence at a large
scale and demonstrate the benefits of using large, open datasets for such
analysis.

4.6. Limitations and future work

The work presented here demonstrates that the notion of walkability
is best decomposed into its constituent parts when its effects on social
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outcomes are considered. While the findings are significant and have
important implications for planning, engineering, and policy decisions,
we do note that there are certain limitations to this work that should be
clearly stated.

One inherent limitation is that only six metropolitan areas in the
United States were considered. While these cities vary by geographic
region, climate, and many other factors, it is important to note that any
analysis of urban form would benefit from the inclusion of data from
more cities around the globe. Furthermore, while the six cities and
roughly 10,000 data points means that this study, to the best of our
knowledge, is the largest analysis of urban form vis-a-vis social cohe-
sion, any study would benefit from the inclusion of more data. For this
reason, we believe that this broad area of research would benefit from
the ability to extract social cohesion data from data sources associated
with the big-data revolution, such as GPS traces from smartphones, in-
situ sensors, and other sources.

Furthermore, our PLS-SEM model exhibited weak explanatory power
(R2 = 0.102). We note that while this value is low, caution should be
taken when interpreting R? values in social research, particularly when
the analysis is focused on the effects of variables rather than predictive
power. Researchers have noted that small values of this magnitude are
acceptable in such contexts, particularly when modeling effects emer-
gent from human behavior (Hair et al., 2019; Abelson, 1985; Lew-
is-Beck and Skalaban, 1990). One reference on PLS-SEM modeling states
that high R? values “in a model that predicts human attitudes, percep-
tions, and intentions likely indicate an overfit” (Hair et al., 2019). While
we argue this is acceptable in exploratory-stage research, it does indicate
that much of the variance in social cohesion cannot be described by the
features we captured—built environment characteristics and de-
mographic covariates. This limitation is to be expected, as social cohe-
sion is a complex social outcome, but we note that it does mean there is
significant room for model development as well as new theories that
could better explain the pathways linking the experience of the built
environment to social outcomes.

5. Conclusion

In this research, we leveraged open data sources on both
neighborhood-level social cohesion and walkable urban design charac-
teristics to explore the relationship between the provision of urban
infrastructure via urban form and the social outcome of cohesion.
Through a statistical analysis, we found that different aspects of walk-
able urban design have opposite effects on cohesion, controlling for
demographics. We found land use diversity to be positively associated
with cohesion, lending support to the theories of new urbanism that
emphasize mixed-use development. At the same time, however, we
found that physical density, social density, and transit connectedness
were each negatively associated with cohesion, providing evidence that
density inhibits cohesion. Through additional analysis, we found that
the highly dense parts of the cities analyzed were driving negative as-
sociations with cohesion. This particular finding demonstrates that
reevaluating our infrastructure and urban form in highly dense areas has
the potential to improve the social outcomes associated with cities. We
also found that the effect of density is mediated by diversity, indicating
that if our dense neighborhoods are also diverse, the negative effects are
significantly reduced. Ultimately, the findings from this analysis
demonstrate the value in rethinking the way we discuss “walkability” in
the context of social cohesion. Because walkable urban form and
mobility infrastructure is comprised of a complex set of attributes that
do not necessarily align, we benefit when taking a nuanced look at the
individual attributes. When considering urban form and the provision of
infrastructure—including active mobility infrastructure, urban ame-
nities, and land uses—findings from this research suggest the impor-
tance of the mix of uses when it comes to the social experience of
cohesion, particularly in dense areas. These findings can aid the realms
of urban planning, engineering, and policy when it comes to striving
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toward more cohesive and resilient communities.
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