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Statistical learning (SL) is the ability to detect and learn regularities from input and is foundational to language acquisition. Despite the
dominant role of SL as a theoretical construct for language development, there is a lack of direct evidence supporting the shared neural
substrates underlying language processing and SL. It is also not clear whether the similarities, if any, are related to linguistic processing,
or statistical regularities in general. The current study tests whether the brain regions involved in natural language processing are
similarly recruited during auditory, linguistic SL. Twenty-two adults performed an auditory linguistic SL task, an auditory nonlinguistic
SL task, and a passive story listening task as their neural activation was monitored. Within the language network, the left posterior
temporal gyrus showed sensitivity to embedded speech regularities during auditory, linguistic SL, but not auditory, nonlinguistic SL.
Using a multivoxel pattern similarity analysis, we uncovered similarities between the neural representation of auditory, linguistic SL,
and language processing within the left posterior temporal gyrus. No other brain regions showed similarities between linguistic SL
and language comprehension, suggesting that a shared neurocomputational process for auditory SL and natural language processing
within the left posterior temporal gyrus is specific to linguistic stimuli.
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Introduction
Statistical learning (SL), a robust ability to rapidly detect regular-
ities and variabilities from inputs, is a central theoretical account
for first language acquisition (Aslin and Newport 2012; Saffran
et al. 1996). However, whether and how learning the embedded
patterns from an artificial language engages a mature language
network in the human brain remains an open question. On one
hand, successful SL has been demonstrated across age groups
(e.g. infants and adults), species (e.g. monkeys: Meyer and Olson
2011; rats: Toro and Trobalón 2005), modalities (e.g. nonlinguistic
auditory: Gebhart et al. 2009, Saffran et al. 1999; visual: Fiser
and Aslin 2002), and linguistic hierarchies (e.g. phoneme dis-
crimination: Maye et al. 2002; syntax discrimination: Gomez and
Gerken 1999, Thompson and Newport 2007), advocating for a
domain-general SL mechanism. On the other hand, learning out-
comes systematically vary across sensorymodalities (e.g. Conway
and Christiansen 2005; Emberson et al. 2011), suggesting that
SL performance is constrained by domain-specific mechanisms.
Recent behavioral studies emphasize individual differences in
SL and hint at a domain-specific relationship between linguistic
SL and complex language processing (Arnon 2019; Christiansen
et al. 2012; Erickson et al. 2016; McCauley and Christiansen 2015;
Schneider et al. 2020; Siegelman et al. 2018; Siegelman and Frost
2015). Indeed, the modern neurobiological framework of SL pro-
poses a dual-system model that includes both domain-specific
and domain-general learning mechanisms (Conway 2020; Frost
et al. 2015). Limited studies investigating the neural mechanisms

of SL have reported the involvement of domain-general brain
areas associated with executive functions, learning, and memory,
as well as language-related brain regions engaged during both
perception and production (Cunillera et al. 2009; Finn et al. 2013,
2018; McNealy et al. 2006; Plante et al. 2017; Smalle et al. 2022;
Orpella et al. 2022; Schapiro et al. 2012). However, the exact
roles of these language-related brain regions during SL remain
elusive, limiting our understanding of the relationship between
language and SL in the brain. It remains unclearwhether the brain
processes supporting newly encountered linguistic regularities
are similar to those engaged during natural language processing.
Elucidating the relationship between language and SL in the
brain can provide key insights into the nature of domain-specific
constraints on the process of SL.

Prior linguistic experiences influence SL of linguistic stimuli.
Notably, adults’ learning performance on word segmentation and
artificial grammar learning tasks is largely constrained by both
the regularities and variabilities of their native languages (e.g.
Bonatti et al. 2005; Dal Ben et al. 2021; Finn and Hudson Kam
2008; Mersad and Nazzi 2011; Onnis et al. 2005; Trecca et al.
2019). Even for school-aged children with limited language expe-
riences, it is evident that they are sensitive to rich probabilistic
information in the environment that shapes their representation
of language (Stärk et al. 2022). This is because language learning
and language processing are not isolated processes in the real
world. Humans are constantly emersed in continuous language
input that is mixed with both familiar and unfamiliar patterns.
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As suggested by the predictive processing framework (e.g. Lupyan
and Clark 2015), learners can leverage their prior linguistic expe-
riences to generate predictions about the underlying structure of
this continuous language input, resulting in implicit and adap-
tive adjustment of the existing language processing system that
ultimately leads to language acquisition (Dell and Chang 2014;
Elazar et al. 2022; Stärk et al. 2023). Thus, it is likely that the
functional organization of the language processing system in
mature human brains directly engages in predictive processes in
a similar way as it does for auditory, linguistic SL. By examining
functional similarity between natural language processing and
auditory SL across domains within individual brains, the current
study seeks to understand how the language network, shaped
by prior linguistic experiences, is engaged during linguistic and
nonlinguistic SL.

The potential similarity between SL and natural language
processing has been implicated by a limited set of functional
neuroimaging studies. For example, in studies of SL involving
speech stimuli, the inferior frontal gyrus (IFG), superior temporal
gyrus (STG), and supramarginal gyrus in the left hemisphere
demonstrate sensitivity to statistical regularities (Cunillera et al.
2009; McNealy et al. 2006; Karuza et al. 2013; Plante et al. 2017;
Orpella et al. 2021, 2022) and increasing activation as a function
of exposure (Plante et al. 2017; McNealy et al. 2006; Karuza et al.
2013). Due to the anatomical similarity between these regions and
regions within the core-language network, which is a collection
of brain regions consistently and specifically engaged during
semantic and syntactic processing during natural language
comprehension (Bautista and Wilson 2016; Blank et al. 2016;
Julian et al. 2012; Keller et al. 2001), but not during processing
of nonlinguistic information (Fedorenko et al. 2011; Fedorenko
and Varley 2016), the activation of these regions during SL is
often associated with language processing, although they have
never been directly compared (e.g. Park et al. 2022). Existing
evidence for the association between SL and language hinges
on the assumption that the neural substrates found in SL have
functions related to language.Despite providing early insights into
the link between SL and language processing, this practice, known
as reverse inferencing, is limited by theweak functional selectivity
of these anatomical labels, as well as the remarkable intersubject
variabilities in the locations of activation (Fedorenko et al. 2010;
Poldrack 2011). The lack of direct comparison between SL and
language processing is problematic as the cortical regions found
in these studies can be functionally heterogeneous themselves.
The only known study to investigate common neural activation
during spoken language processing and SL within the same
individual utilized an artificial grammar learning (AGL) task and
found that similar P600 responses were elicited for structural
incongruencies during spoken language and AGL. The authors
interpreted this to indicate that the same neural mechanisms
were recruited during syntactic processing of both language
stimuli and SL of sequential patterns; however, it remains
possible that both tasks are subserved by domain-general neural
generators (Christiansen et al. 2012).

A more thorough investigation of the functional overlap
between SL and language processing relies on the quantitative
association between two cognitive processes. Despite substantial
research documenting the behavioral relationships between
SL and language processing skills (Arciuli and Simpson 2012;
Arciuli and Torkildsen 2012; Conway et al. 2010; Conway and
Pisoni 2008; Kirkham et al. 2002; Misyak et al. 2010; Qi et al.
2018), only a few studies have demonstrated neurobiological
evidence linking the two. For example, greater activation in the

left STG during an auditory linguistic SL task was positively
associated with rapid auditory processing speed (McNealy et al.
2006). Greater neural engagement of the speech-motor regions
in the frontal cortex during SL has also been associated with
better SL performance (Assaneo et al. 2019; Orpella et al. 2022).
Evidence from populations with language and communication
difficulties hint toward a similar language–SL relationship.
For example, school-aged children with autism with reduced
language skills showed poorer performance during linguistic,
but not nonlinguistic, SL (measured by slower online learning,
poorer offline pattern retrieval, and poorer overall learning
performance, compared to their age-matched peers (Hu et al.
2023). In a functional MRI (fMRI) study, autistic children showed
a lack of neural sensitivity to the structured speech stream
compared to a random speech stream, while typically developing
children showed activation at left inferior parietal lobule and
putamen (Scott-Van Zeeland et al. 2010). While brain–behavior
correlational approaches facilitate the interpretation of complex
patterns of neural activation (Reber 2013), it is unclear whether
the functional organization of SL in the brain is similar to that of
language processing.

In addition to language-specific regions, many studies have
highlighted the domain-generality of neural activation during SL
tasks. For example, domain-general learning and memory sys-
tems, including the basal ganglia (e.g. Finn et al. 2019; Orpella
et al. 2022), striatum (Orpella et al. 2021), and hippocampus
(e.g. Schapiro et al. 2014, 2017), are considered important for SL,
though the necessity of their engagement is still greatly debated
(Covington et al. 2018; Schapiro et al. 2014, 2017). Intriguingly,
activation at the left, right, or bilateral inferior frontal gyrus (IFG)
during processing of both linguistic and nonlinguistic stimuli has
been reported in most neuroimaging studies using SL paradigms
(Milne et al. 2018; Karuza et al. 2013; Schapiro et al. 2013; Turk-
Browne et al. 2009). From these studies, researchers have con-
cluded that because SL across modalities engages the LIFG, it is
tapping into a domain-general executive function mechanism.
Therefore, contrary to the interpretation above, where activation
of the LIFG is involved in processing linguistic stimuli, activa-
tion of the LIFG has been viewed as a generic online sequence
processor, which drives the computation of statistical regulari-
ties (Petersson et al. 2012; Karuza et al. 2013). These strikingly
contradictory interpretations for the same anatomical region (e.g.
LIFG) emphasizes how additional research is needed to establish
whether or not extraction of abstract statistical patterns engages
linguistic processing.

While SL tasks have been shown to activate regions often
engaged during language processing, others suggest that these
same regions underlie a domain-general SL mechanism. Three
reasons may account for the paradox. First, as mentioned, many
studies associating SL with language processing rely on corre-
lation and reverse inferencing, oversimplifying activation within
these regions that are known to be highly heterogenous. Second,
SL is highly heterogeneous across individuals. Group-level activa-
tion patternsmaymask voxels that are activated at the individual
level, and critical for SL. Third, activation during SL within the
core-language network does not necessarily mean this region is
processing regularities in an artificial language the same way as
natural language processing. Taken together, there is a critical
need to directly investigate whether the functional neural profiles
among individual subjects during language processing and SL are
similar or different.

To address this question, we utilize an auditory, linguistic SL
task, auditory, nonlinguistic SL task, and a language processing
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task to characterizewhether auditory SL resembles the early steps
of language acquisition using fMRI. The language processing task
(Malik-Moraleda et al. 2022) is widely used with robust effect
sizes, apparent interindividual variability, and satisfying test–
retest reliability across most regions in the network (Mahowald
and Fedorenko 2016). To independently and individually test the
role of core-language regions in SL among individual learners,
we implement a group-constrained subject-specific (GCSS) anal-
ysis (Scott et al. 2019; Julian et al. 2012; Fedorenko et al. 2010)
and measure hemodynamic responses within language regions
during each task. Lastly, we seek to elucidate the similarities
in activation patterns between the language and SL tasks using
both univariate conjunction analyses and multivariate similarity
analyses.We hypothesize that if linguistic SL is constrained by an
existing language system, then we should expect to see part of
the mature language network actively engaged during auditory,
linguistic SL. In addition, a shared functional organization of the
language-related brain regions underlying auditory, linguistic SL
and language processing will support a stronger version of this
hypothesis.

Materials and methods
Participants
Twenty-seven adults (Mage =20.8 years, SDage = 3.53 years, 20
females) from the mid-Atlantic region of the United States were
recruited via public flyers and websites. All participants were
right-handed, monolingual English speakers, with no history
of neurological disorder or developmental delay based on self-
report. Participants were screened for MRI compatibility. The
study was approved by the University Institutional Review
Board and is in compliance with the Declaration of Helsinki. All
participants provided informed consent and were compensated
at a rate of $20/hour in gift cards for their time. Due to technical
issues, five participants did not yield sufficient neuroimaging data
for analysis. Specifically, one participant did not complete all four
runs of the auditory, SL task, two participants did not complete
the language localizer task, and two participants had framewise
displacement values that were significantly higher than other
participants (>3.00), indicating substantial noise was present in
their fMRI data. Therefore, the final sample size for this study is
22 (Mage = 19.87, SDage = 1.25, 15 females).

Language localizer fMRI task
Stimuli
To identify brain areas sensitive to spoken language, participants
underwent functional neuroimaging while they passively listened
to engaging audio clips of natural speech taken from the Alice
in Wonderland story. To control for low-level acoustic features of
speech, these intact clips were contrasted with clips of degraded
speech, which was processed to be unintelligible. The design
and validation of this task is detailed in Scott et al. (2017) and
Malik-Moraleda et al. (2022). Briefly, the degradation procedure
consisted of creating low-pass (cutoff frequency 500 Hz) filtered
copies of a set of clips of speech similar to the intact set. Then, for
each clip, amplitude envelope-modulated white noise was added
where the envelope was copied from the original clip. This white
noise was then “softened” with low-pass filtering at pass-band
frequency 8000 Hz with stop frequency of 10,000 Hz. The resulting
clips are recognizable as human speech but lack lexical and
phonemic content, and sound similar to an unintelligible radio

broadcast. These stimuli, their transcriptions, and a presentation
script are available online. (https://evlab.mit.edu/aliceloc/).

Procedure
Across two separate runs, 16 blocks of intact speech and 16 blocks
of degraded speech were presented. Each run lasted 5 min and
58 s.Blocks consisted of one continuous 18-s audio clip. In addition
to the 16 stimulus blocks per run, five 14-s blocks of rest were
included, in which participants heard no stimuli. These blocks of
rest occurred every four blocks of randomly interspersed intact or
degraded speech blocks. For example, a run consisted of 16 blocks
(B) in this sequence: Rest B1 B2 B3 B4 Rest B5 B6 B7 B8 Rest B9 B10
B11 B12 Rest B13 B14 B15 B16 Rest (Scott et al. 2017). A fixation
cross was presented on the screen continuously during the entire
run. Participants were only instructed to listen attentively, and no
overt responses were recorded.

Auditory SL task
A common practice in fMRI studies of SL is to compare brain
responses during a familiarization phase between sequences con-
taining regular patterns versus those containing the same stimuli,
which are ordered randomly. However, implementing a random
control condition often interferes with learning of structured
sequences. Previous research found no evidence for behavioral
learning despite neural differences between structured and ran-
dom sequences (McNealy et al. 2006, 2011). We address this
issue in the current study by presenting structured and ran-
dom sequences containing different types of stimuli in the same
run (speech syllables and non-speech tones) and counterbalanc-
ing these conditions across runs. Each participant was therefore
exposed to structured speech, random speech, structured tone,
and random tone sequences. Importantly though, participants
were exposed to only one type of stimuli at a time, with a 6.25-
s block of silence inserted between conditions. This approach
has been shown to result in successful learning of structured
sequences, as indicated by significantly quicker response times in
the structured than the random condition (Schneider et al. 2020).

Stimuli
Syllable stimuli were constructed from twelve English consonant
vowel syllables (pi/pa/pu/ti/ta/tu/di/da/du/bi/ba/bu). All syllable
stimuli were made in Praat using the artificial speech synthesizer
female voice (version 6.1.14; Boersma and Weenink 2020). The
mean duration of each syllable was 350 ms (SD=40 ms) with a
stimulus onset asynchrony (SOA) set at 480 ms. Tone stimuli were
constructed from 12 unique musical pure tones (F, G, D, G#, C#, B,
C, F#, D#, E, A, A#) of the same duration (328 ms) within the same
octave (a full chromatic scale starting from middle C). The SOA
was set at 480 ms.

Participants were exposed to experimental blocks containing
sequences with embedded regularities (i.e. structured blocks),
sequences with no statistical regularities (i.e. random blocks), and
silence (i.e. resting blocks; see Fig. 1). Structured blocks involved
the presentation of sequences containing four triplets,whichwere
created by concatenating the syllables into trisyllabic “words” (pi-
tu-bi, bu-pa-da, di-ba-pu, and ta-ti-du) and the tones into four
target triplets (F#DE, ABC, C#A#F, and GD#G#). Random blocks
contained the same 12 stimuli as presented in the structured
blocks but were ordered pseudorandomly, so that no combina-
tions of any three stimuli were repeated more than once. A silent
blank screen was presented during the resting blocks. Within
each block, each triplet was repeated 8 times for a total of 32
triplets per block. Three structured blocks, three random blocks,
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Fig. 1.Overview of auditory linguistic statistical learning fMRI task. Partic-
ipants were exposed to a) two runs of structured blocks each containing
a 96-syllable sequence with the embedded triplets (S-speech), intermixed
with three random blocks of tone sequences (R-tone) and b) two runs of
random blocks each containing a 96-syllable randomly ordered sequence
(R-speech), intermixed with three structured blocks of tone sequences
(S-tone). Each of these two runs always occurred consecutively. Partici-
pants were instructed to alternate between tracking a specific syllable
(e.g. /ku/) and tracking a specific tone (e.g. B) in these sequences by
pressing a button. Note: Only the alien images, but not the spelling of the
syllables, were present on the screen.

and six resting blocks were concatenated in a pseudorandom
order to create one run of auditory stimuli. The randomization
was independent for each run and for each participant. Adjust-
ment was made to ensure that no more than two blocks of
the same stimulus type were adjacent to each other. To maxi-
mize the opportunities for participants to learn the embedded
syllable triplet patterns, the first two experimental runs con-
tained the syllable structured blocks intermixed with the tone
random blocks and the second two experimental runs contained
the syllable random blocks intermixed with the tone structured
blocks.

Procedure
Participants listened to sequences of sounds and viewed a screen
with an alien cartoon character in the center while performing
an auditory target-detection task with a button response pad
(Cambridge Research Systems). Before each block, a cue for the
target was presented briefly with an auditory instruction “now
listen for the sound /ku/” or “now listen for the sound /G#/” (Fig. 1).
The cue was a stimulus chosen from the last position of a triplet
and was randomly assigned across each participant. Participants
were instructed to press a button when they heard the target
cue.Behavioral analysis of SL involved using participants’ reaction
times during this cue detection task. Mean reaction time (RT) was
computed as the average time it took for a participant to press the
button for each target syllable. A valid button press in response
to the target syllable had to occur in the time window of one
stimulus before and one stimulus after the target syllable; that is,
within −480 to +960ms relative to the onset of the target syllable.
A button press prior to the presentation of the target syllable
indexed anticipation, resulting in a negative reaction time. All
behavioral analyses for the current study were conducted in R (R
Core Team, 2012).

Throughout the task, in each participant, the same cue was
used for all the structured and random blocks of the same stim-
ulus type. The target syllable and the target tone were randomly
assigned to each participant. Participants completed four exper-
imental runs; each lasted 6 min and 33 s. We found that the
participants did not differ in their task engagement across the two

halves of the experiment (see 3.1 for analyses in target-detection
behavior).

Neuroimaging data
MRI acquisition
Data were acquired on a Siemens 3-T Magnetom Prisma scanner
with a 64-channel phased array head coil at the Center for Brain
and Biomedical Imaging at the University of Delaware. Prior
to functional imaging, whole-head, high-resolution structural
images, including a T1-weighted, magnetization-prepared rapid
gradient-echo anatomical volume (TR=2500 ms, TE=2.9 ms,
TI = 1070 ms, flip angle = 8.0◦, voxel resolution=1.0 mm isotropic,
field of view [FOV] = 256 × 256, 176 sagittal slices) and a T2-
weighted anatomical volume (TR=3200 ms, TE=565 ms, flip
angle = 2.0◦, voxel resolution=1.0 mm isotropic, FOV=256 × 256,
32 sagittal slices) were collected.

Functional data were acquired using simultaneous T2∗-
weighted echo-planar imaging with multislice scans acquisition
(Feinberg et al. 2010; Moeller et al. 2010; Setsompop et al.
2012) with the following acquisition parameters: TR=800 ms,
TE=32 ms, flip angle = 61◦, FOV=210 × 210 mm, and acceleration
factor = 6. For both SL tasks, we required 60 adjacent slices in an
interleaved order with 2.5-mm slice thickness resulting in an in-
plane resolution of 2.5× 2.5× 2.5 mm3. For the language localizer
task, we required 45 adjacent slices in an interleaved order with
3.0-mm slice thickness resulting in an in-plane resolution of 3.0
× 3.0 × 3.0 mm3. After fMRI preprocessing, the language localizer
data were resampled to the same space as the SL data using
participant’s anatomical data as the reference image within FSL
(FSL 5.0.9; Zhang et al. 2001).Weused a nearest neighbor approach
to resample, which assigns the voxel to the nearest voxel in the
original space.

fMRI preprocessing
Functional and anatomical data were first converted using
HeuDiConv (Halchenko et al. 2020) and then organized to cohere
with the Brain Imaging Data Structure (BIDS; Gorgolewski et al.
2016). fMRIPrep 1.3.1 (Esteban et al. 2019; RRID: SCR_016216),
which is based on Nipype 1.1.9 (Gorgolewski et al. 2011, 2018),
was utilized for all preprocessing steps. Many internal operations
of fMRIPrep use Nilearn 0.5.0 (Abraham et al. 2014), mostly
within the functional processing workflow. This automated
preprocessing pipeline combines methodology from AFNI (Cox
and Hyde 1997), ANTs 2.2.0 (Avants et al. 2022), FreeSurfer 6.0.1
(Dale et al. 1999), FSL (FSL 5.0.9; Zhang et al. 2001), andMindboggle
(Klein et al. 2005, 2017) to provide scientifically rigorous and
reproducible data for use in data analysis. fMRIPrep was first
conducted on anatomical data only, described in more detail
below. All functional data were then preprocessed based on these
corrected T1 images.

Anatomical data preprocessing
The T1-weighted (T1w) image was corrected for intensity non-
uniformity and used as T1w-reference throughout the workflow.
The T1w-reference was then skull-stripped. Brain surfaces were
reconstructed using FreeSurfer. Nonlinear spatial normalization
(warping) of brain-extracted anatomical volumes to the ICBM
152 Nonlinear asymmetrical template version 2009c (Fonov et al.
2011) was performed. Brain tissue segmentation of cerebrospinal
fluid, white matter, and gray matter was performed on the brain-
extracted T1w.
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Functional data preprocessing
For each of the functional runs per subject (four auditory, lin-
guistic SL runs, four auditory, nonlinguistic SL runs, and two
language localizer runs), the following preprocessing was per-
formed. First, a brain-masked functional reference volume was
generated using a custom methodology of fMRIPrep. A deforma-
tion field to correct for susceptibility distortions was estimated
based on a coregistered field map, using a custom workflow of
fMRIPrep derived fromD.Greve’s epidewarp.fsl script (http://www.
nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl) and further
improvements from HCP Pipelines (Glasser et al. 2013). Based on
the estimated field distortion, a distortion-corrected BOLD refer-
ence was calculated for a more accurate coregistration with the
anatomical reference. The BOLD reference was then used to com-
pute the linear transformation between the subject’s functional
data and anatomical volume using boundary-based registration
(bbregister; Greve and Fischl 2009). Coregistration was configured
with 9 degrees of freedom to account for distortions remaining in
the BOLD reference. Head-motion parameters for each volume in
the time series were estimated with respect to the BOLD reference
(transformation matrices, and six corresponding rotation and
translation parameters). Time-series data were then high-pass
filtered and underwent slice-timing correction, recommended for
multiband data with short TRs (Parker and Razlighi 2019). Head-
motion and field distortion corrections were then applied to the
time series with a single, composite transformation. The BOLD
time series were resampled to MNI 152.

First-level statistical analysis was carried out using FEAT (FMRI
Expert Analysis Tool; Woolrich et al. 2001). For the language local-
izer task, we computed contrast images between the intact and
the degraded speech conditions for each functional run and each
participant, and then we averaged the contrast images across
the two runs (see Supplementary Analyses for results of this
univariate analysis). For both the auditory, linguistic and auditory,
nonlinguistic SL tasks, for each individual run, parameter esti-
mates for structured and random speech relative to baseline were
calculated. Then, these contrast images were averaged across
runs for each experimental condition, such that in both SL tasks,
structured versus rest and random versus rest contrasts, and in
the language localizer task, intact versus degraded and degraded
versus intact, were generated for each participant. To directly
examine the effect of SL and to take run order difference into
account, we also computed the structured–random contrast for
the syllable and tone stimuli separately by computing the differ-
ences between the contrast images of task and rest blocks within
each run: structured speech versus rest compared to random
speech versus rest and structured tones versus rest compared to
random tones versus rest. Parameter estimates for each contrast
of interest were constructed. Group-level means for each contrast
of interest were computed using FLAME (FMRIB’s Local Analysis
of Mixed Effects; Beckmann et al. 2003).

GCSS analyses
Since traditional group-level approaches can result in the loss of
meaningful individual variability, we performed GCSS analyses
designed to take into account intersubject variability (Scott et al.
2019; Julian et al. 2012; Fedorenko et al. 2010). With these analy-
ses, we defined probabilistic regions of interest (“parcels”), which
we used to constrain our individual subject analyses. Specifi-
cally, we used the updated language parcels provided in Malik–
Moraleda et al. (2022) to measure patterns of similarity between
tasks within individuals. From within each language parcel, the

contrasts between structured speech during SL and rest, random
speech during SL and rest, structured tones during SL and rest,
random tones during SL and rest, intact sentence processing and
rest, and degraded sentence processing and rest were extracted
and compared (Results section “Subject-specific language regions
are engaged during auditory SL”).

Multivoxel pattern analyses
To ensure thorough investigation of neural patterns shared across
auditory SL and language processing, we used local pattern simi-
larity analysis. This technique is designed to identify brain regions
that support similar functions during different tasks, regardless
of the exact level of activation (Scott and Perrachione 2019).
For this analysis, unsmoothed functional contrast maps from
each task are compared. These maps have undergone the same
preprocessing and first-level analysis as the data discussed so
far, including warping to common MNI space, except that these
maps have not been spatially smoothed and thresholded. To first
determine whether the pattern of activity in each language parcel
reflects similar task engagement during linguistic SL and lan-
guage processing, we computed Pearson correlation coefficients
between the structured > random linguistic SL, structured > ran-
dom nonlinguistic SL, and intact > degraded language processing
contrasts across all voxels in each parcel, within individual sub-
jects.We assessed the significance of these correlations across our
participants under a null hypothesis in which unrelated patterns
of activity had a correlation of zero (Results section “Linguistic SL
and language processing show representational similarity in the
left Posterior Temporal Gyrus”).

Results
Auditory SL performance
To ensure participants attended to and learned the embedded
triplets in the speech stream, we measured response reaction
time to both structured and random speech sequences. We pre-
dicted that participants would respond faster to target syllables
when listening to structured sequences (structured speech) as
compared to random sequences (random speech).One participant
was removed from the speech RT analysis, as they did not have
enough valid key presses (<6 trials) during the exposure phase
(Mage = 19.90 years, SDage = 1.26 years, number of females = 14).
Consistent with what we have reported in the complete sample
in Schneider et al. (2020), the average RT to the target sylla-
ble across the entire exposure phase was significantly quicker
in the structured (M=643.29 ms, SD=83.27 ms) than the ran-
dom condition (M=670.07 ms, SD=55.41 ms; t(19) =−1.91, one-
tailed P=0.04).We also predicted that participants would respond
faster to target tones when embedded in statistical regularities
(structured tones) as compared to random sequences (random
tones). Four participants were removed from the tone RT analysis,
as they did not have enough valid key presses (<6 trials) during
the exposure phase (Mage = 19.67 years, SDage = 0.91 years, number
of females = 13). The average RT to the target tone across the
entire exposure phase was significantly quicker in the struc-
tured (M=515.52 ms, SD=74.64 ms) than the random condition
(M=567.89 ms, SD=78.03 ms; t(15) =−2.63, one-tailed P=0.009).

Since structured and random conditions within each stimulus
type were presented at different runs, one possible confounding
factor was task engagement. Therefore, we also computed A′

values as this is a measure of participants’ sensitivity for target
stimulus based on hit and false alarm rates (Aaronson and Watts
1987; Grier 1971; Pallier 2002). An A′ near 1.0 indicates good
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discriminability for target over nontarget stimuli, while a value
near 0.5 indicates chance performance. The mean A′ values for
each condition were as follows: structured speech condition 0.90
(SD=0.10), random speech 0.89 (SD=0.05), structured tone 0.80
(SD=0.14), and random tone 0.76 (SD=0.14). There were no sig-
nificant differences between structured and random sequences
in the speech (t(20) = 0.32, P=0.76) and tone (t(20) =−0.82, P=0.42)
conditions, indicating that participants were equally engaged in
both conditions, and the RT difference between structured and
random conditions was not due to differences in hit and false
alarm rates.

Subject-specific language regions are engaged
during auditory SL
Univariate conjunction analyses between auditory, linguistic SL
and language processing suggest functional overlap at the group
level (Supplementary Analyses). To test whether language regions
are engaged during SL in individual participants, we used a pub-
licly available set of updated language parcels from Fedorenko
et al.’s (2010) language localizer task. These parcels were created
by contrasting sentences > nonwords conditions across 220 par-
ticipants and their right-hemisphere homologues. We chose to
use these parcels rather than the parcels created from our own
sample and language localizer task for the following reasons. First,
the results will facilitate comparison with other existing studies
using the same parcels. Second, in a study using the same “Alice-
in-Wonderland” task across 45 languages, the language parcels
created from Intact > Degraded Speech contrast were nearly
identical to the original set (Malik-Moraleda et al. 2022).

We next asked whether subject-specific language functional
region of interest (fROI), defined by the most activated voxels
within each language parcel during the “Alice-in-Wonderland”
task (Intact vs. Degraded contrast), are engaged during auditory,
linguistic SL. To statistically evaluate this functional overlap, we
extracted the mean activation during linguistic SL for each con-
dition (structured vs. rest and random vs. rest) for each language
fROI. This results in a measure of how sensitive each language
parcel is to the linguistic SL contrast for each participant.

Listening to structured sequences of speech syllables resulted
in significantly greater hemodynamic responses than listening to
random sequences of speech syllables in the left posterior tempo-
ral gyrus (t(39.16) = 1.70, one-tailed P=0.048). No other language
regions showed sensitivity to differences in statistical regularities
of speech (P’s>0.05; see Supplementary Table 1 for full statistics).

To clarify whether activation of the left posterior temporal
gyrus during SL is domain specific or domain general, we next
extracted the mean activation during tone SL for each condition
(structured vs. rest and random vs. rest). Listening to structured
sequences of tone syllables did not result in a significantly
greater hemodynamic response than listening to random tone
sequences in the left posterior temporal gyrus (P> 0.05; see
Supplementary Table 2 for full statistics). No other language
regions showed sensitivity to differences in statistical regularities
of tones (P’s>0.05; see Supplementary Table 1 for full statistics).

To determine whether the condition differences during audi-
tory linguistic SL elicited a response that is similar in magnitude
to that produced during language processing, we also examined
hemodynamic responses during listening to intact and degraded
sentences during the language localizer task within the left pos-
terior temporal gyrus, and all other language parcels. Listening
to intact speech resulted in a significantly greater hemodynamic
response than listening to degraded speech in the left posterior
temporal gyrus (t(36.85) = 4.04, one-tailed P< 0.001). All parcels,

Fig. 2. Mean activation during processing of structured speech and ran-
dom speech, structured tone and random tone, and intact and degraded
speech within the left posterior temporal gyrus. A) Greater activation
for structured speech sequences compared to random speech sequences
was observed in the left posterior temporal gyrus. B) Mean activity (b)
for random (blue) and structured (orange) speech sequences, random
(blue) and structured (orange) tone sequences, and degraded (blue) and
intact (orange) language processing within the left posterior temporal
gyrus. Error bars represent the within-subject standard error. Asterisks
represent one-tailed P values: ∗P< 0.05, ∗∗∗P<0.001.

with the exception of the bilateral angular gyrus, and the right
IFG and MFG, also demonstrated significant differences between
intact and degraded speech (see Supplementary Table 3 for full
statistics). Average hemodynamic responses within the left pos-
terior temporal gyrus across tasks are presented in Fig. 2.

Due to the imbalanced distribution of gender in the current
sample (15 female, 7 male), we also examined whether there
were gender differences within the left posterior temporal gyrus
using a one-way ANOVA predicting differences in BOLD activa-
tion (structured–random) during auditory SL between males and
females. We found no difference between males and females in
the activation of the left posterior temporal gyrus during speech
SL (F(1,19) = 0.16, P=0.70) or tone SL (F(1,19) = 0.66, P=0.43).

Linguistic SL and language processing show
representational similarity in the left posterior
temporal gyrus
Univariate conjunction analysis applies a voxel-wise activation
threshold and searches for voxels consistently coactivated by
both tasks at the group level. This approach does not necessarily
indicate similarities within individuals across both tasks. Our
analyses in language parcels revealed greater activation for struc-
tured speech sequences compared to random speech sequences.
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Fig. 3. Representational similarity between language and auditory, lin-
guistic SL within the left posterior temporal gyrus, which was sensitive to
differences in statistical regularities of speech during structured versus
random sequences. Cross-task correlation values between language and
auditory, linguistic SL within the left posterior temporal gyrus signifi-
cantly differed from zero. There was a lack of representational similarity
between language and auditory, nonlinguistic SL in this same region, and
cross-task correlation values between these tasks did not significantly
differ from zero. Error bars represent the within-subject standard error.
Note: ∗∗P<0.01.

These findings confirm that learning embedded speech regular-
ities engages language region; however, voxels which are most
activated within a given parcel might differ across tasks. To
further test whether underlying neurocomputational processes
are similar between the two tasks, we turned to multivoxel pat-
tern analyses for answers. To determine whether the multivoxel
functional organization within the language parcels was similar
across tasks, we masked each task’s contrast map using the lan-
guage parcel shown to be sensitive to linguistic SL (left posterior
temporal gyrus) and extracted the contrast value from each voxel
within the whole parcel for each task for each participant (lan-
guage: intact vs. degraded; linguistic/nonlinguistic SL: structured
vs. random). Next, we computed Pearson correlation coefficients
between the language localizer task and each SL task across all
voxels in each parcel for each participant. There was a positive,
significant cross-task correlation between the language localizer
and linguistic SL tasks (t(21) = 3.04, P=0.006, compared to zero).
In contrast, there was a nonsignificant anticorrelation between
the language localizer and nonlinguistic SL tasks (t(21) =−1.95,
P=0.06). These results are visualized in Fig. 3. When comput-
ing Pearson correlation coefficients between auditory linguistic
and nonlinguistic SL, we found a significant, negative correlation
(t(21) =−3.51, P=0.002). These findings suggest that the left poste-
rior temporal gyrus is not only specifically engaged during audi-
tory linguistic SL, but also presents similar multivoxel activation
pattern as natural language processing.

Discussion
The current study investigates the relationship between auditory
SL and natural language processing by testingwhether these tasks
share similar neural substrates in adults. Processing of speech
streams with embedded patterns, as opposed to random syllable

sequences, activated a similar brain region, the left posterior tem-
poral gyrus, as was activated during natural language processing.
Given this region was not activated during auditory, nonlinguistic
SL, it appears that the left posterior temporal gyrus may underlie
domain-specific properties relevant for both linguistic SL and
higher-level language processing. Furthermore, our multivoxel
analysis revealed that patterns within the left posterior temporal
gyrus language parcel are associated across natural language
processing and auditory, linguistic SL, suggesting similarities in
the underlying neurocomputation of linguistic SL and that of
natural language comprehension in this region. Such similarity
was absent between nonlinguistic SL and natural language com-
prehension. Despite our findings that the left posterior tempo-
ral gyrus supports both language comprehension and auditory,
linguistic SL of an artificial language, this was the only region
identified as relevant for both tasks among the 12 regions of inter-
est. Taken together, the current findings suggest that while the
left posterior temporal gyrus is associated with domain-specific
properties relevant for learning and using language in adults, the
lack of task similarity in other language regions suggests that crit-
ical differences exist between language learning and processing in
mature language learners.

Our results contribute to the ongoing debate surrounding
domain-general versus domain-specific nature of SL processes.
Our subject-specific univariate analysis determined that the
left posterior temporal gyrus, part of the frontotemporal core-
language network (Fedorenko and Thompson-Schill 2014; Price
2010), is sensitive to embedded regularities in a stream of mean-
ingless syllables, but not tones. Importantly, our multivariate
pattern similarity analysis adds to these results by demonstrating
that the neurocomputational processes supporting language
processing and auditory, linguistic SL share certain degrees of
similarity within the left posterior temporal gyrus. Based on
these findings, we believe that the left posterior temporal gyrus is
functionally relevant for learning auditory linguistic regularities,
but not statistical regularities in general.While SL has historically
been viewed as involving a set of domain-general neurobiological
mechanisms for learning, representation, and processing that
detect and encode a wide range of distributional properties
within different modalities or types of input (Saffran et al. 2007),
more recent accounts suggest that SL is not represented by a
unitary learning system but, rather, by separate neural networks
in different cortical areas (e.g. visual, auditory, and somatosensory
cortex; Frost et al. 2015). In the current study, we add to this
modern theoretical account by demonstrating that the process
of encoding an internal representation follows constraints that
are determined by the specific properties of the input being
processed. As a result, the outcomes of computations occurring
in the left posterior temporal gyrus, while not necessarily
modality specific, are invoking similar sets of computational
principles and some shared neural architecture to process
and learn language. It is important to note that processing of
structured speech regularities resulted in a similar BOLD response
magnitude to degraded speech, which was substantially lower
than intact speech during natural language comprehension. The
degraded speech, despite being of low intelligibility,maintains the
sequential regularities of speech acoustic cues. Previous findings
suggest an association between implicit SL and speech perception
under degraded listening conditions (Conway et al. 2010). Similar
activation magnitude across structured artificial language and
degraded natural language in the left posterior temporal gyrus
is potentially attributed to the co-occurring patterns embedded
in both conditions. Because this region is also reliably activated
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during syntactic and semantic processing of natural languages
(Fedorenko et al. 2020; Snijders et al. 2009), it is not surprising
that activation magnitude in the intact speech condition was
higher than linguistic SL.

In addition to these important confirmatory results, our study
contributes to the recent emerging psycholinguistic frameworks
aiming to unify language processing and acquisition. For example,
part of the P-chain framework (Chang and Dell 2014) proposes
implicit learning as the mechanism for how a mature language
system adapts to changing inputs during processing. Specifically,
linguistic experiences throughout childhood are known to shape
both SL ability (Conway 2020; Kuhl 2004; Onnis and Thiessen
2013; Potter et al. 2017; Poulin-Charronnat et al. 2017; Siegelman
et al. 2018) and language-related brain regions (Li et al. 2014;
Pliatsikas et al. 2020; Wong et al. 2016). These same contribu-
tions of linguistic experience in shaping SL are also observed in
adulthood: adults’ ability to learn trisyllabic nonsense words in
artificial speech is associated with greater sensitivity to high-
frequency trigrams in natural language (Isbilen et al. 2022). Thus,
increased familiarity with linguistic inputs and language profi-
ciency throughout development might in turn facilitate SL in the
linguistic domain. Despite our research demonstrating cross-task
activation in the left posterior temporal gyrus, the directionality
of this relationship remains unknown,making it unclear whether
the current findings are attributed to the language network being
constrained by prior language experiences, in turn, constraining
SL processes, or vice versa. Taking a longitudinal, developmental
approach by comparing children and adults in their recruitment
of the language network during SL is necessary to test whether
the maturity of the language system is associated with greater or
lesser statistical sensitivity of an artificial language.

Despite the left posterior temporal gyrus demonstrating coac-
tivation during both auditory, linguistic SL and language process-
ing, our findings indicate that most other language regions are
not robustly engaged during SL. This may seem surprising given
the established role of the left IFG in processing both linguistic
and nonlinguistic regularities (Milne et al. 2018; Karuza et al.
2013; Schapiro et al. 2013; Turk-Browne et al. 2009) as well as
language learning (Ventura-Campos et al. 2013; Folia et al. 2010;
Myers and Swan 2012; Ishkhanyan et al. 2020; Friederici 2009;
Hagoort 2005; Heim et al. 2009; for review, see Qi and Legault
2020). However, there has been no empirical evidence associat-
ing SL and language-specific left IFG within individual partici-
pants. Given the anatomical adjacency of domain-general and
language-specific frontal regions, it is likely that different sub-
regions of the left IFG are engaged in linguistic SL and language
processing. Indeed, our approaches, relying on rigorous functional
localization techniques, did not find evidence supporting such an
SL–language association in other regions than the left posterior
temporal gyrus. Lastly, the current findings are based on a sample
of 22 participants.Although 96%of highly cited experimental fMRI
studies have a single group of participants and median sample
size of 12 (Szucs and Ioannidis 2020), replications with larger
sample sizes are necessary to verify these findings especially for
the null results.

To further investigate whether human brain processes
statistical regularities in artificial language similarly as in natural
language, future research may consider implementing a task
that requires retrieving existing statistical regularities from
language knowledge (e.g. multiword chunking task in Isbilen
et al. 2022). Similarly, altering the language localizer task utilized
may uncover particular cognitive components shared between
language processing and SL, as the language parcels identified

in the current study are biased toward holistic comprehension
(Fedorenko et al. 2020). Specifically, it is important to consider
how the neural mechanisms responsible for SL are linked to
different elements of language processing, such as auditory
perception, speech perception, and speech-motor functions that
can be involved during passive listening (e.g. Assaneo et al.
2019; Orpella et al. 2022). Although participants were instructed
to attend to stimuli in both tasks, only the SL tasks required
voluntary attention to the target syllable/tone in the form of a
target-detection task. While concentration of attention during
exposure to statistical regularities in speech has been shown to
not strongly influence the perceptual component of SL, it may
differentially engage learning-related processes, compared to a
passive SL task (Schneider et al. 2022; Batterink and Paller 2019).
Therefore, the current SL findings may be task dependent in
that different neural regions may be more or less activated in
tasks where cognitive load is reduced. It is also important to
note that we examined the process of learning across the entire
exposure period, which encompasses various learning rates that
might be substantially different across individual participants. For
example, López-Barroso et al. (2015) revealed that the connectivity
strength of the auditory-premotor network (one of three dorsal
language-related networks relevant for SL) varied as a function
of individual learning rates. While beyond the scope of the
current paper, future research should consider how activation
of the frontotemporal core-language network during SL may
vary based on the speed by which individuals extract linguistic
regularities.

Taken together, our findings provide evidence that auditory
linguistic SL recruits subregions within the left posterior tem-
poral gyrus that are specifically engaged for natural language
comprehension. Moreover, multivoxel pattern analyses suggest
that similar neural processes are undertaken by these subject-
specific left posterior temporal gyrus regions during natural lan-
guage comprehension and auditory linguistic SL. However, we
did not find commonly activated brain regions outside of this
region across the entire language network. Our study is the first
to specifically examine whether and how SL engages a core-
language network in adults. Future research should be careful
to not draw assumptions about the similarity between SL and
language processing on the basis of activation in a given region
alone, as our findings indicate that there are substantial regional
differences between tasks when subject-specific approaches are
used and multivoxel patterns are examined at the individual
level.
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