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Abstract

Upper-division undergraduate physics coursework necessitates a firm grasp on
and fluid use of mathematical knowledge, including an understanding of non-
cartesian (specifically polar, spherical and cylindrical) coordinates and how to
use them. A limited body of research into physics students’ thinking about
coordinate systems suggests that even for upper-division students, under-
standing of coordinate system concepts is emergent. To more fully grasp
upper-division physics students’ incoming understanding of non-cartesian
coordinates, the prevalence of non-cartesian content in seven popular Calculus
textbooks was studied. Using content analysis techniques, a coding scheme
was developed to gain insight into the presentation of coordinate system
content both quantitatively and qualitatively. An initial finding was that non-
cartesian basis unit vectors were absent in all but one book. A deeper analysis
of three of the calculus textbooks showed that cartesian coordinates comprise
an overwhelming proportion of the textbooks’ content and that qualitatively
the cartesian coordinate system is presented as the default coordinate system.
Quantitative and qualitative results are presented with implications for how
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these results might impact physics teaching and research at the middle and
upper-division.

Keywords: textbooks, representation, non-cartesian coordinates, unit vectors,
Caculus

1. Introduction

1.1. Motivation and literature review

The ability to communicate mathematically and quantitatively are fundamental skills
necessary to succeed in physics. In fact, student success in undergraduate physics courses has
been generally correlated with their prior mathematical knowledge and performance [1-6].
Such skills become even more important in upper-division physics courses, such as classical
mechanics, quantum mechanics, electromagnetic theory, and thermodynamics, where the
mathematics necessary for these courses is much more involved and complex than intro-
ductory level coursework [7-11] and mathematical models and physical principles inform
each other and students’ understanding of physics in more interwoven ways [12—14]. As such,
physics students often struggle with the mathematics essential to upper-division coursework
[15, 16]. The manner in which the language of mathematics is used in mathematics courses
and in physics courses differ in ways that have been characterized as the two disciplines
speaking different dialects of the same language, or even speaking two different languages
[12]. While communities of physicists and mathematicians might use the same word when
referring to a particular mathematical entity, they may struggle to understand the full defi-
nition and implications of the other group’s use of the word. This myriad of factors informs
research efforts to consider students’ understanding and employment of mathematics at the
upper-division level in physics. Therefore, within both a broader call for additional educa-
tional research to be conducted at the upper-division in physics [17] and a larger effort to
study students use and understanding of math in the upper-division [18], an effort is
underway to develop a research-informed curriculum for a mathematical methods course for
undergraduate physics majors. This paper focuses on a preliminary portion of that effort by
investigating Calculus textbooks for the prevalence of non-cartesian coordinates and unit
vector content.

Many upper-division physics textbooks contain explicit instruction on unit vectors and unit
vector notation in both cartesian and non-cartesian coordinate systems, particularly in the
disciplines of electromagnetic theory [7] and classical mechanics [8§—11]. These mathematical
tools are later used within those textbooks to describe physical phenomena such as position,
velocity, forces, electric and magnetic fields, etc., in both cartesian and non-cartesian coor-
dinates with and without the associated unit vectors. The presence of this mathematical
instruction early in many upper-division textbooks conveys an understanding by the authors
that students need to have an ability to use these tools later in the textbook.

Literature in math contexts have suggested that, in general, student understanding of non-
cartesian coordinate systems is weak. Montiel, Vidakovic, and colleagues have performed
several studies specifically on student understanding of functions in polar coordinates, which
demonstrated that student understanding of functions and other mathematical concepts are
often tied to the coordinate system in which they were initially taught, cartesian [19, 20].
Moore, Paoletti, and Musgrave [21] studied mathematics students who had previously taken
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mathematics through Calculus III, and observed difficulties with polar coordinates, specifi-
cally student difficulties with the ordered pair (r, ), which reads (dependent, independent) in
comparison to the cartesian ordered pair (x,y) which reads (independent, dependent), when
there are functional dependencies for each. Further, Moore et al claimed that when students
had difficulty with polar coordinate systems, they would return to employing ideas from
cartesian coordinate systems to their thinking about polar systems.

In physics, Sayre and Wittmann [22] studied students in a junior-level Classical Mechanics
course and found that students’ understanding of the polar coordinate system was under
formation and flexible (more plastic, in their terminology), than students’ understanding of
cartesian coordinate systems. Their results demonstrate that students often start a problem
presuming a cartesian coordinate system, and furthermore, persist in using the cartesian
coordinate system even when a polar coordinate system serves the question better. Hinrichs
[23] surveyed upper-division undergraduate and graduate physics students at four different
institutions asking them to write algebraic expressions for position vectors in spherical
coordinates for four points all a distance of 5 units from the origin. The correct answer for all
points is ¥ = 57, which is subtle because # represents a different direction for each point on a
cartesian axis or if one were to use cartesian unit vectors. Nearly half of respondents gave an
answer in the cartesian-imitating form ¥ = 57 + 00 + ¢<}. Hinrichs referred to this type of
response as ‘pattern-matching.” Farlow, Vega, Loverude, and Christensen [24] replicated
Hinrichs’s results through think-aloud interviews on a similar question. All of their interview
subjects gave similar pattern-matched responses to questions about polar and spherical
position vector expressions. The case study subject in their study showed examples of acti-
vating resources consistent with cartesian coordinates while constructing such expressions.

Work by Pepper, Chasteen, Pollock and Perkins [25, 26] has tied student difficulties with
certain mathematical concepts and techniques to their difficulties in upper-division Electricity
and Magnetism. Manogue, Browne, Dray, and Edwards [27] has done similar work to Pepper
et al, specifically focusing on student difficulties with Ampere’s Law, and how mathematical
background informs that particular physical application. Additionally, Schermerhorn and
Thompson [28, 29] have done work exploring some of the challenges students face while
thinking about differential elements in non-cartesian coordinates and developed some
instructional materials that used vector calculus concepts to help mitigate some of the chal-
lenges students face within that domain in the context of electromagnetic theory.

Vega et al [30] found that student thinking regarding basis unit vectors in polar coordinates
was often conflated with or informed by the motion of an object rather than the mathematical
rules for basis unit vectors. Farlow et al [24] performed a case-study analysis of a single
student, identifying and organizing the student’s resources into groups thematically based on
the question the student was answering when that resource activated. That case study subject
demonstrated multiple examples of disagreement with their previously stated and produc-
tively activated ideas and demonstrated a still emerging understanding of the mathematical
consequences of non-cartesian basis unit vectors’ directions being location-dependent.

In summary, there is body of work linking success in physics courses to students’
mathematical ability and background. While most of this work comes from the introductory
level, there are studies at the upper-division that further demonstrate this link. Additionally, it
is clear that both math and physics students struggle with concepts in non-cartesian coordinate
systems and often employing methodology or resources tied to cartesian coordinates, which
may be due to these concepts being introduced to them in cartesian coordinates [24]. We
believe this serves as the initiation of a broader conversation about what students are taught in
calculus classes and how that instruction impacts how physics instructors should introduce
specific topics in their upper-division physics courses (see section 4.8).
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1.2. Research questions

Students’ mathematics understanding is vital to their success in physics, we seek to study
mathematics instruction regarding the different types of coordinate systems and their asso-
ciated vector concepts students’ receive before they reach upper-division physics courses. The
work presented here characterizes Calculus textbooks that are presumed to convey concepts
regarding cartesian, polar, spherical, and cylindrical coordinates. We conducted an analysis of
multivariable calculus content within several popular calculus textbooks to answer the fol-
lowing questions:

(1) Compared to cartesian coordinates, to what extent are non-cartesian coordinates
represented in multivariable calculus textbooks?

(2) What are the natures of the presentation and application of the various coordinate
systems?

(3) To what extent are mathematical topics/concepts (i.e. unit vectors, multiple integration,
etc) presented in different coordinate systems?

The first question quantitatively considers how much multivariable textbook content overall is
based in each coordinate system. The second question qualitatively seeks to determine the
skills assumed and/or required of certain coordinate systems. The third question examines the
initial and general presentation of individual mathematical concepts or topics and their
relationship to different coordinate systems.

More generally, this textbook analysis sheds light on the mathematical background stu-
dents entering upper-division physics classes will likely have regarding coordinate systems.
Doing so gives physics faculty an empirically-based ‘starting point’ for their upper-division
physics course content and allowing them to meet students where they are.

2. Methodology

Seven multivariable calculus textbooks [31-38] (see table 1) were selected due to their
prevalence in Multivariable Calculus classrooms. The textbooks were selected based on their
popularity among Calculus III textbooks according to a best sellers list on Amazon (during
the summer of 2017). While other sampling methods could be considered, the goal was to
categorize the most commonly used textbooks in contemporary Calculus courses and we are
confident that this meets the needs of our study. These textbooks were analyzed using content
analysis techniques [39]. Also, Boas’s mathematical methods in the physical sciences text-
book [31], a commonly used mathematical methods in physics textbook, was analyzed,
specifically to serve as a reference of what a mathematical methods in physics course might
require with respect to non-cartesian coordinate systems. The Boas textbook was not used
when calculating means and other statistics across textbooks because it serves as a reference
of comparison, and its content and purpose are fundamentally different from the other
textbooks.

Several qualitative aspects were examined across the textbooks. To determine where and
how non-cartesian content was presented, both the content and the structure were examined.
The structure of the content was examined to identify the particular chapters/topics which
employed non-cartesian coordinates and then to examine how those topics/chapters presented
non-cartesian coordinate systems, in particular, in relation to cartesian coordinate systems.

Each book was initially reviewed to determine whether there were any instances where
non-cartesian coordinate systems were explicitly stated, or where the variables associated
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Table 1. Calculus textbooks reviewed.

Author(s) Book Title Edition Year
1 Boas, ML Mathematical methods in physical sciences 3 2006
2 Briggs, W, Cochran, L, Gillett, B, Schulz, E Calculus early transcendentals 2 2015
3 Goldstein, LJ, Lay, DC, Schneider, DI, Asmar, NH Calculus ans its applications 14 2018
4 Larson, R, Edwards, B Calculus 11 2018
5  McCallum, WG, Hughes-Hallet, D, Flath, D, Mumford, D., Calculus multivariable 6 2013

Gleason, AM, Osgood, BG et al

6 Rogawski, J, Adams, C Calculus 3 2015
7  Stewart, J Calculus: early transcendentals 8 2016
8 Thomas, GB, Weir, MD, Hass, J Thomas’ calculus early transcendentals single variable with second- 1 2011

order differential equations
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with a non-cartesian coordinate system were used. If non-cartesian content was present, that
chapter was tagged for a more in-depth review.

After this initial round of analysis, it was clear that both quantitative and qualitative
analysis would be necessary. Quantitative questions primarily require a ‘chapter-based’ unit
of analysis: in order to determine the proportions of chapters and subsections with non-
cartesian content it was necessary to determine the number of sections/chapters that con-
tained such content out of the total numbers of sections/chapters. The qualitative questions
are aimed toward determining the nature of the presentation of content, necessitating a ‘topic-
based’ unit of analysis.

For chapter-based analysis, once a chapter was tagged as having non-cartesian content, an
analysis of where and to what extent non-cartesian coordinates exist within a chapter was
completed. Specific attention was given to when non-cartesian coordinates are introduced,
and how the particular behavior and characteristics unique to those coordinate systems was
presented. Results reported in this paper on the proportion of content from cartesian and non-
cartesian coordinate systems came from this chapter-based analysis. This chapter-based
analysis also served as a starting point to discern the nature and type of problems in non-
cartesian coordinates mathematics students are expected to solve.

Analyzing the data by topics allowed the specific concepts to stand out more clearly since
they might occur within the same chapter in one book, but in different chapters, or not at all,
in another textbook. By distinguishing the data by topic rather than chapters, it is also easier
to determine whether particular topics were introduced in cartesian or non-cartesian coordi-
nates first, and whether the topics were introduced in distinct sections or in the same section.
Moore et al [21] reported that a mathematical concept may continue to carry some asso-
ciations from the coordinate system in which it was introduced, therefore, it was noted if a
concept/topic was introduced in non-cartesian coordinates before, coinciding with, or after its
introduction in cartesian coordinate systems (in distinct subsections). Results reported in this
paper on the nature and order of presentation of content primarily come from this topic-based
analysis.

In order to determine the prevalence of different coordinate systems, three different types
of items were coded: (1) definitions, theorems, and properties; (2) worked example problems;
(3) exercises. Definitions, theorems, and properties that were boxed separately from the main
body text were examined, as these are items that textbook authors are attempting to make the
most salient. Additionally, example problems were coded, as these examples model proce-
dural approaches to both students and instructors. Finally, textbook problems were coded,
because these constitute the work given to students as assignments.

Each item’s content was evaluated to determine what coordinate system it employed across
multiple characteristics. A coding scheme was designed addressing five different character-
istics with regard to these particular items. Three of the characteristics were very explicit and
were applicable to all items. The last two characteristics were item-specific, and the last item
required a slightly higher level of interpretation than the other items.

First, the notation used was assessed: specifically, attempting to understand and record
what coordinates were used within each item. If x, y, and/or z was used, cartesian notation
was marked. If r and 6 were used in 2D problems, polar notation was marked. If r, 6, and/or z
were used in 3D problems, cylindrical notation was marked. If p, 6, and/or ¢, were used,
spherical notation was marked.

Next, any explicit mention of a coordinate system within an item is recorded. Specifically,
an explicit mention might take the form of a particular definition or property within specific
coordinate systems, or instructions to use specific coordinate systems. Some problems
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specifically requested students to decide between using particular coordinate systems. These
problems were recorded separately.

Third, the coordinate system denoted by the notation of any item’s accompanying figure(s)
is recorded. No code was made for items without figures.

The fourth characteristic was specifically for worked example problems, and focused on
the coordinate system used in the presented solution. If there was only a transformation from
one coordinate system within the example, and the second coordinate system was used for the
rest of the problem, the second coordinate system would be recorded, since it was the one
predominantly used. However, if two coordinate systems were both used beyond a
straightforward conversion or transformation, it would be recorded that multiple coordinate
systems were used.

The fifth characteristic was for exercises and problems for students to work themselves. It
centers around the idea of ‘cue-ing.” Items can have particular cues that strongly imply that a
particular coordinate system would be best to use to solve a problem. Identifying these cues
requires more interpretation from the coder. The cues that were marked were only those that
were very obvious, specifically including forms of the equation for a circle, cylinder, and
sphere in cartesian coordinates, or the words ‘circle,” ‘cylinder,” ‘sphere,” or ‘cone,” in car-
tesian coordinates. If there was explicit direction in the textbook to use a particular coordinate
system, a cue would not be recorded.

These five characteristics are meant to be a simple but complete categorization of the ways
in which a coordinate system could be represented within a textbook item. After the coding
scheme was developed and revised, two of the authors coded a subset of the textbook sections
independently. The interrater reliability for that sample was 96%. This high level of interrater
reliability assured that a single author could code the remaining sections.

In order to avoid coding all the examples, problems, and graphics from every chapter,
several textbooks were compared, and it was determined that many chapters of the textbooks
did not include non-cartesian coordinate systems at all. Accordingly, after examining two
textbooks, Stewart’s [37] and Rogawski and Adams’s [36] in their entirety, only the chapters
including non-cartesian coordinate systems were examined further, including topics on vector
geometry, vector functions, and multiple integration.

3. Results

Presented here are the data from our analysis with commentary and discussion to follow in
section 4.

3.1. Representation of topics in non-cartesian coordinate systems

Proportional results for inclusion of cartesian and non-cartesian problems by topic are shown
in figure 1. Note that ‘Not included’ refers to the topics that were not referred to in a textbook
at all. Also of note is that many of these concepts arose within the same chapters—the
common chapter themes were variants of coordinate geometry, vector geometry, vector
calculus, and multiple integration. Figure 2 illustrates the percentage of chapters which
include any instance of non-cartesian coordinates by book. Across the multivariable calculus
textbooks we assessed, on average, 78.7% of chapters contained cartesian-only content. Boas,
the mathematical methods in physics textbook we assessed had 20% of chapters, or 3 out of
15, that contained cartesian-only content.
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Inclusion of Topics In Cartesian and Non-Cartesian
Coordinates Across Textbooks
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Figure 1. Total proportions of coordinate system content inclusion, by topic, across all
reviewed textbooks.
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Figure 2. On average over 75% of the chapters in the analyzed calculus books
contained only cartesian-coordinate content. “The Boas Math Methods [31] textbook
was included in this chart for comparison and is not used in the data analysis.

3.2. Prevalence of different coordinate systems in chapters that include non-cartesian
coordinates

Figure 3 illustrates the proportion of coordinate systems across textbook items. Note that the
data in figure 3 is not representative of each textbook as a whole, as only the chapters that
included non-cartesian coordinate systems were coded qualitatively. Therefore, figure 3 must
also be read with an understanding of figure 2, which denotes which chapters do not include
any instance of non-cartesian coordinates.



Eur. J. Phys. 45 (2024) 035702 C Dalton et al

Calculus Textbook Items by Coordinate System

1.00 = You Decide

- . = .
= Combination
ors ® Spherical
: = Cylindrical
0.50
= Polar
025 » Cartesian
0.00

Stewart Rogawski Thomas Average Boas

Figure 3. Of the roughly 25% of textbook chapters that contained any non-cartesian-
coordinate content, the bulk of the content was still cartesian in nature. Additionally,
only one textbook provided any opportunity for students to determine which coordinate
system was most advantageous for a given situation.

For the three Multivariable Calculus books we coded in-depth 81.7% of notation used was
cartesian, 83.7% of figures used favored cartesian, and 79.4% of example solutions were
cartesian. 20.7% of instructions stated to use cartesian coordinates, and 24.7% of problems
were coded for using strong cues that indicated which specific coordinate system to use.
Again, these data are only for those items within chapters that feature any non-cartesian
coordinates at all. These numbers do not include the notation, figures, and solutions which
used both cartesian and non-cartesian content.

3.3. Qualitative trends

Among all the Calculus textbooks, mathematical topics that include non-cartesian coordinates
(with the exception of Vector Fields) are introduced in separate subsections from the cartesian
discussion of the topic, and are universally introduced later. In Boas, the mathematical
methods in physics textbook, similar trends of cartesian coordinates preceding non-cartesian
coordinates are observed. However, Boas incorporates non-cartesian coordinates more
organically within subsections and chapters. A second trend observed in the data commu-
nicates an assumed default of cartesian coordinates: within all the calculus books, there were
28 subsections with explicit language denoting non-cartesian coordinate systems or a tech-
nique for them and none explicitly denoting cartesian coordinate systems.

4. Discussion

4.1. Prevalence of non-cartesian coordinate material

The key takeaway from this work is the overwhelming prevalence of cartesian coordinates in
the Calculus textbooks. Across the three books coded, on average, 81.7% of notation of coded
content used cartesian, 82.5% of figures used cartesian, and 80.5% of example solutions were
in cartesian. The notation and the figures demonstrate a cartesian-centric presentation of
content and establishes cartesian coordinates as the default coordinate system. This trend was
also observed in worked example solutions, conveying that problems are most often expected
to be solved in cartesian coordinates. The relatively small number of instructions and problem
cues in cartesian, 20.7% and 24.7% respectively, further establish cartesian as the default
system, whereas problems using non-cartesian coordinate systems require specific

9



Eur. J. Phys. 45 (2024) 035702 C Dalton et al

instructions or cues. In summary, across all seven books, approximately 20% of the chapters
contain non-cartesian content. Of those 20% of chapters, on average roughly 26% of that
content is non-cartesian for the three books we analyzed on an item-by-item basis.

The cartesian-centric nature of these textbooks does not support students on a trajectory
into upper-division physics courses. These courses expect students to utilize the symmetry of
a system to choose the most useful or convenient coordinates and unit vectors for each
situation [31-38].

4.2. Presentation of non-cartesian coordinate material

Within the Calculus textbooks, non-cartesian coordinates do not appear until seven or more
chapters into each book. In all books, all topics with the exception of Vector Fields were
introduced using cartesian coordinates. In all the books which included vector fields, they
were introduced in a single, stand-alone subsection where all coordinate systems were
employed. Previous research demonstrates that learning a topic in one coordinate system can
often transfer coordinate system-specific ideas about the topic to a coordinate system in which
those transferred ideas are not appropriate [19-21]. Therefore, it is logical that students
learning material from these textbooks, which introduce topics in cartesian coordinate sys-
tems, are likely to transfer ideas from cartesian coordinate systems to non-cartesian coordinate
systems. Such transfer aligns with previous physics education research within upper-division
physics courses [23, 24]. Such transfers can create barriers to students’ ability to understand
and solve problems best suited for non-cartesian coordinates in upper-division physics
courses. For example, students might hold the idea that the time derivatives of unit vectors
stay constant over time, something true for unit vectors in cartesian coordinates but not for
unit vectors in non-cartesian coordinates, both of which can be seen in Farlow er al [24].

Most topics in non-cartesian coordinate systems were introduced in distinct subsections
from their original introduction. As a result, students are only given explicit opportunities to
consider non-cartesian coordinates in a limited number of cases. Therefore, because of the
way the material was presented, students had fewer opportunities to choose between different
coordinate systems for particular problems, a skill often required in upper-division physics
coursework.

4.3. Coordinate system choice

It is notable that exercises asking for students to decide between two or more coordinate
systems only arose in one textbook, Stewart [37]. Furthermore, even though coordinate
choice was present in this book, these exercises made up only 1.1% of the coded items in
chapters which include non-cartesian content. Additionally, only 3.4% of coded items in
chapters which include non-cartesian content involved a combination of multiple coordinate
systems. We take these data to claim that most of the non-cartesian coordinate content
presented was somewhat surface level, as very few problems required students to choose
between coordinate systems or to consider multiple coordinate systems when reading the
book. These results suggest that, in their multivariable calculus coursework, students have
very little experience with choosing the best coordinate system to use for particular situations.
In contrast, upper-division physics textbooks regularly contain problems that do not provide a
particular coordinate system to solve the problem with, and instead ask students to use their
knowledge of symmetries to solve the problem [7-11] (an example of this will be presented
below in section 4.7). Students’ lack of experience with choosing particular coordinate
systems paired with the cartesian-centric nature of these multivariable calculus textbooks may
contribute to students’ reasoning illustrated in Vega et al [30] and Farlow et al [24] in which
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In Exercises 45-50, use spherical coordinates to calculate the tripie

integral of f(x, v, z) over the given region

45, f(x,y,2)=y: x*+y4+z2<l, x.y250

Figure 4. An example exercise from Calculus by Rogawski and Adams [36]—section
16.4, page 881—showcasing the explicit nature of instruction predominantly present in
calculus textbooks when non-cartesian content is expected to be used. This presentation
is in contrast to physics textbooks where it is often left to the reader to determine which
coordinate system is appropriate and why.

students sometimes resort to cartesian coordinates when posed with physics problems rather
than choosing coordinates based strictly on geometries.

4.4. Content of non-cartesian coordinate material present

When students are given an opportunity to practice with non-cartesian content, the examples
and exercises tend to present the material in a surface-level manner. As an example of
surface-level problems, we mean problems that only require a conversion between two
coordinate systems, most commonly where the choice of coordinates that are being converted
are explicitly named in the problem or use variables associated with a particular system. The
example from page 881 of Rogawski and Adams (3rd edition) [36] in figure 4 represents a
typical textbook exercise. It explicitly states which coordinate system students should use to
solve problems, and indicates through the variables used, that the equation given is in car-
tesian coordinates.

These problems are more surface level than more advanced content often required in
upper-division physics courses, requiring only simple conversion and integration rather than a
more nuanced understanding of non-cartesian coordinate systems. In upper-division physics
textbooks, students are expected to not only solve the problem, but choose the coordinates
and unit vectors that will allow them to solve the problem. An example of this can be seen
below in section 4.7.

4.5. Three dimensions and non-cartesian coordinate systems

Three-dimensional non-cartesian coordinate systems are even less prevalent than polar
coordinate systems, with an average of 17.6% of polar content, 5.4% of cylindrical content,
and 2.7% of spherical content over the coded content within the chapters that were not solely
cartesian in the multivariable calculus books. Surprisingly, three-dimensional basis unit
vectors were not introduced in any of the multivariable calculus books. Only one book,
Rogawski and Adams [36], introduced polar unit vectors. In our conversations with physics
faculty and other education researchers this may be the most surprising result. The fact that
most students coming out of a calculus sequence will have never seen non-cartesian unit
vectors is rather alarming. These proportions contrast starkly to the representation of these
topics in upper-division physics courses. As mentioned previously, in upper-division physics
courses, students are often faced with three dimensional problems that require or are vastly
simplified by their use of non-cartesian coordinates. Many of the relevant expressions are
written in unit-vector notation. Many of these problems involve symmetries in the spherical
and cylindrical directions due to physical phenomena like fields of charges and solenoids or
wires.
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4.6. Synthesizing results

This sample of calculus textbooks consistently presents mathematical concepts first in car-
tesian coordinates and then presents the same concept in other coordinate systems later, often
in separate sections. They also present content with the built-in assumption that cartesian
coordinates are the default coordinates, not requiring any explicit instruction or statement.
Whereas problems using non-cartesian coordinate systems are nearly always accompanied by
explicit instructions to do so. This structuring provides answers to the qualitative aspects of
research questions 2 and 3: non-cartesian coordinate systems are predominantly presented
after and as translations of cartesian coordinates and as tools to be used when instructed to do
so. Individual mathematical concepts, such as unit vectors, are also first introduced in the
cartesian coordinate system and then later their behavior is explained in non-cartesian
coordinates, if such non-cartesian behavior is explained at all.

When these quantitative and qualitative findings are considered together, a hidden curri-
culum emerges. Hidden Curriculum refers to a set of educational theories initially developed
in the 1960s and 1970s [40—45]. These theories assert that a hidden curriculum constitutes
material which students are expected to learn but are not explicitly taught and /or material of
which students learn implicitly through the context of the explicit content: how and when
content is presented and/or through the norms and practices of their academic environments
[46]. Increasing the awareness of the hidden curricula within explicit curricula has been an
ongoing effort within both mathematics [47, 48] and physics [49, 50]. Given the data pre-
sented in this review, the overwhelming cartesian-centric nature and the concurrent surface-
level applications of non-cartesian coordinate systems do communicate the expectations
outlined in multivariable calculus textbooks and set cartesian coordinates as the default
coordinate system. Such expectations differ from those students’ encounter in upper-division
physics coursework.

4.7. Implications

The most immediate implication of this work is for instructors of upper-division physics
courses. As mentioned previously, non-cartesian coordinates and non-cartesian unit vectors
are utilized extensively in the upper-division physics curriculum. Many common mechanics
textbooks—Ilike Taylor [8], Thornton and Marion [9], Kleppner and Kolenkow [10], and
Fowles and Cassiday [11]—and Griffiths’s Introduction to Electrodynamics [7] explicitly
introduce non-cartesian coordinates and their associated basis unit vectors in their first
chapters. The tasks for students in these courses can convey very different expectations about
a student’s familiarity with non-cartesian coordinates than what’s required in their Multi-
variable Calculus mathematics coursework. As an example, consider the fifth physics pro-
blem in Chapter 2 from Griffiths EM textbook.

The question asks students to determine the electric field due to a uniform circular charge
distribution at a point on the z-axis above the plane of that distribution (figure 5). The problem
statement does not specify which coordinates or basis vectors (unit vectors) are best for
solving the problem. Recall that our analysis shows that selecting the best coordinates-type
problems are only present in two of the textbooks, and thus represent an exceptionally small
number of problems in the Calculus textbook. It is, therefore, a task with which students
likely have little preparation. The ‘cues’ within the Griffiths problem are also ambiguous
compared to those we observed in the calculus textbooks. While the solution intends students
to use cylindrical coordinates with cylindrical unit vectors or cartesian coordinates with
cartesian unit vectors, the problem labels the radius with the symbol r, a coordinate typically
reserved for polar or polar spherical coordinates in Griffith’s text.
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Figure 5. This image is used in problem 2.5 of Griffiths EM textbook [7]. The reader is
asked to determine the electric field at point P due to a uniform circular charge
distribution of radius r. This problem can be simplified by leveraging physical
principles, but the full analytic solution requires deep understanding about various
spatial coordinate systems. Such spatial understanding is in contrast to typical calculus
textbook exercise (see figure 4) that often give explicit instruction as to which
coordinate system(s) is required or expected.

Assuming the student does elect to solve the problem using cylindrical coordinates, the
problem’s initial mathematical setup is relatively straightforward. However, a correct solution
cannot be obtained staying in cylindrical coordinates and unit vectors unless a shortcut that
leverages physical principles—in this case the components of the electric field parallel to the
plane of the loop summing to zero—is used to eliminate the ‘S term’ of the integral. If a
student sets up the integral properly and just ‘does the math’ the answer will be incorrect. If a
student did not realize this physical shortcut, then the initial cylindrical model would have to
be translated into cartesian coordinates (or the problem initially set up in cartesian) where
three integrals are evaluated, showing that the x- and y-components’ integrals equal zero
around the loop and the z-component integral is non-zero.

This problem requires fluency with the various coordinate systems and their limitations,
the ability to translate between coordinate systems, and the ability to construct mathematical
models using unit vector notation. It also includes an additional possibility of using physical
reasoning to simplify the solution process. This problem is offered early in the second chapter
of a twelve chapter physics textbook. It demonstrates the gap between the level of under-
standing of non-cartesian coordinate systems expected of students in upper-division physics
courses and the understanding conveyed and expected across a number of Calculus textbooks.

The ultimate goal of this work is to inform the development of research-informed curricula
for a mathematical methods in physics course. A goal of the developed materials will be to
bridge what students have likely been taught and understand from mathematics courses with
what is expected of them in the upper-division physics level.

Additionally, this work lays out a methodological framework for identifying the extent to
which other concepts are introduced within mathematics textbooks. Further analysis of
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additional topics could further inform physics instructors about what students are being taught
and the tools they are more likely to have upon entering a math methods course, or an upper-
division physics course.

4.8. Authors’ insights for upper-division physics instructors

The suggestions in this subsection are based on the authors intuition garnered from years of
experience in both physics education research and research in undergraduate mathematics
education. This intuition is formed, in part, by a deep understanding of the data presented in
this paper and other work showing physics students’ emerging understanding on non-carte-
sian coordinates and non-cartesian vector concepts [22-24, 30]. Whenever physics instructors
ask students to engage with a problem or a topic that necessitates students use non-cartesian
coordinates and/or non-cartesian unit vectors, faculty should expect that additional time
should be committed to instruction on those topics explicitly. Before embarking directly on
those non-cartesian ideas, collect data on the students’ understanding of cartesian unit vectors
and conduct some formative assessments in class. Provide appropriate instruction based on
their feedback and build from ideas of cartesian unit vectors and extend those ideas to
spherical and cylindrical unit vectors and coordinates. Students’ understanding about non-
cartesian coordinates might be limited to converting cartesian coordinates to non-cartesian
coordinates and, in some cases, be limited to applying how cartesian unit vectors behave
when moving to non-cartesian unit vectors. More fundamentally, it is important to realize that
students likely have little-to-no prior instruction on or intuition about thinking in non-car-
tesian coordinates or using non-cartesian unit vectors.

5. Limitations and future work

A few limitations of this work are worth considering. Categorical content analysis was only
performed on four of the eight textbooks reviewed. However, upon examination of the other
textbooks we are confident the ones we analyzed were representative of the larger sample.
Moreover, the review is specifically of textbooks, which may not perfectly represent what
instructors teach and what students learn in a multivariable calculus classroom. Looking at a
number of textbooks gives a broad sense of what resources multivariable calculus instructors
and students have, but does not examine how the textbook is used as a resource for calculus
instructors and students.

These limitations are to be addressed in future work, in which interviews will be conducted
with Multivariable Calculus instructors. Moreover, interviews and focus groups will be
conducted with multivariable calculus students. We have also created a survey assessing
student thinking regarding cartesian coordinates and unit vectors that was given after all
instruction in multivariable calculus and the analysis of which will be the subject of a future
publication.

The most significant steps ahead for this work will be the creation and testing of curricular
materials for the mathematical methods course and other upper-division physics courses. We
believe this work along our other research outcomes will lay the groundwork for developing
such research-informed curriculum. While our plans have been to utilize resources and
framing [51-54] as the theoretical underpinnings of this curriculum development, through the
review process of this paper, we’ve begun to think more broadly. Duval [55] raises a number
of issues relevant to the translation of mathematical notation to essential understanding. His
work might more fully inform the question of why students are having challenges with non-
cartesian content due to the notation involved and how we might address those challenges.
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Furthermore, we can consider Lemke’s use of semiotics as a framework for understanding
meaning-making of symbols in contexts beyond math and science may provide more insight
into student thinking within the use of math in physics [56]. The work of Doran may serve as
a useful guide, as he uses Lemke’s framework to make claims about the affordances of
images and language in mathematics for use in physics knowledge [57]. As this work pro-
gresses into its next phases, a great deal of consideration can be given to these new ideas.

6. Conclusion

Through reviewing seven multivariable calculus textbooks using content analysis techniques,
the data show that mathematical topics in these texts are predominantly represented using the
cartesian coordinate system. This study demonstrates that topics in non-cartesian coordinate
systems are predominantly introduced in textbooks both separately and subsequent to those
topics in cartesian coordinate systems. Moreover, the chapters that do include non-cartesian
coordinates include very few exercises that ask students to consider multiple coordinate
systems or ask them to decide what coordinate system is most appropriate for a specific
exercise. This surface-level coverage demonstrates a difference between the types of pro-
blems students have mathematical preparation for and the types of problems students are
expected to solve in upper-division physics courses.

Cartesian coordinate systems were much less frequently explicitly named or stated to use
than non-cartesian coordinate systems, despite the overwhelming prevalence of cartesian
coordinate systems in textbooks. The explicit naming of non-cartesian systems and the lack of
naming cartesian systems implies that when a coordinate system is not characterized, students
will expect and/or use cartesian coordinates. Overall, in the textbooks reviewed, cartesian
coordinate systems were predominantly the first introduced, the most used, and the default
when solving problems. Thus, students entering upper-division physics courses are likely to
bring limited or still emerging understandings of non-cartesian coordinate systems. Further,
their ideas about specific mathematical concepts might be tied to how those concepts behave
in cartesian coordinates. These findings will inform efforts to develop targeted curriculum to
help students bridge the gap between how these concepts are used in math courses and how
they are used in upper-division physics courses. However, in the interim, it is also important
for current upper-division physics course instructors to be aware of the still developing
understanding their students are likely to have about coordinates and unit vectors.
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