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ABSTRACT

Extracting meaningful features from sequences and devising effec-

tive similarity measures are vital for sequence data mining tasks,

particularly sequence classification. While neural network mod-

els are commonly used to automatically learn sequence features,

they are limited to capturing adjacent structural connection in-

formation and ignoring global, higher-order information between

the sequences. To address these challenges, we propose a novel

Hypergraph Attention Network model, namely Seq-HyGAN for se-

quence classification problems. To capture the complex structural

similarity between sequence data, we create a novel hypergraph

model by defining higher-order relations between subsequences

extracted from sequences. Subsequently, we introduce a Sequence

Hypergraph Attention Network that learns sequence features by

considering the significance of subsequences and sequences to one

another. Through extensive experiments, we demonstrate the effec-

tiveness of our proposed Seq-HyGANmodel in accurately classifying

sequence data, outperforming several state-of-the-art methods by

a significant margin.
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1 INTRODUCTION

Extracting meaningful features from sequences and devising effec-

tive similarity measures are vital for sequence data mining tasks,

particularly sequence classification. Neural networks (NN), espe-

cially recurrent neural networks (RNN) (i.e., LSTM, GRU), are com-

monly used to learn features capturing the adjacent structural infor-

mation [28, 37, 38]. However, these models may struggle to capture

non-adjacent, high-order, and complex relationships present in the

sequence data. Recently, graph has also been explored for different

types of sequence data classification tasks such as text classifica-

tion [34], DNA-protein binding prediction [18], protein function

prediction [15], drug-drug interaction prediction [8], etc. Graphs,

as highly sophisticated data structures, have the capability to ef-

fectively capture both local and global non-adjacent information

within the data [23, 30]. The state-of-the-art models for sequence-

to-graph conversion can be classified into two main categories:

order-based graphs and similarity-based graphs [5, 11, 48].

While existing graph models for sequence data achieved great

performance, they still have some key challenges. Order-based mod-

els generate many large and sparse graphs, especially when dealing

with a long and large number of sequences. Handling such many

large graphs can lead to increased computational and memory re-

quirements. Similarly, similarity-based graphs encounter challenges

when calculating similarities between all pairs of sequences, espe-

cially for large datasets. Furthermore, order-based graphs fail to

capture relationships between sequences beyond the intra-sequence

connections with considering dyadic relationships between nodes.

However, sequence data may possess more complex relationships,

such as triadic or tetradic relationships, which these models are

unable to capture. The selection of appropriate similarity measures

becomes problematic, and using similarity values to define relation-

ships between sequences can lead to information loss.

In order to overcome the aforementioned challenges for sequence

classification, we propose a novel Hypergraph Attention Network

model, namely Seq-HyGAN. Our approach is built on the assump-

tion that sequences sharing structural similarities tend to belong to

the same classes, and sequences can be considered similar if they

contain similar subsequences. To effectively capture the structural

similarities between sequences, we represent them in a hypergraph

framework, where the sequences are depicted as hyperedges that

connect their respective subsequences as nodes. This construction
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allows us to create a single hypergraph encompassing all the se-

quences in the dataset. Unlike a standard graph where the degree

of each edge is 2, hyperedge is degree-free; it can connect an arbi-

trary number of nodes [1, 2, 7]. To enhance the representation of

sequences and capture complex relationships among them, we in-

troduce a novel Seq-HyGAN architecture that employs a three-level

attention-based neural network. Unlike regular NNs (i.e., RNN)

that can only capture local information, Seq-HyGAN is more robust

as it can capture both local (within the sequence) and global (be-

tween sequences) information from the sequence data. Moreover,

while traditional Graph Neural Networks (GNNs) with standard

graphs are limited to a message-passing mechanism between two

nodes, this hypergraph setting assists GNNs in learning a much

more robust representation of sequences with a message-passing

mechanism not only between two nodes but between many nodes

and also between nodes and hyperedges.

Our contributions are summarized as follows:

• Hypergraph construction from sequences: We intro-

duce a novel hypergraph construction model from the se-

quence dataset. In our proposed sequence hypergraph, each

subsequence extracted from the sequences is represented as

a node, while each sequence, composed of a unique set of sub-

sequences, is represented as a hyperedge. By leveraging this

hypergraph model, we can capture and define higher-order

complex structural similarities that exist between sequences.

• Hypergraph Attention Network: We introduce a novel

hypergraph attention network model, Seq-HyGAN, specifi-

cally designed for sequence classification tasks. Our model

focuses on learning sequence representations as hyperedges

while considering both local and global context information

with three levels of aggregation with attention that captures

different levels of context. At the first level, it generates node

embedding that incorporates global context by aggregating

hyperedge embeddings. At the second level, the model re-

fines node embeddings for each hyperedge. It captures local

context by aggregating neighboring node embeddings in

the same hyperedge and considering the subsequence po-

sition in a sequence. Finally, at the third level, it generates

sequence embedding by aggregating node embeddings from

both global (level 1) and local (level 2) perspectives, resulting

in a comprehensive representation of the sequences.

• Capturing importance via attention: To capture the rela-

tive importance of individual subsequences (nodes) within

each sequence (hyperedge), our model incorporates an at-

tention mechanism. This mechanism allows the model to

learn the varying significance of specific subsequences in

contributing to the overall similarity between sequences.

Additionally, the attention mechanism enables the model to

discern the importance of both subsequences and sequences

in relation to each subsequence. By doing so, our model

comprehensively captures the inter-dependencies between

different levels of granularity in the data, facilitating a nu-

anced understanding of the structure of the data.

• Extensive experiments: We conduct extensive experi-

ments to show the effectiveness of our model on four differ-

ent datasets and five different classification problems. We

also compare the proposed Seq-HyGAN model with the state-

of-the-art baseline models. The results with different accu-

racy measures show that our method significantly surpasses

the baseline models.

The rest of this paper is organized as follows. In Section 2, we

provide a concise overview of the existing literature on sequence

classification and hypergraph GNNs. Section 3 presents the pro-

posed Seq-HyGAN model, outlining the process of constructing a

hypergraph from a sequence dataset and the details of the proposed

hypergraph attention network. Subsequently, Section 4 presents the

results obtained from our extensive experiments. Finally, Section 5

concludes the paper by summarizing the key findings.

2 RELATEDWORK

Various studies have been carried out on the problem of sequence

classification. We broadly categorize them into three different types

of methods: Machine Learning (ML)-based, Deep Learning (DL)-

based, and GNN-based. ML-based methods generate a feature vec-

tor using some kernel function such as k-spectrum kernel [26],

local alignment kernel [35], and then they apply ML classifiers for

sequence classification tasks. Applications of DL-based methods,

especially recurrent neural networks (RNN) (i.e., LSTM, GRU), are

commonly used to learn features capturing the adjacent structural

information for sequence data [13, 28, 37, 38]. While some studies

use one type of DL method, some studies create hybrid models by

combining different DL methods.

Network-based models have also been explored to analyze se-

quence data [4, 22]. A common approach for representing genome

sequence in a network is to use the De-Bruijn graph [39]. To con-

struct a De-Bruijn graph, the 𝑘-mer method is first applied to a

sequence input. Each generated 𝑘-mer token is used as a node,

and subsequent 𝑘-mers having an overlap in 𝑘 − 1 positions are

connected using an edge to construct the graph.

GNNs have exhibited great performances in different research,

such as DDI prediction [36], image classification [31], etc. Graph

convolutional network (GCN), a popular variant of GNN, has also

been applied for sequence data analysis [21, 47]. In [45], authors

apply GCN for text classification by creating a heterogeneous text

graph including document and word nodes from the whole corpus.

The same architecture is applied for DNA-protein binding predic-

tion from sequential data [18]. Their networks have sequence and

token nodes extracted from sequences by applying 𝑘-mer.

Due to the ability to capture higher-order complex relations,

hypergraph and hypergraph neural networks have recently gotten

huge attention in different research [14, 24, 33]. These works mainly

focus on node representation by using hypergraph neural networks.

However, in our proposed Seq-HyGAN, we design a novel three-level

attention network to get the representation of hyperedges instead of

nodes. Moreover, to the best of our knowledge, this paper is the first

to address the sequence classification problem using hypergraph

and attention-based hypergraph neural networks.

3 METHODOLOGY

3.1 Preliminaries and settings

Sequence classification is the problem of predicting the class of

sequences. Our motivation in this work is that patterns as subse-

quences are important features of sequences, and if two sequences
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(a) Hypergraph Construction (b) Seq-HyGAN

Figure 1: System architecture of the proposed method. The first step is hypergraph construction, where each sequence (e.g.,

DNA) is a hyperedge, and the (frequent) subsequences of sequences are the nodes. The second step is the Sequence Hypergraph

Attention Network, namely Seq-HyGAN, which generates the representations of sequences while giving more attention to the

important subsequences and learning the label of the sequences.

share many patterns, they have a higher similarity. Also, it is as-

sumed that similar sequences will have the same class labels. To

define the higher-order pattern-based similarity between sequences,

we construct a hypergraph from the sequence data. Below is a for-

mal definition of a hypergraph.

Definition 3.1. Hypergraph: A hypergraph is defined as 𝐺 =

(𝑉 , 𝐸) where 𝑉 = {𝑣1, ..., 𝑣𝑖 } is the set of nodes and 𝐸 = {𝑒1, ..., 𝑒 𝑗 }

is the set of hyperedges. Hyperedge is a special kind of edge that

consists of any number of nodes. Similar to the adjacency matrix of

a graph, a hypergraph can be denoted by an incidence matrix𝐻𝑛×𝑚

where 𝑛 is the number of nodes,𝑚 is the number of hyperedges

and 𝐻𝑖 𝑗 = 1 if 𝑣𝑖 ∈ 𝑒 𝑗 , otherwise 0.

After hypergraph creation, to accomplish the sequence classi-

fication task, we propose an attention-based hypergraph neural

network model consisting of a novel three-level attention mecha-

nism that learns the importance of the subsequences (nodes) and,

thus, the representation of the sequences (hyperedges). We train

the whole model in a semi-supervised fashion. Our proposed model

has two steps: (1) Hypergraph construction from the sequence data,

(2) Sequence classification using attention-based hypergraph neural

networks.

3.2 Sequence Hypergraph Construction

In order to capture the similarity between sequences, we define the

relationship between sequences based on common subsequences

within each sequence. We represent this relationship as a hyper-

graph that captures the higher-order similarity of the sequences.

First, we decompose the sequences into a set of subsequences as the

important patterns of the sequences. Then, we represent this set of

subsequences as the nodes of the hypergraph, and each sequence, in-

cluding a set of subsequences, is a hyperedge. Each hyperedge may

connect with other hyperedges through some shared nodes as sub-

sequences. Thus, this constructed hypergraph defines a higher-level

connection of sequences and subsequences and helps to capture

the complex similarities between the sequences. Moreover, this

hypergraph setting ensures a better robust representation of se-

quences with a GNN model having a message-passing mechanism

not only limited to two nodes but rather between the arbitrary

number of nodes and also between edges through nodes. The steps

of hypergraph construction are shown in Algorithm 1.

Different algorithms can be used to generate the subsequences,

such as ESPF [19], 𝑘-mer [46], strobemers [32]. In this paper, we

exploit ESPF, and 𝑘-mer to generate subsequences and examine

their effects on the final results. While 𝑘-mer uses all the extracted

subsequences for a certain 𝑘 value, ESPF only selects the most fre-

quent subsequences from a list of candidate subsequences for a

certain threshold.

Algorithm 1: Sequence Hypergraph Construction

Input: 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

Output: Hypergraph incident matrix: 𝐻

Subsequence_list<- 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠);

/* Sequence_Decomposition() could be ESPF or

𝑘-mer that decomposes sequences into moderated

size subsequences. */

for each subsequence in Subsequence_list do

if subsequence is in Sequence_dictionary[sequence] then

𝐻 [𝑖, 𝑗] = 1 ; /* i,j is the id of subsequence

and sequence, respectively. */

end

end

Output: Hypergraph incident matrix, 𝐻

ESPF: ESPF stands for Explainable Substructure Partition Finger-

print. As for sub-word mining in the natural language processing

domain, ESPF decomposes sequential inputs into a vocabulary list

of interpretable moderate-sized subsequences. ESPF considers that

a specific sequence property is mainly led by only a limited number

of subsequences known as functional groups. Given a database,

𝑆 of sequences as input, ESPF generates a vocabulary list of sub-

sequences as frequent reoccurring customized size subsequences.

Starting with tokens as the initial set, it adds subsequences having

a frequency above a threshold in 𝑆 to the vocabulary list. Subse-

quences appear in this vocabulary list in order of most frequent

to least frequent. In our hypergraph, we use this vocabulary list

as nodes and break down any sequence into a series of frequent
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subsequences relating to those. For any given sequence as input, we

split it in order of frequency, starting from the highest frequency

one. An example of splitting a DNA sequence is as follows.

CTGAAAGCAACAGTGAGACGATGAGACCGACGATCCCAGGAGG

⇓

CTGAAAG CAACAG TGAGA CGA TGAGA CCGACGA TCCCAG GAGG

k-mer: 𝑘-mer is an effective tool widely used in biological se-

quence data analysis (e.g., sequence matching). It splits sequential

inputs into a list of overlapping subsequence strings of length 𝑘 .

To generate all 𝑘-mers from an input string, it starts with the first

𝑘 characters and then moves by just one character to get the next

subsequence, and so on. If 𝑡 is the length of a sequence, there are

𝑡 −𝑘 +1 numbers of 𝑘-mers and𝑇𝑘 total possible number of 𝑘-mers,

where 𝑇 is the number of monomers. 𝑘-mers can be considered

as the words of a sentence. Like words, they help to attain the se-

mantic features from a sequence. For example, for a sequence ATGT,

monomers: {A, T, and G}, 2-mers: {AT, TG, GT}, 3-mers: {ATG, TGT}.

3.3 Sequence Hypergraph Attention Network

To classify sequences, it is essential to generate feature vectors

that can effectively embed the structural information. Since in our

hypergraph model, we represent each sequence as a hyperedge; we

need to learn hyperedge representation. Regular GNN models that

generate the embedding of nodes do not work on our hypergraph.

Therefore, we propose a novel Sequence Hypergraph Attention

Network model, namely Seq-HyGAN.

Given the 𝑓 dimensional hyperedge feature matrix, 𝑋 ∈ 𝑅𝐸×𝑓

and incidence matrix𝐻 ∈ 𝑅𝑉 ×𝐸 , Seq-HyGAN generates a hyperedge

feature vector of 𝑓 ′ dimension via learning a function 𝐹 . Then it

predicts labels for sequences using generated feature vectors.

Our proposed model leverages memory-efficient self-attention

mechanisms to capture high-order relationships in the data while

preserving both local and global context information. It comprises

a three-level attention network: hyperedge-to-node, node-to-node,

and node-to-hyperedge levels. At the hyperedge-to-node level, at-

tention is utilized to aggregate hyperedge information and generate

node representations that encapsulate global context. The node-to-

node level attention refines the node representations by aggregating

information from neighboring nodes within the same hyperedge,

capturing local context. Lastly, the node-to-hyperedge level atten-

tion aggregates node representations from both local and global

context perspectives to generate hyperedge representations with

attention. We define tree attention layers in general as follows.

𝑝𝑙𝑖 = AGE−V
𝑙 (𝑝𝑙−1𝑖 , 𝑛𝑙−1𝑗 |∀𝑒 𝑗 ∈ 𝐸𝑖 ), (1)

𝑚𝑙
𝑖, 𝑗 = AGV−V

𝑙 (𝑝𝑙𝑖 , 𝑝
𝑙
𝑦 |∀𝑣𝑦 ∈ 𝑒 𝑗 ), (2)

𝑛𝑙𝑗 = AGV−E
𝑙 (𝑛𝑙−1𝑗 , 𝑝𝑙𝑖 ,𝑚

𝑙
𝑖, 𝑗 |∀𝑣𝑖 ∈ 𝑒 𝑗 ) (3)

where AGE-V (Hyperedge-to-Node) aggregates the information 𝑛 𝑗

of all hyperedges 𝑒 𝑗 to generate the 𝑙-th layer representation 𝑝𝑙𝑖
of node 𝑣𝑖 and 𝐸𝑖 is the set of hyperedges that node 𝑣𝑖 belongs to.

AGV-V(Node-to-Node) generate the 𝑙-th layer representation𝑚𝑙
𝑖, 𝑗

of node 𝑣𝑖 for a specific hyperedge 𝑒 𝑗 by aggregating all the nodes

𝑣𝑦 present in 𝑒 𝑗 . Finally, AGV-E(Node-to-Hyperedge) aggregates

the information of all nodes 𝑣𝑖 that belongs to hyperedge 𝑒 𝑗 to

generate the 𝑙-th layer representation 𝑛𝑙𝑗 of 𝑒 𝑗 .

Hyperedge-to-node level attention: As our first layer, we learn

the representation of nodes via aggregating information from hy-

peredges to capture the global context in the hypergraph. Although

a node may belong to different hyperedges, all hyperedges may

not be equally important for that node. To learn the importance

of hyperedges for each node and incorporate them into the repre-

sentation of nodes, we design a self-attention mechanism. While

aggregating hyperedge representations for a node, this attention

mechanism ensures more weight to important hyperedges than

others. With the attention mechanism, the 𝑙-th layer node feature

𝑝𝑙𝑖 of node 𝑣𝑖 is defined as

𝑝𝑙𝑖 = 𝛼
⎛⎜
⎝
∑︂
𝑒 𝑗 ∈𝐸𝑖

Γ𝑖 𝑗𝑊1𝑛
𝑙−1
𝑗

⎞⎟
⎠

(4)

where 𝛼 is a nonlinear activation function,𝑊1 is a trainable weight

matrix, and Γ𝑖 𝑗 is the attention coefficient of hyperedge 𝑒 𝑗 on node

𝑣𝑖 defined as

Γ𝑖 𝑗 =
exp(ej)∑︁

𝑒𝑘 ∈𝐸𝑖 exp(ek)
(5)

ej = 𝛽 (𝑊2𝑛
𝑙−1
𝑗 ∗𝑊3𝑝

𝑙−1
𝑖 ) (6)

where 𝐸𝑖 is the set of hyperedges 𝑣𝑖 is connected with, 𝛽 is a

LeakyReLU activation function and ∗ is the element-wise multipli-

cation and𝑊2 and𝑊3 are trainable weights.

Node-to-node level attention:

The hyperedge-to-node level attention captures global context

information while generating node representations. However, while

a subsequence is common in the different sequences, they may also

have different roles and importance in each sequence. Therefore,

it is crucial to capture the local information of nodes specific to

hyperedges. Moreover, we need to incorporate the individual con-

tributions of adjacent local subsequences into the representation

of a specific subsequence. Furthermore, retaining the positional

information of the subsequences in a sequence is essential for the

accurate analysis of sequence data. To address these, we introduce

a node-to-node attention layer that passes information between

nodes in a hyperedge. It learns the importance of subsequences for

each other within the same sequence and also incorporates a posi-

tion encoder that assigns a unique position to each subsequence.

To get the position information, we adopt a simple positional en-

coder inspired by the transformer model [41]. This enables us to

preserve local and spatial information of a subsequence within a

specific sequence. Using the attention mechanism, the 𝑙-th layer

node feature𝑚𝑙
𝑖, 𝑗 of node 𝑣𝑖 belonging to hyperedge 𝑒 𝑗 is defined

as

𝑚𝑙
𝑖, 𝑗 = 𝛼

⎛⎜
⎝
∑︂
𝑣𝑦 ∈𝑒 𝑗

Φ𝑖𝑦𝑊4𝑝𝑦̄
𝑙⎞⎟
⎠

(7)

𝑝̄𝑦 = 𝑝𝑦 + PE(𝑝𝑜𝑠𝑣𝑦 ) (8)

PE(𝑝𝑜𝑠, 2𝑥) = sin(𝑝𝑜𝑠/100002𝑥/𝑑 ) (9)

PE(𝑝𝑜𝑠, 2𝑥 + 1) = cos(𝑝𝑜𝑠/100002𝑥/𝑑 ) (10)

Where𝑊4 is a trainable weight, Φ𝑖𝑦 is the attention coefficient of

neighbor node 𝑣𝑦 on node 𝑣𝑖 . PE represents the positional encoding

function, 𝑝𝑜𝑠𝑣𝑦 represents the original positional index of 𝑣𝑦 in the

sequence, PE(𝑝𝑜𝑠, 𝑥) refers to the 𝑥-th dimension of the positional

encoding of the word at position 𝑝𝑜𝑠 in the sequence, and 𝑑 denotes
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the dimension of the positional encoding. The attention coefficient

Φ𝑖𝑦 is defined as

Φ𝑖𝑦 =

exp(qy)∑︁
𝑞𝑘 ∈𝑒 𝑗 exp(qk)

(11)

qy = 𝛽 (𝑊5𝑝𝑦̄
𝑙 ∗𝑊6𝑝𝑖̄

𝑙 ) (12)

where 𝑒 𝑗 is the hyperedge node 𝑣𝑖 belongs,𝑊5 and𝑊6 are trainable

weights.

Node-to-hyperedge level attention: Hyperedge is degree-free

that consists of an arbitrary number of nodes. However the contri-

bution of nodes in hyperedge construction may not be the same. To

highlight the important nodes for each hyperedge, we employ an at-

tention mechanism. This attention aggregates node representations

and assigns higher weights to crucial ones. Moreover, during the

aggregation process, it considers the representations of the nodes

from both local and global contexts, allowing for a comprehensive

understanding of their significance within the hypergraph. With

the attention mechanism, the 𝑙-th layer hyperedge feature 𝑛𝑙𝑗 of

hyperedge 𝑒 𝑗 is defined as

𝑛𝑙𝑗 = 𝛼
⎛⎜⎝
∑︂
𝑣𝑖 ∈𝑒 𝑗

Δ 𝑗𝑖𝑊7 (𝑚
𝑙
𝑖, 𝑗 | |𝑝

𝑙
𝑖 )
⎞⎟⎠

(13)

where𝑊7 is a trainable weight, || is the concatenation operation,

and Δ 𝑗𝑖 is the attention coefficient of node 𝑣𝑖 in the hyperedge 𝑒 𝑗
defined as

Δ 𝑗𝑖 =
exp(vi)∑︁

𝑣𝑘 ∈𝑒 𝑗 exp(vk)
(14)

vi = 𝛽
(︂
𝑊8 (𝑚

𝑙
𝑖, 𝑗 | |𝑝

𝑙
𝑖 ) ∗𝑊9𝑛

𝑙−1
𝑗 )

)︂
(15)

where 𝑣𝑘 is the node that belongs to hyperedge 𝑒 𝑗 , and𝑊8,𝑊9 are

trainable weights.

Seq-HyGAN generates the hyperedge representations by employ-

ing this three-level of attention. Finally, we linearly project the

output of Seq-HyGAN with a trainable weight matrix to generate a

𝐶 dimensional output for each hyperedge as 𝑍 = 𝑛𝑊𝑇
𝑐 , where 𝐶 is

the number of classes, 𝑛 is the output of the Seq-HyGAN, and𝑊𝑐 is

a trainable weight.

Training: We train our entire model using a cross-entropy loss

function defined as

𝐿 = −

𝑁∑︂
𝑖=1

𝐶∑︂
𝑐=1

𝑤𝑐 log
exp(𝑍𝑖,𝑐 )∑︁𝐶
𝑗=1 exp(𝑍𝑖, 𝑗 )

𝑦𝑖,𝑐 (16)

where 𝑦 is the target, 𝑤 is the weight, 𝐶 is the number of classes,

and 𝑁 is the number of samples.

3.4 Complexity

Seq-HyGAN is an efficient model that can be parallelized across the

edges and the nodes [42]. Given the 𝑓 dimensional initial feature

of a sequence, it exploits a three-level attention network and gen-

erates 𝑓
′
dimensional embedding vector for the sequence. Thus,

the time complexity of Seq-HyGAN can be expressed in terms of the

cumulative complexity of the attention networks. From equation 4,

we can formulate the time complexity for the hyperedge-to-node

level attention as: 𝑂 ( |𝐸 |𝑓 𝑓
′
+ |𝑉 |𝜅𝑓

′
), where 𝜅 is the average de-

gree of nodes. And in the node-to-node level attention, the time

complexity is: 𝑂 ( |𝐸 | (𝜒 𝑓 𝑓
′
+ 𝜒2 𝑓

′
)), where 𝜒 is the average degree

of hyperedges. Similarly, we can formulate the time complexity in

the node-to-hyperedge level attention as: 𝑂 ( |𝑉 |𝑓 𝑓
′
+ |𝐸 |𝜒 𝑓

′
).

4 EXPERIMENT

In this section, we perform extensive experiments on four differ-

ent datasets and five different research problems to evaluate the

proposed Seq-HyGAN model. We compute three different accuracy

metrics, Precision (P), Recall (R), and F1-score (F1), to analyze and

compare our proposedmodel with the state-of-the-art baseline mod-

els. This section starts with a description of our datasets, parameter

settings, and baselines, and then we present our experimental re-

sults.

4.1 Dataset

We evaluate the performance of our model using four different

sequence datasets. They are (1) Human DNA sequence, (2) Anti-

cancer peptides, (3) Cov-S-Protein-Seq and (4) Bach choral

harmony. All these datasets are publicly available online.

1. The Human DNA (HD) sequence dataset consists of 4,380

DNA sequences [9]. Each DNA sequence corresponds to a specific

gene family (class), with a total of seven families.

Our objective is to predict the gene family based on the coding

sequence of the DNA.

2. The Anti-cancer peptides (ACPs) are short bioactive pep-

tides [44]. ACPs are found to interact with vital proteins to inhibit

angiogenesis and recruit immune cells to kill cancer cells, such

as HNP-110 [20]. These unique advantages make ACPs the most

promising anti-cancer candidate [16]. The ACP dataset contains 949

one-letter amino-acid sequences representing peptides and their

four different anti-cancer activities (i.e., very active, moderately

active, experimental inactive, virtual inactive) on breast and lung

cancer cell lines [40]. Given the amino-acid sequence, our goal is

to predict the anti-cancer activities.

3. The Cov-S-Protein-Seq (CPS) dataset consists of 1,238 spike

protein sequences from 67 different coronavirus (CoV) species, in-

cluding SARS-CoV-2 responsible for the COVID-19 pandemic [3, 6].

The dataset provides information on the CoV species (CVS) and

their host species (CHS) [25]. The CoV species are grouped into

seven categories, and the host species are grouped into six cate-

gories. The goal is to predict the CoV species and host species based

on the spike protein sequences.

4. Music is sequences of sounding events. Each event has a spe-

cific chord label. The Bach choral (BC) harmony dataset consists

of 60 chorales containing a total of 5,665 events [40]. Each event is

labeled with one of 101 chord labels and described by 14 features.

The goal is to predict the chord label based on this information. For

the experiment, the five most frequent chord labels out of the 101

chord labels are selected.

4.2 Parameter Settings

We extract subsequences from given sequence datasets using ESPF

and𝑘-mer separately to create our hypergraph.With a low-frequency

threshold, ESPF produces more subsequences, and all of them may

not be important. But with a large-frequency threshold, it produces

less number of subsequences, and there might be a missing of some
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Table 1: Number of Nodes (N) in the hypergraph based on

frequency threshold of ESPF and 𝑘 value of 𝑘-mer

ESPF HD BC ACP CPS

|𝑁 | |𝑁 | |𝑁 | |𝑁 |

5 25207 446 382 10776

10 15774 347 225 7987

15 11166 287 166 6769

20 8871 253 138 5971

25 7483 198 110 5477

𝑘-mer HD BC ACP CPS

|𝑁 | |𝑁 | |𝑁 | |𝑁 |

5 1247 3220 10301 99794

10 602,855 14462 6799 157,399

15 1,449,240 16163 3103 193,544

20 1,462,963 17909 - 223,073

25 1,467,256 18752 - 248,938

vital subsequences. We choose five different frequency thresholds

from 5 to 25 and examine the impact of threshold value on hyper-

graph learning. Similarly, in 𝑘-mer, typically with the increment

of 𝑘-mer length (i.e., 𝑘 value), the number of subsequences also

increases. We choose five different 𝑘 values from 5 to 25 and exam-

ine their impact on hypergraph learning. However, as Anticancer

peptide sequences are too small, we just choose 𝑘 from 5 to 15. The

number of nodes for different threshold values of ESPF and 𝑘 value

of 𝑘-mer is given in Table 1 for each dataset.

We perform a random split of our datasets, dividing them into

80% for training, 10% for validation, and 10% for testing. This split-

ting process is repeated five times, and the average accuracy metrics

are calculated and reported in the results section. To find the optimal

hyperparameters, a grid search method is used on the validation

set. The optimal learning rate is determined to be 0.001, and the

optimal dropout rate is found to be 0.3 to prevent overfitting.

We utilize a single-layer Seq-HyGAN having a three-level of at-

tention network. one-hot coding is used as an initial feature of

the sequences. A LeakyReLU activation function is used on the

attention networks side. The model is trained with 1000 epochs

and optimized using Adam optimizer. An early stop is used if the

validation accuracy does not change for 100 consecutive epochs.

The ML classifiers in subsection: 4.3 are taken from sci-kit learn

[29]. For logistic regression (LR), we set the inverse of regularization

strength, C=2. A linear kernel with polynomial degree 3 is used in

the support vector machine (SVM). Default parameters are used for

the decision tree (DT) classifier. The DL models are implemented

fromKeras layers [10]. In theDLmodels, RCNN and BiLSTM,we use

relu and softmax activation functions in the hidden dense layers

and dense output layer, respectively. The models are optimized

using Adam optimizer, and dropout layers of 0.3 are used. For

node2vec, the walk length, number of walks, and window size are

set to 80, 15, and 15, respectively, and for graph2vec, we use the

default parameters following the source. We follow DGL [43] to

implement graph attention network (GAT). For DNA-GCN and

hypergraph neural networks (HGNN, HyperGAT), we use the same

hyper-parameters as mentioned in the source papers.

4.3 Baselines

We evaluate our model by comparing its performance with different

state-of-the-art models. Based on the data representation style and

methodology, we categorize the baseline models into groups below.

1. Machine Learning We utilize CountVectorizer to generate the

input features and employ LR, SVM, and DT classifiers. 2. Deep

Learning We use two different hybrid DL models, recurrent convo-

lutional neural networks (RCNN) and bidirectional long short-term

memory (BiLSTM), as baselines. 3. Node2vec We represent each

sequence in a graph setting by following a classic method called

the De-Bruijn graph as explained in section 2. After constructing

the graph, we apply Node2vec [17], which is a random walk-based

graph embedding. Node2vec generates the embedding of nodes.

To obtain the graph-level representation, we average the embed-

ding of nodes of that graph. Finally, the generated embedding is

fed as a feature to the ML classifier for sequence classification. 4.

Graph2vec In the same De-Bruijn graph, we apply the Graph2vec

[27] method to generate graph embeddings. Then the graph em-

beddings are fed into the ML classifiers for sequence classification.

5. Graph Neural Network Here, we apply graph attention network

(GAT) [42] on De-Bruijn graphs to learn the node embedding. Then

we get the graph-level embedding using an average pooling-based

readout function. Moreover, we follow DNA-GCN [18] to construct

a heterogeneous graph from the entire corpus and the extracted

subsequences. This graph has two types of nodes: sequence node

and subsequence node. After constructing the graph, we apply a

two-layer GCN. 6. Hypergraph Neural Network (HNN) We further

compare our model performances with two state-of-the-art hyper-

graph neural network models: HGNN [14] and HyperGAT [12].

HGNN generates the representation of nodes by aggregating hy-

peredges. First, we apply HGNN to our hypergraphs and get the

node (i.e., subsequence) representations, and then we combine the

node representations to get the hyperedge representations. Finally,

the hyperedge representations are passed through a classifier. Hy-

perGAT is an attention-based hypergraph neural network that is

presented for document classification problems. We apply Hyper-

GAT to our sequence hypergraphs and generate the embeddings of

subsequences, and then we apply a mean-pooling layer to get the

sequence embedding. Then, the representation is passed through a

classifier. In both HGNN and HyperGAT, we use one-hot coding of

nodes as initial features.

4.4 Results

4.4.1 Model Performance. We assess the performance of our pro-

posed model by performing extensive experiments on four different

datasets for five different problems. For each experiment, we se-

lect different threshold values of ESPF and 𝑘-mer, and we present

the overall performance of our proposed models in terms of the

F1-score in Figure 2.

In Figure 2 (a), we depict the performance of our models with

a changing frequency threshold of ESPF from 5 to 25. As we can

see from this figure, with the increase of ESPF frequency threshold,

model performance degrades generally. Especially it shows that

the ESPF frequency threshold has a comparatively more significant

impact on the Human DNA dataset than others. With the change

of frequency threshold from 5 to 25, the F1 score of the Human
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Figure 2: Performance comparison of the proposed model

with different thresholds of (a) ESPF and (b) 𝑘-mer for differ-

ent datasets.

DNA dataset has dropped by almost 25%. Since with the increase

of frequency threshold, we get a smaller number of subsequences

(nodes), and it might not be enough to learn hyperedges with those

smaller numbers of nodes (refer Table 1). Generally, frequency

threshold 5 yields the best performance for Human DNA and CoV-

S-Protein-Seq (for Host species classification) datasets. We get the

best performance for Bach choral, Anticancer peptides, and CoV-S-

Protein-Seq (for CoV species classification) datasets with frequency

thresholds of 15, 10, and 15, respectively.

Figure 2 (b) presents the proposed models’ performances for

𝑘-mer ranges from 5 to 25. As of ESPF, the effect of parameter 𝑘 on

the results is most for Human DNA than other datasets. When the

𝑘 value is 5, the F1-score of Human DNA is 33.98%, and for the 𝑘

value of 25, it is increased by about 190% to 98.83%. The next highest

changes are noticed for the Bach choral dataset. With the increase

of threshold 𝑘 from 5 to 25, its F1-score is increased by about 27%.

The value of 𝑘 has comparatively less impact on the results of Cov-

S-Protein-Seq datasets. However, interestingly, with the increase

of 𝑘 , the results of the Anticancer peptides dataset decrease. The

reasons for these scenarios could be explained by Table 1. In this

table, we can see that with the increase in 𝑘 , the number of nodes

in the Human DNA dataset has markedly increased from 1,247 to

1,467,256. This vast number of nodes might capture better infor-

mation and thus improve the overall performance. On the other

hand, for Anticancer peptides, with the increase of 𝑘 , the number

of nodes decreases, hence the graph size, which might degrade the

performance.

4.4.2 Comparative Analysis with Baselines. We compare our model

results with several state-of-the-art baseline models for each dataset.

We consider the thresholds for ESPF and 𝑘 for 𝑘-mer that give the

best result for our models for each dataset; as an example, for the

Human DNA dataset, we chose 𝑘 = 25 for 𝑘-mer that gives the

highest score for this data. The experimental results of all models

for Human DNA, Bach choral, and Anticancer peptides (Anticancer

pept.) datasets are shown in Table 2, and all model results for Cov-S-

Protein-Seq dataset for both host species and CoV species are shown

in Table 3. In these tables, we can see our models surpass all the

baselines thoroughly for all the datasets. More specifically, in Table 2

for the Human DNA dataset, our Seq-HyGAN with 𝑘-mer gives the

best performance with 98.91%, 98.88%, and 98.83% on precision (P),

recall (R), and F1-score (F1). The next best performer is DNA-GCN,

which achieves an F1-score of 96.36%,more than 2.5% lower than our

model and similar to other accuracy measures. The performances

of ML models are also very promising and competitive with our

models. All the ML models achieve an F1-score above 80%.

Eventually, for all the datasets, the hypergraph-based model

gives the best performance. Specifically, in almost every case, Hy-

perGAT serves as the superior baseline, while HGNN performs

as the second-best baseline. The reason for their success lies in

their ability to capture higher-order, intricate relationships within

a hypergraph structure. Additionally, HyperGAT utilizes attention

networks to enhance sequence representation learning, which is

superior to HGNN’s approach. It is worth mentioning that we apply

these models to our hypergraphs, and our experiments demonstrate

the effectiveness of representing sequences as hypergraphs.

The overall performance of DNA-GCN is also very competitive

with hypergraph-based approaches. DNA-GCN is based on a het-

erogenous graph that has both sequence and subsequence nodes. It

allows information to be passed between the subsequences and also

between sequence and subsequence. Moreover, though it does not

have any direct connection between sequence nodes, it employs a

two-layer GCN that allows the information to be passed between

the sequences too. This whole architecture helps it learn a robust

representation of sequences. Out of all ML models, generally, SVM

generates better output for all the datasets. However, ML models

cannot learn features automatically and are limited to external fea-

tures. In both tables, for all the datasets, the performances of DL

models fail to cross the ML classifiers. For example, in the Bach

choral dataset, the F1-score of Seq-HyGAN with 𝑘-mer is above 93%,

and for ML with SVM classifier, it is above 82%. However, the F1-

score for RCNN and BiLSTM are 68.23% and 66.32%, respectively.

A similar scenario in all other datasets. A possible reason behind

the poor performance of DL models could be the size of the data

corpus. We know DL models are called data-hungry models. Their

performances largely rely on the availability of a bulk amount of

label data. However, all our datasets are small.

From Table 2, and 3, we can observe that the performance of

Node2vec, Graph2vec, and GAT on the Anticancer peptides dataset

is convincing, but their performances on other datasets are abysmal.

The network structure of these datasets may be a contributing factor

to this discrepancy. To further investigate, we calculate the average

network density of each dataset by computing the mean density

of its corresponding graphs. For each dataset, the best 𝑘-mer is

chosen based on the performances of Seq-HyGAN models on that

dataset. We find that the Anticancer peptides dataset exhibits the

highest average network density of 0.3868, while the Human DNA,

Bach Choral, and CoV-S-Protein-Seq dataset graphs have lower

densities of 0.0100, 0.2702, and 0.0031, respectively. This disparity in

network density could explain the subpar performance of Node2vec,

Graph2vec, and GAT on these datasets.

In brief, Seq-HyGAN with 𝑘-mer delivers better performances

than Seq-HyGAN with ESPF. This may be because ESPF assumes

frequent subsequences are the only important ones and eliminates

many infrequent subsequences. However, some infrequent subse-

quences may also be important. Thus, using ESPF, we may seldom

lose some infrequent important ones. On the contrary, 𝑘-mer does

not lose any subsequences; rather, it fetches all and lets the attention

model discover the critical ones. In general, a larger 𝑘-mer is prefer-

able since it provides greater uniqueness and helps to eliminate the

repetitive substrings.
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Table 2: Performance comparisons of models for Human DNA, Bach choral and Anticancer datasets

Model
Method Human DNA Bach choral Anticancer pept.

P R F1 P R F1 P R F1

LR 92.82 90.64 90.84 88.09 76.68 78.52 77.00 83.16 77.67

ML SVM 90.09 85.39 85.83 89.30 80.27 82.08 83.10 86.32 83.27

DT 92.87 80.37 83.68 86.49 70.85 73.92 78.28 85.32 81.35

RCNN 68.84 37.90 27.86 76.83 71.30 68.23 69.62 80.00 73.34

DL BiLSTM 77.80 39.27 35.18 73.93 69.96 66.32 65.70 81.05 72.57

LR 36.09 32.19 22.89 16.11 20.17 18.14 71.32 82.11 75.11

Node2vec SVM 10.32 30.82 14.52 14.14 20.18 16.17 66.39 81.05 72.99

DT 18.04 18.26 18.13 23.03 22.87 22.89 68.75 64.21 66.40

LR 21.07 26.94 23.63 23.34 19.73 17.81 66.39 81.05 72.99

Graph2vec SVM 10.32 30.82 14.52 13.09 15.75 16.50 71.32 82.11 75.11

DT 19.41 19.63 19.39 25.60 25.56 25.48 77.93 73.68 75.54

GNN DNA-GCN 96.46 96.28 96.36 85.54 85.24 85.27 83.25 83.53 83.82

GAT 30.06 42.14 36.01 24.75 29.19 31.12 79.23 87.44 79.67

HNN HGNN 87.03 86.82 87.12 86.12 86.89 86.93 83.82 85.42 83.97

HyperGAT 85.13 85.33 84.11 88.09 87.44 87.45 85.33 88.42 86.68

ESPF 88.77 87.89 87.78 89.93 89.72 89.88 91.98 86.75 87.65

Seq-HyGAN 𝑘-mer 98.91 98.88 98.83 93.78 93.10 93.18 93.36 91.72 92.33

Table 3: Performance comparisons of models on Cov-S-Protein-Seq dataset for Host and CoV species prediction

Method
Model Host species CoV species

P R F1 P R F1

LR 92.64 91.94 91.48 96.04 95.16 95.21

ML SVM 94.20 93.55 93.42 96.60 95.97 96.02

DT 92.25 91.13 91.25 95.60 94.97 95.02

RCNN 83.22 79.03 76.82 65.53 62.90 57.47

DL BiLSTM 70.61 66.94 61.56 66.66 72.58 66.92

LR 26.28 29.03 19.29 12.34 20.16 14.92

Node2vec SVM 23.07 24.19 23.27 22.42 25.00 23.54

DT 20.00 21.77 20.80 23.47 23.39 23.33

LR 23.74 25.00 23.98 25.92 28.23 26.67

Graph2vec SVM 17.22 27.42 17.81 17.16 22.58 16.59

DT 22.68 22.58 22.50 22.80 22.58 22.47

GNN DNA-GCN 90.91 90.18 91.11 94.34 94.57 94.13

GAT 22.36 33.23 25.22 24.10 29.65 26.19

HNN HGNN 91.52 91.91 91.60 94.62 94.42 94.63

HyperGAT 93.44 93.55 93.14 95.52 95.35 95.45

ESPF 95.78 95.66 95.49 98.89 98.78 98.72

Seq-HyGAN 𝑘-mer 97.83 96.13 97.01 99.56 99.29 99.45

Moreover, we choose the best-performing method from each

baseline model for each dataset; for example, in the case of the

Human DNA dataset, we choose LR from the ML models, BiLSTM

from the DL models, LR from Graph2vec, DNA-GCN from GNN,

HyperGAT from HNN and 25-mer from our Seq-HyGAN models.

Then, we compare our models’ performances with the baselines by

varying the training data sizes from 10% to 80%. A comparison of

performance in terms of the F1-score is shown in Fig 3. Results indi-

cate Seq-HyGAN to be the best-performingmodel, and it still delivers

very good results with small training data. However, decreasing

the training size affects some baseline models significantly.

The hypergraph’s innate ability to capture complex higher-order

relationships has made it an effective model for many scientific

studies. Seq-HyGAN leverages a hypergraph structure and captures

higher-order intricate relations of subsequences within a sequence

and between the sequences. Furthermore, it generates a much more

robust representation of sequence by utilizing an attention mecha-

nism that discovers the important subsequences of that sequence.

While GAT [42] also uses an attention mechanism, it is limited to

learning important neighbors of a node and cannot learn significant

edges. Additionally, GAT is unsuitable for complex networks with

triadic or tetradic relations. The key strength of our proposedmodel,
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Figure 3: Performance comparison of models for different

training sizes

Seq-HyGAN, lies in its three-level attention mechanism, which effec-

tively captures both local and global information. This mechanism

allows for the generation of node representations by aggregating

information from connected hyperedges (global information) and

neighboring nodes (local information) within the same hyperedge,

with a specific emphasis on important ones. Likewise, it enables the

generation of hyperedge representations by aggregating member

nodes, with a particular focus on critical ones.

4.4.3 Space Analysis. Our models demonstrate efficient memory

usage by creating only one hypergraph per dataset. Regardless

of the chosen thresholds for ESPF and 𝑘 for 𝑘-mer, the number

of hyperedges remains consistent across the hypergraphs. In con-

trast, the De-Bruijn method constructs a separate graph for each

sequence, resulting in a significant number of nodes and edges. For

instance, in Table 1, we can see that the hypergraph constructed

from the Human DNA dataset with a 𝑘-mer value of 25 contains

1,467,256 nodes and where the number of hyperedges is the same

as the number of sequences in that dataset as mentioned in 4.1

which is 4380. However, in Table 4, we can see that the De-Bruijn

graph constructed from the same dataset with the same 𝑘-mer value

comprises 5,422,447 nodes and 5,418,151 edges. Similar trends are

observed in other datasets as well.

4.4.4 Case Study - Impact of hypergraph structure. In contrast to

standard graphs, hypergraphs offer the ability to capture higher-

order complex relationships that are not easily represented by stan-

dard graphs. To demonstrate this capability, we conduct a compari-

son between our hypergraph-based Seq-HyGANmodel and standard

graphs. To facilitate this comparison, we construct line graphs from

the same datasets, where each sequence is represented as a node,

and nodes are connected if they share a certain number (𝑆) of com-

mon subsequences (with 𝑆 = 2 in our case). Subsequently, we apply

GCN and GAT independently to learn node representations and

classify sequences. The performance results are presented in Table 5.

The results clearly indicate that our hypergraph-based Seq-HyGAN

Table 4: Number of Nodes (N) and Edges (E) in De-Bruijn

Graphs

Dataset # of nodes # of edges

|𝑁 | |𝐸 |

Human DNA 5,422,447 5,418,151

Bach choral 34111 31890

Anticancer peptides 11939 11058

Cov-S-Protein-Seq 1,576,019 1,574,782

Table 5: F1-score scores for different variants of the model

Dataset
Line graph Seq-HyGAN

GCN GAT w/o attn w/ attn

Human DNA 37.08 39.19 94.13 98.83

Bach coral 75.41 77.65 91.21 93.18

Anticancer peptides 83.52 86.86 89.88 92.33

Host species 72.70 75.31 90.16 97.01

CoV species 80.83 86.50 95.77 99.45

models outperform line graph GCN and GAT models in terms of

the F1-score.

4.4.5 Case Study - Impact of Attention Network. In this research

paper, we aim to investigate the impact of the attention network in

the proposed Seq-HyGAN model on classification performance. To

achieve this, we train the model separately with and without the

attention network on all datasets and classification problems. The

corresponding F1-scores for the test datasets were recorded and are

presented in Table 5. The results show that the proposed Seq-HyGAN

model with the attention network (w/ attn) outperforms the model

without the attention network (w/o attn). Specifically, for CoV-

S-Protein-Seq: Host species, the F1-score improved from 90.16%

without the attention network to 97.01% with the attention network,

representing a significant 7.59% improvement. This improvement

can be attributed to the attention network’s ability to discover

crucial subsequences while learning the sequence representation,

which ultimately leads to better performance.

5 CONCLUSION

This paper introduces a novel Sequence Hypergraph Attention Net-

work for sequence classification. Unlike previous models, it lever-

ages a unique hypergraph structure to capture complex higher-

order structural similarities among sequences. While sequences

are represented as hyperedge, subsequences are represented as

nodes in the hypergraph. With the three-level attention model, it

learns hyperedge representations as sequences while considering

the importance of sequence and subsequences for each other. Our

extensive experiments demonstrate that the proposed model sur-

passes various baseline models in terms of performance. We also

show that this model is space and time-efficient with one compact

hypergraph setting.
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