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Abstract—Detecting frauds in computing platforms involves
identifying malicious user activity sessions. Recently, deep learn-
ing models have been employed to design fraud detection
approaches. Effective training of these deep learning models
requires a large amount of well-annotated sessions. However,
due to the cost of expert annotation, many organizations rely
on heuristics to perform automated annotation, which leads
to the noisy label learning problem. It is well known that
the performance of deep learning models can easily degrade
because of noisy or inaccurate labels. To tackle this challenge,
we propose a supervised Contrastive Learning based Fraud
Detection (CLFD) framework, which is designed to operate in the
noisy label setting. CLFD employs an effective label corrector for
correcting noisy labels and which is specifically designed for the
fraud detection task. Then, by employing the corrected labels, it
trains a fraud detector through supervised contrastive learning,
and derives separable representations. We empirically evaluate
our CLFD framework and other state-of-the-art baselines on
benchmark datasets. Our CLFD framework demonstrates supe-
rior performance over state-of-the-art baselines.

Index Terms—fraud detection; contrastive learning; noisy
label; label correction.

I. INTRODUCTION

Computing platforms such as cloud computing systems,

usually experience a large volume of malicious or fraudulent

activities due to the anonymity and openness character of the

Internet. In order to protect the legitimate users, it is extremely

important to identify such malicious activities. In practice,

the user activities are usually modeled as an activity session.

For example, in a computer system, an activity session is a

sequence of activities starting with system log-in and ending

with system log-out. Recently, many deep learning models

have been proposed in the literature [1] for detecting malicious

sessions. These models generate session representations by

making normal sessions deviate from the malicious ones in

the representation space for deriving anomaly scores.

The two main challenges in the fraud detection task are

dataset imbalance and session diversity [1]. Dataset imbal-

ance: In the ground-truth, only a few malicious sessions are

recorded, which leads to extreme dataset imbalance. Session

diversity: It is well known that user activity sessions and es-

pecially malicious sessions, usually exhibit high diversity [1].

The malicious users could design various attacks, which leads

to high session diversity. Recently, a few deep learning based

fraud detection approaches have been proposed in the litera-

ture [2]–[4] which specifically address the dataset imbalance

and session diversity challenges. Specifically, Vinay et al. [4]

proposed a supervised contrastive learning based fraud de-

tection framework, where the supervised contrastive learning

approach [5] extends the vanilla self-supervised contrastive

learning approach to the supervised setting. The main goal

here is to push samples from the same class closer and contrast

with other class samples in the representation space. Due to

this class-specific clustering effect in the representation space,

we can effectively address both session diversity and dataset

imbalance challenges in the fraud detection task [4].

One limitation of the supervised contrastive learning ap-

proach is that it relies on well-labeled samples for training.

However, in many real-world fraud detection scenarios, due

to the high costs of expert annotations, many financially

constrained organizations find it difficult to hire such ex-

perts for manually annotating the recorded sessions [6]. In

such scenarios, organizations rely on historic security rules

or heuristics to perform automated annotations, leading to

the noisy label data [6]. However, the contemporary fraud

detection approaches [2]–[4] have not been designed to operate

in the noisy label setting. Specifically, due to the effect of

noisy supervision, the performance of a supervised contrastive

learning based model can easily degrade [7].

To address the limitations of supervised contrastive learning

for the noisy label learning task, Li et al. [8] and Yi et

al. [9] proposed label correction approaches that correct the

noisy labels by employing sample similarity analysis, and

employ these corrected labels to train the model through

supervised contrastive learning. However, these approaches are

specifically designed for the image data, and assume that the

samples belonging to the same class have considerable shared

features. Hence, these approaches are not suitable for the fraud

detection task due to the presence of the session diversity

challenge. Note that even corrected labels are not accurate

and have uncertainties [10]. As a consequence, even with

label correction, the performance of the supervised contrastive

learning model can still get degraded. The existing supervised

contrastive learning based noisy label learning approaches [8],

[9] do not address this label correction uncertainty challenge.

To address these challenges, we propose a supervised Con-

trastive Learning based Fraud Detection (CLFD) framework

which operates in the noisy label setting. To correct the noisy
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labels, CLFD employs a label corrector which is designed

by suitably adapting the fraud detection framework called

CLDet, which was proposed by Vinay et al. [3]. Specifically,

CLDet employs the self-supervised contrastive learning model

to learn session representations. Then, it trains a classifier

over the learned session representations by employing the

noise sensitive cross entropy loss. CLDet is designed to

specifically address the dataset imbalance challenge. Unlike

the supervised contrastive learning model, the session repre-

sentations learned from the self-supervised contrastive learning

model are not influenced by the presence of noisy labels,

and can also aid the noisy label learning task [7], [11],

[12]. Hence, we leverage this CLDet framework to design

our label corrector. Specifically, we train the classifier in

CLDet by our proposed mixup version of the noise robust

Generalized Cross Entropy (GCE) [13] loss, instead of the

original noise sensitive cross entropy loss. Note that the self-

supervised contrastive learning model pushes a session and

its corresponding augmented versions closer and contrasts

with other sessions in the representation space. It does not

specifically induce the class-specific clustering effect which

is achieved by the supervised contrastive learning model.

Therefore, the supervised contrastive learning model provides

a better opportunity to address the session diversity challenge.

However, the supervised contrastive learning model can under-

perform in the noisy label setting and requires an effective

label corrector to guide the model supervision [7]. Hence,

CLFD first employs the label corrector to correct the noisy

labels, and further adopts the corrected labels to train a

fraud detector for detecting malicious sessions. Moreover, we

propose a weighted supervised contrastive loss to effectively

address the label correction uncertainty challenge, where the

uncertainties associated with the corrected labels are used

to weigh the corresponding sessions inside the supervised

contrastive loss. We further enhance the noise robustness of

our fraud detector by training a separate classifier over the

learned session representations with our proposed mixup GCE

loss. We summarize our main contributions below:

• We propose a supervised contrastive learning based fraud

detection framework called CLFD, which is specifically

designed to operate in the noisy label setting.

• We propose a weighted supervised contrastive loss which

is designed to address the challenge of uncertainty in the

label correction process. We theoretically show that this

weighted supervised contrastive loss is upper bounded by

the ideal loss. Additionally, we propose the mixup version

of the GCE loss for training classifiers under the noisy

label setting, and theoretically show its efficacy.

• We present an empirical study on three benchmark fraud

detection datasets: CERT [14], UMD-Wikipedia [15],

and Open-stack [16], in which we show the superior

performance of our CLFD framework over state-of-the-

art baselines.

II. RELATED WORK

Learning Under Noisy Labels. There is a large body of work

presented in the literature for the noisy label learning task. We

direct the interested readers to [17] for a comprehensive survey

on the different proposed approaches. Some of the recent

and popular noisy label learning approaches are: robust loss

functions [13], [18]–[24] which propose noise robust losses,

noise transition matrix [25]–[28] which requires the knowledge

of class-specific noise rates, sample selection [24], [29], [30]

which selects supposedly clean labeled samples based on

the sample loss analysis, and label correction [10], [31]–

[36] which corrects the given noisy labels and further trains

the employed model by using these corrected labels. Specif-

ically, the label correction approaches have outperformed

the remaining approaches [7]. Hence, we have designed our

framework by employing an effective label corrector. However,

the existing label correction approaches have been designed

for image datasets. In our empirical study, we select some

of recently-proposed label correction approaches [10], [31]

as baselines, and show that they under-perform on the fraud

detection task. Zhang et al. [37] proposed the mixup data

augmentation strategy which has been used in many recent

noisy label learning approaches [17]. There is no work in the

literature which has theoretically studied benefits of the mixup

GCE loss. Zhao et al. [6] developed an anomaly detection

framework under the noisy label setting for image datasets.

Specifically, they assume that each sample has multiple noisy

labels, and train a mixture-of-experts model to learn from

multiple labels. However, in our work, we do not employ

multi-label setting.

Recently, both Li et al. [8] and Yi et al. [9] have employed

supervised contrastive learning for the noisy label learning

task on image datasets. Specifically, Li et al. [8] perform label

correction through the nearest neighbor method. Then, confi-

dent samples are selected based on the agreement between

corrected and given labels. By using these confident sam-

ples, confident pairs are selected based on sample similarity

analysis. Finally, through these confident pairs, a supervised

contrastive learning model is trained. Yi et al. [9] also select

confident pairs based on sample similarity analysis. However,

they propose a novel contrastive regularization function to

learn sample representations over noisy labels where the label

noise does not dominate. In our empirical study, we select both

these approaches [8], [9] as baselines and show that they fail

to provide noticeable results on the fraud detection task due

to the session diversity challenge. Jaiswal et al. [38] presented

a comprehensive survey on the applications of self-supervised

contrastive learning on computer vision and NLP domains.

In the literature, there is no work studying the benefits of

supervised contrastive learning for the fraud detection task

under the noisy label setting.

Insider Threat Detection. It refers to detecting frauds com-

mitted by organizational insiders. Deep learning based ap-

proaches [39]–[45] are popularly employed in detecting insider

threats. Recently, many deep learning based approaches [2]–
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[4], [46] have been specifically designed to operate on imbal-

anced datasets. However, all these existing deep learning based

insider threat detection approaches do not operate under the

noisy label setting. In our empirical study, we select some

of the recent deep learning based insider threat detection

approaches [2], [3] as baselines, and show that they under-

perform under the noisy label setting.

Log Anomaly Detection. The goal here is to detect anomalies

occurring in the computing system log data [16]. Interested

readers can refer to [47] for a comprehensive survey on

log anomaly detection approaches. Recent approaches employ

deep learning models to detect log anomalies [48], [49].

However, these approaches are not specifically designed for

the noisy label learning task.

III. PROPOSED CLFD FRAMEWORK

The activities performed by a user are modeled through

activity sessions. Specifically, each session can consist of T
user activities. Each activity in the session is represented as

an embedding vector that is trained via the word-to-vector

model. Let xit denote the word-to-vector representation of the

tth activity of the ith session. Here, xi = {xit}
T
t=1 represents

the raw representation of the ith session. Let Y = {0, 1}
denote the label space where 0 and 1 denote normal and

malicious sessions, respectively. Let ỹi and yi denote noisy

and ground truth label of xi, respectively. We do not assume

the availability of any clean labeled sessions. The available

noisy training set is denoted as T̃ = T̃ 0 ∪ T̃ 1, where T̃ 0

and T̃ 1 denote the set of noisy normal and malicious sessions

in T̃ , respectively. Let (xi, ỹi) ∈ T̃ denote the ith training

sample. In our problem setting, we deal with the commonly

used noises in the literature [13] which are the uniform and

class-dependent label noises. For the uniform noise, the noise

rate is denoted as η = P (ỹi �= yi). Similarly, for the class

dependent noise, we denote η10 = P (ỹi = 0|yi = 1) and

η01 = P (ỹi = 1|yi = 0). Our framework architecture is

shown in Figure 1. There are two main components in our

framework: label corrector and fraud detector. We describe

both these components below.

A. Label Corrector

We employ our trained label corrector to predict the class for

each session in T̃ and use these predicted classes as corrected

labels to train our fraud detector. Our proposed label corrector

architecture is shown in Figure 1b. We design our label cor-

rector by suitably adapting the CLDet fraud detection frame-

work proposed by Vinay et al. [3]. Our label corrector has

two main components: self-supervised pre-training component

and a classifier. The self-supervised pre-training component

generates session representations, which are trained by the

vanilla self-supervised SIMCLR contrastive loss [50]. After

this training, the session representations are used as inputs to

the classifier, which is trained by our proposed noise robust

mixup GCE loss. The major modification that we make in

the CLDet framework in order to design our label corrector is

that, we train the classifier by our proposed mixup GCE loss

instead of the original noise sensitive cross entropy loss.

1) Mixup GCE Loss: The popular cross entropy loss suffers

from model over-fitting issue when applied on the noisy label

learning task [13]. Additionally, the cross entropy loss is an

unbounded loss which amplifies the model over-fitting issue.

To address these issues, Zhang et al [13] proposed the GCE

loss. However, the vanilla GCE loss still faces the issue of label

memorization effect [51]. The label memorization effect means

the model is overconfident about the relationship between

the input features and their corresponding labels, which is

problematic under the noisy label setting as these labels

could be incorrect. Recently, mixup based data augmentation

strategy proposed by Zhang et al. [37] effectively addresses

this label memorization issue. Specifically, augmented samples

are generated through the randomized interpolation of the

sample features and their corresponding labels. Hence, to

increase the noise robustness of vanilla GCE loss, we propose

the mixup version of GCE loss for the fraud detection task1.

Let vi denote the session representation generated by the

self-supervised pre-training component2 for xi. Let f denote

the classifier function. The classifier softmax output vector for

vi is denoted as f(vi) = [f0(vi), f1(vi)]
�

, where f0(vi) and

f1(vi) denote softmax probabilities for normal and malicious

session classes, respectively. Let q ∈ (0, 1] and ẽi = [ẽi0, ẽi1]
�

denotes the noisy one-hot encoded label of xi. The vanilla

GCE loss [13] is given by:

lGCE(f(vi), ẽi) =

1∑

k=0

ẽik
q

(1− fk(vi)
q
) (1)

We propose our mixup strategy below which is designed

by leveraging the mixup strategy presented by Zhang et

al. [37]. Let
(
v
λ
i , m̃i

)
denote the mixup sample corresponding

to (xi, ẽi). Here, vλ
i = λvi+(1−λ)vj , m̃i = λẽi+(1−λ)ẽj ,

λ ∼ Beta(β, β), λ ∈ [0, 1], and the session xj ∈ T̃ is sampled

from the opposite noisy class to which xi belongs (ỹj �= ỹi).
For our proposed mixup strategy, the mixup version of GCE

loss is given by:

lλGCE(f(v
λ
i ), m̃i) =

1∑

k=0

m̃ik

q

(
1− fk(v

λ
i )

q
)

(2)

We construct a training batch S = {xi}
R
i=1 by randomly

sampling R sessions from T̃ . We train the classifier by

calculating the batch loss for each batch S, which is given

by:

Lλ
GCE =

1

R

∑

xi∈S

lλGCE(f(v
λ
i ), m̃i) (3)

1As a starting point, we have proposed the mixup version of GCE loss and
in our future work, we will analyze other available noise robust loss functions.

2A detailed description of the CLDet framework architecture including the
procedure to derive session representations, employed SIMCLR contrastive
loss, and training procedure is available in [3].
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(a) Main framework

(b) Label corrector expanded

Fig. 1: Illustration of our CLFD framework architecture. Label corrector is employed to correct the noisy labels. By using

these corrected labels, the fraud detector is trained and deployed for inference.

Theoretical Analysis of Lλ
GCE . Zhang et al. [13] presented

a comprehensive theoretical analysis study on vanilla GCE

loss shown in Equation 1. We extend some of their theoretical

results to our proposed mixup GCE loss shown in Equation 2.

We show the noise robustness property of Lλ
GCE by analyzing

its gradient. Let φ denote the set of parameters for the

classifier. The gradient of Lλ
GCE w.r.t φj ∈ φ is given by:

∂Lλ
GCE

∂φj

=
∂

∂φj

[
1

R

∑

xi∈S

1∑

k=0

m̃ik

q

(
1− fk(v

λ
i )

q
)]

= −
1

R

∑

xi∈S

1∑

k=0

m̃ikfk(v
λ
i )

q−1 ∂fk(v
λ
i )

∂φj

= −
1

R

∑

xi∈S

1∑

k=0

wik

∂fk(v
λ
i )

∂φj

(4)

Here, the loss gradient weight wik = m̃ikfk(v
λ
i )

q−1
. The

two main challenges in the noisy label learning task are model

over-fitting and label memorization.

Model Over-Fitting. During the training stage of a classifier,

if the label of a training sample is inaccurate then usually,

the classifier softmax outputs for the training sample have

weak agreements with the given inaccurate one-hot encoded

label [13]. In such scenarios, noise sensitive losses such as

cross entropy give greater emphasis to such weak agreement

samples. As a consequence, the model learns by over-fitting

to such weak agreement samples. Consider the gradient of

Lλ
GCE shown in Equation 4. Suppose, the target m̃ik and

the classifier prediction fk(v
λ
i ) have weak agreement between

them. Then clearly, wik will be closer to zero. Hence, less

emphasis will be placed on such weak agreement samples

during the learning stage, and Lλ
GCE avoids over-fitting the

weak agreement samples.

Label Memorization. Deep learning models are prone to label

memorization. At higher noise rates, label memorization effect

can lead to poor decision boundaries even with noise robust

losses such as the vanilla GCE loss [51]. During each training

epoch, for each sample (xi, ẽi) ∈ T̃ , we construct its corre-

sponding randomly interpolated sample
(
v
λ
i , m̃i

)
through our

proposed mixup strategy. As a consequence, we effectively

address the label memorization challenge through Lλ
GCE .

The unhinged/Mean Absolute Error (MAE) loss is a

noise robust loss. However, it has a slow rate of op-

timization convergence [13]. We can define the mixup

version of unhinged/MAE loss as: lλMAE(f(v
λ
i ), m̃i) =∑1

k=0 m̃ik

(
1− fk(v

λ
i )
)
. It is trivial to see that when q = 1,

our mixup GCE loss becomes the mixup unhinged/MAE loss.

The Categorical Cross Entropy (CCE) loss can achieve fast

rate of optimization convergence. However, it is sensitive to the

label noise [13]. The mixup version of CCE loss is given by:

lλCCE

(
f(vλ

i ), m̃i

)
= −

∑1
k=0 m̃ik log

(
fk(v

λ
i )
)
. Theorem 1

states that when q → 0, lλGCE(·, ·) converges to lλCCE(·, ·) and

lλGCE(·, ·) can achieve a high rate of optimization convergence

by maintaining noise robustness property. We outline all proofs

of our theoretical results in Section VI.

Theorem 1. lim
q→0

lλGCE

(
f(vλ

i ), m̃i

)
= lλCCE

(
f(vλ

i ), m̃i

)

Next, we aim to establish both upper and lower bounds for

lλGCE(·, ·). Note that unbounded losses such as cross entropy

loss are typically extremely sensitive to noise. In some cases,

this cross entropy loss could become large when the noisy

label mismatches the model prediction. As a consequence,

the model would attempt to counteract the large loss by
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over-fitting the label noise, leading to poor generalization

performance [13]. However, lλGCE(·, ·) has clearly defined

bounds as shown in Theorem 2.

Theorem 2. min(λ, 1− λ)2−2(1−q)

q
≤ lλGCE(f(v

λ
i ), m̃i) ≤

1
q

Now we will analyze the classifier risk associated with

lλGCE(·, ·) for noisy labels by comparing it with ground truth

label risk. Specifically, we show that classifier risks associated

with lλGCE(·, ·) for both uniform and class dependent noise

rates are not substantial by upper bounding these risks with

the corresponding ground truth label risks. Let D denote

the noisy training set distribution. We denote the risk for

f w.r.t lλGCE (·, ·) for ground truth labels as Rλ
GCE(f) =

E
xi∼D

[
lλGCE

(
f
(
v
λ
i

)
,mi

)]
. Here, mi = λei + (1 − λ)ej

denotes the ground truth mixup encoded label for v
λ
i , and

yj �= yi. Similarly, we denote the risk for f for both

uniform and class conditional noise rates as R̃λ
GCE(f) =

E
xi∼D

[
lλGCE

(
f
(
v
λ
i

)
, m̃i

)]
. Theorem 3 states that under the

uniform noise setting, the noisy risk R̃λ
GCE(f) is upper

bounded by the ground truth risk Rλ
GCE(f).

Theorem 3. For the uniform label noise rate η, we have that:

R̃λ
GCE(f) ≤ Rλ

GCE(f) +
η
q

Let τ̃0 = P (ỹi = 0) and τ̃1 = P (ỹi = 1). The

ground truth class conditional risks for f are denoted as:

Rλ
GCE(f |yi = 1) = E

xi∼D

[
lλGCE

(
f
(
v
λ
i

)
,mi

)
|yi = 1

]
and

Rλ
GCE(f |yi = 0) = E

xi∼D

[
lλGCE

(
f
(
v
λ
i

)
,mi

)
|yi = 0

]
. The-

orem 4 states that under the class conditional noise setting,

the noisy risk R̃λ
GCE(f) is upper bounded by the ground truth

class conditional risks.

Theorem 4. For the class dependent label noise rates η01 and

η10, we have that:

R̃λ
GCE(f) ≤τ̃1

(
Rλ

GCE(f |yi = 1) +
η10
q

)

+ τ̃0
(
Rλ

GCE(f |yi = 0) +
η01
q

)

B. Fraud Detector

The main goal of the fraud detector is to learn to identify

malicious sessions through the supervision from our trained

label corrector. We denote the corrected label and the corre-

sponding one-hot encoding of xi as ŷi and êi, respectively. We

employ two stage training for our fraud detector: supervised

pre-training and mixup-based classifier training. The reason

is that, for the noisy label learning task, Li et al [8] recom-

mend training a classifier over representations learned by a

supervised contrastive learning model by using a noise robust

loss.

1) Supervised Pre-Training: Let ci denote the output soft-

max value (confidence or posterior probability) for the pre-

dicted/corrected class of xi, which is provided by our trained

label corrector. Here, ci = max [f0(vi), f1(vi)]
�

. We employ

ci as a weighting parameter in the supervised contrastive loss.

Initially, by employing our trained label corrector, we generate

corrected labels for all sessions xi ∈ T̃ . Let T̂ 1 denote the set

of those sessions in T̃ that have been predicted as malicious

by the label corrector. We employ a separate encoder network

for our fraud detector, which maps a session from its raw

representation xi to an encoded representation vector zi. We

adopt LSTM as the foundation of our encoder to derive the

encoded session representations. Our encoder has two hidden

layers with the same dimensions. We derive zi by averaging

the LSTM final hidden layer representations. We construct a

training batch S = {xi}
R
i=1 from T̃ . Since our framework is

specifically designed to operate on imbalanced training data,

in-order to effectively contrast corrected malicious and normal

sessions, for each training batch S, we create a corresponding

auxiliary batch S1 = {x1
i }

M
i=1, by randomly sampling M

corrected malicious sessions from T̂ 1. We propose a weighted

supervised contrastive loss which is designed by leveraging the

supervised contrastive loss presented by Khosla et al. [5]. This

loss is given by:

LSup =
1

R

R∑

i=1

1

|B(xi)|

∑

xp∈B(xi)

(cicp) lSup (zi, zp) (5)

Here, the set A(xi) =
(
S ∪ S1

)
− {xi}, and the set B(xi)

contains sessions xp ∈ A(xi) such that both xi and xp share

the same corrected label. We employ cicp as a weight for the

session pair (xi,xp). Let α denote the temperature parameter.

The individual loss for the pair (xi,xp) is defined as:

lSup (zi, zp) = − log

(
exp(cos (zi · zp)/α)∑

xj∈A(xi)
exp(cos (zi · zj)/α)

)

(6)
2) Mixup-Based Classifier Training: In the mixup-based

classifier training stage, we employ a Fully Connected Neural

Network (FCNN) having two layers as a separate classifier for

our fraud detector. Specifically, the first layer is an input layer

which receives the encoded session representation zi as input.

It is equipped with a Leaky ReLU activation function. The

second layer is an output/classification layer. It is equipped

with a softmax activation function. We employ lλGCE(·, ·) to

train our FCNN. We employ the corrected labels obtained

from our label corrector for the training supervision. We use

this trained FCNN for our test case inference. The training

procedure for our fraud detector is outlined in Algorithm 1.

Time Complexity Analysis. The CLFD training cost involves

the training costs of our label corrector and fraud detector.

The training cost of the self-supervised contrastive learning

based label corrector is upper bounded by the training cost of

the supervised contrastive learning based fraud detector [5].

Hence, we analyze the time complexity of our fraud detector

training procedure. Specifically, we analyze the forward pass

in training, and the number of times the pair loss lSup(·, ·) is

invoked. This time complexity is given by: O
(
|̃T | (R+M)

)
.

Theoretical Analysis of LSup. We show the effect of our

proposed loss on robust session representation learning by
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Algorithm 1 Training procedure for the fraud detector.

Inputs: T̃ = T̃ 1 ∪ T̃ 0, R, M , β, trained label corrector,

and our fraud detector.

Output: well trained fraud detector.

1: obtain corrected labels for all sessions in T̃ from the

trained label corrector;

2: construct T̂ 1 =
{
xi ∈ T̃ |ŷi = 1

}
;

[Supervised Pre-Training]

3: generate training batches from T̃ ;

4: for each training batch S = {xi}
R
i=1 do

5: create the auxiliary batch S1 = {x1
i }

M
i=1 from T̂ 1;

6: obtain ŷi and ci for each session xi ∈ S ∪ S1 from

the trained label corrector;

7: for each session xi ∈ S do

8: construct A(xi) =
(
S ∪ S1

)
− {xi};

9: construct B(xi) = {xp ∈ A(xi)|ŷp = ŷi};

10: for each session xp ∈ B(xi) do

11: calculate lSup (zi, zp) by using Eq 6

12: calculate LSup by using Eq 5 and train the session

encoder;

[Mixup-Based Classifier Training]

13: for each training batch S = {xi}
R
i=1 do

14: for each session xi ∈ S do

15: sample a session xj from T̃ such that ŷj �= ŷi;
16: sample λ ∼ Beta(β, β);
17: construct zλi = λzi + (1 − λ)zj and m̂i = λêi +

(1− λ)êj ;

18: calculate lλGCE(f(z
λ
i ), m̂i) by using Eq 2;

19: calculate Lλ
GCE by using Eq 3 and train the FCNN;

20: return the well trained fraud detector;

analyzing its gradient. Let θ denote the set of parameters for

the session encoder. The gradient of LSup w.r.t to θj ∈ θ is

given by:

∂LSup

∂θj
=

1

R

R∑

i=1

1

|B(xi)|

∑

xp∈B(xi)

(cicp)
∂lSup (zi, zp)

∂θj
(7)

The gradient
∂LSup

∂θj
is weighted by the term cicp. Through

supervised contrastive learning, our session encoder learns to

push the encoded session representations of xi and xp closer in

the encoded representation space. Here, xi and xp have been

predicted to belong to the same class by the label corrector.

However, these predicted labels have uncertainties. We require

a mechanism to reduce the learning effect from those session

pairs (xi,xp) which are predicted with low confidence (output

softmax value closer to 0.5). Hence, we employ cicp as a

weighting parameter in LSup to achieve this goal.

For our theoretical analysis, we employ a hypothetical

oracle supervised contrastive loss. We assume that the ground

truth label (y) for a session x ∼ D, can be obtained by giving

x as input to the oracle. This oracle supervised contrastive loss

expressed in terms of expectation is given by:

LOrc = E
xi∼D

⎡
⎣ 1

|B̆(xi)|

∑

xp∈B̆(xi)

lSup (zi, zp)

⎤
⎦ (8)

Here, B̆(xi) contains sessions xp ∈ A(xi) such that both

xi and xp share the same ground truth label. Let c denote the

corrected class confidence (output softmax value) for a session

x ∼ D, which is obtained through our trained label corrector.

Here, P (c ≈ 1) denotes the probability that the label corrector

is highly confident, and cp �≈ 1 denotes that cp is not closer

to 1. We can express LSup in-terms of expectation as:

LSup = E
xi∼D

⎡
⎣ 1

|B(xi)|

∑

xp∈B(xi)

(cicp) lSup (zi, zp)

⎤
⎦ (9)

Theorem 5.

LSup ≤ P (c ≈ 1)

{
P (c ≈ 1)LOrc

+ E
xi∼D|ci≈1

cp �≈1

[
(cicp) lSup (zi, zp)

]}

+ E
xi∼D|ci �≈1

[
(cicp) lSup (zi, zp)

]

Theorem 5 states that LOrc upper-bounds LSup. We further

analyze the effect of our LSup on robust session representation

learning by comparing it with other possible variants. Specifi-

cally, we consider the unweighted version of LSup, and session

filtering based supervised contrastive loss which discards a

session pair having low joint confidence. We theoretically

show the merits of our LSup against the other loss variants. We

provide these additional theoretical underpinnings on LSup in

Section VII.

IV. EXPERIMENTS

We describe our experimental setup including datasets and

baselines used in this paper and then discuss our empirical

analysis results which includes label corrector performance,

training latency, and ablation analysis results.

A. Experimental Setup

1) Datasets: We use three benchmark fraud detection

datasets for our empirical study: CERT [14], UMD-Wikipedia

[15], and OpenStack [16].

CERT [14]. The CERT dataset is a benchmark dataset for

insider threat detection. There are 48 malicious and 1,581,358

normal sessions. The insider sessions are recorded chrono-

logically over 516 days. To avoid extreme training latency,

we randomly sample 10,000 normal sessions from the first

460 days and include them in our training set. Similarly, we

randomly sample 500 normal sessions from 461 to 516 days to

construct our test set. For the malicious sessions, we randomly

sample 30 malicious sessions, and include them in our training
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set. The remaining 18 malicious sessions are included in our

test set.

UMD-Wikipedia [15]. This dataset records the activity ses-

sions of users who have edited the Wikipedia website. In this

dataset, there are 5486 normal and 4627 malicious sessions.

We randomly sample 1000 normal sessions to construct our

test set and include all the remaining 4486 normal sessions in

our training set. To simulate the training dataset imbalance

scenario, we randomly sample 80 malicious sessions and

include them in our training set. From the remaining malicious

sessions, we randomly sample 500 malicious sessions, and

include them in our test set.

OpenStack [16]. This dataset records the activity sessions of

users who have used the OpenStack cloud services. In this

dataset, there are 244,908 normal and 18,434 malicious ses-

sions. We randomly sample 10,000 and 1000 normal sessions

and include them in our training and test sets, respectively.

Similarly, we randomly sample 60 and 100 malicious sessions,

and include them in our training and test sets, respectively.

2) Training Details: To effectively train our label corrector

and fraud detector, we set the number of dimensions of the

activity and session representations, and the hidden layer

size of our LSTM based session encoder to 50. To avoid

extreme memory requirements during encoder training, we opt

for medium sized training batches. Specifically, we use 100

sessions (R) in each training batch. We employ the session

reordering based augmentation strategy proposed by Vinay

et al. [3] for the self-supervised pre-training of our label

corrector. Specifically, for each session, we randomly select

an activity sub-sequence of length 3, and reorder activities

in this sub-sequence. The temperature parameter α shown in

Equation 6 is set to its default value 1. For simulating the

uniform noise rate η, we randomly flip the ground truth label

of a session with a probability η [13]. Similarly, for simulating

the class conditional noise rates η10 and η01, we randomly flip

the ground truth label of a malicious and a normal session

with probabilities η10 and η01, respectively [52]. Since we

are operating on an extremely imbalanced training set, we

constrain the noise rates to be within 0.5 so that a few

accurately labeled malicious sessions are available for model

training. In real world scenarios, if the dataset noise rate can

be estimated then, for noise rates above 0.5, we can easily

invert the noisy labels, and again bring back the new noise

rates within 0.5. We empirically analyze the performance

of our CLFD framework by using different values for the

uniform noise rate η. For the class-dependent noise rates, we

set η10 = 0.3, and η01 = 0.45. The GCE loss parameter q
is set to 0.7 as recommended by Zhang et al. [13]. For the

mixup hyper-parameter β, Zhang et al. [37] recommend that

mixup interpolation should have sufficient strength to prevent

the label memorization effect. Hence, we set β to 16. We set

the size of the malicious session auxiliary batch (M) used in

the training of our session encoder to 20. We use the Adam

optimizer [53] with a learning rate of 0.005 and we use 10

training epochs for both self-supervised and supervised pre-

training of our label corrector and fraud detector, respectively.

For the mixup-based classifier training in our label corrector

and fraud detector, we employ 500 epochs. We utilize three

metrics to measure the fraud detection performance: F1, False

Positive Rate (FPR), and Area Under the Receiver Operating

Characteristics Curve (AUC-ROC). We report the mean and

standard deviation of performance scores after 5 times of

running.

3) Baselines: We compare our framework with eight state-

of-the-art baselines: DivMix [31], ULC [10], Sel-CL [8],

CTRR [9], Few-Shot [2], CLDet [3], DeepLog [16], and

LogBert [48]. Specifically, DivMix, ULC, Sel-CL, and CTRR

have been designed for the noisy label learning task. DivMix

and ULC employ co-teaching based approach while, Sel-

CL and CTRR employ supervised contrastive learning based

approach. These noisy label learning approaches have been

designed to originally operate on image datasets and employ

neural networks for image data such as ResNet-18 [31]. Hence,

we cannot directly apply these baselines for our fraud detection

task which operates on sequential data. We suitably replace

their neural networks with LSTM based session encoders

or classifiers having two LSTM hidden layers and adapt

these baselines to our fraud detection task. Sel-CL performs

a warm-up training by employing the SIMCLR contrastive

loss. However, its augmentation strategy is image-specific.

Hence, we employ the session reordering based augmentation

strategy [3]. Both Sel-CL and CTRR perform label correction

through sample similarity analysis. Since we are operating

on sequential data, we perform session similarity analysis

in the encoded representation space. Few-Shot and CLDet

are insider threat detection approaches. Specifically, Few-Shot

and CLDet employ BERT [54] and self-supervised contrastive

learning models, respectively. DeepLog [16] and LogBert [48]

are log anomaly detection approaches and employ LSTM and

BERT models, respectively. All these four baselines (Few-

Shot, CLDet, DeepLog, and LogBert) have not been originally

designed for the noisy label learning task. We employ the

same training set used for our CLFD framework to train all

baselines.

B. Experimental Results

1) Overall Comparison: The overall comparison results

for uniform and class dependent noise rates are shown in

Tables I and II, respectively. Our CLFD framework noticeably

outperforms against baselines w.r.t most of the performance

metrics and specifically, at higher noise rates, we can observe

that CLFD provides a significant performance improvement

over baselines. Our CLFD framework addresses the dataset

imbalance and session diversity challenges through supervised

contrastive learning. Note that the performance of models

trained under supervised contrastive loss can degrade under

the noisy label setting. CLFD addresses this challenge by

employing an effective label corrector which is specifically

designed for the fraud detection task. Furthermore, CLFD

effectively addresses the label correction uncertainty challenge

through our proposed weighted supervised contrastive loss.

DivMix and ULC are specifically designed for image datasets.
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TABLE I: Performances of our CLFD and baselines (mean±std) for the uniform noise rate η. The higher the better for F1 and

AUC-ROC. The lower the better for FPR. The best values for each noise rate are bold highlighted. DivMix and ULC are co-

teaching based noise robust approaches, Sel-CL and CTRR are supervised contrastive learning based noise robust approaches,

Few-Shot and CLDet are insider threat detection approaches, and DeepLog and LogBert are log anomaly detection approaches.

Models η
CERT UMD-Wikipedia Open-Stack

F1 FPR AUC-ROC F1 FPR AUC-ROC F1 FPR AUC-ROC

DivMix

0.1 37.74±8.6 9.1±4.7 85.72±0.4 51.78±0.5 25.81±2.4 64.26±2.9 42.87±3.3 4.69±0.7 64.58±1.2
0.2 22.71±0.3 20.66±3.5 84.07±0.9 28.58±2.9 21.93±0.9 53.85±1.6 39.11±2.5 5.24±1.5 61.89±1.2
0.3 20.44±1.2 26.36±1.8 82.75±4.3 17.55±4.1 2.69±1.2 52.59±1.5 8.37±1.7 7.86±2.3 55.77±3.6
0.45 14.04±3.6 37.32±7.8 74.48±5.7 10.19±1.8 6.54±2.7 50.72±1.9 6.63±1.6 5.54±1.2 50.21±0.6

ULC

0.1 53.35±4.6 11.15±1.5 84.78±2.7 53.60±1.1 18.58±1.4 65.88±1.8 41.12±2.4 7.26±1.7 64.95±3.6
0.2 38.02±1.5 27.25±1.8 83.59±0.9 29.44±3.8 19.34±1.7 52.40±1.2 36.44±2.3 7.89±0.9 61.28±0.7
0.3 24.14±8.4 19.32±7.8 80.62±3.1 23.17±2.2 19.25±2.1 50.41±1.2 10.87±2.4 6.26±2.7 53.96±1.3
0.45 12.82±2.6 38.20±5.4 72.78±2.4 4.71±0.5 4.08±0.4 49.13±0.9 7.13±0.9 5.13±1.2 51.56±0.6

Sel-CL

0.1 73.96±1.8 5.15±1.8 82.62±0.8 70.93±3.4 14.11±2.8 77.28±1.9 48.82±0.9 15.15±0.8 63.91±1.9
0.2 51.36±1.8 5.62±0.9 77.83±0.4 32.65±3.9 12.78±1.7 55.87±1.3 43.67±4.8 9.13±0.8 62.42±2.5
0.3 46.17±1.3 11.20±0.8 76.95±0.9 26.72±1.5 16.59±2.1 52.08±1.4 39.31±1.6 13.80±2.9 58.83±1.4
0.45 43.33±2.8 12.75±1.8 75.02±0.4 23.53±5.9 21.51±4.2 48.74±4.3 28.44±2.3 8.8±1.8 55.85±3.4

CTRR

0.1 69.72±4.1 7.25±1.7 82.88±0.4 66.95±1.7 14.66±0.8 75.88±0.4 31.48±3.7 8.3±0.8 63.84±0.7
0.2 41.24±0.7 4.12±0.2 75.72±0.1 31.75±1.2 10.98±0.6 56.03±0.7 29.70±1.3 13.82±0.6 62.67±2.3
0.3 24.61±2.5 13.65±2.1 74.03±1.4 23.93±1.9 16.76±0.6 51.73±1.1 22.33±5.9 15.02±1.2 58.57±4.3
0.45 23.82±2.7 14.10±2.4 71.85±0.6 21.24±2.6 20.81±2.6 47.99±2.1 20.85±3.9 6.4±2.9 56.32±1.9

Few-Shot

0.1 37.29±8.5 44.88±1.3 59.13±6.8 43.82±1.4 45.93±0.6 52.48±1.7 9.56±1.3 4.82±0.5 52.82±0.8
0.2 28.36±6.7 27.85±7.1 52.73±8.5 39.29±0.6 46.80±1.8 49.38±1.3 9.12±2.6 2.26±0.4 51.37±0.9
0.3 21.93±5.9 32.14±1.3 47.91±4.3 37.16±0.6 50.24±3.1 48.69±1.5 20.78±1.9 7.81±1.7 50.36±0.6
0.45 21.57±2.8 39.28±1.3 45.63±2.5 36.27±1.5 52.49±2.8 48.31±1.2 16.81±0.7 22.42±0.9 47.62±3.7

CLDet

0.1 67.72±4.1 2.14±1.1 82.78±0.3 37.53±0.9 8.69±0.7 60.87±1.3 56.07±0.9 4.85±2.4 78.96±1.5
0.2 55.92±5.1 2.23±0.9 79.52±0.4 34.80±1.5 2.25±0.6 60.18±0.5 54.68±1.8 4.16±0.6 76.20±0.4
0.3 30.65±2.9 6.42±1.4 71.86±0.6 27.74±1.8 3.46±1.4 57.29±0.7 48.96±0.6 4.71±0.3 73.26±0.8
0.45 26.13±1.7 4.45±0.5 64.46±0.3 24.43±1.8 7.28±0.9 54.52±1.5 28.37±2.6 11.73±1.7 56.19±2.8

DeepLog

0.1 46.07±2.8 4.38±2.3 73.75±2.2 56.29±1.4 7.09±1.1 69.57±1.2 45.52±9.1 5.86±4.8 65.49±5.3
0.2 33.35±1.5 4.61±1.2 66.23±1.9 37.28±1.8 4.48±1.5 62.17±1.4 29.78±7.2 4.35±3.9 58.97±5.7
0.3 28.85±2.3 13.04±3.6 64.19±2.8 28.06±2.3 11.25±2.2 56.34±1.9 17.35±2.4 7.82±2.5 55.62±1.3
0.45 16.72±1.4 12.32±2.2 58.64±2.1 13.06±2.9 8.29±1.8 51.71±3.6 10.74±3.8 5.71±3.2 50.68±2.9

LogBert

0.1 51.13±4.1 7.95±3.7 80.93±3.3 66.58±2.3 7.78±1.4 71.09±1.5 50.51±5.9 7.18±7.7 70.49±3.5
0.2 35.81±2.8 7.49±2.1 69.56±1.7 50.72±3.7 14.63±5.6 61.49±3.4 35.82±5.6 13.37±4.4 56.47±3.7
0.3 29.21±5.9 13.26±4.8 67.14±3.9 45.92±0.9 15.39±1.8 54.42±1.6 28.42±2.5 18.04±0.8 54.24±1.5
0.45 22.47±2.2 9.11±1.4 65.09±2.1 33.67±1.9 12.46±1.3 49.44±0.7 15.58±2.8 15.67±4.4 50.67±3.7

CLFD

0.1 77.93±4.3 1.32±0.2 90.72±0.3 75.17±0.5 5.83±0.9 80.79±0.6 64.54±1.8 4.52±2.4 88.96±2.1

0.2 75.51±4.7 1.95±0.4 88.48±0.2 57.01±2.9 3.81±0.5 69.63±1.6 62.77±2.3 5.62±1.7 88.54±2.8

0.3 70.67±3.6 2.13±0.2 87.61±0.3 55.57±2.7 5.30±0.7 68.74±1.5 59.72±1.2 5.79±1.6 86.78±1.2

0.45 62.77±2.9 2.53±0.5 85.76±0.8 52.89±1.6 5.52±0.6 67.22±0.7 48.89±2.3 5.46±0.7 78.35±1.6

TABLE II: Performances of our CLFD and baselines (mean±std) for the class dependent noise rates η10 = 0.3 and η01 = 0.45.

Models
CERT UMD-Wikipedia Open-Stack

F1 FPR AUC-ROC F1 FPR AUC-ROC F1 FPR AUC-ROC

DivMix 17.22±1.3 30.11±2.7 75.06±0.3 5.95±0.7 6.83±3.7 48.73±1.8 8.77±2.1 5.35±0.5 51.23±0.7

ULC 21.33±2.8 27.49±1.7 72.26±3.9 12.01±0.4 5.25±2.7 51.57±1.4 5.23±1.6 4.81 ±0.8 49.12±1.3

Sel-CL 38.41±5.9 18.75±5.3 75.48±1.8 18.19±2.3 22.56±5.3 46.03±2.7 35.36±1.7 23.53±2.3 64.32±1.6

CTRR 23.35±3.4 16.35±3.2 75.96±1.2 19.84±1.3 23.14±0.7 46.57±0.9 32.15±1.8 22.95±3.3 59.84±0.7

Few-Shot 24.19±7.2 36.28±1.7 48.81±7.9 40.95±1.7 51.06±1.5 49.85±1.5 19.96±2.6 15.84±6.1 49.52±3.2

CLDet 27.43±1.6 9.34±1.9 59.83±1.2 21.53±2.7 9.27±0.7 54.03±0.8 29.39±3.7 10.59±2.5 54.12±1.4

DeepLog 25.86±2.4 10.27±1.5 64.81±1.6 21.37±3.5 14.04±1.7 55.69±4.6 16.10±1.8 5.03±1.4 52.94±0.8

LogBert 28.51±1.9 16.92±1.7 68.77±2.3 38.87±4.6 17.34±3.7 56.32±4.3 21.85±1.3 17.26±1.8 51.59±2.3

CLFD 60.77±2.8 1.90±0.7 82.55±0.6 58.79±3.6 6.50±1.7 70.34±2.2 48.45±3.4 6.65±2.2 76.35±1.1
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TABLE III: Performances of our label corrector on the noisy

training set T̃ (mean±std). TPR and TNR denote True Positive

Rate and True Negative Rate, respectively. Higher the better

for TPR and TNR.

Dataset
η = 0.45 η10 = 0.3 and η01 = 0.45

TPR TNR TPR TNR

CERT 70.25±2.3 90.69±1.7 79.42±1.6 87.47±1.4

UMD-Wikipedia 71.73±0.7 89.38±1.3 79.61±1.7 88.34±2.1

Open-Stack 72.62±1.5 93.22±2.4 80.52±3.6 88.46±2.8

Hence, at higher noise rates, due to the session diversity chal-

lenge, their performances degrade significantly. Sel-CL and

CTRR employ supervised contrastive learning models. Hence,

they are expected to effectively address dataset imbalance

and session diversity challenges. However, they perform label

correction through sample similarity analysis. At higher noise

rates, due to the session diversity challenge, corrected labels of

many sessions do not match the ground truth [7]. Furthermore,

they do not specifically address the label correction uncertainty

challenge. As a result of these improper learning effects, both

Sel-CL and CTRR underperform. The remaining baselines

CLDet, Few-Shot, DeepLog, and LogBert also show poor

performances at higher noise rates. These remaining baselines

do not employ effective noise robust mechanisms in their

design. Therefore, they are sensitive to the noisy label setting.

2) Label Corrector Performance Analysis: We analyze the

performance of our label corrector on the noisy training set

T̃ . We compare the predictions of the label corrector with

the corresponding ground truth labels. This empirical analysis

result is shown in the Table III. Clearly, our label corrector

substantially reduces the original dataset noise, and provides

better quality supervision to the fraud detector when compared

to the original noisy labels.

3) Training Latency Analysis: All experiments are executed

on GPU Tesla V100 (32GB RAM) and CPU Xeon 6258R

2.7 GHz with 226 GB hard disk. The training latencies (in

seconds) for our CLFD framework are 30,816 (CERT), 19,158

(UMD-Wikipedia), and 28,872 (Open-Stack). Both Sel-CL and

CTRR baselines also incur similar training latencies due to

the employment of supervised contrastive learning models.

However, CLFD incurs around 4 times more training latency

than the remaining baselines. This is because the remaining

baselines do not employ supervised contrastive learning mod-

els. Even though the supervised contrastive learning model

incurs higher training costs, it can effectively address session

diversity and dataset imbalance challenges in the fraud detec-

tion task.

4) Ablation Analysis: We conduct the ablation analysis

study on our CLFD framework by ablating the following

main components: Label Corrector (LC), lλGCE(·, ·), GCE loss,

Fraud Detector (FD), LSup, and classifier in the FD. The

ablation analysis results for uniform and class dependent noise

rates are shown in Tables IV and V, respectively.

W/o LC. We directly train the fraud detector on noisy labels

by using the vanilla supervised contrastive loss [5]. Then, we

train the classifier in the fraud detector by employing the noisy

labels. For the uniform noise rate, the mean F1 scores drop

to 25.53 (CERT), 23.29 (UMD-Wikipedia), and 38.35 (Open-

Stack). Similarly, for the class dependent noise rates, the mean

F1 scores drop to 16.46 (CERT), 32.69 (UMD-Wikipedia),

and 36.16 (Open-Stack). The performance of the employed

supervised contrastive learning model in the fraud detector can

significantly degrade under high noise rates [7]. The reason

is that many sessions that belong to different classes in the

ground truth are pushed closer in the encoded representation

space. Due to this improper learning effect, the performance

degrades significantly.

W/o lλGCE(·, ·). We employ the vanilla GCE loss lGCE(·, ·)
shown in Equation 1 instead of our proposed lλGCE(·, ·)
for training the classifiers in both label corrector and fraud

detector. For the uniform noise rate, the mean F1 scores

drop to 53.44 (CERT), 46.83 (UMD-Wikipedia), and 41.53

(Open-Stack). Similarly, for the class dependent noise rates,

the mean F1 scores drop to 46.46 (CERT), 52.78 (UMD-

Wikipedia), and 44.74 (Open-Stack). The vanilla GCE loss

does not specifically address the label memorization issue.

Applying mixup based data augmentation can aid in alleviating

the label memorization issue [51]. Hence, mixup version of the

GCE loss provides better noise robustness when compared to

the vanilla GCE loss.

W/o GCE. We employ the cross entropy loss instead of

our proposed lλGCE(·, ·) for training the classifiers in both

label corrector and fraud detector. For the uniform noise rate,

the mean F1 scores drop to 7.35 (CERT), 19.40 (UMD-

Wikipedia), and 9.28 (Open-Stack). Similarly, for the class

dependent noise rates, the mean F1 scores drop to 15.21

(CERT), 17.18 (UMD-Wikipedia), and 10.48 (Open-Stack).

Clearly, we can observe a significant drop in the performance

scores. Cross entropy loss is typically sensitive to the label

noise which can result in model over-fitting [13]. Additionally,

it is an unbounded loss which exacerbates the model over-

fitting issue.

W/o FD. We directly deploy our trained label corrector for

the test case inference. For the uniform noise rate, the mean

F1 scores drop to 42.78 (CERT), 36.98 (UMD-Wikipedia),

and 38.55 (Open-Stack). Similarly, for the class dependent

noise rates, the mean F1 scores drop to 40.77 (CERT),

47.87 (UMD-Wikipedia), and 39.73 (Open-Stack). The label

corrector employs self-supervised pre-training component in

which, the augmented sessions generated from a given session

are brought closer in the representation space. This component

can effectively address the dataset imbalance challenge [3].

However, to effectively address the session diversity challenge,

we require the supervised contrastive learning approach.

W/o LSup. We employ the unweighted version of LSup which

is denoted as Luw
Sup (refer to Section VII) to train our session

encoder. For the uniform noise rate, the mean F1 scores drop

to 48.73 (CERT), 44.31 (UMD-Wikipedia), and 45.01 (Open-

Stack). Similarly, for the class dependent noise rates, the mean

F1 scores drop to 44.69 (CERT), 50.56 (UMD-Wikipedia),

and 43.47 (Open-Stack). Luw
Sup does not specifically address

the label correction uncertainty challenge. As a consequence,
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TABLE IV: Ablation analysis results (mean±std) for the uniform noise rate η = 0.45.

Models
CERT UMD-Wikipedia Open-Stack

F1 FPR AUC-ROC F1 FPR AUC-ROC F1 FPR AUC-ROC

CLFD 62.77±2.9 2.53±0.5 85.76±0.8 52.89±1.6 5.52±0.6 67.22±0.7 48.89±2.3 5.46±0.7 78.35±1.6

w/o LC 25.53±2.4 9.42±2.5 71.57±0.8 23.29±1.3 8.84±1.7 53.35±0.9 38.35±0.9 4.68±0.4 65.43±1.3

w/o lλ
GCE

(·, ·) 53.44±2.3 3.90±0.4 81.93±1.2 46.83±1.8 6.79±1.4 62.52±1.6 41.53±4.4 14.11±2.7 71.97±1.4

w/o GCE loss 7.35±1.1 7.71±0.8 52.19±1.1 19.40±1.6 10.04±0.3 52.44±0.9 9.28±1.5 10.98±1.1 51.06±1.9

w/o FD 42.78±5.5 7.37±1.8 78.48±1.9 36.98±1.7 7.66±0.7 61.62±1.9 38.55±1.6 5.96±1.9 62.82±1.5

w/o LSup 48.73±1.8 5.12±0.5 81.08±0.9 44.31±1.6 6.64±0.7 62.89±0.5 45.01±2.1 5.62±1.2 66.43±1.9

w/o classifier (FD) 46.65±2.9 3.24±1.8 79.67±1.3 43.89±2.4 6.54±1.5 62.81±1.3 41.13±2.8 4.59±1.6 63.70±1.7

TABLE V: Ablation analysis results (mean±std) for the class dependent noise rates η10 = 0.3 and η01 = 0.45.

Models
CERT UMD-Wikipedia Open-Stack

F1 FPR AUC-ROC F1 FPR AUC-ROC F1 FPR AUC-ROC

CLFD 60.77±2.8 1.90±0.7 82.55±0.6 58.79±3.6 6.50±1.7 70.34±2.2 48.45±3.4 6.65±2.2 76.35±1.1

w/o LC 16.46±6.5 15.96±2.8 59.18±3.2 32.69±4.4 15.35±2.3 56.10±1.8 36.16±4.8 11.62±1.7 57.62±1.5

w/o lλ
GCE

(·, ·) 46.46±3.4 6.61±2.9 79.86±2.8 52.78±2.3 8.46±1.9 67.69±1.6 44.74±3.5 9.23±1.4 71.77±1.5

w/o GCE loss 15.21±4.3 8.63±1.8 59.58±2.6 17.18±1.9 8.52±2.7 52.29±2.1 10.48±3.2 9.45±2.3 52.55±2.6

w/o FD 40.77±2.6 5.14±1.4 74.03±1.6 47.87±2.9 5.89±2.7 62.17±1.5 39.73±1.5 5.34±0.7 66.38±0.9

w/o LSup 44.69±3.8 6.43±2.8 78.83±1.4 50.56±2.3 7.62±3.1 64.67±2.4 43.47±4.9 9.30±3.4 70.65±2.9

w/o classifier (FD) 43.13±1.7 8.06±2.4 77.96±1.7 48.12±1.4 12.26±2.9 63.76±2.3 42.25±1.9 7.88±0.9 69.33±1.2

there is a noticeable drop in the performance.

W/o classifier (FD). We estimate the center (mean) of la-

bel corrected normal and malicious sessions in the encoded

representation space corresponding to the session encoder. A

test session is classified based on its proximities to both these

centers [4]. For the uniform noise rate, the mean F1 scores

drop to 46.65 (CERT), 43.89 (UMD-Wikipedia), and 41.13

(Open-Stack). Similarly, for the class dependent noise rates,

the mean F1 scores drop to 43.13 (CERT), 48.12 (UMD-

Wikipedia), and 42.25 (Open-Stack). The cluster centers are

estimated by using the corrected labels. At high noise rates,

due to the label correction uncertainty challenge, these esti-

mated cluster centers can noticeably deviate from their ground-

truth counterparts. Hence, we can observe a noticeable drop

in the performance.

V. CONCLUSION

In this work, we have developed a supervised contrastive

learning based fraud detection framework called CLFD, which

operates in the noisy label setting. We proposed a mixup

version of the GCE loss to train classifiers in our label

corrector and fraud detector, and theoretically showed its

efficacy. We proposed a weighted supervised contrastive loss to

train the session encoder in our fraud detector and theoretically

showed that our proposed loss is upper bounded by the ideal

loss. We developed a training procedure to train our fraud

detector to learn separable session representations for the noisy

label learning task. The empirical study on three benchmark

datasets demonstrated that our CLFD can outperform state-

of-the-art baselines. In our future work, we plan to extend

CLFD to model session specific noise rates. We will explore

benefits of developing the mixup versions of other robust

loss functions. We will also explore benefits of integrating

supervised contrastive learning model with co-teaching based

noisy label learning approaches.
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VI. PROOFS OF THEORETICAL RESULTS

A. Proof for Theorem 1

We can express lλGCE (·, ·) as:

lim
q→0

lλGCE

(
f(vλ

i ), m̃i

)
= lim

q→0

[
1∑

k=0

m̃ik

q

(
1− fk(v

λ
i )

q
)]

=

1∑

k=0

m̃ik lim
q→0

[
1− fk(v

λ
i )

q

q

]
(10)

By using the result from [13], which states that for

any encoded session representation v, we have that:

lim
q→0

[
1−fk(v)

q

q

]
= − log (fk(v)). We can rewrite Equation 10

as:

lim
q→0

lλGCE

(
f(vλ

i ), m̃i

)
= −

1∑

k=0

m̃ik log
(
fk(v

λ
i )
)

= lλCCE

(
f(vλ

i ), m̃i

)

B. Proof for Theorem 2

First we will derive the upper bound. We use the result

from [13] which states that for any encoded session represen-

tation v:
∑1

k=0
1−fk(v)

q

q
≤ 1

q
. Since m̃ik ∈ [0, 1], we can

derive the upper bound as:

lλGCE(f(v
λ
i ), m̃i) =

1∑

k=0

m̃ik

q

(
1− fk(v

λ
i )

q
)
≤

1

q

Now we will derive the lower bound. From our mixup

strategy outlined in Section III-A1, we can infer the result:
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m̃ik =

{
λ if ẽik = 1

1− λ otherwise

Thus, we can derive the result:

lλGCE(f(v
λ
i ), m̃i) =

1∑

k=0

m̃ik

q

(
1− fk(v

λ
i )

q
)

≥ min(λ, 1− λ)
1∑

k=0

1− fk(v
λ
i )

q

q
(11)

We use the result from [13] which states that for any

encoded session representation v:
∑1

k=0
1−fk(v)

q

q
≥ 2−2(1−q)

q
.

Thus, we can rewrite Equation 11 as:

lλGCE(f(v
λ
i ), m̃i) ≥ min(λ, 1− λ)

2− 2(1−q)

q

C. Proof for Theorem 3

By applying expectation conditioning on the noisy risk

R̃λ
GCE(f), we can derive the result:

R̃λ
GCE(f) = E

xi∼D

[
lλGCE

(
f
(
v
λ
i

)
, m̃i

)]

= E
xi∼D

[
lλGCE

(
f
(
v
λ
i

)
, m̃i

)
∣∣∣∣∣m̃i = mi

]
P (m̃i = mi)

+ E
xi∼D

[
lλGCE

(
f
(
v
λ
i

)
, m̃i

)
∣∣∣∣∣m̃i �= mi

]
P (m̃i �= mi)

= Rλ
GCE(f)(1− η) + E

xi∼D

[
lλGCE

(
f
(
v
λ
i

)
, m̃i

)
∣∣∣∣∣m̃i �= mi

]
η

(12)
Since the bound shown in Theorem 2 holds for both cases

when m̃i = mi or m̃i �= mi, by plugging the upper bound in

Theorem 2 inside Equation 12, we get the result:

R̃λ
GCE(f) ≤ Rλ

GCE(f)(1− η) +
η

q

≤ Rλ
GCE(f) +

η

q

D. Proof for Theorem 4

By applying expectation conditioning on the noisy risk

R̃λ
GCE(f), we can derive the result:

R̃λ
GCE(f) = E

xi∼D

[
lλGCE

(
f
(
v
λ
i

)
, m̃i

)]

=
1∑

ỹ=0

E
xi∼D

[
lλGCE

(
f
(
v
λ
i

)
, m̃i

)
∣∣∣∣∣m̃i = mi, ỹi = ỹ

]
P (m̃i = mi, ỹi = ỹ)

+ E
xi∼D

[
lλGCE

(
f
(
v
λ
i

)
, m̃i

)
∣∣∣∣∣m̃i �= mi, ỹi = ỹ

]
P (m̃i �= mi, ỹi = ỹ)

= Rλ
GCE(f |yi = 1)(1− η10)τ̃

1 + E
xi∼D

[
lλGCE

(
f
(
v
λ
i

)
, m̃i

)
∣∣∣∣∣m̃i �= mi, ỹi = 1

]
η10τ̃

1

+Rλ
GCE(f |yi = 0)(1− η01)τ̃

0 + E
xi∼D

[
lλGCE

(
f
(
v
λ
i

)
, m̃i

)
∣∣∣∣∣m̃i �= mi, ỹi = 0

]
η01τ̃

0

(13)

By using Theorem 2, we can rewrite Equation 13 as:

R̃λ
GCE(f) ≤ Rλ

GCE(f |yi = 1)(1− η10)τ̃
1 +

η10τ̃
1

q

+Rλ
GCE(f |yi = 0)(1− η01)τ̃

0 +
η01τ̃

0

q

≤ τ̃1
(
Rλ

GCE(f |yi = 1) +
η10
q

)
+ τ̃0

(
Rλ

GCE(f |yi = 0) +
η01
q

)

E. Proof for Theorem 5

By applying expectation conditioning on LSup using the

label corrector confidence, we can rewrite Equation 9 as:

LSup

= E
xi∼D

⎡
⎣ 1

|B(xi)|

∑

xp∈B(xi)

(cicp) lSup (zi, zp)

∣∣∣∣∣ci ≈ 1

⎤
⎦P (ci ≈ 1)

+ E
xi∼D

⎡
⎣ 1

|B(xi)|

∑

xp∈B(xi)

(cicp) lSup (zi, zp)

∣∣∣∣∣ci �≈ 1

⎤
⎦P (ci �≈ 1)

(14)

Here, ci �≈ 1 denotes that ci is not closer to 1. Let Bh(xi) =
{xp ∈ B(xi)|cp ≈ 1} and Bl(xi) = {xp ∈ B(xi)|cp �≈ 1}.

We can rewrite the first term in the right hand side of Equation

14 as:

E
xi∼D

⎡
⎣ 1

|B(xi)|

∑

xp∈B(xi)

(cicp) lSup (zi, zp)

∣∣∣∣∣ci ≈ 1

⎤
⎦P (ci ≈ 1)

=
1

|B(xi)|
E

xi∼D

[
∑

xp∈B(xi)
cp≈1

(cicp) lSup (zi, zp)

+
∑

xr∈B(xi)
cr �≈1

(cicr) lSup (zi, zr)

∣∣∣∣∣ci ≈ 1

]
P (ci ≈ 1)

=
1

|B(xi)|

{
|Bh(xi)|LOrc

+ |Bl(xi)| E
xi∼D|ci≈1

cp �≈1

[
(cicp) lSup (zi, zp)

]}
P (ci ≈ 1)

=

{
P (c ≈ 1)LOrc

+ P (c �≈ 1) E
xi∼D|ci≈1

cp �≈1

[
(cicp) lSup (zi, zp)

]}
P (ci ≈ 1)

≤ P (c ≈ 1)

{
P (c ≈ 1)LOrc + E

xi∼D|ci≈1
cp �≈1

[
(cicp) lSup (zi, zp)

]}

(15)

Similarly, we can rewrite the second term in the right hand

side of Equation 14 as:
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E
xi∼D

⎡
⎣ 1

|B(xi)|

∑

xp∈B(xi)

(cicp) lSup (zi, zp)

∣∣∣∣∣ci �≈ 1

⎤
⎦P (ci �≈ 1)

= E
xi∼D|ci �≈1

[
(cicp) lSup (zi, zp)

]
P (ci �≈ 1)

≤ E
xi∼D|ci �≈1

[
(cicp) lSup (zi, zp)

]
(16)

By plugging the results shown in Equations 15 and 16 in

the right hand side of Equation 14, the theorem follows.

VII. THEORETICAL UNDERPINNINGS ON LSup

For the session encoder parameter set θ, the gradient of

LSup w.r.t to θj ∈ θ is given by:

∂LSup

∂θj
=

1

R

R∑

i=1

1

|B(xi)|

∑

xp∈B(xi)

(cicp)
∂lSup (zi, zp)

∂θj

(17)

A possible variant is the unweighted version of LSup. This

loss and its corresponding gradient is given by:

Luw
Sup =

1

R

R∑

i=1

1

|B(xi)|

∑

xp∈B(xi)

lSup (zi, zp) (18)

∂Luw
Sup

∂θj
=

1

R

R∑

i=1

1

|B(xi)|

∑

xp∈B(xi)

∂lSup (zi, zp)

∂θj
(19)

Consider a scenario where the label corrector provides

highly confident predictions (c ≈ 1) for most of the training

set sessions. By comparing Equations 17 and 19, we have the

result:
∂Luw

Sup

∂θj
≈

∂LSup

∂θj
. This result states that in this scenario,

after the training loop, both losses Luw
Sup and LSup can produce

similar estimations for the parameter set θ. However, consider

another scenario where the label corrector does not provide

highly confident predictions for most of the training set ses-

sions. In this scenario, a large amount of session pairs which

are predicted to belong to the same class, actually belong to

different classes in the ground truth. From Equation 19, it is

clear that if we apply Luw
Sup for session representation learning

then, many sessions which belong to different classes in the

ground truth are pushed closer in the encoded representation

space, which leads to improper learning effect. However, from

Equation 17, we can infer that this improper learning effect is

reduced when we apply LSup due to the usage of session pair

weight cicp.

Another attractive variant is to discard/filter those session

pairs (xi,xp) from the training loop which are predicted to

belong to the same class with a confidence falling below the

given threshold τ . To achieve this goal, we can design another

supervised contrastive loss which is given by:

Lftr
Sup =

1

R

R∑

i=1

1

|B(xi)|

∑

xp∈B(xi)

I (cicp > τ) lSup (zi, zp)

(20)

Here, I(·) denotes the indicator function. The gradient for

this loss is given by:

∂Lftr
Sup

∂θj
=

1

R

R∑

i=1

1

|B(xi)|

∑

xp∈B(xi)

I (cicp > τ)
∂lSup (zi, zp)

∂θj

(21)

From Equation 21, we can infer that if (xi,xp) are predicted

to belong to the same class with low confidence (cicp ≤ τ)
then, the gradient value contributed by this pair which is given

by:
∂lSup(zi,zp)

∂θj
, is discarded. We analyze the gradient of Lftr

Sup

by taking expectation w.r.t I (cicp > τ), which is given by:

E
I(cicp>τ)

[
∂Lftr

Sup

∂θj

]

= E
I(cicp>τ)

⎡
⎣ 1

R

R∑

i=1

1

|B(xi)|

∑

xp∈B(xi)

I (cicp > τ)
∂lSup (zi, zp)

∂θj

⎤
⎦

=
1

R

R∑

i=1

1

|B(xi)|

∑

xp∈B(xi)

E
I(cicp>τ)

[I (cicp > τ)]
∂lSup (zi, zp)

∂θj

=
1

R

R∑

i=1

1

|B(xi)|

∑

xp∈B(xi)

P (cicp > τ)
∂lSup (zi, zp)

∂θj
(22)

By using this result and by comparing Equations 22 and

17, we can make the following observations: In the scenario

where the label corrector does not provide highly confident

predictions for most of the training set sessions, we have that:

E
I(cicp>τ)

[
∂Lftr

Sup

∂θj

]
≈

∂LSup

∂θj
. This approximation also holds

when the label corrector provides highly confident predictions

for most of the training set sessions. This result states that in

both these scenarios, after the training loop, Lftr
Sup stochasti-

cally produces similar estimations as LSup for the parameter

set θ. The performance of Lftr
Sup is influenced by the setting of

the hyper-parameter τ . Setting high values (τ ≈ 1) can result

in filtering out most of the session pairs. As a consequence,

the session diversity challenge cannot be effectively addressed

which can lead to poor decision boundaries. Setting low values

(τ ≈ 0.5) can result in pushing many sessions belonging to

opposite classes in the ground truth, closer in the encoded

representation space. Since the training set is imbalanced

and large, it becomes computationally challenging to identify

optimal setting for τ . However, LSup elegantly overcomes

these challenges by employing cicp as weights to modulate

the learning effect from low/high confident session pairs.
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