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Abstract—Detecting frauds in computing platforms involves
identifying malicious user activity sessions. Recently, deep learn-
ing models have been employed to design fraud detection
approaches. Effective training of these deep learning models
requires a large amount of well-annotated sessions. However,
due to the cost of expert annotation, many organizations rely
on heuristics to perform automated annotation, which leads
to the noisy label learning problem. It is well known that
the performance of deep learning models can easily degrade
because of noisy or inaccurate labels. To tackle this challenge,
we propose a supervised Contrastive Learning based Fraud
Detection (CLFD) framework, which is designed to operate in the
noisy label setting. CLFD employs an effective label corrector for
correcting noisy labels and which is specifically designed for the
fraud detection task. Then, by employing the corrected labels, it
trains a fraud detector through supervised contrastive learning,
and derives separable representations. We empirically evaluate
our CLFD framework and other state-of-the-art baselines on
benchmark datasets. Our CLFD framework demonstrates supe-
rior performance over state-of-the-art baselines.

Index Terms—fraud detection; contrastive learning; noisy
label; label correction.

I. INTRODUCTION

Computing platforms such as cloud computing systems,
usually experience a large volume of malicious or fraudulent
activities due to the anonymity and openness character of the
Internet. In order to protect the legitimate users, it is extremely
important to identify such malicious activities. In practice,
the user activities are usually modeled as an activity session.
For example, in a computer system, an activity session is a
sequence of activities starting with system log-in and ending
with system log-out. Recently, many deep learning models
have been proposed in the literature [1] for detecting malicious
sessions. These models generate session representations by
making normal sessions deviate from the malicious ones in
the representation space for deriving anomaly scores.

The two main challenges in the fraud detection task are
dataset imbalance and session diversity [1]. Dataset imbal-
ance: In the ground-truth, only a few malicious sessions are
recorded, which leads to extreme dataset imbalance. Session
diversity: Tt is well known that user activity sessions and es-
pecially malicious sessions, usually exhibit high diversity [1].
The malicious users could design various attacks, which leads
to high session diversity. Recently, a few deep learning based
fraud detection approaches have been proposed in the litera-
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ture [2]-[4] which specifically address the dataset imbalance
and session diversity challenges. Specifically, Vinay et al. [4]
proposed a supervised contrastive learning based fraud de-
tection framework, where the supervised contrastive learning
approach [5] extends the vanilla self-supervised contrastive
learning approach to the supervised setting. The main goal
here is to push samples from the same class closer and contrast
with other class samples in the representation space. Due to
this class-specific clustering effect in the representation space,
we can effectively address both session diversity and dataset
imbalance challenges in the fraud detection task [4].

One limitation of the supervised contrastive learning ap-
proach is that it relies on well-labeled samples for training.
However, in many real-world fraud detection scenarios, due
to the high costs of expert annotations, many financially
constrained organizations find it difficult to hire such ex-
perts for manually annotating the recorded sessions [6]. In
such scenarios, organizations rely on historic security rules
or heuristics to perform automated annotations, leading to
the noisy label data [6]. However, the contemporary fraud
detection approaches [2]-[4] have not been designed to operate
in the noisy label setting. Specifically, due to the effect of
noisy supervision, the performance of a supervised contrastive
learning based model can easily degrade [7].

To address the limitations of supervised contrastive learning
for the noisy label learning task, Li et al. [8] and Yi et
al. [9] proposed label correction approaches that correct the
noisy labels by employing sample similarity analysis, and
employ these corrected labels to train the model through
supervised contrastive learning. However, these approaches are
specifically designed for the image data, and assume that the
samples belonging to the same class have considerable shared
features. Hence, these approaches are not suitable for the fraud
detection task due to the presence of the session diversity
challenge. Note that even corrected labels are not accurate
and have uncertainties [10]. As a consequence, even with
label correction, the performance of the supervised contrastive
learning model can still get degraded. The existing supervised
contrastive learning based noisy label learning approaches [8],
[9] do not address this label correction uncertainty challenge.

To address these challenges, we propose a supervised Con-
trastive Learning based Fraud Detection (CLFD) framework
which operates in the noisy label setting. To correct the noisy
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labels, CLFD employs a label corrector which is designed
by suitably adapting the fraud detection framework called
CLDet, which was proposed by Vinay et al. [3]. Specifically,
CLDet employs the self-supervised contrastive learning model
to learn session representations. Then, it trains a classifier
over the learned session representations by employing the
noise sensitive cross entropy loss. CLDet is designed to
specifically address the dataset imbalance challenge. Unlike
the supervised contrastive learning model, the session repre-
sentations learned from the self-supervised contrastive learning
model are not influenced by the presence of noisy labels,
and can also aid the noisy label learning task [7], [11],
[12]. Hence, we leverage this CLDet framework to design
our label corrector. Specifically, we train the classifier in
CLDet by our proposed mixup version of the noise robust
Generalized Cross Entropy (GCE) [13] loss, instead of the
original noise sensitive cross entropy loss. Note that the self-
supervised contrastive learning model pushes a session and
its corresponding augmented versions closer and contrasts
with other sessions in the representation space. It does not
specifically induce the class-specific clustering effect which
is achieved by the supervised contrastive learning model.
Therefore, the supervised contrastive learning model provides
a better opportunity to address the session diversity challenge.
However, the supervised contrastive learning model can under-
perform in the noisy label setting and requires an effective
label corrector to guide the model supervision [7]. Hence,
CLFD first employs the label corrector to correct the noisy
labels, and further adopts the corrected labels to train a
fraud detector for detecting malicious sessions. Moreover, we
propose a weighted supervised contrastive loss to effectively
address the label correction uncertainty challenge, where the
uncertainties associated with the corrected labels are used
to weigh the corresponding sessions inside the supervised
contrastive loss. We further enhance the noise robustness of
our fraud detector by training a separate classifier over the
learned session representations with our proposed mixup GCE
loss. We summarize our main contributions below:

o We propose a supervised contrastive learning based fraud
detection framework called CLFD, which is specifically
designed to operate in the noisy label setting.

We propose a weighted supervised contrastive loss which
is designed to address the challenge of uncertainty in the
label correction process. We theoretically show that this
weighted supervised contrastive loss is upper bounded by
the ideal loss. Additionally, we propose the mixup version
of the GCE loss for training classifiers under the noisy
label setting, and theoretically show its efficacy.

We present an empirical study on three benchmark fraud
detection datasets: CERT [14], UMD-Wikipedia [15],
and Open-stack [16], in which we show the superior
performance of our CLFD framework over state-of-the-
art baselines.
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II. RELATED WORK

Learning Under Noisy Labels. There is a large body of work
presented in the literature for the noisy label learning task. We
direct the interested readers to [17] for a comprehensive survey
on the different proposed approaches. Some of the recent
and popular noisy label learning approaches are: robust loss
functions [13], [18]-[24] which propose noise robust losses,
noise transition matrix [25]-[28] which requires the knowledge
of class-specific noise rates, sample selection [24], [29], [30]
which selects supposedly clean labeled samples based on
the sample loss analysis, and label correction [10], [31]-
[36] which corrects the given noisy labels and further trains
the employed model by using these corrected labels. Specif-
ically, the label correction approaches have outperformed
the remaining approaches [7]. Hence, we have designed our
framework by employing an effective label corrector. However,
the existing label correction approaches have been designed
for image datasets. In our empirical study, we select some
of recently-proposed label correction approaches [10], [31]
as baselines, and show that they under-perform on the fraud
detection task. Zhang et al. [37] proposed the mixup data
augmentation strategy which has been used in many recent
noisy label learning approaches [17]. There is no work in the
literature which has theoretically studied benefits of the mixup
GCE loss. Zhao et al. [6] developed an anomaly detection
framework under the noisy label setting for image datasets.
Specifically, they assume that each sample has multiple noisy
labels, and train a mixture-of-experts model to learn from
multiple labels. However, in our work, we do not employ
multi-label setting.

Recently, both Li et al. [8] and Yi et al. [9] have employed
supervised contrastive learning for the noisy label learning
task on image datasets. Specifically, Li et al. [8] perform label
correction through the nearest neighbor method. Then, confi-
dent samples are selected based on the agreement between
corrected and given labels. By using these confident sam-
ples, confident pairs are selected based on sample similarity
analysis. Finally, through these confident pairs, a supervised
contrastive learning model is trained. Yi et al. [9] also select
confident pairs based on sample similarity analysis. However,
they propose a novel contrastive regularization function to
learn sample representations over noisy labels where the label
noise does not dominate. In our empirical study, we select both
these approaches [8], [9] as baselines and show that they fail
to provide noticeable results on the fraud detection task due
to the session diversity challenge. Jaiswal et al. [38] presented
a comprehensive survey on the applications of self-supervised
contrastive learning on computer vision and NLP domains.
In the literature, there is no work studying the benefits of
supervised contrastive learning for the fraud detection task
under the noisy label setting.

Insider Threat Detection. It refers to detecting frauds com-
mitted by organizational insiders. Deep learning based ap-
proaches [39]-[45] are popularly employed in detecting insider
threats. Recently, many deep learning based approaches [2]-
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[4], [46] have been specifically designed to operate on imbal-
anced datasets. However, all these existing deep learning based
insider threat detection approaches do not operate under the
noisy label setting. In our empirical study, we select some
of the recent deep learning based insider threat detection
approaches [2], [3] as baselines, and show that they under-
perform under the noisy label setting.

Log Anomaly Detection. The goal here is to detect anomalies
occurring in the computing system log data [16]. Interested
readers can refer to [47] for a comprehensive survey on
log anomaly detection approaches. Recent approaches employ
deep learning models to detect log anomalies [48], [49].
However, these approaches are not specifically designed for
the noisy label learning task.

III. PROPOSED CLFD FRAMEWORK

The activities performed by a user are modeled through
activity sessions. Specifically, each session can consist of 7'
user activities. Each activity in the session is represented as
an embedding vector that is trained via the word-to-vector
model. Let x;; denote the word-to-vector representation of the
tth activity of the i*" session. Here, x; = {x;; }/—, represents
the raw representation of the i session. Let ) = {0,1}
denote the label space where 0 and 1 denote normal and
malicious sessions, respectively. Let y; and y; denote noisy
and ground truth label of x;, respectively. We do not assume
the availability of any clean labeled sessions. The available
noisy training set is denoted as T = T°U T, where T°
and Tl denote the set of noisy normal and malicious sessions
in T, respectively. Let (x;,9;) € 7 denote the it" training
sample. In our problem setting, we deal with the commonly
used noises in the literature [13] which are the uniform and
class-dependent label noises. For the uniform noise, the noise
rate is denoted as n = P(y; # y;). Similarly, for the class
dependent noise, we denote 17190 = P(y; = Oly; = 1) and
no1 = P(y; = 1lly; = 0). Our framework architecture is
shown in Figure 1. There are two main components in our
framework: label corrector and fraud detector. We describe
both these components below.

A. Label Corrector

We employ our trained label corrector to predict the class for
each session in 7 and use these predicted classes as corrected
labels to train our fraud detector. Our proposed label corrector
architecture is shown in Figure 1b. We design our label cor-
rector by suitably adapting the CLDet fraud detection frame-
work proposed by Vinay et al. [3]. Our label corrector has
two main components: self-supervised pre-training component
and a classifier. The self-supervised pre-training component
generates session representations, which are trained by the
vanilla self-supervised SIMCLR contrastive loss [50]. After
this training, the session representations are used as inputs to
the classifier, which is trained by our proposed noise robust
mixup GCE loss. The major modification that we make in
the CLDet framework in order to design our label corrector is

1423

that, we train the classifier by our proposed mixup GCE loss
instead of the original noise sensitive cross entropy loss.

1) Mixup GCE Loss: The popular cross entropy loss suffers
from model over-fitting issue when applied on the noisy label
learning task [13]. Additionally, the cross entropy loss is an
unbounded loss which amplifies the model over-fitting issue.
To address these issues, Zhang et al [13] proposed the GCE
loss. However, the vanilla GCE loss still faces the issue of label
memorization effect [S1]. The label memorization effect means
the model is overconfident about the relationship between
the input features and their corresponding labels, which is
problematic under the noisy label setting as these labels
could be incorrect. Recently, mixup based data augmentation
strategy proposed by Zhang et al. [37] effectively addresses
this label memorization issue. Specifically, augmented samples
are generated through the randomized interpolation of the
sample features and their corresponding labels. Hence, to
increase the noise robustness of vanilla GCE loss, we propose
the mixup version of GCE loss for the fraud detection task'.

Let v; denote the session representation generated by the
self-supervised pre-training component? for x;. Let f denote
the classifier function. The classifier softmax output vector for
v; is denoted as f(v;) = [jo(vz),jl(vz)] where fo(v;) and
f1(v;) denote softmax probabilities for normal and malicious
session classes, respectively. Let ¢ € (0, 1] and €; = [€;0, 'éil]T
denotes the noisy one-hot encoded label of x;. The vanilla
GCE loss [13] is given by:

laer(f(vi )

We propose our mixup strategy below which is designed
by leveraging the mixup strategy presented by Zhang et
al. [37]. Let (v;\, ﬁli) denote the mixup sample corresponding
to (x,€;). Here, v} = Av; +(1—-\)v;, m; = A\e;+(1—N\)e;,
A ~ Beta(, ), A € [0,1], and the session x; € T is sampled
from the opposite noisy class to which x; belongs (y; # ;).
For our proposed mixup strategy, the mixup version of GCE
loss is given by:

1
Bop(f(v),m) =3 T
k=0

(1= @

We construct a training batch S = {x;}{2, by randomly
sampling R sessions from 7. We train the classifier by
calculating the batch loss for each batch S, which is given
by:

Z ler(f

x7€S

vi),m 3

GCE -

!'As a starting point, we have proposed the mixup version of GCE loss and
in our future work, we will analyze other available noise robust loss functions.

2A detailed description of the CLDet framework architecture including the
procedure to derive session representations, employed SIMCLR contrastive
loss, and training procedure is available in [3].
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Fig. 1: Illustration of our CLFD framework architecture. Label corrector is employed to correct the noisy labels. By using
these corrected labels, the fraud detector is trained and deployed for inference.

Theoretical Analysis of £}, ,. Zhang et al. [13] presented
a comprehensive theoretical analysis study on vanilla GCE
loss shown in Equation 1. We extend some of their theoretical
results to our proposed mixup GCE loss shown in Equation 2.
We show the noise robustness property of E)éc p by analyzing
its gradient. Let ¢ denote the set of parameters for the
classifier. The gradient of L) W.I.t ¢; € ¢ is given by:

ger _ NV
90, &%{ (1*fk(Vi))

ZZ

xES

1 —10f(v})
== wfe (Vi) =
1 L 9f(v))
=_— ; 4
ze;kzﬂwk 96, 4

Here, the loss gradient weight w;, = Mg fk(vf‘)qil. The
two main challenges in the noisy label learning task are model
over-fitting and label memorization.

Model Over-Fitting. During the training stage of a classifier,
if the label of a training sample is inaccurate then usually,
the classifier softmax outputs for the training sample have
weak agreements with the given inaccurate one-hot encoded
label [13]. In such scenarios, noise sensitive losses such as
cross entropy give greater emphasis to such weak agreement
samples. As a consequence, the model learns by over-fitting
to such weak agreement samples. Consider the gradient of
L} o shown in Equation 4. Suppose, the target 7, and
the classifier prediction fj(v?) have weak agreement between
them. Then clearly, w;; will be closer to zero. Hence, less
emphasis will be placed on such weak agreement samples
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during the learning stage, and Eé;c & avoids over-fitting the
weak agreement samples.
Label Memorization. Deep learning models are prone to label
memorization. At higher noise rates, label memorization effect
can lead to poor decision boundaries even with noise robust
losses such as the vanilla GCE loss [51]. During each training
epoch, for each sample (x;,€;) € T, we construct its corre-
sponding randomly interpolated sample (v, m;) through our
proposed mixup strategy. As a consequence, we effectively
address the label memorization challenge through £ .
The unhinged/Mean Absolute Error (MAE) loss is a
noise robust loss. However, it has a slow rate of op-
timization convergence [13]. We can define the mixup
version of unhinged/MAE loss as: I3, 45 (f(v?}), m;)
Z/lc:() i (1= fe(v})). It is trivial to see that when ¢ = 1,
our mixup GCE loss becomes the mixup unhinged/MAE loss.

The Categorical Cross Entropy (CCE) loss can achieve fast
rate of optimization convergence. However, it is sensitive to the
label noise [13]. The mixup version of CCE loss is given by:
der (f(vf‘)7 ﬁli) — Z,lczo mik log (fr(v})). Theorem 1
states that when ¢ — 0, [} o5 (¢, ) converges to [} (-, -) and
léc (+,+) can achieve a high rate of optimization convergence
by maintaining noise robustness property. We outline all proofs
of our theoretical results in Section VI.

= lé’CE (f("?)vﬁli)

Next, we aim to establish both upper and lower bounds for
13¢5 (). Note that unbounded losses such as cross entropy
loss are typically extremely sensitive to noise. In some cases,
this cross entropy loss could become large when the noisy
label mismatches the model prediction. As a consequence,
the model would attempt to counteract the large loss by

N N
Theorem 1. gl_%lGCE (f(v}),m;)
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over-fitting the label noise, leading to poor generalization
performance [13]. However, I} (+,) has clearly defined
bounds as shown in Theorem 2.
Theorem 2. min(A, 1 — \) 22" < 13 (F(v}), ;) < L
Now we will analyze the classifier risk associated with
lé‘c () for noisy labels by comparing it with ground truth
label risk. Specifically, we show that classifier risks associated
with [}o (-, ) for both uniform and class dependent noise
rates are not substantial by upper bounding these risks with
the corresponding ground truth label risks. Let D denote
the noisy training set distribution. We denote the risk for
f wrt {op () for ground truth labels as Rjop(f) =
XED [lgCE (f (Vf‘) 7rn7;)]‘ Here, m; = Xe; + (1 — Ae;

denotes the ground truth mixup encoded label for v;\, and
y; # ;. Similarly, we denote the risk for~f for both
uniform and class conditional noise rates as R}qp(f) =
E_ [1&cp (f (v)),m;)]. Theorem 3 states that under the

uniform noise setting, the noisy risk EéCE( f) is upper
bounded by the ground truth risk R} -5 (f).

Theorem 3. For the uniform label noise rate 7, we have that:
Reop(f) < Rgep(f) + "

Let 7° P(y; = 0) and 78 = P(y; 1). The
ground truth class conditional risks for f are denoted as:
RéJCE(ﬂyz =1) = ED [léCE (f (Vf\) 7mi) lyi = 1] and

S~

Rgcp(flyi = 0) = E_ [[&ep (F (vi}) ,mi) y; = 0]. The-
orem 4 states that under the class conditional noise setting,
the noisy risk R (f) is upper bounded by the ground truth

class conditional risks.

Theorem 4. For the class dependent label noise rates 791 and
110, wWe have that:

710

:)

E&ﬂﬁsﬁ@%mum:m+——

+ﬁ@%wqm=m+%ﬂ

B. Fraud Detector

The main goal of the fraud detector is to learn to identify
malicious sessions through the supervision from our trained
label corrector. We denote the corrected label and the corre-
sponding one-hot encoding of x; as 7; and €;, respectively. We
employ two stage training for our fraud detector: supervised
pre-training and mixup-based classifier training. The reason
is that, for the noisy label learning task, Li et al [8] recom-
mend training a classifier over representations learned by a
supervised contrastive learning model by using a noise robust
loss.

1) Supervised Pre-Training: Let c; denote the output soft-
max value (confidence or posterior probability) for the pre-
dicted/corrected class of x;, which is provided by our trained
label corrector. Here, ¢; = max [fo(v;), f1(v)] . We employ
c; as a weighting parameter in the supervised contrastive loss.
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Initially, by employing our trained label corrector, we generate
corrected labels for all sessions x; € 7. Let T denote the set
of those sessions in 7 that have been predicted as malicious
by the label corrector. We employ a separate encoder network
for our fraud detector, which maps a session from its raw
representation x; to an encoded representation vector z;. We
adopt LSTM as the foundation of our encoder to derive the
encoded session representations. Our encoder has two hidden
layers with the same dimensions. We derive z; by averaging
the LSTM final hidden layer representations. We construct a
training batch S = {x;}Z, from 7. Since our framework is
specifically designed to operate on imbalanced training data,
in-order to effectively contrast corrected malicious and normal
sessions, for each training batch S, we create a corresponding
auxiliary batch S' = {x!}, by randomly sampling M
corrected malicious sessions from 7 1. We propose a weighted
supervised contrastive loss which is designed by leveraging the
supervised contrastive loss presented by Khosla et al. [5]. This
loss is given by:

1

5
Bx,)] ©)

12
Lsup = R Z Z (cicp) Lsup (2, Zp)
i=1 xpEB(xi)

Here, the set A(x;) = (SUS') — {x;}, and the set B(x;)
contains sessions x, € A(x;) such that both x; and x,, share
the same corrected label. We employ c;c,, as a weight for the
session pair (x;,x,). Let o denote the temperature parameter.

The individual loss for the pair (x;,x%,) is defined as:

(6)
2) Mixup-Based Classifier Training: In the mixup-based
classifier training stage, we employ a Fully Connected Neural
Network (FCNN) having two layers as a separate classifier for
our fraud detector. Specifically, the first layer is an input layer
which receives the encoded session representation z; as input.
It is equipped with a Leaky ReLU activation function. The
second layer is an output/classification layer. It is equipped
with a softmax activation function. We employ (3o p (-, ) to
train our FCNN. We employ the corrected labels obtained
from our label corrector for the training supervision. We use
this trained FCNN for our test case inference. The training
procedure for our fraud detector is outlined in Algorithm 1.
Time Complexity Analysis. The CLFD training cost involves
the training costs of our label corrector and fraud detector.
The training cost of the self-supervised contrastive learning
based label corrector is upper bounded by the training cost of
the supervised contrastive learning based fraud detector [5].
Hence, we analyze the time complexity of our fraud detector
training procedure. Specifically, we analyze the forward pass
in training, and the number of times the pair loss lgy,(-,-) is
invoked. This time complexity is given by: O ( |T| (R + M) ).
Theoretical Analysis of Ls,,. We show the effect of our
proposed loss on robust session representation learning by

exp(cos (z; - zp) /)
x;€A(%;) exp(cos (zi : Z]‘)/Oé)

lSup (Zivzp) = _log (Z
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Algorithm 1 Training procedure for the fraud detector.

Inputs: 7 = 72 UTC, R, M, B, trained label corrector,
and our fraud detector.
Output: well trained fraud detector. _
1: obtain corrected labels for all sessions in 7 from the
trained label corrector;
2: construct ’?1 = {Xi € 7-|§z = 1};
[Supervised Pre-Training] _
. generate training batches from T,
- for each training batch S = {x;}2, do
create the auxiliary batch §* = {x!}M from T;
obtain 7; and ¢; for each session x; € S U S' from
the trained label corrector;

AN

7: for each session x; € S do

8: construct A(x;) = (SUS!) — {x;}:

9: construct B(x;) = {x, € A(x;)|[Up =i };

10: for each session x, € B(x;) do

11: calculate gy, (2;,2,) by using Eq 6

12: calculate Lg,;, by using Eq 5 and train the session
encoder;

[Mixup-Based Classifier Training]
13: for each training batch S = {x;}, do

14: for each session x; € S do

15: sample a session x; from 7 such that y; # ¥;;

16: sample A ~ Beta(3, 5);

17: construct z} = Az; + (1 — \)z; and m; = \e; +
(1= Aej;

18: calculate I3 (f(z}), m;) by using Eq 2;

19: calculate £, by using Eq 3 and train the FCNN;

20: return the well trained fraud detector;

analyzing its gradient. Let @ denote the set of parameters for
the session encoder. The gradient of Lg,, w.rtto 0; € 8 is
given by:

8£Sup _ 4

Z (Cz‘cp) 8l5up (Zi7 Zp) (7)

XpE€B(x4) 80]

The gradient Oggf_”’ is weighted by the term c;c,. Through

supervised contrastive learning, our session encoder learns to
push the encoded session representations of x; and x,, closer in
the encoded representation space. Here, x; and x, have been
predicted to belong to the same class by the label corrector.
However, these predicted labels have uncertainties. We require
a mechanism to reduce the learning effect from those session
pairs (x;, x,,) which are predicted with low confidence (output
softmax value closer to 0.5). Hence, we employ c;c, as a
weighting parameter in Lg,,), to achieve this goal.

For our theoretical analysis, we employ a hypothetical
oracle supervised contrastive loss. We assume that the ground
truth label (y) for a session x ~ D, can be obtained by giving
x as input to the oracle. This oracle supervised contrastive loss
expressed in terms of expectation is given by:

£Orc - lSup (Zi7 Zp) (8)

x;~D

1
|B(x)| 2

xI,Eé(x,ﬂ,)

Here, B(x;) contains sessions x, € A(x;) such that both
x; and x,, share the same ground truth label. Let ¢ denote the
corrected class confidence (output softmax value) for a session
x ~ D, which is obtained through our trained label corrector.
Here, P(c =~ 1) denotes the probability that the label corrector
is highly confident, and ¢, % 1 denotes that ¢, is not closer
to 1. We can express Lg,,), in-terms of expectation as:

1

|B(x;)] Y (cicp)lsup (ziy2p) | ()

X, €B(x;)

£Sup - ]ED
X~

Theorem 5.

Esup < P(C ~ 1){P(C ~ l)EOrc

+ )
x;~Dlec;1

cp#l

(cicp) Lsup (24, Zp)} }

+ E
x;~D|c; %1

(cicp) Lsup (2i, 2p) }

Theorem 5 states that Lo, upper-bounds Ls,,,. We further
analyze the effect of our Lg,,, on robust session representation
learning by comparing it with other possible variants. Specifi-
cally, we consider the unweighted version of Lg,,, and session
filtering based supervised contrastive loss which discards a
session pair having low joint confidence. We theoretically
show the merits of our Lg,,; against the other loss variants. We
provide these additional theoretical underpinnings on Lg,, in
Section VII.

IV. EXPERIMENTS

We describe our experimental setup including datasets and
baselines used in this paper and then discuss our empirical
analysis results which includes label corrector performance,
training latency, and ablation analysis results.

A. Experimental Setup

1) Datasets: We use three benchmark fraud detection
datasets for our empirical study: CERT [14], UMD-Wikipedia
[15], and OpenStack [16].

CERT [14]. The CERT dataset is a benchmark dataset for
insider threat detection. There are 48 malicious and 1,581,358
normal sessions. The insider sessions are recorded chrono-
logically over 516 days. To avoid extreme training latency,
we randomly sample 10,000 normal sessions from the first
460 days and include them in our training set. Similarly, we
randomly sample 500 normal sessions from 461 to 516 days to
construct our test set. For the malicious sessions, we randomly
sample 30 malicious sessions, and include them in our training
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set. The remaining 18 malicious sessions are included in our
test set.
UMD-Wikipedia [15]. This dataset records the activity ses-
sions of users who have edited the Wikipedia website. In this
dataset, there are 5486 normal and 4627 malicious sessions.
We randomly sample 1000 normal sessions to construct our
test set and include all the remaining 4486 normal sessions in
our training set. To simulate the training dataset imbalance
scenario, we randomly sample 80 malicious sessions and
include them in our training set. From the remaining malicious
sessions, we randomly sample 500 malicious sessions, and
include them in our test set.
OpenStack [16]. This dataset records the activity sessions of
users who have used the OpenStack cloud services. In this
dataset, there are 244,908 normal and 18,434 malicious ses-
sions. We randomly sample 10,000 and 1000 normal sessions
and include them in our training and test sets, respectively.
Similarly, we randomly sample 60 and 100 malicious sessions,
and include them in our training and test sets, respectively.
2) Training Details: To effectively train our label corrector
and fraud detector, we set the number of dimensions of the
activity and session representations, and the hidden layer
size of our LSTM based session encoder to 50. To avoid
extreme memory requirements during encoder training, we opt
for medium sized training batches. Specifically, we use 100
sessions (R) in each training batch. We employ the session
reordering based augmentation strategy proposed by Vinay
et al. [3] for the self-supervised pre-training of our label
corrector. Specifically, for each session, we randomly select
an activity sub-sequence of length 3, and reorder activities
in this sub-sequence. The temperature parameter o shown in
Equation 6 is set to its default value 1. For simulating the
uniform noise rate 7, we randomly flip the ground truth label
of a session with a probability 7 [13]. Similarly, for simulating
the class conditional noise rates 71¢ and 791, we randomly flip
the ground truth label of a malicious and a normal session
with probabilities 710 and 797, respectively [52]. Since we
are operating on an extremely imbalanced training set, we
constrain the noise rates to be within 0.5 so that a few
accurately labeled malicious sessions are available for model
training. In real world scenarios, if the dataset noise rate can
be estimated then, for noise rates above 0.5, we can easily
invert the noisy labels, and again bring back the new noise
rates within 0.5. We empirically analyze the performance
of our CLFD framework by using different values for the
uniform noise rate 7. For the class-dependent noise rates, we
set Mo = 0.3, and 191 = 0.45. The GCE loss parameter ¢
is set to 0.7 as recommended by Zhang et al. [13]. For the
mixup hyper-parameter 3, Zhang et al. [37] recommend that
mixup interpolation should have sufficient strength to prevent
the label memorization effect. Hence, we set 8 to 16. We set
the size of the malicious session auxiliary batch (M) used in
the training of our session encoder to 20. We use the Adam
optimizer [53] with a learning rate of 0.005 and we use 10
training epochs for both self-supervised and supervised pre-
training of our label corrector and fraud detector, respectively.
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For the mixup-based classifier training in our label corrector
and fraud detector, we employ 500 epochs. We utilize three
metrics to measure the fraud detection performance: F, False
Positive Rate (FPR), and Area Under the Receiver Operating
Characteristics Curve (AUC-ROC). We report the mean and
standard deviation of performance scores after 5 times of
running.

3) Baselines: We compare our framework with eight state-
of-the-art baselines: DivMix [31], ULC [10], Sel-CL [8],
CTRR [9], Few-Shot [2], CLDet [3], DeepLog [16], and
LogBert [48]. Specifically, DivMix, ULC, Sel-CL, and CTRR
have been designed for the noisy label learning task. DivMix
and ULC employ co-teaching based approach while, Sel-
CL and CTRR employ supervised contrastive learning based
approach. These noisy label learning approaches have been
designed to originally operate on image datasets and employ
neural networks for image data such as ResNet-18 [31]. Hence,
we cannot directly apply these baselines for our fraud detection
task which operates on sequential data. We suitably replace
their neural networks with LSTM based session encoders
or classifiers having two LSTM hidden layers and adapt
these baselines to our fraud detection task. Sel-CL performs
a warm-up training by employing the SIMCLR contrastive
loss. However, its augmentation strategy is image-specific.
Hence, we employ the session reordering based augmentation
strategy [3]. Both Sel-CL and CTRR perform label correction
through sample similarity analysis. Since we are operating
on sequential data, we perform session similarity analysis
in the encoded representation space. Few-Shot and CLDet
are insider threat detection approaches. Specifically, Few-Shot
and CLDet employ BERT [54] and self-supervised contrastive
learning models, respectively. DeepLog [16] and LogBert [48]
are log anomaly detection approaches and employ LSTM and
BERT models, respectively. All these four baselines (Few-
Shot, CLDet, DeepLog, and LogBert) have not been originally
designed for the noisy label learning task. We employ the
same training set used for our CLFD framework to train all
baselines.

B. Experimental Results

1) Overall Comparison: The overall comparison results
for uniform and class dependent noise rates are shown in
Tables I and II, respectively. Our CLFD framework noticeably
outperforms against baselines w.r.t most of the performance
metrics and specifically, at higher noise rates, we can observe
that CLFD provides a significant performance improvement
over baselines. Our CLFD framework addresses the dataset
imbalance and session diversity challenges through supervised
contrastive learning. Note that the performance of models
trained under supervised contrastive loss can degrade under
the noisy label setting. CLFD addresses this challenge by
employing an effective label corrector which is specifically
designed for the fraud detection task. Furthermore, CLFD
effectively addresses the label correction uncertainty challenge
through our proposed weighted supervised contrastive loss.
DivMix and ULC are specifically designed for image datasets.
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TABLE I: Performances of our CLFD and baselines (meanzstd) for the uniform noise rate 7. The higher the better for F1 and
AUC-ROC. The lower the better for FPR. The best values for each noise rate are bold highlighted. DivMix and ULC are co-
teaching based noise robust approaches, Sel-CL and CTRR are supervised contrastive learning based noise robust approaches,
Few-Shot and CLDet are insider threat detection approaches, and DeepLog and LogBert are log anomaly detection approaches.

Models | 7 CERT UMD-Wikipedia Open-Stack
FI FPR__ | AUC-ROC FI FPR__ | AUC-ROC F FPR__ | AUC-ROC
0.1 | 3774286 | O.1#47 | 8572204 | 51.78205 | 25.8122.4 | 6426229 | 42.87%3.3 | 4.60%0.7 | 64.58%12
DivMix |02 | 227103 | 20.66£3.5 | 840709 | 28.58£2.0 | 2193209 | 53.8551.6 | 39.11%25 | 5.24%15 | 61.89%12
03 | 204412 | 2636x18 | 82.75%43 | 17.5524.1 | 2.69%1.2 | 52.59%15 | 8.37=1.7 | 7.86x2.3 | 55.77%3.6
045 | 14.04%36 | 37.32£7.8 | 74.48%5.7 | 10.19818 | 654227 | 50.72%1.9 | 6.63£1.6 | 55412 | 50210.6
0.1 | 53.3524.6 | 11.1521.5 | 84.7822.7 | 53.60+1.1 | 18.58+1.4 | 65.88%1.8 | 41.1222.4 | 7.26x1.7 | 64.95£3.6
ULe 02 [ 3802215 | 27.25:18 | 83.59%09 | 29.44%38 | 19.34x1.7 | 524012 | 3644223 | 789209 | 61.280.7
03 | 24.14284 | 19.3227.8 | 80.6223.1 | 23.1722.2 | 19.2532.1 | 5041%1.2 | 1087224 | 6.2622.7 | 539613
045 | 1282226 | 3820854 | 72.78%24 | 471205 | 4.08204 | 49.13209 | 7.13209 | 5.13x1.2 | 5156206
0.1 [ 73.9621.8 | 5.15£1.8 | 8262208 | 70.03%3.4 | 14.1122.8 | 77.28%1.9 | 4882209 | 15.1520.8 | 639110
Sel.CL |02 [ ST36:[8 | 56209 | 7783304 | 3265230 | 12.78%1.7 | 5587513 | 4367348 | 013308 | 6242825
03 | 46.1721.3 | 11.2020.8 | 7695200 | 26.72%1.5 | 1659%2.1 | 52.08%1.4 | 39.311.6 | 13.80229 | 58.83%14
045 | 4333228 | 12.7521.8 | 75.00204 | 2353259 | 2151242 | 487443 | 2844323 | 88%18 | 5585234
0.1 | 69.72¢4.1 | 7.25%1.7 | 82.88204 | 66.95:1.7 | 14.66x0.8 | 75.88204 | 31.48%3.7 | 8308 | 63.8420.7
CTRR |02 [ 4124207 | 412802 | 7572301 | 3175212 | 10.98%0.6 | 56.03%0.7 | 29.70%1.3 | 1382306 | 62.67%23
03 | 2461225 | 13.6582.1 | 74.0321.4 | 2393219 | 16.7620.6 | 51.73=1.1 | 22.33%59 | 15.0241.2 | 585743
045 | 23.822.7 | 14.10£2.4 | 71.8520.6 | 21.2422.6 | 20.8122.6 | 47.09%2.1 | 2085239 | 6429 | 5632%19
0.1 | 3729485 | 44.88+1.3 | 50.1326.8 | 43.82x14 | 45.9320.6 | 52.48%1.] | 9.56x1.3 | 4.82%05 | 52.8203
Few.Shot |02 | 2836£6.7 | 2785571 | 52.73%8.5 | 39.29%06 | 46.80£1.8 | 493813 | 912426 | 2.2630.4 | 51.37%0.9
03 [ 2193259 | 32.14x13 | 4791243 | 37.1620.6 | 50.2423.1 | 48.69x1.5 | 20.78%19 | 7.81%1.7 | 5036206
045 | 21.5742.8 | 39.28%13 | 45.63225 | 3627215 | 5249828 | 4831212 | 1681207 | 22.42409 | 47.62%3.7
0.1 | 67.7224.1 | 2.14x1.1 | 82.7820.3 | 3753209 | 8.69%0.7 | 60.87(13 | 56.07200 | 4.85x24 | 789615
CLDet |02 | 3592851 | 223309 | 79.52£04 | 3480£15 | 2.2580.6 | 60.18205 | 546818 | 416206 | 762004
03 | 30.65229 | 64214 | 71.8620.6 | 27.74x1.8 | 3.46x1.4 | 57.29%0.7 | 4896206 | 4.7120.3 | 73.26x0.8
045 | 26.1321.7 | 445205 | 6446203 | 244318 | 7.28%09 | 54.52%1.5 | 2837226 | I1.73:1.7 | 56.1922.8
0.1 | 4607228 | 43823 | 73.75%2.2 | 56.29:1.4 | 7.09t1.1 | 69.57#1.2 | 4552%9.1 | 586248 | 654953
DeepLog | 02| 3335515 | AGTEI2_| 6623319 | 3728218 | 448315 | GLI7E14 | 2978572 | 435539 | 5897%57
03 | 2885223 | 13.04£3.6 | 6419228 | 28.0622.3 | 11.25%2.2 | 56.34%1.9 | 1735224 | 782825 | 55.62%13
045 | 16.7221.4 | 1232222 | 58.64%2.1 | 13.06229 | 8.29:1.8 | 51.7123.6 | 10.74238 | 5.7123.2 | 50.68229
0.1 | 5L.13x4.1 | 7.9533.7 | 80.93x33 | 66.58%2.3 | 7.18£1.4 | 71.00x15 | 5051259 | 7.18%7.7 | 70.49%35
LogBert | 02 | 398TE28 | 749801 | 6956517 | 5072237 | 1463456 | 6149534 | 358256 | 1337244 | 5647437
03 | 2921259 | 13.26348 | 67.14239 | 4592209 | 15.3921.8 | 54.42%16 | 2842225 | 18.04x08 | 54.24%15
045 | 224722 | 9.1121.4 | 65.0022.1 | 3367210 | 1246213 | 49.4420.7 | 15.58%28 | 15.6744.4 | 50.67%3.7
0.1 | 7793343 | 1.3220.2 | 90.7220.3 | 75.1720.5 | 5.830.9 | 80.7920.6 | 64.54x1.8 | 4.52£2.4 | 88.9622.1
CLFD | 02 | 7551247 | 19504 | 88.48%0.2 | 5701329 | 381205 | 69.63%L6 | 62.7752.3 | 56217 | 88.54328
03 | 70.67£3.6 | 2.13:0.2 | 87.6120.3 | 55.5722.7 | 5.3020.7 | 68.74z1.5 | 59.72%1.2 | 5.79%1.6 | 86.78%1.2
045 | 62.77£2.9 | 2.53x05 | 85.76x0.8 | 52.89x1.6 | 5.52%0.6 | 67.2220.7 | 48.89x23 | 5.4620.7 | 78.35:1.6

TABLE II: Performances of our CLFD and baselines (mean#std) for the class dependent noise rates 719 = 0.3 and 79 = 0.45.

Models CERT UMD-Wikipedia Open-Stack
F1 FPR AUC-ROC F1 FPR AUC-ROC F1 FPR AUC-ROC
DivMix 17.22£1.3 | 30.11£2.7 | 75.06+0.3 5.95+0.7 6.83£3.7 48.73%1.8 8.77£2.1 5.35+0.5 51.23+0.7
ULC 21.33£2.8 | 27.49+1.7 | 72.26£3.9 | 12.01+04 | 5.25+2.7 51.57+1.4 5.23+1.6 | 4.81 £0.8 | 49.12+1.3
Sel-CL 38.41+£59 | 18.75+#5.3 | 75.48+1.8 | 18.19+2.3 | 22.56+5.3 | 46.03£2.7 | 35.36+1.7 | 23.53+2.3 | 64.32+1.6
CTRR 2335434 | 16.35+£3.2 | 75.96+1.2 | 19.84+1.3 | 23.14+0.7 | 46.57+0.9 | 32.15+1.8 | 22.95+3.3 | 59.84+0.7
Few-Shot | 24.19+£7.2 | 36.28+1.7 | 48.81+£7.9 | 40.95+1.7 | 51.06£1.5 | 49.85%1.5 | 19.96+2.6 | 15.84+6.1 | 49.52+3.2
CLDet 27.43+£1.6 | 9.34+1.9 59.83+1.2 | 21.53%¥2.7 | 9.27+0.7 54.03+£0.8 | 29.39+3.7 | 10.59+2.5 | 54.12+1.4
DeepLog | 25.86+2.4 | 10.27+1.5 | 64.81£1.6 | 21.37+3.5 | 14.04+1.7 | 55.69+4.6 | 16.10£1.8 | 5.03+1.4 52.94+0.8
LogBert | 28.51+1.9 | 16.92+1.7 | 68.77+£2.3 | 38.87+4.6 | 17.34+3.7 | 56.32+4.3 | 21.85+1.3 | 17.26£1.8 | 51.59+2.3
CLFD 60.77+£2.8 | 1.90+0.7 82.55+0.6 | 58.79+3.6 | 6.50+1.7 70.34+2.2 | 48.45+34 | 6.65+2.2 76.35+1.1
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TABLE III: Performances of our label corrector on the noisy
training set 7 (meanzstd). TPR and TNR denote True Positive
Rate and True Negative Rate, respectively. Higher the better
for TPR and TNR.

n = 0.45 n1o = 0.3 and no1 = 0.45
Dataset TPR TNR TPR TNR
CERT 7025823 | 00.6951.7 | 7942516 | 8747TE(4
UMD-Wikipedia | 71.7320.7 | 89.3821.3 | 79.61=1.7 | 88.34%2.1
Open-Stack | 72.62515 | 9322824 | 8052236 | 88462238

Hence, at higher noise rates, due to the session diversity chal-
lenge, their performances degrade significantly. Sel-CL and
CTRR employ supervised contrastive learning models. Hence,
they are expected to effectively address dataset imbalance
and session diversity challenges. However, they perform label
correction through sample similarity analysis. At higher noise
rates, due to the session diversity challenge, corrected labels of
many sessions do not match the ground truth [7]. Furthermore,
they do not specifically address the label correction uncertainty
challenge. As a result of these improper learning effects, both
Sel-CL and CTRR underperform. The remaining baselines
CLDet, Few-Shot, DeepLog, and LogBert also show poor
performances at higher noise rates. These remaining baselines
do not employ effective noise robust mechanisms in their
design. Therefore, they are sensitive to the noisy label setting.

2) Label Corrector Performance Analysis: We analyze the
performance of our label corrector on the noisy training set
T. We compare the predictions of the label corrector with
the corresponding ground truth labels. This empirical analysis
result is shown in the Table III. Clearly, our label corrector
substantially reduces the original dataset noise, and provides
better quality supervision to the fraud detector when compared
to the original noisy labels.

3) Training Latency Analysis: All experiments are executed
on GPU Tesla V100 (32GB RAM) and CPU Xeon 6258R
2.7 GHz with 226 GB hard disk. The training latencies (in
seconds) for our CLFD framework are 30,816 (CERT), 19,158
(UMD-Wikipedia), and 28,872 (Open-Stack). Both Sel-CL and
CTRR baselines also incur similar training latencies due to
the employment of supervised contrastive learning models.
However, CLFD incurs around 4 times more training latency
than the remaining baselines. This is because the remaining
baselines do not employ supervised contrastive learning mod-
els. Even though the supervised contrastive learning model
incurs higher training costs, it can effectively address session
diversity and dataset imbalance challenges in the fraud detec-
tion task.

4) Ablation Analysis: We conduct the ablation analysis
study on our CLFD framework by ablating the following
main components: Label Corrector (LC), lf\;c g(+,-), GCE loss,
Fraud Detector (FD), Lg,,, and classifier in the FD. The
ablation analysis results for uniform and class dependent noise
rates are shown in Tables IV and V, respectively.

W/o LC. We directly train the fraud detector on noisy labels
by using the vanilla supervised contrastive loss [S]. Then, we
train the classifier in the fraud detector by employing the noisy
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labels. For the uniform noise rate, the mean F1 scores drop
to 25.53 (CERT), 23.29 (UMD-Wikipedia), and 38.35 (Open-
Stack). Similarly, for the class dependent noise rates, the mean
F1 scores drop to 16.46 (CERT), 32.69 (UMD-Wikipedia),
and 36.16 (Open-Stack). The performance of the employed
supervised contrastive learning model in the fraud detector can
significantly degrade under high noise rates [7]. The reason
is that many sessions that belong to different classes in the
ground truth are pushed closer in the encoded representation
space. Due to this improper learning effect, the performance
degrades significantly.

W/o [}cp(-, ). We employ the vanilla GCE loss lgcg(-, )
shown in Equation 1 instead of our proposed [}cp(: )
for training the classifiers in both label corrector and fraud
detector. For the uniform noise rate, the mean F1 scores
drop to 53.44 (CERT), 46.83 (UMD-Wikipedia), and 41.53
(Open-Stack). Similarly, for the class dependent noise rates,
the mean F1 scores drop to 46.46 (CERT), 52.78 (UMD-
Wikipedia), and 44.74 (Open-Stack). The vanilla GCE loss
does not specifically address the label memorization issue.
Applying mixup based data augmentation can aid in alleviating
the label memorization issue [51]. Hence, mixup version of the
GCE loss provides better noise robustness when compared to
the vanilla GCE loss.

W/o GCE. We employ the cross entropy loss instead of
our proposed lé:c (+,-) for training the classifiers in both
label corrector and fraud detector. For the uniform noise rate,
the mean F1 scores drop to 7.35 (CERT), 19.40 (UMD-
Wikipedia), and 9.28 (Open-Stack). Similarly, for the class
dependent noise rates, the mean F1 scores drop to 15.21
(CERT), 17.18 (UMD-Wikipedia), and 10.48 (Open-Stack).
Clearly, we can observe a significant drop in the performance
scores. Cross entropy loss is typically sensitive to the label
noise which can result in model over-fitting [13]. Additionally,
it is an unbounded loss which exacerbates the model over-
fitting issue.

W/o FD. We directly deploy our trained label corrector for
the test case inference. For the uniform noise rate, the mean
F1 scores drop to 42.78 (CERT), 36.98 (UMD-Wikipedia),
and 38.55 (Open-Stack). Similarly, for the class dependent
noise rates, the mean F1 scores drop to 40.77 (CERT),
47.87 (UMD-Wikipedia), and 39.73 (Open-Stack). The label
corrector employs self-supervised pre-training component in
which, the augmented sessions generated from a given session
are brought closer in the representation space. This component
can effectively address the dataset imbalance challenge [3].
However, to effectively address the session diversity challenge,
we require the supervised contrastive learning approach.
W/o Lsyp,. We employ the unweighted version of L, which
is denoted as Eg“u"p (refer to Section VII) to train our session
encoder. For the uniform noise rate, the mean F1 scores drop
to 48.73 (CERT), 44.31 (UMD-Wikipedia), and 45.01 (Open-
Stack). Similarly, for the class dependent noise rates, the mean
F1 scores drop to 44.69 (CERT), 50.56 (UMD-Wikipedia),
and 43.47 (Open-Stack). Lgﬁjfp does not specifically address
the label correction uncertainty challenge. As a consequence,
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TABLE IV: Ablation analysis results (mean+std) for the uniform noise rate n = 0.45.

Models CERT UMD-Wikipedia Open-Stack
F1 FPR AUC-ROC F1 FPR AUC-ROC Fl1 FPR AUC-ROC
CLFD 62.77+2.9 | 2.53+0.5 85.76+£0.8 | 52.89+1.6 5.52+0.6 67.22+0.7 | 48.89+2.3 5.46x0.7 78.35+1.6
w/o LC 25.53£2.4 | 9.42+£25 | 71.57+0.8 | 23.29+1.3 8.84+1.7 53.35£0.9 | 38.35+0.9 4.68+0.4 65.43%1.3
w/o lé;CE () 53.44+2.3 | 3.90+0.4 | 81.93%x1.2 | 46.83%1.8 6.79+1.4 62.52+1.6 | 41.53+4.4 | 14.11£2.7 | 71.97+1.4
w/o GCE loss 7.35+1.1 7.71£0.8 | 52.19+1.1 19.40£1.6 | 10.04+0.3 | 52.44+0.9 9.28+1.5 10.98+1.1 51.06£1.9
w/o FD 42.78+5.5 | 7.37+1.8 | 78.48+1.9 | 36.98+1.7 7.66£0.7 61.62+1.9 | 38.55+1.6 5.96£1.9 62.82+1.5
w/0 Lsup 48.73+1.8 | 5.12+0.5 81.08+£0.9 | 44.31£1.6 6.64+0.7 62.89+0.5 | 45.01+2.1 5.62+1.2 66.43£1.9
w/o classifier (FD) | 46.65+2.9 | 3.24+1.8 | 79.67+1.3 | 43.89+2.4 6.54+1.5 62.81£1.3 | 41.13+2.8 4.59+1.6 63.70£1.7

TABLE V: Ablation analysis results (mean+std) for the class dependent noise rates 719 = 0.3 and 791 = 0.45.

Models CERT UMD-Wikipedia Open-Stack
F1 FPR AUC-ROC F1 FPR AUC-ROC F1 FPR AUC-ROC
CLFD 60.77£2.8 1.90+0.7 82.55+0.6 | 58.79+3.6 | 6.50+1.7 70.34+2.2 | 48.45+3.4 | 6.65+2.2 76.35%1.1
w/o LC 16.46+6.5 | 15.96x2.8 | 59.18+43.2 | 32.69+4.4 | 15.35+2.3 | 56.10%1.8 | 36.16+4.8 | 11.62+1.7 | 57.62+1.5
w/o IQCE(-, D) 46.46+3.4 6.61+2.9 79.86+2.8 | 52.78+2.3 8.46+1.9 67.69+1.6 | 44.74+3.5 9.23+1.4 71.77+1.5
w/o GCE loss 15.21+4.3 8.63%1.8 59.58+2.6 | 17.18+1.9 | 8.52+2.7 52.29+2.1 10.48+3.2 | 9.45+2.3 52.55+2.6
w/o FD 40.77+2.6 | 5.14+1.4 74.03+1.6 | 47.87+2.9 | 5.89+2.7 62.17+1.5 | 39.73x1.5 | 5.34+0.7 66.38+0.9
w/o Lsup 44.69+3.8 | 6.43+2.8 78.83+1.4 | 50.56+2.3 | 7.62+3.1 64.67+2.4 | 43.47+4.9 | 9.30+3.4 70.65+2.9
w/o classifier (FD) | 43.13%1.7 8.06+2.4 T7.96+£1.7 | 48.12+1.4 | 12.26£2.9 | 63.76+2.3 | 42.25+1.9 7.88+0.9 69.33+1.2
there is a noticeable drop in the performance. ACKNOWLEDGEMENT

W/o classifier (FD). We estimate the center (mean) of la-
bel corrected normal and malicious sessions in the encoded
representation space corresponding to the session encoder. A
test session is classified based on its proximities to both these
centers [4]. For the uniform noise rate, the mean F1 scores
drop to 46.65 (CERT), 43.89 (UMD-Wikipedia), and 41.13
(Open-Stack). Similarly, for the class dependent noise rates,
the mean F1 scores drop to 43.13 (CERT), 48.12 (UMD-
Wikipedia), and 42.25 (Open-Stack). The cluster centers are
estimated by using the corrected labels. At high noise rates,
due to the label correction uncertainty challenge, these esti-
mated cluster centers can noticeably deviate from their ground-
truth counterparts. Hence, we can observe a noticeable drop
in the performance.

V. CONCLUSION

In this work, we have developed a supervised contrastive
learning based fraud detection framework called CLFD, which
operates in the noisy label setting. We proposed a mixup
version of the GCE loss to train classifiers in our label
corrector and fraud detector, and theoretically showed its
efficacy. We proposed a weighted supervised contrastive loss to
train the session encoder in our fraud detector and theoretically
showed that our proposed loss is upper bounded by the ideal
loss. We developed a training procedure to train our fraud
detector to learn separable session representations for the noisy
label learning task. The empirical study on three benchmark
datasets demonstrated that our CLFD can outperform state-
of-the-art baselines. In our future work, we plan to extend
CLFD to model session specific noise rates. We will explore
benefits of developing the mixup versions of other robust
loss functions. We will also explore benefits of integrating
supervised contrastive learning model with co-teaching based
noisy label learning approaches.

This work was supported in part by NSF grants 1920920,
1946391, and 2103829.

VI. PROOFS OF THEORETICAL RESULTS
A. Proof for Theorem 1
We can express (g () as:

A A )
L}I_IE})ZGCE (f(vi), m;) = lim

3 (-0

By using the result from [13], which states that for
any encoded session representation v, we have that:
lin%) [%@)1} = —log (fx(v)). We can rewrite Equation 10
q—
as:

1
li s (/) ) = =3 e log (A(¥))
k=0

= 3ep (F(v), m;)
B. Proof for Theorem 2

First we will derive the upper bound. We use the result
from [13] which states that for any encoded session represen-
tation v: Y, M < L Since g € [0,1], we can

. k=0 q = g ik s L)
derive the upper bound as:

Bop(fv)). ) =Y "8 (1- fuv))') <

k=0

| =

Now we will derive the lower bound. From our mixup
strategy outlined in Section III-A1, we can infer the result:
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- A if er=1
mir = .
1— )\ otherwise

Thus, we can derive the result:

k=0
We use the result from [13] which states that for any
. . e (v)? _o(1—a)
encoded session representation v: Y5 _, * f’z](v) > 22—
Thus, we can rewrite Equation 11 as:

—9@1=q)
lep(f(v),my) > min(A, 1 — )\)L

C. Proof for Theorem 3

By applying expectation conditioning on the noisy risk
R p(f), we can derive the result:

Recp(f) = E, (e (F (vi) . my)]

+.E, ep (f (v7) my) |my # m; | Py # my)

= Ryop(f)1—n)+ inED op (f (V1) my) |m; #m; | g

(12)
Since the bound shown in Theorem 2 holds for both cases

when m; = m; or m; # m;, by plugging the upper bound in
Theorem 2 inside Equation 12, we get the result:

Riep(f) < Riop(f)(1—n) + g

n
< Reep(f)+ 4

D. Proof for Theorem 4

__ By applying expectation conditioning on the noisy risk
R p(f), we can derive the result:

EécE(f) = XED [lé'CE (f (Vf\) «,ﬁh)}

=> E [I?m (f (v3) . my)

ﬁlzzmi-@:@} P(m; =m;,y; =)

2 [ (1 (4).)

m; 7 m;, j; :ﬂ] P(m; # m;,j; =)

— Ros(fl= D0 —mo)? +_E, [z (7 () i)

m; #m;,y; = 1} no7"

+ REop(fly: = 0)(1 —101)7° + XED {léy(;}; (f (v}).m;)

m; # my, i = U} Tlm?[J

(13)
By using Theorem 2, we can rewrite Equation 13 as:
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~1
~ i ) .
RéCE(f) S RgCE(f'yl = 1)(1 _ 7710)7_1 + %
=~0
F

+ Rév‘CE(f\yi =0)(1 —no)7° + 770;

<7 (Rém(f\yi —14 ”;0) 5 (Récﬂf\yi o)+ %)

E. Proof for Theorem 5

By applying expectation conditioning on Lg,, using the
label corrector confidence, we can rewrite Equation 9 as:

LSup
1
= = (cicp) lsup (i, 2p) |ci = 1| P(e; = 1)
x;~D ‘B(X1)| xpEg(xl) P P p
1
_ (cicp) lsup (24, 2p) |c; 2 1| P(e; % 1)
xi~D | |B(x;)] xp»’;x,) prmoup v
(14)

{x, € B(x;)|c, = 1} and Bl(x;) = {x, € B(xi)|c, # 1}.
We can rewrite the first term in the right hand side of Equation
14 as:

Here, ¢; % 1 denotes that ¢, is not closer to 1. Let B"(x;) =

1

|B(x;)] Z (cicp) Lsup (2i, 2p)

XpEB(X;)

1
a2 (ol
xp€B(x;)
cp=1

+ § (Cicr) lSup (Zi7 Z'r')
x,€B(x;)
crl

s~ 1| Ple; =~ 1
i D Ci (ci )

ci~1|P(c; = 1)

_ 1 hx,
=BG {'B lEore

+ IBZ(Xi)\XWiLElm1

cpFl

[(Cicp) lsup (Zi ZP):| }P(Ci ~ 1)
= {P(C ~ 1)£orc

FPeE E
‘ cp%ll

(cicp) lsup (2, 2p)

}P(ci ~1)

< Plew 1){P(c ~1)Lore+ E

x;~D|c; =1

cpFl

(Cicp) lLsup (24, ZP):| }
(15)

Similarly, we can rewrite the second term in the right hand
side of Equation 14 as:
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1

E 1B« CiC, lSu Z;,Z
x;i~D | |B(x;)] Z (cicp) Lsup ( »)

xpEB(x;)

|: (C’icp) lsup (2, Zp)

= E

x;~Dlec; %1

S x,wgci:}él (Cicp) lSup (Zh Zp) (16)

By plugging the results shown in Equations 15 and 16 in
the right hand side of Equation 14, the theorem follows.

VII. THEORETICAL UNDERPINNINGS ON Lgy;

For the session encoder parameter set 6, the gradient of
Lsup Wrtto §; € 0 is given by:

8£5up - l 1 ) ({“)lsup (Zi, Zp)
90, R Z_: 1B(x;)] >, (acy) a6,

xp€B(x;)
(17)

A possible variant is the unweighted version of Lg,,,. This
loss and its corresponding gradient is given by:

Ly = Z‘B 3 > lsup(zizy)  (18)

XpE€B(x4)

_ 1 Olsup (2i,2p)
Ak xSl

Consider a scenario where the label corrector provides
highly confident predictions (¢ ~ 1) for most of the training
set sessions. By comparing Equations 17 and 19, we have the
result: LS"" ~ ags,,,, This result states that in this scenario,
after the tralnmg loop, both losses L, and L sy can produce
similar estimations for the parameter set 8. However, consider
another scenario where the label corrector does not provide
highly confident predictions for most of the training set ses-
sions. In this scenario, a large amount of session pairs which
are predicted to belong to the same class, actually belong to
different classes in the ground truth. From Equation 19, it is
clear that if we apply L& Sup for session representation learning
then, many sessions which belong to different classes in the
ground truth are pushed closer in the encoded representation
space, which leads to improper learning effect. However, from
Equation 17, we can infer that this improper learning effect is
reduced when we apply Lg,,;, due to the usage of session pair
weight c¢;c,.

Another attractive variant is to discard/filter those session
pairs (x;,x,) from the training loop which are predicted to
belong to the same class with a confidence falling below the
given threshold 7. To achieve this goal, we can design another
supervised contrastive loss which is given by:

Lhp =% Z |B S Leicy > 1) lsup (7i,7,)

xpEB(x;)
(20

Here, I(-) denotes the indicator function. The gradient for

this loss is given by:

aEfN

L R
up
20; ;

Z u ()
Z I(cicp > 7) s (2, 2) pa;z z)
xp€B (%) /
21

1)|

From Equation 21, we can infer that if (x;,x,) are predicted
to belong to the same class with low confidence (c;c, < 7)
then the Zgradlent value contributed by this pair which is given

alb“f’ is discarded. We analyze the gradient of Eg‘::p
by takmg expectatlon w.rt I(¢;cp, > 7), which is given by:

L:z[)

8£ft,

Sup
Lcicp>7) | O0;
H(cch>7') zf: Boa)| XPEZB%&)H (cicp > 1) %@?’ZP)
- %Z \B(lxm L2 ek > ) e
Z ‘ B ) eg(x P(cicy > 7) 815“”8(;“%) (22)

By using this result and by comparing Equations 22 and
17, we can make the following observations: In the scenario
where the label corrector does not provide highly confident
predictions for most of the training set sessions, we have that:

tr

sy R~ ags‘”‘ This approximation also holds
I(cicp>T)
when the label corrector provides highly confident predictions
for most of the training set sessions. This result states that in
both these scenarios, after the training loop, Lﬁgﬁfp stochasti-
cally produces similar estimations as Lgyp for the parameter
set 6. The performance of cht Su is influenced by the setting of
the hyper-parameter 7. Setting high values (7 =~ 1) can result
in filtering out most of the session pairs. As a consequence,
the session diversity challenge cannot be effectively addressed
which can lead to poor decision boundaries. Setting low values
(7 ~ 0.5) can result in pushing many sessions belonging to
opposite classes in the ground truth, closer in the encoded
representation space. Since the training set is imbalanced
and large, it becomes computationally challenging to identify
optimal setting for 7. However, Lg,;, elegantly overcomes
these challenges by employing c;c, as weights to modulate
the learning effect from low/high confident session pairs.
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