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Abstract

This paper studies bandit problems where an agent has access
to offline data that might be utilized to potentially improve the
estimation of each arm’s reward distribution. A major obsta-
cle in this setting is the existence of compound biases from
the observational data. Ignoring these biases and blindly fit-
ting a model with the biased data could even negatively af-
fect the online learning phase. In this work, we formulate this
problem from a causal perspective. First, we categorize the
biases into confounding bias and selection bias based on the
causal structure they imply. Next, we extract the causal bound
for each arm that is robust towards compound biases from
biased observational data. The derived bounds contain the
ground truth mean reward and can effectively guide the ban-
dit agent to learn a nearly-optimal decision policy. We also
conduct regret analysis in both contextual and non-contextual
bandit settings and show that prior causal bounds could help
consistently reduce the asymptotic regret.

Introduction

The past decade has seen the rapid development of con-
textual bandit as a legit framework to model interactive
decision-making scenarios, such as personalized recommen-
dation (Li et al. 2010), online advertising (Tang et al. 2013;
Avadhanula et al. 2021), and anomaly detection (Ding, Li,
and Liu 2019). The key challenge in a contextual bandit
problem is to select the most beneficial item (i.e. the cor-
responding arm or intervention) according to the observed
context at each round. In practice it is common that the agent
has additional access to logged data from various sources,
which may provide some useful information. A key issue is
how to accurately leverage offline data such that it can effi-
ciently assist the online decision-making process. However,
one inevitable problem is that there may exist compound bi-
ases in the offline dataset, probably due to the data collection
process, the existence of unobserved variables, the policies
implemented by the agent, and so on (Chen et al. 2023). As
a consequence, blindly fitting a model without considering
those biases will lead to an inaccurate estimator of the re-
ward distribution for each arm, ending up inducing a nega-
tive impact on the online learning phase.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

20438

To overcome this limitation and make good use of the of-
fline data for online bandit learning, we formulate our frame-
work from a causal inference perspective. Causal inference
provides a family of methods to infer the effects of ac-
tions from a combination of data and qualitative assumptions
about the underlying mechanism. Based on Pearl’s structural
causal model (Pearl 2009) we can derive a truncated factor-
ization formula that expresses the target causal quantity with
probability distributions from the data. Appropriately adopt-
ing that prior knowledge on the reward distribution of each
arm can accelerate the learning speed and achieve lower cu-
mulative regret for online bandit algorithms.

Previous studies along this direction (Zhang and Barein-
boim 2017; Sharma et al. 2020; Tennenholtz et al. 2021)
only focused on one specific bias and have not dealt with
compound biases in the offline data. It was shown in (Barein-
boim, Tian, and Pearl 2014) that biases could be classified
into confounding bias and selection bias based on the causal
structure they imply. Due to the orthogonality of confound-
ing and selection bias, simply deconfounding and estimat-
ing causal effects in the presence of selection bias using ob-
servational data is in general impractical without further as-
sumptions, such as strong graphical conditions (Correa and
Bareinboim 2017) or the accessibility of external unbiasedly
measured data (Bareinboim and Tian 2015). In this paper,
we address this limitation by non-parametrically bounding
the target conditional causal effect when confounding and
selection biases can not be mitigated simultaneously. We
propose two novel strategies to extract prior causal bounds
for the reward distribution of each arm and use them to effec-
tively guide the bandit agent to learn a nearly-optimal deci-
sion policy. We demonstrate that our approach could further
reduce cumulative regret and is resistant to different levels
of compound biases in offline data.

Our contributions can be summarized into three parts: 1)
We derive causal bounds for conditional causal effects un-
der confounding and selection biases based on c-component
factorization and substitute intervention methods; 2) we pro-
pose a novel framework that leverages the prior causal bound
obtained from biased offline data to guide the arm-picking
process in bandit algorithms, thus robustly decreasing the
exploration of sub-optimal arms and reducing the cumu-
lative regret; and 3) we develop one contextual bandit al-
gorithm (LinUCB-PCB) and one non-contextual bandit al-
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gorithm (UCB-PCB) that are enhanced with prior causal
bounds. We theoretically show under mild conditions both
bandit algorithms achieve lower regret than their non-causal
counterparts. We also conduct an empirical evaluation to
demonstrate the effectiveness of our method under the lin-
ear contextual bandit setting.

Background

Our work is based on Pearl’s structural causal model (Pearl
2009) which describes the causal mechanisms of a system
as a set of structural equations.

Definition 1 (Structural Causal Model (SCM) (Pearl 2009)).
A causal model M is a triple M = (U, V| F) where 1) U is
a set of hidden contextual variables that are determined by
factors outside the model; 2) V is a set of observed variables
that are determined by variables in U U V; 3) F is a set of
equations mapping from U x 'V to V. Specifically, for each
V € V, there is an equation v = fy(Pa(V'),uy) where
Pa(V) is a realization of a set of observed variables called
the parents of V, and uy is a realization of a set of hidden
variables.

Quantitatively measuring causal effects is facilitated with
the do-operator (Pearl 2009), which simulates the physical
interventions that force some variables to take certain val-
ues. Formally, the intervention that sets the value of X to x
is denoted by do(x). In a SCM, intervention do(x) is defined
as the substitution of equation z = fx(Pa(X),ux) with
constant X = x. The causal model M is associated with a
causal graph G = (V,E). Each node of V corresponds to a
variable of V in M. Each edge in &, denoted by a directed
arrow —, points from a node X € U U V to a different
node ¥ € V if fy uses values of X as input. The inter-
vention that sets the value of a set of variables X to x is
denoted by do(X = x). The post-intervention distribution
of the outcome variables P(y|do(x)) can be computed by
the truncated factorization formula (Pearl 2009),

(yldo(x)) = ] P(y|Pa(y

Yey

))x=x; ey

where §x—x means assigning attributes in X involved in the
term ahead with the corresponding values in x. The post in-
tervention distribution P(y|do(x)) is identifiable if it can be
uniquely computed from observational distributions P(V).

Confounding Bias occurs when there exist hidden vari-
ables that simultaneously determine exposure variables and
the outcome variable. It is well known that, in the absence
of hidden confounders, all causal effects can be estimated
consistently from non-experimental data. However, in the
presence of hidden confounders, whether the desired causal
quantity can be estimated depends on the locations of the un-
measured variables, the intervention set, and the outcome.
To adjust for confounding bias, one common approach is
to condition on a set of covariates that satisfy the backdoor
criterion. (Shpitser, VanderWeele, and Robins 2012) further
generalized the backdoor criterion to identify the causal ef-
fect P(y|do(x)) if all non-proper causal paths are blocked.
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Definition 2 (Generalized Backdoor Criterion (Shpitser,
VanderWeele, and Robins 2012)). A set of variables Z satis-
fies the adjustment criterion relative to (X, Y) in G if: (i) no
element in Z is a descendant in Gx of any W ¢ X lying on
a proper causal path from X to Y. (ii) all non-causal paths
in G from X to'Y are blocked by Z.

In Definition 2 Gx denotes the graph resulting from re-
moving all incoming edges to X in G, and a causal path from
anode in X to Y is called proper if it does not intersect X
except at the starting point. The causal effect can thus be
computed by controlling for a set of covariates Z.

P(y|do(x ZP y|x,z)P(z) )

Sample Selection Bias arises with a biased selection mech-
anism, e.g., choosing users based on a certain time or lo-
cation. To accommodate for SCM framework, we introduce
a node S in a causal graph representing a binary indicator
of entry into the observed data, and denote the causal graph
augmented with selection node S as G;. Generally speaking,
the target distribution P(y|do(x)) is called s-recoverable if
it can be computed from the available (biased) observational
distributions P(V|S = 1) in the augmented graph G;. To
recover causal effects in the presence of confounding and
sample selection bias, (Correa, Tian, and Bareinboim 2018)
studied the use of generalized adjustment criteria and in-
troduced a sufficient and necessary condition for recovering
causal effects from biased distributions.

Theorem 1 (Generalized Adjustment for Causal Effect
(Correa, Tian, and Bareinboim 2018)). Given a causal di-
agram G augmented with selection variable S, disjoint sets
of variables Y , X, Z, for every model compatible with G, we
have

P(y|do(x ZP yPx,2,8=1)P(S=1)  (3)

if and only if the adjustment variable set Z satisfies the four
criterion shown in (Correa, Tian, and Bareinboim 2018).

Instead of identifying causal effect in presence of se-
lection bias by adjustment, (Correa, Tian, and Bareinboim
2019) proposed a parallel procedure to justify whether a
causal quantity is identifiable and recoverable from selection
bias using axiomatical c-components factorization (Tian and
Pearl 2002). However, both techniques require strong graph-
ical condition to obtain the unbiased estimation of the true
conditional causal effect when both confounding and selec-
tion biases exist.

Basically, c-component factorization first partitions nodes
in G into a set of c-components, then expresses the tar-
get intervention in terms of the c-factors corresponding
to each c-component. Specifically, a c-component C' de-
notes a subset of variables in G such that any two nodes
in C are connected by a path entirely consisting of bi-
directed edges. A bi-directed edge indicates there exists un-
observed confounder(s) between the two connected nodes.
A c-factor Q[C](v) is a function that demonstrates the post-
intervention distribution of C' after conducting interventions
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on the remaining variables V\C' and is defined as

QIC)(v) = =3 1 PeelPate

U veC

P(cfdo(v\c)) u,) P(u

where Pa(v) and u, denote the set of observed and unob-
served parents for node V. We explicitly denote Q[C](v) as
Q[C] and list the factorization formula.

Theorem 2 (C-component Factorization (Tian and Pearl
2002)). Given a causal graph G, the target intervention
P(y|do(x)) could be expressed as a product of c-factors as-
sociated with the c-components as follows:

_ Y e - ¥ e

Cc\Y Cc\Y i=1

P(y|do(x “

where X, 'Y C 'V could be arbitrary sets, C = An(Y g, x
denotes the ancestor node set of Y in sub-graph G\ x, and
C4,...,Cy are the c-components of G¢.

(Bareinboim, Tian, and Pearl 2014) showed that
P(y|do(x)) is recoverable and could be computed by Equa-
tion 4 if each factor Q[C;] is recoverable from the observa-
tional data. Accordingly, they developed the RC algorithm

to determine the recoverability of each c-factor.

Related Works

Causal Inference under Confounding and Selection
Biases. (Bareinboim, Tian, and Pearl 2014) firstly studied
the use of covariate adjustment for simultaneously dealing
with both confounding and selection biases based on the
SCM. (Correa and Bareinboim 2017) developed a set of
complete conditions to recover causal effects in two cases:
when none of the covariates are measured externally, and
when all of them are measured without selection bias.
(Correa, Tian, and Bareinboim 2018) further studied a
general case when only a subset of the covariates require
external measurement. They developed adjustment-based
technique that combines the partial unbiased data with the
biased data to produce an estimand of the causal effect in the
overall population. Different from these works that focus on
recovering causal effects under certain graph conditions, our
work focuses on bounding causal effects under compound
biases, which is needed in various application domains.

Combining Offline Evaluation and Online Learning in
Bandit Setting. Recently there are research works that fo-
cus on confounding issue in bandit setting (Bareinboim, For-
ney, and Pearl 2015; Tennenholtz et al. 2021). It is shown in
(Bareinboim, Forney, and Pearl 2015) that in MAB prob-
lems, neglecting unobserved confounders will lead to a sub-
optimal arm selection strategy. They also demonstrated that
one can not simulate the optimal arm-picking strategy by a
single data collection procedure, such as pure offline or on-
line evaluation. To this end, another line of research works
considers combining offline causal inference techniques and
online bandit learning to approximate a nearly-optimal pol-
icy. (Tennenholtz et al. 2021) studied a linear bandit problem
where the agent is provided with partially observed offline

)

20440

(" )

Offline Evaluation
Causal Model

Logged Data Causal Bounds

Online Bandit Learning

+ A estimate .

+ [ngi-l'ufl\l_l] \ estimate,

+ estimate ‘

Online Reward
ArmPool Learning Distribution

Causal
Bounds

User
\l

/

Figure 1: An illustration graph of our proposed framework.

data. (Zhang and Bareinboim 2017, 2021) derived causal
bounds based on structural causal model and used them to
guide arm selection in online bandit algorithms. (Sharma
et al. 2020) further leveraged the information provided by
the lower bound of the mean reward to reduce the cumu-
lative regret. Nevertheless, none of the bounds derived by
these methods are based on a feature-level causal graph ex-
tracted from the offline data. (Li et al. 2021; Tang and Xie
2021) proposed another direction to unify offline causal in-
ference and online bandit learning by extracting appropri-
ate logged data and feed it to online learning phase. Their
VirUCB-based framework mitigates the cold start problem
and can thus boost the learning speed for a bandit algorithm
without any regret cost. However, none of those proposed
algorithms take selection bias and confounding bias simul-
taneously into consideration during offline evaluation phase.

Algorithm Framework

An overview of our framework is illustrated in Figure 1. Our
algorithm framework leverages the observational data to de-
rive a prior causal bound for each arm to mitigate the cold
start issue in online bandit learning, thus reducing the cu-
mulative regret. In the offline evaluation phase, we call our
bounding conditional causal effect (BCE) algorithm (shown
in Algorithm 1) to obtain the prior causal bound for each
arm given a user’s profile. Then in the online bandit phase,
we apply adapted contextual bandit algorithms with the prior
causal bounds as input.

Let C € C denote the context vector, where C denotes the
domain space of C. We use Y to denote the reward variable
and X € X to denote the intervention variables. At each
time ¢ € [T'], a user arrives and the user profile c; is revealed
to the agent. The agent pulls an arm a; with features x,,
based on previous observations. The agent then receives the
reward Y; and observes values for all non-intervened vari-
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ables. We define the the expected mean reward of pulling an
arm a with with feature value x,, given user context c as the
conditional causal effect shown below:
Ug,e = E[Y]do(X = x,), c] 5)
When the offline data are available, we can leverage them
as prior estimators of the reward for each arm to reduce ex-
plorations in the online phase. However, under the circum-
stances that the causal effect is either unidentifiable or non-
recoverable from the observational data, blindly using the
observational data might even have a negative effect on the
online learning phase. Our approach is to derive a causal
bound for the desired causal effect from the biased obser-
vational data. We will further show even when the observa-
tional data could only lead to loose causal bounds, we can
still guarantee our approach is no worse than conventional
bandit algorithms.

Deriving Causal Bounds under Confounding
and Selection Biases

In this section, we focus on bounding the effects of con-
ditional interventions in the presence of confounding and
sample selection biases. To tackle the identifiability issue
of a conditional intervention P(Y = y|do(x), c¢), the cond-
identify algorithm (Tian 2004) provides a complete proce-
dure to compute conditional causal effects using observa-
tional distributions.
P, X(ya C)
P(Y = y|do(x),c) = Px(ylc) = P(0) ©)
where Py (y|c) is the abbreviated form of the conditional
causal effect P(Y = y|do(x), c). (Tian 2004) showed that
if the numerator Py(y,c) is identifiable, then Py (y|c) is
also identifiable. In the contextual bandit setting, because
none of the variables in C is a descendant of variables in
X, the denominator Py(c) can be reduced to P(c) follow-
ing the causal topology. Since P(c) is always identifiable
and can be accurately estimated, we do not need to consider
the situation where neither Px(y,c) nor Px(c) is identifi-
able but Px(y|c) is still identifiable. Thus the conditional
causal effect Px(y|c) in Equation 6 is identifiable if and
only if Py (y,c) is identifiable. However, the cond-identify
algorithm (Tian 2004) is not applicable for the scenario with
the presence of selection bias.

Algorithm 1 shows our algorithm framework of bounding
conditional causal effects under confounding and selection
biases. We develop two methods, c-component factorization
and substitute intervention, and apply each to derive a bound
for conditional causal effect separately. We then compare the
two causal bounds and return the tighter upper/lower bound.
Specifically, lines 5-10 in Algorithm 1 decompose the tar-
get causal effect following c-component factorization and
recursively call our RC* algorithm (shown in Algorithm 2)
to bound each c-factor. Lines 11-15 search over recoverable
intervention space and find valid substitute interventions to
bound the target causal effect. Lines 16-18 compare two de-
rived causal bounds and take the tighter upper/lower bound
as the output causal bounds. We also include discussions re-
garding the assumptions on causal graph in (Huang and Wu
2023).
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Algorithm 1: Bounding Conditional Causal Effect
1: function BCE(x, c,y,G,H)

2: Input: Intervention variables X = x, context vector
C = c, outcome variable Y = y, causal graph G.

3: Output: Causal bound [Lx ¢, Ux,c] of the conditional
intervention Px(y|c).

4: Imitialization: [L,, U,] = [0,1],[L,,, U, = [0, 1]

5: // C-component Factorization

1

6: Decompose Px(y,c) = > p\(v,cy [1iz1 @[Ds] fol-
lowing Equation 4.

7: for each D; do

8:  Lgm,),Ugm,) =RC*D;, P(v|5 =1),G)

9: end for

10: Update L, U4 according to Theorem 3.

11: // Substitute Intervention

12: D = FindRSI(x, ¢, y,G)

13: if D # ¢ then

14:  Update L,,, U, according to Theorem 4.

15: end if

16: // Comparing Bounds

17: Calculate estimated values Ly, L., U, U,, based on H.

18: return Ly = max{f/q,f/w}, Ug,c = min{Uq, Uw}

Bounding via C-component Factorization

To derive the causal bound based on c-component factor-
ization, we decompose the target intervention into c-factors
and call RC* algorithm to recover each c-factor. The RC*
algorithm shown in Algorithm 2 is designed based on the
RC algorithm in (Correa, Tian, and Bareinboim 2019) to
accommodate for non-recoverable situations. When the c-
factor Q[E] is recoverable, the RC* algorithm returns an ex-
pression of Q[E] using biased distribution P(v|S = 1).

Specifically, lines 4-6 in Algorithm 2 marginalize out the
non-ancestors of E: U .S since they do not affect the recov-
erability results. From Lemma 3 in (Bareinboim and Tian
2015), each c-component in line 7 is recoverable since none
of them contains ancestors of S. Line 13 calls the Iden-
tify function proposed by (Tian and Pearl 2003) that gives a
complete procedure to determine the identifiability of Q[E].
When QIE] is identifiable, Identify(E, C;, Q[C;]) returns a
closed form expression of Q[E] in terms of Q[C;]. In line
15, if none of the recoverable c-components C;; contains E,
we replace the distribution P by dividing the recoverable
quantity [ [, Q[C;] and recursively run the RC* algorithm
on the graph G\ c. Under certain situations where line 8
in RC* Algorithm fails (C' = (), the corresponding Q[E]
can not be computed from the biased observational data in
theory. These situations are referred to as nonrecoverable sit-
uations. We address this nonrecoverable challenge by non-
parametrically bounding the targeted causal quantity. In this
case, RC* returns a bound [Lqg), Ugg)] for Q[E]. The
bound for Py(y,c) is derived by summing up the estima-
tor/bounds of those c-factors following Equation 4.

Note that in line 9 of RC* algorithm, we bound the target
c-component by [0, 1] since under semi-Markovian models
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Algorithm 2: RC* Algorithm

1: function RC*(E, P, G)

2: Input: E a c-component, P a distribution and G a causal
graph.

Output: Causal bound [Lgg), Ugm)] for Q[E].

if V\(An(E) U An(S)) # ¢ then

end if
Let C1, ..., C} be the c-components of G that contains
no ancestors of S and C' = U, C;.
if C = () then
Bound Q[E] with UQ(E) =1, LQ(E) =0.

AN A

10:  return LoE), UgE)

11: end if

12: if E is a subset of some C; and Identify(E, C;, Q[C;])
does not return FAIL then

13:  return LQ(E) = UQ(E) = Identify(E, C;, Q[C;])

14: end if -

15: return RC*(E, m,g\,\c)

it is challenging to find a tight bound for Q[E] when C = ().
One future direction is to further apply a non-parametric
bounding technique similar to (Wu, Zhang, and Wu 2019).
That is, choosing certain probability distributions in the trun-
cated formula that are the source of unrecoverability, and set
specific domain values for a carefully chosen variable set to
allow these distributions achieve their maximum/minimum
values. Finally we list the causal bounds derived from call-
ing RC* algorithm in the follow Theorem:

Theorem 3 (Causal Bound from RC* algorithm). Given a
conditional intervention Py (y|c), the causal bounds derived
by calling RC* algorithm for each c-factor are:

l
Ly= Y [[Zawy/Px(c)
D\{Y,C}i=1
l @)
U= > [[Uaw,/Pxlc)
D\{Y,C}i=1

Bounding via Substitute Interventions

From previous discussion we find that RC* algorithm may
return a loose bound when we fail to recover most of the
c-factors. In order to obtain a tight causal bound that is
robust under various graph conditions, we develop another
novel strategy to bound Px(y, c). Our key idea is to search
over the substitute recoverable interventions with a larger
intervention space. Note that for a variable set W such
that W N X () in the contextual bandit setting, we
can perform marginalization on W and derive Px(y, c)
> -w Px(y, clw)P(w). We can further bound Px(y, c) by

Px ) < Px ) -
(y,¢) < max Px(y,c[w”)

. . ®)
>
Px(y,€) 2 min Px(y, c|w")

return RC*(E, 3\ (an®)uan(s)) > G(an(®)uan(s)))
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We then investigate whether the action/observation ex-
change rule of do-calculus (Pearl 2009) and the correspond-
ing graph conditions could be extended in the presence of
selection bias and list the results in the following lemma.

Lemma 1 (Action/Observation Rule under Selection Bias).
If the graphical condition (Y 1L Z,S|X, W) sz 1S sat-
isfied in G, the following equivalence between two post-

interventional distributions holds:

P(yldo(x), do(w), 2, S = 1) = P(y|do(x), Wz, 5 = 1)
©))

where G, represents the causal graph with the deletion of

both incoming and outgoing arrows of X and Z respectively.

Z(W) is the set of Z-nodes that are not ancestors of vari-
ables in W in Gx.

Following the general action/observation exchange rules
in Equation 9, if (Y,C L W, S|X)¢_ . we can replace
Py (y, c|lw*) with Py w~(y,c) and derive the bound for
Py (y, c) as shown in Theorem 4.

Theorem 4 (Causal Bound with Substitute Interventions).
Given a set of variables corresponding to recoverable sub-
stitute interventions: D = {W|Px w(y, ) is recoverable},
the target conditional intervention Py (y|c) is bounded by

Lo = Qg i, P )/ Bl
Vo = 00 0, Do () 1(€)

We list our procedure of finding all the recoverable substi-
tute interventions in Algorithm 3. Basically the main func-
tion FindRSI in Algorithm 3 returns a set containing all ad-
missible variables, each of which corresponding to a recov-
erable intervention with a larger intervention space.

Next, we give an illustration example on how to run our
BCE algorithm to get prior causal bounds. Figure 2 shows
a causal graph constructed from offline data, where nodes
U1,Usy and X1, X5 depict user features and item features re-
spectively, Y denotes the outcome variable, S denotes the
selection variable, and I; denotes an intermediate variable.
The dashed node C; denotes the confounder that affects both
I; and Y simultaneously. To bound the conditional causal

Algorithm 3: Finding Recoverable Substitute Interventions

1: function FindRSI(x, c,y, G)
2: Input: Causal graph G, target intervention P (y, c).

3: Output: A valid variable set D = {W|Px w(y,c) is
recoverable and could be expressed in terms of biased
observational distributions following Equation 3}.

4: Initialize: D < (.

5: for all ' W such that W N X = (), starting with the
smallest size of W do

6: if a valid adjustment set can be found according to

Theorem 1 then

7: D=DU{W}

8: endif

9: end for
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Figure 2: Causal graph for synthetic data.

effect pu, o, (y|u1,us2) via c-component factorization, we
first identify the set D = An(Y)g,,x = {Y,U1,Uz2}. The
target intervention could be expressed as

DPzy,x, (y‘uhu?) = DPz;,22 (y7u17u2)/p(u17u2)
= (Q[Y]- Q[U1] - Q[U2])/p(u1, uz2)

We then call RC* algorithm to bound each c-component and
return the bound for each arm according to Theorem 3. For
bounding causal effects via substitute interventions, we call
FindRSI to find a valid variable set D = {I }. According to
Theorem 4, we can obtain the bound for each arm.

(11

Online Bandit Learning with Prior Causal
Bounds

In this section we show how to incorporate our derived
causal bounds to online contextual bandit algorithms. We
focus on the stochastic contextual bandit setting with linear
reward function. We define the concatenation of user and
arm feature as Xe, o = [Ct, Xq] € R? when the agent picks
arm a based on user profile ¢, attime ¢ € [T'] and use its sim-
plified notion x; , to be consistent with previous work like
LinUCB. Under the linear assumption, the binary reward is
generated by a Bernoulli distribution Y, ~ Ber((0,xy,,))
parameterized by 6. Let a; = argmax, 4 E[Y,], the ex-
pected cumulative regret up to time 7" is defined as:

T

E[R(T)] =D (0, %10-) — > _E[Y,,]

t=1 t=1

At each round the agent pulls an arm based on the user con-
text, observes the reward, and aims to minimize the expected
cumulative regret E[R(T")] after 7' rounds. We next conduct
regret analysis and show our strategy could consistently re-
duce the long-term regret with the guide of a prior causal
bound for each arm’s reward distribution.

LinUCB Algorithm with Prior Causal Bounds

LinUCB (Chu et al. 2011) is one of the most widely used
stochastic contextual bandit algorithms that assume the ex-
pected reward of each arm a is linearly dependant on its
feature vector x; , with an unknown coefficient 6, at time
t. We develop the LinUCB-PCB algorithm that includes a
modified arm-picking strategy, clipping the original upper
confidence bounds with the prior causal bounds obtained
from the offline evaluation phase. Algorithm 4 shows the
pseudo-code of our LinUCB-PCB algorithm. The truncated
upper confidence bound shown in line 10 of Algorithm 4

Algorithm 4: LinUCB algorithm with Prior Causal Bounds
(LinUCB-PCB)

1: Input: Time horizon T', arm set A, prior causal bounds
{[La,c:Uaicltacefacy a € RT.

2: fort=1,2,3,..., 7 do

3:  Observe x;, € R¢ for user profile ¢; and every arm

a
4 fora € A do

5 if a is new then

6: Aa —I4, b, < 04x1

7: end if

8: 0, — A;'b,

9: UCB,(t) + 0 %10 + oy /xF A %10
10: UCB,(t) + min {UCB,,,(t), Uger }

11: //Truncated UCB

12:  end for

13:  Pull arm a; < argmax,e AUCB,(t), and observe a
reward 1y g,

14 A, — Ao, + Xt,atXtT,at’ by, <+ ba, + 7t.0,%Xt.0,

15: end for

contains strong prior information about the true reward dis-
tribution implied by the prior causal bound, thus leading to a
lower asymptotic regret bound. We include the proof details
of Theorems 5 and 6 in (Huang and Wu 2023).

Theorem 5. Let ||x||2 define the L-2 norm of a context vec-
torx € R? and

0 e {ACHU 2> (8., 2) [acll2

The expected regret of LinUCB-PCB algorithm is bounded
by:
Ry < \/2Tdlog(1 + TL?/(d)))
X 2(VAM + \/2log(1/5) + dlog(1 + TL?/(d))))

where M denotes the upper bound of ||0,||2 for all arms,
A denotes the penalty factor corresponding to the ridge re-

gression estimator 6,,.

We follow the standard procedure of deriving the ex-
pected regret bound for linear contextual bandit algorithms
in (Abbasi-Yadkori, Pal, and Szepesvari 2011) and (Latti-
more and Szepesvari 2020). We next discuss the potential
improvement in regret that can be achieved by applying
LinUCB-PCB algorithm in comparison to original LinUCB
algorithm.

Theorem 6. If there exists an arm a such that U, ., <
(0,%xq+ c,) at a round t € [T], LinUCB-PCB is guaranteed
to achieve lower cumulative regret than LinUCB algorithm.

We further define the total number of sub-optimal arms
implied by prior causal bounds as

Now=

a,ce{AC}

]an,c7<9:xa*.c><O

Note that the value of IV, depends on the accuracy of the
causal upper bound for each arm. This is because if the
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estimated causal bounds are more concentrated, that is, U, ¢
is close to (0,x,.c) for each a,c € {A,C}, there will be
more arms whose prior causal upper bound is less than the
optimal mean reward, thus NV, will increase accordingly.

A large N, value implies less uncertainty regarding the
sub-optimal arms implied by prior causal bounds. As a
result there are in general less arms to be explored and the
L value will decrease accordingly, leading to a more signifi-

cant improvement by applying LinUCB-PCB algorithm.

Extension We have also investigated leveraging the devel-
oped causal bounds to further improve one state-of-the-art
contextual bandit algorithm (Hao, Lattimore, and Szepes-
vari 2020) and one classical non-contextual bandit algorithm
(Lattimore and Szepesvari 2020). We include our developed
OAM-PCB and UCB-PCB algorithms as well as the corre-
sponding regret analysis in (Huang and Wu 2023).

Empirical Evaluation

In this section, we conduct experiments to validate our
proposed methods. We use the synthetic data generated fol-
lowing the graph structure in Figure 2. We generate 30000
data points following the conditional probability table in
(Huang and Wu 2023) to simulate the confounded and
selection biased setting. After conducting the preferential
exclusion indicated by the selection mechanism, there are
approximately 15000 data points used for offline evaluation.

Offline Evaluation We use our BCE algorithm to obtain the
bound of each arm based on the input offline data and com-
pare the causal bound derived by the algorithm with the es-
timated values from two baselines: an estimate that is de-
rived based on Equation 2 which only takes into account
confounding bias (Biased), and a naive conditional proba-
bility estimate derived without considering both confound-
ing and selection biases (CP). We further report the causal
bounds and the estimated reward among 16 different values
of the context vector in Figure 3. The comparison results
show our BCE algorithm contains the ground-truth causal
effect (denoted by the red lines in the figure) for each value
of the context vector. On the contrary, the estimated values
from CP and Biased baselines deviate from the true causal
effect in the presence of compound biases. The experimental
results reveal the fact that neglecting any bias will inevitably
lead to an inaccurate estimation of the target causal effect.

Online Bandit Learning We use 15000 samples from
the generated data to simulate the online bandit learn-
ing process. In Figure 4, we compare the performance of
our LinUCB-PCB algorithm regarding cumulative regret
with the following baselines: LinUCB, LinUCB _Biased and
LinUCB_CP, where LinUCB_Biased and LinUCB_CP are
LinUCB-based algorithms initialized with the estimated re-
ward for each value of the context vector (arm) from the Bi-
ased and CP baselines in the offline evaluation phase. Each
curve denotes the regret averaged over 100 simulations to
approximate the true expected regret. We find that LinUCB-
PCB achieves the lowest regret compared to the baselines.
Moreover, both LinUCB_Biased and LinUCB_CP perform

20444

1.0 prepre e e e

—— BCE ® CP
3] —— Truth L ] Biased
3 08 s
= [ ]
m °
— [ ]
g 0.6 - s
< L4 °
O G E E
T 04f R
s
£
% 02} §

00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2345678 910111213141516

Context Vector Index
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Figure 4: Comparison results for contextual linear bandit.

worse than the LinUCB baseline, which is consistent with
the conclusion from our theoretical analysis that blindly uti-
lizing biased estimates from offline data could negatively
impact the performance of online bandit algorithms.

Conclusion

This work studies bounding conditional causal effects in the
presence of confounding and sample selection biases using
causal inference techniques and utilizes the derived bounds
to robustly improve online bandit algorithms. We present
two novel techniques to derive causal bounds for condi-
tional causal effects given offline data with compound bi-
ases. We develop contextual and non-contextual bandit al-
gorithms that leverage the derived causal bounds and con-
duct their regret analysis. Theoretical analysis and empiri-
cal evaluation demonstrate the improved regrets of our al-
gorithms. In future work, we will study incorporating causal
bounds into advanced bandit algorithms such as state-of-the-
art linear contextual bandits (Hao, Lattimore, and Szepes-
vari 2020), contextual bandits under non-linearity assump-
tion (Zhou, Li, and Gu 2020), and bandits with adversarial
feedback (Luo et al. 2023), to comprehensively demonstrate
the generalization ability of our approach.
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