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THE STRUCTURE OF ARBITRARY CONZE-LESIGNE SYSTEMS

ASGAR JAMNESHAN, OR SHALOM, AND TERENCE TAO

ABSTRACT. Let I be a countable abelian group. An (abstract) I-system X - that is, an
(abstract) probability space equipped with an (abstract) probability-preserving action
of I - is said to be a Conze-Lesigne system if it is equal to its second Host-Kra-Ziegler
factor Z2(X). The main result of this paper is a structural description of such Conze-
Lesigne systems for arbitrary countable abelian I', namely that they are the inverse
limit of translational systems G,,/A,, arising from locally compact nilpotent groups G,
of nilpotency class 2, quotiented by a lattice A,,. Results of this type were previously
known when I was finitely generated, or the product of cyclic groups of prime order.
In a companion paper, two of us will apply this structure theorem to obtain an inverse
theorem for the Gowers U3(G) norm for arbitrary finite abelian groups G.

1. INTRODUCTION

Furstenberg’s ergodic-theoretic proof in [L0] of Szemerédi’s theorem [44] pioneered
an influential synergy between ergodic theory and arithmetic combinatorics that con-
tinues to thrive in contemporary mathematics. Szemerédi’s theorem asserts that a set
E C Zsuch that

limsup |[EN{-N,...,N}|
Nooo 2N +1
contains arbitrarily long arithmetic progressions. By establishing a correspondence
principle, Furstenberg showed that Szemerédi’s theorem is equivalent to the multiple
recurrence asymptotics
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for any measure-preserving transformation T on a probability space (X, 1) and every
subset A in X with u(A) > 0. Furstenberg’s novel approach laid the cornerstone for the
development of ergodic Ramsey theory, giving rise to a series of intricate extensions
of Szemerédi’s theorem. These extensions include the multidimensional Szemerédi
theorem [[2], the density Hales-Jewitt theorem [[3], and the polynomial Szemerédi
theorem [B]. It is noteworthy that alternative proofs for these extensions were discov-
ered only much later.

From an ergodic theoretic perspective, Furstenberg’s multiple recurrence theorem
stands as a significant extension of Poincaré’s single recurrence theorem [37]. While
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Poincaré’s theorem can be proven succinctly and directly in modern treatments,
Furstenberg’s theorem is based on a structure theory, as initially developed by Fursten-
berg in [10] and concurrently by Zimmer in [53,54]. At the heart of this theory lies the
Furstenberg-Zimmer structure theorem, which decomposes any measure-preserving
system into a chain of more well-behaved subsystems.

Non-conventional ergodic averages

1 N k '
(1.2) NT1 > [l fieT™

n=-N i=1

serve as the functional counterparts to the multiple recurrence events in equation ([L.1]).

This parallels how the conventional averages 2Nl o Zf:’:_ nJ o T" in von Neumann’s
mean ergodic theorem [50] are the functional analogue of single recurrence events in
Poincaré’s recurrence theorem. Von Neumann’s mean ergodic theorem establishes the
I?-limit of these conventional averages and characterizes this limit as the projection
onto the subspace of T-invariant functions. For a significant duration, an open question
pertained to the existence of an analogue of von Neumann’s mean ergodic theorem for
non-conventional ergodic averages.

Partial progress in this direction was obtained by Conze and Lesigne in a series of
papers [[}-9]. They proved the convergence of the non-conventional ergodic averages
(L2) in the particular case k = 3 (under the additional assumption that the underlying
system is totally ergodic). Moreover, they characterized the I?-limit by identifying a
subsystem of the underlying Z-systems which is characteristic for these averages, that
is, the non-conventional average of the projection of the functions f; on the I?-subspace
of this subsystem has the same limit as the non-conventional average of the original
functions f;.

Much later, a complete answer was provided independently by breakthrough works
of Host and Kra [24] and Ziegler [51]. They confirmed the I?-convergence of the non-
conventional ergodic averages ([.Z) by a significant refinement of the Furstenberg-
Zimmer structure theory that identified a finer hierarchy of subsystems of the original
system which effectively control or are characteristic for these averages for all k. In this
refined Host-Kra-Ziegler tower, each k-th subsystem is referred to as the “factor of or-
der k”, while the order 2 factor corresponds to the subsystem identified by Conze and
Lesigne. Their deep insight lies in an algebraic and geometric classification of these
order k factors, identifying them as inverse limits of systems formed by translations on
nilmanifolds of the form G,,/A,,, where G, is a nilpotent Lie group of nilpotency class
k,and A, < G, denotes a lattice - a discrete and cocompact subgroup of G,,.

In a parallel development, Gowers introduced a new influential Fourier-analytic
proof of Szemerédi’s theorem in [[16, [17] that represents a substantial generalization
of Roth’s approach [BY] in the case of 3-term progressions. It marked the inception of
the field of higher-order Fourier analysis, with the Gowers U* norms on finite abelian
groups G taking center stage. The U¥ norm essentially quantifies the normalized av-
erage of 2K-fold autocorrelations of functions f : G — C over arithmetic cubes of the
form (x + @ - h)geqo 1 for h € GO, A crucial aspect of the Gowers norms within
additive combinatorics and their applications to analytic number theory lies in their
control over certain "bounded-complexity” multilinear forms on finite abelian groups
such as forms associated with arithmetic progressions. To harness the control over
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these multilinear forms, one must solve the inverse problem for the Gowers unifor-
mity norms, which, roughly speaking, asks for an algebraic classification of 1-bounded
functions f : G — C with a large U* norm for all k > 3 (where the cases of k = 1 and
k = 2 can be readily derived from basic Fourier analysis). A foundational achievement
in higher-order Fourier analysis credited to Green, the third author, and Ziegler in their
work [[I8] is the resolution of the inverse problem concerning the Gowers U* norms for
cyclic groups. Their inverse theorem asserts that a function with positive Gowers U¥*
norm exhibits correlation with a function derived from a nilmanifold (having nilpo-
tency class k). The Green-Tao-Ziegler inverse theorem has important applications
in analytic number theory such as establishing the correct asymptotics for primes in
arithmetic progressions [19]. Despite significant progress in important special cases,
an inverse theorem for the Gowers UX norms on arbitrary finite abelian groups is cur-
rently open for all k > 4. The k = 3 case was resolved by two of us in the companion
paper [33].

The heuristic analogy between the Host-Kra-Ziegler structure theorem and the
Green-Tao-Ziegler inverse theorem is remarkably compelling. There is substantial
support for this analogy. Host and Kra characterized the order k factors of Z-systems
by the Host-Kra-Gowers seminorms of order k + 1, which serve as an infinitary coun-
terpart to the Gowers uniformity norms. In this context, the Host-Kra-Ziegler struc-
ture theorem can be viewed as a resolution of the inverse problem associated with these
Host-Kra-Gowers seminorms for Z-actions.

The present paper and its companion paper [B3] contribute to these developments,
specifically enhancing our comprehension of the above heuristic analogy. In this pa-
per, we establish a Host-Kra-type structure theorem for arbitrary abelian systems of or-
der two, also called Conze-Lesigne systems. Questions of recurrence and convergence
of non-conventional ergodic averages are not addressed in this paper. However, the
results of this paper will be applied in the companion paper [33] to give a qualitative
proof of the inverse theorem for the Gowers uniformity norms U3(G) for arbitrary finite
abelian groups G via a correspondence principle.

1.1. A note on probability space conventions. For technical reasons we will have
to work in this paper with three slightly different categories of probability spaces, as
well as their corresponding categories of measure-preserving systems associated to a
group I' (which will be countablel in most, though not all, of the contexts we will con-
sider):

(i) The category of concrete probability spaces (X, X, 1), in which one can mean-
ingfully talk about individual points x in the space X, and maps between these
spaces are defined in a pointwise fashion. One can then form the category of
concrete T-systems (X, X, u, T) of concrete probability spaces equipped with a
pointwise defined measure-preserving action T: y — T of I. Among other
things, concrete probability spaces are a convenient category in which to study
group extensions by measurable (but not necessarily continuous) cocycles.

n this paper we use “countable” as an abbreviation for “at most countable”.
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(ii) The category of probability algebras? (X, u), in which one has “quotiented out
all the null sets”; as a consequence, one can no longer meaningfully refer to
individual points, and maps between spaces are typically only defined up to
almost everywhere equivalence. One can then form the category of abstract
T-systems (X, u, T) of probability algebras equipped with an abstract measure-
preserving action T of I'. The category of abstract I'-systems is the most natural
category in which to discuss factors of a system, such as the Host-Kra-Ziegler
or Conze-Lesigne factors, as well as to discuss the isomorphic nature of two
systems.

(iii) The category of compact probability spaces (X, F, X, u), in which the probabil-
ity spaces are now compact Hausdorff (with the measure ¢ being a (Baire-)
Radon measure), and the maps between spaces are now additionally required
to be continuous. This then forms the category of compact I'-systems (X, F, X,
u, T) of compact probability spaces equipped with a continuous measure-
preserving action T of I'. The category of compact I'-systems is the most natu-
ral category to discuss transitivity properties of a group action, or to compute
the stabilizer of such an action at a point.

For the convenience of the reader we review the definition of these categories, as
well as the relationships between them that we will need, in Appendix [Al. Very roughly
speaking, as long as one is in the “countable” setting in which the acting group I' is
countable, the concrete probability spaces are Lebesgue spaces, the probability algebras
are separable, and the compact Hausdorff probability spaces are metrizable, then these
three categories are “morally interchangeable”, largely thanks to the ability to construct
topological models of abstract I'-systems (and continuous representations of factor maps
between such systems); however more care needs to be taken in “uncountable” settings
when one or more of the above assumptions is not in force, and even in the countable
setting there are some subtleties, particularly with regard® to “near-actions” on con-
crete probability spaces that are only defined up to almost everywhere equivalence (see
Appendix [Al for the definition of near-actions), and are thus only genuine actions in an
abstract sense. Most of our arguments will take place within a countable setting (and
are already new in this case), but through appropriate use of inverse limits our main
result will also be applicable for inseparable systems. For a first reading we recom-
mend that the reader ignore the fine technical distinctions between these categories,
or between the countable and uncountable cases.

Traditionally, the literature has been focused on concrete Lebesgue I'-systems. How-
ever, it will be convenient to phrase our main results in the setting of abstract (and

2In the language of [[[5, Chapter 2], probability algebras are referred to as measure algebras, and (separa-
ble) abstract I'-systems are referred to as measure-preserving dynamical systems. In the language of [32], prob-
ability algebras are essentially abstract probability spaces with the additional property that all non-empty
abstract subsets have positive measure.

3See in particular the erratum [23] to [28, Chapter 19] for further discussion of this particular subtlety.

4Furthermore, even if one is only interested in applying our results for separable systems, there is one step
in the argument in which a potentially inseparable system can arise, namely when one uses Gelfand duality
to construct a (possibly inseparable) topological model of a (separable) system, which we call a Koopman
model; see Appendix [A-4. While it is possible with significant further effort to demonstrate that this model is
in fact separable in the specific context being considered (cf., [23]), it shortens the arguments to just proceed
without verifying separability, as this property turns out to not be needed in the proofs.
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not necessarily separable) I'-systems, although thanks to the aforementioned model-
ing results one can often reformulate these results in the other categories mentioned,
particularly in the separable case. In particular, the factor relation Y < X between two
I-systems X, Y (as defined in Appendix [A]) will be understood to be in the abstract sense
unless otherwise specified, even when the systems X, Y can be viewed as concrete or
compact I'-systems; similarly for the notion of an inverse limit of factors. While the
factor maps 7 : X — Y in this paper are initially only defined abstractly, in practice
they can often be upgraded to concrete measurable maps by using tools such as those
in Proposition [A.2.

Remark 1.1. If we restrict ourselves to separable probability algebras, it may be possible
to replace the category of probability algebra dynamical systems with the category of
Lebesgue probability spaces equipped with near-actions. However, in order to do this,
it is necessary to implement estimates similar to those established in [25] to ensure that
near-actions of Polish groups can be accurately described by a continuous action on a
separable model.

We isolate some key special examples of compact I'-systems (which can then be
viewed as concrete or abstract I'-systems by forgetting some of the structure):

Definition 1.2 (Translational and rotational I'-systems). Let I be a group. A transla-
tional T-system is a compact I'-system of the form G/A = (G/A,u, T), where G = (G, -)
is a locally compactf unimodularf? group, A is a closed cocompact subgroup of G, u is
the Haar probability measure on the compact quotient space G/A, and the action T is
given by T"x = ¢(y)x for ally € T, x € G/A, for some homomorphism ¢ : ' — G. If
G is a compact abelian group (which we now write additively as Z = (Z,+)) and A is
trivial, we refer to the translational I'-system Z = (Z, u, T) as a rotational T'-system.

Among the translational I'-systems G/A, we single out for special mention the I'-
nilsystems of order at most k for a given k > 1, in which G is a nilpotent Lie group of
nilpotency class at most k, and A a lattice (i.e., a discrete cocompact subgroup) of G.
For instance, rotational I'-systems are inverse limits of I'-nilsystems of order at most 1.

1.2. Host-Kra-Ziegler factors and Conze-Lesigne systems. Let ' = (T, +) be
a countable discrete abelian group, and let X = (X, u, T) be an (abstract) I'-system.
Among the factors of X we can form the invariant factor Z°(X), defined by replacing
the o-complete Boolean algebra X by its invariant subalgebra

X7 = ({EeX : E=(T")E}
yell

and restricting 4 and T accordingly. As usual, we call the I'-system X ergodic if this
invariant factor is trivial. Similar notions can now be defined for concrete or compact
I-systems by forgetting some of the structure. For most of this paper we will focus
on ergodic systems; in principle one can use tools such as the ergodic decomposition

SIn this paper we use “locally compact group” as shorthand for "locally compact Hausdorff second count-
able group”. Similarly for “compact group” or “compact abelian group”.

5The unimodularity hypothesis is required in order to have a well-defined Haar measure on the quo-
tient space G/A. In our applications, the locally compact group G will be nilpotent and thus automatically
unimodular.
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(or conditional analysis, see [29]) to adapt the results in this paper to the non-ergodic
setting, but we will not attempt to do so here.

The invariant factor Z°(X) of an (abstract) I'-system X is the zeroth in the sequence
of Host-Kra-Ziegler factors

X)) <Z'X) <Z*(X) < - <X

of X; we briefly review the precise definition of these factors in Section f. We will
not directly use this definition as we will rely on existing results about these factors in
the literature, but we will remark that Z¥(X) is the universal characteristic factor for
the Host-Kra-Gowers seminorm || - ||yk+1(x) on X; see e.g., [24], [4, Appendix A], [28].
These norms are traditionally defined for concrete Lebesgue I'-systems, but their defi-
nitions can be easily adapted to the abstract setting, or alternatively one can replace an
abstract I'-system by a suitable concrete (or topological) model and apply the standard
constructions to that model; see Section J.

The first Host-Kra-Ziegler factor Z!(X) is known as the Kronecker factor and was
studied by von Neumann and Halmos (see, e.g., [22] for a reference). The second Host-
Kra-Ziegler factor Z2(X) is known as the Conze-Lesigne factor and was studied (in the
I’ = Z case at least) by Conze and Lesigne [[]-9] (see also [40], [35], [14], [26], [27]). For
general k, the Host-Kra-Ziegler factors were introduced in the I' = Z case by Host and
Kra [24]; in the subsequent work of Ziegler [51] the universal characteristic factors
for multiple recurrence were constructed, which were later shown by Leibman (see
[2, Appendix A]) to be equivalent to the factors of Host and Kra. As is well known,
the constructions of the Host-Kra—-Ziegler factors, the Host-Kra-Gowers norms, and
the Host-Kra parallelepiped systems extend without difficulty to arbitrary countable
abelian groups T; see for instance [d, Appendix A], where the factor Z¥(X) was denoted
instead as Z ;.1 (X).

Let k > 0 be a natural number. An ergodic (abstract) I'-system X is said to be of
order (at most) k if X = Z¥(X). Thus for instance an ergodic I-system is of order 0 if
and only if it is (abstractly) trivial. We recall some simple facts about such systems:

Lemma 1.3 (Basic facts about systems of order k). Let I be a countable abelian group.
(i) ZK(X) is of order k for any ergodic (abstract) I'-system X.
(ii) Any factor of an ergodic T'-system of order k will also be an ergodic T-system of
order (at most) k.

(iii) The inverse limit of ergodic T-systems of order k will also be an ergodic T'-system
of order k.

Proof. For (i), see [24, Corollary 4.4], [4, (A.9)], or [28, Chapter 9, Theorem 15(ii)]. For
(ii), see [24, Proposition 4.6], [d, Lemma A.34], or [28, Chapter 9, Proposition 17(ii)].
For (iii), see [24, Proposition 4.6], [4, Lemma A.34], or [28, Chapter 9, Theorem 20]. [

Ergodic I'-systems of order 1 will be referred to as Kronecker systems, while ergodic
I'-systems of order 2 will be referred to as Conge-Lesigne systems; thus for instance a
Conze-Lesigne system is its own Conze-Lesigne factor. The classification of systems
of arbitrary order is of importance in the theory of multiple recurrence; for instance, as
seen in [24], [51], classification of ergodic separable Z-systems (X, X, u, T) of order k
was used to give the first proofs of the norm convergence of multiple ergodic averages

% 22]:1 T"f, ... T+ g for fi, ..., frer € L°(X, X, w) for general k.
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The classification of Kronecker systems is well known (going back to the work of
von Neumann and Halmos [22]):

Theorem 1.4 (Classification of Kronecker systems). Let I be a countable abelian group
and let X be an ergodic separable I'-system. Then the following are equivalent:

(i) Xis a Kronecker T-system.
(ii) Xis (abstractly)isomorphic to a rotational T-system Z for some compact abelian
metrizable group Z.
(iii) X is the inverse limit of rotational T-systems Z, for some compact abelian Lie
groups Z,,.

Proof. For Z-systems, the equivalence of (i) and (ii) follows from [28, Chapter 2, Theo-
rem 12] and [28, Chapter 9, Proposition 8] (see also the discussion before [24, Lemma
4.2]); the arguments extend without difficulty to arbitrary countable abelian I' (and one
can replace the abstract I'-system by a concrete model if desired, or argue directly in
the abstract setting). The deduction of (i) from (iii) then follows from Lemma [L.3(iii),
while the deduction of (iii) from (ii) follows from the Peter-Weyl theorem (or Pontrya-
gin duality); see e.g., [46, Exercise 1.4.26]. O

We remark that it is not difficult to remove the separability and countability hy-
potheses from Theorem [[.4, so long as one similarly removes the metrizability hypoth-
esis from conclusion (ii). As a consequence of this theorem (and Lemma [[.3), the Kro-
necker factor Z!(X) of an ergodic concrete I'-system X can be equivalently described as
the maximal rotational factor of X (cf. [28, Proposition 13(iv)]).

Now we turn to the higher order Host-Kra-Ziegler factors. In the case of Z-systems,
we have the following fundamental result of Host and Kra:

Theorem 1.5 (Classification of Host-Kra-Ziegler Z-systems). Let k > 1 be a natural
number, and let X be an ergodic separable Z-system. Then the following are equivalent:

(i) Xis a Z-system of order (at most) k.
(i) X is the inverse limit of T-nilsystems G, /A, of order at most k (as defined at the
end of Section [L.1]).

The implication of (i) from (ii) can be found in [28, Chapter 12, Corollary 19]; the
implication of (ii) from (i) is more difficult and was proven in [24, Theorem 10.1] (see
also [51] for closely related results, and [28] for a more detailed exposition). For a
treatment of the Conze-Lesigne case k = 2, see [7-0], [B3, §3], [4d], [14], [24, §8],
[52, §9]. An alternate proof of this theorem using compact nilspaces was also given in
[21].

Theorem [.3 was extended to Z¢-systems for any finite d by Griesmer [20, Theorem
4.1.2], following similar arguments to those in [24]; a further extension to I'-systems
for any finitely generated nilpotent group I' (extending the preceding definitions to
the nilpotent case in a natural fashion) was obtained using the machinery of nilspaces
in [B, Theorem 5.12] (with the abelian case previously established by this method in
[21]). However, the situation changes somewhat once one considers groups I' that
are not finitely generated; in particular, the arguments in [24], [20] rely crucially on
finite generation to establish some connectedness properties of certain structure groups
arising in the analysis that do not hold in general in the infinitely generated case. A
model infinitely generated case is that of the countably generated vector space Fp =
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U::l [y over afinite field I, of prime order p. In this case we have a fairly satisfactory

classification, particularly in the case of high characteristic:

Theorem 1.6 (Classification of Host-Kra-Ziegler F7'-systems). Let k > 1 be a natu-
ral number, let p be a prime, and let X be an ergodic separable F5'-system. In the high
characteristic case p > k — 1, then the following are equivalent:

(i) Xisa Fp-system of order (at most) k.

(ii) X is generated by phase polynomials? of degree at most k.
In the low characteristic case p < k—1, (ii) still implies (i), but it is currently open whether
(i) implies (ii) in these cases. The weaker implication is known that ergodic separable [ -
systems of order k are generated by phase polynomials of degree at most C(k) for some
C(k) depending only on k.

Proof. The implication of (ii) from (i) (in both high and low characteristics) is [4,
Lemma A.35]; the converse implication was established for p > k + 1 in [4, Theo-
rem 1.18] and recently extended to p = k,k — 1 in [§, Theorem 1.12]. The final claim
of the theorem is [4, Theorem 1.19]. O

The form of Theorem [[.§ does not closely resemble that of Theorem [.3. In more
recent work of the second author, results closer in appearance to Theorem [[.5 were
established for various classes of groups I':

Theorem 1.7 (Partial classifications of Host-Kra-Ziegler systems). Let k > 1, let T be
a countable abelian group. Let X be an ergodic separable T-system of order k.

(i) [41, Theorem 1.31]Ifk = 2, andT = @pe? 7/ pZ for some countable multiset P
of primes, then X is the inverse limit of translational systems G,/ \,,, where each
G,, is a locally compact Polish 2-step nilpotent group.
(ii) [#2, Theorem 2.3]IfT = Fy withk < p—1, then X is equivalent to a translational
I-system G/A with G and A totally disconnected and nilpotent of class at most k.
(iii) [42, Theorem 2.10] IfT = @pe? Z/pZ for some countable multiset P of primes,
then there exists a natural number m = m(k) depending only on k, and an m-
extensionB Y of X, which is an ergodic separable I"-system for some countable
abelian group T' which is the inverse limit of translational T'-systems G, /A,
where each G, is a finite dimensional® locally compact group of nilpotency class
at most k, and A, is totally disconnected.

We also mention some further variants of the above results:

(i) In [43, Theorem 1.21], the second author proved that when I is countable
abelian and X is a Conze-Lesigne I'-system, there exist a nilpotent locally com-
pact Polish group G, a compact totally disconnected group K, and a closed to-
tally disconnected subgroup A of G such that X is (abstractly) isomorphic to
the double coset system K\G/A acting by a translation action T?x = ¢(y)x for
some homomorphism ¢ : I' = G that normalizes K.

7We will not need the concept of a phase polynomial to state or prove our main results, but see for instance
[4, Definition 1.13] for a precise definition.

8See [A2, Definition 2.4] for a definition of this term, which we will not need in the rest of this paper.

9See [#2, Definition 2.6] for the definition of finite dimensionality for locally compact groups; we will not
need this notion in the rest of this paper.
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(ii) In[43, Theorem 1.18], the second author showed that for any countable abelian
group I and ergodic separable I'-system X, there is an extension Y of X whose
Conze-Lesigne factor is a translational I''-system G/A for some extension I"
of I' and some locally compact Polish group G that is nilpotent of nilpotency
class at most two, where the notion of extension was defined in [43].

(iii) In [5, Theorem 1.9], it was shown in both high and low characteristics that
an ergodic separable F’-system of order k is a p-homogeneous k-step nilspace
system (see [5] for the definitions of these terms, which we will not need in the
rest of this paper).

1.3. Main result. We now come to the main new result of this paper, which is to es-
tablish a complete description of Conze-Lesigne factors for arbitrary countable abelian
groups I':

Theorem 1.8 (Classification of Conze-Lesigne I'-systems). Let " be a countable abelian
group, and let X be an ergodic (abstract) I'-system. Then the following are equivalent:

(i) Xis a Conze-Lesigne I'-system (i.e., a T-system of order at most 2).

(ii) Xistheinverse limit of translational T-systems G,,/A\,,, where each G,, is a locally
compact nilpotent Polish group of nilpotency class two, and A,, is a lattice (i.e., a
discrete cocompact subgroup) in G,. Furthermore, G, contains a closed central
subgroup Gy, , containing the commutator group |Gy, G, ], with A,,NG,, , a lattice
in Gp 5.

In (ii) we can also require that G, , is a compact abelian Lie group, A, N G, , is trivial,
and A, is abelian.

We remark that as A,, is a discrete subgroup of the Polish group G,,, it is automati-
cally countable.

This result can be compared with the previously mentioned result in [43, Theorem
1.18]. On the one hand, Theorem [[.§ does not require the passage to some extension
Y of X; on the other hand, the conclusion is weaker as the system is described as an
inverse limit of translational systems, rather than as a translational system. In view
of Theorem [[.3, one could ask whether one could strengthen Theorem [L.§ further by
requiring in (ii) that the G,, are nilpotent Lie groups, and A,, lattices, so that X would be
the inverse limit of nilsystems. Unfortunately when T' is not finitely generated, there
are counterexamples that show that this stronger version of Theorem [L.§ fails; see the
example presented after [42, Conjecture 2.14] (in the discussion of [42, Theorem 4.3]).
In Theorem [L.§ it is not required that the system X be separable, but it turns out it is
quite easy to reduce to this case, and indeed this will be one of the first steps in the proof.
The group G, , in Theorem [[.§ can in fact be taken to be the commutator group [G,,, G, ]
if desired; see Remark f.7. However, from the theory of filtered nilpotent groups (see
e.g., [18, Appendix B]) it seems more natural to allow G,, , to be slightly larger than the
commutator group (see Section 5.1 for one example of this).

In Section § we provide some examples of Conze-Lesigne systems associated to
groups in even, odd, and zero characteristics that illustrate the conclusion of Theorem
[L.§ despite not being obviously associated to any nilpotent structures.

Remark 1.9. 1t is tempting to speculate as to whether Theorem [[.§ can be extended to
systems of order k for k > 2, by some induction on k. Here one runs into a significant
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technical obstacle even when k = 3; whereas in the k = 2 case, the system can be
expressed (using Theorem [[.12) as a group extension of a translational system (indeed
a rotational system, in this case), the analogous arguments in the k = 3 case (when
combined with Theorem [.§) only allow one to describe systems of order 3 as group
extensions of inverse limits of translational systems. When the group T is finitely gen-
erated, one can use the connectedness of the structure groups to avoid this issue (cf.
[24, Lemma 10.4]), but in the infinitely generated case it is not clear to us whether such
group extensions of inverse limits of translational systems can necessarily be expressed
as inverse limits of translational systems, even if one possesses suitable higher-order
analogues of the Conze-Lesigne equation. We hope to investigate these issues further
in subsequent work.

Remark 1.10. Theorem [[.§ does not immediately imply previous structural results
about Conze-Lesigne systems for specific groups I, such as those stated in Theorems
[[.3,[L.8, [.7, because these theorems can take advantage of special features of the groups
I they consider to obtain stronger conclusions than those in Theorem [.§(ii), see Sec-
tion [[.§ for a related discussion. However, one could certainly use Theorem [[.§ as a
“black box” to shorten the proofs of these other theorems, by reducing matters to the
study of nilpotent translational systems G/A of nilpotency class two, for which many
of the intermediate statements used in the course of those proofs are easy to establish.
We leave the details of such shortenings to the interested reader.

1.4. An application to the Gowers uniformity norms. In [47], the description
of systems of order k for Fy-systems from Theorem [[.§ was combined with a corre-
spondence principle to establish an inverse theorem for the Gowers uniformity norm
Uk“(ﬂﬁ‘) for finite-dimensional vector spaces Fy. In a similar vein, Theorem [L.§ can
be combined with a correspondence principle to establish an inverse theorem for the
Gowers norm U3(G) associated to an arbitrary finite abelian group G. More precisely,
in the companion paper [33] to this paper, we show

Theorem 1.11 (Inverse theorem for U3(G)). Let G be a finite additive group, let n > 0,
andlet f: G — C bea1-bounded function with || f||ys ) = 1. Then there exists a degree
2 filtered nilmanifold H/T, drawn from some finite collection Ny, of such nilmanifolds that
depends only on 7 but not on G (and each such nilmanifold in N;) endowed arbitrarily
with a smooth Riemannian metric), a Lipschitz function F : H/T — C of Lipschitz norm
0,(1), and a polynomial map g : G — H/T such that

(1.3) |Exeaf(X)F(g(x))] >y 1.

We refer the reader to [33] for definitions of all the terms in Theorem [[.11], as well
as for details of how it is derived from Theorem [L.§.

1.5. Overview of proof. Our proof of Theorem [[.§ is based primarily on the meth-
ods of Host and Kra [24], [28], while also incorporating some tools from [4]. It is not
difficult to reduce to the case of separable I'-systems. The next step, which is quite
standard, is to express Conze-Lesigne systems as abelian extensions of the Kronecker
factor.

Theorem 1.12 (Conze-Lesigne systems are abelian extensions of Kronecker factor).
Let T be a countable abelian group, and let X be an ergodic separable I'-system. Then the
following are equivalent:
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(i) X is a Conze-Lesigne system.
(i) Xis (abstractly) isomorphic to a group extension Z X, K, where Z is a rotational
[-system, K is a compact abelian group, and p is a (Z, K)-cocycle of type 2.

Furthermore, in part (ii), we can take Z to be equivalent to the Kronecker factor.

The notions of cocycle, extension, and cocycle type appearing in Theorem will
be reviewed in Section P.11.

Proof. For Z-systems, the implication of (ii) from (i) was established in [24, Proposi-
tion 6.34] or [28, Chapter 18, Theorem 6]; as observed previously by several authors
[4, Proposition 3.4], [#1, Proposition 1.16], [42, Proposition A.18] (see also [49, Propo-
sition 3.6] for an alternate proof of the abelian nature of K), the arguments extend
without difficulty to arbitrary countable abelian groups I'. The implication of (i) from
(ii) follows from [24, Corollary 7.7] or [28, Chapter 18, Proposition 8]; again, the argu-
ments extend without difficulty to arbitrary I'. (One can use Proposition [A.3(ii) to first
model X by a concrete Lebesgue I'-system before applying these arguments.) O

To proceed further it is convenient to lift an arbitrary I to a torsion-free group, and
also reduce to the case when K is a Lie group. The key step is then to establish

Theorem 1.13 (Conze-Lesigne equation). Let I’ be a torsion-free countable abelian
group, Z an ergodic metrizable rotational I'-system, and K a compact abelian Lie group.
Let p be a (Z,K)-cocycle. Then the following are equivalent:

(i) pisof type2.
(ii) p obeys the Conze-Lesigne equation (see Definition R.J|(ix)).

This result was obtained in [24, Lemma 8.1] (or [ 28, Section 18.3.3]) in the case when
I' = Zand K is a torus (a connected compact abelian Lie group), building upon previous
results in this direction in [9], [14]. These arguments extend without much difficulty
to arbitrary torsion-free I' in the connected case when K is a torus; however the case
of disconnected K requires additional arguments (cf., the remark after [24, Lemma
C.5] and Remark P.4). The crucial additional case to consider is that of a cyclic group
K = %Z/Z. Here we can proceed instead by some linearization arguments based on
those in [4]. We remark that thanks to an example of Rudolph [4(], Theorem [[.I3
fails if the compact abelian Lie group K is replaced with other non-Lie groups, such as
solenoid groups; see Remark 5.7.

The proof of Theorem in the general case will be given in Section . The deriva-
tion of Theorem [[.§ once Theorem is in hand is fairly standard and is given in
Section [, though there are some subtleties requiring the introduction of a topologi-
cal model in order to properly define the notion of a stabilizer of a certain transitive
group action (see [23] for further discussion of this point). Here we will use a topolog-
ical model (which we call a Koopman model) that is constructed using Gelfand duality
(and the Riesz representation theorem), without the need to impose any “countability”
conditions such as separability; see Appendix A4

In order to finish up by expressing an arbitrary Conze-Lesigne system as an inverse
limit of nilpotent translational systems, one needs a technical result (Proposition f.3)
which states, roughly speaking, that the class of nilpotent translational systems in The-
orem [[.§ is closed under joinings. As it turns out, this can be established without too
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much difficulty by exploiting both directions of the equivalences established in Theo-
rem and Theorem [[.13; see Section f.3.

1.6. Towards a second-order Pontryagin duality? In principle, Theorem [L.§ pro-
vides a complete description of all ergodic Conze-Lesigne I'-systems associated to a
given countable abelian group I However, one could seek a more tractable such de-
scription, in which every Conze-Lesigne system is described by certain algebraic data
from which one can easily answer questions about such systems, such as whether two
such systems are isomorphic (or whether one is a factor of the other), whether the sys-
tem is a translational system or a nilsystem, whether it is generated by a cocycle obeying
the Conze-Lesigne equation, whether the structure groups Z, K are connected, and so
forth.

In the case of Kronecker I'-systems, these questions can all be readily answered
through Pontryagin duality. Given a Kronecker I'-system Z, one can associate the
group E of eigenvalues of the system, that is to say those homomorphisms ¢ € T from
I' to T such that one has a non-trivial function f € I?*(Z) for which

TV f = e(c(Y))f

almost everywhere for all y € T. This group E is then a subgroup of I' (and is also
isomorphic as a group to Z). Conversely, given any subgroup E of I, one can form an
associated Kronecker system Zj, defined to be the closure in the compact group TF of
the subgroup ¢(I'), where ¢ : ' — TF is the homomorphism

¢(¥) = (c(¥))ceE>

with the rotational I'-action given by ¢; one can show that this is a Kronecker I'-system
with eigenvalue group E. The arguments used to establish Theorem [[.4 can be used
to show that two Kronecker I'-systems Z, Z’ are isomorphic if and only if their corre-
sponding subgroups E, E’ of T agree (and more generally, Z is a factor of Z’' if E is a
subgroup of E’), thus giving a complete description of Kronecker I'-systems in terms of
subgroups of I'; indeed the above constructions produce a duality of categories. Fur-
thermore, other properties of the Kronecker I'-system can be translated into properties
of these subgroups by the usual dictionary of Pontryagin duality. For instance, given a
Kronecker I'-system Z and its associated subgroup E < I*:

« Z is separable (or metrizable) if and only if E is countable.
+ Zis connected if and only if E is torsion-free.
+ Zis aLie group if and only if E is finitely generated.

In analogy with this state of affairs in order one, one could hope for a “second order
Pontryagin duality” in which one could associate to each Conze-Lesigne I'-system X
some algebraic data (analogous to the subgroup E) which determines the isomorphism
class of X, as well as other properties of the system, such as whether it is a translational
system or a nilsystem, or whether it is associated to a cocycle that obeys the Conze-
Lesigne equation. Ideally, all existing results about such systems (including Theorem
[[.8) could then be re-interpreted as specific facets of this duality. We do not at present
have a formal proposal for such a duality, though it seems plausible that some form
of group cohomology will be involved. We hope to investigate these issues further in
subsequent work.
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2. NOTATION

We use T := R/Z to denote the additive unit circle. Given any locally compact
abelian group G = (G, +), we define the Pontryagin dual G to be the collection of
all continuous homomorphisms from G to T; as is well known, this is also a locally
compact abelian group (with the compact-open topology) with G = G. Welet S! be the
unit circle in C, and lete : T — S! be the standard character e(6) := €27,

We briefly recall the construction of the Host-Kra-Ziegler factors from [24, §3],
[28, Chapter 9.1], or [4, Appendix A]. We begin with the traditional setting of con-
crete Lebesgue I'-systems, with I' a countable abelian group. Given such a I'-system
X = (X,X,u, T), we can recursively define the Host-Kra parallelepiped I'-systems
Xkl = (x1kl, DC“‘],,u[k], Tk for k > 0 by setting X0 .= X and

XU i= XU 50y X1,

where the right-hand side is the relatively independent product of X!¥! with itself over
the invariant factor Z°(X[¥)); see [T, Chapter 5] for the construction of relatively inde-
pendent product for concrete Lebesgue spaces. As a set, X[¥] can be viewed as a subset
of X101 \which we can split as X x X010 e then define the Host-Kra-Ziegler
factor Z¥(X) (up to equivalence) by declaring a set A € X to be measurable with respect
to the o-algebra of ZK(X) if and only if there is a measurable subset B of X0V such
that

(2.1) 1a(xo) = 1p(x.)
for ulkl-almost all (xy,x,) € XK. We refer the reader to [24, §3], [28, Chapter 9],
or [4, Appendix A] for the basic properties of these factors, and in particular for their
relationship with the Host-Kra-Gowers seminorms (which we will not utilize here).
Exactly the same constructions can be performed in the more general setting of ab-
stract I'-systems, with no requirement of separability (with the analogue of (R.1)) be-
ing that the abstract indicator functions 1,4, 15 agree when they are both pulled back
to X'Kl, which is now a probability algebra); alternatively, one can use the canonical
model (see Proposition [A.3(iii)) to model such an abstract I'-system by a compact T-
system and repeat the previous constructions without significant modification. Note
from [B2, Theorem 8.1] that the relatively independent product construction is also
valid in this “uncountable” setting.

2.1. Cocycles and extensions. We recall some standard notations for (measurable,
abelian) cocycles (largely following [2§], but extended to arbitrary countable abelian
groups T'). Here it is convenient to work in the category of concrete I'-systems, but
permit the cocycles to only be defined up to almost everywhere equivalence (so that
the extension generated by such a cocycle is merely an abstract I'-system rather than a
concrete one).

Definition 2.1 (Cocycles and extensions). Let I' be a countable abelian group, let Y =

(Y, Y,v,S) be a (concrete) ergodic Lebesgue I'-system, and let K = (K, +) be a compact
abelian group written additively.

(i) A(Y,K)-cocycleisa collection (o, ),er of (concrete) measurable mapsp,, : Y —

K (defined up to almost everywhere equivalence) obeying the cocycle equation

22) Pyi+r, = P o572 + Py,
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v-almost everywhere for all y;, ¥, € I'. Observe that the space of (Y, K)-cocycles
forms an abelian group under pointwise addition.

(i) Let M(Y,K) denote the collection of measurable maps from Y to K, up to equiv-
alence almost everywhere; we give this space the topology of convergence in
measure (and also endow this space with the Borel g-algebra). If F € M(Y, K),
we define the derivative dF = ((dF),)yer to be the (Y, K)-cocycle

(dF), =FoS"—F.

It is easy to verify that this is indeed a (Y, K)-cocycle. Any (Y, K)-cocycle of the
form dF will be called a (Y, K)-coboundary. Two (Y, K)-cocycles p, p" are said
to be (Y, K)-cohomologous if they differ by a (Y, K)-coboundary with respect to
the group structure on the space of (Y, K)-cocycles, in which case we write

P~y P
Thus for instance p is a (Y, K)-coboundary if and only if p is (Y, K)-cohomol-
ogous to zero: p ~y g 0.
(iii) Ifpisa (Y, K)-cocycle, we define the abelian extension Y X, K to be the concrete

probability space that is the product of (Y, ¥, v) and K (with the latter equipped
with the Haar probability measure), with a near-action T given by

T7(y, k) = (S"y, k + p, ()

forally € I,y € Y and k € K, where for each y we arbitrarily select one
representative p, : Y — K of the equivalence class for this cocycle. While
from Fubini’s theorem one easily sees that each T? is measure-preserving, the
homomorphism law T"1*72 = T¥1 o T?2 for y;,y, € T is only true almost
everywhere rather than everywhere. Thus, Y X, K is not quite well-defined
as a concrete I'-system; however, as discussed in Appendix A.3, it defines an
abstract T-system without difficulty (and this system does not depend on the
choice of representative of each p, ). We say that the (Y, K)-cocycle is ergodic if
this abstract I'-system Y X, K is ergodic.

(iv) Let p be a (Y,K)-cocycle. If ¢ : K — K’ is a continuous homomorphism from
K to another compact abelian group K', we let ¢ o p be the (Y, K')-cocycle

(Pop)y=¢op,;

one easily verifies that this is indeed a (Y, K')-cocycle. Similarly,if7: Y - Y
is a (concrete) factor map, we let p o 7 be the (Y’, K)-cocycle

(po 77:)7 = pPyoT,
which one again easily verifies to be a (Y’, K)-cocycle.

(v) If pis a (Y,K)-cocycle and V is an automorphism of the concrete I'-system Y
(thus V: Y — Y is a measure-preserving invertible map and Vo S = S¥ o V
for all y € T), we define the derivative d;,p to be the (Y, K)-cocycle

dyp:=poV —p.

(vi) We let Hom (T, K) be the collection of all homomorphisms c¢: I' - K. Every
homomorphism ¢ € Hom(T,K) can be viewedl as a (Y, K)-cocycle by the

10Tn the notation of (iv), we are identifying c with c o pt, where pt is the factor map from Y to a point.
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formula
¢y (¥) = c(y)
forallyeTandyeY.
(vii) A (Y,K)-cocycle p is a (Y, K)-quasi-coboundary if it is (Y, K)-cohomologous to
a homomorphism, that is to say there exist measurable F: Y — K and a ho-
momorphism c: T' — K such that

py(y) = F(S'y) = F(y) + c(¥)
for all y € T and v-almost every y € Y.
(viii) If p is a (Y, K)-cocycle and k > 0 is an integer, we let A[k]p be the (YI¥], K)-
cocycle

A¥0) (Vw)ocioa) = 2, (—D%lo,(yy,),

wef0,1}k

where |(w1, ..., k)| = @; 4 -+ + . One easily verifies that AlXlp is a (YI¥], K)-
cocycle. If AlKlp is a (YI¥], K)-coboundary, we say that p is of type (at most) k.

(ix) If Y = Z is a rotational system and p is a (Z, K)-cocycle, we say that p obeys
the Conze-Lesigne equation if for every z € Z, the derivative dy_p is a quasi-
coboundary, where 1, denotes the translation action V,: z’ +— z + z’ on Z.
In other words, for every z € Z there exist a measurable F,: Y — K and a
homomorphism ¢, : ' - K such that

py(z+2") = py(2') = B(S72") = Ex(2') + ¢;(¥)
for all y € T and uz-almost every z’ € Z.
If the group K = (K, -) is written multiplicatively instead of additively, we define all

the preceding concepts analogously, changing all additive notation to multiplicative
notation as appropriate.

In Section J, we collect several examples of Conze-Lesigne systems. In particu-
lar these include some concrete examples of cocycles of type 2 satisfying the Conze-
Lesigne equation.

Remark 2.2. The fact that measurable cocycles only generate abstract I'-systems rather
than concrete ones will cause some technical issues for us later in our arguments, but
these will be resolved by the introduction of suitable topological models, loosely fol-
lowing [R28, §19.3.1], [23].

We recall some basic properties of cocycles:

Proposition 2.3 (Basic properties of cocycles). Let I be a countable abelian group, let
Y = (Y, Y,v,S) be an (concrete) ergodic Lebesgue T'-system, let K = (K, +) be a compact
abelian group, and let p be a (Y, K)-cocycle.

(i) (Moore-Schmidt theorem) We have p ~y x 0if and only if § o p ~y 1 0 for all
tek

(ii) (Criterion for ergodicity) p is ergodic if and only if § o p ~y 1 0 for all non-zero
tek

(iii) (Mackey-Zimmer theorem) If u is a T-invariant ergodic probability measure on

Y%K that pushes down tov on'Y, then there exist a closed subgroup H of K (called

the Mackey group of p,v) and an ergodic (Y, H)-cocycle p' such that p' ~y x p,
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and that the T-system Y X, K equipped with the measure y is abstractly isomor-
phictoY X, H (equipped with product measure).

(iv) (Shifting to be ergodic) If T is torsion-free and K is connected metrizable, then
there exists c € Hom (T, K) such that p + c is ergodic.

(v) (Differentiation lowers type) IfY = Z is a rotational T-system, K = T, and p is of
type 2, then dy,_p is of type 1 forall z € Z.

(vi) (Order 1 cocycles and quasi-coboundaries) If T is torsion-free and K = T, then p
is of type 1 if and only if p is a (Y, T)-quasi-coboundary.

Proof. For (i), see [B6, Theorem 4.3] or [B1, Theorem 1.1] (see also [2§, Chapter 5,
Lemma 7] for the I' = Z case). For (ii), see [28, Chapter 5, Lemma 8] (this is stated
for I' = Z, but the proof extends without difficulty to arbitrary countable abelian T').
For (iii), see [34], [54, Corollary 3.8, Theorem 4.3], [L5, Theorem 3.26], or [30, Theorem
1.6]. We remark that (iii) is closely related to (i), (ii); for instance, H is the annihilator
of the group of characters £ € K for which £ o p ~y 1 0.

Part (iv) is a routine generalization of [2§, Chapter 5, Corollary 9]; for the conve-
nience of the reader we review the argument here. As K is connected metrizable,
the Pontryagin dual K is countable and torsion-free, while Hom(T, K) is a compact
abelian group. By (ii), it thus suffices to show that for every non-zero ¢ € K, one has
§o(p+c) »yr 0foralmost all c € Hom(T, K). Fixing &, it suffices upon subtraction
to show that £ o ¢ =y 0 for almost all ¢ € Hom(T',K). But a character {oc € T
is a (Y, T)-coboundary if and only if it is an eigenvalue of the action S; from the sep-
arability of Y, there are countably many such eigenvalues, so it suffices to show that
& oc # 0 for almost all c € Hom (T, K). If this is not the case, then the closed subgroup
{c € Hom(T,K) : £ o ¢ = 0} would have finite index in Hom (T, K), hence there is an
integer n such that £ o nc = 0 for all c € Hom(T, K). As T is torsion-free, this would
imply that n¢ vanishes, contradicting the torsion-free nature of K.

Part (v) was established for Z-actions in [24, Corollary 7.5(i)] or [28, Chapter 18,
Proposition 11(i)], and for general actions™ in [d, Lemma 5.3] by the same method.

Part (vi) was established for Z-actions in [28, Chapter 5, Lemma 13], but the exten-
sion to torsion-free I is routine: for the convenience of the reader we review the proof
here. The “if” part is easy, so we focus on the “only if” part. By using (iv) to shift p
by a character (which does not affect Al'llp) we may assume without loss of general-
ity that p is ergodic. By hypothesis, Alllp is a (YI!l, T)-coboundary, thus there exists a
measurable map F: Y XY — T obeying the equation

Allp, =FoSY —F
forall y € T. Setting X :=Y X, T, we conclude that the map

H: ((o:ko)s (1, k1)) = e(F(yg,y1) + k1 — ko)

is I-invariant in X x X. Thus the integral operator Ty; with kernel H is a non-trivial
Hilbert-Schmidt operator on I?(X) that commutes with the T'-action, thus there is an
eigenfunction ¢ € I?(X) of this action that is also a non-trivial eigenfunction of Tj; Ty;.

There is a typo in the statement of that lemma: the hypothesis that X be of order < k should instead be
that Z_(X) be a factor of Y.
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The function g € I[*(Y) defined by

80) = [ Br. e d
T
cannot vanish identically (since otherwise Ty would vanish), and obeys the equation

B(S7y) = e(=c(1))e(p,(N))B(Y)

for all y € T and almost every y, where e(c(y)) is the eigenvalue of ¢ with respect to
S7; note that c is necessarily a character in I". The function || is T-invariant, hence
constant. Writing 8 = |Ble(F), we obtain p, = F o S — F + c(y), thus p, is a (Y, T)-
quasi-coboundary as desired. O

Remark 2.4. Asremarked after [24, Lemma C.5], Proposition R.3(vi) can fail if the circle
T is replaced by a disconnected group. For instance, takeI' = Z, K = %Z/Z, and Y to be
the rotational ergodic separable Z-system T with action ¢(n) = na mod 1 foralln € Z
and some irrational real . If we let {} : T — [0, 1) be the fractional part map, then one
can check that the tuple p = (o,,)nc7 given by

pue) = EH R RA T

is a (Z, K)-cocycle. From the identity
Alllp = gFll,

where FI!l € M(T?,K) is the function

El

Fll(x,y) = = {y}z_ tx — ¥} mod 1

we see that the (Z, K)-cocycle is of order 1; however it is not a (Z, K)-quasi-coboundary.
Indeed, if there was some F € M(T,K) and ¢ € Hom(Z, K) such that p = dF + ¢, then
by specializing to n = 1 we conclude that

bt @ 2% B4 @)~ F) + (1) mod 1

or equivalently
fGe+a)=e(5 +e) f)

for all x € T, where
x
760 = e (Feo - ).
By Fourier analysis this implies that % + ¢(1) needs to be an integer multiple of «, but
this is inconsistent with the irrationality of « since c(1) € %Z/Z.

On the other hand, if the system Y is 2-divisible in the sense that its Kronecker factor
has a divisible Pontryagin dual, then one can replace the circle T in Proposition R.3(vi)
by an arbitrary compact abelian group K; this follows from that proposition and [43,
Proposition 3.8]. As a consequence, the requirement in Theorem that K be a Lie
group can be dropped in the 2-divisible case; this is essentially [43, Theorem 4.1].
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3. DERIVATION OF THE CONZE-LESIGNE EQUATION

In this section we establish Theorem .13

We begin with the derivation of (i) from (ii). Observe from Definition P.1(ix) that if
the (Z, K)-cocycle p obeys the Conze-Lesigne equation, then the (Z, T)-cocycle & o p
obeys the Conze-Lesigne equation for any £ € K. Similarly, from the Moore-Schmidt
theorem (Proposition B-3(i)), Definition B-1(viii) and the obvious identity AKI(¢ o p) =
&€ o AlKl(p) for any ¢ € K and k > 0 we see that if £ o p is of type k for every £ € K,
then p is of type k. From these observations we see that to show that (ii) implies (i), it
suffices to do so in the case K = T. By Definition R.J(ix), we see that for every z € Z
there exist an F, € M(Z, T) and a character c, € I such that

(31) 6Vzp = dF‘Z +c,.

At this point we run into the technical issue that F, and c, need not depend in a mea-
surable fashion on z. It is however possible to select F,, ¢, so that this is the case, by
means of the following result:

Proposition 3.1 (Measurable selection). Let I be a countable abelian group, let Y be
a concrete ergodic Lebesgue I'-system, and let U be a measurable space. Suppose that we
have a measurable map u — h,, from U to the space of (Y, T)-cocycles (which we can view
as a subset of M(Y, ), which we endow with the product topology), with the property that
for each u € U we can find E, € M(Y, T) and a character ¢, € T such that

h, =dFE, +c,.

Then, after adjusting F,, and c,, as necessary, we may ensure that F,, c,, depend in a mea-
surable fashion on u.

Proposition B is a special case of [4, Lemma C.4] (which handles a more general
situation in which the &, need not obey the cocycle equation, and the ¢, are allowed
to be polynomials of a given degree). The proof of that lemma requires at one point
the measurability of a certain function n, constructed in that proof. The verification
of this measurability is actually somewhat non-trivial, and so we give a complete proof
of Proposition B.J in Appendix B. As remarked in [{], there are several other ways
to establish this proposition, including using Borel cross-sections of homomorphisms
between Polish groups (see [24, Theorem A.1]) or a general measurable selection re-
sult of Dixmier (cf. [, Theorem 1.2.4]). In the case I' = Z this result was essentially
established in [14, Proposition 10.5].

Invoking Proposition B.1, we can now select the F;, ¢, solving (B.1)) to depend in a
measurable fashion on z.

As observed in [24, §3.2] (see also [28, §8.1.2]), Z!?! can be viewed as a translational
system on the compact group

Z2 = {(z,z24 5,24+ 55,245, +5,) : 2,5,5, €Z}
with translation action ¢l : T — Z[?l given by the diagonal action

$21(y) = (¢(1), (1), (), $(1))
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and ¢ : T — Z the original translation action on Z. The (Z!2}, T)-cocycle Al?lp is then
given by the formula

(A[Z]p)y(z,z +51,2+ 85,2+ 51 +55) = p,(2) —py(z + 51) — p(z + 55) + p(z + 51 + 5;)
= aVSZPy(Z) - 5VS2Py(Z + 51).
Applying (B.T), we conclude the identity
APRlp = dFl2),
where F12I: Z12I — T is the function
Fllz,z+ 51,2+ 53,2+ 81 + 8,) := ,(2) — E,(z + ).

By construction of the F,, FI?! is measurable, and hence by Definition R.I|(viii) p is of
type 2. This concludes the derivation of (i) from (ii).

Now we show that (i) implies (ii). Any compact abelian Lie group is isomorphic to
the direct product of a torus and a finite abelian group (see e.g., [46, Exercise 1.4.27(iii)]),
and hence also isomorphic to the direct product of finitely many copies of the circle T
and cyclic groups %Z/Z. It is clear that to show (i) implies (ii) for a direct product
K = K; X K,, it suffices to do so for the two factors K; and K, separately. Thus it
suffices to establish this implication in the special cases K = T and K = ILVZ/Z for a
natural number™ N.

The K = T case is immediate from Proposition .3: if z € Z, then Lemma R.3(v)
implies that dy,_p is of type 1, and Lemma R.3(vi) then gives that dy,_p is a (Z, T)-quasi-
coboundary, thus giving the required Conze-Lesigne equation.

We turn to the K = %Z/Z case. Now one cannot directly apply Lemma R.3(v),
(vi). However, since K is a subgroup of T, we can also view the (Z, K)-cocycle p as a
(Z, T)-cocycle, which will of course still be of type 2. Applying the previous argument,
we conclude that dy,_p is a (Z, T)-quasi-coboundary for every z € T, thus we can find
¢, € Hom(T, T) = I' such that

(3.2) Oy, P ~z1 Cz-
By Proposition B.1], we may ensure that ¢, depends in a measurable fashion on z.

The main difficulty here is that the homomorphism c, takes values in T rather than
in the smaller group K. To resolve this, we need some additional structural control on
the c,. We first apply a translation V, to (B.2) to conclude that

(aVZP) oVg ~z1 (2
for any z,z’ € Z; combining these identities with the cocycle identity
Oy, P =0y,p)oVy+3dy_p,
we conclude that
Cryz! —Cz—Cyr ~z7 0.

Thus, if we let E < I" denote the group
E:={cel :c~yy0}

12Using the Chinese remainder theorem one could reduce further to the case when N is a power of a
prime, but this does not seem to simplify the argument significantly.
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then the map z — ¢, is a homomorphism mod E, in the sense that
(3.3) Cpyz = Cz +Cp mod E

forallz,z' € Z.
Note that if ¢ € E, then ¢ = dF for some F € M(Z, T), which implies that e(F) is an
eigenfunction of the rotational system Z:

e(F) o TV = e(c(y))e(F).

By the unitary nature of the action, eigenfunctions with different eigenvalues are or-
thogonal. Since I?(Z) is separable, we conclude that E is countable.

We can now locally remove the “mod E” reduction in (B-3) by the following argu-
ment (cf. the proof of [, Proposition 6.1]). By (B-3), the map (z,z') = c,4pr —Cz — Cyr
is a measurable map from Z X Z to the countable set E. The autocorrelation function

a prn((z2)ez?: Coyz’ —Cz = Cxt = Coqaiz’ — Czpa — Czr})s

where u. is the Haar probability measure on Z2, is then a continuous function on Z
which equals 1 at 0 (this follows for instance from Lusin’s theorem). Thus there exists
an open neighborhood U of the identity such that

uz2({(z,2") €EZ% : Cyyp —Cy — Cpr = Cypaiz’ — Czpa — Cor}) > 0.9

(say) for all a € U. Canceling the c,» and making the change of variables z" = z + 2/,
we see that for all a € U, we have

Coyq —Cz =Cgnypq — Cgn

for at least 0.9 of pairs (z,z”) € Z? by measure, which implies that there exists a
(unique) ¢, € T such that

(34 Cz4a —Cz = Cq

for at least 0.9 of the z € Z by measure; furthermore, c; will depend measurably on a
(it is the mode of ¢, 4 — ¢,). From (B.3) we see that

(3.5) ¢y = ¢, mod E
for all a € U, and from several applications of (B.4) we have

(3.6) o+ Ch=Copp

whenever a,b,a+b € U.

We return to equation (B.2). Since p takes values in K = %Z/Z, we have Np = 0,
hence from (8.2) Nc, ~z 1 0 for all z € Z, hence by (B.5) we have Nc; € E for all
a € U. Thus there is e € E such that N¢, = e for all a in a positive measure subset
of U; from (B.€) and the Steinhaus lemma, we conclude that N¢, = 0 for all a in an
open neighborhood U’ C U of the identity. Thus for a € U’, ¢, takes values in K,
and so from (B.2), (B.5) dy,p — ¢, is a (Z, K)-cocycle which is a (Z, T)-coboundary. By
the Moore-Schmidt theorem (Proposition .3(i)), 9y, p —c, is also a (Z, K)-coboundary
(note that all the characters of K are of the form k +— nk for some integer n). Thus dy,_ p
is a (Z, K)-quasi-coboundary for all a € U’. Meanwhile, from the identity

Wy = dpy
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for any y € T, we see that dy, p is also a (Z, K)-quasi-coboundary (in fact a (Z, K)-
coboundary) for all a € ¢(I'). By the cocycle identity

Ov,pP = Op,Pp)oVy+dy,p

for any a,b € Z, we conclude that dy, o is a (Z, K)-quasi-coboundary for all a € ¢(T') +
U’. But since the rotational I'-system Z is ergodic, the subgroup ¢(I') of Z is dense, and
hence ¢(T) + U’ is all of Z. Thus dy,_p is a (Z, K)-quasi-coboundary for all a € Z, thus p
obeys the Conze-Lesigne equation. This concludes the derivation of (ii) from (i), and
the proof of Theorem is complete.

4. CONCLUSION OF THE ARGUMENT

In this section we establish Theorem [L.§.

4.1. From nilpotent translational systems to the Conze-Lesigne equation. We
begin with the derivation of (i) from (ii). From Lemma [[.3(iii), Theorem and The-
orem [L.13, it suffices to show the following claim:

Proposition 4.1 (Verifying the Conze-Lesigne equation). Let I be a countable abelian
group, and let G/A be an ergodic translational T'-system, where G is a locally compact
nilpotent Polish group of nilpotency class 2, and A is a lattice in G, and one also has
a closed central subgroup G, of G containing [G, G| such that A N G, is a lattice in G,.
Then G/ A is abstractly isomorphic to a group extension Z X, K, where Z is a rotational T'-
system, K is a compact abelian group, and p is a (Z, K)-cocycle obeying the Conze-Lesigne
equation. (Note that Z is not required to be the Kronecker factor.)

We now prove Proposition 1. We let ¢ : ' — G denote the translation action. We
take Z to be the compact group G/G,A, written additively. We write 7: G — Z for
the projection homomorphism; this map factors through the quotient map from G to
G/A, and we use 77 : G/A — Z to denote the projection map produced in this fashion.
Then Z is a rotational I'-system with action given by 7 o ¢. Next, we take K to be the
compact group G,/(G, N A) written additively. Because G, is central, this group K acts
freely on G/A; we express this action additively, thus if k € K and x € G/A, we write
k + x = x + k for the action of k on x. By construction, we thus have

(4.1 g2x = x +11(g,)

whenever x € G/A and g, € G,, where Il : G, — K is the projection homomorphism.
Observe that the orbits of this free K-action on G/A are precisely the fibers of 7, thus
G/A is a principal K-bundle over Z (as a set, at least). Also, by the central nature of G,
we see that

(4.2) glx+k)=gx+k

forallg € G, x € G/A,and k € K.

It will be convenient to “work in coordinates” to facilitate computations. We claim
that the projection map 77 : G/A — Z admits a Borel cross-section, that is to say a Borel-
measurable map s : Z — G/A such that 7(s(z)) = z for all z € Z. Indeed, observe that
the map 7 : G — Zis a continuous surjective homomorphism of Polish groups, hence
by [, Theorem 1.2.4] this map admits a Borel cross-section s’ : Z — G; quotienting
out by A then gives the claim.
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For any y € T and z € Z, the points ¢(y)s(z) and s(7 o ¢(y) + z) in G/A both lie in
the fiber #71(7r o ¢(y) + 2), so there is a unique element py(z) of K for which one has
the identity
(4.3) ¢(1)s(z) = s(7 o $(y) + 2) + py(2).

It is easy to see that p, : Z — K is measurable for each y. By computing ¢(y; + 7,)s(z)
in two different ways using (£.2), ({.3) we can verify that p := (p,),cr isin facta (Z, K)-
cocycle. By the identification
(z,k) =s(z) + k,

one can then verify that the translational system G/A is abstractly isomorphic to the
semidirect product Z X, K (one can use Fubini’s theorem to check that the product
measure of Z X, K is invariant under the left action of G under this identification and
is thus identified with the Haar probability measure on G/A).

To conclude the proof of Proposition .1, it will suffice to show that o obeys the
Conze-Lesigne equation, which can be achieved by standard calculations in a suitable
coordinate system as follows. Let z, € Z be arbitrary. As the projectionn: G — Z
is surjective, we can find& 8z, € G such that 7(g, ) = zo. Applying g, to (£.3) and
using (#.2), we see that

82,9(1)3(2) = g2,5(7 0 $(¥) + 2) + py (2)
forany y € T and z € Z. Writing g, ¢(y) = [g,.$()]$(y)g,, and noting that the
commutator [g, ,$(y)] lies in G,, we then have from (@.1) that
(4.4) 3 (1)82,5(2) + T1([g2, P(V)]) = gz,5(7w © $(¥) + 2) + py(2).
On the other hand, since g, s(z) and s(z + z,) both lie in the fiber #7 Yz + zy), there
exists a unique measurable function F, : Z — K such that
8205(2) = 8(z + 20) + Fz,(2)

for all z € Z. Inserting this (both for z and for 7 o ¢(y) + z) into equation (#.4) and
using (£.2) and (f.3), we conclude that

(7o ¢(y) + 2 + 2o) + py(z + 2o) + F;(2) + 11([82,, (7))

=5(m o ¢(y) + 2 + 29) + Bz (7 0 $(y) + 2) + oy (2);
as the K-action is free, this can be rearranged as
py(z +2g) — py(2) = B (w0 $(¥) + 2) — E, (2) — T1([gz, $(1)])
or equivalently
(4.5) 3y, p = B, + Czs
where ¢, : I' — K is the map
¢z, (¥) = —T1([&2,> (VD).

As G has nilpotency class 2, one easily verifies that c,, is a homomorphism (this also

follows from the fact that the other terms in (f.5) are (Z, K)-cocycles). Hence p obeys

13For this argument we will not need to require 8z, to depend in a measurable fashion on zg, though
we could ensure this if desired, by using either a variant of the Borel section constructed previously or by a
variant of Proposition B-1.
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the Conze-Lesigne equation as required. This completes the proof of Proposition (.1,
and hence the derivation of (i) from (ii).

Remark 4.2. For a given translational I'-system G/A, with G a nilpotent locally compact
Polish group of nilpotency class two, there can be some flexibility in how to select the
subgroup G,; it must contain the commutator group [G, G] and be contained in turn
in the center Z(G) of G, and needs to be closed and “rational” in the sense that G, N A
is cocompact in G,, but is otherwise arbitrary. From the above discussion, this means
that it is possible for the translational I'-system G/A to be expressed as an abelian group
extension Z X, K of a rotational I'-system by a cocycle p obeying the Conze-Lesigne
equation in several inequivalent ways. As discussed in Remark .7, the minimal choice
G, = [G, G] corresponds to the case when Z is the maximal rotational I'-system fac-
tor of G/A, i.e., the Kronecker factor; however in some cases one can also take larger
choices of G,, such as the center Z(G) of G, which correspond to smaller choices of Z.
See Section B.] for one example of this situation.

4.2. From the Conze-Lesigne equation to nilpotent translational systems. Now
we show that (i) implies (ii). We begin with a technical reduction. Define a good system
to be a translational I'-system G/A of the form required in part (ii) with the additional
conditions listed at the end of the theorem; thus G is a locally compact nilpotent Polish
group of nilpotency class two, A is an abelian lattice in G, and G contains a compact
central Lie group G, containing [G, G] with AN G, trivial. Call a factor of a I'-system a
good factor if it is abstractly isomorphic to a good system. Our task is to show that any
Conze-Lesigne I'-system is the inverse limit of a directed family of good factors. The
requirement to be a directed set can be dropped thanks to the following observation
(cf., [28, §13.3.2, Proposition 16]):

Proposition 4.3 (Good factors form a directed set). Given two good factors Y;,Y, of X,
there exists another good factor Y of X such that Y;,Y, <Y.

We defer the proof of Proposition f.3 to Section f.3. Assuming it for now, any family
of good factors can be completed to a directed set of good factors by a transfinite induc-
tion on the cardinality of the family of good factors. Indeed, the base case being trivial,
suppose 8 = a + 1 is a successor ordinal and X, is a directed family of good factors.
Applying Proposition f.3, we can form X by taking the join of each good factor in X,
with the additional element. Moreover, if 8 is a limit ordinal, then we can take the
union of all X, over a < 3.

Hence for the purposes of showing that (i) implies (ii) we can now drop the require-
ment that the family of good factors be directed. In particular, if X is the inverse limit
of some other systems X,,, and each X,, was already demonstrated to be an inverse limit
of good factors, then X itself must also be an inverse limit of good factors, simply by
concatenating all the families of good factors together (and ignoring the directed set
requirement).

The next step is to reduce to the case of separable I'-systems. By Lemma [[.3 and the
preceding discussion, it suffices to show that every I'-system X is the inverse limit of
separable I'-systems. But given any finite collection F of elements of the o-complete
Boolean algebra X associated to X, one can form the factor X, by replacing X with
the o-complete subalgebra generated by the I'-orbit {T"F : F € ¥,y € I'} of #, and
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restricting the measure and action appropriately. It is clear that this is a separable factor
of X, and X is the inverse limit of the X, as claimed.

Henceforth X is separable. The group I' is not assumed to be torsion-free, but it is
of course isomorphic to a quotient I''/Z of a torsion-free countable abelian group I".
For instance one can take [ = @y or Z to be the free abelian group formally generated
by the elements y of I', with I then naturally identified with the quotient of I'" by the
subgroup X consisting of formal integer combinations of elements of I' that sum to
zero. Any ergodic separable I'-system X can then be viewed as an ergodic I''-system in
the obvious fashion; and if X when viewed as a I''-system is the inverse limit of good
I'-systems G, /A, then each of the factor I''-systems G, /A, must have a trivial action
of ¥ and thus also be interpretable as a good I'-system. Furthermore, if X is of order k
as a I'-system for a given k, it is easy to see from the definitions that it is also of order
k when viewed as a I’-system. Thus, to prove the implication of (ii) from (i) for T, it
suffices to do so for I". In particular, we may now assume without loss of generality
that I' is torsion-free.

By Theorem [[.12, we can assume without loss of generality that the ergodic separa-
ble I'-system X is of the form X = Z X, K, where Z is a rotational ergodic I'-system, K
is a compact abelian group, and p is a (Z, K)-cocycle of type 2. Since X was separable,
Z is also separable, hence by Pontryagin duality Z is countable and Z is metrizable. By
the Peter-Weyl theorem or Pontryagin duality (see e.g., [46, Exercise 1.4.26]), K is the
inverse limit of compact abelian Lie groups K,,. One can then easily verify that Z X, K
is the inverse limit of Z X, ., K, where 7,, : K — K, are the projection homomor-
phisms. Since p is a (Z, K)-cocycle of type 2, the (Z, K,)-cocycles 7,, o p also have type
2. Thus, for the purposes of establishing Theorem [.§(i), we may assume without loss
of generality that K is a compact abelian Lie group. In particular, by Theorem [[.13, the
(Z, K)-cocycle p now obeys the Conze-Lesigne equation. Also, by Pontryagin duality,
K is a finitely generated discrete group.

To summarize so far, we have reduced the derivation of (ii) from (i) to establishing
Proposition f.4 (which can be viewed as a partial converse to Proposition f.1)):

Proposition 4.4 (Constructing a nilpotent translational system). Let I be a countable
abelian group, Z a metrizable rotational ergodic I'-system, K a compact abelian Lie group,
and p an ergodic (Z, K)-cocycle obeying the Conze-Lesigne equation. Then the (ergodic,
separable) I'-system Z X, K is abstractly isomorphic to a good system, i.e., a translational
system G/Awith G is a locally compact nilpotent Polish group of nilpotency class two, A is
an abelian lattice in G, and G contains a compact central Lie group G, containing [G, G|
with A N G, trivial.

To avoid circularity in our arguments we emphasize that our proof of Proposition
B4 will not use Proposition .3, as this latter proposition has not yet been proven.

To prove Proposition .4, we now follow a standard construction (see [8], [8], [B5],
[40], [26], [27], [24], [51]), but taking care to keep track of which structures are only
defined abstractly (or up to almost everywhere equivalence), rather than pointwise.
Define the Host—Kra group G to be the collection of pairs (u, F), where u € Z and
F € M(Z,K) obeys the Conze-Lesigne equation

(4.6) Oy,p=dF +c¢
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for some homomorphism c¢: I' — K. These pairs (u, F) generate a near-action on
X = Z X, K by the formula

4.7) (u, F)(z,k) :== (z + u, k + F(2)),

where we arbitrarily select one concrete representative F : Z — K from the equiva-
lence class of F. One verifies from Fubini’s theorem that this near-action is concretely
measure-preserving, and that the abstract action on X does not depend on the choice
of representative. Thus if we endow G with the group law

(u, F)W',F'):=(u+u',FoV, +F")

and inverse operation
(u’F)_l = (_u’ —Fo V—u),

one easily verifies that G is a group that has a near-action on X, and thus (as dis-
cussed in Appendix [A.3) acts abstractly on X. We claim that this abstract action is
faithful. Indeed, if (u, F) acts abstractly trivially on X, then for every bounded measur-
able f: Zx K — R we have

fz+uk+F(2)) = f(z,k)

for ZxK-almost every (z, k). Testing this against functions of the form f(z, k) = e(x(z))
for characters y € Z,we conclude that u vanishes; testing against functions of the form
f(z, k) = e(£(k)) for characters ¢ € K we conclude that F vanishes almost everywhere,
giving the claim. Thus we can identify G with a subgroup of the unitary group on
I?(X), by identifying each (u, F) € G with the Koopman operator defined in I*(X) by
the usual formula
(w, F)f)(z. k) = f((u, F)~'(z, k))

for f € I*(X)) (note that this is well-defined as a unitary map on I*(X) that does not
depend on the choice of representatives for F or f).

By identifying k € K with the constant function z — k, we see that (0, k) obeys the
Conze-Lesigne equation (f.6), and hence the group

G, =1{(0,k) : k €K}

is a central subgroup of G. We also claim that G, contains [G, G]. Indeed, if (u, F),
(u',F") € G, then a brief calculation shows that

(4.8) [(u, F), W', F")] = (0, F),

where F := 9y, , F — 0y, F') o V. Differentiating the formula for F using (£:8) we
see that dF = 0, and hence by ergodicity F = k for some k € K, giving the required
inclusion. In particular, G is nilpotent with nilpotency class at most two. From the
Conze-Lesigne equation we see that the projection map (u, F) — u is a surjective ho-
momorphism from G to Z with kernel H := {(u,F) € G : u = 0} (which is clearly an
abelian group containing G, as a subgroup), thus we have the short exact sequence

(4.9) 0->H—->G—->Z-0.
Ifwelet¢: I' > G denote the map
() = ($2(r), Py),
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where ¢, : T — Z is the rotation action on Z, one checks from the definitions that the
abstract action of I" on X is the composition of ¢ with the abstract action of G on X, thus

TV = ¢(y)

as abstract maps on X.

The strong operator topology gives the structure of a Hausdorff topological group to
the group of unitary operators in I>(X), and hence also to G. This is a good topological
structure to place on G:

Proposition 4.5. G is a locally compact Polish group, and G, is a closed subgroup of G
(and thus also locally compact Polish).

Proof. As X is a separable probability algebra, the Hilbert space I*(X) is also separable.
As is well known, the group of unitary operators on such a space, when equipped with
the strong operator topology, is a Polish group. To show that G is also a Polish group, it
thus suffices to show that G is closed in the strong operator topology. Butif (u,, E,) € G
is a Cauchy sequence in the strong operator topology, it is easy to see (by testing against
characters y € Z) that u,, is a Cauchy sequence in Z that must therefore converge to
some u € Z, and for any character ¢ € K, that the £ o F, are a Cauchy sequence in
measure, so (by the finitely generated nature of K) F, converges in measure to some
limit F: Z — K. It is then not difficult to show that (u, F) obeys the Conze-Lesigne
equation and that (u,,, F,) converges to (u, F), which demonstrates that G is closed and
thus a Polish group. The same argument shows that G,, H are closed subgroups of
G; as the obvious bijection from K to G, is a continuous map, we conclude that G, is
isomorphic to K as a compact abelian group. In particular G, G, are second countable.

It remains to show that G is locally compact. The homomorphism from G to Z is a
continuous surjective homomorphism of Polish groups, and is thus an open map (see
e.g., [1]). Using the short exact sequence (f.9), we conclude that G/H is isomorphic
to Z and is in particular locally compact. To show that G is locally compact, it thus
suffices (see [23, Theorem 5.25]) to show that H is locally compact.

Since G, is already compact, it suffices to show that G, is an open subgroup of H, or
equivalently that every sequence (0, F,) in H converging to the identity lies in G, for n
large enough. By the Conze-Lesigne equation (f.§), the F, obey the equation

(4.10) dF,+¢, =0
for some ¢, € Hom(Z, K), so for each ¢ € K we have

(4.11) e(§(Fy) o 87 = e(§(cn(y))e(§(Fn)

almost everywhere for all n and all y € T, where S denotes the rotation action on Z.
By the preceding discussion, F, converges in measure to zero, so for any fixed £ € K,
e(§(F,)) converges in measure to 1. In particular, for n large enough, e(§(F,)) has mean
one. Integrating (f.11]), we conclude that £(c,(y)) = 0 for sufficiently large n and all
y € I. Since K is finitely generated, we conclude that c¢,, = 0 for all sufficiently large n.
Thus by (f.10), for all sufficiently large n, F, is I'-invariant, and therefore constant by
ergodicity. In other words, (0, F,) lies in G,, giving the claim. O

Note that as G is locally compact and nilpotent, it is unimodular. It remains to show
that X is abstractly isomorphic to a translational I'-system G/A for some lattice A in G,
with A N G, a lattice in G,. If G acted concretely (or better yet, continuously) on X,
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one could hope to proceed here by showing that the action of G on X was transitive,
and take A to be the stabilizer of a point. Unfortunately, the action of G that we have
on X is only an abstract action. To resolve this we use the Koopman topological model
X = (X, ) of the abstract G-system X constructed in Theorem [&.4, where we will use
g: X — g% to denote the G-action on this model. By Lemma [A.6, it now suffices to
establish the following claims:

(iv) For any %,, X, € X, there exists g € G such that g&; = %,.
(v) Forsome %, € X, the stabilizer A := {g € G : g%, = %,}is alattice in G, ANG,
is trivial (and hence a lattice in G,), with A abelian.

Indeed, Lemma [A.§ will then guarantee that X is abstractly isomorphic as a G-
system to the translational G-system G/A, and then by applying the group homomor-
phism ¢: I' — G we see that X and G/A are abstractly isomorphic as I'-systems as
well.

We begin with (iv). Observe from (f.7) (and the continuity of the projection from
G to Z) that any continuous function f € C(Z) on Z pulls back to a G-continuous
function (z, k) ~ f(z) on X, where the notion of G-continuity was defined in Theorem
B4. Thus we have a tracial C*-algebra homomorphism from C(Z) to the algebra A
of G-continuous functions, which preserves the G-action (letting (u, F) act on Z by
translation by u). By Gelfand-Riesz duality (see [B2, Theorem 5.11]) and Theorem
A4, we thus have a continuous factor map 7 : X — Z of compact G-systems. Because
the projection of G to Z is surjective, the (continuous) action of G on Z is transitive.
Thus to establish the transitivity property (iv), it suffices to do so in a single fiber of 7,
that is to say we may assume without loss of generality that 7(%;) = #(%,).

It suffices to establish transitivity of the G,-action on fibers of 7, that is to say that
under the hypothesis #(%;) = 7(X,) there exists k € K such that (0,k)%; = %,. We
now repeat the arguments from [28, §19.3.3, Lemma 10]. Suppose for contradiction
that the G,-orbit of %; does not contain %,, then by continuity we can find an open
neighborhood U of %; in X such that %, does not lie in the G,-orbit {(0,k)% : % €
U;k € K} of U. By Urysohn’s lemma, we can find a non-negative function f € C(X)
supported on U that is positive at X;; the averaged function

F&®) = f (0. 0)%) dk,
K

with dk the Haar probability measure on K, is then a G,-invariant function in C(X) that
is non-zero at X, but vanishes at %,. By construction of the Koopman model, f can then
be identified with a G-continuous function in L*(X) which is also G,-invariant, and
hence arises from a G-continuous function on Z thanks to (f.7). But as the projection
from G to Z is surjective, the G-continuous functions on Z can be identified with the
ordinary continuous functions on Z, thus f can be identified with an element of C(Z).
But as %;, X, lie in the same fiber of 7 we must then have f(fcl) = f(fcz), giving the
required contradiction. This establishes the transitivity property (iv).

As a corollary of this transitivity and the faithfulness of the G action, we see (cf.,
[28, §19.3.3, Lemma 11]) that the central G, action must be free, since if (0,k)x = %
for some k € K and £ € X, then by transitivity and centrality the action of (0, k) on
X would be trivial, hence k = 0. Thus if we let A be a stabilizer of a point X, in G,
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then A N G, is trivial and thus clearly a lattice in the compact group G,. Since [A, A] is
contained in both A and [G, G] C G,, it must be trivial, hence A is abelian.

To complete the verification of (v) we need to show that the stabilizer group A is a
lattice in G. Since the G-action on X projects down to the G-action on Z, the stabilizer
group A must be contained in the kernel H of the projection from G to Z. On the
other hand, as G, is an open subgroup of H and A N G, is trivial, we conclude that A is
discrete. Also, by the transitivity of the G, action on fibers of 7 (which are preserved by
the action of H) we see that A must intersect every coset of G, in H. Thus the quotient
H/A is homeomorphic to G, and thus compact. Since G/H = Z is also compact, the
projection from G to Z is open, and G is locally compact, G/A is also compact, so A is
a lattice as required. This concludes the proof of Proposition .4, and hence Theorem
[[.§ once we establish Proposition .3.

Remark 4.6. The above arguments can also establish an isomorphism H = K X A of
topological groups; we leave the details to the interested reader.

Remark 4.7. In the model case where Z is the Kronecker factor of Z X o K, we can
upgrade the inclusion [G, G] C G, in the above construction to [G, G] = G, (Where by
[G, G] we denote the closed group generated by the commutators). We sketch the proof
as follows. Suppose this claim failed, then by Pontryagin duality there exists a character
¢ € G, = K that annihilates [G, G]. For any z € Z, let F}, ¢, be a solution to the Conze-
Lesigne equation (B.1). Then (z, ), ¢(y) = (¢2(¥), p,) both lie in G, and by (i.§) their
commutator is (0, ¢,(y)) € G,, thus c,(y) is annihilated by . Applying & to the Conze-
Lesigne equation (B.1)), we conclude that dy,_(§ o p) is a (Z, T)-coboundary for every z €
Z. Ifweletm: K — K/[G, G] be the quotient homomorphism (identifying [G, G] < G,
with a subgroup of K in the obvious fashion), we conclude from the Moore-Schmidt
theorem (Proposition R.3(i)) that d, (7 ° p) is a (Z, K/[G, G])-coboundary for every z.
By a variant of Proposition B.J], this implies that 7o p is of type 1, and hence (by a variant
of Theorem [[.12) Z X, K/[G, G] is of order 1, i.e., a Kronecker system. Thus Z is not
the maximal rotational factor of Z X, K, giving the required contradiction.

4.3. Joinings of good systems. Finally, we supply the proof of Proposition f.3. It
suffices to establish the following claim (cf. [28, §11.2.3, Corollary 10]):

Proposition 4.8 (Measure classification on good systems). Let G/A be a (possibly non-
ergodic) good system. If v is an T-invariant ergodic measure on G/A, then G/A equipped
with v is abstractly isomorphic to a good system.

Indeed, suppose that an (abstract) I'-system X had two good factors, which we write
without loss of generality as G;/A; and G,/A,. The abstract factor maps give pullback
maps from C(G,/A;) and C(G,/A,) to L*(X), which by the Stone-Weierstrass theorem
gives a pullback map from C(G; X G,/A; X A,) to L*(X) which one can verify to be a
C*-homomorphism. The integral on X then induces a trace on C(G; X G,/A; X A,),
which by the Riesz representation theorem gives a measure v on G; X G,/A; X A, (in
fact it gives a joining of G;/A; and G,/A;). By construction, G; X G5/A; X A, equipped
with v is an ergodic I'-system that is a factor of X, and has G,/A, and G,/A, as factors
in turn. By Proposition [.8, this factor is a good factor, giving Proposition f.3.

4Indeed, the local compactness of G, the open nature of the projection, and the compactness of G/H
give an inclusion G C FH for some compact F, and the compactness of H/A gives an inclusion H C F’A for
some compact F’, thus G C FF'A and hence G/A is compact.
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It remains to establish Proposition f.§. This turns out to be a straightforward con-
sequence of the implications regarding Conze-Lesigne systems that we have already
established. By lifting I" to a torsion-free group as before, we may assume without loss
of generality that I is torsion-free. By Proposition f.1, the translational I'-system G/A
is abstractly isomorphic to a group extension Z X, K for some (possibly non-ergodic)
separable rotational system Z, some compact abelian Lie group K, and some cocycle p
obeying the Conze-Lesigne equation, except that the measure v is not necessarily equal
to the product measure on Z X, K. An inspection of the construction shows that the
cocycle equation (B.2) holds everywhere (not just almost everywhere), and similarly
for the Conze-Lesigne equation. Thus this group extension Z X, K (which by abuse
of notation we also equip with the measure v) is well-defined as a concrete I'-system,
not just an abstract one.

The ergodic measure v on ZX,K pushes down to an ergodic measure v on Z, which
isinvariant under a translational action ¢ of ' on Z. A standard Fourier-analytic com-
putation then shows that v; must be Haar measure of a coset of some closed subgroup
Z' of Z (indeed, Z' is the closure of ¢ (I') in Z). Applying a translation, we may assume
without loss of generality that the coset of Z’ is just Z' itself. The ergodic measure v is
then supported on a subsystem Z’ X K of Z X, K, where p’ is the restriction of p to Z".
Since p obeys the cocycle and Conze-Lesigne equations everywhere (not just almost
everywhere), the same is true for p’; that is to say, p’ is a (Z’, K)-cocycle that obeys the
Conze-Lesigne equation. By Theorem [[.12, the (Z', K)-cocycle p’ is of type 2.

By construction, the ergodic measure v on Z' X,/ K pushes down to the Haar mea-
sure on Z'. By the Mackey-Zimmer theorem (Lemma [[.3(iii)), there are a closed sub-
group H of K and an ergodic (Z', H)-cocycle p” such that p” is (Z’, K)-cohomologous
to o', and Z' X, K equipped with the measure v is abstractly isomorphic to Z’ X,» H
equipped with product measure. Since the (Z’, K)-cocycle p’ is of type 2, the (Z', K)-
cohomologous cocycle p” is of type 2 when viewed as a (Z’, K)-cocycle, thus Al2lp” is a
((z"H21, K)-coboundary. As A?lp” is also a ((Z')?!, H)-cocycle, we see from the Moore—-
Schmidt theorem (Proposition B-3(i)) that A?lp” isa ((Z")!?!, H)-coboundary (note from
Pontryagin duality that every character on H extends (not necessarily uniquely) to a
character on K). Thus p” is also of type 2 when viewed as a (Z', H)-cocycle.

Since K is a compact abelian Lie group, the closed subgroup H is also a compact
abelian Lie group. Applying Theorem again, we see that p” obeys the Conze-
Lesigne equation. Applying Proposition .4 (which did not require the use of Proposi-
tion @.3 in its proof), we conclude that Z' },» H is a good system. Since this system is
isomorphic to G/A equipped with the measure v, the claim follows.

Remark 4.9. Tt is worth considering whether results such as Proposition §.3 or Proposi-
tion .8 can be established directly from the theory of nilpotent translational systems,
without relying on the implications presented in Theorem [[.12, Proposition f1, or
Proposition f.4. Although [28, §13.3.2, Proposition 16] accomplished this in the case
of nilsystems, the arguments presented there heavily rely on the finite dimensionality
of these systems. However, a somewhat similar situation arises also for Z-actions, as
we currently lack a direct method for proving that a factor of an inverse limit of nilsys-
tems is itself an inverse limit of nilsystems, without relying on the Host-Kra-Ziegler
structure theorem.
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5. SOME EXAMPLES OF CONZE-LESIGNE SYSTEMS

In this section we give some examples of Conze-Lesigne systems (in even, odd, and
zero characteristics respectively) to illustrate the main theorems.

5.1. Firstexample: An extension of a characteristic two rotational system. Let
[ := FY be the countably generated vector space over [F,, and let Z := F5 be the
countable product of F, equipped with Haar probability measure v = Mgy and let
S : T — Aut(Z,v) be the I'-rotation S”(z) := z + y (using the obvious identifica-
tion of I with a subgroup of Z). By the mean ergodic theorem, the projection of any
f € L*(Z) depending only on finitely many coordinates onto the invariant subspace
of I?(Z) is constant. The span of these functions is dense in I?(Z). Hence (Z, v, S) is an
ergodic separable I'-rotational system.

LetK := Z/4Z be the cyclic group of order 4, and let p = (p, ), <r be the (Z, K)-cocycle

(5.1) py(2) = D (1)1, g,
neN
where we define
1, x =0,
—1)* =
=1 {—1, x =1,

and 1, _, similarly equals 1 when y,, = 1 and 0 otherwise. It is easy to verify that p is
a (Z,K)-cocycle. We have the following further properties:

Proposition 5.1 (Properties of p). (i) pisergodic.

(ii) pisof type 2.

(iii) p obeys the Conze-Lesigne equation.
Proof. We begin with (i). By Proposition R.3(ii), it suffices to show that & o p is not
a (Z,T)-coboundary for any non-zero ¢ € K. Since the character x — 3 mod 1 of
K is a multiple of any non-zero £ € K, it suffices to verify the claim for this specific

character. Suppose for contradiction that % op mod 1isacoboundary, thus there exist
F € M(Z,T) such that

1
(5.2) zpy:FoI{,—F mod 1
v-almost everywhere for all y. In particular we have
F(z+e,) =F(z)+ % mod 1

for any generator e,, of I' = F5. But by Lusin’s theorem, F(z+e,,) converges in measure
to F(z) as n - oo, giving a contradiction.

Now we verify (ii). As observed in [24, §3.2] (see also [28, §8.1.2]), Z[?! can be viewed
as a translational system on the compact group

ZP = {(z,z+ 51,2+ 55,z + 5, +5,) © 2,5,5, € Z},
with each y € T acting by translation by (7, 7, ¥, ). Thus we need to locate a measurable
function F : Z[2! - T such that
(5.3)
py(z) - Py(Z + Sl) - py(z + S2) + py(z +5 + SZ)
=Fz+v,z+81+7,2+S+7,2+8,+8+Y)—F(2,z2+ 81,2+ 85,2+ 81 +53)
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for all y € T and v-almost all z, s, s,. But the left-hand side expands as

2, (CDAn (= (=1 = (=12,
neN
and in the group K = Z/47Z, the product (1 — (—1)%tn)(1 — (—1)%2») always vanishes.
Thus we may simply take F = 0 to verify that p is of type 2.
Finally, we establish (iii). We need to show that for each z € Z, there exists F, €
M(Z,K) and ¢, € Hom(T, K) such that dy,_p = dF, + ¢, or in other words that

(5.4) py(w + z) — py(w) = B (w +¥) — B(w) + ¢,(¥)
for all y € T and v-almost all w € Z. But the left-hand side expands as

D (=D¥n((=1)%n — Dy, o,

neN
and in the cyclic group K = Z/47, (—1)¥n((—1)*» — 1) is equal to (—1)?» — 1. Thus we
can solve the Conze-Lesigne equation by setting F, := 0 and

ez ()= D, (=1)"n = D1y,

neN

which one easily verifies to be a homomorphism from I to K. O

By Proposition p.1 and Theorem [L.12, Z X, K is an (ergodic, separable) Conze-
Lesigne I'-system. Now we compute its Host-Kra group G. By definition, this is the set
of all pairs (u, F), where u € Z and F € M(Z, K) obeys the Conze-Lesigne equation

a[/up =dF +c¢

for some homomorphism ¢ € Hom (T, K). By the proof of Proposition B.1(iii), dy, o, is
constant, thus (dF )y is constant for each y € T. In particular, for each natural number
n, there must be a constant c,, € K such that

(5.5) F(z+e,)—F(z) =c,

for almost all z € Z. Shifting z by e,, and summing in the characteristic two group Z,
we conclude that 2¢,, = 0, thus c,, is either equal to 0 or 2. On the other hand, F(- +¢,,)
converges in measure to F, hence all but finitely many of the ¢, vanish. From this we
conclude that F must take the form

(5.6) F(z) =6+ ), (-1)"1g,

neN
almost everywhere for some 6 € K and o € I, which are uniquely determined by F.
Thus, by abuse of notation, we can write the Host-Kra group G as the collection of
triplesE (u,0,0) € Zx K x T, and one can calculate the group law in Z x K X T to be

(u,8,0)w’,6',0") := (u +u',0+6 + Z ((—1)“;1 +Dlg, 1,0+ a’)

neN

1570 see the converse that any element of Z x K X T can be identified with an element of G, let (u, 8, 0) €
Z X K X T. We need to find ¢ € Hom(T, K) such that dy, 0 = dF + ¢ where F is defined by (B-8) for the
given choice of (8, o). For the given u € Z, by Proposition F.1(iii), there are F’ € M(Z, K) (which we can also
represent as in (£.§)) and ¢’ € Hom(T, K) such that dy, o = dF’ + ¢'. By a direct computation, one verifies
that ¢ := d(F' — F) + ¢’ € Hom(T, K).
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and inverse

(1,0,0)" = (—u, —6+ > ((~1)n — 1)1%:1,—0).

neN

This group acts transitively (and continuously) on Z X K by the formula

(u,6,0)(z,k) == <z +uk+06+ Z (—I)ancnzl)

neN

and the stabilizer A of the point (0, 0) is

A = {(O, - Z (—1)2"16n:1, O') o0 € F} .
neN
One can check that the strong operator topology on G corresponds to the product topol-
ogy on ZxKxT (viewing K, T as discrete groups), so that G is a second countable locally
compact Polish group, A is alattice in G, and ZxK is isomorphic (as a compact I-space)
to G/A, with the action of a group element y € I' on G/A given by multiplication by
(7,0, 7). If one defines the subgroup G, of G by

G, =1(0,6,0) : 6 €K},

then G, is a closed central subgroup of G that contains™ [G, G], and hence G is nilpo-
tent of class two; also A N G, is trivial and thus a lattice in the compact group G,. One
can now verify that Theorem [[.§ holds for this example.

As Z is a rotational system, it is contained in the Kronecker factor of Z X oK, thanks
to Theorem [[.4. However, the Kronecker factor turns out to be slightly larger than this:

Proposition 5.2. The Kronecker factor of Z X, K is Z X, 2K, where 2K = 27/4Z is a
cyclic group of order 2, with factor map (z, k) — (z,2k).

Proof. Observe that the action of a group element y on Z X, 2K is given by translation
in the group Z x 2K by (7,2 2}, 1y,=1)- Thus Z X, 2K is a translational T-system
and thus contained in the Kronecker factor.

To establish the converse claim, observe from Theorem [[.4, Proposition [[.3, and
Pontryagin duality that the factor algebra of the Kronecker factor is generated by eigen-
functions of the T-action, that is to say functions f € L*(Z X, K) such that

(5.7) foT? =24,f

almost everywhere for all y € I and some 4, € C (which must lie in S by unitarity).
Since the I'-action on Z X, K commutes with the abelian K-action, we see on applying
a Fourier decomposition with respect to the K variable that we can restrict attention to
eigenfunctions of the form

(5.8) f(z,k) = F(z)e(mk/4)
for some m = 0,1,2,3 and some F € L®(Z). The eigenfunctions with even m already

are measurable in the factor Z x o K, soit suffices to show that there are no non-trivial

161n fact [G, G] is strictly smaller than G,, consisting only of those triples (0, 8, 0) where 9 is a multiple
of two; we leave the verification of this fact to the interested reader. Compare also with Remark 3.
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eigenfunctions of the form (B.§) with m odd. The function |F| is [-invariant, thus con-
stant by ergodicity; we may normalize |[F| = 1. Applying the eigenfunction equation
(B-7) with y = e,, we see after some calculation that

F(z +ep) = 4., e(—m(=1)*n/4)F(z)

for almostall z € Z. As m s odd, direct calculation then shows that ||F(- +e,) = F||12(z)
is bounded away from zero. But F(- + e,,) converges strongly to F in I*(Z), giving the
required contradiction. O

Remark 5.3. One canview ZX,K as a group extension of the Kronecker factor Z X,,2K
by a suitable (Z X, 2K, K/2K)-valued cocycle and obtain analogues of Proposition b.1]
for that cocycle; we leave the details to the interested reader. One can also obtain higher
order variants of this construction by replacing the cyclic group Z/4Z with larger cyclic
groups Z/2K7, or even with the 2-adic group Z, to create larger systems Z X ok z/2%z
and Z X, Z,,with the cocycles py, oo, defined as in (E.1)) but taking values now in
Z/2KZ or 7, rather than Z/4Z. One can then show that for any k > 1, the k'™ Host-
Kra-Ziegler factor Z¥(Z X pw £2) is isomorphic to Z X, 7/2%7; we leave the details
of this computation to the interested reader. Note that the previous calculations are
consistent with the k = 1, 2 cases of this assertion.

Remark 5.4. Essentially the same system was also studied in [48, Appendix E], as an
example of a system in which polynomials did not have roots of the expected degree.

5.2. Second example: A system associated to a bilinear form in odd charac-
teristic. Let p be an odd prime, ' := [Fg’, Z = [Fg‘, V= Uy its Haar measure, and
B : TXT — [, the standard bilinear form B(y,y’) == X, ¥7n- We define the rotational
[-system Z = (Z,v,S) where S : T —» Aut(Z,v) is the T'-rotation S"(z,,) := (z,, + 2¥,)-
Since {2y : y € T'}is dense in Z (identifying I" with a subgroup of Z), the rotational
[-system Z is ergodic. Let K = F, and p = (p,),cr be the (Z, K)-cocycle

(5.9) py(2) == Y 2p¥n + B, 7).
neN
It is not difficult to verify that this is indeed a (Z, K)-cocycle.
We claim that p obeys the properties stated in Proposition b.1. We begin with ergod-
icity. If this cocycle was not ergodic, then by repeating the proof of Proposition B.1|(i)
we could find F € M(Z, T) such that

%pyzFoI{,—F mod 1
v-almost everywhere for all y. In particular
Fz+ey)=F@)+ 211 mod1

for any generator e, of [, and this again contradicts Lusin’s theorem.

To see that p is a type 2 cocycle, we can directly verify that (5.3) holds (with y re-
placed by 2y on the right-hand side) with F = 0. Similarly, to verify the Conze-Lesigne
equation, direct calculation shows that (5.4) holds with F, = 0and ¢, (y) = 3}, . Zn¥n-

A modification of the proof of Proposition p.2 (relying on the assumption that p is
prime) reveals that Z is the Kronecker factor of Z X o K; we leave the details to the
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interested reader. We also can compute the Host-Kra group similarly to the previous
example. Indeed, following similar computations, we find that if (u, F) € G, then
F(z)=6+ Z ZpOp
neN
almost surely for some 6 € K and o € T' = [’. A difference to the previous example is
that these F correspond to the eigenfunctions of the Kronecker factor Z. Proceeding as
with the previous example, we can then identify G with the set of all triples (1, 6, 0) €
Z X K x T endowed with the group law
w,8,0)w,0',0")=(u+u,0+06 + Z U, 0p, 0+ 0').
nenN
The remaining analysis can be carried out analogously to the previous example, and
we leave it to the interested reader.

5.3. Third example: A system associated to a bilinear form in characteristic
zero. We now present a “characteristic zero” variant of the previous example, which
is a standard skew-shift system. LetI' = Z, K = Z = T both equipped with Lebesgue
measure, and o € T be irrational. We equip Z with the rotational I'-system z — z + 2a,
and denote the resulting system by Z. Forn € Z,let p,, : T — T be defined by p,,(z) =
zn+an?. Then p = (0,)nez is a (Z, K)-cocycle. Now form the skew product X = Z oK.
As 2a is an irrational rotation, Z is an ergodic I'-rotational system. By irrationality of
a and the definition of p, we conclude that Z is the Kronecker factor of X. For x =
(0,0) € T?, we put x(n) := T}(x) = (2an,an®). By Weyl's equidistribution theorem
(e.g., see [A#3, Corollary 1.1.9]), (x(n)),c7 is asymptotically equidistributed in T2 with
respect to Haar measure. Thus X is an ergodic I'-system. The cocycle p satisfies the type
2 condition (B.3) with F = 0, and the Conze-Lesigne equation (5.4) with c,(n) = nu
mod 1 for alln € T and u € Z. All eigenvalues of (Z, 2«) are of the form 2am for
m € Z. Therefore, we can identify the Host-Kra group G of X with the set of all triples
(u,8,m) € Z x K x T with group law

u,6,m)(w',0',m'):=(u+u,0+6 +um+m')

and inverse

u,8,m)~! == (—u,—6 —u,—m).
We observe that G acts continuously and transitively on Z X K by

(u,6,m) - (z,k) =(z+u,k + 6 + mz).
The stabilizer of x = (0,0) € Z X K is just
A ={(0,0,m) e m € 7}.

We define

G, =[G,G] ={(0,k,0) e k e K}.
Finally, define the translation ¢ : Z — G by ¢(n) := (2an,an?,n). One now verifies
that Theorem [L.§ holds for this example as well.

Remark 5.5. The last two examples can be unified into a class of examples of Conze-
Lesigne systems which we sketch in the following. Let I' be a countable abelian group,
U be a compact abelian group, and B: I' X I' — U be a symmetric bilinear form. Let
Z = Hom(T, U) (which is a compact abelian group equipped with Haar measure), and
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let X be the set of quadratic functions x : T' — U defined by x(y) = B(y,y) + z(y) + ¢
for some z € Z and ¢ € U. We can identify X with Z X U and equip X with product of
Haar measures. We let I" act on X by

-x)@)=By+v,.yr+y)+z(y+7v) +c

This extends a translational action on Z defined by

(- 2)(7") = 2(y) + 2B(r.7")
using the (Z, U)-cocycle
py(2) := B(y,7) + z(y).
Under a suitable genericity hypothesis,ZZ these actions are ergodic. The verifications
of the type 2 property (5.3) and Conze-Lesigne equation (5.4) for p proceed similarly

to before, and one can express this system as a translational system G/A with G the
Host-Kra group. We leave the details to the interested reader.

Remark 5.6. In all of the above examples, the Host-Kra group G ends up being a semi-
direct product of Z and KXA. However, this need not be the case in general, particularly
when the cocycle p is not of a polynomial nature. Suppose for instance we take the
Heisenberg nilsystem G/A with T := Z,

1 R R/Z 1 Z 0
G:=|10 1 R |]; A=(0 1 Z
0o 0 1 0 0 1

with the group action ¢ : I' = G given by

n(n-1)

1 na —5—af mod 1
(5.10) p(m)={0 1 np
0 0 1

for some real numbers «a, 8 with 1, «, 8 linearly independent over the rationals. The
Kronecker factor Z can be identified with the two-torus (R/Z)? with translation map
S": (x,y) — (x + na,y + nf), and by following the construction in Section .1 with
the section s: Z — G/A defined by

1 {x} o0
s(x,y)==(0 1 {y}
0 0 1

with x — {x} the fractional part map from R/Z to [0, 1), we can calculate the cocycle
(Z,K)-cocycle p (with K = R/Z) to be

RSCE

Here the Host-Kra group G is not the semidirect product of Z and K X A; instead we
have a non-split short exact sequence

af + na{y} — (x + na)({y} + nf —{y + nf}) mod 1.

0O-H->G—>Z7Z-0

171t appears tentatively that the correct genericity hypothesis to make here is that there does not exist a
finite index subgroup I'" of I' and a non-trivial character £ € U such that £ o B vanishes on I x I, although
we will not establish this here.
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with
1 Z R/Z
H=|0 1 Z |=KXxA.
0 0 1

Remark 5.7 (Rudolph’s example). £ Let a, 8 be as in the previous example. One can
take an inverse limit of the Z-nilsystems

1 R R2NZ\ /1 2N7Z o
0 1 R |/[o 1 =z
0 0 1 0 0 1

as N — oo, using the translation action (b.I() for each N, to obtain a Conze-Lesigne
system that was shown by Rudolph [40] to not be expressible as a nilpotent translational
Z-system of nilpotency class two. It can be expressed as an abelian extension Z X, K,
where the Kronecker factor Z is given by Z := S, X R/Z, with S, is the 2-adic solenoid
group formed as the inverse limit of the R/2NZ, and where the translation action n
(na, np), K = S, is another copy of the solenoid group, and the (Z, K)-cocycle p is given
by
n(n—1)
Pn(x,y) = ———af + na{y} = (x + na)({y} + nf — {y + nfs})

(where we embed R into S, in the obvious fashion) forn € Z, x € S,,y € R/Z, noting
that the product in the last term is well-defined since {y} + n8 — {y + nf} is an integer.
This cocycle is ergodic and of type 2 but does not obey the Conze-Lesigne equation,
mainly because there are too few continuous homomorphismsE from Z to K; this does
not contradict Theorem because K is not a Lie group. On the other hand, the
system Z X, K can be expressed as a double coset system

10 0 1 RxZ, RxZ)\ (1 A®Z) A@2)
0 1 {0}xz,|\fo 1 Rxzl|/l0o 1 aA@],
00 1 0 0 1 0 0 1

where the 2-adic group Z, is the inverse limit of Z/2NZ and A is the diagonal embed-
ding of Z into R X Z,; see [43].

APPENDIX A. CONCRETE AND ABSTRACT MEASURE THEORY

In this appendix we review the notational conventions we will use for various types
of probability spaces, and measure-preserving actions on such spaces. It will be conve-
nient to use some of the category theoretic formalism from [37], although we will not
make heavy use of category-theoretic tools in this paper.

A.1. Forgetful functors. We begin with a general convention concerning “casting
functors” from [32], although in this paper we will refer to these functors as “forgetful
functors” instead.

We will deem a number of functors

C— C

18This reformulation of Rudolph’s example was communicated to us by Yonatan Gutman.
1In particular, there are no non-trivial continuous homomorphisms from T to S,.
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from one category € to another €, to be “forgetful functors”, which intuitively would
take a C-object X or a C-morphism f: X — Y and “forget” some of its structure to
return a Cy-object X¢, or a Cy-morphism fe @ Xe, — Ye,. We always consider the
identity functor to be forgetful, and the composition of two forgetful functors to be
forgetfulll; for instance if we have two forgetful functors

CL —> G, — C3,

then we have X, = (X¢, )¢, for any C;-object X.
Given a pair of forgetful functors

€ — C <— Cy,

we say that a C;-object X; and a C,-object X, are Cy-isomorphic if there is a Cy-isomor-
phism between (X;)e, and (X;)e,. Similarly, a C;-morphism f; : X; — Y; and a C,-
morphism f,: X, — Y, are Cy-equivalent if X;,X, are Cy-isomorphic, Y7, Y, are Cy-
isomorphic, and the Cy-morphisms (f1)¢, : (X1)e, = (Ye,» (F2)e, + X2, = (Ya)e,
agree after composing with these C,-isomorphisms. If a ¢;-object X; is Cy-isomorphic
to a Cy-object X', we call X; a €;-model of X’; similarly, if a €;-morphism f; : X; - Y;
is Cy-equivalent to a @y-morphism f’ : X’ — Y’, we call f; a C,-representation of f’.

A.2. Probability spaces. In this paper we will work with three categories CncPrb,
PrbAlg, CHPrb of probability spaces.

Definition A.1 (Categories of probability spaces [B2]). (i) A concrete probability
space (or CncPrb-space) is a triple (X, X, u), where X is a set, X is a o-algebra
of subsets of X, and u : X — [0, 1] is a countably additive probability measure.
A concrete probability-preserving map (or CncPrb-morphism) f : (X,X,u) —
(Y,Y,v) between two CncPrb-spaces is a measurable map f: X — Y such
that u(f~1(F)) = »(F) for all F € Y (that is to say, the pushforward f,u of u by
f isequal to v).

(ii) A probability algebra (or PrbAlg-space) is an object of the form (XX, u), where
X = (X,V,A,0,1,7) is a g-complete Boolean algebra, and u: X — [0,1]
is a countably additive probability measure on X such that u(E) = 0 if and
only if E = 0. An abstract probability-preserving map (or PrbAlg-morphism)
f (X, u) = (Y,v)between two PrbAlg-spaces is a Boolean homomorphismE
f: Y — X that preserves countable joins (thus f (\/:;1 E) = \/;o:1 f(E,) for
all E, € X such that u(f(F)) = v(F) for all F € X).

(iii) A compact probability space (or CHPrb-space) is a quadruple (X, F,X, 1),
where (X, #) is a compact Hausdorff topological space, X is the Baire® o-
algebra (i.e., the topology generated by the continuous functions from X to R),
and u is a countably additive probability measure which is Radon in the sense

20This convention will be unambiguous because all of our forgetful functors will commute with each
other.

2INotice the opposite direction of the arrows here. We implicitly work with an opposite category here to
keep certain functors covariant.

22 Actually, the preservation of countable joins is automatic for Boolean homomorphisms between prob-
ability algebras, and such algebras are in fact complete Boolean algebras as opposed to merely being o-
complete, although we will not need these (easily established) facts here.

23See [B1,[32] for a discussion as to why the Baire o-algebra is a more natural choice than the Borel o-
algebra for compact Hausdorff spaces that are not necessarily metrizable, and similarly for why “compact
G inner regular in the Baire algebra” is the natural definition of a Radon measure in this setting.
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of [32, Definition 4.1}, i.e., i is compact G s inner regular in the Baire algebra. A
continuous probability-preserving map (or CHPrb-morphism) f: (X, F,X,u) -
(Y,G,Y,v) between CHPrb-spaces is a continuous map which is also a
CncPrb-morphism.

It is easy to verify that CncPrb, PrbAlg, CHPrb are indeed categories. Inside these
categories we isolate some “countable” objects:

(i) A concrete probability space (X, X, u) is a Lebesgue space (or Lebesgue for short)
if the measurable space (X, X) is a standard Borel space, that is to say one can
endow X with the structure of a Polish space such that XX is the Borel o-algebra.

(ii) A probability algebra (X, u) is separable if the o-complete Boolean algebra X
is countably generated.

(iii) A compact probability space (X, F, X, u) is metrizable if the topological space
(X, F) is metrizable (or equivalently by the Urysohn metrization theorem, sec-
ond countable).

There are obvious forgetful functors
CHPrb <—— CncPrb —— PrbAlg,

between these categories, in which a CHPrb-space (X,%,X,u) is converted to a
CncPrb-space (X,F, X, Wenepry, = X, X, u) by forgetting the topology F, and a
CncPrb-space (X, X, u) is converted to a probability algebra (X, X, u)pwalg = (Xys 1)
by forming the probability algebra

X, ={[E]: E€X},

where for each E € X, the equivalence class [E] is defined as the collection of sets
equal modulo null sets to E, thus

[E] == {F € X : w(EAF) = 0},

and by abuse of notation we define u : X, — [0, 1] by requiring u([E]) := u(E) for all
E € X. Morphisms are then also transformed in the obvious fashion (although the
direction of the arrows is "flipped” when moving from CncPrb to PrbAlg). It is not
difficult to verify that these are indeed functors, and we will adopt the forgetful functor
conventions from Section [A.1l. We also describe some of these conventions in plainer
English:

« If X is a compact or concrete probability space, we refer to the probability al-
gebra Xpy,ag s the abstraction® of X. Similarly, if f : X — Y is a continuous
or concrete probability-preserving map, we refer to the abstract probability-
preserving map fpwpalg © Yerbalg = Xproalg as the abstraction of f.

« A CncPrb-model X (resp. CHPrb-model X) of a probability algebra X will be
called a concrete model (resp. topological model) of X. Similarly, a CncPrb-
representation f: X — Y (resp. CHPrb-representation f : X - Y)ofan
abstract probability-preserving map f : Y — X will be called a concrete repre-
sentation (resp. continuous representation) of f.

2*More precisely this should be “abstraction modulo null sets”, as we are both abstracting away the space
X and quotienting out by the null ideal. Similarly for other uses of the term “abstract” in this paper.
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Observe that if a compact probability space (X, F, X, u) is metrizable, then the Baire
o-algebra coincides with the Borel o-algebra and so the associated concrete probability
space (X, F, X, W)cneprb i Lebesgue. Similarly, if a concrete probability space (X, X, 1)
is Lebesgue, then the associated probability algebra (X, X, w)prpaig is separable. Thus
the notions of “countability” for the three categories CncPrb, PrbAlg, CHPrb are all
compatible with each other. On the other hand, the converse implications are false; it
is entirely possible for a separable probability algebra to be modeled by a concrete prob-
ability space that is not Lebesgue, or a compact probability space that is not metrizable.

If two concrete measure-preserving maps f,g: X — Y agree almost everywhere,
then they are abstractly equal: fppalg = Sprbalg: HOwever, if the target space Y is not
Lebesgue or Polish, the converse statement can fail; see [31, Examples 5.1, 5.2]. Never-
theless the reader may wish to think of “agreement almost everywhere” as a heuristic
first approximation of the concept of “abstract equality”.

It is natural to ask to what extent the above forgetful functors can be inverted. In
this regard we have the following results:

Proposition A.2 (Reversing the forgetful functors for probability spaces).

(i) (Existence of concrete representations) [B1, Proposition 3.2] If (X, X, u), (Y, Y, v)
are concrete probability spaces with (Y,Y,v) Lebesgue, then every abstract
probability-preserving map f: (X, X, Werwalg = (Y, Y, V)prwalg has a concrete
representation f: (Y,Y,v) — (X,X,u), which is a concrete probability-
preserving map that is unique up to almost everywhere equivalence. Related to
this, two concrete measurable maps from X to a Polish space Y agree abstractly
if and only if they agree almost everywhere.

(ii) (Cantor model) [135, Theorem 2.15] If =: (X,u) — (Y,v) is an abstract
probability-preserving map between separable probability algebras, then there
exists a continuous representation 7 : (Y, 9, 9,9) — (X,F,X, ) of = between
compact metrizable probability spaces (in fact Cantor spaces).

(iii) (Canonical model) [B2, Theorem 7.2] There exists a canonical model functor (or
Stone functor)

PrbAlg <% CHPrb,

that takes a probability algebra (X,u) and constructs a topological model
Conc(X, w), and similarly takes any opposite abstract probability-preserving map
[ (X, u) = (Y,v) and constructs (in a completely functorial and natural fash-
ion) a continuous representation Conc(f) : Conc(X,u) —» Conc(Y,v).

We remark that the compact probability space Conc(X, x) in Proposition [A.2(iii)
is constructed using either Gelfand duality or Stone duality and is not metrizable in
general, even when (X, u) is separable.

Given a concrete probability space (X, X, u), we let I°(X, X, u) denote the space of
measurable functions from X to C, quotiented out by almost everywhere equivalence,
and for 1 < p < oo we let LP(X, X, u) denote the subspace of L°(X, XX, u) consisting of
those (equivalence classes of ) measurable functions which are pt" power integrable (or
essentially bounded, in the p = oo case). For a probability algebra (X, ) we can sim-
ilarly define L°(X, u) and LP(X, 1) by passing to a concrete or topological model (for
instance by using the canonical model functor Conc) and using the previous construc-
tion; note that up to isomorphism, the precise choice of model used is irrelevant. Note
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that I?(X, u) is a Hilbert space and L®(X, u) is a tracial commutative von Neumann
algebra (and hence also a C*-algebra), using the integral against u as the trace.

A.3. Dynamics. LetT be an arbitrary group (not necessarily countable or abelian); for
this discussion we treat I as a discrete group, ignoring any topological structure. Let C
be one of the three categories CncPrb, PrbAlg, CHPrb. We define a Cr-system to be a
pair X = (X, T), where X isa C-space and T : T - Aute(X) is a group homomorphism
of T to the automorphism group Aute(X), that is to say the group of C-isomorphisms
from X to itself. A Cp-morphism . (X,T) — (Y, S) between two Cr-systems (X, T),
(Y, S) is a C-morphism 7 : X — Y with the property that one has the identity S” o 7 =
7 o T? of C-morphisms for all y € T. Properties defined for C-spaces are then also
applicable to Cr-systems in the obvious fashion; for instance, a CncPrbr-system (X, T)
is Lebesgue if the underlying CncPrb-space X is Lebesgue. We also adopt the following
terminology:

+ CncPrbr-systems and CncPrbr-morphisms will be called concrete I'-systems
and concrete factor maps respectively.

« PrbAlg -systems and PrbAlg.-morphisms will be called abstract I'-systems
and abstract factor maps respectively. Any two I'-systems will be called ab-
stractly isomorphic if they are PrbAlg.-isomorphic.

« CHPrbr-systems and CHPrbr-morphisms will be called compact I'-systems
and continuous factor maps respectively.

The diagram of forgetful functors from the previous subsection can now be enlarged
to a commuting diagram

CHPrby —— CncPrbr ——) PrbAlg,

! ! )

CHPrb ———— CncPrb 5 PrbAlg

of forgetful functors in the obvious fashion. We adapt concepts such as topological
models, concrete representations, etc. to this dynamical setting; for instance, a
CHPrbr-model X of a PrbAlg .-system X will be referred to as a topological model of
X.

For us, one important source of an abstract I'-system arises by starting with a con-
crete probability space (X, X, 1) and equipping it with a near-action® of T', by which we
mean a family of concrete measure-preserving maps T? : X — X for each y € T such
that T1(x) = x for u-almost all x € X, and T"1T"2(x) = T"72(x) for all y;,7, € T
and u-almost all x € X (with the obvious changes if the group I is written addi-
tively instead of multiplicatively). This is not quite a concrete I'-system because of
the possibility that the identities T1(x) = x, T"1T?2(x) = T"1"2(x) fail on a null set.
However, by passing to the abstract setting we see that (Tl)Pﬂ,Alg is the identity and
(T")broatg(T")prwalg = Timnatg for all 71,7, € T, so the near-action induces an ab-
stract T-system ((X, X, iWprpalg> (Tll/rbAlg)yEF)-

If one has an abstract factor map 77 : Xpmalg, — Yerbalg, between two (concrete,
abstract, or compact) I'-systems X,Y, we write Y < X; this is a partial order up to
abstract isomorphism. This map generates a factor algebra {n*E : E € Y} C X, where

25Here we follow the notation of Zimmer [54].
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X, Y are the o-complete Boolean algebras associated to X, Y respectively. A factor Y of
an abstract I'-system X is said to be the inverse limit of a collection (Y,),c4 of factors
indexed by a directed set A (with factor maps 7o5: Yg — Y, whenever a < f8 that
all commute with each other and with the factor maps 7, : Y — Y, in the obvious
fashion) if the factor algebra of Y is generated by the union of the factor algebras of the
Y.

Again, we have some results concerning the extent to which the forgetful functors
can be inverted:

Proposition A.3 (Reversing the forgetful functors for systems). Let I be a group.

(i) (Concrete representation) [15, Theorem 2.15(ii)] If T is countable, X, X' are con-
crete Lebesgue T-systems, and 7 : Xppatg, = Xprp Alg,. IS an isomorphism of ab-
stract T-systems, then there exist full measure concrete subsystems Xg, X of X, X'
(formed by deleting T-invariant Borel null sets from both systems) and a concrete
representation 7 . Xy — Xg of 7.

(ii) (Cantor representation) [L5, Theorem 2.15(i)] If T is countable, and 7 : X - Y
is an abstract factor map between abstract separable T'-systems, then there exists a
continuous representation 7t : X — Y of r between compact metrizable I'-systems
(in fact Cantor systems).

(iii) (Canonical model) [B2, Theorem 7.2] The canonical model functor from Propo-
sition [AX(iii) induces a commuting square of functors

PrbAlg, <% CHPrb;

! {

PrbAlg <<% CHPrb

in the obvious fashion, such that if m: X — Y is an abstract factor map be-
tween abstract T-systems, then the continuous factor map Conc(r) : Conc(X) -
Conc(Y) is a continuous representation of = (and Conc(X), Conc(Y) are topolog-
ical models of X, Y respectively).

(iv) (Concrete representation, IT) [54, Proposition 3.1], [38, Lemma 3.2] If T is count-
able, X = (X, T) is an abstract T-system, and X is a concrete Lebesgue model for
X, then there exists a concrete model X = (X, T) of X.

A.4. Koopman models. We now construct a topological model X that one can as-
sociate to any PrbAlg-space X that has an action of a locally compact group G. This
model is constructed via the Koopman action of G and so we refer to this as the Koop-
man model of X; this generalizes the canonical model Conc(X) discussed earlier, which
corresponds to the case when the group G is trivial. Our treatment is inspired by that
in [28, §19.3.1], [25]. By taking advantage of the general category theoretic dualities in
[B2], we can avoid the need to impose any “countability” or “separability” hypotheses
on our spaces and groups.

Theorem A.4 (Koopman model). Let G be a group (not necessarily countable, discrete,
or abelian), and let X = (X, T) be an abstract G-system. Assume the following axioms:

(i) The G-action is abstractly faithful in the sense that the Koopman representa-
tion g — U, which assigns to each g € G, the unitary Koopman operator
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Ug : IA(X) —» [*(X) defined by

Ug(f) = fo Tz,
is injective.
(ii) By (i), we can identify G with a subgroup of the unitary group of [*(X), Endowing
the latter with the strong operator topology, we assume that G is locally compact.
Then there exists a topological model X = (X, T) = (X, #, X, 2, T) of X = (X, T) (which
we call the Koopman model of X) with the following properties:
(a) All non-empty open sets in X have positive measure.
(b) Theaction T : GxX — X isjointly continuous in G and X (as opposed to merely
being continuous in X for each individual group element g € G).
(©) If f € L*(X) is G-continuous in the sense that the map g — Ug(f) is a contin-
uous map from G to L°(X), then f has a continuous representative f € C(X) in
X (which is unique by property (a)).
Furthermore, the model X is unique up to isomorphism of compact G-systems.

Proof. We first establish uniqueness of the Koopman model X. Being a topological
model, we can identify L°(X) with L®(X) as a tracial commutative C* algebra. There
is an obvious tracial C*-algebra homomorphism from C(X) to L®(X) = L®(X), which is
injective from property (a). From property (c), the image of this homomorphism con-
tains all the G-continuous functions; conversely, from property (b), every element of
this image is G-continuous. Thus as a tracial commutative C*-algebra, C(X) (viewed
as a subalgebra of L*(X)) is uniquely determined by the abstract G-system X. The
uniqueness of the model up to isomorphism then follows from the Gelfand-Riesz du-
ality (i.e., Gelfand duality combined with the Riesz representation theorem) between
CHPrb-spaces and tracial C*-algebras; see [32, Theorem 5.11].

We now reverse these steps to establish existence of the Koopman model. Let A
denote the space of G-continuous functions in L*(X). This is clearly a tracial commu-
tative C*-algebra. We claim that the closed unit ball of this algebra is dense in the closed
unit ball of I*(X) in the I*(X) topology. To see this, fix a left-invariant Haar measure
dg on G, let f be in the closed unit ball of L*(X), and consider the convolution

b f i f $@U,(f) dg
G

of f with a continuous compactly supported function ¢ € C.(G). As G is given the
strong operator topology, it is easy to see that this integral is well-defined and is G-
continuous; also, by choosing ¢ to be a suitable approximation to the identity (non-
negative, supported on a small neighborhood of the identity, and of total mass one)
and again using the fact that the topology of G is given by the strong operator topology,
one can ensure that ¢  f lies in the closed unit ball of A and is arbitrarily close to f in
I2(X); see [24, §18.3.1, Lemma 7]. This establishes density.

By Gelfand-Riesz duality [32, Theorem 5.11], we can now construct a CHPrb-space
X such that C(X) is isomorphic as a tracial commutative C*-algebra to .4. Identifying
these two algebras, we see that the I?(X) norm on C(X) agrees with the I?(X) norm
on A. In particular, every non-zero element of C(X) has positive I?(X) norm (i.e., the
trace is faithful), which gives (a) by Urysohn’s lemma. As X is equipped with a Radon
measure, C(X) is dense in I>(X), hence on taking I? closures of unit balls we obtain an
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identification of L®(X) with L®(X), which one can easily verify to be an isomorphism
of tracial commutative von Neumann algebras. From this and the duality of categories
between tracial commutative von Neumann algebras and probability algebras (see [32,
Theorem 7.1]) we see that X is a topological model of X.

The claim (c) is clear from construction, so it remains to establish the claim (b). By
definition of a CHPrb;-system, the action Tg : X — X associated to any group element
g € Gisan element of the space C(X, X) of continuous maps from X to itself. We endow
this space with the compact-open topology. To prove joint continuity, it then suffices
to show that the map g — T is continuous from G to C(X, X). By the homomorphism
property of the group actlon it suffices to show that for any net g, converging to the
identity in G, the maps Tga : X — X converge to the identity in the compact-open
topology. From the identification of C(X) with A we see that for any f € C(X), fo T,
converges uniformly to f, and the claim now follows from Urysohn’s lemma. O

Remark A.5. Even when the original PrbAlg-space X is separable, the Koopman model
X need not be metrizable if the action of the group G is insufficiently “transitive”. For
instance if G is the trivial group then the Koopman model X coincides with the canon-
ical model Conc(X) from Proposition [A.2(iii) (basically because all elements of L*(X)
are G-continuous in this case), which as previously remarked is almost never metriz-
able in practice. However, if X is separable and G is “weakly transitive” in the sense
that the convolution operators f +— ¢ * f used in the above proof map I?(X) to L*(X)
for any ¢ € C.(G), then it is not difficult to show that the C*-algebra A is separable,
and hence the Koopman model X will be metrizable. This weak transitivity property
is not true for arbitrary groups G, but can be verified for the specific Host-Kra groups
arising for instance in the proof of Theorem [L.5; see the erratum to [28, Chapter 19] at
[25] for more details.

For us, the main application of Koopman models is to enable one to identify abstract
systems as translational systems. We formalize this using Lemma [A.6:

Lemma A.6 (Criterion for being isomorphic to a translational system). Let G, X obey
the axioms of Theorem [A.4, and let X = (X, T') be the Koopman model. Let %, be a point
in X. Assume the following additional axioms:

(iii) G is unimodular.

(iv) The action of G on X is transitive. That is to say, for any %1, %, € X, there exists

g € G such that T8%, = %,.

(v) The stabilizer group A :={g € G : T8%, = %,} is a lattice in G.
Then the Koopman model X is isomorphic as a compact G-system to the translational
G-system G/A (with the obvious action of G). In particular, the abstract G-system X is
abstractly isomorphic to G/A.

Proof. By axiom (iv), we can form a bijection between G/A and X by identifying any
coset gA with T8x,. From Theorem [A.4(b) and axiom (v) this bijection is continuous;
since G/A and X are both compact Hausdorff spaces, this bijection is thus a homeo-
morphism, and so we may identify G/A and X as compact Hausdorff spaces at least.
By construction, the action of G on both these spaces agree; by the uniqueness of Haar
probability measure on G/A (which is well-defined by axioms (iii), (v)) we conclude
that the measure 2 on X agrees with the Haar probability measure on G/A. The claim
follows. O
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APPENDIX B. MEASURABLE SELECTION LEMMA

In this appendix we give a full proof of Proposition B.1. The arguments here can also
be used to give a more detailed proof of [4, Lemma C.4]; we leave this modification to
the interested reader.

LetI,Y, U, h, be as in the proposition. For each u € U, we introduce the set

Q,={FeM,T): h,—dF €T},

then by hypothesis Q,, is non-empty for each u. Observe that each Q,, is a coset of the
group
E:={FeM(®Y,T) : dF e I'}.

We introduce a countable dense sequence Gy, G, ... in M(Y, T), and foreachu € U, let

n, be the first integer such that there exists F, € Q,, such that [le(F,) — e(G, )l|r2(v) <

1 . . . .
Too; Such an integer exists by density. Assume for the moment that n, depends in a

measurable fashion on u. By [4, Lemma C.1], all the F, that arise in the above fashion
differ from each other by a constant for fixed u. In particular, there is a unique E, €
Q, that minimizes |le(F,) — e(G,, )||12(y)> and this F, clearly depends in a measurable
fashion on u. Setting ¢, := h,, — dF,, we obtain Proposition B.1| as claimed.

It remains to establish the measurability of n,,, which was asserted as being “clearly”
true in [4]. Clearly it suffices to show that for each n, the set

1
{u €U : |le(F) — e(Gyll2x) < 100 for some F, € Qu}

is measurable in U.
Fix n. Let Z'(T, Y, T) € M(Y, ) denote the collection of (Y, T)-cocycles. The above
set is the preimage under the map u — h,, of the set

(B.1) {h € Z\(T,Y,T) : h—dF € T for some F with e(F) € B,},

where
1
Bn = {f EM(Y’SI) : ||f_e(Gn)“L2(X) < m}

(note that h—dF is a cocycle, and so if it lies in TT then it must come from a character in
["). By the measurability of the map u + h,,, it suffices to show that (B.I]) is measurable
in Z\(T,Y,T).

The constraint h — dF € TT can be expanded as an equation of the form

e(hy (x))e(F(x))
e(F(T7x))
holding almost everywhere in x for each y € I' and some ¢, € T. If we now define the
unitary operators Uy, : I2(Y) — I?(Y) by

= e(cy)

UL f(x) = e(=hy (x))F(T"x)

(noting from the cocycle equation that these give a unitary action of I') and define a
joint eigenfunction of (U, j)yer to be a function f € M(X,S") such that U, ,f = 4, f
holds for all y € I and for some 4, € S 1 we see that the set (B.1)) can be written as

{h e Z\(T,Y,T) : (Uy,n)yer has a joint eigenfunction in B, }.
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For any n’ and sufficiently small ¢ > 0, we will show that there is a measurable set S,/ .
which contains

(B.2)

{h € Z\(T,Y,T) : (Uy p)yer has a joint eigenfunction f with ||f — e(G,)llr2¢y) < €'}

and is contained in
(B.3)
{heZ\(I,Y,T) : (Uy,n)yer has a joint eigenfunction f with || f — e(G,/)l| 2y < €}

taking a suitable countable union of such sets, we obtain the claim.
We now set S, . to be the set

Swe={h€Z\T,Y,T) : lim

n-oo | @]

D KUEGr, G2 > 1— €8,
rY€P,
where ®,, is some Folner sequence for I'. The existence of the limit here follows from
the mean ergodic theorem for Hilbert spaces (applied to the unitary action y — U}: ®
(U})* of T on I?(Y) ® I?(Y)). Observe that S,  is measurable.
Suppose that A lies in the set (B2), thenZ

(Upe(Gu), e(Gp)) = (Uy f. f) + O(e'%) = 1+ O('%)

foreveryy € T, and so h € S,/ . if £ is small enough. Conversely, suppose that h lies in
the set S, .. The operator

Af == lim L
n

oo [Py 2, (f,Uye(Gu YUy e(Gyr)

veP,

(with the limit existing in the weak operator topology at least, thanks to the mean er-
godic theorem for Hilbert spaces as before) is a self-adjoint Hilbert-Schmidt operator
of Hilbert-Schmidt norm at most 1 (it is the limit finite rank operators of this form),
and by construction one has

<Ae(Gn')’ e(Gn’)> 21- e,

From the spectral theorem, A has a one-dimensional eigenspace of eigenvalue 1 —
O(£®) (and all other eigenvalues of size at most O(e*), to maintain the Hilbert-Schmidt
bound), and a unit eigenvector f in this eigenspace is such that

(e(Gp), f) 21— 0(e*)

and hence by the parallelogram law
1e(Gr) = fllzzcy) = O(?).

Observe from the fact that the UZ are a group action and the Folner property that A
commutes with every U}, hence by one-dimensionality of the eigenspace, f is a joint
eigenfunction. (Note that |f| is G-invariant, hence constant by ergodicity, hence equal
to 1 since f is a unit vector in I?(Y), so f lies in M(Y, S').) Thus h lies in the set (B.3),
and the claim follows.

26Here we use the asymptotic notation O(X) to denote a quantity bounded in magnitude by CX for some
absolute constant C.
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