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THE STRUCTURE OF ARBITRARY CONZE–LESIGNE SYSTEMS

ASGAR JAMNESHAN, OR SHALOM, AND TERENCE TAO

Abstract. Let Γ be a countable abelian group. An (abstract) Γ-system X - that is, an
(abstract) probability space equipped with an (abstract) probability-preserving action
of Γ - is said to be a Conze–Lesigne system if it is equal to its second Host–Kra–Ziegler
factor Z2(X). The main result of this paper is a structural description of such Conze–
Lesigne systems for arbitrary countable abelian Γ, namely that they are the inverse
limit of translational systems𝐺𝑛/Λ𝑛 arising from locally compact nilpotent groups𝐺𝑛
of nilpotency class 2, quotiented by a lattice Λ𝑛. Results of this type were previously
known when Γ was finitely generated, or the product of cyclic groups of prime order.
In a companion paper, two of us will apply this structure theorem to obtain an inverse
theorem for the Gowers 𝑈3(𝐺) norm for arbitrary finite abelian groups 𝐺.

1. Introduction

Furstenberg’s ergodic-theoretic proof in [10] of Szemerédi’s theorem [44] pioneered
an influential synergy between ergodic theory and arithmetic combinatorics that con-
tinues to thrive in contemporary mathematics. Szemerédi’s theorem asserts that a set
𝐸 ⊂ ℤ such that

lim sup
𝑁→∞

|𝐸 ∩ {−𝑁, . . . , 𝑁}|
2𝑁 + 1 > 0

contains arbitrarily long arithmetic progressions. By establishing a correspondence
principle, Furstenberg showed that Szemerédi’s theorem is equivalent to the multiple
recurrence asymptotics

(1.1) lim inf
𝑁→∞

1
2𝑁 + 1

𝑁
∑

𝑛=−𝑁
𝜇(𝐴 ∩ 𝑇𝑛(𝐴) ∩ 𝑇2𝑛(𝐴) ∩ . . . ∩ 𝑇 (𝑘−1)𝑛(𝐴)) > 0

for any measure-preserving transformation 𝑇 on a probability space (𝑋, 𝜇) and every
subset𝐴 in 𝑋 with 𝜇(𝐴) > 0. Furstenberg’s novel approach laid the cornerstone for the
development of ergodic Ramsey theory, giving rise to a series of intricate extensions
of Szemerédi’s theorem. These extensions include the multidimensional Szemerédi
theorem [12], the density Hales–Jewitt theorem [13], and the polynomial Szemerédi
theorem [3]. It is noteworthy that alternative proofs for these extensions were discov-
ered only much later.
From an ergodic theoretic perspective, Furstenberg’s multiple recurrence theorem

stands as a significant extension of Poincaré’s single recurrence theorem [37]. While
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Poincaré’s theorem can be proven succinctly and directly in modern treatments,
Furstenberg’s theorem is based on a structure theory, as initially developed by Fursten-
berg in [10] and concurrently by Zimmer in [53,54]. At the heart of this theory lies the
Furstenberg–Zimmer structure theorem, which decomposes any measure-preserving
system into a chain of more well-behaved subsystems.
Non-conventional ergodic averages

(1.2) 1
2𝑁 + 1

𝑁
∑

𝑛=−𝑁

𝑘
∏
𝑖=1

𝑓𝑖 ∘ 𝑇 𝑖𝑛

serve as the functional counterparts to themultiple recurrence events in equation (1.1).
This parallels how the conventional averages 1

2𝑁+1 ∑
𝑁
𝑛=−𝑁 𝑓 ∘ 𝑇𝑛 in von Neumann’s

mean ergodic theorem [50] are the functional analogue of single recurrence events in
Poincaré’s recurrence theorem. Von Neumann’s mean ergodic theorem establishes the
𝐿2-limit of these conventional averages and characterizes this limit as the projection
onto the subspace of𝑇-invariant functions. For a significant duration, an openquestion
pertained to the existence of an analogue of von Neumann’s mean ergodic theorem for
non-conventional ergodic averages.
Partial progress in this direction was obtained by Conze and Lesigne in a series of

papers [7–9]. They proved the convergence of the non-conventional ergodic averages
(1.2) in the particular case 𝑘 = 3 (under the additional assumption that the underlying
system is totally ergodic). Moreover, they characterized the 𝐿2-limit by identifying a
subsystem of the underlying ℤ-systems which is characteristic for these averages, that
is, the non-conventional average of the projection of the functions𝑓𝑖 on the𝐿2-subspace
of this subsystem has the same limit as the non-conventional average of the original
functions 𝑓𝑖.
Much later, a complete answer was provided independently by breakthrough works

of Host and Kra [24] and Ziegler [51]. They confirmed the 𝐿2-convergence of the non-
conventional ergodic averages (1.2) by a significant refinement of the Furstenberg–
Zimmer structure theory that identified a finer hierarchy of subsystems of the original
systemwhich effectively control or are characteristic for these averages for all 𝑘. In this
refined Host–Kra–Ziegler tower, each 𝑘-th subsystem is referred to as the “factor of or-
der 𝑘”, while the order 2 factor corresponds to the subsystem identified by Conze and
Lesigne. Their deep insight lies in an algebraic and geometric classification of these
order 𝑘 factors, identifying them as inverse limits of systems formed by translations on
nilmanifolds of the form 𝐺𝑛/Λ𝑛, where 𝐺𝑛 is a nilpotent Lie group of nilpotency class
𝑘, and Λ𝑛 ≤ 𝐺𝑛 denotes a lattice - a discrete and cocompact subgroup of 𝐺𝑛.
In a parallel development, Gowers introduced a new influential Fourier-analytic

proof of Szemerédi’s theorem in [16, 17] that represents a substantial generalization
of Roth’s approach [39] in the case of 3-term progressions. It marked the inception of
the field of higher-order Fourier analysis, with the Gowers 𝑈𝑘 norms on finite abelian
groups 𝐺 taking center stage. The 𝑈𝑘 norm essentially quantifies the normalized av-
erage of 2𝑘-fold autocorrelations of functions 𝑓∶ 𝐺 → ℂ over arithmetic cubes of the
form (𝑥 + 𝜔 ⋅ ℎ)𝜔∈{0,1}𝑘 for ℎ ∈ 𝐺{0,1}𝑘 . A crucial aspect of the Gowers norms within
additive combinatorics and their applications to analytic number theory lies in their
control over certain ”bounded-complexity” multilinear forms on finite abelian groups
such as forms associated with arithmetic progressions. To harness the control over
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these multilinear forms, one must solve the inverse problem for the Gowers unifor-
mity norms, which, roughly speaking, asks for an algebraic classification of 1-bounded
functions 𝑓∶ 𝐺 → ℂ with a large 𝑈𝑘 norm for all 𝑘 ≥ 3 (where the cases of 𝑘 = 1 and
𝑘 = 2 can be readily derived from basic Fourier analysis). A foundational achievement
in higher-order Fourier analysis credited toGreen, the third author, and Ziegler in their
work [18] is the resolution of the inverse problem concerning the Gowers𝑈𝑘 norms for
cyclic groups. Their inverse theorem asserts that a function with positive Gowers 𝑈𝑘

norm exhibits correlation with a function derived from a nilmanifold (having nilpo-
tency class 𝑘). The Green–Tao–Ziegler inverse theorem has important applications
in analytic number theory such as establishing the correct asymptotics for primes in
arithmetic progressions [19]. Despite significant progress in important special cases,
an inverse theorem for the Gowers 𝑈𝑘 norms on arbitrary finite abelian groups is cur-
rently open for all 𝑘 ≥ 4. The 𝑘 = 3 case was resolved by two of us in the companion
paper [33].
The heuristic analogy between the Host–Kra–Ziegler structure theorem and the

Green–Tao–Ziegler inverse theorem is remarkably compelling. There is substantial
support for this analogy. Host and Kra characterized the order 𝑘 factors of ℤ-systems
by the Host–Kra–Gowers seminorms of order 𝑘+ 1, which serve as an infinitary coun-
terpart to the Gowers uniformity norms. In this context, the Host–Kra–Ziegler struc-
ture theorem can be viewed as a resolution of the inverse problem associatedwith these
Host–Kra–Gowers seminorms for ℤ-actions.
The present paper and its companion paper [33] contribute to these developments,

specifically enhancing our comprehension of the above heuristic analogy. In this pa-
per, we establish aHost–Kra-type structure theorem for arbitrary abelian systems of or-
der two, also called Conze–Lesigne systems. Questions of recurrence and convergence
of non-conventional ergodic averages are not addressed in this paper. However, the
results of this paper will be applied in the companion paper [33] to give a qualitative
proof of the inverse theorem for theGowers uniformity norms𝑈3(𝐺) for arbitrary finite
abelian groups 𝐺 via a correspondence principle.

1.1. A note on probability space conventions. For technical reasons we will have
to work in this paper with three slightly different categories of probability spaces, as
well as their corresponding categories of measure-preserving systems associated to a
group Γ (which will be countable1 in most, though not all, of the contexts we will con-
sider):

(i) The category of concrete probability spaces (𝑋,𝒳, 𝜇), in which one can mean-
ingfully talk about individual points 𝑥 in the space 𝑋 , and maps between these
spaces are defined in a pointwise fashion. One can then form the category of
concrete Γ-systems (𝑋,𝒳, 𝜇, 𝑇) of concrete probability spaces equipped with a
pointwise defined measure-preserving action 𝑇 ∶ 𝛾 ↦ 𝑇𝛾 of Γ. Among other
things, concrete probability spaces are a convenient category in which to study
group extensions by measurable (but not necessarily continuous) cocycles.

1In this paper we use “countable” as an abbreviation for “at most countable”.
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(ii) The category of probability algebras2 (𝒳, 𝜇), in which one has “quotiented out
all the null sets”; as a consequence, one can no longer meaningfully refer to
individual points, and maps between spaces are typically only defined up to
almost everywhere equivalence. One can then form the category of abstract
Γ-systems (𝒳, 𝜇, 𝑇) of probability algebras equipped with an abstract measure-
preserving action 𝑇 of Γ. The category of abstract Γ-systems is themost natural
category in which to discuss factors of a system, such as the Host–Kra–Ziegler
or Conze–Lesigne factors, as well as to discuss the isomorphic nature of two
systems.

(iii) The category of compact probability spaces (𝑋,ℱ,𝒳, 𝜇), in which the probabil-
ity spaces are now compact Hausdorff (with the measure 𝜇 being a (Baire-)
Radon measure), and the maps between spaces are now additionally required
to be continuous. This then forms the category of compact Γ-systems (𝑋,ℱ,𝒳,
𝜇, 𝑇) of compact probability spaces equipped with a continuous measure-
preserving action 𝑇 of Γ. The category of compact Γ-systems is the most natu-
ral category to discuss transitivity properties of a group action, or to compute
the stabilizer of such an action at a point.

For the convenience of the reader we review the definition of these categories, as
well as the relationships between them that we will need, in Appendix A. Very roughly
speaking, as long as one is in the “countable” setting in which the acting group Γ is
countable, the concrete probability spaces are Lebesgue spaces, the probability algebras
are separable, and the compact Hausdorff probability spaces aremetrizable, then these
three categories are “morally interchangeable”, largely thanks to the ability to construct
topological models of abstract Γ-systems (and continuous representations of factor maps
between such systems); howevermore care needs to be taken in “uncountable” settings
when one or more of the above assumptions is not in force, and even in the countable
setting there are some subtleties, particularly with regard3 to “near-actions” on con-
crete probability spaces that are only defined up to almost everywhere equivalence (see
Appendix A for the definition of near-actions), and are thus only genuine actions in an
abstract sense. Most of our arguments will take place within a countable setting (and
are already new in this case), but through appropriate use of inverse limits our main
result will also be applicable for inseparable4 systems. For a first reading we recom-
mend that the reader ignore the fine technical distinctions between these categories,
or between the countable and uncountable cases.
Traditionally, the literature has been focused on concrete LebesgueΓ-systems. How-

ever, it will be convenient to phrase our main results in the setting of abstract (and

2In the language of [15, Chapter 2], probability algebras are referred to asmeasure algebras, and (separa-
ble) abstractΓ-systems are referred to asmeasure-preserving dynamical systems. In the language of [32], prob-
ability algebras are essentially abstract probability spaces with the additional property that all non-empty
abstract subsets have positive measure.

3See in particular the erratum [25] to [28, Chapter 19] for further discussion of this particular subtlety.
4Furthermore, even if one is only interested in applying our results for separable systems, there is one step

in the argument in which a potentially inseparable system can arise, namely when one uses Gelfand duality
to construct a (possibly inseparable) topological model of a (separable) system, which we call a Koopman
model; see Appendix A.4. While it is possible with significant further effort to demonstrate that this model is
in fact separable in the specific context being considered (cf., [25]), it shortens the arguments to just proceed
without verifying separability, as this property turns out to not be needed in the proofs.
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not necessarily separable) Γ-systems, although thanks to the aforementioned model-
ing results one can often reformulate these results in the other categories mentioned,
particularly in the separable case. In particular, the factor relation Y ≤ X between two
Γ-systemsX, Y (as defined inAppendix A)will be understood to be in the abstract sense
unless otherwise specified, even when the systems X, Y can be viewed as concrete or
compact Γ-systems; similarly for the notion of an inverse limit of factors. While the
factor maps 𝜋∶ X → Y in this paper are initially only defined abstractly, in practice
they can often be upgraded to concrete measurable maps by using tools such as those
in Proposition A.2.

Remark 1.1. If we restrict ourselves to separable probability algebras, it may be possible
to replace the category of probability algebra dynamical systems with the category of
Lebesgue probability spaces equipped with near-actions. However, in order to do this,
it is necessary to implement estimates similar to those established in [25] to ensure that
near-actions of Polish groups can be accurately described by a continuous action on a
separablemodel.

We isolate some key special examples of compact Γ-systems (which can then be
viewed as concrete or abstract Γ-systems by forgetting some of the structure):

Definition 1.2 (Translational and rotational Γ-systems). Let Γ be a group. A transla-
tional Γ-system is a compact Γ-system of the form 𝐺/Λ = (𝐺/Λ, 𝜇, 𝑇), where 𝐺 = (𝐺, ⋅)
is a locally compact5 unimodular6 group, Λ is a closed cocompact subgroup of 𝐺, 𝜇 is
the Haar probability measure on the compact quotient space 𝐺/Λ, and the action 𝑇 is
given by 𝑇𝛾𝑥 = 𝜙(𝛾)𝑥 for all 𝛾 ∈ Γ, 𝑥 ∈ 𝐺/Λ, for some homomorphism 𝜙∶ Γ → 𝐺. If
𝐺 is a compact abelian group (which we now write additively as 𝑍 = (𝑍,+)) and Λ is
trivial, we refer to the translational Γ-system 𝑍 = (𝑍, 𝜇, 𝑇) as a rotational Γ-system.

Among the translational Γ-systems 𝐺/Λ, we single out for special mention the Γ-
nilsystems of order at most 𝑘 for a given 𝑘 ≥ 1, in which 𝐺 is a nilpotent Lie group of
nilpotency class at most 𝑘, and Λ a lattice (i.e., a discrete cocompact subgroup) of 𝐺.
For instance, rotational Γ-systems are inverse limits of Γ-nilsystems of order at most 1.

1.2. Host–Kra–Ziegler factors and Conze–Lesigne systems. Let Γ = (Γ, +) be
a countable discrete abelian group, and let X = (𝒳, 𝜇, 𝑇) be an (abstract) Γ-system.
Among the factors of X we can form the invariant factor Z0(X), defined by replacing
the 𝜎-complete Boolean algebra 𝒳 by its invariant subalgebra

𝒳𝑇 ≔ ⋂
𝛾∈Γ

{𝐸 ∈ 𝒳 ∶ 𝐸 = (𝑇𝛾)∗𝐸}

and restricting 𝜇 and 𝑇 accordingly. As usual, we call the Γ-system X ergodic if this
invariant factor is trivial. Similar notions can now be defined for concrete or compact
Γ-systems by forgetting some of the structure. For most of this paper we will focus
on ergodic systems; in principle one can use tools such as the ergodic decomposition

5In this paper we use “locally compact group” as shorthand for ”locally compact Hausdorff second count-
able group”. Similarly for “compact group” or “compact abelian group”.

6The unimodularity hypothesis is required in order to have a well-defined Haar measure on the quo-
tient space 𝐺/Λ. In our applications, the locally compact group 𝐺 will be nilpotent and thus automatically
unimodular.
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(or conditional analysis, see [29]) to adapt the results in this paper to the non-ergodic
setting, but we will not attempt to do so here.
The invariant factor Z0(X) of an (abstract) Γ-system X is the zeroth in the sequence

of Host–Kra–Ziegler factors

Z0(X) ≤ Z1(X) ≤ Z2(X) ≤ ⋯ ≤ X
of X; we briefly review the precise definition of these factors in Section 2. We will
not directly use this definition as we will rely on existing results about these factors in
the literature, but we will remark that Z𝑘(X) is the universal characteristic factor for
the Host–Kra–Gowers seminorm ‖ ⋅ ‖𝑈𝑘+1(X) on X; see e.g., [24], [4, Appendix A], [28].
These norms are traditionally defined for concrete Lebesgue Γ-systems, but their defi-
nitions can be easily adapted to the abstract setting, or alternatively one can replace an
abstract Γ-system by a suitable concrete (or topological) model and apply the standard
constructions to that model; see Section 2.
The first Host–Kra–Ziegler factor Z1(X) is known as the Kronecker factor and was

studied by vonNeumann andHalmos (see, e.g., [22] for a reference). The secondHost–
Kra–Ziegler factor Z2(X) is known as the Conze–Lesigne factor and was studied (in the
Γ = ℤ case at least) by Conze and Lesigne [7–9] (see also [40], [35], [14], [26], [27]). For
general 𝑘, the Host–Kra–Ziegler factors were introduced in the Γ = ℤ case by Host and
Kra [24]; in the subsequent work of Ziegler [51] the universal characteristic factors
for multiple recurrence were constructed, which were later shown by Leibman (see
[2, Appendix A]) to be equivalent to the factors of Host and Kra. As is well known,
the constructions of the Host–Kra–Ziegler factors, the Host–Kra–Gowers norms, and
the Host–Kra parallelepiped systems extend without difficulty to arbitrary countable
abelian groups Γ; see for instance [4, Appendix A], where the factor Z𝑘(X)was denoted
instead as Z<𝑘+1(X).
Let 𝑘 ≥ 0 be a natural number. An ergodic (abstract) Γ-system X is said to be of

order (at most) 𝑘 if X = Z𝑘(X). Thus for instance an ergodic Γ-system is of order 0 if
and only if it is (abstractly) trivial. We recall some simple facts about such systems:

Lemma 1.3 (Basic facts about systems of order 𝑘). Let Γ be a countable abelian group.
(i) Z𝑘(X) is of order 𝑘 for any ergodic (abstract) Γ-system X.
(ii) Any factor of an ergodic Γ-system of order 𝑘 will also be an ergodic Γ-system of

order (at most) 𝑘.
(iii) The inverse limit of ergodic Γ-systems of order 𝑘 will also be an ergodic Γ-system

of order 𝑘.

Proof. For (i), see [24, Corollary 4.4], [4, (A.9)], or [28, Chapter 9, Theorem 15(ii)]. For
(ii), see [24, Proposition 4.6], [4, Lemma A.34], or [28, Chapter 9, Proposition 17(ii)].
For (iii), see [24, Proposition 4.6], [4, LemmaA.34], or [28, Chapter 9, Theorem20]. □

Ergodic Γ-systems of order 1 will be referred to as Kronecker systems, while ergodic
Γ-systems of order 2 will be referred to as Conze–Lesigne systems; thus for instance a
Conze–Lesigne system is its own Conze–Lesigne factor. The classification of systems
of arbitrary order is of importance in the theory of multiple recurrence; for instance, as
seen in [24], [51], classification of ergodic separable ℤ-systems (𝑋,𝒳, 𝜇, 𝑇) of order 𝑘
was used to give the first proofs of the norm convergence of multiple ergodic averages
1
𝑁 ∑𝑁

𝑛=1 𝑇𝑛𝑓1 . . . 𝑇 (𝑘+1)𝑛𝑓𝑘+1 for 𝑓1, . . . , 𝑓𝑘+1 ∈ 𝐿∞(𝑋,𝒳, 𝜇) for general 𝑘.
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The classification of Kronecker systems is well known (going back to the work of
von Neumann and Halmos [22]):

Theorem 1.4 (Classification of Kronecker systems). Let Γ be a countable abelian group
and let X be an ergodic separable Γ-system. Then the following are equivalent:

(i) X is a Kronecker Γ-system.
(ii) X is (abstractly) isomorphic to a rotational Γ-system 𝑍 for some compact abelian

metrizable group 𝑍.
(iii) X is the inverse limit of rotational Γ-systems 𝑍𝑛 for some compact abelian Lie

groups 𝑍𝑛.
Proof. For ℤ-systems, the equivalence of (i) and (ii) follows from [28, Chapter 2, Theo-
rem 12] and [28, Chapter 9, Proposition 8] (see also the discussion before [24, Lemma
4.2]); the arguments extendwithout difficulty to arbitrary countable abelian Γ (and one
can replace the abstract Γ-system by a concrete model if desired, or argue directly in
the abstract setting). The deduction of (i) from (iii) then follows from Lemma 1.3(iii),
while the deduction of (iii) from (ii) follows from the Peter–Weyl theorem (or Pontrya-
gin duality); see e.g., [46, Exercise 1.4.26]. □

We remark that it is not difficult to remove the separability and countability hy-
potheses from Theorem 1.4, so long as one similarly removes the metrizability hypoth-
esis from conclusion (ii). As a consequence of this theorem (and Lemma 1.3), the Kro-
necker factor Z1(X) of an ergodic concrete Γ-system X can be equivalently described as
the maximal rotational factor of X (cf. [28, Proposition 13(iv)]).
Nowwe turn to the higher order Host–Kra–Ziegler factors. In the case ofℤ-systems,

we have the following fundamental result of Host and Kra:

Theorem 1.5 (Classification of Host–Kra–Ziegler ℤ-systems). Let 𝑘 ≥ 1 be a natural
number, and let X be an ergodic separable ℤ-system. Then the following are equivalent:

(i) X is a ℤ-system of order (at most) 𝑘.
(ii) X is the inverse limit of Γ-nilsystems 𝐺𝑛/Λ𝑛 of order at most 𝑘 (as defined at the

end of Section 1.1).

The implication of (i) from (ii) can be found in [28, Chapter 12, Corollary 19]; the
implication of (ii) from (i) is more difficult and was proven in [24, Theorem 10.1] (see
also [51] for closely related results, and [28] for a more detailed exposition). For a
treatment of the Conze–Lesigne case 𝑘 = 2, see [7–9], [35, §3], [40], [14], [24, §8],
[52, §9]. An alternate proof of this theorem using compact nilspaces was also given in
[21].
Theorem 1.5 was extended to ℤ𝑑-systems for any finite 𝑑 by Griesmer [20, Theorem

4.1.2], following similar arguments to those in [24]; a further extension to Γ-systems
for any finitely generated nilpotent group Γ (extending the preceding definitions to
the nilpotent case in a natural fashion) was obtained using the machinery of nilspaces
in [6, Theorem 5.12] (with the abelian case previously established by this method in
[21]). However, the situation changes somewhat once one considers groups Γ that
are not finitely generated; in particular, the arguments in [24], [20] rely crucially on
finite generation to establish some connectedness properties of certain structure groups
arising in the analysis that do not hold in general in the infinitely generated case. A
model infinitely generated case is that of the countably generated vector space 𝔽𝜔𝑝 =
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⋃∞
𝑛=1 𝔽𝑛𝑝 over a finite field 𝔽𝑝 of prime order 𝑝. In this case we have a fairly satisfactory

classification, particularly in the case of high characteristic:

Theorem 1.6 (Classification of Host–Kra–Ziegler 𝔽𝜔𝑝 -systems). Let 𝑘 ≥ 1 be a natu-
ral number, let 𝑝 be a prime, and let X be an ergodic separable 𝔽𝜔𝑝 -system. In the high
characteristic case 𝑝 ≥ 𝑘 − 1, then the following are equivalent:

(i) X is a 𝔽𝜔𝑝 -system of order (at most) 𝑘.
(ii) X is generated by phase polynomials7 of degree at most 𝑘.

In the low characteristic case𝑝 < 𝑘−1, (ii) still implies (i), but it is currently openwhether
(i) implies (ii) in these cases. The weaker implication is known that ergodic separable 𝔽𝜔𝑝 -
systems of order 𝑘 are generated by phase polynomials of degree at most 𝐶(𝑘) for some
𝐶(𝑘) depending only on 𝑘.

Proof. The implication of (ii) from (i) (in both high and low characteristics) is [4,
Lemma A.35]; the converse implication was established for 𝑝 ≥ 𝑘 + 1 in [4, Theo-
rem 1.18] and recently extended to 𝑝 = 𝑘, 𝑘 − 1 in [5, Theorem 1.12]. The final claim
of the theorem is [4, Theorem 1.19]. □

The form of Theorem 1.6 does not closely resemble that of Theorem 1.5. In more
recent work of the second author, results closer in appearance to Theorem 1.5 were
established for various classes of groups Γ:

Theorem 1.7 (Partial classifications of Host–Kra–Ziegler systems). Let 𝑘 ≥ 1, let Γ be
a countable abelian group. Let X be an ergodic separable Γ-system of order 𝑘.

(i) [41, Theorem 1.31] If 𝑘 = 2, and Γ = ⨁𝑝∈𝒫 ℤ/𝑝ℤ for some countable multiset𝒫
of primes, then X is the inverse limit of translational systems 𝐺𝑛/Λ𝑛, where each
𝐺𝑛 is a locally compact Polish 2-step nilpotent group.

(ii) [42, Theorem2.3] IfΓ = 𝔽𝜔𝑝 with 𝑘 ≤ 𝑝−1, thenX is equivalent to a translational
Γ-system𝐺/Λwith𝐺 andΛ totally disconnected and nilpotent of class at most 𝑘.

(iii) [42, Theorem 2.10] If Γ = ⨁𝑝∈𝒫 ℤ/𝑝ℤ for some countable multiset 𝒫 of primes,
then there exists a natural number 𝑚 = 𝑚(𝑘) depending only on 𝑘, and an 𝑚-
extension8 Y of X, which is an ergodic separable Γ′-system for some countable
abelian group Γ′ which is the inverse limit of translational Γ′-systems 𝐺𝑛/Λ𝑛,
where each 𝐺𝑛 is a finite dimensional9 locally compact group of nilpotency class
at most 𝑘, and Λ𝑛 is totally disconnected.

We also mention some further variants of the above results:
(i) In [43, Theorem 1.21], the second author proved that when Γ is countable

abelian andX is a Conze–Lesigne Γ-system, there exist a nilpotent locally com-
pact Polish group 𝐺, a compact totally disconnected group 𝐾, and a closed to-
tally disconnected subgroup Λ of 𝐺 such that X is (abstractly) isomorphic to
the double coset system 𝐾\𝐺/Λ acting by a translation action 𝑇𝛾𝑥 = 𝜙(𝛾)𝑥 for
some homomorphism 𝜙∶ Γ → 𝐺 that normalizes 𝐾.

7Wewill not need the concept of a phase polynomial to state or prove ourmain results, but see for instance
[4, Definition 1.13] for a precise definition.

8See [42, Definition 2.4] for a definition of this term, which we will not need in the rest of this paper.
9See [42, Definition 2.6] for the definition of finite dimensionality for locally compact groups; we will not

need this notion in the rest of this paper.
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(ii) In [43, Theorem1.18], the second author showed that for any countable abelian
group Γ and ergodic separable Γ-system X, there is an extension Y of X whose
Conze–Lesigne factor is a translational Γ′-system 𝐺/Λ for some extension Γ′
of Γ and some locally compact Polish group 𝐺 that is nilpotent of nilpotency
class at most two, where the notion of extension was defined in [43].

(iii) In [5, Theorem 1.9], it was shown in both high and low characteristics that
an ergodic separable 𝔽𝜔𝑝 -system of order 𝑘 is a 𝑝-homogeneous 𝑘-step nilspace
system (see [5] for the definitions of these terms, which we will not need in the
rest of this paper).

1.3. Main result. We now come to the main new result of this paper, which is to es-
tablish a complete description of Conze–Lesigne factors for arbitrary countable abelian
groups Γ:

Theorem1.8 (Classification ofConze–LesigneΓ-systems). LetΓ be a countable abelian
group, and let X be an ergodic (abstract) Γ-system. Then the following are equivalent:

(i) X is a Conze–Lesigne Γ-system (i.e., a Γ-system of order at most 2).
(ii) X is the inverse limit of translational Γ-systems𝐺𝑛/Λ𝑛, where each𝐺𝑛 is a locally

compact nilpotent Polish group of nilpotency class two, and Λ𝑛 is a lattice (i.e., a
discrete cocompact subgroup) in 𝐺𝑛. Furthermore, 𝐺𝑛 contains a closed central
subgroup𝐺𝑛,2 containing the commutator group [𝐺𝑛, 𝐺𝑛], withΛ𝑛∩𝐺𝑛,2 a lattice
in 𝐺𝑛,2.

In (ii) we can also require that 𝐺𝑛,2 is a compact abelian Lie group, Λ𝑛 ∩ 𝐺𝑛,2 is trivial,
and Λ𝑛 is abelian.

We remark that as Λ𝑛 is a discrete subgroup of the Polish group 𝐺𝑛, it is automati-
cally countable.
This result can be compared with the previously mentioned result in [43, Theorem

1.18]. On the one hand, Theorem 1.8 does not require the passage to some extension
Y of X; on the other hand, the conclusion is weaker as the system is described as an
inverse limit of translational systems, rather than as a translational system. In view
of Theorem 1.5, one could ask whether one could strengthen Theorem 1.8 further by
requiring in (ii) that the𝐺𝑛 are nilpotent Lie groups, andΛ𝑛 lattices, so thatXwould be
the inverse limit of nilsystems. Unfortunately when Γ is not finitely generated, there
are counterexamples that show that this stronger version of Theorem 1.8 fails; see the
example presented after [42, Conjecture 2.14] (in the discussion of [42, Theorem 4.3]).
In Theorem 1.8 it is not required that the system X be separable, but it turns out it is
quite easy to reduce to this case, and indeed thiswill be one of the first steps in the proof.
The group𝐺𝑛,2 in Theorem1.8 can in fact be taken to be the commutator group [𝐺𝑛, 𝐺𝑛]
if desired; see Remark 4.7. However, from the theory of filtered nilpotent groups (see
e.g., [18, Appendix B]) it seems more natural to allow𝐺𝑛,2 to be slightly larger than the
commutator group (see Section 5.1 for one example of this).
In Section 5 we provide some examples of Conze–Lesigne systems associated to

groups in even, odd, and zero characteristics that illustrate the conclusion of Theorem
1.8 despite not being obviously associated to any nilpotent structures.

Remark 1.9. It is tempting to speculate as to whether Theorem 1.8 can be extended to
systems of order 𝑘 for 𝑘 > 2, by some induction on 𝑘. Here one runs into a significant
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technical obstacle even when 𝑘 = 3; whereas in the 𝑘 = 2 case, the system can be
expressed (using Theorem 1.12) as a group extension of a translational system (indeed
a rotational system, in this case), the analogous arguments in the 𝑘 = 3 case (when
combined with Theorem 1.8) only allow one to describe systems of order 3 as group
extensions of inverse limits of translational systems. When the group Γ is finitely gen-
erated, one can use the connectedness of the structure groups to avoid this issue (cf.
[24, Lemma 10.4]), but in the infinitely generated case it is not clear to us whether such
group extensions of inverse limits of translational systems can necessarily be expressed
as inverse limits of translational systems, even if one possesses suitable higher-order
analogues of the Conze–Lesigne equation. We hope to investigate these issues further
in subsequent work.
Remark 1.10. Theorem 1.8 does not immediately imply previous structural results
about Conze–Lesigne systems for specific groups Γ, such as those stated in Theorems
1.5, 1.6, 1.7, because these theorems can take advantage of special features of the groups
Γ they consider to obtain stronger conclusions than those in Theorem 1.8(ii), see Sec-
tion 1.6 for a related discussion. However, one could certainly use Theorem 1.8 as a
“black box” to shorten the proofs of these other theorems, by reducing matters to the
study of nilpotent translational systems 𝐺/Λ of nilpotency class two, for which many
of the intermediate statements used in the course of those proofs are easy to establish.
We leave the details of such shortenings to the interested reader.
1.4. An application to the Gowers uniformity norms. In [47], the description
of systems of order 𝑘 for 𝔽𝜔𝑝 -systems from Theorem 1.6 was combined with a corre-
spondence principle to establish an inverse theorem for the Gowers uniformity norm
𝑈𝑘+1(𝔽𝑛𝑝 ) for finite-dimensional vector spaces 𝔽𝑛𝑝 . In a similar vein, Theorem 1.8 can
be combined with a correspondence principle to establish an inverse theorem for the
Gowers norm 𝑈3(𝐺) associated to an arbitrary finite abelian group 𝐺. More precisely,
in the companion paper [33] to this paper, we show
Theorem 1.11 (Inverse theorem for 𝑈3(𝐺)). Let 𝐺 be a finite additive group, let 𝜂 > 0,
and let 𝑓∶ 𝐺 → ℂ be a 1-bounded function with ‖𝑓‖𝑈3(𝐺) ≥ 𝜂. Then there exists a degree
2filtered nilmanifold𝐻/Γ, drawn from somefinite collection𝒩𝜂 of such nilmanifolds that
depends only on 𝜂 but not on 𝐺 (and each such nilmanifold in𝒩𝜂 endowed arbitrarily
with a smooth Riemannian metric), a Lipschitz function 𝐹 ∶ 𝐻/Γ → ℂ of Lipschitz norm
𝑂𝜂(1), and a polynomial map 𝑔∶ 𝐺 → 𝐻/Γ such that

(1.3) |𝔼𝑥∈𝐺𝑓(𝑥)𝐹(𝑔(𝑥))| ≫𝜂 1.
We refer the reader to [33] for definitions of all the terms in Theorem 1.11, as well

as for details of how it is derived from Theorem 1.8.

1.5. Overview of proof. Our proof of Theorem 1.8 is based primarily on the meth-
ods of Host and Kra [24], [28], while also incorporating some tools from [4]. It is not
difficult to reduce to the case of separable Γ-systems. The next step, which is quite
standard, is to express Conze–Lesigne systems as abelian extensions of the Kronecker
factor.
Theorem 1.12 (Conze–Lesigne systems are abelian extensions of Kronecker factor).
Let Γ be a countable abelian group, and let X be an ergodic separable Γ-system. Then the
following are equivalent:
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(i) X is a Conze–Lesigne system.
(ii) X is (abstractly) isomorphic to a group extension 𝑍 ⋊𝜌 𝐾, where 𝑍 is a rotational

Γ-system, 𝐾 is a compact abelian group, and 𝜌 is a (𝑍, 𝐾)-cocycle of type 2.
Furthermore, in part (ii), we can take 𝑍 to be equivalent to the Kronecker factor.

The notions of cocycle, extension, and cocycle type appearing in Theorem 1.12 will
be reviewed in Section 2.1.

Proof. For ℤ-systems, the implication of (ii) from (i) was established in [24, Proposi-
tion 6.34] or [28, Chapter 18, Theorem 6]; as observed previously by several authors
[4, Proposition 3.4], [41, Proposition 1.16], [42, Proposition A.18] (see also [49, Propo-
sition 3.6] for an alternate proof of the abelian nature of 𝐾), the arguments extend
without difficulty to arbitrary countable abelian groups Γ. The implication of (i) from
(ii) follows from [24, Corollary 7.7] or [28, Chapter 18, Proposition 8]; again, the argu-
ments extend without difficulty to arbitrary Γ. (One can use Proposition A.3(ii) to first
model X by a concrete Lebesgue Γ-system before applying these arguments.) □

To proceed further it is convenient to lift an arbitrary Γ to a torsion-free group, and
also reduce to the case when 𝐾 is a Lie group. The key step is then to establish

Theorem 1.13 (Conze–Lesigne equation). Let Γ be a torsion-free countable abelian
group, 𝑍 an ergodic metrizable rotational Γ-system, and 𝐾 a compact abelian Lie group.
Let 𝜌 be a (𝑍, 𝐾)-cocycle. Then the following are equivalent:

(i) 𝜌 is of type 2.
(ii) 𝜌 obeys the Conze–Lesigne equation (see Definition 2.1(ix)).

This result was obtained in [24, Lemma 8.1] (or [28, Section 18.3.3]) in the casewhen
Γ = ℤ and𝐾 is a torus (a connected compact abelianLie group), building uponprevious
results in this direction in [9], [14]. These arguments extend without much difficulty
to arbitrary torsion-free Γ in the connected case when 𝐾 is a torus; however the case
of disconnected 𝐾 requires additional arguments (cf., the remark after [24, Lemma
C.5] and Remark 2.4). The crucial additional case to consider is that of a cyclic group
𝐾 = 1

𝑁ℤ/ℤ. Here we can proceed instead by some linearization arguments based on
those in [4]. We remark that thanks to an example of Rudolph [40], Theorem 1.13
fails if the compact abelian Lie group 𝐾 is replaced with other non-Lie groups, such as
solenoid groups; see Remark 5.7.
The proof of Theorem 1.13 in the general case will be given in Section 3. The deriva-

tion of Theorem 1.8 once Theorem 1.13 is in hand is fairly standard and is given in
Section 4, though there are some subtleties requiring the introduction of a topologi-
cal model in order to properly define the notion of a stabilizer of a certain transitive
group action (see [25] for further discussion of this point). Here we will use a topolog-
ical model (which we call a Koopmanmodel) that is constructed using Gelfand duality
(and the Riesz representation theorem), without the need to impose any “countability”
conditions such as separability; see Appendix A.4.
In order to finish up by expressing an arbitrary Conze–Lesigne system as an inverse

limit of nilpotent translational systems, one needs a technical result (Proposition 4.3)
which states, roughly speaking, that the class of nilpotent translational systems in The-
orem 1.8 is closed under joinings. As it turns out, this can be established without too
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much difficulty by exploiting both directions of the equivalences established in Theo-
rem 1.12 and Theorem 1.13; see Section 4.3.

1.6. Towards a second-order Pontryagin duality? In principle, Theorem 1.8 pro-
vides a complete description of all ergodic Conze–Lesigne Γ-systems associated to a
given countable abelian group Γ. However, one could seek a more tractable such de-
scription, in which every Conze–Lesigne system is described by certain algebraic data
from which one can easily answer questions about such systems, such as whether two
such systems are isomorphic (or whether one is a factor of the other), whether the sys-
tem is a translational systemor a nilsystem,whether it is generated by a cocycle obeying
the Conze–Lesigne equation, whether the structure groups 𝑍, 𝐾 are connected, and so
forth.
In the case of Kronecker Γ-systems, these questions can all be readily answered

through Pontryagin duality. Given a Kronecker Γ-system 𝑍, one can associate the
group 𝐸 of eigenvalues of the system, that is to say those homomorphisms 𝑐 ∈ Γ̂ from
Γ to 𝕋 such that one has a non-trivial function 𝑓 ∈ 𝐿2(𝑍) for which

𝑇𝛾𝑓 = 𝑒(𝑐(𝛾))𝑓

almost everywhere for all 𝛾 ∈ Γ. This group 𝐸 is then a subgroup of Γ̂ (and is also
isomorphic as a group to ̂𝑍). Conversely, given any subgroup 𝐸 of Γ̂, one can form an
associated Kronecker system 𝑍𝐸 , defined to be the closure in the compact group 𝕋𝐸 of
the subgroup 𝜙(Γ), where 𝜙∶ Γ → 𝕋𝐸 is the homomorphism

𝜙(𝛾) ≔ (𝑐(𝛾))𝑐∈𝐸 ,

with the rotational Γ-action given by 𝜙; one can show that this is a Kronecker Γ-system
with eigenvalue group 𝐸. The arguments used to establish Theorem 1.4 can be used
to show that two Kronecker Γ-systems 𝑍, 𝑍′ are isomorphic if and only if their corre-
sponding subgroups 𝐸, 𝐸′ of Γ̂ agree (and more generally, 𝑍 is a factor of 𝑍′ if 𝐸 is a
subgroup of 𝐸′), thus giving a complete description of Kronecker Γ-systems in terms of
subgroups of Γ̂; indeed the above constructions produce a duality of categories. Fur-
thermore, other properties of the Kronecker Γ-system can be translated into properties
of these subgroups by the usual dictionary of Pontryagin duality. For instance, given a
Kronecker Γ-system 𝑍 and its associated subgroup 𝐸 ≤ Γ̂:

• 𝑍 is separable (or metrizable) if and only if 𝐸 is countable.
• 𝑍 is connected if and only if 𝐸 is torsion-free.
• 𝑍 is a Lie group if and only if 𝐸 is finitely generated.

In analogy with this state of affairs in order one, one could hope for a “second order
Pontryagin duality” in which one could associate to each Conze–Lesigne Γ-system X
some algebraic data (analogous to the subgroup 𝐸) which determines the isomorphism
class of X, as well as other properties of the system, such as whether it is a translational
system or a nilsystem, or whether it is associated to a cocycle that obeys the Conze–
Lesigne equation. Ideally, all existing results about such systems (including Theorem
1.8) could then be re-interpreted as specific facets of this duality. We do not at present
have a formal proposal for such a duality, though it seems plausible that some form
of group cohomology will be involved. We hope to investigate these issues further in
subsequent work.
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2. Notation

We use 𝕋 ≔ ℝ/ℤ to denote the additive unit circle. Given any locally compact
abelian group 𝐺 = (𝐺,+), we define the Pontryagin dual ̂𝐺 to be the collection of
all continuous homomorphisms from 𝐺 to 𝕋; as is well known, this is also a locally
compact abelian group (with the compact-open topology) with ̂̂𝐺 ≡ 𝐺. We let 𝑆1 be the
unit circle in ℂ, and let 𝑒∶ 𝕋 → 𝑆1 be the standard character 𝑒(𝜃) ≔ 𝑒2𝜋𝑖𝜃.
We briefly recall the construction of the Host–Kra–Ziegler factors from [24, §3],

[28, Chapter 9.1], or [4, Appendix A]. We begin with the traditional setting of con-
crete Lebesgue Γ-systems, with Γ a countable abelian group. Given such a Γ-system
X = (𝑋,𝒳, 𝜇, 𝑇), we can recursively define the Host–Kra parallelepiped Γ-systems
X[𝑘] = (𝑋 [𝑘], 𝒳[𝑘], 𝜇[𝑘], 𝑇 [𝑘]) for 𝑘 ≥ 0 by setting X[0] ≔ X and

X[𝑘+1] ≔ X[𝑘] ×Z0(X[𝑘]) X[𝑘],
where the right-hand side is the relatively independent product of X[𝑘] with itself over
the invariant factor Z0(X[𝑘]); see [11, Chapter 5] for the construction of relatively inde-
pendent product for concrete Lebesgue spaces. As a set, X[𝑘] can be viewed as a subset
of 𝑋 {0,1}𝑘 , which we can split as 𝑋 × 𝑋 {0,1}𝑘\{0}𝑘 . We then define the Host–Kra–Ziegler
factor Z𝑘(X) (up to equivalence) by declaring a set𝐴 ∈ 𝒳 to bemeasurable with respect
to the 𝜎-algebra of Z𝑘(X) if and only if there is a measurable subset 𝐵 of 𝑋 {0,1}𝑘\{0}𝑘 such
that
(2.1) 1𝐴(𝑥0) = 1𝐵(𝑥∗)
for 𝜇[𝑘]-almost all (𝑥0, 𝑥∗) ∈ 𝑋 [𝑘]. We refer the reader to [24, §3], [28, Chapter 9],
or [4, Appendix A] for the basic properties of these factors, and in particular for their
relationship with the Host–Kra–Gowers seminorms (which we will not utilize here).
Exactly the same constructions can be performed in the more general setting of ab-

stract Γ-systems, with no requirement of separability (with the analogue of (2.1) be-
ing that the abstract indicator functions 1𝐴, 1𝐵 agree when they are both pulled back
to 𝑋 [𝑘], which is now a probability algebra); alternatively, one can use the canonical
model (see Proposition A.3(iii)) to model such an abstract Γ-system by a compact Γ-
system and repeat the previous constructions without significant modification. Note
from [32, Theorem 8.1] that the relatively independent product construction is also
valid in this “uncountable” setting.

2.1. Cocycles and extensions. We recall some standard notations for (measurable,
abelian) cocycles (largely following [28], but extended to arbitrary countable abelian
groups Γ). Here it is convenient to work in the category of concrete Γ-systems, but
permit the cocycles to only be defined up to almost everywhere equivalence (so that
the extension generated by such a cocycle is merely an abstract Γ-system rather than a
concrete one).

Definition 2.1 (Cocycles and extensions). Let Γ be a countable abelian group, let Y =
(𝑌, 𝒴, 𝜈, 𝑆) be a (concrete) ergodic Lebesgue Γ-system, and let 𝐾 = (𝐾,+) be a compact
abelian group written additively.

(i) A (Y, 𝐾)-cocycle is a collection (𝜌𝛾)𝛾∈Γ of (concrete)measurablemaps 𝜌𝛾 ∶ 𝑌 →
𝐾 (defined up to almost everywhere equivalence) obeying the cocycle equation

(2.2) 𝜌𝛾1+𝛾2 = 𝜌𝛾1 ∘ 𝑆𝛾2 + 𝜌𝛾2
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𝜈-almost everywhere for all 𝛾1, 𝛾2 ∈ Γ. Observe that the space of (Y, 𝐾)-cocycles
forms an abelian group under pointwise addition.

(ii) Let𝑀(Y, 𝐾) denote the collection ofmeasurablemaps fromY to𝐾, up to equiv-
alence almost everywhere; we give this space the topology of convergence in
measure (and also endow this space with the Borel 𝜎-algebra). If 𝐹 ∈ 𝑀(Y, 𝐾),
we define the derivative 𝑑𝐹 = ((𝑑𝐹)𝛾)𝛾∈Γ to be the (Y, 𝐾)-cocycle

(𝑑𝐹)𝛾 ≔ 𝐹 ∘ 𝑆𝛾 − 𝐹.
It is easy to verify that this is indeed a (Y, 𝐾)-cocycle. Any (Y, 𝐾)-cocycle of the
form 𝑑𝐹 will be called a (Y, 𝐾)-coboundary. Two (Y, 𝐾)-cocycles 𝜌, 𝜌′ are said
to be (Y, 𝐾)-cohomologous if they differ by a (Y, 𝐾)-coboundary with respect to
the group structure on the space of (Y, 𝐾)-cocycles, in which case we write

𝜌 ∼Y,𝐾 𝜌′.
Thus for instance 𝜌 is a (Y, 𝐾)-coboundary if and only if 𝜌 is (Y, 𝐾)-cohomol-
ogous to zero: 𝜌 ∼Y,𝐾 0.

(iii) If 𝜌 is a (Y, 𝐾)-cocycle, we define the abelian extensionY⋊𝜌𝐾 to be the concrete
probability space that is the product of (𝑌, 𝒴, 𝜈) and𝐾 (with the latter equipped
with the Haar probability measure), with a near-action 𝑇 given by

𝑇𝛾(𝑦, 𝑘) ≔ (𝑆𝛾𝑦, 𝑘 + 𝜌𝛾(𝑦))
for all 𝛾 ∈ Γ, 𝑦 ∈ 𝑌 and 𝑘 ∈ 𝐾, where for each 𝛾 we arbitrarily select one
representative 𝜌𝛾 ∶ 𝑌 → 𝐾 of the equivalence class for this cocycle. While
from Fubini’s theorem one easily sees that each 𝑇𝛾 is measure-preserving, the
homomorphism law 𝑇𝛾1+𝛾2 = 𝑇𝛾1 ∘ 𝑇𝛾2 for 𝛾1, 𝛾2 ∈ Γ is only true almost
everywhere rather than everywhere. Thus, Y ⋊𝜌 𝐾 is not quite well-defined
as a concrete Γ-system; however, as discussed in Appendix A.3, it defines an
abstract Γ-system without difficulty (and this system does not depend on the
choice of representative of each 𝜌𝛾). We say that the (Y, 𝐾)-cocycle is ergodic if
this abstract Γ-system Y ⋊𝜌 𝐾 is ergodic.

(iv) Let 𝜌 be a (Y, 𝐾)-cocycle. If 𝜙∶ 𝐾 → 𝐾′ is a continuous homomorphism from
𝐾 to another compact abelian group 𝐾′, we let 𝜙 ∘ 𝜌 be the (Y, 𝐾′)-cocycle

(𝜙 ∘ 𝜌)𝛾 ≔ 𝜙 ∘ 𝜌𝛾;
one easily verifies that this is indeed a (Y, 𝐾′)-cocycle. Similarly, if 𝜋∶ Y′ → Y
is a (concrete) factor map, we let 𝜌 ∘ 𝜋 be the (Y′, 𝐾)-cocycle

(𝜌 ∘ 𝜋)𝛾 ≔ 𝜌𝛾 ∘ 𝜋,
which one again easily verifies to be a (Y′, 𝐾)-cocycle.

(v) If 𝜌 is a (Y, 𝐾)-cocycle and 𝑉 is an automorphism of the concrete Γ-system Y
(thus 𝑉 ∶ 𝑌 → 𝑌 is a measure-preserving invertible map and 𝑉 ∘ 𝑆𝛾 = 𝑆𝛾 ∘ 𝑉
for all 𝛾 ∈ Γ), we define the derivative 𝜕𝑉𝜌 to be the (Y, 𝐾)-cocycle

𝜕𝑉𝜌 ≔ 𝜌 ∘ 𝑉 − 𝜌.
(vi) We let Hom(Γ, 𝐾) be the collection of all homomorphisms 𝑐∶ Γ → 𝐾. Every

homomorphism 𝑐 ∈ Hom(Γ, 𝐾) can be viewed10 as a (Y, 𝐾)-cocycle by the

10In the notation of (iv), we are identifying 𝑐 with 𝑐 ∘ pt, where pt is the factor map from Y to a point.
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formula
𝑐𝛾(𝑦) ≔ 𝑐(𝛾)

for all 𝛾 ∈ Γ and 𝑦 ∈ 𝑌 .
(vii) A (Y, 𝐾)-cocycle 𝜌 is a (Y, 𝐾)-quasi-coboundary if it is (Y, 𝐾)-cohomologous to

a homomorphism, that is to say there exist measurable 𝐹 ∶ Y → 𝐾 and a ho-
momorphism 𝑐∶ Γ → 𝐾 such that

𝜌𝛾(𝑦) = 𝐹(𝑆𝛾𝑦) − 𝐹(𝑦) + 𝑐(𝛾)
for all 𝛾 ∈ Γ and 𝜈-almost every 𝑦 ∈ 𝑌 .

(viii) If 𝜌 is a (Y, 𝐾)-cocycle and 𝑘 ≥ 0 is an integer, we let Δ[𝑘]𝜌 be the (Y[𝑘], 𝐾)-
cocycle

(Δ[𝑘]𝜌)𝛾((𝑦𝜔)𝜔∈{0,1}𝑘) ≔ ∑
𝜔∈{0,1}𝑘

(−1)|𝜔|𝜌𝛾(𝑦𝜔),

where |(𝜔1, . . . , 𝜔𝑘)| ≔ 𝜔1+⋯+𝜔𝑘. One easily verifies thatΔ[𝑘]𝜌 is a (Y[𝑘], 𝐾)-
cocycle. If Δ[𝑘]𝜌 is a (Y[𝑘], 𝐾)-coboundary, we say that 𝜌 is of type (at most) 𝑘.

(ix) If Y = 𝑍 is a rotational system and 𝜌 is a (𝑍, 𝐾)-cocycle, we say that 𝜌 obeys
the Conze–Lesigne equation if for every 𝑧 ∈ 𝑍, the derivative 𝜕𝑉𝑧𝜌 is a quasi-
coboundary, where 𝑉𝑧 denotes the translation action 𝑉𝑧 ∶ 𝑧′ ↦ 𝑧 + 𝑧′ on 𝑍.
In other words, for every 𝑧 ∈ 𝑍 there exist a measurable 𝐹𝑧 ∶ Y → 𝐾 and a
homomorphism 𝑐𝑧 ∶ Γ → 𝐾 such that

𝜌𝛾(𝑧 + 𝑧′) − 𝜌𝛾(𝑧′) = 𝐹𝑧(𝑆𝛾𝑧′) − 𝐹𝑧(𝑧′) + 𝑐𝑧(𝛾)
for all 𝛾 ∈ Γ and 𝜇𝑍-almost every 𝑧′ ∈ 𝑍.

If the group 𝐾 = (𝐾, ⋅) is written multiplicatively instead of additively, we define all
the preceding concepts analogously, changing all additive notation to multiplicative
notation as appropriate.

In Section 5, we collect several examples of Conze–Lesigne systems. In particu-
lar these include some concrete examples of cocycles of type 2 satisfying the Conze–
Lesigne equation.

Remark 2.2. The fact that measurable cocycles only generate abstract Γ-systems rather
than concrete ones will cause some technical issues for us later in our arguments, but
these will be resolved by the introduction of suitable topological models, loosely fol-
lowing [28, §19.3.1], [25].

We recall some basic properties of cocycles:

Proposition 2.3 (Basic properties of cocycles). Let Γ be a countable abelian group, let
Y = (𝑌, 𝒴, 𝜈, 𝑆) be an (concrete) ergodic Lebesgue Γ-system, let 𝐾 = (𝐾,+) be a compact
abelian group, and let 𝜌 be a (Y, 𝐾)-cocycle.

(i) (Moore–Schmidt theorem) We have 𝜌 ∼Y,𝐾 0 if and only if 𝜉 ∘ 𝜌 ∼Y,𝕋 0 for all
𝜉 ∈ ̂𝐾.

(ii) (Criterion for ergodicity) 𝜌 is ergodic if and only if 𝜉 ∘ 𝜌 ≁Y,𝕋 0 for all non-zero
𝜉 ∈ ̂𝐾.

(iii) (Mackey–Zimmer theorem) If 𝜇 is a Γ-invariant ergodic probability measure on
𝑌×𝐾 that pushes down to 𝜈 on𝑌 , then there exist a closed subgroup𝐻 of𝐾 (called
theMackey group of 𝜌, 𝜈) and an ergodic (Y,𝐻)-cocycle 𝜌′ such that 𝜌′ ∼Y,𝐾 𝜌,
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and that the Γ-system 𝑌 ×𝜌 𝐾 equipped with the measure 𝜇 is abstractly isomor-
phic to 𝑌 ⋊𝜌′ 𝐻 (equipped with product measure).

(iv) (Shifting to be ergodic) If Γ is torsion-free and 𝐾 is connected metrizable, then
there exists 𝑐 ∈ Hom(Γ, 𝐾) such that 𝜌 + 𝑐 is ergodic.

(v) (Differentiation lowers type) If Y = 𝑍 is a rotational Γ-system, 𝐾 = 𝕋, and 𝜌 is of
type 2, then 𝜕𝑉𝑧𝜌 is of type 1 for all 𝑧 ∈ 𝑍.

(vi) (Order 1 cocycles and quasi-coboundaries) If Γ is torsion-free and 𝐾 = 𝕋, then 𝜌
is of type 1 if and only if 𝜌 is a (Y, 𝕋)-quasi-coboundary.

Proof. For (i), see [36, Theorem 4.3] or [31, Theorem 1.1] (see also [28, Chapter 5,
Lemma 7] for the Γ = ℤ case). For (ii), see [28, Chapter 5, Lemma 8] (this is stated
for Γ = ℤ, but the proof extends without difficulty to arbitrary countable abelian Γ).
For (iii), see [34], [54, Corollary 3.8, Theorem 4.3], [15, Theorem 3.26], or [30, Theorem
1.6]. We remark that (iii) is closely related to (i), (ii); for instance, 𝐻 is the annihilator
of the group of characters 𝜉 ∈ ̂𝐾 for which 𝜉 ∘ 𝜌 ∼Y,𝕋 0.
Part (iv) is a routine generalization of [28, Chapter 5, Corollary 9]; for the conve-

nience of the reader we review the argument here. As 𝐾 is connected metrizable,
the Pontryagin dual ̂𝐾 is countable and torsion-free, while Hom(Γ, 𝐾) is a compact
abelian group. By (ii), it thus suffices to show that for every non-zero 𝜉 ∈ ̂𝐾, one has
𝜉 ∘ (𝜌 + 𝑐) ≁Y,𝕋 0 for almost all 𝑐 ∈ Hom(Γ, 𝐾). Fixing 𝜉, it suffices upon subtraction
to show that 𝜉 ∘ 𝑐 ≁Y,𝕋 0 for almost all 𝑐 ∈ Hom(Γ, 𝐾). But a character 𝜉 ∘ 𝑐 ∈ Γ̂
is a (Y, 𝕋)-coboundary if and only if it is an eigenvalue of the action 𝑆; from the sep-
arability of Y, there are countably many such eigenvalues, so it suffices to show that
𝜉 ∘ 𝑐 ≠ 0 for almost all 𝑐 ∈ Hom(Γ, 𝐾). If this is not the case, then the closed subgroup
{𝑐 ∈ Hom(Γ, 𝐾) ∶ 𝜉 ∘ 𝑐 = 0} would have finite index in Hom(Γ, 𝐾), hence there is an
integer 𝑛 such that 𝜉 ∘ 𝑛𝑐 = 0 for all 𝑐 ∈ Hom(Γ, 𝐾). As Γ is torsion-free, this would
imply that 𝑛𝜉 vanishes, contradicting the torsion-free nature of ̂𝐾.
Part (v) was established for ℤ-actions in [24, Corollary 7.5(i)] or [28, Chapter 18,

Proposition 11(i)], and for general actions11 in [4, Lemma 5.3] by the same method.
Part (vi) was established for ℤ-actions in [28, Chapter 5, Lemma 13], but the exten-

sion to torsion-free Γ is routine: for the convenience of the reader we review the proof
here. The “if” part is easy, so we focus on the “only if” part. By using (iv) to shift 𝜌
by a character (which does not affect Δ[1]𝜌) we may assume without loss of general-
ity that 𝜌 is ergodic. By hypothesis, Δ[1]𝜌 is a (𝒴[1], 𝕋)-coboundary, thus there exists a
measurable map 𝐹 ∶ 𝑌 × 𝑌 → 𝕋 obeying the equation

Δ[1]𝜌𝛾 = 𝐹 ∘ 𝑆𝛾 − 𝐹

for all 𝛾 ∈ Γ. Setting X ≔ Y⋊𝜌 𝕋, we conclude that the map

𝐻∶ ((𝑦0, 𝑘0), (𝑦1, 𝑘1)) ↦ 𝑒(𝐹(𝑦0, 𝑦1) + 𝑘1 − 𝑘0)

is Γ-invariant in X × X. Thus the integral operator 𝑇𝐻 with kernel 𝐻 is a non-trivial
Hilbert-Schmidt operator on 𝐿2(X) that commutes with the Γ-action, thus there is an
eigenfunction 𝜙 ∈ 𝐿2(X) of this action that is also a non-trivial eigenfunction of 𝑇∗𝐻𝑇𝐻 .

11There is a typo in the statement of that lemma: the hypothesis that 𝑋 be of order < 𝑘 should instead be
that 𝑍<𝑘(𝑋) be a factor of 𝑌 .
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The function 𝛽 ∈ 𝐿2(Y) defined by

𝛽(𝑦) ≔ ∫
𝕋

̄𝜙(𝑦, 𝑘)𝑒(𝑘) 𝑑𝑘

cannot vanish identically (since otherwise 𝑇𝐻𝜙would vanish), and obeys the equation

𝛽(𝑆𝛾𝑦) = 𝑒(−𝑐(𝛾))𝑒(𝜌𝛾(𝑦))𝛽(𝑦)

for all 𝛾 ∈ Γ and almost every 𝑦, where 𝑒(𝑐(𝛾)) is the eigenvalue of 𝜙 with respect to
𝑆𝛾; note that 𝑐 is necessarily a character in Γ̂. The function |𝛽| is Γ-invariant, hence
constant. Writing 𝛽 = |𝛽|𝑒( ̃𝐹), we obtain 𝜌𝛾 = ̃𝐹 ∘ 𝑆𝛾 − ̃𝐹 + 𝑐(𝛾), thus 𝜌𝛾 is a (Y, 𝕋)-
quasi-coboundary as desired. □

Remark 2.4. As remarked after [24, LemmaC.5], Proposition 2.3(vi) can fail if the circle
𝕋 is replaced by a disconnected group. For instance, take Γ = ℤ, 𝐾 = 1

2ℤ/ℤ, and Y to be
the rotational ergodic separable ℤ-system 𝕋 with action 𝜙(𝑛) = 𝑛𝛼mod 1 for all 𝑛 ∈ ℤ
and some irrational real 𝛼. If we let {}∶ 𝕋 → [0, 1) be the fractional part map, then one
can check that the tuple 𝜌 = (𝜌𝑛)𝑛∈ℤ given by

𝜌𝑛(𝑥) ≔
{𝑥 + 𝑛𝛼} − {𝑥} − 𝑛𝛼

2 mod 1

is a (ℤ, 𝐾)-cocycle. From the identity

Δ[1]𝜌 = 𝑑𝐹[1],

where 𝐹[1] ∈ 𝑀(𝕋2, 𝐾) is the function

𝐹[1](𝑥, 𝑦) ≔ {𝑥} − {𝑦} − {𝑥 − 𝑦}
2 mod 1,

we see that the (ℤ, 𝐾)-cocycle is of order 1; however it is not a (ℤ, 𝐾)-quasi-coboundary.
Indeed, if there was some 𝐹 ∈ 𝑀(𝕋, 𝐾) and 𝑐 ∈ Hom(ℤ, 𝐾) such that 𝜌 = 𝑑𝐹 + 𝑐, then
by specializing to 𝑛 = 1 we conclude that

{𝑥 + 𝛼} − {𝑥} − 𝛼
2 = 𝐹(𝑥 + 𝛼) − 𝐹(𝑥) + 𝑐(1)mod 1

or equivalently

𝑓(𝑥 + 𝛼) = 𝑒 (𝛼2 + 𝑐(1)) 𝑓(𝑥)

for all 𝑥 ∈ 𝕋, where

𝑓(𝑥) ≔ 𝑒 (𝐹(𝑥) − {𝑥}
2 ) .

By Fourier analysis this implies that 𝛼2 + 𝑐(1) needs to be an integer multiple of 𝛼, but
this is inconsistent with the irrationality of 𝛼 since 𝑐(1) ∈ 1

2ℤ/ℤ.
On the other hand, if the systemY is 2-divisible in the sense that its Kronecker factor

has a divisible Pontryagin dual, then one can replace the circle 𝕋 in Proposition 2.3(vi)
by an arbitrary compact abelian group 𝐾; this follows from that proposition and [43,
Proposition 3.8]. As a consequence, the requirement in Theorem 1.13 that 𝐾 be a Lie
group can be dropped in the 2-divisible case; this is essentially [43, Theorem 4.1].
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3. Derivation of the Conze–Lesigne equation

In this section we establish Theorem 1.13.
We begin with the derivation of (i) from (ii). Observe from Definition 2.1(ix) that if

the (𝑍, 𝐾)-cocycle 𝜌 obeys the Conze–Lesigne equation, then the (𝑍, 𝕋)-cocycle 𝜉 ∘ 𝜌
obeys the Conze–Lesigne equation for any 𝜉 ∈ ̂𝐾. Similarly, from the Moore–Schmidt
theorem (Proposition 2.3(i)), Definition 2.1(viii) and the obvious identity Δ[𝑘](𝜉 ∘ 𝜌) =
𝜉 ∘ Δ[𝑘](𝜌) for any 𝜉 ∈ ̂𝐾 and 𝑘 ≥ 0 we see that if 𝜉 ∘ 𝜌 is of type 𝑘 for every 𝜉 ∈ ̂𝐾,
then 𝜌 is of type 𝑘. From these observations we see that to show that (ii) implies (i), it
suffices to do so in the case 𝐾 = 𝕋. By Definition 2.1(ix), we see that for every 𝑧 ∈ 𝑍
there exist an 𝐹𝑧 ∈ 𝑀(𝑍, 𝕋) and a character 𝑐𝑧 ∈ Γ̂ such that

(3.1) 𝜕𝑉𝑧𝜌 = 𝑑𝐹𝑧 + 𝑐𝑧.

At this point we run into the technical issue that 𝐹𝑧 and 𝑐𝑧 need not depend in a mea-
surable fashion on 𝑧. It is however possible to select 𝐹𝑧, 𝑐𝑧 so that this is the case, by
means of the following result:

Proposition 3.1 (Measurable selection). Let Γ be a countable abelian group, let Y be
a concrete ergodic Lebesgue Γ-system, and let 𝑈 be a measurable space. Suppose that we
have ameasurablemap 𝑢 ↦ ℎᵆ from𝑈 to the space of (Y, 𝕋)-cocycles (which we can view
as a subset of𝑀(Y, 𝕋)Γ, whichwe endowwith the product topology), with the property that
for each 𝑢 ∈ 𝑈 we can find 𝐹 ∈ 𝑀(Y, 𝕋) and a character 𝑐ᵆ ∈ Γ̂ such that

ℎᵆ = 𝑑𝐹 + 𝑐ᵆ.

Then, after adjusting 𝐹 and 𝑐ᵆ as necessary, we may ensure that 𝐹 , 𝑐ᵆ depend in a mea-
surable fashion on 𝑢.

Proposition 3.1 is a special case of [4, Lemma C.4] (which handles a more general
situation in which the ℎᵆ need not obey the cocycle equation, and the 𝑐ᵆ are allowed
to be polynomials of a given degree). The proof of that lemma requires at one point
the measurability of a certain function 𝑛ᵆ constructed in that proof. The verification
of this measurability is actually somewhat non-trivial, and so we give a complete proof
of Proposition 3.1 in Appendix B. As remarked in [4], there are several other ways
to establish this proposition, including using Borel cross-sections of homomorphisms
between Polish groups (see [24, Theorem A.1]) or a general measurable selection re-
sult of Dixmier (cf. [1, Theorem 1.2.4]). In the case Γ = ℤ this result was essentially
established in [14, Proposition 10.5].
Invoking Proposition 3.1, we can now select the 𝐹𝑧, 𝑐𝑧 solving (3.1) to depend in a

measurable fashion on 𝑧.
As observed in [24, §3.2] (see also [28, §8.1.2]), 𝑍[2] can be viewed as a translational

system on the compact group

𝑍[2] = {(𝑧, 𝑧 + 𝑠1, 𝑧 + 𝑠2, 𝑧 + 𝑠1 + 𝑠2) ∶ 𝑧, 𝑠1, 𝑠2 ∈ 𝑍}

with translation action 𝜙[2] ∶ Γ → 𝑍[2] given by the diagonal action

𝜙[2](𝛾) ≔ (𝜙(𝛾), 𝜙(𝛾), 𝜙(𝛾), 𝜙(𝛾))
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and 𝜙∶ Γ → 𝑍 the original translation action on 𝑍. The (𝑍[2], 𝕋)-cocycle Δ[2]𝜌 is then
given by the formula

(Δ[2]𝜌)𝛾(𝑧, 𝑧 + 𝑠1, 𝑧 + 𝑠2, 𝑧 + 𝑠1 + 𝑠2) = 𝜌𝛾(𝑧) − 𝜌𝛾(𝑧 + 𝑠1) − 𝜌(𝑧 + 𝑠2) + 𝜌(𝑧 + 𝑠1 + 𝑠2)
= 𝜕𝑉𝑠2𝜌𝛾(𝑧) − 𝜕𝑉𝑠2𝜌𝛾(𝑧 + 𝑠1).

Applying (3.1), we conclude the identity

Δ[2]𝜌 = 𝑑𝐹[2],
where 𝐹[2] ∶ 𝑍[2] → 𝕋 is the function

𝐹[2](𝑧, 𝑧 + 𝑠1, 𝑧 + 𝑠2, 𝑧 + 𝑠1 + 𝑠2) ≔ 𝐹𝑠2(𝑧) − 𝐹𝑠2(𝑧 + 𝑠1).

By construction of the 𝐹𝑧, 𝐹[2] is measurable, and hence by Definition 2.1(viii) 𝜌 is of
type 2. This concludes the derivation of (i) from (ii).
Now we show that (i) implies (ii). Any compact abelian Lie group is isomorphic to

the direct product of a torus and afinite abelian group (see e.g., [46, Exercise 1.4.27(iii)]),
and hence also isomorphic to the direct product of finitely many copies of the circle 𝕋
and cyclic groups 1

𝑁ℤ/ℤ. It is clear that to show (i) implies (ii) for a direct product
𝐾 = 𝐾1 × 𝐾2, it suffices to do so for the two factors 𝐾1 and 𝐾2 separately. Thus it
suffices to establish this implication in the special cases 𝐾 = 𝕋 and 𝐾 = 1

𝑁ℤ/ℤ for a
natural number12 𝑁.
The 𝐾 = 𝕋 case is immediate from Proposition 2.3: if 𝑧 ∈ 𝑍, then Lemma 2.3(v)

implies that 𝜕𝑉𝑧𝜌 is of type 1, and Lemma 2.3(vi) then gives that 𝜕𝑉𝑧𝜌 is a (𝑍, 𝕋)-quasi-
coboundary, thus giving the required Conze–Lesigne equation.
We turn to the 𝐾 = 1

𝑁ℤ/ℤ case. Now one cannot directly apply Lemma 2.3(v),
(vi). However, since 𝐾 is a subgroup of 𝕋, we can also view the (𝑍, 𝐾)-cocycle 𝜌 as a
(𝑍, 𝕋)-cocycle, which will of course still be of type 2. Applying the previous argument,
we conclude that 𝜕𝑉𝑧𝜌 is a (𝑍, 𝕋)-quasi-coboundary for every 𝑧 ∈ 𝕋, thus we can find
𝑐𝑧 ∈ Hom(Γ, 𝕋) = Γ̂ such that
(3.2) 𝜕𝑉𝑧𝜌 ∼𝑍,𝕋 𝑐𝑧.
By Proposition 3.1, we may ensure that 𝑐𝑧 depends in a measurable fashion on 𝑧.
The main difficulty here is that the homomorphism 𝑐𝑧 takes values in 𝕋 rather than

in the smaller group 𝐾. To resolve this, we need some additional structural control on
the 𝑐𝑧. We first apply a translation 𝑉𝑧′ to (3.2) to conclude that

(𝜕𝑉𝑧𝜌) ∘ 𝑉𝑧′ ∼𝑍,𝕋 𝑐𝑧
for any 𝑧, 𝑧′ ∈ 𝑍; combining these identities with the cocycle identity

𝜕𝑉𝑧+𝑧′𝜌 = (𝜕𝑉𝑧𝜌) ∘ 𝑉𝑧′ + 𝜕𝑉𝑧′𝜌,
we conclude that

𝑐𝑧+𝑧′ − 𝑐𝑧 − 𝑐𝑧′ ∼𝑍,𝕋 0.
Thus, if we let 𝐸 ≤ Γ̂ denote the group

𝐸 ≔ {𝑐 ∈ Γ̂ ∶ 𝑐 ∼𝑍,𝕋 0},

12Using the Chinese remainder theorem one could reduce further to the case when 𝑁 is a power of a
prime, but this does not seem to simplify the argument significantly.
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then the map 𝑧 ↦ 𝑐𝑧 is a homomorphism mod 𝐸, in the sense that
(3.3) 𝑐𝑧+𝑧′ = 𝑐𝑧 + 𝑐𝑧′ mod 𝐸
for all 𝑧, 𝑧′ ∈ 𝑍.
Note that if 𝑐 ∈ 𝐸, then 𝑐 = 𝑑𝐹 for some 𝐹 ∈ 𝑀(𝑍, 𝕋), which implies that 𝑒(𝐹) is an

eigenfunction of the rotational system 𝑍:
𝑒(𝐹) ∘ 𝑇𝛾 = 𝑒(𝑐(𝛾))𝑒(𝐹).

By the unitary nature of the action, eigenfunctions with different eigenvalues are or-
thogonal. Since 𝐿2(𝑍) is separable, we conclude that 𝐸 is countable.
We can now locally remove the “mod 𝐸” reduction in (3.3) by the following argu-

ment (cf. the proof of [4, Proposition 6.1]). By (3.3), the map (𝑧, 𝑧′) ↦ 𝑐𝑧+𝑧′ − 𝑐𝑧 − 𝑐𝑧′
is a measurable map from 𝑍 × 𝑍 to the countable set 𝐸. The autocorrelation function

𝑎 ↦ 𝜇𝑍2({(𝑧, 𝑧′) ∈ 𝑍2 ∶ 𝑐𝑧+𝑧′ − 𝑐𝑧 − 𝑐𝑧′ = 𝑐𝑧+𝑎+𝑧′ − 𝑐𝑧+𝑎 − 𝑐𝑧′ }),
where 𝜇𝑍2 is the Haar probability measure on 𝑍2, is then a continuous function on 𝑍
which equals 1 at 0 (this follows for instance from Lusin’s theorem). Thus there exists
an open neighborhood 𝑈 of the identity such that

𝜇𝑍2({(𝑧, 𝑧′) ∈ 𝑍2 ∶ 𝑐𝑧+𝑧′ − 𝑐𝑧 − 𝑐𝑧′ = 𝑐𝑧+𝑎+𝑧′ − 𝑐𝑧+𝑎 − 𝑐𝑧′ }) ≥ 0.9
(say) for all 𝑎 ∈ 𝑈. Canceling the 𝑐𝑧′ and making the change of variables 𝑧″ = 𝑧 + 𝑧′,
we see that for all 𝑎 ∈ 𝑈, we have

𝑐𝑧+𝑎 − 𝑐𝑧 = 𝑐𝑧″+𝑎 − 𝑐𝑧″
for at least 0.9 of pairs (𝑧, 𝑧″) ∈ 𝑍2 by measure, which implies that there exists a
(unique) 𝑐′𝑎 ∈ Γ̂ such that
(3.4) 𝑐𝑧+𝑎 − 𝑐𝑧 = 𝑐′𝑎
for at least 0.9 of the 𝑧 ∈ 𝑍 by measure; furthermore, 𝑐′𝑎 will depend measurably on 𝑎
(it is the mode of 𝑐𝑧+𝑎 − 𝑐𝑧). From (3.3) we see that

(3.5) 𝑐′𝑎 = 𝑐𝑎 mod 𝐸
for all 𝑎 ∈ 𝑈, and from several applications of (3.4) we have

(3.6) 𝑐′𝑎 + 𝑐′𝑏 = 𝑐′𝑎+𝑏
whenever 𝑎, 𝑏, 𝑎 + 𝑏 ∈ 𝑈.
We return to equation (3.2). Since 𝜌 takes values in 𝐾 = 1

𝑁ℤ/ℤ, we have 𝑁𝜌 = 0,
hence from (3.2) 𝑁𝑐𝑧 ∼𝑍,𝕋 0 for all 𝑧 ∈ 𝑍, hence by (3.5) we have 𝑁𝑐′𝑎 ∈ 𝐸 for all
𝑎 ∈ 𝑈. Thus there is 𝑒 ∈ 𝐸 such that 𝑁𝑐′𝑎 = 𝑒 for all 𝑎 in a positive measure subset
of 𝑈; from (3.6) and the Steinhaus lemma, we conclude that 𝑁𝑐′𝑎 = 0 for all 𝑎 in an
open neighborhood 𝑈′ ⊂ 𝑈 of the identity. Thus for 𝑎 ∈ 𝑈′, 𝑐′𝑎 takes values in 𝐾,
and so from (3.2), (3.5) 𝜕𝑉𝑎𝜌 − 𝑐′𝑎 is a (𝑍, 𝐾)-cocycle which is a (𝑍, 𝕋)-coboundary. By
theMoore–Schmidt theorem (Proposition 2.3(i)), 𝜕𝑉𝑎𝜌−𝑐′𝑎 is also a (𝑍, 𝐾)-coboundary
(note that all the characters of𝐾 are of the form 𝑘 ↦ 𝑛𝑘 for some integer 𝑛). Thus 𝜕𝑉𝑎𝜌
is a (𝑍, 𝐾)-quasi-coboundary for all 𝑎 ∈ 𝑈′. Meanwhile, from the identity

𝜕𝑉𝜙(𝛾)𝜌 = 𝑑𝜌𝛾
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for any 𝛾 ∈ Γ, we see that 𝜕𝑉𝑎𝜌 is also a (𝑍, 𝐾)-quasi-coboundary (in fact a (𝑍, 𝐾)-
coboundary) for all 𝑎 ∈ 𝜙(Γ). By the cocycle identity

𝜕𝑉𝑎+𝑏𝜌 = (𝜕𝑉𝑎𝜌) ∘ 𝑉 𝑏 + 𝜕𝑉𝑏𝜌
for any 𝑎, 𝑏 ∈ 𝑍, we conclude that 𝜕𝑉𝑎𝜌 is a (𝑍, 𝐾)-quasi-coboundary for all 𝑎 ∈ 𝜙(Γ)+
𝑈′. But since the rotational Γ-system 𝑍 is ergodic, the subgroup 𝜙(Γ) of 𝑍 is dense, and
hence 𝜙(Γ)+𝑈′ is all of 𝑍. Thus 𝜕𝑉𝑎𝜌 is a (𝑍, 𝐾)-quasi-coboundary for all 𝑎 ∈ 𝑍, thus 𝜌
obeys the Conze–Lesigne equation. This concludes the derivation of (ii) from (i), and
the proof of Theorem 1.13 is complete.

4. Conclusion of the argument

In this section we establish Theorem 1.8.

4.1. From nilpotent translational systems to the Conze–Lesigne equation. We
begin with the derivation of (i) from (ii). From Lemma 1.3(iii), Theorem 1.12 and The-
orem 1.13, it suffices to show the following claim:

Proposition 4.1 (Verifying the Conze–Lesigne equation). Let Γ be a countable abelian
group, and let 𝐺/Λ be an ergodic translational Γ-system, where 𝐺 is a locally compact
nilpotent Polish group of nilpotency class 2, and Λ is a lattice in 𝐺, and one also has
a closed central subgroup 𝐺2 of 𝐺 containing [𝐺, 𝐺] such that Λ ∩ 𝐺2 is a lattice in 𝐺2.
Then𝐺/Λ is abstractly isomorphic to a group extension 𝑍⋊𝜌𝐾, where 𝑍 is a rotational Γ-
system,𝐾 is a compact abelian group, and 𝜌 is a (𝑍, 𝐾)-cocycle obeying the Conze–Lesigne
equation. (Note that 𝑍 is not required to be the Kronecker factor.)

We now prove Proposition 4.1. We let 𝜙∶ Γ → 𝐺 denote the translation action. We
take 𝑍 to be the compact group 𝐺/𝐺2Λ, written additively. We write 𝜋∶ 𝐺 → 𝑍 for
the projection homomorphism; this map factors through the quotient map from 𝐺 to
𝐺/Λ, and we use 𝜋̃∶ 𝐺/Λ → 𝑍 to denote the projection map produced in this fashion.
Then 𝑍 is a rotational Γ-system with action given by 𝜋 ∘ 𝜙. Next, we take 𝐾 to be the
compact group 𝐺2/(𝐺2 ∩Λ)written additively. Because 𝐺2 is central, this group 𝐾 acts
freely on 𝐺/Λ; we express this action additively, thus if 𝑘 ∈ 𝐾 and 𝑥 ∈ 𝐺/Λ, we write
𝑘 + 𝑥 = 𝑥 + 𝑘 for the action of 𝑘 on 𝑥. By construction, we thus have
(4.1) 𝑔2𝑥 = 𝑥 + Π(𝑔2)
whenever 𝑥 ∈ 𝐺/Λ and 𝑔2 ∈ 𝐺2, whereΠ∶ 𝐺2 → 𝐾 is the projection homomorphism.
Observe that the orbits of this free 𝐾-action on 𝐺/Λ are precisely the fibers of 𝜋̃, thus
𝐺/Λ is a principal 𝐾-bundle over 𝑍 (as a set, at least). Also, by the central nature of 𝐺2
we see that

(4.2) 𝑔(𝑥 + 𝑘) = 𝑔𝑥 + 𝑘
for all 𝑔 ∈ 𝐺, 𝑥 ∈ 𝐺/Λ, and 𝑘 ∈ 𝐾.
It will be convenient to “work in coordinates” to facilitate computations. We claim

that the projectionmap 𝜋̃∶ 𝐺/Λ → 𝑍 admits a Borel cross-section, that is to say a Borel-
measurable map 𝑠∶ 𝑍 → 𝐺/Λ such that 𝜋̃(𝑠(𝑧)) = 𝑧 for all 𝑧 ∈ 𝑍. Indeed, observe that
the map 𝜋∶ 𝐺 → 𝑍 is a continuous surjective homomorphism of Polish groups, hence
by [1, Theorem 1.2.4] this map admits a Borel cross-section 𝑠′ ∶ 𝑍 → 𝐺; quotienting
out by Λ then gives the claim.
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For any 𝛾 ∈ Γ and 𝑧 ∈ 𝑍, the points 𝜙(𝛾)𝑠(𝑧) and 𝑠(𝜋 ∘ 𝜙(𝛾) + 𝑧) in 𝐺/Λ both lie in
the fiber 𝜋̃−1(𝜋 ∘ 𝜙(𝛾) + 𝑧), so there is a unique element 𝜌𝛾(𝑧) of 𝐾 for which one has
the identity

(4.3) 𝜙(𝛾)𝑠(𝑧) = 𝑠(𝜋 ∘ 𝜙(𝛾) + 𝑧) + 𝜌𝛾(𝑧).
It is easy to see that 𝜌𝛾 ∶ 𝑍 → 𝐾 is measurable for each 𝛾. By computing 𝜙(𝛾1 + 𝛾2)𝑠(𝑧)
in two different ways using (4.2), (4.3) we can verify that 𝜌 ≔ (𝜌𝛾)𝛾∈Γ is in fact a (𝑍, 𝐾)-
cocycle. By the identification

(𝑧, 𝑘) ≡ 𝑠(𝑧) + 𝑘,
one can then verify that the translational system 𝐺/Λ is abstractly isomorphic to the
semidirect product 𝑍 ⋊𝜌 𝐾 (one can use Fubini’s theorem to check that the product
measure of 𝑍 ⋊𝜌 𝐾 is invariant under the left action of 𝐺 under this identification and
is thus identified with the Haar probability measure on 𝐺/Λ).
To conclude the proof of Proposition 4.1, it will suffice to show that 𝜌 obeys the

Conze–Lesigne equation, which can be achieved by standard calculations in a suitable
coordinate system as follows. Let 𝑧0 ∈ 𝑍 be arbitrary. As the projection 𝜋∶ 𝐺 → 𝑍
is surjective, we can find13 𝑔𝑧0 ∈ 𝐺 such that 𝜋(𝑔𝑧0) = 𝑧0. Applying 𝑔𝑧0 to (4.3) and
using (4.2), we see that

𝑔𝑧0𝜙(𝛾)𝑠(𝑧) = 𝑔𝑧0𝑠(𝜋 ∘ 𝜙(𝛾) + 𝑧) + 𝜌𝛾(𝑧)
for any 𝛾 ∈ Γ and 𝑧 ∈ 𝑍. Writing 𝑔𝑧0𝜙(𝛾) = [𝑔𝑧0 , 𝜙(𝛾)]𝜙(𝛾)𝑔𝑧0 and noting that the
commutator [𝑔𝑧0 , 𝜙(𝛾)] lies in 𝐺2, we then have from (4.1) that

(4.4) 𝜙(𝛾)𝑔𝑧0𝑠(𝑧) + Π([𝑔𝑧0 , 𝜙(𝛾)]) = 𝑔𝑧0𝑠(𝜋 ∘ 𝜙(𝛾) + 𝑧) + 𝜌𝛾(𝑧).
On the other hand, since 𝑔𝑧0𝑠(𝑧) and 𝑠(𝑧 + 𝑧0) both lie in the fiber 𝜋̃−1(𝑧 + 𝑧0), there
exists a unique measurable function 𝐹𝑧0 ∶ 𝑍 → 𝐾 such that

𝑔𝑧0𝑠(𝑧) = 𝑠(𝑧 + 𝑧0) + 𝐹𝑧0(𝑧)
for all 𝑧 ∈ 𝑍. Inserting this (both for 𝑧 and for 𝜋 ∘ 𝜙(𝛾) + 𝑧) into equation (4.4) and
using (4.2) and (4.3), we conclude that

𝑠(𝜋 ∘ 𝜙(𝛾) + 𝑧 + 𝑧0) + 𝜌𝛾(𝑧 + 𝑧0) + 𝐹𝑧0(𝑧) + Π([𝑔𝑧0 , 𝜙(𝛾)])
= 𝑠(𝜋 ∘ 𝜙(𝛾) + 𝑧 + 𝑧0) + 𝐹𝑧0(𝜋 ∘ 𝜙(𝛾) + 𝑧) + 𝜌𝛾(𝑧);

as the 𝐾-action is free, this can be rearranged as
𝜌𝛾(𝑧 + 𝑧0) − 𝜌𝛾(𝑧) = 𝐹𝑧0(𝜋 ∘ 𝜙(𝛾) + 𝑧) − 𝐹𝑧0(𝑧) − Π([𝑔𝑧0 , 𝜙(𝛾)])

or equivalently

(4.5) 𝜕𝑉𝑧0𝜌 = 𝑑𝐹𝑧0 + 𝑐𝑧0 ,
where 𝑐𝑧0 ∶ Γ → 𝐾 is the map

𝑐𝑧0(𝛾) ≔ −Π([𝑔𝑧0 , 𝜙(𝛾)]).
As 𝐺 has nilpotency class 2, one easily verifies that 𝑐𝑧0 is a homomorphism (this also
follows from the fact that the other terms in (4.5) are (𝑍, 𝐾)-cocycles). Hence 𝜌 obeys

13For this argument we will not need to require 𝑔𝑧0 to depend in a measurable fashion on 𝑧0, though
we could ensure this if desired, by using either a variant of the Borel section constructed previously or by a
variant of Proposition 3.1.
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the Conze–Lesigne equation as required. This completes the proof of Proposition 4.1,
and hence the derivation of (i) from (ii).

Remark 4.2. For a given translational Γ-system𝐺/Λ, with𝐺 a nilpotent locally compact
Polish group of nilpotency class two, there can be some flexibility in how to select the
subgroup 𝐺2; it must contain the commutator group [𝐺, 𝐺] and be contained in turn
in the center 𝑍(𝐺) of 𝐺, and needs to be closed and “rational” in the sense that 𝐺2 ∩ Λ
is cocompact in 𝐺2, but is otherwise arbitrary. From the above discussion, this means
that it is possible for the translational Γ-system𝐺/Λ to be expressed as an abelian group
extension 𝑍 ⋊𝜌 𝐾 of a rotational Γ-system by a cocycle 𝜌 obeying the Conze–Lesigne
equation in several inequivalent ways. As discussed in Remark 4.7, theminimal choice
𝐺2 = [𝐺,𝐺] corresponds to the case when 𝑍 is the maximal rotational Γ-system fac-
tor of 𝐺/Λ, i.e., the Kronecker factor; however in some cases one can also take larger
choices of 𝐺2, such as the center 𝑍(𝐺) of 𝐺, which correspond to smaller choices of 𝑍.
See Section 5.1 for one example of this situation.

4.2. FromtheConze–Lesigneequation tonilpotent translational systems. Now
we show that (i) implies (ii). We begin with a technical reduction. Define a good system
to be a translational Γ-system 𝐺/Λ of the form required in part (ii) with the additional
conditions listed at the end of the theorem; thus𝐺 is a locally compact nilpotent Polish
group of nilpotency class two, Λ is an abelian lattice in 𝐺, and 𝐺 contains a compact
central Lie group 𝐺2 containing [𝐺, 𝐺]with Λ∩𝐺2 trivial. Call a factor of a Γ-system a
good factor if it is abstractly isomorphic to a good system. Our task is to show that any
Conze–Lesigne Γ-system is the inverse limit of a directed family of good factors. The
requirement to be a directed set can be dropped thanks to the following observation
(cf., [28, §13.3.2, Proposition 16]):

Proposition 4.3 (Good factors form a directed set). Given two good factors Y1, Y2 of X,
there exists another good factor Y of X such that Y1, Y2 ≤ Y.

We defer the proof of Proposition 4.3 to Section 4.3. Assuming it for now, any family
of good factors can be completed to a directed set of good factors by a transfinite induc-
tion on the cardinality of the family of good factors. Indeed, the base case being trivial,
suppose 𝛽 = 𝛼 + 1 is a successor ordinal and 𝔛𝛼 is a directed family of good factors.
Applying Proposition 4.3, we can form 𝔛𝛽 by taking the join of each good factor in 𝔛𝛼
with the additional element. Moreover, if 𝛽 is a limit ordinal, then we can take the
union of all 𝔛𝛼 over 𝛼 < 𝛽.
Hence for the purposes of showing that (i) implies (ii) we can now drop the require-

ment that the family of good factors be directed. In particular, if X is the inverse limit
of some other systemsX𝑛, and eachX𝑛 was already demonstrated to be an inverse limit
of good factors, then X itself must also be an inverse limit of good factors, simply by
concatenating all the families of good factors together (and ignoring the directed set
requirement).
The next step is to reduce to the case of separable Γ-systems. By Lemma 1.3 and the

preceding discussion, it suffices to show that every Γ-system X is the inverse limit of
separable Γ-systems. But given any finite collection ℱ of elements of the 𝜎-complete
Boolean algebra 𝒳 associated to X, one can form the factor Xℱ by replacing 𝒳 with
the 𝜎-complete subalgebra generated by the Γ-orbit {𝑇𝛾𝐹 ∶ 𝐹 ∈ ℱ, 𝛾 ∈ Γ} of ℱ, and
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restricting themeasure and action appropriately. It is clear that this is a separable factor
of X, and X is the inverse limit of the Xℱ , as claimed.
Henceforth X is separable. The group Γ is not assumed to be torsion-free, but it is

of course isomorphic to a quotient Γ′/Σ of a torsion-free countable abelian group Γ′.
For instance one can take Γ′ =⨁𝛾∈Γ ℤ to be the free abelian group formally generated
by the elements 𝛾 of Γ, with Γ then naturally identified with the quotient of Γ′ by the
subgroup Σ consisting of formal integer combinations of elements of Γ that sum to
zero. Any ergodic separable Γ-system X can then be viewed as an ergodic Γ′-system in
the obvious fashion; and if X when viewed as a Γ′-system is the inverse limit of good
Γ′-systems 𝐺𝑛/Λ𝑛, then each of the factor Γ′-systems 𝐺𝑛/Λ𝑛 must have a trivial action
of Σ and thus also be interpretable as a good Γ-system. Furthermore, if X is of order 𝑘
as a Γ-system for a given 𝑘, it is easy to see from the definitions that it is also of order
𝑘 when viewed as a Γ′-system. Thus, to prove the implication of (ii) from (i) for Γ, it
suffices to do so for Γ′. In particular, we may now assume without loss of generality
that Γ is torsion-free.
By Theorem 1.12, we can assume without loss of generality that the ergodic separa-

ble Γ-system X is of the form X = 𝑍 ⋊𝜌 𝐾, where 𝑍 is a rotational ergodic Γ-system, 𝐾
is a compact abelian group, and 𝜌 is a (𝑍, 𝐾)-cocycle of type 2. Since X was separable,
𝑍 is also separable, hence by Pontryagin duality ̂𝑍 is countable and 𝑍 is metrizable. By
the Peter–Weyl theorem or Pontryagin duality (see e.g., [46, Exercise 1.4.26]), 𝐾 is the
inverse limit of compact abelian Lie groups 𝐾𝑛. One can then easily verify that 𝑍⋊𝜌 𝐾
is the inverse limit of 𝑍 ⋊𝜋𝑛∘𝜌 𝐾𝑛, where 𝜋𝑛 ∶ 𝐾 → 𝐾𝑛 are the projection homomor-
phisms. Since 𝜌 is a (𝑍, 𝐾)-cocycle of type 2, the (𝑍, 𝐾𝑛)-cocycles 𝜋𝑛 ∘ 𝜌 also have type
2. Thus, for the purposes of establishing Theorem 1.8(i), we may assume without loss
of generality that 𝐾 is a compact abelian Lie group. In particular, by Theorem 1.13, the
(𝑍, 𝐾)-cocycle 𝜌 now obeys the Conze–Lesigne equation. Also, by Pontryagin duality,
̂𝐾 is a finitely generated discrete group.
To summarize so far, we have reduced the derivation of (ii) from (i) to establishing

Proposition 4.4 (which can be viewed as a partial converse to Proposition 4.1):

Proposition 4.4 (Constructing a nilpotent translational system). Let Γ be a countable
abelian group,𝑍 ametrizable rotational ergodicΓ-system,𝐾 a compact abelian Lie group,
and 𝜌 an ergodic (𝑍, 𝐾)-cocycle obeying the Conze–Lesigne equation. Then the (ergodic,
separable) Γ-system 𝑍⋊𝜌𝐾 is abstractly isomorphic to a good system, i.e., a translational
system𝐺/Λwith𝐺 is a locally compact nilpotent Polish group of nilpotency class two,Λ is
an abelian lattice in𝐺, and𝐺 contains a compact central Lie group𝐺2 containing [𝐺, 𝐺]
with Λ ∩ 𝐺2 trivial.

To avoid circularity in our arguments we emphasize that our proof of Proposition
4.4 will not use Proposition 4.3, as this latter proposition has not yet been proven.
To prove Proposition 4.4, we now follow a standard construction (see [8], [9], [35],

[40], [26], [27], [24], [51]), but taking care to keep track of which structures are only
defined abstractly (or up to almost everywhere equivalence), rather than pointwise.
Define the Host–Kra group 𝐺 to be the collection of pairs (𝑢, 𝐹), where 𝑢 ∈ 𝑍 and
𝐹 ∈ 𝑀(𝑍, 𝐾) obeys the Conze–Lesigne equation

(4.6) 𝜕𝑉𝑢𝜌 = 𝑑𝐹 + 𝑐
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for some homomorphism 𝑐∶ Γ → 𝐾. These pairs (𝑢, 𝐹) generate a near-action on
X = 𝑍 ⋊𝜌 𝐾 by the formula

(4.7) (𝑢, 𝐹)(𝑧, 𝑘) ≔ (𝑧 + 𝑢, 𝑘 + 𝐹(𝑧)),
where we arbitrarily select one concrete representative 𝐹 ∶ 𝑍 → 𝐾 from the equiva-
lence class of 𝐹. One verifies from Fubini’s theorem that this near-action is concretely
measure-preserving, and that the abstract action on X does not depend on the choice
of representative. Thus if we endow 𝐺 with the group law

(𝑢, 𝐹)(𝑢′, 𝐹′) ≔ (𝑢 + 𝑢′, 𝐹 ∘ 𝑉 ′ + 𝐹′)
and inverse operation

(𝑢, 𝐹)−1 ≔ (−𝑢,−𝐹 ∘ 𝑉−ᵆ),
one easily verifies that 𝐺 is a group that has a near-action on X, and thus (as dis-
cussed in Appendix A.3) acts abstractly on X. We claim that this abstract action is
faithful. Indeed, if (𝑢, 𝐹) acts abstractly trivially on X, then for every bounded measur-
able 𝑓∶ 𝑍 × 𝐾 → ℝ we have

𝑓(𝑧 + 𝑢, 𝑘 + 𝐹(𝑧)) = 𝑓(𝑧, 𝑘)
for𝑍×𝐾-almost every (𝑧, 𝑘). Testing this against functions of the form 𝑓(𝑧, 𝑘) = 𝑒(𝜒(𝑧))
for characters𝜒 ∈ ̂𝑍, we conclude that 𝑢 vanishes; testing against functions of the form
𝑓(𝑧, 𝑘) = 𝑒(𝜉(𝑘)) for characters 𝜉 ∈ ̂𝐾 we conclude that 𝐹 vanishes almost everywhere,
giving the claim. Thus we can identify 𝐺 with a subgroup of the unitary group on
𝐿2(X), by identifying each (𝑢, 𝐹) ∈ 𝐺 with the Koopman operator defined in 𝐿2(X) by
the usual formula

((𝑢, 𝐹)𝑓)(𝑧, 𝑘) ≔ 𝑓((𝑢, 𝐹)−1(𝑧, 𝑘))
for 𝑓 ∈ 𝐿2(X)) (note that this is well-defined as a unitary map on 𝐿2(X) that does not
depend on the choice of representatives for 𝐹 or 𝑓).
By identifying 𝑘 ∈ 𝐾 with the constant function 𝑧 ↦ 𝑘, we see that (0, 𝑘) obeys the

Conze–Lesigne equation (4.6), and hence the group

𝐺2 ≔ {(0, 𝑘) ∶ 𝑘 ∈ 𝐾}
is a central subgroup of 𝐺. We also claim that 𝐺2 contains [𝐺, 𝐺]. Indeed, if (𝑢, 𝐹),
(𝑢′, 𝐹′) ∈ 𝐺, then a brief calculation shows that
(4.8) [(𝑢, 𝐹), (𝑢′, 𝐹′)] = (0, ̃𝐹),
where ̃𝐹 ≔ (𝜕𝑉𝑢′𝐹 − 𝜕𝑉𝑢𝐹′) ∘ 𝑉−ᵆ−ᵆ′ . Differentiating the formula for ̃𝐹 using (4.6) we
see that 𝑑 ̃𝐹 = 0, and hence by ergodicity ̃𝐹 = 𝑘 for some 𝑘 ∈ 𝐾, giving the required
inclusion. In particular, 𝐺 is nilpotent with nilpotency class at most two. From the
Conze–Lesigne equation we see that the projection map (𝑢, 𝐹) ↦ 𝑢 is a surjective ho-
momorphism from 𝐺 to 𝑍 with kernel 𝐻 ≔ {(𝑢, 𝐹) ∈ 𝐺 ∶ 𝑢 = 0} (which is clearly an
abelian group containing 𝐺2 as a subgroup), thus we have the short exact sequence

(4.9) 0 → 𝐻 → 𝐺 → 𝑍 → 0.
If we let 𝜙∶ Γ → 𝐺 denote the map

𝜙(𝛾) ≔ (𝜙𝑍(𝛾), 𝜌𝛾),



CONZE–LESIGNE SYSTEMS 207

where 𝜙𝑍 ∶ Γ → 𝑍 is the rotation action on 𝑍, one checks from the definitions that the
abstract action of Γ onX is the composition of 𝜙with the abstract action of𝐺 onX, thus

𝑇𝛾 = 𝜙(𝛾)
as abstract maps on X.
The strong operator topology gives the structure of a Hausdorff topological group to

the group of unitary operators in 𝐿2(X), and hence also to 𝐺. This is a good topological
structure to place on 𝐺:
Proposition 4.5. 𝐺 is a locally compact Polish group, and 𝐺2 is a closed subgroup of 𝐺
(and thus also locally compact Polish).

Proof. As X is a separable probability algebra, the Hilbert space 𝐿2(X) is also separable.
As is well known, the group of unitary operators on such a space, when equipped with
the strong operator topology, is a Polish group. To show that 𝐺 is also a Polish group, it
thus suffices to show that𝐺 is closed in the strong operator topology. But if (𝑢𝑛, 𝐹𝑛) ∈ 𝐺
is a Cauchy sequence in the strong operator topology, it is easy to see (by testing against
characters 𝜒 ∈ ℤ̂) that 𝑢𝑛 is a Cauchy sequence in 𝑍 that must therefore converge to
some 𝑢 ∈ 𝑍, and for any character 𝜉 ∈ ̂𝐾, that the 𝜉 ∘ 𝐹𝑛 are a Cauchy sequence in
measure, so (by the finitely generated nature of ̂𝐾) 𝐹𝑛 converges in measure to some
limit 𝐹 ∶ 𝑍 → 𝐾. It is then not difficult to show that (𝑢, 𝐹) obeys the Conze–Lesigne
equation and that (𝑢𝑛, 𝐹𝑛) converges to (𝑢, 𝐹), which demonstrates that𝐺 is closed and
thus a Polish group. The same argument shows that 𝐺2, 𝐻 are closed subgroups of
𝐺; as the obvious bijection from 𝐾 to 𝐺2 is a continuous map, we conclude that 𝐺2 is
isomorphic to 𝐾 as a compact abelian group. In particular 𝐺,𝐺2 are second countable.
It remains to show that 𝐺 is locally compact. The homomorphism from 𝐺 to 𝑍 is a

continuous surjective homomorphism of Polish groups, and is thus an open map (see
e.g., [1]). Using the short exact sequence (4.9), we conclude that 𝐺/𝐻 is isomorphic
to 𝑍 and is in particular locally compact. To show that 𝐺 is locally compact, it thus
suffices (see [23, Theorem 5.25]) to show that 𝐻 is locally compact.
Since𝐺2 is already compact, it suffices to show that𝐺2 is an open subgroup of𝐻, or

equivalently that every sequence (0, 𝐹𝑛) in 𝐻 converging to the identity lies in 𝐺2 for 𝑛
large enough. By the Conze–Lesigne equation (4.6), the 𝐹𝑛 obey the equation
(4.10) 𝑑𝐹𝑛 + 𝑐𝑛 = 0
for some 𝑐𝑛 ∈ Hom(𝑍, 𝐾), so for each 𝜉 ∈ ̂𝐾 we have
(4.11) 𝑒(𝜉(𝐹𝑛)) ∘ 𝑆𝛾 = 𝑒(𝜉(𝑐𝑛(𝛾))𝑒(𝜉(𝐹𝑛))
almost everywhere for all 𝑛 and all 𝛾 ∈ Γ, where 𝑆 denotes the rotation action on 𝑍.
By the preceding discussion, 𝐹𝑛 converges in measure to zero, so for any fixed 𝜉 ∈ ̂𝐾,
𝑒(𝜉(𝐹𝑛)) converges inmeasure to 1. In particular, for 𝑛 large enough, 𝑒(𝜉(𝐹𝑛)) hasmean
one. Integrating (4.11), we conclude that 𝜉(𝑐𝑛(𝛾)) = 0 for sufficiently large 𝑛 and all
𝛾 ∈ Γ. Since ̂𝐾 is finitely generated, we conclude that 𝑐𝑛 = 0 for all sufficiently large 𝑛.
Thus by (4.10), for all sufficiently large 𝑛, 𝐹𝑛 is Γ-invariant, and therefore constant by
ergodicity. In other words, (0, 𝐹𝑛) lies in 𝐺2, giving the claim. □

Note that as𝐺 is locally compact and nilpotent, it is unimodular. It remains to show
that X is abstractly isomorphic to a translational Γ-system 𝐺/Λ for some lattice Λ in 𝐺,
with Λ ∩ 𝐺2 a lattice in 𝐺2. If 𝐺 acted concretely (or better yet, continuously) on X,
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one could hope to proceed here by showing that the action of 𝐺 on X was transitive,
and take Λ to be the stabilizer of a point. Unfortunately, the action of 𝐺 that we have
on X is only an abstract action. To resolve this we use the Koopman topological model
X̂ = ( ̂𝑋, ⋅) of the abstract 𝐺-system X constructed in Theorem A.4, where we will use
𝑔∶ ̂𝑥 ↦ 𝑔 ̂𝑥 to denote the 𝐺-action on this model. By Lemma A.6, it now suffices to
establish the following claims:

(iv) For any ̂𝑥1, ̂𝑥2 ∈ ̂𝑋 , there exists 𝑔 ∈ 𝐺 such that 𝑔 ̂𝑥1 = ̂𝑥2.
(v) For some ̂𝑥0 ∈ ̂𝑋 , the stabilizerΛ ≔ {𝑔 ∈ 𝐺 ∶ 𝑔 ̂𝑥0 = ̂𝑥0} is a lattice in𝐺,Λ∩𝐺2

is trivial (and hence a lattice in 𝐺2), with Λ abelian.

Indeed, Lemma A.6 will then guarantee that X is abstractly isomorphic as a 𝐺-
system to the translational 𝐺-system 𝐺/Λ, and then by applying the group homomor-
phism 𝜙∶ Γ → 𝐺 we see that X and 𝐺/Λ are abstractly isomorphic as Γ-systems as
well.
We begin with (iv). Observe from (4.7) (and the continuity of the projection from

𝐺 to 𝑍) that any continuous function 𝑓 ∈ 𝐶(𝑍) on 𝑍 pulls back to a 𝐺-continuous
function (𝑧, 𝑘) ↦ 𝑓(𝑧) on X, where the notion of𝐺-continuity was defined in Theorem
A.4. Thus we have a tracial 𝐶∗-algebra homomorphism from 𝐶(𝑍) to the algebra 𝒜
of 𝐺-continuous functions, which preserves the 𝐺-action (letting (𝑢, 𝐹) act on 𝑍 by
translation by 𝑢). By Gelfand–Riesz duality (see [32, Theorem 5.11]) and Theorem
A.4, we thus have a continuous factor map 𝜋̂∶ ̂𝑋 → 𝑍 of compact 𝐺-systems. Because
the projection of 𝐺 to 𝑍 is surjective, the (continuous) action of 𝐺 on 𝑍 is transitive.
Thus to establish the transitivity property (iv), it suffices to do so in a single fiber of 𝜋̂,
that is to say we may assume without loss of generality that 𝜋̂( ̂𝑥1) = 𝜋̂( ̂𝑥2).
It suffices to establish transitivity of the 𝐺2-action on fibers of 𝜋̂, that is to say that

under the hypothesis 𝜋̂( ̂𝑥1) = 𝜋̂( ̂𝑥2) there exists 𝑘 ∈ 𝐾 such that (0, 𝑘) ̂𝑥1 = ̂𝑥2. We
now repeat the arguments from [28, §19.3.3, Lemma 10]. Suppose for contradiction
that the 𝐺2-orbit of ̂𝑥1 does not contain ̂𝑥2, then by continuity we can find an open
neighborhood 𝑈 of ̂𝑥1 in ̂𝑋 such that ̂𝑥2 does not lie in the 𝐺2-orbit {(0, 𝑘) ̂𝑥 ∶ ̂𝑥 ∈
𝑈; 𝑘 ∈ 𝐾} of 𝑈. By Urysohn’s lemma, we can find a non-negative function 𝑓 ∈ 𝐶( ̂𝑋)
supported on 𝑈 that is positive at ̂𝑥1; the averaged function

𝑓( ̂𝑥) ≔ ∫
𝐾
𝑓((0, 𝑘) ̂𝑥) 𝑑𝑘,

with 𝑑𝑘 theHaar probabilitymeasure on𝐾, is then a𝐺2-invariant function in𝐶( ̂𝑋) that
is non-zero at ̂𝑥1 but vanishes at ̂𝑥2. By construction of the Koopmanmodel, 𝑓 can then
be identified with a 𝐺-continuous function in 𝐿∞(𝑋) which is also 𝐺2-invariant, and
hence arises from a 𝐺-continuous function on 𝑍 thanks to (4.7). But as the projection
from 𝐺 to 𝑍 is surjective, the 𝐺-continuous functions on 𝑍 can be identified with the
ordinary continuous functions on 𝑍, thus 𝑓 can be identified with an element of 𝐶(𝑍).
But as ̂𝑥1, ̂𝑥2 lie in the same fiber of 𝜋̂ we must then have 𝑓( ̂𝑥1) = 𝑓( ̂𝑥2), giving the
required contradiction. This establishes the transitivity property (iv).
As a corollary of this transitivity and the faithfulness of the 𝐺 action, we see (cf.,

[28, §19.3.3, Lemma 11]) that the central 𝐺2 action must be free, since if (0, 𝑘) ̂𝑥 = ̂𝑥
for some 𝑘 ∈ 𝐾 and ̂𝑥 ∈ ̂𝑋 , then by transitivity and centrality the action of (0, 𝑘) on
̂𝑋 would be trivial, hence 𝑘 = 0. Thus if we let Λ be a stabilizer of a point ̂𝑥0 in 𝐺,
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then Λ∩𝐺2 is trivial and thus clearly a lattice in the compact group 𝐺2. Since [Λ, Λ] is
contained in both Λ and [𝐺, 𝐺] ⊂ 𝐺2, it must be trivial, hence Λ is abelian.
To complete the verification of (v) we need to show that the stabilizer group Λ is a

lattice in 𝐺. Since the 𝐺-action on ̂𝑋 projects down to the 𝐺-action on 𝑍, the stabilizer
group Λ must be contained in the kernel 𝐻 of the projection from 𝐺 to 𝑍. On the
other hand, as 𝐺2 is an open subgroup of𝐻 and Λ∩𝐺2 is trivial, we conclude that Λ is
discrete. Also, by the transitivity of the𝐺2 action on fibers of 𝜋 (which are preserved by
the action of𝐻) we see that Λmust intersect every coset of 𝐺2 in𝐻. Thus the quotient
𝐻/Λ is homeomorphic to 𝐺2 and thus compact. Since 𝐺/𝐻 ≡ 𝑍 is also compact, the
projection from 𝐺 to 𝑍 is open, and 𝐺 is locally compact, 𝐺/Λ is also compact,14 soΛ is
a lattice as required. This concludes the proof of Proposition 4.4, and hence Theorem
1.8 once we establish Proposition 4.3.
Remark 4.6. The above arguments can also establish an isomorphism 𝐻 ≡ 𝐾 × Λ of
topological groups; we leave the details to the interested reader.
Remark 4.7. In the model case where 𝑍 is the Kronecker factor of 𝑍 ⋊𝜌 𝐾, we can
upgrade the inclusion [𝐺, 𝐺] ⊂ 𝐺2 in the above construction to [𝐺, 𝐺] = 𝐺2 (where by
[𝐺, 𝐺]we denote the closed group generated by the commutators). We sketch the proof
as follows. Suppose this claim failed, then by Pontryagin duality there exists a character
𝜉 ∈ ̂𝐺2 ≡ ̂𝐾 that annihilates [𝐺, 𝐺]. For any 𝑧 ∈ 𝑍, let 𝐹𝑧, 𝑐𝑧 be a solution to the Conze–
Lesigne equation (3.1). Then (𝑧, 𝐹𝑧), 𝜙(𝛾) = (𝜙𝑍(𝛾), 𝜌𝛾) both lie in 𝐺, and by (4.8) their
commutator is (0, 𝑐𝑧(𝛾)) ∈ 𝐺2, thus 𝑐𝑧(𝛾) is annihilated by 𝜉. Applying 𝜉 to the Conze–
Lesigne equation (3.1), we conclude that 𝜕𝑉𝑧(𝜉 ∘𝜌) is a (𝑍, 𝕋)-coboundary for every 𝑧 ∈
𝑍. If we let 𝜋∶ 𝐾 → 𝐾/[𝐺, 𝐺] be the quotient homomorphism (identifying [𝐺, 𝐺] ≤ 𝐺2
with a subgroup of 𝐾 in the obvious fashion), we conclude from the Moore–Schmidt
theorem (Proposition 2.3(i)) that 𝜕𝑉𝑧(𝜋 ∘ 𝜌) is a (𝑍, 𝐾/[𝐺, 𝐺])-coboundary for every 𝑧.
By a variant of Proposition 3.1, this implies that𝜋∘𝜌 is of type 1, and hence (by a variant
of Theorem 1.12) 𝑍 ⋊𝜋∘𝜌 𝐾/[𝐺, 𝐺] is of order 1, i.e., a Kronecker system. Thus 𝑍 is not
the maximal rotational factor of 𝑍 ⋊𝜌 𝐾, giving the required contradiction.
4.3. Joinings of good systems. Finally, we supply the proof of Proposition 4.3. It
suffices to establish the following claim (cf. [28, §11.2.3, Corollary 10]):
Proposition 4.8 (Measure classification on good systems). Let𝐺/Λ be a (possibly non-
ergodic) good system. If 𝜈 is an Γ-invariant ergodic measure on 𝐺/Λ, then 𝐺/Λ equipped
with 𝜈 is abstractly isomorphic to a good system.
Indeed, suppose that an (abstract) Γ-system X had two good factors, which we write

without loss of generality as 𝐺1/Λ1 and 𝐺2/Λ2. The abstract factor maps give pullback
maps from𝐶(𝐺1/Λ1) and𝐶(𝐺2/Λ2) to 𝐿∞(X), which by the Stone–Weierstrass theorem
gives a pullback map from 𝐶(𝐺1 × 𝐺2/Λ1 × Λ2) to 𝐿∞(X) which one can verify to be a
𝐶∗-homomorphism. The integral on X then induces a trace on 𝐶(𝐺1 × 𝐺2/Λ1 × Λ2),
which by the Riesz representation theorem gives a measure 𝜈 on 𝐺1 × 𝐺2/Λ1 × Λ2 (in
fact it gives a joining of𝐺1/Λ1 and𝐺2/Λ2). By construction, 𝐺1×𝐺2/Λ1×Λ2 equipped
with 𝜈 is an ergodic Γ-system that is a factor of X, and has 𝐺1/Λ1 and 𝐺2/Λ2 as factors
in turn. By Proposition 4.8, this factor is a good factor, giving Proposition 4.3.

14Indeed, the local compactness of 𝐺, the open nature of the projection, and the compactness of 𝐺/𝐻
give an inclusion 𝐺 ⊂ 𝐹𝐻 for some compact 𝐹, and the compactness of𝐻/Λ gives an inclusion𝐻 ⊂ 𝐹′Λ for
some compact 𝐹′, thus 𝐺 ⊂ 𝐹𝐹′Λ and hence 𝐺/Λ is compact.
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It remains to establish Proposition 4.8. This turns out to be a straightforward con-
sequence of the implications regarding Conze–Lesigne systems that we have already
established. By lifting Γ to a torsion-free group as before, we may assume without loss
of generality that Γ is torsion-free. By Proposition 4.1, the translational Γ-system 𝐺/Λ
is abstractly isomorphic to a group extension 𝑍 ⋊𝜌 𝐾 for some (possibly non-ergodic)
separable rotational system 𝑍, some compact abelian Lie group 𝐾, and some cocycle 𝜌
obeying theConze–Lesigne equation, except that themeasure 𝜈 is not necessarily equal
to the product measure on 𝑍 ⋊𝜌 𝐾. An inspection of the construction shows that the
cocycle equation (2.2) holds everywhere (not just almost everywhere), and similarly
for the Conze–Lesigne equation. Thus this group extension 𝑍 ⋊𝜌 𝐾 (which by abuse
of notation we also equip with the measure 𝜈) is well-defined as a concrete Γ-system,
not just an abstract one.
The ergodicmeasure 𝜈 on𝑍⋊𝜌𝐾 pushes down to an ergodicmeasure 𝜈𝑍 on𝑍, which

is invariant under a translational action 𝜙𝑍 of Γ on𝑍. A standard Fourier-analytic com-
putation then shows that 𝜈𝑍 must be Haar measure of a coset of some closed subgroup
𝑍′ of 𝑍 (indeed, 𝑍′ is the closure of 𝜙𝑍(Γ) in 𝑍). Applying a translation, wemay assume
without loss of generality that the coset of 𝑍′ is just 𝑍′ itself. The ergodic measure 𝜈 is
then supported on a subsystem 𝑍′⋊𝜌′ 𝐾 of 𝑍⋊𝜌𝐾, where 𝜌′ is the restriction of 𝜌 to 𝑍′.
Since 𝜌 obeys the cocycle and Conze–Lesigne equations everywhere (not just almost
everywhere), the same is true for 𝜌′; that is to say, 𝜌′ is a (𝑍′, 𝐾)-cocycle that obeys the
Conze–Lesigne equation. By Theorem 1.12, the (𝑍′, 𝐾)-cocycle 𝜌′ is of type 2.
By construction, the ergodic measure 𝜈 on 𝑍′ ⋊𝜌′ 𝐾 pushes down to the Haar mea-

sure on 𝑍′. By the Mackey–Zimmer theorem (Lemma 1.3(iii)), there are a closed sub-
group 𝐻 of 𝐾 and an ergodic (𝑍′, 𝐻)-cocycle 𝜌″ such that 𝜌″ is (𝑍′, 𝐾)-cohomologous
to 𝜌′, and 𝑍′ ⋊𝜌′ 𝐾 equipped with the measure 𝜈 is abstractly isomorphic to 𝑍′ ⋊𝜌″ 𝐻
equipped with product measure. Since the (𝑍′, 𝐾)-cocycle 𝜌′ is of type 2, the (𝑍′, 𝐾)-
cohomologous cocycle 𝜌″ is of type 2when viewed as a (𝑍′, 𝐾)-cocycle, thus Δ[2]𝜌″ is a
((𝑍′)[2], 𝐾)-coboundary. AsΔ[2]𝜌″ is also a ((𝑍′)[2], 𝐻)-cocycle, we see from theMoore–
Schmidt theorem (Proposition 2.3(i)) thatΔ[2]𝜌″ is a ((𝑍′)[2], 𝐻)-coboundary (note from
Pontryagin duality that every character on 𝐻 extends (not necessarily uniquely) to a
character on 𝐾). Thus 𝜌″ is also of type 2 when viewed as a (𝑍′, 𝐻)-cocycle.
Since 𝐾 is a compact abelian Lie group, the closed subgroup 𝐻 is also a compact

abelian Lie group. Applying Theorem 1.12 again, we see that 𝜌″ obeys the Conze–
Lesigne equation. Applying Proposition 4.4 (which did not require the use of Proposi-
tion 4.3 in its proof), we conclude that 𝑍′ ⋊𝜌″ 𝐻 is a good system. Since this system is
isomorphic to 𝐺/Λ equipped with the measure 𝜈, the claim follows.

Remark 4.9. It is worth considering whether results such as Proposition 4.3 or Proposi-
tion 4.8 can be established directly from the theory of nilpotent translational systems,
without relying on the implications presented in Theorem 1.12, Proposition 4.1, or
Proposition 4.4. Although [28, §13.3.2, Proposition 16] accomplished this in the case
of nilsystems, the arguments presented there heavily rely on the finite dimensionality
of these systems. However, a somewhat similar situation arises also for ℤ-actions, as
we currently lack a direct method for proving that a factor of an inverse limit of nilsys-
tems is itself an inverse limit of nilsystems, without relying on the Host–Kra–Ziegler
structure theorem.
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5. Some examples of Conze–Lesigne systems

In this section we give some examples of Conze–Lesigne systems (in even, odd, and
zero characteristics respectively) to illustrate the main theorems.

5.1. First example: An extension of a characteristic two rotational system. Let
Γ ≔ 𝔽𝜔2 be the countably generated vector space over 𝔽2, and let 𝑍 ≔ 𝔽ℕ2 be the
countable product of 𝔽2 equipped with Haar probability measure 𝜈 = 𝜇𝔽ℕ2 , and let
𝑆 ∶ Γ → Aut(𝑍, 𝜈) be the Γ-rotation 𝑆𝛾(𝑧) ≔ 𝑧 + 𝛾 (using the obvious identifica-
tion of Γ with a subgroup of 𝑍). By the mean ergodic theorem, the projection of any
𝑓 ∈ 𝐿∞(𝑍) depending only on finitely many coordinates onto the invariant subspace
of 𝐿2(𝑍) is constant. The span of these functions is dense in 𝐿2(𝑍). Hence (𝑍, 𝜈, 𝑆) is an
ergodic separable Γ-rotational system.
Let𝐾 ≔ ℤ/4ℤ be the cyclic group of order 4, and let𝜌 = (𝜌𝛾)𝛾∈Γ be the (𝑍, 𝐾)-cocycle

(5.1) 𝜌𝛾(𝑧) ≔ ∑
𝑛∈ℕ

(−1)𝑧𝑛1𝛾𝑛=1,

where we define

(−1)𝑥 = {1, 𝑥 = 0,
−1, 𝑥 = 1,

and 1𝛾𝑛=1 similarly equals 1 when 𝛾𝑛 = 1 and 0 otherwise. It is easy to verify that 𝜌 is
a (𝑍, 𝐾)-cocycle. We have the following further properties:

Proposition 5.1 (Properties of 𝜌). (i) 𝜌 is ergodic.
(ii) 𝜌 is of type 2.
(iii) 𝜌 obeys the Conze–Lesigne equation.

Proof. We begin with (i). By Proposition 2.3(ii), it suffices to show that 𝜉 ∘ 𝜌 is not
a (𝑍, 𝕋)-coboundary for any non-zero 𝜉 ∈ ̂𝐾. Since the character 𝑥 ↦ 𝑥

2 mod 1 of
𝐾 is a multiple of any non-zero 𝜉 ∈ ̂𝐾, it suffices to verify the claim for this specific
character. Suppose for contradiction that 12 ∘𝜌 mod 1 is a coboundary, thus there exist
𝐹 ∈ 𝑀(𝑍, 𝕋) such that

(5.2) 1
2𝜌𝛾 = 𝐹 ∘ 𝑉𝛾 − 𝐹 mod 1

𝜈-almost everywhere for all 𝛾. In particular we have

𝐹(𝑧 + 𝑒𝑛) = 𝐹(𝑧) + 1
2 mod 1

for any generator 𝑒𝑛 of Γ = 𝔽𝜔2 . But by Lusin’s theorem, 𝐹(𝑧+𝑒𝑛) converges inmeasure
to 𝐹(𝑧) as 𝑛 → ∞, giving a contradiction.
Nowwe verify (ii). As observed in [24, §3.2] (see also [28, §8.1.2]), 𝑍[2] can be viewed

as a translational system on the compact group
𝑍[2] = {(𝑧, 𝑧 + 𝑠1, 𝑧 + 𝑠2, 𝑧 + 𝑠1 + 𝑠2) ∶ 𝑧, 𝑠1, 𝑠2 ∈ 𝑍},

with each 𝛾 ∈ Γ acting by translation by (𝛾, 𝛾, 𝛾, 𝛾). Thusweneed to locate ameasurable
function 𝐹 ∶ 𝑍[2] → 𝕋 such that

𝜌𝛾(𝑧) − 𝜌𝛾(𝑧 + 𝑠1) − 𝜌𝛾(𝑧 + 𝑠2) + 𝜌𝛾(𝑧 + 𝑠1 + 𝑠2)
= 𝐹(𝑧 + 𝛾, 𝑧 + 𝑠1 + 𝛾, 𝑧 + 𝑠2 + 𝛾, 𝑧 + 𝑠1 + 𝑠2 + 𝛾) − 𝐹(𝑧, 𝑧 + 𝑠1, 𝑧 + 𝑠2, 𝑧 + 𝑠1 + 𝑠2)

(5.3)
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for all 𝛾 ∈ Γ and 𝜈-almost all 𝑧, 𝑠1, 𝑠2. But the left-hand side expands as
∑
𝑛∈ℕ

(−1)𝑧𝑛(1 − (−1)𝑠1,𝑛)(1 − (−1)𝑠2,𝑛)1𝛾𝑛=1,

and in the group 𝐾 = ℤ/4ℤ, the product (1 − (−1)𝑠1,𝑛)(1 − (−1)𝑠2,𝑛) always vanishes.
Thus we may simply take 𝐹 = 0 to verify that 𝜌 is of type 2.
Finally, we establish (iii). We need to show that for each 𝑧 ∈ 𝑍, there exists 𝐹𝑧 ∈

𝑀(𝑍, 𝐾) and 𝑐𝑧 ∈ Hom(Γ, 𝐾) such that 𝜕𝑉𝑧𝜌 = 𝑑𝐹𝑧 + 𝑐𝑧, or in other words that
(5.4) 𝜌𝛾(𝑤 + 𝑧) − 𝜌𝛾(𝑤) = 𝐹𝑧(𝑤 + 𝛾) − 𝐹𝑧(𝑤) + 𝑐𝑧(𝛾)
for all 𝛾 ∈ Γ and 𝜈-almost all 𝑤 ∈ 𝑍. But the left-hand side expands as

∑
𝑛∈ℕ

(−1)𝑤𝑛((−1)𝑧𝑛 − 1)1𝛾𝑛=1,

and in the cyclic group 𝐾 = ℤ/4ℤ, (−1)𝑤𝑛((−1)𝑧𝑛 − 1) is equal to (−1)𝑧𝑛 − 1. Thus we
can solve the Conze–Lesigne equation by setting 𝐹𝑧 ≔ 0 and

𝑐𝑧(𝛾) ≔ ∑
𝑛∈ℕ

((−1)𝑧𝑛 − 1)1𝛾𝑛=1

which one easily verifies to be a homomorphism from Γ to 𝐾. □

By Proposition 5.1 and Theorem 1.12, 𝑍 ⋊𝜌 𝐾 is an (ergodic, separable) Conze–
Lesigne Γ-system. Nowwe compute its Host–Kra group𝐺. By definition, this is the set
of all pairs (𝑢, 𝐹), where 𝑢 ∈ 𝑍 and 𝐹 ∈ 𝑀(𝑍, 𝐾) obeys the Conze–Lesigne equation

𝜕𝑉𝑢𝜌 = 𝑑𝐹 + 𝑐
for some homomorphism 𝑐 ∈ Hom(Γ, 𝐾). By the proof of Proposition 5.1(iii), 𝜕𝑉𝑢𝜌𝛾 is
constant, thus (𝑑𝐹)𝛾 is constant for each 𝛾 ∈ Γ. In particular, for each natural number
𝑛, there must be a constant 𝑐𝑛 ∈ 𝐾 such that

(5.5) 𝐹(𝑧 + 𝑒𝑛) − 𝐹(𝑧) = 𝑐𝑛
for almost all 𝑧 ∈ 𝑍. Shifting 𝑧 by 𝑒𝑛 and summing in the characteristic two group 𝑍,
we conclude that 2𝑐𝑛 = 0, thus 𝑐𝑛 is either equal to 0 or 2. On the other hand, 𝐹(⋅+ 𝑒𝑛)
converges in measure to 𝐹, hence all but finitely many of the 𝑐𝑛 vanish. From this we
conclude that 𝐹 must take the form
(5.6) 𝐹(𝑧) = 𝜃 + ∑

𝑛∈ℕ
(−1)𝑧𝑛1𝜍𝑛=1

almost everywhere for some 𝜃 ∈ 𝐾 and 𝜎 ∈ Γ, which are uniquely determined by 𝐹.
Thus, by abuse of notation, we can write the Host–Kra group 𝐺 as the collection of
triples15 (𝑢, 𝜃, 𝜎) ∈ 𝑍 × 𝐾 × Γ, and one can calculate the group law in 𝑍 × 𝐾 × Γ to be

(𝑢, 𝜃, 𝜎)(𝑢′, 𝜃′, 𝜎′) ≔ (𝑢 + 𝑢′, 𝜃 + 𝜃′ + ∑
𝑛∈ℕ

((−1)ᵆ′𝑛 + 1)1𝜍𝑛=1, 𝜎 + 𝜎′)

15To see the converse that any element of 𝑍 ×𝐾 ×Γ can be identified with an element of 𝐺, let (𝑢, 𝜃, 𝜎) ∈
𝑍 × 𝐾 × Γ. We need to find 𝑐 ∈ Hom(Γ, 𝐾) such that 𝜕𝑉𝑢𝜌 = 𝑑𝐹 + 𝑐 where 𝐹 is defined by (5.6) for the
given choice of (𝜃, 𝜎). For the given 𝑢 ∈ 𝑍, by Proposition 5.1(iii), there are 𝐹′ ∈ 𝑀(𝑍, 𝐾) (which we can also
represent as in (5.6)) and 𝑐′ ∈ Hom(Γ, 𝐾) such that 𝜕𝑉𝑢𝜌 = 𝑑𝐹′ + 𝑐′. By a direct computation, one verifies
that 𝑐 ≔ 𝑑(𝐹′ − 𝐹) + 𝑐′ ∈ Hom(Γ, 𝐾).
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and inverse

(𝑢, 𝜃, 𝜎)−1 = (−𝑢,−𝜃 + ∑
𝑛∈ℕ

((−1)ᵆ𝑛 − 1)1𝜍𝑛=1, −𝜎) .

This group acts transitively (and continuously) on 𝑍 × 𝐾 by the formula

(𝑢, 𝜃, 𝜎)(𝑧, 𝑘) ≔ (𝑧 + 𝑢, 𝑘 + 𝜃 + ∑
𝑛∈ℕ

(−1)𝑧𝑛1𝜍𝑛=1)

and the stabilizer Λ of the point (0, 0) is

Λ ≔ {(0,− ∑
𝑛∈ℕ

(−1)𝑧𝑛1𝜍𝑛=1, 𝜎) ∶ 𝜎 ∈ Γ} .

One can check that the strong operator topology on𝐺 corresponds to the product topol-
ogy on𝑍×𝐾×Γ (viewing𝐾, Γ as discrete groups), so that𝐺 is a second countable locally
compact Polish group,Λ is a lattice in𝐺, and𝑍×𝐾 is isomorphic (as a compact Γ-space)
to 𝐺/Λ, with the action of a group element 𝛾 ∈ Γ on 𝐺/Λ given by multiplication by
(𝛾, 0, 𝛾). If one defines the subgroup 𝐺2 of 𝐺 by

𝐺2 ≔ {(0, 𝜃, 0) ∶ 𝜃 ∈ 𝐾},

then 𝐺2 is a closed central subgroup of 𝐺 that contains16 [𝐺, 𝐺], and hence 𝐺 is nilpo-
tent of class two; also Λ ∩𝐺2 is trivial and thus a lattice in the compact group 𝐺2. One
can now verify that Theorem 1.8 holds for this example.
As 𝑍 is a rotational system, it is contained in the Kronecker factor of 𝑍⋊𝜌𝐾, thanks

to Theorem 1.4. However, the Kronecker factor turns out to be slightly larger than this:

Proposition 5.2. The Kronecker factor of 𝑍 ⋊𝜌 𝐾 is 𝑍 ⋊2𝜌 2𝐾, where 2𝐾 = 2ℤ/4ℤ is a
cyclic group of order 2, with factor map (𝑧, 𝑘) ↦ (𝑧, 2𝑘).

Proof. Observe that the action of a group element 𝛾 on 𝑍⋊2𝜌 2𝐾 is given by translation
in the group 𝑍 × 2𝐾 by (𝛾, 2∑𝑛∈ℕ 1𝛾𝑛=1). Thus 𝑍 ⋊2𝜌 2𝐾 is a translational Γ-system
and thus contained in the Kronecker factor.
To establish the converse claim, observe from Theorem 1.4, Proposition 1.3, and

Pontryagin duality that the factor algebra of the Kronecker factor is generated by eigen-
functions of the Γ-action, that is to say functions 𝑓 ∈ 𝐿∞(𝑍 ⋊𝜌 𝐾) such that

(5.7) 𝑓 ∘ 𝑇𝛾 = 𝜆𝛾𝑓

almost everywhere for all 𝛾 ∈ Γ and some 𝜆𝛾 ∈ ℂ (which must lie in 𝑆1 by unitarity).
Since the Γ-action on 𝑍⋊𝜌 𝐾 commutes with the abelian 𝐾-action, we see on applying
a Fourier decomposition with respect to the 𝐾 variable that we can restrict attention to
eigenfunctions of the form

(5.8) 𝑓(𝑧, 𝑘) = 𝐹(𝑧)𝑒(𝑚𝑘/4)

for some 𝑚 = 0, 1, 2, 3 and some 𝐹 ∈ 𝐿∞(𝑍). The eigenfunctions with even 𝑚 already
are measurable in the factor 𝑍 ×𝜌 𝐾, so it suffices to show that there are no non-trivial

16In fact [𝐺, 𝐺] is strictly smaller than 𝐺2, consisting only of those triples (0, 𝜃, 0) where 𝜃 is a multiple
of two; we leave the verification of this fact to the interested reader. Compare also with Remark 4.2.
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eigenfunctions of the form (5.8) with𝑚 odd. The function |𝐹| is Γ-invariant, thus con-
stant by ergodicity; we may normalize |𝐹| = 1. Applying the eigenfunction equation
(5.7) with 𝛾 = 𝑒𝑛 we see after some calculation that

𝐹(𝑧 + 𝑒𝑛) = 𝜆𝑒𝑛𝑒(−𝑚(−1)𝑧𝑛/4)𝐹(𝑧)
for almost all 𝑧 ∈ 𝑍. As𝑚 is odd, direct calculation then shows that ‖𝐹(⋅+𝑒𝑛)−𝐹‖𝐿2(𝑍)
is bounded away from zero. But 𝐹(⋅ + 𝑒𝑛) converges strongly to 𝐹 in 𝐿2(𝑍), giving the
required contradiction. □

Remark 5.3. One can view𝑍⋊𝜌𝐾 as a group extension of theKronecker factor𝑍⋊2𝜌2𝐾
by a suitable (𝑍 ⋊2𝜌 2𝐾, 𝐾/2𝐾)-valued cocycle and obtain analogues of Proposition 5.1
for that cocycle; we leave the details to the interested reader. One can also obtain higher
order variants of this construction by replacing the cyclic groupℤ/4ℤwith larger cyclic
groups ℤ/2𝑘ℤ, or even with the 2-adic group ℤ2 to create larger systems 𝑍 ⋊𝜌𝑘 ℤ/2𝑘ℤ
and 𝑍 ⋊𝜌∞ ℤ2,with the cocycles 𝜌𝑘, 𝜌∞ defined as in (5.1) but taking values now in
ℤ/2𝑘ℤ or ℤ2 rather than ℤ/4ℤ. One can then show that for any 𝑘 ≥ 1, the 𝑘th Host–
Kra–Ziegler factor Z𝑘(𝑍 ⋊𝜌∞ ℤ2) is isomorphic to 𝑍 ⋊𝜌𝑘 ℤ/2𝑘ℤ; we leave the details
of this computation to the interested reader. Note that the previous calculations are
consistent with the 𝑘 = 1, 2 cases of this assertion.

Remark 5.4. Essentially the same system was also studied in [48, Appendix E], as an
example of a system in which polynomials did not have roots of the expected degree.

5.2. Second example: A system associated to a bilinear form in odd charac-
teristic. Let 𝑝 be an odd prime, Γ ≔ 𝔽𝜔𝑝 , 𝑍 ≔ 𝔽ℕ𝑝 , 𝜈 ≔ 𝜇𝔽ℕ𝑝 its Haar measure, and
𝐵 ∶ Γ×Γ → 𝔽𝑝 the standard bilinear form 𝐵(𝛾, 𝛾′) ≔ ∑𝑛 𝛾𝑛𝛾′𝑛. We define the rotational
Γ-system Z = (𝑍, 𝜈, 𝑆) where 𝑆 ∶ Γ → Aut(𝑍, 𝜈) is the Γ-rotation 𝑆𝛾(𝑧𝑛) ≔ (𝑧𝑛 + 2𝛾𝑛).
Since {2𝛾∶ 𝛾 ∈ Γ} is dense in 𝑍 (identifying Γ with a subgroup of 𝑍), the rotational
Γ-system Z is ergodic. Let 𝐾 = 𝔽𝑝 and 𝜌 = (𝜌𝛾)𝛾∈Γ be the (𝑍, 𝐾)-cocycle

(5.9) 𝜌𝛾(𝑧) ≔ ∑
𝑛∈ℕ

𝑧𝑛𝛾𝑛 + 𝐵(𝛾, 𝛾).

It is not difficult to verify that this is indeed a (𝑍, 𝐾)-cocycle.
We claim that 𝜌 obeys the properties stated in Proposition 5.1. We begin with ergod-

icity. If this cocycle was not ergodic, then by repeating the proof of Proposition 5.1(i)
we could find 𝐹 ∈ 𝑀(𝑍, 𝕋) such that

1
𝑝𝜌𝛾 = 𝐹 ∘ 𝑉𝛾 − 𝐹 mod 1

𝜈-almost everywhere for all 𝛾. In particular

𝐹(𝑧 + 𝑒𝑛) = 𝐹(𝑧) + 𝑧𝑛 + 1
𝑝 mod 1

for any generator 𝑒𝑛 of 𝔽𝜔𝑝 , and this again contradicts Lusin’s theorem.
To see that 𝜌 is a type 2 cocycle, we can directly verify that (5.3) holds (with 𝛾 re-

placed by 2𝛾 on the right-hand side) with 𝐹 ≡ 0. Similarly, to verify the Conze–Lesigne
equation, direct calculation shows that (5.4) holds with 𝐹𝑧 ≡ 0 and 𝑐𝑧(𝛾) ≔ ∑𝑛∈ℕ 𝑧𝑛𝛾𝑛.
A modification of the proof of Proposition 5.2 (relying on the assumption that 𝑝 is

prime) reveals that Z is the Kronecker factor of 𝑍 ⋊𝜌 𝐾; we leave the details to the
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interested reader. We also can compute the Host–Kra group similarly to the previous
example. Indeed, following similar computations, we find that if (𝑢, 𝐹) ∈ 𝐺, then

𝐹(𝑧) = 𝜃 + ∑
𝑛∈ℕ

𝑧𝑛𝜎𝑛

almost surely for some 𝜃 ∈ 𝐾 and 𝜎 ∈ Γ = 𝔽𝜔𝑝 . A difference to the previous example is
that these 𝐹 correspond to the eigenfunctions of the Kronecker factor 𝑍. Proceeding as
with the previous example, we can then identify 𝐺 with the set of all triples (𝑢, 𝜃, 𝜎) ∈
𝑍 × 𝐾 × Γ endowed with the group law

(𝑢, 𝜃, 𝜎)(𝑢′, 𝜃′, 𝜎′) = (𝑢 + 𝑢′, 𝜃 + 𝜃′ + ∑
𝑛∈ℕ

𝑢𝑛𝜎𝑛, 𝜎 + 𝜎′).

The remaining analysis can be carried out analogously to the previous example, and
we leave it to the interested reader.

5.3. Third example: A system associated to a bilinear form in characteristic
zero. We now present a “characteristic zero” variant of the previous example, which
is a standard skew-shift system. Let Γ = ℤ, 𝐾 = 𝑍 = 𝕋 both equipped with Lebesgue
measure, and 𝛼 ∈ 𝕋 be irrational. We equip 𝑍 with the rotational Γ-system 𝑧 ↦ 𝑧+2𝛼,
and denote the resulting system by Z. For 𝑛 ∈ ℤ, let 𝜌𝑛 ∶ 𝕋 → 𝕋 be defined by 𝜌𝑛(𝑧) =
𝑧𝑛+𝛼𝑛2. Then 𝜌 = (𝜌𝑛)𝑛∈ℤ is a (𝑍, 𝐾)-cocycle. Now form the skewproductX = Z⋊𝜌𝐾.
As 2𝛼 is an irrational rotation, Z is an ergodic Γ-rotational system. By irrationality of
𝛼 and the definition of 𝜌, we conclude that Z is the Kronecker factor of X. For 𝑥 =
(0, 0) ∈ 𝕋2, we put 𝑥(𝑛) ≔ 𝑇𝑛𝜌 (𝑥) = (2𝛼𝑛, 𝛼𝑛2). By Weyl’s equidistribution theorem
(e.g., see [45, Corollary 1.1.9]), (𝑥(𝑛))𝑛∈ℤ is asymptotically equidistributed in 𝕋2 with
respect toHaarmeasure. ThusX is an ergodicΓ-system. The cocycle 𝜌 satisfies the type
2 condition (5.3) with 𝐹 ≡ 0, and the Conze-Lesigne equation (5.4) with 𝑐ᵆ(𝑛) ≔ 𝑛𝑢
mod 1 for all 𝑛 ∈ Γ and 𝑢 ∈ 𝑍. All eigenvalues of (𝑍, 2𝛼) are of the form 2𝛼𝑚 for
𝑚 ∈ ℤ. Therefore, we can identify the Host-Kra group 𝐺 of X with the set of all triples
(𝑢, 𝜃,𝑚) ∈ 𝑍 × 𝐾 × Γ with group law

(𝑢, 𝜃,𝑚)(𝑢′, 𝜃′, 𝑚′) ≔ (𝑢 + 𝑢′, 𝜃 + 𝜃′ + 𝑢,𝑚 +𝑚′)
and inverse

(𝑢, 𝜃,𝑚)−1 ≔ (−𝑢,−𝜃 − 𝑢,−𝑚).
We observe that 𝐺 acts continuously and transitively on 𝑍 × 𝐾 by

(𝑢, 𝜃,𝑚) ⋅ (𝑧, 𝑘) = (𝑧 + 𝑢, 𝑘 + 𝜃 + 𝑚𝑧).
The stabilizer of 𝑥 = (0, 0) ∈ 𝑍 × 𝐾 is just

Λ = {(0, 0,𝑚) ∈ 𝑚 ∈ ℤ}.
We define

𝐺2 ≔ [𝐺,𝐺] = {(0, 𝑘, 0) ∈ 𝑘 ∈ 𝐾}.
Finally, define the translation 𝜙∶ ℤ → 𝐺 by 𝜙(𝑛) ≔ (2𝛼𝑛, 𝛼𝑛2, 𝑛). One now verifies
that Theorem 1.8 holds for this example as well.

Remark 5.5. The last two examples can be unified into a class of examples of Conze–
Lesigne systems which we sketch in the following. Let Γ be a countable abelian group,
𝑈 be a compact abelian group, and 𝐵∶ Γ × Γ → 𝑈 be a symmetric bilinear form. Let
𝑍 = Hom(Γ,𝑈) (which is a compact abelian group equipped with Haar measure), and
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let 𝑋 be the set of quadratic functions 𝑥∶ Γ → 𝑈 defined by 𝑥(𝛾) = 𝐵(𝛾, 𝛾) + 𝑧(𝛾) + 𝑐
for some 𝑧 ∈ 𝑍 and 𝑐 ∈ 𝑈. We can identify 𝑋 with 𝑍 × 𝑈 and equip 𝑋 with product of
Haar measures. We let Γ act on 𝑋 by

(𝛾 ⋅ 𝑥)(𝛾′) ≔ 𝐵(𝛾 + 𝛾′, 𝛾 + 𝛾′) + 𝑧(𝛾 + 𝛾′) + 𝑐.
This extends a translational action on 𝑍 defined by

(𝛾 ⋅ 𝑧)(𝛾′) ≔ 𝑧(𝛾) + 2𝐵(𝛾, 𝛾′)
using the (𝑍, 𝑈)-cocycle

𝜌𝛾(𝑧) ≔ 𝐵(𝛾, 𝛾) + 𝑧(𝛾).
Under a suitable genericity hypothesis,17 these actions are ergodic. The verifications
of the type 2 property (5.3) and Conze–Lesigne equation (5.4) for 𝜌 proceed similarly
to before, and one can express this system as a translational system 𝐺/Λ with 𝐺 the
Host–Kra group. We leave the details to the interested reader.

Remark 5.6. In all of the above examples, the Host–Kra group 𝐺 ends up being a semi-
direct product of𝑍 and𝐾×Λ. However, this need not be the case in general, particularly
when the cocycle 𝜌 is not of a polynomial nature. Suppose for instance we take the
Heisenberg nilsystem 𝐺/Λ with Γ ≔ ℤ,

𝐺 ≔ (
1 ℝ ℝ/ℤ
0 1 ℝ
0 0 1

) ; Λ ≔ (
1 ℤ 0
0 1 ℤ
0 0 1

)

with the group action 𝜙∶ Γ → 𝐺 given by

(5.10) 𝜙(𝑛) ≔ (
1 𝑛𝛼 𝑛(𝑛−1)

2 𝛼𝛽 mod 1
0 1 𝑛𝛽
0 0 1

)

for some real numbers 𝛼, 𝛽 with 1, 𝛼, 𝛽 linearly independent over the rationals. The
Kronecker factor 𝑍 can be identified with the two-torus (ℝ/ℤ)2 with translation map
𝑆𝑛 ∶ (𝑥, 𝑦) ↦ (𝑥 + 𝑛𝛼, 𝑦 + 𝑛𝛽), and by following the construction in Section 4.1 with
the section 𝑠∶ 𝑍 → 𝐺/Λ defined by

𝑠(𝑥, 𝑦) ≔ (
1 {𝑥} 0
0 1 {𝑦}
0 0 1

)

with 𝑥 ↦ {𝑥} the fractional part map from ℝ/ℤ to [0, 1), we can calculate the cocycle
(𝑍, 𝐾)-cocycle 𝜌 (with 𝐾 = ℝ/ℤ) to be

𝜌𝑛(𝑥, 𝑦) =
𝑛(𝑛 − 1)

2 𝛼𝛽 + 𝑛𝛼{𝑦} − (𝑥 + 𝑛𝛼)({𝑦} + 𝑛𝛽 − {𝑦 + 𝑛𝛽}) mod 1.

Here the Host–Kra group 𝐺 is not the semidirect product of 𝑍 and 𝐾 × Λ; instead we
have a non-split short exact sequence

0 → 𝐻 → 𝐺 → 𝑍 → 0
17It appears tentatively that the correct genericity hypothesis to make here is that there does not exist a

finite index subgroup Γ′ of Γ and a non-trivial character 𝜉 ∈ 𝑈̂ such that 𝜉 ∘ 𝐵 vanishes on Γ′ × Γ′, although
we will not establish this here.
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with

𝐻 ≔ (
1 ℤ ℝ/ℤ
0 1 ℤ
0 0 1

) ≡ 𝐾 × Λ.

Remark 5.7 (Rudolph’s example). 18 Let 𝛼, 𝛽 be as in the previous example. One can
take an inverse limit of the ℤ-nilsystems

(
1 ℝ ℝ/2𝑁ℤ
0 1 ℝ
0 0 1

) / (
1 2𝑁ℤ 0
0 1 ℤ
0 0 1

)

as 𝑁 → ∞, using the translation action (5.10) for each 𝑁, to obtain a Conze–Lesigne
system thatwas shownbyRudolph [40] to not be expressible as a nilpotent translational
ℤ-system of nilpotency class two. It can be expressed as an abelian extension 𝑍 ⋊𝜌 𝐾,
where the Kronecker factor 𝑍 is given by 𝑍 ≔ 𝑆2 × ℝ/ℤ, with 𝑆2 is the 2-adic solenoid
group formed as the inverse limit of the ℝ/2𝑁ℤ, and where the translation action 𝑛 ↦
(𝑛𝛼, 𝑛𝛽),𝐾 ≔ 𝑆2 is another copy of the solenoid group, and the (𝑍, 𝐾)-cocycle 𝜌 is given
by

𝜌𝑛(𝑥, 𝑦) ≔
𝑛(𝑛 − 1)

2 𝛼𝛽 + 𝑛𝛼{𝑦} − (𝑥 + 𝑛𝛼)({𝑦} + 𝑛𝛽 − {𝑦 + 𝑛𝛽})
(where we embed ℝ into 𝑆2 in the obvious fashion) for 𝑛 ∈ ℤ, 𝑥 ∈ 𝑆2, 𝑦 ∈ ℝ/ℤ, noting
that the product in the last term is well-defined since {𝑦} + 𝑛𝛽 − {𝑦 + 𝑛𝛽} is an integer.
This cocycle is ergodic and of type 2 but does not obey the Conze–Lesigne equation,
mainly because there are too few continuous homomorphisms19 from 𝑍 to 𝐾; this does
not contradict Theorem 1.13 because 𝐾 is not a Lie group. On the other hand, the
system 𝑍 ⋊𝜌 𝐾 can be expressed as a double coset system

(
1 0 0
0 1 {0} × ℤ2
0 0 1

) \ (
1 ℝ × ℤ2 ℝ × ℤ2
0 1 ℝ × ℤ2
0 0 1

) / (
1 Δ(ℤ) Δ(ℤ)
0 1 Δ(ℤ)
0 0 1

) ,

where the 2-adic group ℤ2 is the inverse limit of ℤ/2𝑁ℤ and Δ is the diagonal embed-
ding of ℤ into ℝ × ℤ2; see [43].

Appendix A. Concrete and abstract measure theory

In this appendix we review the notational conventions we will use for various types
of probability spaces, and measure-preserving actions on such spaces. It will be conve-
nient to use some of the category theoretic formalism from [32], although we will not
make heavy use of category-theoretic tools in this paper.

A.1. Forgetful functors. We begin with a general convention concerning “casting
functors” from [32], although in this paper we will refer to these functors as “forgetful
functors” instead.
We will deem a number of functors

𝒞 𝒞0

18This reformulation of Rudolph’s example was communicated to us by Yonatan Gutman.
19In particular, there are no non-trivial continuous homomorphisms from 𝕋 to 𝑆2.
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from one category 𝒞 to another 𝒞0 to be “forgetful functors”, which intuitively would
take a 𝒞-object 𝑋 or a 𝒞-morphism 𝑓∶ 𝑋 → 𝑌 and “forget” some of its structure to
return a 𝒞0-object 𝑋𝒞0 or a 𝒞0-morphism 𝑓𝒞0 ∶ 𝑋𝒞0 → 𝑌𝒞0 . We always consider the
identity functor to be forgetful, and the composition of two forgetful functors to be
forgetful20; for instance if we have two forgetful functors

𝒞1 𝒞2 𝒞3,
then we have 𝑋𝒞3 = (𝑋𝒞2)𝒞3 for any 𝒞1-object 𝑋 .
Given a pair of forgetful functors

𝒞1 𝒞0 𝒞2,
we say that a 𝒞1-object 𝑋1 and a 𝒞2-object 𝑋2 are 𝒞0-isomorphic if there is a 𝒞0-isomor-
phism between (𝑋1)𝒞0 and (𝑋2)𝒞0 . Similarly, a 𝒞1-morphism 𝑓1 ∶ 𝑋1 → 𝑌1 and a 𝒞2-
morphism 𝑓2 ∶ 𝑋2 → 𝑌2 are 𝒞0-equivalent if 𝑋1, 𝑋2 are 𝒞0-isomorphic, 𝑌1, 𝑌2 are 𝒞0-
isomorphic, and the 𝒞0-morphisms (𝑓1)𝒞0 ∶ (𝑋1)𝒞0 → (𝑌1)𝒞0 , (𝑓2)𝒞0 ∶ (𝑋2)𝒞0 → (𝑌2)𝒞0
agree after composing with these 𝒞0-isomorphisms. If a 𝒞1-object 𝑋1 is 𝒞0-isomorphic
to a 𝒞0-object 𝑋 ′, we call 𝑋1 a 𝒞1-model of 𝑋 ′; similarly, if a 𝒞1-morphism 𝑓1 ∶ 𝑋1 → 𝑌1
is 𝒞0-equivalent to a 𝒞0-morphism 𝑓′ ∶ 𝑋 ′ → 𝑌 ′, we call 𝑓1 a 𝒞1-representation of 𝑓′.
A.2. Probability spaces. In this paper we will work with three categories 𝐂𝐧𝐜𝐏𝐫𝐛,
𝐏𝐫𝐛𝐀𝐥𝐠, 𝐂𝐇𝐏𝐫𝐛 of probability spaces.
Definition A.1 (Categories of probability spaces [32]). (i) A concrete probability

space (or 𝐂𝐧𝐜𝐏𝐫𝐛-space) is a triple (𝑋,𝒳, 𝜇), where 𝑋 is a set, 𝒳 is a 𝜎-algebra
of subsets of 𝑋 , and 𝜇∶ 𝒳 → [0, 1] is a countably additive probability measure.
A concrete probability-preserving map (or 𝐂𝐧𝐜𝐏𝐫𝐛-morphism) 𝑓∶ (𝑋,𝒳, 𝜇) →
(𝑌, 𝒴, 𝜈) between two 𝐂𝐧𝐜𝐏𝐫𝐛-spaces is a measurable map 𝑓∶ 𝑋 → 𝑌 such
that 𝜇(𝑓−1(𝐹)) = 𝜈(𝐹) for all 𝐹 ∈ 𝒴 (that is to say, the pushforward 𝑓∗𝜇 of 𝜇 by
𝑓 is equal to 𝜈).

(ii) A probability algebra (or 𝐏𝐫𝐛𝐀𝐥𝐠-space) is an object of the form (𝒳, 𝜇), where
𝒳 = (𝒳, ∨, ∧, 0, 1, ̄⋅) is a 𝜎-complete Boolean algebra, and 𝜇∶ 𝒳 → [0, 1]
is a countably additive probability measure on 𝒳 such that 𝜇(𝐸) = 0 if and
only if 𝐸 = 0. An abstract probability-preserving map (or 𝐏𝐫𝐛𝐀𝐥𝐠-morphism)
𝑓∶ (𝒳, 𝜇) → (𝒴, 𝜈) between two𝐏𝐫𝐛𝐀𝐥𝐠-spaces is a Booleanhomomorphism21

𝑓∶ 𝒴 → 𝒳 that preserves countable joins22 (thus𝑓(⋁∞
𝑛=1 𝐹𝑛) = ⋁∞

𝑛=1 𝑓(𝐹𝑛) for
all 𝐹𝑛 ∈ 𝒳 such that 𝜇(𝑓(𝐹)) = 𝜈(𝐹) for all 𝐹 ∈ 𝒳).

(iii) A compact probability space (or 𝐂𝐇𝐏𝐫𝐛-space) is a quadruple (𝑋,ℱ,𝒳, 𝜇),
where (𝑋,ℱ) is a compact Hausdorff topological space, 𝒳 is the Baire23 𝜎-
algebra (i.e., the topology generated by the continuous functions from 𝑋 toℝ),
and 𝜇 is a countably additive probability measure which is Radon in the sense

20This convention will be unambiguous because all of our forgetful functors will commute with each
other.

21Notice the opposite direction of the arrows here. We implicitly work with an opposite category here to
keep certain functors covariant.

22Actually, the preservation of countable joins is automatic for Boolean homomorphisms between prob-
ability algebras, and such algebras are in fact complete Boolean algebras as opposed to merely being 𝜎-
complete, although we will not need these (easily established) facts here.

23See [31, 32] for a discussion as to why the Baire 𝜎-algebra is a more natural choice than the Borel 𝜎-
algebra for compact Hausdorff spaces that are not necessarily metrizable, and similarly for why “compact
𝐺𝛿 inner regular in the Baire algebra” is the natural definition of a Radon measure in this setting.
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of [32, Definition 4.1], i.e., 𝜇 is compact𝐺𝛿 inner regular in the Baire algebra. A
continuous probability-preservingmap (or𝐂𝐇𝐏𝐫𝐛-morphism)𝑓∶ (𝑋,ℱ,𝒳, 𝜇)→
(𝑌, 𝒢, 𝒴, 𝜈) between 𝐂𝐇𝐏𝐫𝐛-spaces is a continuous map which is also a
𝐂𝐧𝐜𝐏𝐫𝐛-morphism.

It is easy to verify that 𝐂𝐧𝐜𝐏𝐫𝐛, 𝐏𝐫𝐛𝐀𝐥𝐠, 𝐂𝐇𝐏𝐫𝐛 are indeed categories. Inside these
categories we isolate some “countable” objects:

(i) A concrete probability space (𝑋,𝒳, 𝜇) is aLebesgue space (orLebesgue for short)
if the measurable space (𝑋,𝒳) is a standard Borel space, that is to say one can
endow𝑋 with the structure of a Polish space such that𝒳 is the Borel 𝜎-algebra.

(ii) A probability algebra (𝒳, 𝜇) is separable if the 𝜎-complete Boolean algebra 𝒳
is countably generated.

(iii) A compact probability space (𝑋,ℱ,𝒳, 𝜇) is metrizable if the topological space
(𝑋,ℱ) is metrizable (or equivalently by the Urysohnmetrization theorem, sec-
ond countable).

There are obvious forgetful functors

𝐂𝐇𝐏𝐫𝐛 𝐂𝐧𝐜𝐏𝐫𝐛 𝐏𝐫𝐛𝐀𝐥𝐠,
between these categories, in which a 𝐂𝐇𝐏𝐫𝐛-space (𝑋,ℱ,𝒳, 𝜇) is converted to a
𝐂𝐧𝐜𝐏𝐫𝐛-space (𝑋,ℱ,𝒳, 𝜇)𝐂𝐧𝐜𝐏𝐫𝐛 ≔ (𝑋,𝒳, 𝜇) by forgetting the topology ℱ, and a
𝐂𝐧𝐜𝐏𝐫𝐛-space (𝑋,𝒳, 𝜇) is converted to a probability algebra (𝑋,𝒳, 𝜇)𝐏𝐫𝐛𝐀𝐥𝐠 ≔ (𝒳𝜇, 𝜇)
by forming the probability algebra

𝒳𝜇 ≔ {[𝐸]∶ 𝐸 ∈ 𝒳},

where for each 𝐸 ∈ 𝒳, the equivalence class [𝐸] is defined as the collection of sets
equal modulo null sets to 𝐸, thus

[𝐸] ≔ {𝐹 ∈ 𝒳∶ 𝜇(𝐸Δ𝐹) = 0},

and by abuse of notation we define 𝜇∶ 𝒳𝜇 → [0, 1] by requiring 𝜇([𝐸]) ≔ 𝜇(𝐸) for all
𝐸 ∈ 𝒳. Morphisms are then also transformed in the obvious fashion (although the
direction of the arrows is ”flipped” when moving from 𝐂𝐧𝐜𝐏𝐫𝐛 to 𝐏𝐫𝐛𝐀𝐥𝐠). It is not
difficult to verify that these are indeed functors, and we will adopt the forgetful functor
conventions from Section A.1. We also describe some of these conventions in plainer
English:

• If 𝑋 is a compact or concrete probability space, we refer to the probability al-
gebra 𝑋𝐏𝐫𝐛𝐀𝐥𝐠 as the abstraction24 of 𝑋 . Similarly, if 𝑓∶ 𝑋 → 𝑌 is a continuous
or concrete probability-preserving map, we refer to the abstract probability-
preserving map 𝑓𝐏𝐫𝐛𝐀𝐥𝐠 ∶ 𝑌𝐏𝐫𝐛𝐀𝐥𝐠 → 𝑋𝐏𝐫𝐛𝐀𝐥𝐠 as the abstraction of 𝑓.

• A 𝐂𝐧𝐜𝐏𝐫𝐛-model ̃𝑋 (resp. 𝐂𝐇𝐏𝐫𝐛-model ̂𝑋) of a probability algebra 𝑋 will be
called a concrete model (resp. topological model) of 𝑋 . Similarly, a 𝐂𝐧𝐜𝐏𝐫𝐛-
representation ̃𝑓 ∶ ̃𝑋 → ̃𝑌 (resp. 𝐂𝐇𝐏𝐫𝐛-representation ̂𝑓 ∶ ̂𝑋 → ̂𝑌 ) of an
abstract probability-preserving map 𝑓∶ 𝑌 → 𝑋 will be called a concrete repre-
sentation (resp. continuous representation) of 𝑓.

24More precisely this should be “abstraction modulo null sets”, as we are both abstracting away the space
𝑋 and quotienting out by the null ideal. Similarly for other uses of the term “abstract” in this paper.
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Observe that if a compact probability space (𝑋,ℱ,𝒳, 𝜇) is metrizable, then the Baire
𝜎-algebra coincides with the Borel 𝜎-algebra and so the associated concrete probability
space (𝑋,ℱ,𝒳, 𝜇)𝐂𝐧𝐜𝐏𝐫𝐛 is Lebesgue. Similarly, if a concrete probability space (𝑋,𝒳, 𝜇)
is Lebesgue, then the associated probability algebra (𝑋,𝒳, 𝜇)𝐏𝐫𝐛𝐀𝐥𝐠 is separable. Thus
the notions of “countability” for the three categories 𝐂𝐧𝐜𝐏𝐫𝐛, 𝐏𝐫𝐛𝐀𝐥𝐠, 𝐂𝐇𝐏𝐫𝐛 are all
compatible with each other. On the other hand, the converse implications are false; it
is entirely possible for a separable probability algebra to bemodeled by a concrete prob-
ability space that is not Lebesgue, or a compact probability space that is not metrizable.
If two concrete measure-preserving maps 𝑓, 𝑔∶ 𝑋 → 𝑌 agree almost everywhere,

then they are abstractly equal: 𝑓𝐏𝐫𝐛𝐀𝐥𝐠 = 𝑔𝐏𝐫𝐛𝐀𝐥𝐠. However, if the target space 𝑌 is not
Lebesgue or Polish, the converse statement can fail; see [31, Examples 5.1, 5.2]. Never-
theless the reader may wish to think of “agreement almost everywhere” as a heuristic
first approximation of the concept of “abstract equality”.
It is natural to ask to what extent the above forgetful functors can be inverted. In

this regard we have the following results:

Proposition A.2 (Reversing the forgetful functors for probability spaces).
(i) (Existence of concrete representations) [31, Proposition 3.2] If (𝑋,𝒳, 𝜇), (𝑌, 𝒴, 𝜈)

are concrete probability spaces with (𝑌, 𝒴, 𝜈) Lebesgue, then every abstract
probability-preserving map 𝑓∶ (𝑋,𝒳, 𝜇)𝐏𝐫𝐛𝐀𝐥𝐠 → (𝑌, 𝒴, 𝜈)𝐏𝐫𝐛𝐀𝐥𝐠 has a concrete
representation ̃𝑓 ∶ (𝑌, 𝒴, 𝜈) → (𝑋,𝒳, 𝜇), which is a concrete probability-
preserving map that is unique up to almost everywhere equivalence. Related to
this, two concrete measurable maps from 𝑋 to a Polish space 𝑌 agree abstractly
if and only if they agree almost everywhere.

(ii) (Cantor model) [15, Theorem 2.15] If 𝜋∶ (𝒳, 𝜇) → (𝒴, 𝜈) is an abstract
probability-preserving map between separable probability algebras, then there
exists a continuous representation 𝜋̂∶ ( ̂𝑌 , 𝒢, ̂𝒴, ̂𝜈) → ( ̂𝑋, ℱ, 𝒳̂, 𝜇̂) of 𝜋 between
compact metrizable probability spaces (in fact Cantor spaces).

(iii) (Canonicalmodel) [32, Theorem 7.2]There exists a canonical model functor (or
Stone functor)

𝐏𝐫𝐛𝐀𝐥𝐠 𝐂𝐇𝐏𝐫𝐛,𝙲𝚘𝚗𝚌

that takes a probability algebra (𝒳, 𝜇) and constructs a topological model
𝙲𝚘𝚗𝚌(𝒳, 𝜇), and similarly takes any opposite abstract probability-preservingmap
𝑓∶ (𝒳, 𝜇) → (𝒴, 𝜈) and constructs (in a completely functorial and natural fash-
ion) a continuous representation 𝙲𝚘𝚗𝚌(𝑓)∶ 𝙲𝚘𝚗𝚌(𝒳, 𝜇) → 𝙲𝚘𝚗𝚌(𝒴, 𝜈).

We remark that the compact probability space 𝙲𝚘𝚗𝚌(𝒳, 𝜇) in Proposition A.2(iii)
is constructed using either Gelfand duality or Stone duality and is not metrizable in
general, even when (𝒳, 𝜇) is separable.
Given a concrete probability space (𝑋,𝒳, 𝜇), we let 𝐿0(𝑋,𝒳, 𝜇) denote the space of

measurable functions from 𝑋 to ℂ, quotiented out by almost everywhere equivalence,
and for 1 ≤ 𝑝 ≤ ∞ we let 𝐿𝑝(𝑋,𝒳, 𝜇) denote the subspace of 𝐿0(𝑋,𝒳, 𝜇) consisting of
those (equivalence classes of)measurable functions which are𝑝th power integrable (or
essentially bounded, in the 𝑝 = ∞ case). For a probability algebra (𝒳, 𝜇) we can sim-
ilarly define 𝐿0(𝒳, 𝜇) and 𝐿𝑝(𝒳, 𝜇) by passing to a concrete or topological model (for
instance by using the canonical model functor 𝙲𝚘𝚗𝚌) and using the previous construc-
tion; note that up to isomorphism, the precise choice of model used is irrelevant. Note
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that 𝐿2(𝒳, 𝜇) is a Hilbert space and 𝐿∞(𝒳, 𝜇) is a tracial commutative von Neumann
algebra (and hence also a 𝐶∗-algebra), using the integral against 𝜇 as the trace.

A.3. Dynamics. LetΓ be an arbitrary group (not necessarily countable or abelian); for
this discussion we treat Γ as a discrete group, ignoring any topological structure. Let 𝒞
be one of the three categories 𝐂𝐧𝐜𝐏𝐫𝐛, 𝐏𝐫𝐛𝐀𝐥𝐠, 𝐂𝐇𝐏𝐫𝐛. We define a 𝒞Γ-system to be a
pair X = (𝑋, 𝑇), where 𝑋 is a 𝒞-space and 𝑇 ∶ Γ → Aut𝒞(𝑋) is a group homomorphism
of Γ to the automorphism group Aut𝒞(𝑋), that is to say the group of 𝒞-isomorphisms
from 𝑋 to itself. A 𝒞Γ-morphism 𝜋∶ (𝑋, 𝑇) → (𝑌, 𝑆) between two 𝒞Γ-systems (𝑋, 𝑇),
(𝑌, 𝑆) is a 𝒞-morphism 𝜋∶ 𝑋 → 𝑌 with the property that one has the identity 𝑆𝛾 ∘ 𝜋 =
𝜋 ∘ 𝑇𝛾 of 𝒞-morphisms for all 𝛾 ∈ Γ. Properties defined for 𝒞-spaces are then also
applicable to𝒞Γ-systems in the obvious fashion; for instance, a𝐂𝐧𝐜𝐏𝐫𝐛Γ-system (𝑋, 𝑇)
is Lebesgue if the underlying𝐂𝐧𝐜𝐏𝐫𝐛-space𝑋 is Lebesgue. We also adopt the following
terminology:

• 𝐂𝐧𝐜𝐏𝐫𝐛Γ-systems and 𝐂𝐧𝐜𝐏𝐫𝐛Γ-morphisms will be called concrete Γ-systems
and concrete factor maps respectively.

• 𝐏𝐫𝐛𝐀𝐥𝐠Γ-systems and 𝐏𝐫𝐛𝐀𝐥𝐠Γ-morphisms will be called abstract Γ-systems
and abstract factor maps respectively. Any two Γ-systems will be called ab-
stractly isomorphic if they are 𝐏𝐫𝐛𝐀𝐥𝐠Γ-isomorphic.

• 𝐂𝐇𝐏𝐫𝐛Γ-systems and 𝐂𝐇𝐏𝐫𝐛Γ-morphisms will be called compact Γ-systems
and continuous factor maps respectively.

The diagram of forgetful functors from the previous subsection can now be enlarged
to a commuting diagram

𝐂𝐇𝐏𝐫𝐛Γ 𝐂𝐧𝐜𝐏𝐫𝐛Γ 𝐏𝐫𝐛𝐀𝐥𝐠Γ

𝐂𝐇𝐏𝐫𝐛 𝐂𝐧𝐜𝐏𝐫𝐛 𝐏𝐫𝐛𝐀𝐥𝐠
of forgetful functors in the obvious fashion. We adapt concepts such as topological
models, concrete representations, etc. to this dynamical setting; for instance, a
𝐂𝐇𝐏𝐫𝐛Γ-model X̂ of a 𝐏𝐫𝐛𝐀𝐥𝐠Γ-system X will be referred to as a topological model of
X.
For us, one important source of an abstract Γ-system arises by starting with a con-

crete probability space (𝑋,𝒳, 𝜇) and equipping it with a near-action25 of Γ, by whichwe
mean a family of concrete measure-preserving maps 𝑇𝛾 ∶ 𝑋 → 𝑋 for each 𝛾 ∈ Γ such
that 𝑇1(𝑥) = 𝑥 for 𝜇-almost all 𝑥 ∈ 𝑋 , and 𝑇𝛾1𝑇𝛾2(𝑥) = 𝑇𝛾1𝛾2(𝑥) for all 𝛾1, 𝛾2 ∈ Γ
and 𝜇-almost all 𝑥 ∈ 𝑋 (with the obvious changes if the group Γ is written addi-
tively instead of multiplicatively). This is not quite a concrete Γ-system because of
the possibility that the identities 𝑇1(𝑥) = 𝑥, 𝑇𝛾1𝑇𝛾2(𝑥) = 𝑇𝛾1𝛾2(𝑥) fail on a null set.
However, by passing to the abstract setting we see that (𝑇1)𝐏𝐫𝐛𝐀𝐥𝐠 is the identity and
(𝑇𝛾1)𝐏𝐫𝐛𝐀𝐥𝐠(𝑇𝛾2)𝐏𝐫𝐛𝐀𝐥𝐠 = 𝑇𝛾1𝛾2𝐏𝐫𝐛𝐀𝐥𝐠 for all 𝛾1, 𝛾2 ∈ Γ, so the near-action induces an ab-
stract Γ-system ((𝑋,𝒳, 𝜇)𝐏𝐫𝐛𝐀𝐥𝐠, (𝑇𝛾𝐏𝐫𝐛𝐀𝐥𝐠)𝛾∈Γ).
If one has an abstract factor map 𝜋∶ X𝐏𝐫𝐛𝐀𝐥𝐠Γ → Y𝐏𝐫𝐛𝐀𝐥𝐠Γ between two (concrete,

abstract, or compact) Γ-systems X, Y, we write Y ≤ X; this is a partial order up to
abstract isomorphism. This map generates a factor algebra {𝜋∗𝐸 ∶ 𝐸 ∈ 𝒴} ⊂ 𝒳, where

25Here we follow the notation of Zimmer [54].
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𝒳, 𝒴 are the 𝜎-complete Boolean algebras associated to X, Y respectively. A factor Y of
an abstract Γ-system X is said to be the inverse limit of a collection (Y𝛼)𝛼∈𝐴 of factors
indexed by a directed set 𝐴 (with factor maps 𝜋𝛼𝛽 ∶ Y𝛽 → Y𝛼 whenever 𝛼 ≤ 𝛽 that
all commute with each other and with the factor maps 𝜋𝛼 ∶ Y → Y𝛼 in the obvious
fashion) if the factor algebra of Y is generated by the union of the factor algebras of the
Y𝛼.
Again, we have some results concerning the extent to which the forgetful functors

can be inverted:

Proposition A.3 (Reversing the forgetful functors for systems). Let Γ be a group.
(i) (Concrete representation) [15, Theorem 2.15(ii)] If Γ is countable, X,X′ are con-

crete Lebesgue Γ-systems, and 𝜋∶ X𝐏𝐫𝐛𝐀𝐥𝐠Γ → X′𝐏𝐫𝐛𝐀𝐥𝐠Γ is an isomorphism of ab-
stract Γ-systems, then there exist full measure concrete subsystems X0, X′0 of X,X′
( formed by deleting Γ-invariant Borel null sets from both systems) and a concrete
representation 𝜋̃∶ X0 → X′0 of 𝜋.

(ii) (Cantor representation) [15, Theorem 2.15(i)] If Γ is countable, and 𝜋∶ X → Y
is an abstract factormap between abstract separableΓ-systems, then there exists a
continuous representation 𝜋̂∶ X̂ → Ŷ of𝜋 between compactmetrizableΓ-systems
(in fact Cantor systems).

(iii) (Canonical model) [32, Theorem 7.2] The canonical model functor from Propo-
sition A.2(iii) induces a commuting square of functors

𝐏𝐫𝐛𝐀𝐥𝐠Γ 𝐂𝐇𝐏𝐫𝐛Γ

𝐏𝐫𝐛𝐀𝐥𝐠 𝐂𝐇𝐏𝐫𝐛

𝙲𝚘𝚗𝚌

𝙲𝚘𝚗𝚌

in the obvious fashion, such that if 𝜋∶ X → Y is an abstract factor map be-
tween abstract Γ-systems, then the continuous factormap𝙲𝚘𝚗𝚌(𝜋)∶ 𝙲𝚘𝚗𝚌(X) →
𝙲𝚘𝚗𝚌(Y) is a continuous representation of𝜋 (and𝙲𝚘𝚗𝚌(X), 𝙲𝚘𝚗𝚌(Y) are topolog-
ical models of X, Y respectively).

(iv) (Concrete representation, II) [54, Proposition 3.1], [38, Lemma 3.2] If Γ is count-
able, X = (𝑋, 𝑇) is an abstract Γ-system, and ̃𝑋 is a concrete Lebesgue model for
𝑋 , then there exists a concrete model X̃ = ( ̃𝑋, ̃𝑇) of X.

A.4. Koopman models. We now construct a topological model ̂𝑋 that one can as-
sociate to any 𝐏𝐫𝐛𝐀𝐥𝐠-space 𝑋 that has an action of a locally compact group 𝐺. This
model is constructed via the Koopman action of 𝐺 and so we refer to this as the Koop-
manmodel of𝑋 ; this generalizes the canonicalmodel𝙲𝚘𝚗𝚌(𝑋) discussed earlier, which
corresponds to the case when the group 𝐺 is trivial. Our treatment is inspired by that
in [28, §19.3.1], [25]. By taking advantage of the general category theoretic dualities in
[32], we can avoid the need to impose any “countability” or “separability” hypotheses
on our spaces and groups.

Theorem A.4 (Koopman model). Let 𝐺 be a group (not necessarily countable, discrete,
or abelian), and let X = (𝑋, 𝑇) be an abstract 𝐺-system. Assume the following axioms:

(i) The 𝐺-action is abstractly faithful in the sense that the Koopman representa-
tion 𝑔 ↦ 𝑈𝑔, which assigns to each 𝑔 ∈ 𝐺, the unitary Koopman operator
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𝑈𝑔 ∶ 𝐿2(𝑋) → 𝐿2(𝑋) defined by
𝑈𝑔(𝑓) ≔ 𝑓 ∘ 𝑇−1𝑔 ,

is injective.
(ii) By (i), we can identify𝐺 with a subgroup of the unitary group of 𝐿2(𝑋), Endowing

the latter with the strong operator topology, we assume that 𝐺 is locally compact.
Then there exists a topological model X̂ = ( ̂𝑋, ̂𝑇) = ( ̂𝑋, ℱ, 𝒳̂, 𝜇̂, ̂𝑇) of X = (𝑋, 𝑇) (which
we call the Koopman model of X) with the following properties:

(a) All non-empty open sets in ̂𝑋 have positive measure.
(b) The action ̂𝑇 ∶ 𝐺× ̂𝑋 → ̂𝑋 is jointly continuous in𝐺 and ̂𝑋 (as opposed tomerely

being continuous in ̂𝑋 for each individual group element 𝑔 ∈ 𝐺).
(c) If 𝑓 ∈ 𝐿∞(𝑋) is 𝐺-continuous in the sense that the map 𝑔 ↦ 𝑈𝑔(𝑓) is a contin-

uous map from 𝐺 to 𝐿∞(𝑋), then 𝑓 has a continuous representative ̂𝑓 ∈ 𝐶( ̂𝑋) in
̂𝑋 (which is unique by property (a)).

Furthermore, the model X̂ is unique up to isomorphism of compact 𝐺-systems.

Proof. We first establish uniqueness of the Koopman model X̂. Being a topological
model, we can identify 𝐿∞( ̂𝑋) with 𝐿∞(𝑋) as a tracial commutative 𝐶∗ algebra. There
is an obvious tracial𝐶∗-algebra homomorphism from𝐶( ̂𝑋) to 𝐿∞( ̂𝑋) ≡ 𝐿∞(𝑋), which is
injective from property (a). From property (c), the image of this homomorphism con-
tains all the 𝐺-continuous functions; conversely, from property (b), every element of
this image is 𝐺-continuous. Thus as a tracial commutative 𝐶∗-algebra, 𝐶( ̂𝑋) (viewed
as a subalgebra of 𝐿∞(𝑋)) is uniquely determined by the abstract 𝐺-system X. The
uniqueness of the model up to isomorphism then follows from the Gelfand–Riesz du-
ality (i.e., Gelfand duality combined with the Riesz representation theorem) between
𝐂𝐇𝐏𝐫𝐛-spaces and tracial 𝐶∗-algebras; see [32, Theorem 5.11].
We now reverse these steps to establish existence of the Koopman model. Let 𝒜

denote the space of 𝐺-continuous functions in 𝐿∞(𝑋). This is clearly a tracial commu-
tative𝐶∗-algebra. We claim that the closed unit ball of this algebra is dense in the closed
unit ball of 𝐿∞(𝑋) in the 𝐿2(𝑋) topology. To see this, fix a left-invariant Haar measure
𝑑𝑔 on 𝐺, let 𝑓 be in the closed unit ball of 𝐿∞(𝑋), and consider the convolution

𝜙 ∗ 𝑓 ≔ ∫
𝐺
𝜙(𝑔)𝑈𝑔(𝑓) 𝑑𝑔

of 𝑓 with a continuous compactly supported function 𝜙 ∈ 𝐶𝑐(𝐺). As 𝐺 is given the
strong operator topology, it is easy to see that this integral is well-defined and is 𝐺-
continuous; also, by choosing 𝜙 to be a suitable approximation to the identity (non-
negative, supported on a small neighborhood of the identity, and of total mass one)
and again using the fact that the topology of𝐺 is given by the strong operator topology,
one can ensure that 𝜙 ∗ 𝑓 lies in the closed unit ball of𝒜 and is arbitrarily close to 𝑓 in
𝐿2(𝑋); see [24, §18.3.1, Lemma 7]. This establishes density.
By Gelfand–Riesz duality [32, Theorem 5.11], we can now construct a𝐂𝐇𝐏𝐫𝐛-space
̂𝑋 such that 𝐶( ̂𝑋) is isomorphic as a tracial commutative 𝐶∗-algebra to 𝒜. Identifying

these two algebras, we see that the 𝐿2( ̂𝑋) norm on 𝐶( ̂𝑋) agrees with the 𝐿2(𝑋) norm
on 𝒜. In particular, every non-zero element of 𝐶( ̂𝑋) has positive 𝐿2( ̂𝑋) norm (i.e., the
trace is faithful), which gives (a) by Urysohn’s lemma. As ̂𝑋 is equipped with a Radon
measure, 𝐶( ̂𝑋) is dense in 𝐿2( ̂𝑋), hence on taking 𝐿2 closures of unit balls we obtain an
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identification of 𝐿∞( ̂𝑋) with 𝐿∞(𝑋), which one can easily verify to be an isomorphism
of tracial commutative von Neumann algebras. From this and the duality of categories
between tracial commutative von Neumann algebras and probability algebras (see [32,
Theorem 7.1]) we see that ̂𝑋 is a topological model of 𝑋 .
The claim (c) is clear from construction, so it remains to establish the claim (b). By

definition of a𝐂𝐇𝐏𝐫𝐛𝐺-system, the action ̂𝑇𝑔 ∶ ̂𝑋 → ̂𝑋 associated to any group element
𝑔 ∈ 𝐺 is an element of the space𝐶( ̂𝑋, ̂𝑋) of continuousmaps from ̂𝑋 to itself. We endow
this space with the compact-open topology. To prove joint continuity, it then suffices
to show that the map 𝑔 ↦ ̂𝑇𝑔 is continuous from 𝐺 to 𝐶( ̂𝑋, ̂𝑋). By the homomorphism
property of the group action, it suffices to show that for any net 𝑔𝛼 converging to the
identity in 𝐺, the maps ̂𝑇𝑔𝛼 ∶ ̂𝑋 → ̂𝑋 converge to the identity in the compact-open
topology. From the identification of 𝐶( ̂𝑋)with𝒜 we see that for any 𝑓 ∈ 𝐶( ̂𝑋), 𝑓 ∘ ̂𝑇𝑔𝛼
converges uniformly to 𝑓, and the claim now follows from Urysohn’s lemma. □
RemarkA.5. Evenwhen the original𝐏𝐫𝐛𝐀𝐥𝐠-space𝑋 is separable, theKoopmanmodel
̂𝑋 need not be metrizable if the action of the group 𝐺 is insufficiently “transitive”. For

instance if 𝐺 is the trivial group then the Koopmanmodel ̂𝑋 coincides with the canon-
ical model 𝙲𝚘𝚗𝚌(𝑋) from Proposition A.2(iii) (basically because all elements of 𝐿∞(𝑋)
are 𝐺-continuous in this case), which as previously remarked is almost never metriz-
able in practice. However, if 𝑋 is separable and 𝐺 is “weakly transitive” in the sense
that the convolution operators 𝑓 ↦ 𝜙 ∗ 𝑓 used in the above proof map 𝐿2(𝑋) to 𝐿∞(𝑋)
for any 𝜙 ∈ 𝐶𝑐(𝐺), then it is not difficult to show that the 𝐶∗-algebra 𝒜 is separable,
and hence the Koopman model ̂𝑋 will be metrizable. This weak transitivity property
is not true for arbitrary groups 𝐺, but can be verified for the specific Host–Kra groups
arising for instance in the proof of Theorem 1.5; see the erratum to [28, Chapter 19] at
[25] for more details.
For us, themain application of Koopmanmodels is to enable one to identify abstract

systems as translational systems. We formalize this using Lemma A.6:
Lemma A.6 (Criterion for being isomorphic to a translational system). Let 𝐺,X obey
the axioms of Theorem A.4, and let X̂ = ( ̂𝑋, ̂𝑇) be the Koopman model. Let ̂𝑥0 be a point
in ̂𝑋 . Assume the following additional axioms:

(iii) 𝐺 is unimodular.
(iv) The action of 𝐺 on ̂𝑋 is transitive. That is to say, for any ̂𝑥1, ̂𝑥2 ∈ ̂𝑋 , there exists

𝑔 ∈ 𝐺 such that ̂𝑇𝑔 ̂𝑥1 = ̂𝑥2.
(v) The stabilizer group Λ ≔ {𝑔 ∈ 𝐺 ∶ ̂𝑇𝑔 ̂𝑥0 = ̂𝑥0} is a lattice in 𝐺.

Then the Koopman model X̂ is isomorphic as a compact 𝐺-system to the translational
𝐺-system 𝐺/Λ (with the obvious action of 𝐺). In particular, the abstract 𝐺-system X is
abstractly isomorphic to 𝐺/Λ.
Proof. By axiom (iv), we can form a bijection between 𝐺/Λ and ̂𝑋 by identifying any
coset 𝑔Λ with ̂𝑇𝑔𝑥0. From Theorem A.4(b) and axiom (v) this bijection is continuous;
since 𝐺/Λ and ̂𝑋 are both compact Hausdorff spaces, this bijection is thus a homeo-
morphism, and so we may identify 𝐺/Λ and ̂𝑋 as compact Hausdorff spaces at least.
By construction, the action of 𝐺 on both these spaces agree; by the uniqueness of Haar
probability measure on 𝐺/Λ (which is well-defined by axioms (iii), (v)) we conclude
that the measure 𝜇̂ on ̂𝑋 agrees with the Haar probability measure on 𝐺/Λ. The claim
follows. □
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Appendix B. Measurable selection lemma

In this appendix we give a full proof of Proposition 3.1. The arguments here can also
be used to give a more detailed proof of [4, Lemma C.4]; we leave this modification to
the interested reader.
Let Γ, Y,𝑈, ℎᵆ be as in the proposition. For each 𝑢 ∈ 𝑈, we introduce the set

Ωᵆ ≔ {𝐹 ∈ 𝑀(Y, 𝕋) ∶ ℎᵆ − 𝑑𝐹 ∈ Γ̂},

then by hypothesis Ωᵆ is non-empty for each 𝑢. Observe that each Ωᵆ is a coset of the
group

𝐸 ≔ {𝐹 ∈ 𝑀(Y, 𝕋) ∶ 𝑑𝐹 ∈ Γ̂}.
We introduce a countable dense sequence𝐺1, 𝐺2, . . . in𝑀(Y, 𝕋), and for each 𝑢 ∈ 𝑈, let
𝑛ᵆ be the first integer such that there exists 𝐹 ∈ Ωᵆ such that ‖𝑒(𝐹 ) − 𝑒(𝐺𝑛𝑢)‖𝐿2(Y) <
1
100 ; such an integer exists by density. Assume for the moment that 𝑛ᵆ depends in a
measurable fashion on 𝑢. By [4, Lemma C.1], all the 𝐹 that arise in the above fashion
differ from each other by a constant for fixed 𝑢. In particular, there is a unique 𝐹 ∈
Ωᵆ that minimizes ‖𝑒(𝐹 ) − 𝑒(𝐺𝑛𝑢)‖𝐿2(Y), and this 𝐹 clearly depends in a measurable
fashion on 𝑢. Setting 𝑐ᵆ ≔ ℎᵆ − 𝑑𝐹 , we obtain Proposition 3.1 as claimed.
It remains to establish themeasurability of 𝑛ᵆ, whichwas asserted as being “clearly”

true in [4]. Clearly it suffices to show that for each 𝑛, the set

{𝑢 ∈ 𝑈 ∶ ‖𝑒(𝐹 ) − 𝑒(𝐺𝑛)‖𝐿2(𝑋) <
1
100 for some 𝐹 ∈ Ωᵆ}

is measurable in 𝑈.
Fix 𝑛. Let 𝑍1(Γ, Y, 𝕋) ⊂ 𝑀(Y, 𝕋)Γ denote the collection of (Y, 𝕋)-cocycles. The above

set is the preimage under the map 𝑢 ↦ ℎᵆ of the set

(B.1) {ℎ ∈ 𝑍1(Γ, Y, 𝕋) ∶ ℎ − 𝑑𝐹 ∈ 𝕋Γ for some 𝐹 with 𝑒(𝐹) ∈ 𝐵𝑛},

where
𝐵𝑛 ≔ {𝑓 ∈ 𝑀(Y, 𝑆1) ∶ ‖𝑓 − 𝑒(𝐺𝑛)‖𝐿2(𝑋) <

1
100}

(note that ℎ−𝑑𝐹 is a cocycle, and so if it lies in𝕋Γ then itmust come from a character in
Γ̂). By the measurability of the map 𝑢 ↦ ℎᵆ, it suffices to show that (B.1) is measurable
in 𝑍1(Γ, Y, 𝕋).
The constraint ℎ − 𝑑𝐹 ∈ 𝕋Γ can be expanded as an equation of the form

𝑒(ℎ𝛾(𝑥))𝑒(𝐹(𝑥))
𝑒(𝐹(𝑇𝛾𝑥)) = 𝑒(𝑐𝛾)

holding almost everywhere in 𝑥 for each 𝛾 ∈ Γ and some 𝑐𝛾 ∈ 𝕋. If we now define the
unitary operators 𝑈𝛾

ℎ ∶ 𝐿2(Y) → 𝐿2(Y) by

𝑈𝛾
ℎ𝑓(𝑥) ≔ 𝑒(−ℎ𝛾(𝑥))𝐹(𝑇𝛾𝑥)

(noting from the cocycle equation that these give a unitary action of Γ) and define a
joint eigenfunction of (𝑈𝛾,ℎ)𝛾∈Γ to be a function 𝑓 ∈ 𝑀(𝑋, 𝑆1) such that 𝑈𝛾,ℎ𝑓 = 𝜆𝛾𝑓
holds for all 𝛾 ∈ Γ and for some 𝜆𝛾 ∈ 𝑆1, we see that the set (B.1) can be written as

{ℎ ∈ 𝑍1(Γ, Y, 𝕋) ∶ (𝑈𝛾,ℎ)𝛾∈Γ has a joint eigenfunction in 𝐵𝑛}.
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For any 𝑛′ and sufficiently small 𝜀 > 0, we will show that there is a measurable set 𝑆𝑛′,𝜀
which contains
(B.2)
{ℎ ∈ 𝑍1(Γ, Y, 𝕋) ∶ (𝑈𝛾,ℎ)𝛾∈Γ has a joint eigenfunction 𝑓 with ‖𝑓 − 𝑒(𝐺𝑛′)‖𝐿2(Y) < 𝜀10}

and is contained in
(B.3)
{ℎ ∈ 𝑍1(Γ, Y, 𝕋) ∶ (𝑈𝛾,ℎ)𝛾∈Γ has a joint eigenfunction 𝑓 with ‖𝑓 − 𝑒(𝐺𝑛′)‖𝐿2(Y) < 𝜀}

taking a suitable countable union of such sets, we obtain the claim.
We now set 𝑆𝑛′,𝜀 to be the set

𝑆𝑛′,𝜀 ≔ {ℎ ∈ 𝑍1(Γ, Y, 𝕋) ∶ lim
𝑛→∞

1
|Φ𝑛|

∑
𝛾∈Φ𝑛

|⟨𝑈𝛾
ℎ𝐺𝑛′ , 𝐺𝑛′⟩|2 ≥ 1 − 𝜀8},

where Φ𝑛 is some Følner sequence for Γ. The existence of the limit here follows from
the mean ergodic theorem for Hilbert spaces (applied to the unitary action 𝛾 ↦ 𝑈𝛾

ℎ ⊗
(𝑈𝛾

ℎ )∗ of Γ on 𝐿2(Y) ⊗ 𝐿2(Y)). Observe that 𝑆𝑛′,𝜀 is measurable.
Suppose that ℎ lies in the set (B.2), then26

⟨𝑈𝛾
ℎ𝑒(𝐺𝑛′), 𝑒(𝐺𝑛′)⟩ = ⟨𝑈𝛾

ℎ𝑓, 𝑓⟩ + 𝑂(𝜀10) = 1 + 𝑂(𝜀10)

for every 𝛾 ∈ Γ, and so ℎ ∈ 𝑆𝑛′,𝜀 if 𝜀 is small enough. Conversely, suppose that ℎ lies in
the set 𝑆𝑛′,𝜀. The operator

𝐴𝑓 ≔ lim
𝑛→∞

1
|Φ𝑛|

∑
𝛾∈Φ𝑛

⟨𝑓, 𝑈𝛾
ℎ𝑒(𝐺𝑛′)⟩𝑈

𝛾
ℎ𝑒(𝐺𝑛′)

(with the limit existing in the weak operator topology at least, thanks to the mean er-
godic theorem for Hilbert spaces as before) is a self-adjoint Hilbert–Schmidt operator
of Hilbert–Schmidt norm at most 1 (it is the limit finite rank operators of this form),
and by construction one has

⟨𝐴𝑒(𝐺𝑛′), 𝑒(𝐺𝑛′)⟩ ≥ 1 − 𝜀8.

From the spectral theorem, 𝐴 has a one-dimensional eigenspace of eigenvalue 1 −
𝑂(𝜀8) (and all other eigenvalues of size at most𝑂(𝜀4), to maintain the Hilbert–Schmidt
bound), and a unit eigenvector 𝑓 in this eigenspace is such that

⟨𝑒(𝐺𝑛′), 𝑓⟩ ≥ 1 − 𝑂(𝜀4)

and hence by the parallelogram law

‖𝑒(𝐺𝑛′) − 𝑓‖𝐿2(Y) = 𝑂(𝜀2).

Observe from the fact that the 𝑈𝛾
ℎ are a group action and the Følner property that 𝐴

commutes with every 𝑈𝛾
ℎ , hence by one-dimensionality of the eigenspace, 𝑓 is a joint

eigenfunction. (Note that |𝑓| is 𝐺-invariant, hence constant by ergodicity, hence equal
to 1 since 𝑓 is a unit vector in 𝐿2(Y), so 𝑓 lies in𝑀(Y, 𝑆1).) Thus ℎ lies in the set (B.3),
and the claim follows.

26Here we use the asymptotic notation𝑂(𝑋) to denote a quantity bounded in magnitude by 𝐶𝑋 for some
absolute constant 𝐶.
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