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A B S T R A C T

In the context of increasing environmental change, monitoring crop conditions throughout the growing season is
critical for agricultural management, risk mitigation and early assessment of food, feed, fuel and fiber produc-
tion. Satellite Earth observations can provide frequent and spatially continuous measures of cropping systems to
support informed agricultural decisions. However, current analysis-ready satellite data are based on optical
observational systems that do not provide land surface information under cloudy conditions, and therefore
cannot ensure a continuous and operational monitoring of dynamic systems such as crops. To fill this gap, Planet
developed the Biomass Proxy product which provides a timely and analysis-ready relative measure of the above-
ground crop biomass daily at 10 m spatial resolution. Based on Earth observations from Sentinel-1 and Sentinel-2
constellations, the Biomass Proxy is a cloud-free vegetation monitoring product for agricultural management at
scales varying from the intra-field to the national scale.
The objective of this study was to quantify the sensitivity of Planet’s Biomass Proxy to crop biomass dynamics

and yield. Field data representative of various agricultural systems and climates from the University of Nebraska-
Lincoln and Michigan State University were used to characterize the relationships between the Biomass Proxy
and the biomass of corn, winter wheat and soybean fields. Results demonstrated the sensitivity of the Biomass
Proxy to changes in crop fresh biomass throughout the growing season, and the potential of the product to detect
rapid changes in plant growth due to agricultural practices or environmental stresses, such as nitrogen or water
deficiencies. The Biomass Proxy was highly correlated with the plant fresh biomass (R2 > 0.9 for corn) allowing
for near real-time monitoring of crop growth and management decisions such as irrigation water, fertilizer and
fungicide applications depending on the crop. Using regressions, the Biomass Proxy was able to explain 80 % of
the yield variance of agricultural fields one to two months before harvest, allowing marketing and logistic de-
cisions to be made with a better knowledge of the crop status.
The Biomass Proxy is a unique satellite-based product used to characterize the various components of agri-

cultural ecosystems, early detect crop growth anomalies, or assess crop yield. The Biomass Proxy provides real
time information on crop conditions and environmental threats, helping mitigate risks by supporting agricultural
decisions.

1. Introduction

Due to agricultural intensification and a changing and very variable
climate, the fundamental environmental challenge for agriculture is to
optimize the use of existing resources and ensure efficient and

sustainable agricultural practices and water management (FAO, 2022).
Although monitoring crop and pasture conditions is highly relevant for
agricultural management, risk mitigation and commodity market
transparency (Becker-Reshef et al., 2019), accurate assessment of
shortfalls in agricultural production early in the season is still
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challenging at scales varying from the individual field to the agricultural
region (Hatfield et al., 2020). Yield forecasts early in the season are
mainly based on field surveys, empirical relationships using weather or
remote sensing inputs, or crop modeling. Through labor-intensive and
time-consuming processes, cereal crop yield can be reliably predicted
using in situ observations such as the numbers of stems per unit of area
and grains per head (Slafer et al., 2023). Over large areas, where field
data are sparse or usually not available, satellite observations can pro-
vide frequent and spatially continuous measure of agricultural systems.
The increasing availability of satellite-derived analysis ready data fa-
cilitates informed decision making to optimize management and pro-
duction (Whitcraft et al., 2015a), and contributes to mitigate the impact
of agriculture on environmental resources and climate variability
through more efficient use of agricultural inputs (Basso and Liu, 2019;
Hatfield et al., 2020). In previous research, Earth observations in various
electromagnetic spectral domains, i.e. visible, infrared and microwave,
have already been used to obtain relevant and timely information to
support early detection of crop anomalies due to pest, crop diseases or
environmental stresses (Funk and Budde, 2009; Gao et al., 2018; Hat-
field et al., 2020; Laluet et al., 2023), or to constrain crop models (Basso
and Liu, 2019; Lievens et al., 2017) with the objective to optimize field
operations that usually translates into better environmental outcomes,
such as reducing fertilizer losses or freshwater irrigation (El Hajj et al.,
2023; Laluet et al., 2023).

Satellite remote sensing in the shortwave spectral domain has been
used for crop monitoring and crop parameter retrieval since the 80’s
(MacDonald and Hall, 1980; Tucker, 1979; Tucker et al., 1985).
Numerous previous studies have focused on the use of vegetation indices
based on multispectral data to estimate crop growth and yield (Franch
et al., 2021; Franz et al., 2020; Liu et al., 2010; Montero et al., 2023;
Zhang and Zhang, 2016). At national scales, operational warning sys-
tems have been developed based on the use of the Normalized Difference
Vegetation Index (NDVI) derived from the Advanced Very
High-Resolution Radiometer (AVHRR), the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) or Sentinel-3 to estimate crop growth
status or forecast yield for agricultural monitoring and food security
with a spatial resolution of 1–5 kilometers. Examples of such products
are: the Group on Earth Observation’s Global Agricultural Monitoring
(GEOGLAM) system (Becker-Reshef et al., 2019, 2010), the UN Food and
Agriculture Organization (FAO) Global Information and Early Warning
System (GIEWS) (Rashid, 2003) and the European commission’s Joint
Research Centre (JRC) Monitoring Agricultural ResourceS (MARS) (Van
Der Velde et al., 2019).

Agricultural systems are very dynamic with significant temporal
changes in aboveground biomass due to environmental or management
events, such as grazing, water shortage and irrigation, pest and diseases
or fertilization. However, satellite observations in the optical domain do
not provide information about the land surface under cloudy conditions
and therefore cannot ensure continuous agricultural monitoring
(Whitcraft et al., 2015b). Using ground station measurements and
MODIS cloud masks, Lagouarde et al. (2013) estimated that a one-day
revisit polar-orbiter system could provide on average one cloud-free
image every five days over Europe. Over areas with frequent and
persistent cloud coverage, the computation of average or cumulative
observations used to assess crop yield can be significantly impacted by
the availability of clear-sky observations (Gao et al., 2018) and alter-
native products based on microwave observations should be considered.

Spaceborne Synthetic Aperture Radar (SAR) systems at frequencies
varying from 1 to 12 GHz for vegetation applications, provide timely and
reliable backscattered surface information regardless of the presence of
clouds and sun illumination. In addition to the characteristics of the
radar system, i.e., frequency, polarization, and viewing configurations,
SAR data depend on dielectric and geometric properties of the individ-
ual components of the land surface and their distribution within the
canopy (Ulaby and Wilson, 1985; Ulaby et al., 1981; Vermunt et al.,
2022). Crop canopy characteristics may rapidly vary through the

growing season depending on crop development, environmental con-
ditions and stresses. SAR can then be used to monitor soil and vegetation
water dynamics and derive surface biophysical parameters, such as soil
moisture, vegetation optical depth, vegetation water content or biomass
information (Attema and Ulaby, 1978; Ulaby et al., 1981). Prior studies
have already demonstrated the potential of radar observations in C-band
(around 5 GHz) and higher frequencies to assess crop dynamics and
production (see reviews by Liu et al., 2019, McNairn and Brisco, 2004
and Steele-Dunne et al., 2017). Therefore, multi-frequencies, multi--
temporal and/or multi-polarimetric SAR data are commonly used to
perform crop classification (Bouvet et al., 2014; Chen and Mcnairn,
2006; d’Andrimont et al., 2021; Deschamps et al., 2012; Le Toan et al.,
1997; McNairn et al., 2014; Skriver et al., 2011), monitor and identify
key phenological stages (McNairn et al., 2018; Mercier et al., 2020;
Qadir et al., 2023; Veloso et al., 2017) or derive crop biophysical pa-
rameters, such as leaf area index (LAI) (Fieuzal and Baup, 2017; Jiao
et al., 2011; Liu et al., 2015; Maity et al., 2004; McNairn et al., 2012;
Prevot et al., 1993a; Tao et al., 2016; Ulaby et al., 1984), vegetation
optical depth (El Hajj et al., 2019; Vreugdenhil et al., 2020), plant water
content (Liu et al., 2015; Prevot et al., 1993b; Vreugdenhil et al., 2018)
or crop biomass (Fieuzal and Baup, 2017; Wiseman et al., 2014). A
summary of the main parameter retrieval studies and key findings is
provided in Table 1.

The reported methods in Table 1 are based on various polarimetric
information and indices to derive biophysical parameters of the main
cultivated crops (i.e., corn, wheat, soybean and rice) using regression
analysis, machine learning approaches or process-based models. Using
the water cloud model, a simplified physically based model adapted to
derive soil or vegetation parameters from remote sensing, Attema and
Ulaby (1978) and Ulaby et al. (1984) showed good correlations between
radar backscattering coefficients and LAI for corn, wheat and sorghum.
Compared to the optical domain, only a few studies have focused on
using SAR data to assess crop yield early in the season. Using an artificial
neural network to assess wheat yield, Fieuzal and Baup (2017) have
found better performance of the system when using polarimetric SAR
data rather than optical or single polarization SAR data. Due to the
strong correlation between vegetation water content and fresh biomass,
radar backscatter coefficients were also used to monitor the diurnal
pattern of water in plants during active growth, manage water resources
and detect vegetation water stresses (Brisco et al., 1990; Steele-Dunne
et al., 2012).

However, despite a substantial body of research based on SAR im-
agery, up until recently no SAR-based analysis-ready product has been
made available for near real time crop monitoring at the global scale. As
previously mentioned, current global assessments of crop conditions are
only based on optical data at moderate spatial resolution (km scale),
which are not appropriate over regions with high cloud coverage and/or
small-scale food producers (<5 ha).

In May 2023, Planet launched the Biomass Proxy product, which
provides a unique, timely and analysis-ready relative measure of above-
ground crop biomass on a daily basis, with a spatial resolution of 10 m.
The Biomass Proxy uses a combination of Earth observations from
Sentinel-1 and Sentinel-2 constellations to perform a cloud-free vege-
tation monitoring at scales varying from the intra-field scale to the na-
tional scale (Burger et al., 2024). As part of Planet’s Planetary Variables
solutions that also include Soil Water Content, Land Surface Tempera-
ture, Forests Carbon and Field Boundaries products, the Biomass Proxy
was designed to facilitate near real time agricultural monitoring to assist
governments, non-governmental organizations, research institutions
and food producers to perform informed decisions related to agricultural
management and production forecast, sustainable agriculture, and crop
insurance. Across agricultural fields, spatiotemporal variations in the
Biomass Proxy help characterize the different components of agricul-
tural ecosystems, early detect crop growth anomalies, optimize agri-
cultural practices and agrochemical input efficiency, or schedule field
activities such as crop harvesting, grass mowing and grazing practices.

P.C. Guillevic et al.
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The Biomass Proxy provides early warning on crop conditions and
environmental threats, helping mitigate risk by supporting agricultural
decisions.

The key objective of this paper is to quantify the sensitivity of
Planet’s Biomass Proxy product to crop biomass dynamics and crop yield
using field validation datasets collected by the Eastern Nebraska
Research Education and Extension Center (ENREEC) of the University of
Nebraska-Lincoln and the Kellogg Biological Station experiment at
Michigan State University from 2019 to 2022. The field validation
datasets include aboveground biomass measurements of the three major
crops grown in the USA, i.e., corn, winter wheat and soybean. Like
NDVI, the Biomass Proxy is a relative indicator/index that cannot be
directly validated using ground-based references. To overcome this
difficulty, the following hypotheses were used to evaluate the product’s
ability to characterize agricultural systems: (1) based on radar signals in
C-band, the Biomass Proxy accurately describes time series of crop fresh
biomass and accounts for the impact of environmental stresses through
the growing season, and (2) the amount of aboveground fresh biomass is
a good indicator of crop yield for the selected crops. After a brief
description of the satellite data, the processing algorithm and the field
experiments in the first section, we will demonstrate and quantify the
ability of Biomass Proxy to monitor plant fresh biomass of irrigated and
rainfed corn and soybean fields in Nebraska, and to forecast yield
amount and variability early in the growing season of crop systems
associated with a wide range of agricultural practices including con-
ventional and organic certified treatments, regenerative agriculture and
biodiversity, no-tillage and crop rotation. In the last section, results and
the validity of our hypotheses will be discussed.

2. Materials and Methods

This section describes Planet’s Biomass Proxy product, the field
validation datasets and the methodology used to compare the Biomass

Proxy to in situ measurements.

2.1. Planet’s Biomass Proxy

The Biomass Proxy algorithm (Burger et al., 2024) represents a
spatio-temporal fusion of radar and optical data from Sentinel 1 and
Sentinel 2 constellations part of the European Commission’s Copernicus
Earth Observation program.

2.1.1. Sentinel-1 data and the radar cross ratio
Until 2021, the Sentinel-1 mission (Torres et al., 2012) consisted of

two polar-orbiting satellites, Sentinel-1A and Sentinel-1B launched in
2014 and 2016, respectively. Due to an anomaly related to the elec-
tronics power supply, the Sentinel-1B mission ended in December 2021.
Sentinel-1 satellites carry a SAR system in C-band (5.405 GHz). We use
the Interferometric Wide swath (IW) and Ground Range Detected (GRD)
imagery mode providing dual-polarization imagery, i.e., backscatter
coefficients in Vertically emitted-Vertical received (VV) and Vertically
emitted-Horizontally received (VH) polarizations, with a spatial reso-
lution of 10 m over a swath of 250 kilometers. The revisit time period of
a single Sentinel-1 satellite is 12 days, and temporal coverage is between
1 and 4 days over Europe, and 6 days over the United States when using
both Sentinel-1A and Sentinel-1B. The continuity of the Sentinel series is
guaranteed for the next decades by the Copernicus program allowing
operational long-term agricultural monitoring capabilities. In addition,
the launch of Sentinel 1-C is currently scheduled for the end of 2024.
Regarding our experimental sites, the acquisition plan of Sentinel 1-B
did not include part of Nebraska in the United States. The revisit time
period of Sentinel-1 was 12 days at Mead, Nebraska and was 6 days
before December 2021 and 12 days after December 1st, 2021 at Kellogg
Biological Station, Michigan.

The radar signature of vegetated surfaces consists of three main
components describing direct backscatter from the vegetation canopy,

Table 1
Summary of previous studies using radar Earth observations to monitor vegetation dynamics and/or assess crop yield. Relevant specifications and key findings are also
summarized.
Reference Satellite data Crop types/location Relevant particularities Key findings
El Hajj et al.
(2019)

Sentinel−1, Sentinel−2 Barley, fallow, oat, and wheat in
Catalonia, Spain

Better ability of VV than NDVI to
identify plant water loss periods

High correlations between VV polarization and
VOD (R2 varying from 0.39 and 0.61)

Fieuzal and Baup
(2017)

TerraSAR-X, Radarsat−2
and Spot 4–5

Wheat near Toulouse, France Neural network combined with optical
and radar data

High correlations (R2 = 0.76) between yield and
combination of VV and HH in C-band

Gorrab et al.
(2021)

Sentinel−1 Wheat near Toulouse, France VV, VH, VV/VH, VV*VH cumulated or
not over various growth periods

High correlations (R2>0.9) between cumulative
VV*VH and plant height and total dry biomass

Jiao et al. (2011) RADARSAT−2
polarimetry

Corn and soybean LAI values from optical data High correlations (R2>0.9 for corn and R2>0.7
for soybean) between all polarimetric
parameters and biomass

Kim et al. (2012) L, C and X-bands field
polarimetric scatterometer

Rice and soybean in South Korea Radar vegetation Index High correlations between L and C-band
(R2=0.94) RVI and VWC

Mattia et al.
(2003)

C-band field scatterometer Wheat near Matera, Italy Incidence angles from 20 to 60̊ High correlations (R2=0.94) between HH/VV at
40̊ and fresh biomass

McNairn et al.
(2012)

RADARSAT−2
polarimetry

Wheat, oat and barley fields in
western Canada during AgriSAR

co and cross polarization coefficients,
various cross ratios and polarimetric
decompositions

HV coefficient and entropy were highly
correlated to LAI (R2>0.8) for wheat and oat.

Ouaadi et al.
(2020)

Sentinel−1 Wheat near Marrakech, Morocco co and cross polarization coefficients,
cross ratio, coherence

Good correlations between VV and the above
ground dry biomass (R2>0.6)

Prevot et al.
(1993a, 1993b)

ERASME airborne
scatterometer

Wheat, Orgeval basin, France X and C bands, multi-incidence,
inversion of the water cloud model

Good correlations with VWC (R2>0.5)

Prevot et al.
(1993–2)

Ground-based dual-
frequency scatterometer
RAMSES

Wheat, Orgeval basin, France X and C bands, inversion of the water
cloud model

Good correlations with LAI (RMSE of 0.64 m2
m−2)

Veloso et al.
(2017)

Sentinel 1 Winter cereals, rapeseed, corn,
soybean and sunflower,
southwestern, France

Detailed description of VV, VH and
VV/VH time series

High correlations between VV/VH and NDVI (R2
of 0.91, 0.74, 0.3, 0.82, 0.08 for corn, cereals,
rapeseed, soybean and sunflower)

Vreugdenhil et al.
(2018)

Sentinel 1 Rapeseed, cereal and corn in
Petzenkirchen, Austria

Cross-polarized ratio CR (VH/VV) High correlations between CR and VWC for corn
and cereals (R2 of 0.87 and 0.63, resp.). Lower
correlations for rapeseed.

Wiseman et al.
(2014)

RADARSAT−2
polarimetry

Canola, corn, soybean, and spring
wheat fields in western Canada

Dry biomass of leaves and stems for
corn

High correlations (R2>0.7) between most of
polarimetric parameters and corn biomass
components

P.C. Guillevic et al.
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backscatter from the soil attenuated by the canopy and multiple scat-
tering effects due to interactions between the vegetation and soil
(Attema and Ulaby, 1978; Steele-Dunne et al., 2017; Ulaby et al., 1981).
Therefore, the vegetation signal must be isolated to effectively use
Sentinel-1 to monitor agricultural systems. As a first approximation,
backscatter coefficients in VH polarization are more sensitive to volume
scattering and the presence of vegetation, while backscatter coefficients
in VV polarization are more responsive to changes in surface scattering
(Attema and Ulaby, 1978; Ulaby et al., 1981; Veloso et al., 2017).
Therefore, ratios of co-polarized and cross-polarized backscatter obser-
vations, such as the Radar Vegetation Index (Kim and van Zyl, 2009) and
the Cross Ratio (Paloscia et al., 1999; Veloso et al., 2017; Vreugdenhil
et al., 2018), were commonly used to monitor crop growth and condi-
tions. Moreover, previous studies showed that the ratio of Sentinel 1
backscatter coefficients in VH and VV polarizations (VH/VV) signifi-
cantly reduced the effects of soil moisture, incidence angle, and
soil-vegetation interaction effects (Harfenmeister et al., 2019; Veloso
et al., 2017) enhancing the vegetation contribution to radar measure-
ments. The cross ratio VH/VV is used in the Biomass Proxy algorithm. It
should be noted that rough soils, water logging and intercepted water by
the canopy may also cause depolarization of radar signatures and may
significantly affect cross-polarized backscatter coefficients (den Besten
et al., 2023; Vermunt et al., 2022; Vreugdenhil et al., 2020), which ex-
plains the non-zero values of the Biomass Proxy we observed for bare
soils. However, excluding early growth stages and senescence, the
contribution of vegetation canopy in the radar signal is predominant
(Mattia et al., 2003) and contributes up to 90 % on average when the
crop LAI is higher than 3 (Wiseman et al., 2014).

2.1.2. Sentinel-2 and the NDVI
The Sentinel-2 mission (Gascon et al., 2017) consists of two

polar-orbiter satellites, Sentinel-2A and Sentinel-2B launched in 2015
and 2017, respectively. The Sentinel-2 Multi-Spectral Instrument (MSI)
provides surface reflectance products in 13 spectral bands in the visible,
near infrared and shortwave infrared range of the electromagnetic
spectrum. The combined Sentinel-2A and Sentinel-2B platforms ensure a
revisit period of five days. The spatial resolution varies from 10 to 60 m
depending on the acquisition mode or the spectral domain. To enhance
vegetation signals, NDVI products based on surface reflectances in the
red (band 4 centered at 665 nm) and near infrared (band 8 centered at

842 nm) domains at 10 m spatial resolution are used in the Biomass
Proxy algorithm (Burger et al., 2024).

2.1.3. Biomass Proxy retrieval algorithm
A full description of the Biomass Proxy algorithm is provided by

Burger et al. (2024). The main steps of the algorithm are summarized
below and illustrated in Fig. 1:

1. Input imageries pre-processing, NDVI and radar cross ratio time
series generation. This first step primarily represents pre-
processing of the optical imagery using multiple cloud masking
routines, i.e., Fmask (Zhu et al., 2015), S2cloudless (Sanchez et al.,
2020) and Sen2Cor (Baetens et al., 2019), and the application of
multi-temporal and spatial filtering to reduce speckle effects in radar
images (Lee, 1983).

2. Scaling the radar Cross Ratio (CR) to the NDVI domain of vari-
ation. Based on a large set of fields randomly selected all around the
world, regression analysis between CR, i.e., the ratio of backscatter
coefficients in VH and VV polarizations (VH/VV), and NDVI data was
used to scale the CR signals to the NDVI variation range, which is
needed for the data fusion step.

3. Generate a field averaged Biomass Proxy. For each field, the
scaled radar cross ratio and the NDVI are combined using static and
dynamic weighing strategies driven by the uncertainties and the
relative recency of the optical and radar images to derive a fused
vegetation signal on a daily basis.

4. Downscaling from field average to 10 m spatial resolution. A
dynamic weighting strategy is applied in the spatial domain to
disaggregate the field averaged Biomass proxy to a 10 m resolution
image using the relative spatial distribution of the radar CR and the
NDVI.

2.2. Field validation datasets

Ground-based measurements of crop biomass and/or yield collected
at two different experimental sites from 2019 to 2022 were used to
evaluate the ability of the Biomass Proxy to inform on crop biophysical
parameters (Fig. 2).

Fig. 1. Schematic representation of the Biomass Proxy algorithm. The different relations used to define the scaling function are described by Burger et al. (2024).

P.C. Guillevic et al.
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2.2.1. Mead, Nebraska experiment
The long-term field experiment near Mead, Nebraska, USA has been

managed by ENREEC, the University of Nebraska-Lincoln since 2001
with the objective to document the carbon exchanges in agroecosystems
and develop strategies to mitigate the increase in atmospheric carbon
dioxide concentration (Suyker et al., 2005; Verma et al., 2005). It con-
sists of three large production fields of 50–65 ha associated with
different cropping systems. Two fields are irrigated with pivot center
irrigation systems and represent continuous corn (Zea mays) (field #1 in
Fig. 2) and a corn-soybean (Glycine max L.) rotation (field #2) system,
respectively. The third field is under a rainfed corn-soybean rotation
system (field #3). In these fields, no tillage was applied. The sites are
part of the Ameriflux network (Baldocchi et al., 2001) collecting mete-
orological and land surface flux data.

In this paper, ground datasets describing the crop biomass compo-
nents, i.e., fresh and dry biomass of the stems, the leaves and the
reproductive parts of the plants (Fig. 3), were used. Fresh and dry matter
are determined by destructive sampling and weighting before and after
oven drying of the crop samples. Crop yield is derived from dry matter
measurements of the reproductive part of the plant expressed per unit
area. Fresh biomass is made up of organic matter and water, and the
percentage of moisture remaining in the dry matter is around 15 % for
corn and 13 % for wheat. The biomass samples were collected at six
different Intensive Measurement Zones (IMZ) within each field (Fig. 2)
describing the within field spatial variability of soil characteristics
affecting crop conditions (Verma et al., 2005). Each IMZ is a 30 by
30-meter area designated for scientific observations. It is a clearly
marked area in the field such that farm managers are aware of the
measurements and instruments and can plan field operations accord-
ingly. Destructive samples are collected at the main crop physiological
stages (every 5–15 days) throughout the growing season. Five to seven
entire corn plants and fifteen to thirty entire soybean plants are removed
from each IMZ for laboratory measurements of biomass. For corn, the
different plant samples have been individually measured and recorded
in the database, and the replicates can be used to assess field

measurement uncertainties. For soybean, individual plant data is not
available, and each recorded IMZ data represents a bulk measurement
including all the plants.

2.2.2. LTER Kellogg Biological Station
The Main Cropping System Experiment (MCSE) of the Kellogg Bio-

logical Station (KBS) was initiated in 1988 near Hickory Corners,
Michigan to assess ecosystem services provided by ecological farming
(Philip Robertson et al., 2014; Robertson and Hamilton, 2015). The
experiment is part of the US Long Term Ecological Research (LTER)
Network (Robertson and Hamilton, 2015). The annual cropping systems
are corn, soybean and winter wheat (Triticum aestivum), with the rota-
tions managed in four different treatments. The first treatment repre-
sents conventional cropping practices used in Michigan, including
tillage and genetically engineered soybeans and corn. The second
treatment is similar to the first one but without tillage applied. The third
treatment, a reduced-input system, is like the conventional system but
with about one third of the chemical inputs and winter cover crops to
provide additional nitrogen. The fourth treatment is managed biologi-
cally, with no synthetic chemical inputs or manure but with cover crops.
Twenty-four fields are considered in this study representing six different
replicates of each treatment (Fig. 2). Yield data for each experimental
field was based on combine harvester measurements of the entire crop
area and corrected to a standardized moisture level of 15.5 % for corn
and 13 % for wheat and soybean. The different treatments lead to large
variability in crop yield, which represents a valuable dataset for evalu-
ating the Biomass Proxy and its crop scouting capabilities.

2.3. Relations between the Biomass Proxy, crop biomass and yield

Comparisons between the Biomass Proxy and field measurements
require matchup datasets with consistent spatial and temporal repre-
sentativeness. Depending on the experimental design, the spatial
representativeness of ground-based biomass and yield measurements is
approximatively the IMZ area (i.e., 30×30 m2) in Nebraska and the

Fig. 2. Representation of the experimental design of the three experimental fields near Mead, Nebraska (left) and the Main Cropping System Experiment (MCSE) of
the Kellogg Biological Station in Michigan (right). In Nebraska, the Intensive Measurement Zones (IMZ, red circles) represent the sampling locations where plants
were collected for biomass measurements. In Michigan, for each crop, four different treatments (letter T) are evaluated at the Kellogg Biological Station. Each
treatment is applied to six different replicated fields (letter R).

P.C. Guillevic et al.
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treatment plot area (i.e., 1 ha) in Michigan. Therefore, the Biomass
Proxy at 10 m spatial resolution was aggregated over 3×3 and 10×10-
pixel areas covering the IMZ and treatment plots, respectively. The re-
lationships between satellite-derived Biomass Proxy and the different
crop biomass components from the field measurements, i.e., whole
plant, or fresh and dry biomass of the stems, ears and leaves when
available, were characterized by regressions analysis. The strength of
each relationship and performance of the regression model was quan-
tified by the coefficient of determination R2 (Eq. (1)) that represents the
proportion of the variation in crop biomass that can be explained by the
Biomass Proxy, the Mean Absolute Error (MAE, Eq. (2)) that describes
the uncertainty associated with a regression model, and the relative
MAE (rMAE, Eq. (3)), respectively. We also used the Standard Error (SE,
Eq. (4)) of the mean to assess the likely accuracy of the IMZ-mean
biomass estimates based on sample sizes.

R2 = 1−
∑
i
(yi − ŷi)2

∑
i
(yi − y)2 (1)

MAE = 1
n
∑n

i=1
|yi − ŷi| (2)

rMAE = MAE
y × 100% (3)

SE = σ̅̅̅n√ with σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
i
(yi − ŷi)2

n− 1

√√√√ (4)

With y the average value and ŷi the predicted values of a series of n
ground-based biomass measurements yi. σ is the standard deviation.

Due to Biomass Proxy’s sensitivity to vegetation water content and
not directly to dry matter, we used different evaluation protocols when
comparing the Biomass Proxy with fresh or dry biomass measurements
that vary differently through the season (Fig. 3). For fresh biomass, we
compared samples collected through the growing season with concur-
rent biomass proxy values. In the case of dry matter, we compared final
crop yield with different indicators characterizing the Biomass Proxy
time series through the crop season before harvest: (1) the maximum or
peak of Biomass Proxy representing cropmaturity, (2) the mean Biomass
Proxy over the crop vegetative phase calculated from crop emergence to
(1), and (3) the mean Biomass Proxy observed over various Growing
Degree Days (GDD) based integration periods (Fig. 4). A GDD-based
integration period was defined between two different levels of cumu-
lative GDD (GDDC) after crop emergence, i.e., starting cumulative GDD
and ending cumulative GDD (Fig. 4). For individual or all crop types, the
optimal integration period was identified as the one with the highest
correlations between the mean Biomass Proxy and crop yield from an
ensemble of integration periods defined by cumulative GDD levels
varying from crop emergence (0 GDDC) to harvest (approximatively
1800 GDDC) with discretization steps of 100 cumulative GDD.

The regression analysis was based on linear and exponential models
following Vreugdenhil et al. (2018) and Wiseman et al. (2014). The
three crop yield indicators are compatible with operational uses when
no information about the type and growth stage of the observed crops
are available. Moreover, the cumulative GDD is a valuable indicator to
determine consistent integration periods.

In addition, the Biomass Proxy may also depend on the vertical

Fig. 3. Fresh (a and b) and dry (c and d) biomass components of corn (a and c) and soybean (b and d) fields at Mead, Nebraska. Data from irrigated (site #2, Fig. 2)
and rainfed (site #3, Fig. 2) fields are represented by solid and dashed lines, respectively. Each point represents the average value of biomass components collected at
six different IMZ locations per field (see Fig. 2) and the faded envelopes represent the observed minimum and maximum values.
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(Vermunt et al., 2022) or 3D (Karam et al., 1992) distribution of the
vegetation components and water content within the canopy, which are
fluctuating in time. As mentioned by Gorrab et al. (2021), the cumula-
tive or average value may be a good indicator of the influence of envi-
ronmental stresses occurring through the growing season on final yield.
The authors showed that cumulative polarimetric indices over vegeta-
tive periods were much better descriptors of various winter wheat bio-
physical parameters than the same indices based on a single satellite
overpass (Table 1). In the optical domain, Daughtry et al. (1983) found
that a single observation in the crop season had limited value in pre-
dicting corn yield, compared to vegetation index values accumulated
over the growing season, which could explain around 65 % of the corn
yield variance.

2.4. Growing degree days

We used growing degree days (GDD) to assess crop phenological
stages and to define the optimal integration periods used to compare
mean Biomass Proxy and final crop yield data. GDD are commonly used
to estimate crop development rates and phenological stages throughout
the growing season. GDD-based models assume that crop development
occurs when daily mean air temperature (Tmean) is higher than a crop
dependent temperature threshold or base temperature (Tbase) and does
not exceed a physiological heat limit characterized by maximum
acceptable air temperature (Theat) (Mcmaster, 1997) (Eq. 5).
GDD = Tmean −Tbase

with GDD = 0 if Tmean < Tbase
and GDD = Theat − Tbase if Tmean > Theat (5)

Tmean was calculated for each site location using ERA 5 reanalysis
data (Hersbach et al., 2020) from the European Centre for
Medium-Range Weather Forecasts (ECMWF) that provide hourly esti-
mates of air temperature at 2-meter height at 0.25 degree resolution.
Tbase and Theat have been respectively set to 10̊C and 30̊C for corn and
soybean, and to 0̊C and 25̊C for wheat (Mcmaster, 1997).

3. Results

3.1. Analysis of time series of ground-based fresh and dry biomass

We performed a preliminary analysis of the timeseries and the
existing relationships between fresh and dry plant matter using ground-
based data only. From data collected on fields #2 and #3 characterized

by corn-soybean rotation systems, we observed higher dry biomass
production on irrigated (#2) related to rainfed (#3) fields with relative
differences in final yield of around 30 % for both corn in 2021 and
soybean in 2020 (Fig. 3). Differences in fresh biomass of irrigated and
rainfed fields were also observed around the vegetative maturity of the
plants but they were more significant for soybean than for corn. An
interesting feature was observed for corn where fresh and dry biomass of
stems and leaves were quite similar between rainfed and irrigated fields,
and differences in grain biomass mainly explained differences in whole
plant dry biomass measurements (Fig. 3a and c). This characteristic
dynamic was not observed for soybean where observed differences were
due to the reproductive parts and the stems. These differences might
vary from year to year based on local climate and water stress level.
Moreover, fresh and dry biomass variations were not consistent through
the entire crop season (Fig. 3). The maximum dry biomass was measured
at the end of the season just before harvest and weeks after the peak of
fresh biomass that occurred at the end of the vegetative phase. As ex-
pected, correlations between fresh and dry crop biomass were much
higher when just considering the plant vegetative period rather than the
entire crop growing season (Fig. 5). Therefore, and as already stressed by
Gorrab et al. (2021), radar data, which are sensitive to crop fresh
biomass, may not provide useful information related to the senescence
phase of the plant.

We also evaluated the link between fresh biomass and yield and
found good correlations between the maximum value of the plant fresh
biomass measured during the crop season and the total plant or grain
yields, with R2 values around 0.9 and rMAE lower than 13 %, when
considering corn and soybean together (Fig. 6). We systematically
observed lower correlations between the season’s maximum fresh
biomass and yield values for irrigated relative to rainfed crops and found
poor correlations for irrigated corn fields (R2 = 0.04). This suggests that
the performance of crop yield predictions from space observations
sensitive to plant fresh biomass or plant water content, such as the
Biomass Proxy, may be reduced in the presence of irrigation that tends to
maximize and homogenize the canopy size and density of the different
fields.

3.2. Biomass Proxy to monitor crop fresh biomass

Fresh biomass amounts were not collected at KBS, Michigan, and this
section is only based on data acquired at Mead, Nebraska. The Biomass
Proxy time series and in situ measurements of crop fresh biomass from
2019 to 2022 in Nebraska are represented in Fig. 7. Generally, the
Biomass Proxy clearly represents the crop signal but with a few non-
vegetation related spikes that are most likely linked to rain events at
the beginning of the crop season when the vegetation density is rela-
tively low. The most significant spikes observed early in the 2019 crop
season are due to heavy rain events (up to 30 mm per day) in June over
young corn plants (LAI lower than 2). The drastic increases in the
Biomass Proxy observed during the winter were mainly due to snow
events. The occurrence of snow on the ground were verified by visual
interpretation of daily PlanetScope observations at 3 m spatial resolu-
tion – this point was out of the scope of this paper and was not further
discussed. At early growth stages, the Biomass Proxy was highly sensi-
tive to precipitation events as reflected by significant spikes in both
2019 and 2020. As already noted byMattia et al. (2003), the correlations
between the Biomass Proxy and fresh biomass were relatively low early
in the season due to a significant contribution of the soil to the radar
signal, whereas correlations progressively increased with crop
development.

For corn, the Biomass Proxy reached a clear plateau at crop maturity,
which may suggest a saturation effect of the C-band radar for high
vegetation biomass densities above 55–60 tons per hectare (Fig. 7). The
plateau varied slightly from year to year and demonstrated that despite
continued crop biomass accumulation, the radar backscatter was less
responsive to these growth increments. The Biomass Proxy declined

Fig. 4. Representation of the three yield indicators used to characterize the
Biomass Proxy time series through the crop season before harvest: (1) the
maximum of Biomass Proxy (BP max), (2) the mean Biomass Proxy from crop
emergence to (1), and (3) the mean Biomass Proxy over GDD-based integration
periods. GDD-based periods were defined between two different levels of cu-
mulative GDD (GDDC) after emergence: starting GDDC and ending GDDC.
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during the senescence period just before harvest except for corn planted
in field US-Ne1 in 2020, which was harvested early (end of September)
when ears were still green and fresh biomass still at its maximum. Over
soybean fields, which have a much lower vegetation density than corn,
the Biomass Proxy continuously increased throughout the growing
season and the rapid fluctuations observed in the 2020 time series might
be explained by a high contribution of wet soil to the radar signal. We
did not observe any clear saturation effect for soybean in 2020.
Regarding the detection of field management events, the 12-day revisit
period of Sentinel-1 over Nebraska explained the delayed response of
Biomass Proxy that we observed after harvest, especially in 2021.

We found good agreements between the Biomass Proxy time series
and in situ measurements of crop fresh biomass (Fig. 8). For corn, high
coefficients of determination were obtained, and the Biomass Proxy was
able to explain more than 90 % of the variance of the fresh biomass of
the entire plant with a relative MAE of 16 % for irrigated fields and 13 %
for rainfed. Corn stems had the largest contribution to the Biomass Proxy
signals (R2 = 0.87) compared to fresh leaves (R2 = 0.67) or grains (R2 =
0.40), suggesting that corn stems were the most important plant
component in multiple scattering and depolarization effects as already
mentioned by Wiseman et al. (2014).

For soybean (Fig. 9), correlation coefficients were still high with R2
around 0.7 or higher (0.84 for rainfed soybean) when considering the
whole plant biomass but lower than those observed for corn. Relative
MAE values were significantly higher than for corn, i.e., around 32 % for
irrigated fields and 20 % for rainfed. Such differences between corn and
soybean might be partly explained by a higher contribution of the

underlying soil to the soybean radar signature. Soybean canopies, which
have a lower biomass than corn, attenuate less of the incoming and re-
flected radiation by the soil. The relative differences between total fresh
biomass of irrigated and rainfed fields were higher for soybean
(30–45 % at crop maturity depending on the year considered) than for
corn (8–23 %) (Figs. 3, 8 and 9). However, such differences had a
relatively low influence on the Biomass Proxy. When considering dry
matter or yield measurements, measurements depicted lower discrep-
ancies between irrigated and rainfed field production levels.

3.3. Biomass Proxy time series for crop benchmarking

The different treatments at Kellogg Biological Station in Michigan
provide a wide range of crop production levels and as such represent a
valuable dataset for evaluating the Biomass Proxy and its crop scouting
capabilities. Fresh biomass measurements were not available at Kellogg
and time series were used to describe the Biomass Proxy signatures
associated with the different treatments. The ability of the Biomass
Proxy to monitor crops, discriminate and rank field’s production are
clearly illustrated by the derived time series information (Fig. 10). The
time series track the performance of each treatment and identify low
levels of biomass that might be due to crop management or environ-
mental conditions. For each crop, we clearly observed a reduced growth
and lower accumulation of biomass through the crop season for the
biologically certified treatment (T4): the emergence dates were similar,
but the crop development phase was much longer than the other treat-
ments (Fig. 10) and associated with lower yield levels (see Section

Fig. 5. Relationships between ground-based fresh and dry above ground biomass measurements at Mead, Nebraska for all crops (a, d), corn (b, e) and soybean (c, f)
fields accounting for data collected during the growing and senescent periods (a, b, c) and data collected during the growing season only (d, e, f). Correlations
coefficients and relative MAE are calculated depending on water management, i.e., irrigated or rainfed fields.
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3.4.2). In general, the T2 treatment representing conventional man-
agement with no till, was associated with higher Biomass Proxy values
and final yield. The Biomass Proxy time series were also able to detect
environmental stresses such as the impact of the 2020 drought on corn
production. The temporal signature of corn in 2020 in Michigan did not
show a 3-month plateau associated with high biomass values as was
observed in Nebraska (Fig. 7). The rapid decrease in corn Biomass Proxy
in Michigan after a fast-growing phase in July was associated with very
low precipitation in August (50 mm of rain). The final corn yield, around
10 tons per hectare for the T2 treatment, was more than 20 % lower than
the T2 yield measured in 2014 that received twice the amount of rain.
The Biomass Proxy time series were also able to clearly detect the
presence of winter cover crops in 2019 and 2022. For wheat fields in
2019, we observed dips in the Biomass Proxy timeseries. The Biomass
Proxy rapidly decreased after the stem elongation and increased again
after the heading phase. This effect of phenology and canopy structure
was also observed by Mattia et al. (2003) and Vreugdenhil et al. (2018)
in the radar cross ratio. Based on a small sample of just a few fields, we
noticed that the more pronounced the dip in the Biomass proxy, the
higher the crop yield, but further ground observations are required to
validate this finding.

3.4. Biomass Proxy to assess crop yield

3.4.1. Sensitivity of the correlations between Biomass Proxy and yield to the
integration period

As already mentioned by Gao et al. (2018) for the optical domain and

Gorrab et al. (2021) for the microwave domain, cumulative or average
values of vegetation indices are more correlated to crop yield than ob-
servations from a single satellite overpass. To verify these results and
identify the integration periods that provide the highest correlations
between the Biomass Proxy and crop yield, we compared final crop yield
with three indicators characterizing the Biomass Proxy time series
through the crop season: (1) the maximum of Biomass Proxy, (2) the
mean Biomass Proxy value from crop emergence to maximum of
Biomass Proxy, and (3) the mean Biomass Proxy observed over various
GDD based integration periods (see Fig. 4). To evaluate the third indi-
cator, we first identified the integration periods providing the highest
correlations between the mean Biomass Proxy and crop yield from an
ensemble of integration periods defined by varying cumulative GDD
levels (see Fig. 4). The regression analysis was done for all crops and
individual crop types, accounting for all sites (Fig. 11). Results are
summarized in Table 2.

When considering all crops together, the optimal GDD-based inte-
gration period was obtained between 100 and 1100 cumulative GDD
and was associated with a coefficient of determination higher than 0.8
and a relative MAE around 23 % when using an exponential regression
model (Fig. 11, Table 2). The integration period represented the vege-
tative phase only and did not include the senescence phase. When
looking at individual crops, the linear regression model was providing
better results than the exponential model with coefficients of determi-
nation of 0.80, 0.60 and 0.69 for corn, soybean and wheat, respectively,
and relative MAE lower than 19 % (Fig. 11, Table 2). When accounting
for all crops and sites, the range of yield varied from around 2 tons per

Fig. 6. Relationships between the maximum value of the plant fresh biomass measured during the crop season and the total plant yield (a, b and c) and grain yield (d,
e and f), respectively, measured at Mead, Nebraska for all crops (a, d), corn (b, e) and soybean (c, f) fields. Correlations coefficients and relative MAE are calculated
depending on water management, i.e., irrigated or rainfed fields.

P.C. Guillevic et al.



Field Crops Research 316 (2024) 109511

10

hectare for wheat in Michigan to 23 tons per hectare for corn in
Nebraska. We noticed a clear change in the slope of the regression lines
before and after a mean Biomass Proxy of around 0.5 (Fig. 12b) that
might represent a mix of saturation and differences in crop variety. The
saturation effect is mainly due to the attenuation of the signal through
the canopy that at first approximation increases exponentially with the
vegetation density (Attema and Ulaby, 1978). The harvest index rep-
resents the ratio between the total dry matter and grain yield that mainly
depends on seed quality and environmental conditions and stresses
(Hütsch and Schubert, 2017).

For individual crops, coefficients of determination were higher for
corn, and the optimal integration period significantly varied from crop
to crop. While describing the entire crop season for soybean, the optimal
integration period was more representative of the plant vegetative phase
and not accounting for the senescence phases of corn and wheat. For
wheat, a significant sensitivity of the Biomass Proxy to wheat production
was found before the heading stage that was estimated at around 1200
cumulative GDD. Similar results were described in previous studies
(Mattia et al., 2003; Vreugdenhil et al., 2018; Wiseman et al., 2014),
where the authors attributed the low explained variance in yield when
accounting for the heading phase to the effect of the upper canopy
structure rather than biomass accumulation. Wiegand et al. (1986)

showed that accounting for the plant senescence in the integrative
period significantly reduced the correlations between crop yields and
accumulated vegetation indices. For winter wheat, Fieuzal and Baup
(2017) found best crop yield estimates (R2 = 0.76) when accounting for
radar polarimetric observations collected during the vegetative phase
only, from leaves emergence to stem elongation.

3.4.2. Crop yield forecasting
The comparison between the three yield indicators clearly illustrated

the better performance of indicators based on integrative periods rather
than single observation/date such as the maximum of Biomass Proxy
(Figs. 12 and 13) as already mentioned by Gorrab et al. (2021). On
average, we found similar performance between the yield indicator
based on the GDD-based integrative periods (R2=0.80) and the Biomass
Proxy accumulation from emergence to the peak of Biomass Proxy
(R2=0.78). The Biomass Proxy maximum was able to only explain a
relatively low variance in crop yield with a coefficient of determination
of around 0.2 and significantly higher relative MAE when accounting for
all crops (rMAE=49 %).

Based on the field datasets available for this study, corn and soybean
yields in Nebraska (17 and 6 tons per hectare on average, respectively)
were higher than in Michigan (8 and 4 tons per hectare on average,

Fig. 7. Time series of satellite-based Biomass Proxy and aboveground fresh biomass components measured at the three sites in Mead, Nebraska (US-Ne1, US-Ne2, US-
Ne3). Crop types are corn (2019, 2020 and 2021 at US-Ne1, 2019 and 2021 at US-Ne2 and US-Ne3) and soybean (2022 at US-Ne1, 2020 and 2022 at US-Ne2 and US-
Ne3). US-Ne1 and US-Ne2 are irrigated fields, US-Ne3 is rainfed. Planting, emergence and harvest dates are represented with dashed vertical lines.

P.C. Guillevic et al.



Field Crops Research 316 (2024) 109511

11

respectively). Both yield indicators based on integrated periods were
able to clearly discriminate between different levels of production,
whereas the maximum values of Biomass Proxy had no such capacity
(Figs. 12 and 13). Fig. 13b and c clearly show the nonlinear relationship
between the Biomass Proxy and crop yield with a large sensitivity at low
values of yield and with a gradually decreasing sensitivity towards
higher yield without reaching a clear saturation.

When analyzing the regressions site by site, we found that the yield
indicator defined as the mean Biomass Proxy from emergence to
maximum value through the season was providing in most cases the
highest correlations and lowest relative MAE (Fig. 14). In Nebraska, the
Biomass Proxy was able to clearly describe the differences in yield be-
tween rainfed and irrigated soybean (Fig. 14a) but in a less obvious way
for corn. Results might reflect the differences observed in ground-based
biomass measurements between rainfed and irrigated crops. First,
ground-based measurements showed that the main differences between
rainfed and irrigated crop biomass were mainly due to stem and grain
biomass for soybean and only to grain biomass for corn (Fig. 3), and we
have already shown that the biomass proxy was highly sensitive to
variations in stem biomass and much less so to grain biomass for both
corn and soybean (Figs. 8 and 9). Moreover, grains grow after the
vegetative phase, when the canopy is fully developed, and differences in
corn grain biomass might have a reduced influence on the Biomass
Proxy due to saturation effects. For corn, individual plant data was used
to calculate the standard error (SE) of the mean and assess the reliability
of IMZ mean yield values based on the experimental sampling which is
represented by error bars in Fig. 14.

In Michigan, the Biomass Proxy was able to measure the different
yield levels of corn fields associated with various management

treatments with a R2 of around 0.5 and relative MAE varying from 13 %
for corn, 17 % for soybean and 21 % for wheat (Fig. 14b). For corn,
mean Biomass Proxy varied from 0.33 to 0.65 when yield varied from 6
to 11 tons per hectare. Results were less obvious for soybean and wheat
since the yields associated with T1, T2 and T3 treatments were similar.
However, for each crop, the Biomass Proxy was able to clearly
discriminate the low yield levels of the biologically treated fields (T4
treatment) (Figs. 14b and 15) from the other treatments. It should be
noted that the regression lines related to the different crops were distinct
with similar slopes but different intercepts, i.e., where the regression
line intersected the y-axis. As mentioned by Mattia et al. (2003),
observed differences might be explained by differences in the structure
of the crop canopy that affect the scattering processes.

4. Discussion

Since the launch of Sentinel 1 by ESA, SAR data has been increasingly
used to monitor agricultural systems. However, the relative complexity
associated with the processing and interpretation of radar images
compared to optical data, could explain why most radar applications are
exploratory and in the fields of research (Liu et al., 2019; Steele-Dunne
et al., 2017). In this paper, we demonstrated that the Biomass Proxy,
fusing information from Sentinel-1 and Sentinel-2, can provide a valu-
able analysis ready data to help monitor the aboveground biomass of
crops throughout the growing season and provide early assessments of
crop yield. The ability of the Biomass Proxy to measure agricultural
systems repeatedly during the crop growth cycles independently of
cloud coverage conditions is an added advantage for operational agri-
cultural management purposes.

Fig. 8. Relationships between ground-based aboveground fresh biomass of the whole plant (a), leaves (b), stems (c) or grains (d), and satellite-derived Biomass Proxy
products for corn fields near Mead, Nebraska. Correlations coefficients and relative MAE are calculated depending on water management, i.e., irrigated (blue dots) or
rainfed fields (orange dots).
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4.1. Biomass Proxy to monitor crop fresh biomass

Based on ground-based measurements carried out in corn and soy-
bean fields near Mead, Nebraska, we found very good agreements be-
tween time series of Biomass Proxy time series and fresh biomass.
Results clearly demonstrated that the Biomass Proxy can serve as a good

indicator of crop growth status (R2>0.9 for corn and R2>0.7 for soy-
bean) and was able to robustly detect variations in biomass accumula-
tion due to agricultural management or environmental conditions. We
observed higher correlations with total plant and stem fresh biomass
compared to leaf biomass. Findings were consistent with earlier
research. Using a C-band ground radar, Mattia et al. (2003) found poor

Fig. 9. Relationships between ground-based aboveground fresh biomass of the whole plant (a), leaves (b), stems (c) or grains (d), and satellite-derived Biomass Proxy
products for soybean fields near Mead, Nebraska. Correlations coefficients and relative MAE are calculated depending on water management, i.e., irrigated (blue
dots) or rainfed fields (orange dots).

Fig. 10. Time series of Biomass Proxy describing relative biomass of crops at the Kellogg station associated with different treatments, i.e., Michigan conventional
(T1), no till (T2), reduced chemical inputs (T3) and biologically based (T4). For each treatment, the solid light line represents the mean Biomass Proxy over six
replicated fields whose variations are shown by faded envelopes of time series, and the solid thick line represents the crop season from emergence to harvest.
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correlations between the fresh biomass of the leaves and all the other
plant components (e.g., total plant, stem or ear biomass, plant height).
Using Sentinel 1, Vreugdenhil et al. (2018) showed that the cross ratio
was able to account for 87 % of the variability in vegetation water
content for corn and found lower correlations for other crop types, e.g.,
R2 of 0.63 and 0.34 for wheat and oil seed respectively. As already

mentioned in the results section, we noticed a saturation of the Biomass
Proxy for high values of fresh biomass of around 55–60 tons per hectare
for corn, which corresponded to LAI values between 4 and 5. Saturation
effects means that as a crop is accumulating biomass through the
vegetative phase, the Biomass Proxy will lose sensitivity to additional
fresh matter after a certain level of accumulated biomass, which is crop
and frequency dependent. Reflected signals in the optical domain usu-
ally reach saturation before radar backscattered coefficients because
they have a reduced penetration length through the canopy. Likewise,
C-band SAR data may saturate before L-band. Similar saturation effects
on SAR acquisitions have been reported in many previous studies
(Steele-Dunne et al., 2017). Using airborne data over corn fields, Fer-
razzoli et al. (1992) found that C- and S-band VV and HH polarizations
saturated for LAI between 2 and 3 for example.

Regarding the effect of irrigation on the relationships between the
Biomass Proxy and crop biomass, we observed that the relative differ-
ences between total fresh biomass of irrigated and rainfed fields, which
were higher for soybean than for corn (see Figs. 3, 8 and 9) had a
relatively low influence on the Biomass Proxy. This could be due to
multiple factors. First, unlike corn, both VH and VV backscatter co-
efficients over soybean are influenced by volume scattering, which re-
duces the impact of a change in vegetation density on the ratio VH/VV
and the Biomass Proxy. In addition, until the soybean canopy is closed,
Biomass Proxy represents a mixed signal between vegetation and soil

Fig. 11. Coefficients of determination R2 between the mean Biomass Proxy over various periods of time through the crop season and crop yield accounting for all
crops (a), corn (b), soybean (c) and wheat (d). Both size and color of the markers represent R2 based on exponential regression models.

Table 2
GDD-based integration periods associated with the highest coefficient of deter-
mination (R2) and lowest relative MAE between Biomass Proxy mean values and
crop yield when considering all available matchup data from the Mead,
Nebraska and Kellogg, Michigan experiments. The GDD-based integration pe-
riods are defined by starting and ending cumulative GDD after crop emergence
(Fig. 4). Linear and regression models were evaluated.

Crop
type

Starting
GDDC

Ending
GDDC

R2 rMAE

Linear
regressions

All crops 0 1200 0.704 30.4 %
Corn 100 1400 0.796 13.6 %
Soybean 100 1800 0.603 18.1 %
Wheat 400 900 0.686 15.6 %

Exponential
regressions

All crops 100 1100 0.801 23.1 %
Corn 100 1400 0.781 14.5 %
Soybean 100 1800 0.580 18.4 %
Wheat 400 900 0.564 18.2 %
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contributions, and the contribution of the vegetation might saturate at
relatively low field LAI due to the fact that the vegetation components
were concentrated into rows. When leaves are arranged in rows, vege-
tation density is locally higher compared to if the same number of leaves
were uniformly distributed across a vegetation layer. The saturation
effect is influenced by the canopy structure and the incidence angle. A
reduction in the canopy cover fraction leads to a decrease in the LAI
value at which saturation occurs (Guillevic et al., 2003). We did not have
enough measurements of soybean fresh biomass to statistically verify
these hypotheses. In Fig. 9, we observed a significant difference in the
slope of the regression lines of rainfed and irrigated soybean fields, while
the regression lines for corn were similar with or without irrigation
(Fig. 8). The difference in slope between corn and soybean could be due
to several factors, such as changes in canopy structure due to water
stress or saturation effects which could be enhanced by the row structure
of soybean canopies. In such a case, the Biomass Proxy could be more
responsive to changes in growth stage, such as the size of the plant and
associated canopy coverage, rather than biomass accumulation. A
rigorous interpretation of the observed differences would require further
research and additional information on canopy structure, which were
not available for this study.

4.2. Biomass Proxy to early assess crop yield

Both datasets collected at Mead and Kellogg were used to demon-
strate the ability of Biomass Proxy to assess final yield early in the
season. We found good agreements between crop yield and the Biomass
Proxy when using average Biomass Proxy through periods of time
describing the crop vegetative phase (R2 around 0.8). Similar results
were reported by past studies based on remote sensing data in the short
wave and microwave spectral domains (Fieuzal and Baup, 2017; Gao
et al., 2018; Gorrab et al., 2021; Wiegand et al., 1986). Yield indicators
based onmaximum Biomass Proxy through the growing season were less
efficient mainly due to saturation effects over dense vegetation. When
considering all crops, we found that the Biomass Proxy could be used to
assess crop yield 6–8 weeks before harvest, when crop biomass may still
improve in response to curative actions such as fertilization or irrigation.
However, with such a design, if an anomaly in crop development
occurred after the plant vegetative phase, its effect on final yield might
not be accounted for by the average Biomass Proxy. As field observations
that describe all possible effects of environmental stresses (e.g., water
stress, nitrogen deficit, pest diseases) on yield must be fastidious and at
present do not exist, operational management might require an optimal

Fig. 12. Relationships between crop yield and three different yield indicators based on time series of Biomass Proxy (BP): the maximum value of BP through the crop
season (a), the mean values of BP from crop emergence to BP max (b) and the mean value of BP over GDD-based integration periods defined in Table 1 (c). R2 and
relative MAE values are based on linear regression models. The analysis included data from both sites.

Fig. 13. Relationships between crop yield and three different yield indicators based on time series of Biomass Proxy (BP): the maximum value of BP through the crop
season (a), the mean values of BP from crop emergence to BP max (b) and the mean value of BP over GDD-based integration periods defined in Table 1 (c). R2 and
relative MAE values are based on exponential regression models. The analysis included data from both sites.
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tradeoff between yield estimate uncertainties and relevant integration
periods that should include all phenological phases for which any stress
would have an impact on yield. We also found that winter wheat yield
was associated with higher relative errors (rMAE=21 %) than corn
(13 %) and soybean (17 %) as already observed by Wiseman et al.
(2014) using different polarimetric parameters based on Radarsat-2 or
by Chaparro et al. (2018) at a coarser spatial resolution using VOD
products derived from L-band SMAP observations. Using optical data at
moderate resolution, Franch et al. (2021) estimated wheat yield at
county levels with uncertainties up to 20 %.

For each crop in Michigan, Biomass Proxy was clearly able to
differentiate low yield fields associated with biological treatments (T4)
and most productive fields that received the conventional with no till
treatment (T2). The relative differences in Biomass Proxy based yield
indicator values between T4 and T2 treatments were around 70 %, 60 %
and 50 % for corn, soybean, and wheat, respectively. The corresponding
relative differences in yield values between T4 and T2 treatments were
similar and around 80 %, 50 % and 40 % for corn, soybean, and wheat,
respectively. Such differences between T2 and T4 treatments were
mainly due to nitrogen deficit, especially for wheat fields that were
immediately following the harvest of soybean, which left little nitrogen-
rich residue for the following crop, compared to corn that followed
winter wheat (Philip Robertson et al., 2014). For corn in 2020, the

Biomass Proxy and yields of the T2 no-till treatment fields were 20 %
and 30 %, respectively, higher than they were in the conventional sys-
tem. On average, Philip Robertson et al. (2014) reported differences in
yields between T2 and T1 treatments of around 9–20 % depending on
the year and drought status. The higher difference observed in 2020
(30 %) might be due to a significant drought event that occurred in
Michigan in 2020 and clearly illustrated the enhanced water storage
capacity of no-till systems compared to conventional practices that
translated in lower water stress and higher productivity. Results
demonstrated the ability of the Biomass Proxy to detect the effect of
water shortage on yield by comparing current observations with a
Biomass Proxy normal baseline representing average Biomass Proxy
over the years or a reference year for which satellite response and yield
are known.

As shown in this paper, monitoring crop biomass using Biomass
Proxy or SAR systems in general depends on multiple parameters
describing a crop and its environment. For a given cultivar, the yield
prediction method based on GDD-derived integration periods could be
applied across regions with disparate climates. However, cultivars with
different phenological development characteristics may reach maturity
at varying cumulative GDD, whichmay influence the yield model. In this
study, we were able to characterize the model for three different crops, i.
e., corn, wheat and soybean; however, we lacked sufficient data to assess

Fig. 14. Relationships between crop yield and Biomass Proxy (BP) products at Mead, Nebraska (a) and Kellog, Nebraska (b). BP-based yield indicators represent the
mean BP value through the vegetative phase calculated between the plant emergence and the maximum value of BP. R2 and relative MAE values are based on linear
regression models. Data was collected during four crop seasons from 2019 to 2022. (a) Data represent irrigated (blue markers) and rainfed (orange markers) corn
(circle markers) and soybean (triangle markers). The errors bars represent ± one standard error around the mean derived from measurement replicates made over
corn IMZs. (b) Data represents corn (blue markers), soybean (green markers) and wheat (orange markers) associated with four different treatments, i.e., Michigan
conventional (T1), no till (T2), reduced chemical inputs (T3) and biologically based (T4), are considered for each crop.

Fig. 15. Maps of crop yield measured in situ at Kellogg Biological Station, Michigan (bottom row) and derived from the Biomass Proxy using a linear regression
model (see Table 1) (top row). Three different crops are represented: wheat (2019 and 2022), corn (2020) and soybean (2021).
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the impact of different cultivars. Therefore, the empirical relationships
between the Biomass Proxy and crop biomass described here may not be
easily scalable to different crop types, regions, and environmental
conditions.

For decision making support, additional field surveys and research
are needed to generalize our findings and derive standard yield re-
trievals. Moreover, the quality of the retrieval relationships depends on
the representativity and accuracy of the field validation datasets, which
are also subject to uncertainties due to the intra field spatial variability
and the sampling design. In our study for instance, the fields are
managed by different farm operators with specific agricultural practices
and experimental designs such as field sampling and biomass measure-
ment protocols. In Mead, Nebraska, yield data representing a 30×30 m2
IMZ area were based on samples of around 7 and 30 plants for corn and
soybean, respectively. We found an average relative standard error of
6.4 % of the assessed corn yield, characterizing additional uncertainties
due to the field measurement protocol. In Kellogg, Michigan, yield data
were based on combine measurements and were fully representative of
the entire field and the satellite product footprint. Uncertainties are also
associated with the Biomass Proxy that does not directly correlate with
crop yield, i.e., the dry biomass of the grains. Instead, Biomass Proxy is
related to the fresh biomass of the plant components involved in the
scattering and attenuation radiometric mechanisms, which may corre-
spond to different parts of the crop depending on the crop type and the
phenological stage. A full characterization of the different sources of
uncertainties was not possible in this study and would need additional
measurements and further research.

5. Conclusion

This study demonstrated the potential of Planet’s Biomass Proxy
product to monitor vegetation dynamics and assess crop production.
Field validation datasets collected at Mead, Nebraska and Kellogg Bio-
logical Station by the University of Nebraska-Lincoln andMichigan State
University, respectively, were used to evaluate the relationships be-
tween the Biomass Proxy and the biomass of corn, winter wheat and
soybean fields. Time series analysis clearly illustrated the sensitivity of
the Biomass Proxy product to changes in crop fresh biomass (i.e., plant
water content) through the growing season, which showcased the po-
tential of the Biomass Proxy to detect rapid changes in plant growth due
to agricultural practices or environmental stresses, such as nitrogen
deficit or water stress. The Biomass Proxy was highly correlated with the
fresh biomass of corn (R2 > 0.9) and soybean (R2 around 0.7) allowing
near real time monitoring of crop growth. Using an exponential
regression model, the Biomass Proxy was able to explain 80 % of the
yield variance of agricultural fields consisting of corn, winter wheat and
soybean one to two months before harvest, allowing decision to be made
regarding the need for additional inputs. We have shown that the
Biomass Proxy can provide essential support for crop management,
especially over cloudy regions where no other remote source of infor-
mation is frequently available. The product is expected to be helpful in
characterizing crop dynamic processes and mitigating the impact of
climate variability on agriculture by providing information on plant
growth status and response to environmental stresses. Further research
will focus on the use of bundled Planet’s Planetary Variables, i.e.
Biomass Proxy, Soil Water Content and Land Surface Temperature, and
Planet’s Analysis Ready Data Surface Reflectance products (Houborg
and McCabe, 2018a, 2018b, 2018c) to monitor crop growth and forecast
yield.

CRediT authorship contribution statement

G. Philip Robertson: Resources. Richard De Jeu:Writing – review
& editing, Project administration. Pierre C. Guillevic: Writing – orig-
inal draft, Visualization, Software, Methodology, Investigation, Data
curation, Conceptualization. Benjamin Aouizerats: Visualization,

Methodology, Data curation, Conceptualization. Rogier Burger:
Writing – review & editing, Methodology, Investigation. Nadja den
Besten: Writing – review & editing, Investigation. Daniel Jackson:
Writing – review & editing, Investigation. Margot Ridderikhoff:
Writing – review & editing, Investigation. Ariel Zajdband: Writing –

review & editing, Resources. Rasmus Houborg: Writing – review &
editing, Resources. Trenton E. Franz: Writing – review & editing,
Resources.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

We acknowledge the contribution of ground-based research data
from the Carbon Sequestration Project at the University of Nebraska-
Lincoln and the Kellogg Biological Station at Michigan State Univer-
sity. In addition, support for field experiments was also provided by the
NSF Long-term Ecological Research Program (DEB 2224712) at the
Kellogg Biological Station and by Michigan State University AgBioR-
esearch. Funding for the AmeriFlux core sites at the Eastern Nebraska
Research Education and Extension Center was provided by the U.S.
Department of Energy’s Office of Science. This research was a contri-
bution from the Long-Term Agroecosystem Research (LTAR) network.
LTAR is supported by the United States Department of Agriculture. T.E.
F. acknowledges the financial support of the USDA National Institute of
Food and Agriculture, Hatch projects #1009760, #1020768 and #2023-
67021-38977. The findings and views described herein do not neces-
sarily reflect those of Planet Labs PBC.

References
Attema, E.P.W., Ulaby, F.T., 1978. Vegetation modeled as a water cloud. Radiol. Sci. 13,

357–364. https://doi.org/10.1029/RS013i002p00357.
Baetens, L., Desjardins, C., Hagolle, O., 2019. Validation of copernicus sentinel-2 cloud

masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud
masks generated with a supervised active learning procedure. Remote Sen.s 11, 433.
https://doi.org/10.3390/rs11040433.

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P.,
Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B.,
Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K.T., Pilegaard, K.,
Schmid, H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S., 2001.
FLUXNET: a new tool to study the temporal and spatial variability of
ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull. Am.
Meteorol. Soc. 82, 2415–2434. https://doi.org/10.1175/1520-0477(2001)
082<2415:FANTTS>2.3.CO;2.

Basso, B., Liu, L., 2019. Seasonal crop yield forecast: methods, applications, and
accuracies. In: Advances in Agronomy. Elsevier, pp. 201–255. https://doi.org/
10.1016/bs.agron.2018.11.002.

Becker-Reshef, I., Barker, B., Humber, M., Puricelli, E., Sanchez, A., Sahajpal, R.,
McGaughey, K., Justice, C., Baruth, B., Wu, B., Prakash, A., Abdolreza, A., Jarvis, I.,
2019. The GEOGLAM crop monitor for AMIS: assessing crop conditions in the
context of global markets. Glob. Food Secur. 23, 173–181. https://doi.org/10.1016/
j.gfs.2019.04.010.

Becker-Reshef, I., Vermote, E., Lindeman, M., Justice, C., 2010. A generalized regression-
based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS
data. Remote Sens. Environ. 114, 1312–1323. https://doi.org/10.1016/j.
rse.2010.01.010.

den Besten, N., Steele Dunne, S., Mahmud, A., Jackson, D., Aouizerats, B., de Jeu, R.,
Burger, R., Houborg, R., McGlinchey, M., van der Zaag, P., 2023. Understanding
Sentinel-1 backscatter response to sugarcane yield variability and waterlogging.
Remote Sens. Environ. 290, 113555 https://doi.org/10.1016/j.rse.2023.113555.

Bouvet, A., Thuy Le Toan, Dao, N.L., 2014. Estimation of agricultural and biophysical
parameters of rice fields in Vietnam using X-band dual-polarization SAR. In: 2014
IEEE Geoscience and Remote Sensing Symposium. Presented at the IGARSS 2014 -
2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Quebec
City, QC, pp. 1504–1507. https://doi.org/10.1109/IGARSS.2014.6946723.

P.C. Guillevic et al.

https://doi.org/10.1029/RS013i002p00357
https://doi.org/10.3390/rs11040433
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
https://doi.org/10.1016/bs.agron.2018.11.002
https://doi.org/10.1016/bs.agron.2018.11.002
https://doi.org/10.1016/j.gfs.2019.04.010
https://doi.org/10.1016/j.gfs.2019.04.010
https://doi.org/10.1016/j.rse.2010.01.010
https://doi.org/10.1016/j.rse.2010.01.010
https://doi.org/10.1016/j.rse.2023.113555
https://doi.org/10.1109/IGARSS.2014.6946723


Field Crops Research 316 (2024) 109511

17

Brisco, B., Brown, R., Koehler, J., Sofko, G., Mckibben, M., 1990. The diurnal pattern of
microwave backscattering by wheat. Remote Sens. Environ. 34, 37–47. https://doi.
org/10.1016/0034-4257(90)90082-W.

Burger, R., Aouizerats, B., Den Besten, N., Guillevic, P., Catarino, F., Van Der Horst, T.,
Jackson, D., Koopmans, R., Ridderikhoff, M., Robson, G., Zajdband, A., De Jeu, R.,
2024. The biomass proxy: unlocking global agricultural monitoring through fusion
of sentinel-1 and sentinel-2. Remote Sens 16, 835. https://doi.org/10.3390/
rs16050835.

Chaparro, D., Piles, M., Vall-llossera, M., Camps, A., Konings, A.G., Entekhabi, D., 2018.
L-band vegetation optical depth seasonal metrics for crop yield assessment. Remote
Sens. Environ. 212, 249–259. https://doi.org/10.1016/j.rse.2018.04.049.

Chen, C., Mcnairn, H., 2006. A neural network integrated approach for rice crop
monitoring. Int. J. Remote Sens. 27, 1367–1393. https://doi.org/10.1080/
01431160500421507.

d’Andrimont, R., Verhegghen, A., Lemoine, G., Kempeneers, P., Meroni, M., van der
Velde, M., 2021. From parcel to continental scale – a first European crop type map
based on Sentinel-1 and LUCAS Copernicus in-situ observations. Remote Sens.
Environ. 266, 112708 https://doi.org/10.1016/j.rse.2021.112708.

Daughtry, C.S.T., Gallo, K.P., Bauer, M.E., 1983. Spectral Estimates of Solar Radiation
Intercepted by Corn Canopies 1. Agron. J. 75, 527–531. https://doi.org/10.2134/
agronj1983.00021962007500030026x.

Deschamps, B., McNairn, H., Shang, J., Jiao, X., 2012. Towards operational radar-only
crop type classification: comparison of a traditional decision tree with a random
forest classifier. Can. J. Remote Sens. 38, 60–68. https://doi.org/10.5589/m12-012.

El Hajj, M., Baghdadi, N., Wigneron, J.-P., Zribi, M., Albergel, C., Calvet, J.-C., Fayad, I.,
2019. First Vegetation Optical Depth Mapping from Sentinel-1 C-band SAR Data over
Crop Fields. Remote Sens 11, 2769. https://doi.org/10.3390/rs11232769.

El Hajj, M.M., Johansen, K., Almashharawi, S.K., McCabe, M.F., 2023. Water uptake rates
over olive orchards using Sentinel-1 synthetic aperture radar data. Agric. Water
Manag. 288, 108462 https://doi.org/10.1016/j.agwat.2023.108462.

FAO, 2022. The future of food and agriculture – Drivers and triggers for transformation.
Ferrazzoli, P., Paloscia, S., Pampaloni, P., Schiavon, G., Solimini, D., Coppo, P., 1992.

Sensitivity of microwave measurements to vegetation biomass and soil moisture
content: a case study. IEEE Trans. Geosci. Remote Sens. 30, 750–756. https://doi.
org/10.1109/36.158869.

Fieuzal, R., Baup, F., 2017. Forecast of wheat yield throughout the agricultural season
using optical and radar satellite images. Int. J. Appl. Earth Obs. Geoinf. 59, 147–156.
https://doi.org/10.1016/j.jag.2017.03.011.

Franch, B., Vermote, E., Skakun, S., Santamaria-Artigas, A., Kalecinski, N., Roger, J.-C.,
Becker-Reshef, I., Barker, B., Justice, C., Sobrino, J.A., 2021. The ARYA crop yield
forecasting algorithm: Application to the main wheat exporting countries. Int. J.
Appl. Earth Obs. Geoinf. 104, 102552 https://doi.org/10.1016/j.jag.2021.102552.

Franz, T.E., Pokal, S., Gibson, J.P., Zhou, Y., Gholizadeh, H., Tenorio, F.A., Rudnick, D.,
Heeren, D., McCabe, M., Ziliani, M., Jin, Z., Guan, K., Pan, M., Gates, J.,
Wardlow, B., 2020. The role of topography, soil, and remotely sensed vegetation
condition towards predicting crop yield. Field Crops Res 252, 107788. https://doi.
org/10.1016/j.fcr.2020.107788.

Funk, C., Budde, M.E., 2009. Phenologically-tuned MODIS NDVI-based production
anomaly estimates for Zimbabwe. Remote Sens. Environ. 113, 115–125. https://doi.
org/10.1016/j.rse.2008.08.015.

Gao, F., Anderson, M., Daughtry, C., Johnson, D., 2018. Assessing the variability of corn
and soybean yields in central iowa using high spatiotemporal resolution multi-
satellite imagery. Remote Sens. 10, 1489. https://doi.org/10.3390/rs10091489.

Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V.,
Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B.,
Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., De
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A standardized catalogue of spectral indices to advance the use of remote sensing in
Earth system research. Sci. Data 10, 197. https://doi.org/10.1038/s41597-023-
02096-0.

Ouaadi, N., Jarlan, L., Ezzahar, J., Zribi, M., Khabba, S., Bouras, E., Bousbih, S.,
Frison, P.-L., 2020. Monitoring of wheat crops using the backscattering coefficient
and the interferometric coherence derived from Sentinel-1 in semi-arid areas.
Remote Sens. Environ. 251, 112050 https://doi.org/10.1016/j.rse.2020.112050.

Paloscia, S., Macelloni, G., Pampaloni, P., Sigismondi, S., 1999. The potential of C- and L-
band SAR in estimating vegetation biomass: the ERS-1 and JERS-1 experiments. IEEE
Trans. Geosci. Remote Sens. 37, 2107–2110. https://doi.org/10.1109/36.774723.

P.C. Guillevic et al.

https://doi.org/10.1016/0034-4257(90)90082-W
https://doi.org/10.1016/0034-4257(90)90082-W
https://doi.org/10.3390/rs16050835
https://doi.org/10.3390/rs16050835
https://doi.org/10.1016/j.rse.2018.04.049
https://doi.org/10.1080/01431160500421507
https://doi.org/10.1080/01431160500421507
https://doi.org/10.1016/j.rse.2021.112708
https://doi.org/10.2134/agronj1983.00021962007500030026x
https://doi.org/10.2134/agronj1983.00021962007500030026x
https://doi.org/10.5589/m12-012
https://doi.org/10.3390/rs11232769
https://doi.org/10.1016/j.agwat.2023.108462
https://doi.org/10.1109/36.158869
https://doi.org/10.1109/36.158869
https://doi.org/10.1016/j.jag.2017.03.011
https://doi.org/10.1016/j.jag.2021.102552
https://doi.org/10.1016/j.fcr.2020.107788
https://doi.org/10.1016/j.fcr.2020.107788
https://doi.org/10.1016/j.rse.2008.08.015
https://doi.org/10.1016/j.rse.2008.08.015
https://doi.org/10.3390/rs10091489
https://doi.org/10.3390/rs9060584
https://doi.org/10.3390/rs9060584
https://doi.org/10.3390/rs13040553
https://doi.org/10.1029/2002JD002247
https://doi.org/10.3390/rs11131569
https://doi.org/10.1109/MITP.2020.2986102
https://doi.org/10.1109/MITP.2020.2986102
https://doi.org/10.1002/qj.3803
https://doi.org/10.1016/j.rse.2018.02.067
https://doi.org/10.1016/j.isprsjprs.2017.10.004
https://doi.org/10.3390/rs10060890
https://doi.org/10.3390/rs10060890
https://doi.org/10.1016/bs.agron.2017.07.004
https://doi.org/10.5589/m11-023
https://doi.org/10.1109/36.158872
https://doi.org/10.1109/LGRS.2011.2174772
https://doi.org/10.1109/TGRS.2009.2014944
https://doi.org/10.1109/TGRS.2009.2014944
https://doi.org/10.1080/01431161.2012.716921
https://doi.org/10.31223/X54Q18
https://doi.org/10.1109/36.551933
https://doi.org/10.1016/0734-189X(83)90047-6
https://doi.org/10.1016/j.rse.2016.11.022
https://doi.org/10.1016/S2095-3119(18)62016-7
https://doi.org/10.1016/j.rse.2010.01.004
https://doi.org/10.3390/rs70404626
https://doi.org/10.1126/science.208.4445.670
https://doi.org/10.1109/TGRS.2003.821888
https://doi.org/10.1109/TGRS.2003.813531
https://doi.org/10.1016/S0168-1923(97)00027-0
https://doi.org/10.5589/m03-069
https://doi.org/10.5589/m03-069
https://doi.org/10.1016/j.rse.2018.10.012
https://doi.org/10.1016/j.jag.2013.12.015
https://doi.org/10.5194/isprsarchives-XXXIX-B8-283-2012
https://doi.org/10.1016/j.isprsjprs.2020.03.009
https://doi.org/10.1038/s41597-023-02096-0
https://doi.org/10.1038/s41597-023-02096-0
https://doi.org/10.1016/j.rse.2020.112050
https://doi.org/10.1109/36.774723


Field Crops Research 316 (2024) 109511

18

Philip Robertson, G., Gross, K.L., Hamilton, S.K., Landis, D.A., Schmidt, T.M., Snapp, S.S.,
Swinton, S.M., 2014. Farming for ecosystem services: an ecological approach to
production agriculture. BioScience 64, 404–415. https://doi.org/10.1093/biosci/
biu037.

Prevot, L., Champion, I., Guyot, G., 1993a. Estimating surface soil moisture and leaf area
index of a wheat canopy using a dual-frequency (C and X bands) scatterometer.
Remote Sens. Environ. 46, 331–339. https://doi.org/10.1016/0034-4257(93)
90053-Z.

Prevot, L., Dechambre, M., Taconet, O., Vidal-Madjar, D., Normand, M., Gallej, S.,
1993b. Estimating the characteristics of vegetation canopies with airborne radar
measurements. Int. J. Remote Sens. 14, 2803–2818. https://doi.org/10.1080/
01431169308904310.

Qadir, A., Skakun, S., Eun, J., Prashnani, M., Shumilo, L., 2023. Sentinel-1 time series
data for sunflower (Helianthus annuus) phenology monitoring. Remote Sens.
Environ. 295, 113689 https://doi.org/10.1016/j.rse.2023.113689.

Rashid, A., 2003. Global information and early warning system on food and agriculture:
appropriate technology and institutional development challenges. In: Zschau, J.,
Küppers, A. (Eds.), Early Warning Systems for Natural Disaster Reduction. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 337–344. https://doi.org/10.1007/978-3-
642-55903-7_42.

Robertson, P., Hamilton, S., 2015. Long-term ecological research in agricultural
landscapes at the Kellogg Biological Station LTER site: conceptual and experimental
framework. In: The Ecology of Agricultural Landscapes: Long-Term Research on the
Path to Sustainability. Oxford University Press, New York, USA, pp. 1–32.

Sanchez, A.H., Picoli, M.C.A., Camara, G., Andrade, P.R., Chaves, M.E.D., Lechler, S.,
Soares, A.R., Marujo, R.F.B., Simões, R.E.O., Ferreira, K.R., Queiroz, G.R., 2020.
Comparison of cloud cover detection algorithms on sentinel–2 images of the amazon
tropical forest. Remote Sens. 12, 1284. https://doi.org/10.3390/rs12081284.

Skriver, H., Mattia, F., Satalino, G., Balenzano, A., Pauwels, V.R.N., Verhoest, N.E.C.,
Davidson, M., 2011. Crop classification using short-revisit multitemporal SAR data.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4, 423–431. https://doi.org/
10.1109/JSTARS.2011.2106198.

Slafer, G.A., Savin, R., Sadras, V.O., 2023. Wheat yield is not causally related to the
duration of the growing season. Eur. J. Agron. 148, 126885 https://doi.org/
10.1016/j.eja.2023.126885.

Steele-Dunne, S.C., Friesen, J., van de Giesen, N., 2012. Using diurnal variation in
backscatter to detect vegetation water stress. IEEE Trans. Geosci. Remote Sens. 50,
2618–2629. https://doi.org/10.1109/TGRS.2012.2194156.

Steele-Dunne, S.C., McNairn, H., Monsivais-Huertero, A., Judge, J., Liu, P.-W.,
Papathanassiou, K., 2017. Radar remote sensing of agricultural canopies: a review.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 2249–2273. https://doi.org/
10.1109/JSTARS.2016.2639043.

Suyker, A.E., Verma, S.B., Burba, G.G., Arkebauer, T.J., 2005. Gross primary production
and ecosystem respiration of irrigated maize and irrigated soybean during a growing
season. Agric. For. Meteorol. 131, 180–190. https://doi.org/10.1016/j.
agrformet.2005.05.007.

Tao, L., Li, J., Jiang, J., Chen, X., 2016. Leaf area index inversion of winter wheat using
modified water-cloud model. IEEE Geosci. Remote Sens. Lett. 13, 816–820. https://
doi.org/10.1109/LGRS.2016.2546945.

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P.,
Rommen, B., Floury, N., Brown, M., Traver, I.N., Deghaye, P., Duesmann, B.,
Rosich, B., Miranda, N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A.,
Huchler, M., Rostan, F., 2012. GMES Sentinel-1 mission. Remote Sens. Environ. 120,
9–24. https://doi.org/10.1016/j.rse.2011.05.028.

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring
vegetation. Remote Sens. Environ. 8, 127–150. https://doi.org/10.1016/0034-4257
(79)90013-0.

Tucker, C.J., Vanpraet, C.L., Sharman, M.J., Van Ittersum, G., 1985. Satellite remote
sensing of total herbaceous biomass production in the senegalese sahel: 1980–1984.
Remote Sens. Environ. 17, 233–249. https://doi.org/10.1016/0034-4257(85)
90097-5.

Ulaby, F.T., Allen, C.T., Eger, G., Kanemasu, E., 1984. Relating the microwave
backscattering coefficient to leaf area index. Remote Sens. Environ. 14, 113–133.
https://doi.org/10.1016/0034-4257(84)90010-5.

Ulaby, F.T., Moore, R.K., Fung, A.K., 1981. Microwave Remote Sensing. 1: Microwave
Remote Sensing, Fundamentals and Radiometry. Artech House, Norwood, Mass.

Ulaby, F., Wilson, E., 1985. Microwave attenuation properties of vegetation canopies.
IEEE Trans. Geosci. Remote Sens. GE 23, 746–753. https://doi.org/10.1109/
TGRS.1985.289393.

Van Der Velde, M., Van Diepen, C.A., Baruth, B., 2019. The European crop monitoring
and yield forecasting system: celebrating 25 years of JRC MARS bulletins. Agric.
Syst. 168, 56–57. https://doi.org/10.1016/j.agsy.2018.10.003.

Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.-F., Ceschia, E.,
2017. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-
like data for agricultural applications. Remote Sens. Environ. 199, 415–426. https://
doi.org/10.1016/j.rse.2017.07.015.

Verma, S.B., Dobermann, A., Cassman, K.G., Walters, D.T., Knops, J.M., Arkebauer, T.J.,
Suyker, A.E., Burba, G.G., Amos, B., Yang, H., Ginting, D., Hubbard, K.G.,
Gitelson, A.A., Walter-Shea, E.A., 2005. Annual carbon dioxide exchange in irrigated
and rainfed maize-based agroecosystems. Agric. For. Meteorol. 131, 77–96. https://
doi.org/10.1016/j.agrformet.2005.05.003.

Vermunt, P.C., Steele-Dunne, S.C., Khabbazan, S., Kumar, V., Judge, J., 2022. Towards
understanding the influence of vertical water distribution on radar backscatter from
vegetation using a multi-layer water cloud model. Remote Sens 14, 3867. https://
doi.org/10.3390/rs14163867.

Vreugdenhil, M., Navacchi, C., Bauer-Marschallinger, B., Hahn, S., Steele-Dunne, S.,
Pfeil, I., Dorigo, W., Wagner, W., 2020. Sentinel-1cross ratio and vegetation optical
depth: a comparison over Europe. Remote Sens 12, 3404. https://doi.org/10.3390/
rs12203404.

Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., Rüdiger, C.,
Strauss, P., 2018. Sensitivity of sentinel-1 backscatter to vegetation dynamics: an
austrian case study. Remote Sens. 10, 1396. https://doi.org/10.3390/rs10091396.

Whitcraft, A., Becker-Reshef, I., Justice, C., 2015a. A framework for defining spatially
explicit earth observation requirements for a global agricultural monitoring
initiative (GEOGLAM). Remote Sens 7, 1461–1481. https://doi.org/10.3390/
rs70201461.

Whitcraft, A.K., Vermote, E.F., Becker-Reshef, I., Justice, C.O., 2015b. Cloud cover
throughout the agricultural growing season: Impacts on passive optical earth
observations. Remote Sens. Environ. 156, 438–447. https://doi.org/10.1016/j.
rse.2014.10.009.

Wiegand, C., Richardson, A., Jackson, R., Pinter, P., Aase, J., Smika, D.,
Lautenschlager, L., McMurtrey, J., 1986. Development of agrometeorological crop
model inputs from remotely sensed information. IEEE Trans. Geosci. Remote Sens.
GE 24, 90–98. https://doi.org/10.1109/TGRS.1986.289689.

Wiseman, G., McNairn, H., Homayouni, S., Shang, J., 2014. RADARSAT-2 Polarimetric
SAR response to crop biomass for agricultural production monitoring. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 7, 4461–4471. https://doi.org/10.1109/
JSTARS.2014.2322311.

Zhang, X., Zhang, Q., 2016. Monitoring interannual variation in global crop yield using
long-term AVHRR and MODIS observations. ISPRS J. Photogramm. Remote Sens.
114, 191–205. https://doi.org/10.1016/j.isprsjprs.2016.02.010.

Zhu, Z., Wang, S., Woodcock, C.E., 2015. Improvement and expansion of the Fmask
algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and
Sentinel 2 images. Remote Sens. Environ. 159, 269–277. https://doi.org/10.1016/j.
rse.2014.12.014.

P.C. Guillevic et al.

https://doi.org/10.1093/biosci/biu037
https://doi.org/10.1093/biosci/biu037
https://doi.org/10.1016/0034-4257(93)90053-Z
https://doi.org/10.1016/0034-4257(93)90053-Z
https://doi.org/10.1080/01431169308904310
https://doi.org/10.1080/01431169308904310
https://doi.org/10.1016/j.rse.2023.113689
https://doi.org/10.1007/978-3-642-55903-7_42
https://doi.org/10.1007/978-3-642-55903-7_42
http://refhub.elsevier.com/S0378-4290(24)00264-8/sbref62
http://refhub.elsevier.com/S0378-4290(24)00264-8/sbref62
http://refhub.elsevier.com/S0378-4290(24)00264-8/sbref62
http://refhub.elsevier.com/S0378-4290(24)00264-8/sbref62
https://doi.org/10.3390/rs12081284
https://doi.org/10.1109/JSTARS.2011.2106198
https://doi.org/10.1109/JSTARS.2011.2106198
https://doi.org/10.1016/j.eja.2023.126885
https://doi.org/10.1016/j.eja.2023.126885
https://doi.org/10.1109/TGRS.2012.2194156
https://doi.org/10.1109/JSTARS.2016.2639043
https://doi.org/10.1109/JSTARS.2016.2639043
https://doi.org/10.1016/j.agrformet.2005.05.007
https://doi.org/10.1016/j.agrformet.2005.05.007
https://doi.org/10.1109/LGRS.2016.2546945
https://doi.org/10.1109/LGRS.2016.2546945
https://doi.org/10.1016/j.rse.2011.05.028
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/0034-4257(85)90097-5
https://doi.org/10.1016/0034-4257(85)90097-5
https://doi.org/10.1016/0034-4257(84)90010-5
http://refhub.elsevier.com/S0378-4290(24)00264-8/sbref74
http://refhub.elsevier.com/S0378-4290(24)00264-8/sbref74
https://doi.org/10.1109/TGRS.1985.289393
https://doi.org/10.1109/TGRS.1985.289393
https://doi.org/10.1016/j.agsy.2018.10.003
https://doi.org/10.1016/j.rse.2017.07.015
https://doi.org/10.1016/j.rse.2017.07.015
https://doi.org/10.1016/j.agrformet.2005.05.003
https://doi.org/10.1016/j.agrformet.2005.05.003
https://doi.org/10.3390/rs14163867
https://doi.org/10.3390/rs14163867
https://doi.org/10.3390/rs12203404
https://doi.org/10.3390/rs12203404
https://doi.org/10.3390/rs10091396
https://doi.org/10.3390/rs70201461
https://doi.org/10.3390/rs70201461
https://doi.org/10.1016/j.rse.2014.10.009
https://doi.org/10.1016/j.rse.2014.10.009
https://doi.org/10.1109/TGRS.1986.289689
https://doi.org/10.1109/JSTARS.2014.2322311
https://doi.org/10.1109/JSTARS.2014.2322311
https://doi.org/10.1016/j.isprsjprs.2016.02.010
https://doi.org/10.1016/j.rse.2014.12.014
https://doi.org/10.1016/j.rse.2014.12.014

	Planet’s Biomass Proxy for monitoring aboveground agricultural biomass and estimating crop yield
	1 Introduction
	2 Materials and Methods
	2.1 Planet’s Biomass Proxy
	2.1.1 Sentinel-1 data and the radar cross ratio
	2.1.2 Sentinel-2 and the NDVI
	2.1.3 Biomass Proxy retrieval algorithm

	2.2 Field validation datasets
	2.2.1 Mead, Nebraska experiment
	2.2.2 LTER Kellogg Biological Station

	2.3 Relations between the Biomass Proxy, crop biomass and yield
	2.4 Growing degree days

	3 Results
	3.1 Analysis of time series of ground-based fresh and dry biomass
	3.2 Biomass Proxy to monitor crop fresh biomass
	3.3 Biomass Proxy time series for crop benchmarking
	3.4 Biomass Proxy to assess crop yield
	3.4.1 Sensitivity of the correlations between Biomass Proxy and yield to the integration period
	3.4.2 Crop yield forecasting


	4 Discussion
	4.1 Biomass Proxy to monitor crop fresh biomass
	4.2 Biomass Proxy to early assess crop yield

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


