INFINITE PARTIAL SUMSETS IN THE PRIMES

By
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Abstract. We show that there exist infinite sets A = {ay,as,...} and
B ={by, by, ...} of natural numbers such that a; + b; is prime whenever 1 <i < j.

1 Introduction

In [9], Erd6s asked the question of whether, given a subset A of the natural numbers
N ={1,2,3,...} of positive upper density, there existed an infinite subset B of A
and a natural number ¢ such that b + b’ + ¢ € A for all distinct b, 5’ in B. This
conjecture was recently proven in [19], using techniques from ergodic theory and
topological dynamics. Itis natural to ask whether the same result holds if the set A is
replaced by the primes P = {2, 3, 5, ...}. Our first result is the observation that one
can answer this question affirmatively assuming the Dickson—Hardy-Littlewood
conjecture, which we now pause to recall.

Definition 1.1 (Admissible and prime-producing tuples). A tuple (hy, ..., hy)
of natural numbers is said to be an admissible tuple if it avoids at least one residue
class mod p for each prime p. A tuple (hy, ..., k) is said to be prime-producing
if there are infinitely many n such that n+ Ay, ..., n+ hy; are simultaneously prime.

It is easy to see that every prime-producing tuple must be admissible. In the
converse direction, we have

Conjecture 1.2 (Dickson—Hardy-Littlewood conjecture). Every admissible
tuple (hy, ..., hy) is prime-producing.

This conjecture is a special case of a conjecture of Dickson [7], with the
case k = 2 being an older conjecture of de Polignac [6]; the specific case of the
tuple (0, 2) is of course the infamous twin prime conjecture. In [16], Hardy and
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Littlewood proposed a more quantitative asymptotic for > _ A(n+hy) ... A(n+h)
which implies Conjecture 1.2, but we will not need this stronger conjecture here.

Conjecture 1.2 is immediate from the infinitude of primes when k = 1, but the

n<x

existence of even a single prime-producing pair (h;, h;) was only established
relatively recently by Zhang [24]. Shortly afterwards, Maynard [20] showed the
existence of prime-producing k-tuples for any k; indeed, every admissible k-tuple
contains a prime-producing /-tuple for some / >> logk. In [22] it was shown that
for k = 50 one can take / = 2.

Assuming Conjecture 1.2 one can show an analogue of the Erdohs question for
the primes:

Theorem 1.3 (Infinite restricted sumsets in the shifted primes). Assume Con-
Jjecture 1.2. Then there exists an infinite set B of primes such that b+ b’ + 1 is prime
for every distinct b, b’ € B.

Theorem 1.3 turns out to be easily established by iteratively applying Conjec-
ture 1.2 to increasingly large admissible tuples; we give the short proof in Section 2.
We remark that it was previously shown (among other! things) in [12] that Con-
jecture 1.2 implied that the primes contained the sumset A + B of two infinite
sumsets A, B; Theorem 1.3 provides a new proof of this claim. Also, it follows
from the results in [1] (see also [13, Examples 4, 9]; the companion results in [14],
[15] are not needed here in this “complexity one” situation) that the above theorem
holds unconditionally if “infinite set” is replaced by “arbitrarily large finite sets”.

Remark 1.4. In view of the results in [19], one might also ask if Theorem 1.3
continued to hold if one replaced the set of primes P by some positive (relative)
density subset. However, this is not the case. Indeed, if A was any subset of the
primes for which there existed an infinite set B for which b+ b' + 1 € A for all
distinct b, b’ € B, then the set A would necessarily contain bounded gaps infinitely
often (since if by, b, are two elements of B then A must contain infinitely many
pairs of the form n + by, n + by). However, it is easy to construct a subset A of
the primes of relative density 1 whose gaps between consecutive entries goes to
infinity; for instance, if #: R* — R* is any function with l’z)(gl — 0Oand A(x) > o0
as x — 00, one can take A to consist of all primes p > 100 such that there are no
primes in the interval [p + 1, p+ h(p)], since it follows from [11, Theorem 2] that A
has relative density 1 amongst all the primes, yet the gaps between consecutive
entries of A clearly go to infinity. A similar remark applies to Theorem 1.5 (or
Corollary 1.6) below.

!For instance, Granville also shows assuming Conjecture 1.2 that the primes contain k-fold sumsets
Aj +---+ A of infinite sets Ay, ..., A for any k.
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Now we turn to what one can say unconditionally, i.e., without assuming
Conjecture 1.2. Our main result in this direction is

Theorem 1.5 (Ascending chain of prime-producing tuples). There exists
an infinite sequence hy < hy < --- of natural numbers, such that the k-tuple
(hi, ..., h) is prime-producing for every k.

One can rephrase this theorem in an equivalent form:

Corollary 1.6 (Primes contain half of an infinite sumset). There exist infinite
sequences a; < ay < --- and by < by < --- of natural numbers such that a; + b;

is prime whenever 1 < i <.

Proof. Take a; = h; to be the sequence from Theorem 1.5. By that theorem,
for each j there exist infinitely many b; such that a; + b; is prime forall 1 <i <.
In particular, one can choose the b; to be increasing in j, and the claim follows. []

In the converse direction, itis immediate that Corollary 1.6 implies Theorem 1.5,
since the k-tuple (ay, ..., ar) is clearly prime-producing for every k. The abstract
equivalence of these results (with the primes replaced by a more general set) was
previously observed in [4]. In the language of [4], these results assert that the
primes are not an Ry/-set, while in the language of [23], they assert that the primes
are not a translation-finite set.”> Inserting Theorem 1.5 into the results of [23],
we also conclude that there exist bounded functions supported on the primes that
are not weakly almost periodic in £°°(Z). See [5] for further discussion of the
properties of translation-finite sets.

Corollary 1.6 also implies the result of Maynard [20] that arbitrarily long prime-
producing tuples exist. Indeed, Theorem 1.5 will be established by adapting the
sieve of Maynard [20] (as modified in [22], [2]), as well as using the intersectivity
lemma of Bergelson [3]; we do so in Sections 3, 4.

The proof of Corollary 1.6 in fact allows one to place the sequence a; inside
any specified infinite admissible set; for instance one could require the a; to be odd
square numbers if desired. See Proposition 5.1. As a consequence of this stronger
statement, one can establish that the orbit closure of the primes is uncountable; see
Corollary 5.2.

A similar result to Corollary 1.6, in which the a; + b; are required to be sums of
two squares rather than prime, was recently? established by McGrath [21, Theorem
1.4], with applications to the failure of quantum ergodicity for high dimensional

2This answers a question of Yemon Choi in mathoverflow.net/questions/3347 in the nega-

tive.
3We thank James Maynard for this reference.



378 T. TAO AND T. ZIEGLER

flat tori [17]. As with our result, one can place the ¢; inside any specified admissible
set, such as (any constant multiple of) the set of odd squares, though for technical
reasons the result in [21] requires that the a; are divisible by 4. The methods of
proof are similar (in particular relying on the Maynard sieve, the second moment
method, and the pigeonhole principle), and so it seems likely that the arguments
here could be adapted to give a slightly different* proof of the results in [21] (using
the half-dimensional version of the Maynard sieve developed in that paper).

1.1 Notation. Weuse X = O(Y), X < Y, or Y > X to denote the bound
|X| < CY for an absolute constant C, and if we say that X = o(Y) as N — oo, we
mean that |X| < ¢(N)Y for some quantity c¢(N) depending on N (and possibly some
other fixed parameters) that goes to zero as N — oo (holding all other parameters
fixed).

For any natural numbers b, W, we use b (W) to denote the residue class b+ WZ
in the cyclic group Z/WZ.

Acknowledgements. The first author is supported by NSF grant DMS-
1764034 and by a Simons Investigator Award. The second author is supported by
a grant from the Institute for Advanced Study and by ISF grant 2112/20. Part of
this research was conducted at the Institute for Advanced Study. We thank Joel
Moreira for discussions leading to Section 5, Vitaly Bergelson for informing us of
the reference [8], James Maynard for informing us of the reference [21], Yemon
Choi for supplying references on translation-finite sets, Mariusz Leméanczyk for
pointing out a gap in a previous version of the proof of Corollary 5.2, Joel David
Hamkins for providing an argument allowing us to strengthen that corollary, and
Keiju Sono for a correction.

2 Proof of Theorem 1.3

For any k£ > 1, define a good k-tuple to be an increasing k-tuple (py, ..., px) of
primes 3 < p; < --- < pi of primes larger than three, such that p; + p; + 1 is prime,
pis1 —pi > 2 forall i > 1, and p; does not divide p; +2 forall 1 < i <j < k.
For instance, any prime p > 3 forms a good 1-tuple (p). The key proposition to
iterate is

4One technical difference is that the arguments in [21] require asymptotics for two-point correlations
associated to a weight function adapted to sums of two squares, whereas for our approach upper bounds

on these two-point correlations suffice, mainly thanks to our use of the Bergelson intersectivity lemma
which is not used in [21].
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Proposition 2.1 (Extending a good tuple). Assume Conjecture 1.2, and let
k > 1. Then any good k-tuple (p1, ..., px) can be extended to a good k + 1-tuple

P15 -+ Prs1)-

Proof. We first verify that the k+2-tuple (0, 2, p;+1, ..., pr+1) is admissible.
If p is a prime not equal to any of the py, ..., pi, then this k + 2-tuple avoids the
residue class 1 mod p. If instead p = p; for some 1 < i < k, then the k + 2-tuple
avoids the residue class —1 mod p;; this is clear for 0,2, p; + 1, ..., p; + 1 since
pi > 3, and also for p;+1, j > i since we are assuming that p; does not divide p; +2.
This establishes admissibility. Applying Conjecture 1.2, we can find n > p; + 2
such that n,n+2,n+p; +1,...,n+p; + 1 are all prime. Setting py; = n, we
conclude in particular that p; < --- < py1 1S a good tuple, as claimed. O

Iterating this proposition starting from (say) p; = 5, we can find an infinite
sequence p; < pp < --- of primes such that p; + p; + 1 is prime forall 1 < i < j,
and Theorem 1.3 follows.

Remark 2.2. One can view the above construction using the dynamical sys-
tems framework of [19] (and indeed our arguments were initially inspired by this
framework). Let X denote’ the orbit closure of the primes P, that is to say the
closure in the product topology of the shifts P + ¢, ¢ € Z of the primes, viewed as
elements of the Cantor space 22 = {A : A C Z}. This is a compact space endowed
with a shift homeomorphism 7: X — X defined by 7A = A — 1. Using the
quantitative form of the Hardy-Littlewood conjecture and standard upper bound
sieves, X can in fact be described explicitly as the collection of all shifts P + ¢
of P, together with the collection of all admissible tuples of integers (either finite
or infinite). Following [19, Definition 2.1], define an Erdés progression to be
a triple (xg, x1, x2) of points xg, x1, X € X, such that there exists an increasing se-
quence n; < ny < --- of integers such that 7%xy — x; and T"x; — x; asi — oo.
By repeating the arguments at the end of [19, §2], to establish the conclusion of
Theorem 1.3, it suffices to find an Erdds progression (P, x;, xo) with x; in the open
cylinder set

{ACZ:0eA}

and x; in the open cylinder set
{ACZ:1€eA}

(thatis to say, O € x; and 1 € x). One can check that the construction given above
indeed generates an Erd6s progression (P, x;, x;) with

{O,p1+1,p2+1,...}cx1

SThis space is denoted X1, in [8].
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and
{1} Cx2

(indeed, under a quantitative form of the Hardy—Littlewood conjecture and standard
upper bound sieves, one can turn these inclusions into equalities).

3 An application of Bergelson’s intersectivity lemma

We now begin the proof of Theorem 1.5. We will need the following application
of the Maynard sieve, which we will prove in later sections.

Proposition 3.1 (Application of Maynard sieve). Let Ji,...,J; > 2 be
natural numbers, and let (h;j)1<i<r,1<j<j, be an admissible Zf:l Ji-tuple. Let
01, ...,0; > 0 be real numbers with Zf:l 6; < 1. Then if N is sufficiently large
depending on all previous parameters, there exists a probability measure v on the
integers in [N, 2N] such that
v({n n+ h,',j € T}) > 6,‘ lof"]i

14

foralll <i<landl <j<J;, and

log J;i\2
v({n:n+hij,n+h;ePh < (9i Of )

foralll <i<landl <j<j <.

Let us assume this proposition for now and complete the proof of Theorem 1.5.
Set J; = 2% forall i > 1, let £ c N? denote the countably infinite index setv

T={G,)eN":1<j<J}

and let (h; ;)i jex be an infinite sequence of distinct odd squares, which we can
assume to be increasing in the sense that /; ; < hy j whenever i < i’. The point of
using odd squares is that any finite tuple of the (%; ;) jex is necessarily admissible,
since for every odd prime p there is at least one quadratic nonresidue mod p. By the
preceding proposition with §; := 27, we can find a sequence N going to infinity
as I — oo, and a probability measure v; on the integers in [N;, 2N,] for every 1,
such that for each I we have

3.1 vi{n:n+hijeP})> ;

1

foralll <i</land1 <j<J;,and

1
(32) V[({I’l : n+hiJ,n+hiJ/ S iP}) < J2

foralll <i</landl <j<j <J.
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Next, we apply a variant of the Furstenberg correspondence principle [10] to
pass to a suitable limit as I — co. Consider the map ¢: N — 2% defined by

¢(n) ={(G,j)) e X :n+hj P},

and let u; = ¢,v; be the (Borel) probability measure on the Cantor space 2*
formed by pushing forward v; by ¢; thus

wi(E) =vi{n: ¢(n) € E}

for any measurable E C 2*. In particular, if we let E;; C 2* denote the (clopen)
events

E;ij={A €2 :(i,)) € A},
then from (3.1), (3.2) we have

1
(3.3) wi(Eij) > 7,
foralll <i</land1 <j < J;,and
1
(34) ,uI(E,-’j N Ei,j') << ]2

foralll <i</landl <j<j <.

By the Banach—Alaoglu theorem, there exists a (Borel) probability measure u
on 2% that is a limit point (in the vague topology) of the u;. In particular,
from (3.3), (3.4) we have

1
(3.5) u(E;j) > 7
foralli > land 1 <j < J;, and
1
(3.6) wEijNE; ;) < P

foralli>1land1l <j<j <J.
Now we use the second moment method (as in [2]). For each i > 1, we have
from (3.5), (3.6) that

Ji 7,
/ ZlEi.jdf“ > =1
2= o Ji

and
Ji

.

2 J? Ji
lE,.,j> du < J’2 +/ > g, du
. 2% 7
i j=1

Ji
<</ 1r, du.
2]21: 5, dp

1
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Since Eﬁl L, is supported on the event

we have from Cauchy—Schwarz that

Ji 2 Ji 2
</ §:1Ew.du) < uE) | <§:1Eﬁ) d.
2% = 2% .
J=1 J=1

Putting these inequalities together, we conclude that
u(E) > 1

for all 7.
Now we invoke the following result of Bergelson [3]:

Lemma 3.2 (Bergelson intersectivity lemma, [3, Theorem 1.1]). Let
E\, Ey, E5, ... be events in a probability space (X, u) such that

il‘l_lfﬂ(E,-) > 0.
Then there exists 1 < i} < iy < --- such that
wE;N---NE)H)>0
for all k. In fact one can take the set {iy, i3, ...} to have positive upper density.
Applying this lemma, we can find 1 <i; <i; < --- such that
wE;N---NE)H)>0

for all k. By repeated application of the pigeonhole principle, we may thus find
1 <j, <J; forall r > 1 such that

#(Eij O --- N Ei ) > 0
for all k. For each such &, we conclude from vague convergence that
wi(Eijy N NE; ;) >0

for infinitely many /. This implies that for infinitely many I, there exists
n € [Ny, 2N;] such that

n+hi|,j|9--'9n+hik,jk e P.
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Since the N; go to infinity as I — oo, we conclude that the tuple (%;, ;,, ..., hij,)
is prime-producing for every k. This establishes Theorem 1.5 assuming Proposi-
tion 3.1.

It remains to establish Proposition 3.1. This will be done in the next section.

Remark 3.3. We did not utilize the conclusion that {ij, i3, ...} had positive
upper density, or equivalently that iz = O(k) for infinitely many k. If one does
so, and also optimizes the values of 8;, J;, one can ensure® that for any admissible
hy < hy < ---, there exists a subsequence h;, < h;, < --- with i < exp(k!+o)
for infinitely many k, such that 4;,, . . ., h;, is prime-producing for every k. Setting
the A; to be the odd squares (for instance), we can thus ensure that the sequence a;
in Theorem 1.6 obeys the bound a; < exp(i'*(V) for infinitely many i; we leave
the details to the interested reader. Any significant quantitative improvement to
the Maynard sieve would lead to improved bounds on the i; or the a;.

4 The Maynard sieve

We first present a version of the Maynard sieve [20] which is a slight variant of
the version presented in [2]. Let Jy, ..., J;, 6;, h; j, N be as in Proposition 3.1. We
define X; ¢ N? to be the finite set

L={G,)eN*:i<I;j<J}
Let F: [0, +00)F — R be a smooth compactly supported function be chosen later,
that is assumed to be not identically zero and of the form
4.1 F((tij)ipes) = Z H Foijti))
ach (i)ex;

for some finite index set A and some smooth compactly supported functions
F,.j: [0, +00) = R such that

1
4.2) > suplr: Foiy #0h <.
(.NeX;
We define the sieve weights
, logd; ;

4.3) A ipes, = H /‘(di’f)z H Faaial'( lo ]\}/)

- - g

(i,Hex; a€A (i,))ex;

and then define the integral quantity
o o
I(F) = / e / F((t )i jes,) H dt;;.
0 0 (e

OWe thank Freddie Manners and Vitaly Bergelson for suggesting this refinement.
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Also, for any (i1, j;) € X;, we define the integral quantity
2

Jiijn(F) = /0 /0 ( /0 F((fi,j)a,j)ez,)dfil,h) I  auw

@NeZN\ {10}

and similarly for any distinct (i1, j), (i2,j2) € X;, we define the integral quantity

Ly i), G2 i) (F)
00 00 0o oo 2

:=/ / </ / F((ti )i jesz,) dtil,jldfinz) H dt.
0 0 o 70 DEZN (141, (2472))

We set’
W= H p-
p<logloglog N
Since (h; j)i jes, 1s admissible, we see from the Chinese remainder theorem that
we may find a residue class b (W) (depending on N, of course) such that b+h; ; (W)
is a primitive residue class for all (i, j) € X;. Fix this choice of b. We let

denote the cardinality of X;, and introduce the quantity
w

_ 0
w

The following proposition is a slight variant of [2, Lemma 4.5], and is proven

B : N.

in essentially the same fashion.

Proposition 4.1 (Maynard sieve). If w: N — R* denotes the sieve weight

2
w() = Incn<onn=b (W)< E i(d,-d-)(i,ﬁez,)
(dij)ijes;dijlnth N, )eX,

then one has the estimates

(4.4) > w(n) = (1+o(1)) x B~ I(F),

n

N
(45) Z l:p(l’l + h(,’l’jl))u}(l’l) = (1 + 0(1)) WB_kJ(il’jl)(F)’

N &
B L, i), (ianjn) (F)s

(4.6) Z Lp(m + hg, j) Lp(n + hg, jp))wn) K W

for all distinct (iy, j1), (i2,j2) € X in the limit as N — oo (keeping all other

parameters fixed).

7One can in fact work with significantly larger values of W if desired (as large as a small power
of N), as long as one excludes primes associated with a potential exceptional modulus: see [2].
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Sketch of proof. The first asymptotic (4.4) follows from expanding out the
weight w(n) and applying [22, Theorem 3.6(i)] much as in the calculations after
[22, (85)]. The second asymptotic (4.5) similarly follows from [22, Theorem 3.5(i)]
(with 8 = 1/2, as per the Bomberi—Vinogradov inequality), again following the
calculations after [22, (85)]. To obtain the final upper bound (4.6), we use the
argument from the proof of [2, Lemma 4.5(iii)], namely we note the pointwise
bound

Lp(n+ hg, j,))w(n) < w(n)

where © is defined as in w, except that the functions F, ;, ;, used (via (4.3)) to
define w are replaced with the function F, ;, ;, defined by

Foinjp (1) = Fo i j(0)G(2)

where G: [0, +00) — R is a fixed smooth function supported on [0, 1/10] which
equals 1 at the origin (the exact choice of G is not important as we are not trying
to optimize the implied constant in (4.6)). Inserting this bound, we can bound
the left-hand side of (4.6) by the left-hand side of (4.5) (with w replaced by @),
and then by repeating the calculations used to prove (4.5) (as in the proof of [2,
Lemma 4.5(iii)]) we obtain the desired bound. O

As a corollary of this proposition, if we take v to be the probability measure on
[N, 2N] with density

w(n)
>, w(n)’

then for N sufficiently large, we have

Ja, in(F
“.7) v({n:n+hi g, € P> %Z}() )
and

Ly j). (i) (F
(4.8) v({n:n+hijn+hyePh) K 1inu(iz2) (F)

I(F)
for all distinct (i1, j1), (i2, j2) € Z;.

For any fixed i, we can use an argument from [2] (which in turn is based on
calculations in [20]). To use these bounds, we use a further lemma from [2] to
construct a suitable preliminary weight function F; for each index i.

Lemma 4.2 (Maynard sieve weight). For each i = 1,...,1, there exists a
smooth compactly supported function F; : [0, +00)’ — R, not identically zero, of
the form

Ji
Fitin, ... 1) = Z HFa,i,j(fi,j)

aEA,' j=1



386 T. TAO AND T. ZIEGLER

or some smooth compactly supported F, ; ;: [0, +00) — and some finite index
th pactly supported F ; ;: [0 R* and te ind.
set A;, such that

J.
d 1
>_suplr: Fuif #0b< o
Jj=1
forall o € A;, and such that
logJ,

“I(F)

Jijp(Fi
I > J

and .
ogJ;
Ly, (Fi) K ( P ’) I(F)
for all distinct j,j € {1,...,J;}, where the quantities I(F;),J;(F;) and
L j.i)(Fi) are defined similarly to 1(F), Jg, j)(F), L, ji).jn(F) but with the
index set X replaced by the slice {(i,j): 1 <j < J;}.

Proof. One can assume J; to be large, as the claim is trivial for bounded J; > 2.
The claim now follows from [2, Lemma 4.6] (with k = J; and p = 6 = 1/10, say)
and some obvious relabeling. (]

If one now defines

1
F((tij)ijes,) = H Fi(ti1/0i, ..., t.5,/0),
i=1
then one easily verifies that F is of the required form (4.1) (with the condition (4.2)
being obeyed), and from Fubini’s theorem and a change of variables one has

lo J,‘
Jap(F) > 0,0 1)

1

and looJ

ogJ;

L j.ijpn(F) < (9i J. '

for all distinct (i, j), (i, /) € X;. Inserting these bounds into (4.7), (4.8), we obtain
Proposition 3.1 and hence Theorem 1.5.

)ZI(F)

S Consequences for the orbit closure of the primes

We thank Joel Moreira for suggesting the following remarks.

The orbit closure X of the primes in Remark 2.2 is clearly contained in the
union of the set 72P = {P + ¢ : t € 7} of finite translates of the primes, and the
collection A of all (finite and infinite) admissible subsets of Z; these sets are disjoint
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since the primes are not admissible (they do not avoid any residue class mod 2).
Observe that a finite tuple is prime-producing if and only if it is contained in an
element of X N A. As mentioned in the previous remark, the quantitative form of
the Hardy-Littlewood prime tuples conjecture would imply (using standard upper
bound sieves) that in fact X = T%P U A; see also [8, Remark 1.2] for an alternate
proof. Of course, this statement is out of reach unconditionally; even showing that
{0, 2} for instance was in X would imply the twin prime conjecture (and is morally
equivalent to it). However, our methods of proof do show

Proposition 5.1. Let A be an infinite admissible set of integers. Then there
exists an infinite subset A’ of A that is contained in X. In particular, X contains at
least one infinite admissible set.

This can be compared with the result of Maynard [20] that any finite admissible
k-tuple contains a prime-producing subtuple of cardinality > log .

Proof. (Sketch) Repeat the proof of Theorem 1.5, but with all the /; ; chosen
from A (rather than from the odd squares). The Maynard sieve calculations used
to prove Proposition 3.1 also yield the additional bound

v({n:n+heP})=0()

as N — oo for any fixed & equal to any of the 4, ;; in fact the right-hand side
can be replaced with O(B~') (where the implied constants can depend on the
parameters I, J;, h;j, 6;). The proof of Theorem 1.5 then produces an infinite
sequence h;, j,, hi, j,, ... in A with the property that for any k, there exist infinitely
many » such that

n+hil,jl,...,n+him eP

but also that n+ h ¢ P for any A in {—k, ..., k} not equal to any of the £, ;. Taking
weak limits of P — n, we conclude that the orbit closure of X contains a subset of

A that contains all of the &; j,, h, j,, . . ., and is hence infinite, giving the claim. [

This proposition has the following corollary, answering a question of Marius
Lemancyzk (private communication):

Corollary 5.2. Every infinite admissible subset A of integers contains a family
of infinite subsets in X of the cardinality of the continuum. In particular, X is
uncountable.

We remark that the uncountability of A was previously observed in [8, Re-
mark 2.41].
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Proof. We use an argument of Joel David Hamkins.®? Use the elements of the
countably infinite set A to enumerate the entries of an infinite binary tree B. The
number of branches of this tree has the cardinality of the continuum. Each branch
determines an infinite subset A’ of A, which inherits the admissibility of A, thus by
Proposition 5.1 contains a further infinite set A” in X. Since any two branches of
B have only finitely many nodes in common, the sets A” are all distinct, and the
claim follows.

Remark 5.3. An alternate way to prove Corollary 5.2 (communicated to us by
Mariusz Lemanczyk and Forte Shinko) proceeds by first using Proposition 5.1 and a
variant of the Cantor diagonal argument to show that A contains uncountably many
subsets in X, and then appealing to the Cantor—-Bendixon theorem [18, Theorem
6.5] to show that this family of subsets (being a closed uncountable subset of a
Cantor space) contains a non-empty perfect set and hence has the cardinality of
the continuum.
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