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Abstract. We prove an extension of the Moore–Schmidt theorem on the triviality of the

first cohomology class of cocycles for the action of an arbitrary discrete group on an

arbitrary measure space and for cocycles with values in an arbitrary compact Hausdorff

abelian group. The proof relies on a ‘conditional’ Pontryagin duality for spaces of abstract

measurable maps.
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1. Introduction

1.1. The countable Moore–Schmidt theorem. Suppose that X = (X, �X, μ) is a proba-

bility space, thus �X is a σ -algebra on X and μ : �X → [0, 1] is countably additive with

μ(X) = 1. If Y = (Y , �Y ) is a measurable space and f : X → Y is a measurable map,

we define the pullback map f ∗ : �Y → �X by

f ∗E := f −1(E)

for E ∈ �Y , and then define the pushforward measure f∗μ on Y by the usual formula

f∗μ(E) := μ(f ∗E).

For reasons that will become clearer later, we will refer to measurable spaces and mea-

surable maps as concrete measurable spaces and concrete measurable maps respectively;

this creates a category CncMbl. We define Aut(X, X, μ) to be the space of all concrete

invertible bimeasurable maps T : X → X such that T∗μ = μ; this is a group. If � = (�, ·)

is a discrete group, we define a (concrete) measure-preserving action of � on X to be a

group homomorphism γ �→ T γ from � to Aut(X, X, μ). If K = (K , +) is a compact

Hausdorff abelian group (it is likely that the arguments here extend to non-Hausdorff

compact groups by quotienting out the closure of the identity element, but the Hausdorff
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case already captures all of our intended applications and so we make this hypothesis

to avoid some minor technical issues), which we endow with the Borel σ -algebra �K =

B(K), we define a K-valued (concrete measurable) cocycle for this action to be a family

ρ = (ργ )γ∈� of concrete measurable maps ργ : X → K such that for any γ1, γ2 ∈ �, the

cocycle equation

ργ1γ2
= ργ1

◦ T γ2 + ργ2
(1)

holds μ-almost everywhere. A cocycle ρ is said to be a (concrete measurable) coboundary

if there exists a concrete measurable map F : X → K such that for each γ ∈ �, one has

ργ = F ◦ T γ − F (2)

μ-almost everywhere. Note that equation (2) (for all γ ) automatically implies equation (1)

(for all γ1, γ2), although the converse does not hold in general.

It is of interest to determine the space of all K-valued concrete measurable cobound-

aries. The following remarkable result of Moore and Schmidt [22, Theorem 4.3] reduces

this problem to the case of coboundaries taking values in the unit circle T = R/Z, at least

under certain regularity hypotheses on the data �, X, K . More precisely, let K̂ denote the

Pontryagin dual of the compact Hausdorff abelian group K, that is to say the space of all

continuous homomorphisms k̂ : k �→ 〈k̂, k〉 from K to T.

THEOREM 1.1. ((Countable) Moore–Schmidt theorem) Let � be a discrete group acting

(concretely) on a probability space X = (X, �X, μ) and let K be a compact Hausdorff

abelian group. Assume furthermore:

(a) � is at most countable;

(b) X = (X, �X, μ) is a standard Lebesgue space (thus X is a Polish space, �X is the

Borel σ -algebra, and μ is a probability measure on �X);

(c) K is metrizable.

Then a K-valued concrete measurable cocycle ρ = (ργ )γ∈� on X is a coboundary if and

only if the T-valued cocycles 〈k̂, ρ〉 := (〈k̂, ργ 〉)γ∈� are coboundaries for all k̂ ∈ K̂ .

In fact, the results in [22] extend to the case when � and K are locally compact groups

(which are now assumed to be second countable instead of countable), and (〈k̂, ργ 〉)γ∈� is

only assumed to be a coboundary for almost all k̂ ∈ K with respect to some ‘full’ measure.

We will not discuss such extensions of this theorem here, but mention that the original

proof by Moore and Schmidt at this level of generality crucially relies on measurable

selection theorems.

The Moore–Schmidt theorem is a beautiful classification result which serves as a

relevant technical tool in ergodic theory and probability. It formulates a condition

for the triviality of the first cohomology class of cocycles—an important invariant of

measure-theoretic actions of groups—by describing the size of the set of characters

necessary and sufficient to test triviality. It is particularly helpful for understanding the

structure of cocycles. See e.g., [2, 4, 16] for applications in the structure theory of

non-conventional ergodic averages of multiple recurrence type, [1, 12] for applications
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to limit theorems in probability, and [3, 15, 23, 25] for some applications in other

classification and asymptotic results in ergodic theory.

We briefly sketch here a proof of Theorem 1.1. Using the ergodic decomposition

[11] (which takes advantage of the hypotheses (a), (b)), we may assume without loss of

generality that the action is ergodic. By definition, for each k̂ ∈ K̂ , there exists a realization

α
k̂

of an element of the group L0(X; T) of concrete measurable functions from X to T,

modulo μ-almost everywhere equivalence, such that

〈k̂, ργ 〉 = α
k̂
◦ T γ − α

k̂
(3)

μ-almost everywhere. For any k̂1, k̂2 ∈ K̂ , one sees from comparing equation (3) for

k̂1, k̂2, k̂1 + k̂2 that the function α
k̂1+k̂2

− α
k̂1

− α
k̂2

is �-invariant up to μ-almost sure

equivalence, and hence equal in L0(X; T) to a constant c(k̂1, k̂2) ∈ T by the ergodicity

hypothesis. Viewing T as a divisible subgroup of the abelian group L0(X; T) (that is, for

any x ∈ T and n ∈ N, there exists y ∈ T such that ny = x), a routine application of Zorn’s

lemma (we freely assume the axiom of choice in this paper) (see e.g., [14, pp. 46–47])

then lets us obtain a retract homomorphism w : L0(X; T) → T. If we define the modified

function α̃
k̂

:= αk − w(αk), then we have α̃
k̂1+k̂2

= α̃
k̂1

+ α̃
k̂2

μ-almost everywhere for

each k̂1, k̂2 ∈ K̂ . By hypothesis (c), K̂ is at most countable, and hence for μ-almost

every point x ∈ X, the map x �→ α̃
k̂
(x) is a homomorphism from K̂ to T, and hence

by Pontryagin duality takes the form α̃
k̂
(x) = 〈k̂, F(x)〉 for some μ-almost everywhere

defined map F : X → K , which one can verify to be measurable. One can then check that

ργ = F ◦ T γ − F

μ-almost everywhere, giving the claim.

1.2. The uncountable Moore–Schmidt theorem. The hypotheses (a), (b), (c) were used

in the above proof, but one can ask if they are truly necessary for Theorem 1.1. Thus,

we can ask whether the Moore–Schmidt theorem holds for actions of uncountable discrete

groups � on spaces X that are not standard Lebesgue, with cocycles taking values in groups

K that are compact Hausdorff abelian, but not necessarily metrizable. We refer to this

setting as the ‘uncountable’ setting for short, in contrast to the ‘countable’ setting in which

hypotheses such as (a), (b), (c) are imposed. Our motivation for this is to remove similar

regularity hypotheses from other results in ergodic theory, such as the Host–Kra structure

theorem [16], which rely at one point on the Moore–Schmidt theorem. This in turn is

motivated by the desire to apply such structure theory to such situations as actions of

hyperfinite groups on spaces equipped with Loeb measure, which (as has been seen in

such work as [13, 27]) is connected with the inverse conjecture for the Gowers norms in

additive combinatorics. We plan to address these applications in future work.

Unfortunately, a naive attempt to remove the hypotheses from Theorem 1.1 leads

to counterexamples. The main difficulty is the Nedoma pathology: Once the compact

Hausdorff abelian group K is no longer assumed to be metrizable, the product Borel

σ -algebra B(K) ⊗ B(K) can be strictly smaller than the Borel σ -algebra B(K × K), and

the group operation + : K × K → K , while still continuous, can fail to be measurable
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when K × K is equipped with the product σ -algebra B(K) ⊗ B(K): see Remark 2.6.

As a consequence, one cannot even guarantee that the sum f + g of two measurable

functions f , g : X → K remains measurable, and so even the very definition of a K-valued

measurable cocycle or coboundary becomes problematic if one insists on endowing K with

the Borel σ -algebra B(K).

Two further difficulties, of a more technical nature, also arise. One is that if X is no

longer assumed to be standard Lebesgue, then tools such as disintegration may no longer

be available; one similarly may lose access to measurable selection theorems when K is

not metrizable. The other is that if � is allowed to be uncountable or K is allowed to

be non-metrizable, then one may have to manipulate an uncountable number of assertions

that each individually hold μ-almost everywhere, but for which one cannot ensure that they

simultaneously hold μ-almost everywhere, because the uncountable union of null sets need

not be null.

To avoid these difficulties, we will make the following modifications to the setup of the

Moore–Schmidt theorem, which turn out to be natural changes to make in the uncountable

setting. The most important change, which is needed to avoid the Nedoma pathology, is

to coarsen the σ -algebra on the compact group K, from the Borel σ -algebra to the Baire

σ -algebra (see e.g. [6, Vol. 2] for a reference).

Definition 1.2. (Baire σ -algebra) If K is a compact space, we define the Baireσ -algebra

Ba(K) to be the σ -algebra generated by all the continuous maps f : K → R. We use KBa

to denote the concrete measurable space KBa = (K , Ba(K)).

Since every closed subset F of a compact metric space S is the zero set of a real-valued

continuous function x �→ dist(x, F), we see that the Baire σ -algebra Ba(K) of a compact

space K can equivalently be defined as the σ -algebra generated by all the continuous maps

into compact metric spaces; another equivalent definition of Ba(K) is the σ -algebra gen-

erated by closed Gδ sets. Clearly, Ba(K) is a subalgebra of B(K) which is equal to B(K)

when K is metrizable. However, it can be strictly smaller; see Remark 2.6. In Proposition

2.5, we will show that if K is a compact Hausdorff group, then the group operations on K

are measurable on KBa , even if they need not be on K. For this and other reasons, we view

KBa as the ‘correct’ measurable space structure to place on K when K is not assumed to

be metrizable. The observation that the Baire σ -algebra is generally better behaved than

the Borel σ -algebra in uncountable settings is well known; see for instance [9, §5.2].

To avoid the need to rely on disintegration and measurable selection, and to avoid

situations where we take uncountable unions of null sets, we shall adopt a ‘point-less’

or ‘abstract’ approach to measure theory, by replacing concrete measurable spaces (X, X)

with their abstract counterparts.

Definition 1.3. (Abstract measurable spaces) The category AbsMbl = Bool
op
σ of abstract

measurable spaces is the opposite category of the category Boolσ of σ -complete Boolean

algebras (or abstractσ -algebras). (This is analogous to how the category of Stone spaces

is equivalent to the opposite category of Boolean algebras, or how the category of

affine schemes is equivalent to the opposite category of the category of commutative

rings. One could also adopt a non-commutative probability viewpoint, and interpret the
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category of abstract probability spaces as the opposite category to the category of tracial

commutative von Neumann algebras, but we will not need to do so in this paper.) That

is to say, an abstract measurable space (that is, an object in AbsMbl) is a Boolean

algebra X = (X, 0, 1, ', (, ·) that is σ -complete (all countable families have meets and

joins), and an abstract measurable map f ∈ HomAbsMbl(X; Y) (that is, a morphism in

AbsMbl) from one abstract measurable spaceX to anotherY is a formal object of the form

f = (f ∗)op, where f ∗ : Y→ X is a σ -complete homomorphism, that is to say a Boolean

algebra homomorphism that also preserves countable joins: f ∗
∨∞

n=1 En =
∨∞

n=1 f ∗En

for all En ∈ Y. We refer to f ∗ as the pullback map associated to f. Here op is a formal

symbol to indicate use of the opposite category; the space HomAbsMbl(X; Y) is thus

in one-to-one correspondence with the space HomBoolσ (Y; X) of σ -complete Boolean

homomorphisms from Y to X. If f ∈ HomAbsMbl(X; Y) and g ∈ HomAbsMbl(Y;Z)

are abstract measurable maps, the composition g ◦ f ∈ HomAbsMbl(X;Z) is defined by

the formula g ◦ f := (f ∗ ◦ g∗)op (or equivalently (g ◦ f )∗ = f ∗ ◦ g∗). Elements of the

σ -complete Boolean algebraXwill also be referred to as abstract measurable subsets ofX.

We study the category of abstract measurable spaces in more detail in the followup

paper [17].

Note that any (concrete) measurable space (X, �X) can be viewed as an abstract mea-

surable space by viewing the σ -algebra �X as a σ -complete Boolean algebra in the obvious

manner (replacing set-theoretic symbols such as ∅, X, ∪, ∩ with their Boolean algebra

counterparts 0, 1, (, ') and identifying (X, �X) (by some abuse of notation) with �X,

and similarly any (concrete) measurable map f : X → Y between two measurable spaces

(X, �X), (Y , �X) can be viewed as an abstract measurable map in HomAbsMbl(X; Y ) =

HomAbsMbl(�X; �Y ) by identifying f with (f ∗)op, where f ∗ : �Y → �X is the pullback

map. By abuse of notation, we shall frequently use these identifications in the following

without further comment. One can then easily check that the category CncMbl of concrete

measurable spaces is a subcategory of the category AbsMbl of abstract measurable spaces

(in particular, the composition law for concrete measurable maps is consistent with that for

abstract measurable maps).

Example 1.4. Let pt be a point (with the discrete σ -algebra); this is a concrete measurable

space, which is identified with the abstract measurable space given by the σ -complete

Boolean algebra 2pt = {0, 1}. Then HomAbsMbl(pt; N) can be identified with N (with

every natural number n giving an abstractly measurable map n ∈ HomAbsMbl(pt; N) ≡

HomBoolσ (2N; {0, 1}) defined by n∗E = 1n∈E for E ⊂ N).

An important further example for us of an abstract measurable space (that is not, in

general, represented by a concrete measurable space) will be as follows. If (X, �X, μ) is a

measure space, we define the (opposite) measure algebra Xμ to be the abstract measurable

space �X/Nμ, where Nμ := {A ∈ X : μ(A) = 0} is the σ -ideal of μ-null sets, thus the

abstract measurable subsets of Xμ are equivalence classes [A] := {A′ ∈ X : A	A′ ∈ Nμ}

for A ∈ X. We call [A] the abstraction of A and A a representative of [A].

Informally, the measure algebra Xμ is formed from X by ‘removing the null sets’

(without losing any sets of positive measure); this is an operation that does not make sense
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on the level of concrete measurable spaces, but is perfectly well defined in the category

of abstract measurable spaces. The measure μ can be viewed as a countably additive

map from the measure algebra Xμ to [0, +∞]. There is an obvious ‘inclusion map’ ι ∈

HomAbsMbl(Xμ; X) ≡ HomBoolσ (�X; �X/Nμ), which is the abstract measurable map

defined by setting ι∗A := [A] for all A ∈ X; this is a monomorphism in the category of

abstract measurable spaces.

If f : X → Y is a concrete measurable map, we refer to [f ] := ι ◦ f ∈ HomAbsMbl

(Xμ; Y ) as the abstraction of f, and f as a realization of [f ]; chasing all the definitions,

we see that [f ]∗E = [f ∗E] for all measurable subsets E of Y. Note that if f : X → Y ,

g : X → Y are concrete measurable maps that agree μ-almost everywhere, then [f ] = [g].

The converse is only true in certain cases: see §5. Furthermore, there exist abstract

measurable maps in HomAbsMbl(Xμ; Y ) that have no realizations as concrete measurable

maps from X to Y; again, see §5. As such, HomAbsMbl(Xμ; Y ) is not equivalent, in general,

to the space L0(X; Y ) of concrete measurable maps from X to Y up to almost everywhere

equivalence, although the two spaces are still analogous in many ways. Our philosophy is

that HomAbsMbl(Xμ; Y ) is a superior replacement for L0(X; Y ) in uncountable settings,

as it exhibits fewer pathologies; for instance, it behaves well with respect to arbitrary

products, as seen in Proposition 3.3, whereas L0(X; Y ) does not (see Example 5.2). The

main drawback of working with Xμ is the inability to use ‘pointwise’ arguments; however,

it turns out that most of the tools we really need for our applications can be formulated

without reference to points. (Here we follow the philosophy of ‘conditional set theory’ as

laid out in [8].)

Example 1.5. Let X be the unit interval [0, 1] with the Borel σ -algebra and Lebesgue

measure μ. Then HomAbsMbl(pt; Xμ) can be verified to be empty. Thus Xμ contains no

‘points’, which explains why one cannot use ‘pointwise’ arguments when working with

Xμ as a base space. Note this argument also shows that Xμ is not isomorphic to a concrete

measurable algebra.

Define Aut(Xμ) to be the group of invertible elements T = (T ∗)op of HomAbsMbl

(Xμ; Xμ). Any element of Aut(X, X, μ) can be abstracted to an element of Aut(Xμ);

in fact, the abstraction lies in the subgroup Aut(Xμ, μ) of Aut(Xμ) consisting of maps T

that also preserve the measure, T∗μ = μ, but we will not need this measure-preservation

property in our formulation of the Moore–Schmidt theorem. We also remark that there can

exist elements of Aut(Xμ, μ) that are not realized by a concrete element of Aut(X, X, μ).

(For a simple example, let X = {1, 2, 3}, let X be the σ -algebra generated by {1}, {2, 3},

and let μ assign an equal measure of 1/2 to {1} and {2, 3}. Then there is an element of

Aut(Xμ, μ) that interchanges the equivalence classes of {1} and {2, 3}, but it does not arise

from any element of Aut(X, X, μ). One can also modify Example 5.3 to generate further

examples of non-realizable abstract measure-preserving maps; we leave the details to the

interested reader.) We believe that Aut(Xμ) (or Aut(Xμ, μ)) is a more natural replacement

for Aut(X, X, μ) in the case when X is not required to be standard Lebesgue. An abstract

action of a discrete (and possibly uncountable) group � on Xμ is defined to be a group

homomorphism γ �→ T γ from � to Aut(Xμ). Clearly, any concrete measure-preserving
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action of � on X also gives rise to an abstract measure-preserving action on Xμ, but there

are abstract actions that are not represented by any concrete one (even if one is willing

to work with ‘near-actions’ in which the composition law T γ1 ◦ T γ2 = T γ1γ2 only holds

almost everywhere rather than everywhere).

If (X, X, μ) is a probability space (not necessarily standard Lebesgue) and K is a

compact abelian group (not necessarily metrizable), then the measurable nature of the

group operations on KBa makes the space HomAbsMbl(Xμ; KBa) an abelian group: see

§3. If � is a (possibly uncountable) discrete group acting abstractly on Xμ, we define an

abstract K-valued cocycle to be a collection ρ = (ργ )γ∈� of abstract measurable maps

ργ ∈ HomAbsMbl(Xμ; KBa) such that

ργ1γ2
= ργ1

◦ T γ2 + ργ2

for all γ1, γ2 ∈ �. Note in comparison to equation (1) that we no longer need to introduce

the caveat ‘μ-almost everywhere.’ We say that an abstract K-valued cocycle is an abstract

coboundary if there is an abstract measurable map F ∈ HomAbsMbl(Xμ; KBa) such that

ργ = F ◦ T γ − F

for all γ ∈ �.

With these preliminaries, we are finally able to state the uncountable analogue of the

Moore–Schmidt theorem. As a minor generalization, we can also allow (X, X, μ) to be

an arbitrary measure space rather than a probability space; in particular, (X, X, μ) is

no longer required to be σ -finite, again in the spirit of moving away from ‘countably

complicated’ settings.

THEOREM 1.6. (Uncountable Moore–Schmidt theorem) Let � be a discrete group acting

abstractly on the measure algebra Xμ (viewed as an abstract measurable space) of a

measure space X = (X, X, μ), and let K be a compact Hausdorff abelian group. Then

an abstract K-valued cocycle ρ = (ργ )γ∈� on Xμ is an abstract coboundary if and only

if the T-valued abstract cocycles k̂ ◦ ρ := (k̂ ◦ ργ )γ∈� are abstract coboundaries for all

k̂ ∈ K̂ .

We prove this result in §4; the key tool is a ‘conditional’ version of the Pontryagin

duality relationship between K and K̂ , which we formalize as Theorem 3.6. Once this

result is available, the proof mimics the proof of the countable Moore–Schmidt theorem,

translated to the abstract setting. We avoid the use of the ergodic decomposition by

replacing the role of the scalars T by the invariant factor HomAbsMbl(Xμ; T)� .

While we believe that the formalism of abstract measure spaces is the most natural one

for this theorem, one can still explore the question of to what extent Theorem 1.6 continues

to hold if one works with concrete actions, cocycles, and coboundaries instead of abstract

ones. We do not have a complete answer to this question, but we give some partial results

in §§5, 6; in particular, we recover Theorem 1.1 as a corollary of Theorem 1.6.

Remark 1.7. If S is an arbitrary abstract measurable space, then by the Loomis–Sikorski

theorem [20, 26], S is isomorphic to X/N for some concrete measurable space (X, X)

and some null ideal N of X. In particular, S is isomorphic to Xμ, where μ is the (non-
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σ -finite) measure on X that assigns 0 to elements of N and +∞ to all other elements.

Thus in Theorem 1.6, one can replace the measure algebra Xμ by an arbitrary abstract

measurable space.

1.3. Notation. For any unexplained definition or result in the theory of measure

algebras, we refer the interested reader to [10], and for any unexplained definition or result

in the general theory of Boolean algebras, to [21, Part 1].

If S is a statement, we use 1S to denote its indicator, equal to 1 when S is true and 0 when

S is false. (In some cases, 1 and 0 will be interpreted as elements of a Boolean algebra,

rather than as numbers.)

2. The Baire σ -algebra

In this section, we explore some properties of the measurable spaces KBa = (K , Ba(K))

defined in Definition 1.2. We have already observed that Ba(K) = B(K) when K is a

metric space. The Baire σ -algebra also interacts well with products.

LEMMA 2.1. (Baire σ -algebras and products) Let K be a closed subspace of a product

SA :=
∏

α∈A Sα of compact spaces Sα . Then Ba(K) is the restriction of the product

σ -algebra BA :=
⊗

α∈A Ba(Sα) to K:

Ba(K) = {E ∩ K : E ∈ BA}.

Equivalently, Ba(K) is the σ -algebra generated by the coordinate projections πα : K →

(Sα)Ba , α ∈ A.

We caution that this lemma does not assert that K itself lies in BA; see Remark 2.6

below for an explicit counterexample. Also note that the index set A is permitted to be

uncountable.

Proof. The collection of functions on K of the form fα ◦ πα with α ∈ A and fα : Sα →

R generate an algebra of continuous functions that separate points, and hence by the

Stone–Weierstrass theorem, the σ -algebra they generate is equal to Ba(K). The claim

follows. (We are indebted to the anonymous referee for this simplified proof.)

Lemma 2.1 combines well with the following theorem of Weil [28].

THEOREM 2.2. (Weil’s theorem) Every compact Hausdorff space is homeomorphic to a

closed subset of a product of compact metric spaces.

Lemma 2.1 also combines well with the following topological lemma.

LEMMA 2.3. Let K be a compact Hausdorff space, and let ρ = (ρα)α∈A be a family of

continuous maps ρα : K → Sα from K to compact Hausdorff spaces Sα . Suppose that the

ρα separate points, thus for every distinct k, k′ ∈ K , there exists α ∈ A such that ρα(k) �=

ρα(k′). We view ρ : K → SA as a map from K to SA by setting ρ(k) := (ρα(k))α∈A. Then

ρ(K) is a closed subset of SA, and ρ is a homeomorphism between K and ρ(K) (where we

give the latter the topology induced from the product topology on SA).
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Proof. Clearly ρ is continuous and injective (since the ρα separate points), so ρ(K) is

compact and hence closed in the Hausdorff space SA. Thus ρ : K → ρ(K) is a continuous

bijection between compact Hausdorff spaces; it therefore maps compact sets to compact

sets, hence is an open map, and hence is a homeomorphism as required.

In the case when K is a group, we can give a more explicit description of an embedding

ρ of the form described in Lemma 2.3.

COROLLARY 2.4. (Description of compact Hausdorff groups) Let K be a compact

Hausdorff group.

(i) There exists a family ρ = (ρα)α∈A of continuous unitary representations ρα :

K → Sα , α ∈ A, of K (thus each Sα is a unitary group and ρα is a continuous

homomorphism) such that ρ(K) is a closed subgroup of SA, and ρ : K → ρ(K)

is an isomorphism of topological groups. The σ -algebra Ba(K) is generated by the

representations ρα .

(ii) If K = (K , +) is abelian, and one defines the map ι : K → TK̂ by ι(k) :=

(〈k̂, k〉)
k̂∈K̂

, then ι(K) is a closed subgroup of TK̂ , and ι : K → ι(K) is an

isomorphism of topological groups. The σ -algebra Ba(K) is generated by the

characters k̂ ∈ K̂ . Furthermore, one can describe ι(K) explicitly as

ι(K) = {(θ
k̂
)
k̂∈K̂

∈ TK̂ : θ
k̂1+k̂2

= θ
k̂1

+ θ
k̂2

for all k̂1, k̂2 ∈ K̂}. (4)

Proof. For part (i), we observe from the Peter–Weyl theorem that there are enough

continuous unitary representations of K to separate points, and the claim now follows from

Lemmas 2.3 and 2.1.

For part (ii), we observe from Plancherel’s theorem that the characters k̂ : K → T for

k̂ ∈ K̂ separate points, so by Lemma 2.3, we verify that ι(K) is a closed subgroup of TK̂

and that ι : K → ι(K) is an isomorphism of topological groups, and from Lemma 2.1, we

see that Ba(K) is generated by the characters k̂ ∈ K̂ . As K is compact, the Pontryagin

dual K̂ is discrete, and by Pontryagin duality, K can be identified with the space of

homomorphisms k̂ �→ θ
k̂

from K̂ to T. This gives the description in equation (4).

As a consequence of Corollary 2.4, we have the following proposition.

PROPOSITION 2.5. (Group operations measurable in Baire σ -algebra) Let K = (K , ·)

be a compact Hausdorff group. Then the group operations · : KBa × KBa → KBa and

()−1 : KBa → KBa are measurable. In particular, if K = (K , +) is a compact Hausdorff

abelian group, then the group operations + : KBa × KBa → KBa and − : KBa → KBa

are measurable.

Proof. By Corollary 2.4(i), we may view KBa as a closed subgroup of a product of

unitary groups. The group operations are measurable on each such unitary group, and

hence measurable on the product, giving the claim.

Remark 2.6. (Nedoma pathology) Let K be the non-metrizable compact Hausdorff abelian

group K = TR, and let K	 ⊂ K × K be the diagonal closed subgroup K	 = {(k, k) :
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k ∈ K}. By Nedoma’s pathology [24], K	 is not measurable in B(K) ⊗ B(K). Indeed,

B(K) ⊗ B(K) consists of the union of B1 ⊗ B2 as B1, B2 range over countably generated

subalgebras of B(K). If K	 were in B(K) ⊗ B(K), we conclude on taking slices that all

the points in K lie in a single countably generated subalgebra of B(K), but the latter has

cardinality at most 2ℵ0 and the former has cardinality 22ℵ0
, leading to a contradiction. This

shows that B(K) ⊗ B(K) �= B(K × K), and also shows that in Lemma 2.1, K need not

be measurable in SA. Also, by comparing this situation with Proposition 2.5, we conclude

that B(K) �= Ba(K) in this case. This can also be seen directly: Ba(K) is the product

σ -algebra on TR, which is also equal to the union of the pullbacks of the σ -algebras of TI

for all countable subsets of I. In particular, a single point in K will not be measurable in

Ba(K), even though it is clearly measurable in B(K).

3. A conditional Pontryagin duality theorem

Throughout this section, X = (X, �X, μ) denotes a measure space; to avoid some

degeneracies, we will assume in this section that X has positive measure. We will use

the abstract measurable space Xμ as a base space for the formalism of conditional set

theory and conditional analysis, as laid out in [8] (although, as it turns out, we will not

need to draw upon the full power of this theory in this paper). (For instance, we will not

use the (measurable) topos-theoretic ability, which is powered by the completeness of Xμ

when viewed as a Boolean algebra (which is equivalent to Xμ being decomposable, and

in particular, is the case if (X, �X, μ) is σ -finite, but is an assumption we will not need

in our analysis), to glue together different conditional objects along a partition of the base

space Xμ, which allows one to develop, in particular, a theory of conditional metric spaces

and conditional topology.) In this formalism, many familiar objects such as numbers, sets,

and functions will have ‘conditional’ analogues which vary ‘measurably’ with the base

space Xμ; to avoid confusion, we will then use the term ‘classical’ to refer to the original

versions of these concepts. Thus, for instance, we will have classical real numbers and

conditional real numbers, classical functions and conditional functions, and so forth. The

adjectives ‘classical’ and ‘conditional’ in this formalism are analogous to the adjectives

‘deterministic’ and ‘random’ in probability theory (for instance, the latter theory deals

with both deterministic real numbers and random real variables). Our ultimate objective

of this section is to obtain a conditional analogue of the Pontryagin duality identity (4).

We begin with some basic definitions.

Definition 3.1. (Conditional spaces) If Y = (Y , Y) is any concrete measurable space, we

define the conditional analogue Cond(Y ) = CondXμ(Y ) of Y to be the space Cond(Y ) :=

HomAbsMbl(Xμ; Y ). Elements of Cond(Y ) will be referred to as conditional elements

of Y. Thus, for instance, elements of Cond(R) = HomAbsMbl(Xμ; R) are conditional reals,

and elements of Cond(N) = HomAbsMbl(Xμ; N) are conditional natural numbers. Every

(classical) element y ∈ Y gives rise to a constant abstract measurable map Cond(y) ∈

Cond(Y ), defined by setting Cond(y)∗A = 1y∈A for A ∈ Y (where the indicator 1y∈A is

interpreted as taking values in the σ -complete Boolean algebraXμ). We will usually abuse

notation by referring to Cond(y) simply as y. (This is analogous to how a constant function

x �→ c that takes a fixed value c ∈ Y for all inputs x ∈ X is often referred to (by abuse of
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notation) as c. Strictly speaking, for the identification of y with Cond(y) to be injective, Y

needs to separate points (that is, for any distinct y, y ′ in Y, there exists A ∈ Y that contains

y but not y′), but we will ignore this subtlety when abusing notation in this manner.)

Thus, for instance, if ρ = (ργ )γ∈� is an abstract K-valued cocycle, then each ργ is a

conditional element of KBa .

As discussed in the introduction, every concrete measurable map f : X → Y into a

concrete measurable space Y gives rise to a conditional element [f ] ∈ Cond(Y ). In the

case that X is a Polish space, this is an equivalence.

PROPOSITION 3.2. (Conditional elements of compact metric or Polish spaces) Let K be a

Polish space. Then every conditional element k ∈ Cond(K) has a realization by a concrete

measurable map F : X → K , unique up to μ-almost everywhere equivalence.

Proof. Since X has positive measure, Xμ is non-trivial, and hence, we may assume K is

non-empty (since otherwise there are no conditional elements of K).

First suppose that K is Polish. We may endow K with a complete metric d. The space

K is separable, and hence for every n ∈ N, there exists a measurable ‘rounding map’ fn :

K → Sn to an at most countable subset Sn of K with the property that

d(k′, fn(k
′)) f

1

n
(5)

for all k′ ∈ K . If k ∈ Cond(K) = HomAbsMbl(Xμ; K), then fn ◦ k ∈ Cond(Sn) =

HomAbsMbl(Xμ; Sn) (since fn can be viewed as an element of HomAbsMbl(K; Sn)).

By taking representatives of the preimages (fn ◦ k)∗{s} = k∗(f ∗
n ({s})) for each s ∈ Sn,

and adjusting these representatives by null sets to form a partition of X, we can find a

measurable realization Fn : X → Sn of fn ◦ k. Since d(fn(k
′), fm(k′)) f 1/n + 1/m for

all n, m ∈ N and k′ ∈ K , we have d(Fn(x), Fm(x)) f 1/n + 1/m for each n, m ∈ N and

μ-almost every x ∈ X. Thus, the sequence of measurable functions Fn : X → K is almost

everywhere Cauchy, and thus (see e.g. [18, Lemmas 1.10 and 4.6]) converges μ-almost

everywhere to a measurable limit F : X → K . To finish the claim of existence, it suffices

to show that [F ] = k, that is to say that

[F ∗(E)] = k∗(E)

for all Borel subsets E of K. Since this claim is preserved under σ -algebra operations, we

may assume without loss of generality that E is an open ball E = B(k0, r). Let 0 < r1 <

r2 < · · · < r be a strictly increasing sequence of radii converging to r. If m > 2, then since

the Fn converge almost everywhere to F, we have

lim sup
n→∞

[F ∗
n (B(k0, rm−1))] f [F ∗(B(k0, rm))] f lim inf

n→∞
[F ∗

n (B(k0, rm+1))]

in the σ -complete Boolean algebra Xμ. However, when n is sufficiently large depending

on m, we have from equation (5) that

[F ∗
n (B(k0, rm−1))] = k∗(f ∗

n (B(k0, rm−1))) g k∗(B(k0, rm−2))
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and

[F ∗
n (B(k0, rm+1))] = k∗(f ∗

n (B(k0, rm+1))) f k∗(B(k0, rm+2)),

and thus we have

k∗(B(k0, rm−2)) f [F ∗(B(k0, rm))] f k∗(B(k0, rm+2))

for all m > 2. Sending m → ∞, using the σ -complete homomorphism nature of both k∗

and F ∗, we conclude that

[F ∗(B(k0, r))] = k∗(B(k0, r))

as required.

For uniqueness, suppose that F , G : X → K are two measurable maps with [F ] = [G],

and thus F ∗E differs by a null set from G∗E for every measurable E ∈ K . If F is not equal

almost everywhere to G, then d(F , G) > 0 on a set of positive measure, and then by the

second countable nature of K, we may find a ball B for which F ∗B and G∗B differ by

a set of positive measure, a contradiction. Thus F is equal to Gμ-almost everywhere as

claimed.

Now we look at conditional elements of arbitrary products
∏

α∈A Sα = (
∏

α∈A Sα ,
⊗

α∈A Sα) of Polish spaces Sα = (Sα , Sα). Here, as is usual,
∏

α∈A Sα is the Cartesian

product, and the product σ -algebra
⊗

α∈A Sα is the minimal σ -algebra that makes all

the projection maps πβ :
∏

α∈A Sα → Sβ measurable for β ∈ A. We have the following

fundamentally important identity.

PROPOSITION 3.3. (Conditional elements of product spaces) Let (Sα)α∈A be a family of

Polish spaces Sα = (Sα , Sα). Then one has the equality

Cond

(

∏

α∈A

Sα

)

=
∏

α∈A

Cond(Sα)

formed by identifying each conditional element f of
∏

α∈A Sα with the tuple (πα ◦ f )α∈A.

Proof. It is clear that if f ∈ Cond(
∏

α∈A Sα), then (πα ◦ f )α∈A lies in
∏

α∈A Cond(Sα).

Now suppose that (fα)α∈A is an element of
∏

α∈A Cond(Sα). By Proposition 3.2, for each

α ∈ A, we can find a concrete measurable map f̃α : X → Sα such that fα = [f̃α]. Let

f̃ : X →
∏

α∈A Sα be the map

f̃ (x) := (f̃α(x))α∈A,

then f̃ is a concrete measurable map. Set f := [f̃ ], then f ∈ Cond(
∏

α∈A Sα). By chasing

all the definitions, we see that (πα ◦ f )∗E = f ∗
α E for any E ∈ Sα , and hence (fα)α∈A =

(πα ◦ f )α∈A.

It remains to show that each tuple (fα)α∈A is associated to at most one f ∈

Cond(
∏

α∈A Sα). Suppose that f , g ∈ Cond(
∏

α∈A Sα) are such that πα ◦ f = πα ◦ g

for all α ∈ A. Then we have f ∗E = g∗E for all generating elements E of the product

σ -algebra
⊗

α∈A Sα . As f ∗, g∗ are both σ -algebra homomorphisms, we conclude that

f ∗ = g∗ and hence f = g, giving the claim.
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The hypothesis that Sα are Polish cannot be relaxed to arbitrary concrete measurable

spaces, even when considering products of just two spaces; see Proposition A.1.

If f : Y → Z is a (classical) concrete measurable map between two concrete measur-

able spaces Y , Z, then we can define the conditional analogue Cond(f ) : Cond(Y ) →

Cond(Z) of this function by the formula

Cond(f )(y) := f ◦ y

for y ∈ Cond(Y ). By chasing the definitions, we also observe the functoriality property:

Cond(g ◦ f ) = Cond(g) ◦ Cond(f ) (6)

whenever f : Y → Z, g : Z → W are classical concrete measurable maps between

concrete measurable spaces Y , Z, W ; using the identification from Proposition 3.3, we

also have the identity:

(Cond(f1), Cond(f2)) = Cond((f1, f2)) (7)

for any classical concrete measurable maps f1 : K → S1, f2 : K → S2 from a measurable

space K to Polish spaces S1, S2, and more generally,

(Cond(fα))α∈A = Cond((fα)α∈A) (8)

whenever fα : K → Sα , α ∈ A are classical concrete measurable maps from a measurable

space K to Polish spaces Sα .

Suppose that S is a concrete measurable space and K is a (possibly non-measurable)

subset of S, then the measurable space structure on S induces one on K by restricting

all the measurable sets of S to K. The inclusion map ι : K → S is then measurable, and

thus Cond(ι) is a conditional map from Cond(K) to Cond(S), which is easily seen to be

injective; thus (by abuse of notation), we can view Cond(K) as a subset of Cond(S). One

can then ask for a description of this subset. We can answer this in two cases.

PROPOSITION 3.4. (Description of Cond(K)) Let S = (S, S) be a concrete measurable

space, let K be a subset of S with the induced measurable space structure (K , K ), and

view Cond(K) as a subset of Cond(S) as indicated above.

(i) If K is measurable in S, then Cond(K) consists of those conditional elements s ∈

Cond(S) of S such that s∗K = 1.

(ii) If S = SA =
∏

α∈A Sα is the product of compact metric spaces Sα with the product

σ -algebra, and K is a closed (but not necessarily measurable) subset of SA, then

Cond(K) consists of those conditional elements sA ∈ Cond(SA) of SA such that

s∗
Aπ−1

I (πI (K)) = 1 for all at most countable I ⊂ A, where πI : SA → SI is the

projection to the product SI :=
∏

i∈I Si .

Proof. For part (i), it is clear that if k ∈ Cond(K), then k∗K = 1. Conversely, if s∗K = 1,

then s∗Kc = 0, and hence s∗E = s∗F whenever E, F are measurable subsets of S

that agree on K (since s∗(E ∩ Kc) = s∗(F ∩ Kc) = 0). Thus, the σ -complete Boolean

homomorphism s∗ : S→ Xμ descends to a σ -complete Boolean homomorphism on K,

so that s ∈ Cond(K) as claimed.
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Now we prove part (ii). If k ∈ Cond(K) and I ⊂ A is at most countable, then the

image πI (K) is a compact subset of the metrizable space SI , and is hence measurable

in SI ; this also implies that π−1
I (πI (K)) is measurable in SA. Observe that Cond(πI )(k)

is an element of Cond(πI (K)), hence by (i), we have Cond(πI )(k)∗πI (K) = 1, and hence

k∗(π−1
I (πI (K))) = 1.

Conversely, assume that sA ∈ Cond(SA) is such that s∗
Aπ−1

I (πI (K)) = 1 for all at most

countable I ⊂ A. Let E be a measurable subset of SA that is disjoint from K. The product

σ -algebra
⊗

α∈A B(Sα) is equal to the union of the pullbacks π∗
I (

⊗

i∈I B(Si)) as I ranges

over countable subsets of A (since the latter is a σ -algebra contained in the former that

contains all the generating sets). Thus there exists an at most countable I such that E =

π−1
I (EI ) for some measurable subset EI of SI . Since E is disjoint from K, EI is disjoint

from πI (K), and hence E is disjoint from π−1
I (πI (K)). Since s∗

Aπ−1
I (πI (K)) = 1, we

conclude that s∗
AE = 0 for all measurable E disjoint from K. Thus s∗

AE = s∗
AF whenever

E, F are measurable subsets of SA that agree on K, and by arguing as in (i), we conclude

that s ∈ Cond(K), giving (ii).

As a corollary, we have the following variant of Proposition 3.3.

COROLLARY 3.5. (Conditional elements of product spaces, II) Let K , K ′ be compact

Hausdorff spaces. Then Cond(KBa × K ′
Ba) = Cond(KBa) × Cond(K ′

Ba).

The proof given below extends (with only minor notational changes) to arbitrary

products of compact Hausdorff spaces, not just to products of two spaces, but the latter

case is the only one we need in this paper. We also give a generalization of Corollary 3.5

in Proposition A.6, in the case that X is a probability space.

Proof. By Theorem 2.2 and Lemma 2.1, we may assume KBa is a subspace of a product

SA =
∏

α∈A Sα of compact metric spaces Sα , with the σ -algebra induced from the product

σ -algebra, and similarly that K ′
Ba is a subspace of S′

A′ =
∏

α∈A′ S′
α . From Proposition

3.4(ii), Cond(KBa) consists of those elements sA ∈ Cond(SA) such that s∗
Aπ−1

I (πI (K)) =

1 for all at most countable I ⊂ A. Similarly for Cond(K ′
Ba). From Lemma 2.1, we

have KBa × K ′
Ba = (K × K ′)Ba , and from Proposition 3.3, we have Cond(SA × S′

A′) =

Cond(SA) × Cond(S′
A′), so by a second application of Proposition 3.4, we see that

Cond(KBa × K ′
Ba) consists of those elements (sA, s′

A′) ∈ Cond(SA) × Cond(S′
A′) such

that

(sA, s′
A′)

∗(π−1
I (πI (K)) × π−1

I ′ (πI ′(K ′))) = s∗
Aπ−1

I (πI (K)) ' (s′
A′)

∗π−1
I ′ (πI ′(K ′)) = 1

for all at most countable I ⊂ A, I ′ ⊂ A′. The claim follows.

We can use conditional analogues of classical functions to generate various operations

on conditional elements of concrete measurable spaces. For instance, suppose we have two

conditional real numbers x, y ∈ Cond(R). Then we can define their sum x + y ∈ Cond(R)

by the formula

x + y = Cond(+)(x, y), (9)
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where we use Proposition 3.3 to view (x, y) as an element of Cond(R2), and + :

Cond(R2) → Cond(R) is the conditional analogue of the classical addition map + :

R2 → R. Similarly for the other arithmetic operations; one then easily verifies using

equations (6), (7) that the space Cond(R) of conditional real numbers has the structure of a

real unital commutative algebra. This is analogous to the more familiar fact that L0(X; R)

is also a real unital commutative algebra. A similar argument (using Proposition 2.5 and

Corollary 3.5) shows that if K is a compact Hausdorff group, then Cond(KBa) is also

a group, which will be abelian if K is abelian, and the group operations are conditional

functions in the sense given in [8].

Now we can give a conditional analogue of the Pontryagin duality relationship (4).

THEOREM 3.6. (Conditional Pontryagin duality) Let K be a compact Hausdorff abelian

group, and let ι : KBa → TK̂ be the map

ι(k) := (〈k̂, k〉)
k̂∈K̂

.

Then,

Cond(ι)(Cond(KBa)) = {(θ
k̂
)
k̂∈K̂

∈ Cond(T)K̂ : θ
k̂1+k̂2

= θ
k̂1

+ θ
k̂2

for all k̂1, k̂2 ∈ K̂},

(10)

where we use Proposition 3.3 to identify Cond(TK̂) with Cond(T)K̂ . Also, Cond(ι) :

Cond(KBa) → Cond(TK̂) is injective.

Proof. For all k̂1, k̂2 ∈ K̂ , we have from definition of the group structure on K̂ that

〈k̂1 + k̂2, k〉 = 〈k̂1, k〉 + 〈k̂2, k〉

for all classical elements k ∈ KBa . All expressions here are measurable in k, so the identity

also holds for conditional elements k ∈ Cond(KBa) (where, by abuse of notation, we write

Cond(〈k̂, ·〉) simply as 〈k̂, ·〉 for any k̂ ∈ K̂). From this, we see that if k ∈ Cond(KBa), then

Cond(ι)(k) lies in the set in the right-hand side of equation (10).

Now we establish the converse inclusion. By Corollary 2.4(ii), ι is a measurable

space isomorphism between KBa and ι(K) (where the latter is given the measurable

space structure induced from TK̂ ). Thus, Cond(ι) is injective and Cond(ι)(Cond(KBa)) =

Cond(ι(K)). Let θ = (θ
k̂
)
k̂∈K̂

be an element of the right-hand side of equation (10);

we need to show that θ ∈ Cond(ι(K)). By Proposition 3.4(ii), it suffices to show that

θ∗π−1
I (πI (ι(K))) = 1 for all at most countable I ⊂ K̂ . By replacing I with the group

generated by I, which is still at most countable, it suffices to do so in the case when I is an

at most countable subgroup of K̂ .

Let KI ⊂ TI denote the group of homomorphisms from I to T, and thus

KI = {(ξi)i∈I ∈ TI : ξi+j = ξi + ξj for all i, j ∈ I }.

This is a closed subgroup of TI . Because T is a divisible abelian group, we see from

Zorn’s lemma that every homomorphism from I to T can be extended to a homomorphism

from K̂ to T, and thus KI = πI (ι(K)). From the hypotheses on θ , we see that (θi)i∈I is

a conditional element of KI , which by Proposition 3.4(i) implies that (θi)
∗
i∈IKI = 1, and
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hence

θ∗π−1
I (πI (ι(K))) = θ∗π−1

I (KI ) = (θi)
∗
i∈IKI = 1,

giving the claim.

4. Proof of the uncountable Moore–Schmidt theorem

We now have enough tools to prove Theorem 1.6 by modifying the argument sketched

in the introduction to prove Theorem 1.1. We may assume that the space X has positive

measure, since if X has zero measure, then every abstract cocycle is trivially an abstract

coboundary.

Let � be a discrete group acting abstractly on the measure algebra Xμ of an arbitrary

measure space, and let K be a compact Hausdorff abelian group. If ρ = (ργ )γ∈� is an

abstract K-valued coboundary, then by definition, there exists F ∈ Cond(KBa) such that

ργ = F ◦ T γ − F

for all γ ∈ �, and hence for each k̂ ∈ K̂ , we have

〈k̂, ργ 〉 = 〈k̂, F 〉 ◦ T γ − 〈k̂, F 〉

for all γ ∈ K . Thus, each 〈k̂, ρ〉 is an abstract T-valued coboundary.

Conversely, suppose that for each k̂ ∈ K̂ , 〈k̂, ρ〉 is an abstract T-valued coboundary;

thus we may find α
k̂

∈ Cond(T) such that

〈k̂, ργ 〉 = α
k̂
◦ T γ − α

k̂
(11)

for all k̂ ∈ K̂ and γ ∈ �. If k̂1, k̂2 ∈ K̂ , then we have

〈k̂1 + k̂2, ργ 〉 = 〈k̂1, ργ 〉 + 〈k̂2, ργ 〉,

which, when combined with equation (11) and rearranged, gives

c(k̂1, k̂2) ◦ T γ = c(k̂1, k̂2),

where c(k̂1, k̂2) ∈ Cond(T) is the conditional torus element

c(k̂1, k̂2) := α
k̂1+k̂2

− α
k̂1

− α
k̂2

. (12)

Thus, if we define the invariant subgroup

Cond(T)� := {θ ∈ Cond(T) : θ ◦ T γ = θ for all γ ∈ �}

of Cond(T), then we have c(k̂1, k̂2) ∈ Cond(T)� for all k̂1, k̂2 ∈ K̂ .

We now claim that Cond(T)� is a divisible abelian group; thus for any θ ∈ Cond(T)�

and n ∈ N, we claim that there exists β ∈ Cond(T)� such that nβ = θ . However, one can

easily construct a concrete measurable map gn : T → T such that ngn(θ) = θ for all θ ∈ T

(for instance, one can set gn(xmod Z) := (x/n)mod Z for 0 f x < 1), and the claim then

follows by setting β := Cond(gn)(θ).

Since Cond(T)� is a divisible abelian subgroup of Cond(T), we see from Zorn’s lemma

that there exists a retract homomorphism w : Cond(T) → Cond(T)� (a homomorphism
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that is the identity on Cond(T)�); see e.g. [14, pp. 46–47]. For each k̂ ∈ K̂ , let α̃
k̂

∈

Cond(T) denote the conditional torus element

α̃
k̂

:= α
k̂
− w(α

k̂
). (13)

Applying w to both sides of equation (12) and subtracting, we conclude that

0 = α̃
k̂1+k̂2

− α̃
k̂1

− α̃
k̂2

(14)

for all k̂1, k̂2 ∈ K̂ . By Theorem 3.6, we conclude that (α̃
k̂
)
k̂∈K̂

lies in Cond(ι)(Cond(KBa)),

that is to say, there exists F ∈ Cond(KBa) such that

α̃
k̂

= 〈k̂, F 〉

for all k̂ ∈ K̂ . However, from equations (11), (13), we have

〈k̂, ργ 〉 = α̃
k̂
◦ T γ − α̃

k̂

for all k̂ ∈ K and γ ∈ �, and hence

〈k̂, ργ − (F ◦ T γ − F)〉 = 0 (15)

for all k̂ ∈ K̂ and γ ∈ �. Applying the injectivity claim of Theorem 3.6, we conclude that

ργ − (F ◦ T γ − F) = 0

for all γ ∈ �, and so ρ is an abstract K-valued coboundary as required.

5. Representing conditional elements of a space

Throughout this section, X = (X, �X, μ) is assumed to be a measure space of positive

measure.

If Y = (Y , �Y ) is a concrete measurable space, and f : X → Y is a concrete mea-

surable map, then the abstraction [f ] ∈ HomAbsMbl(Xμ; Y ) = Cond(Y ), defined in the

introduction, is a conditional element of Y, and can be defined explicitly as

[f ]∗E = [f ∗E]

for E ∈ �Y , where [f ∗E] ∈ Xμ is the abstraction of f ∗E ∈ �X in Xμ. Thus, for instance,

Cond(c) is the abstraction of the constant function x �→ c for all c ∈ Y . It is clear that if

f , g : X → Y are concrete measurable maps that agree μ-almost everywhere, then [f ] =

[g]. However, the converse is not true. One trivial example occurs whenY fails to separate

points.

Example 5.1. (Non-uniqueness of realizations, I) Let Y = {1, 2} with the trivial σ -algebra

�Y = {∅, Y }. Then, the constant concrete measurable maps 1 and 2 from X to Y are such

that [1] = [2], but 1 is not equal to 2 almost everywhere (if X has positive measure).

However, there are also counterexamples when �Y does separate points, as the

following example shows.
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Example 5.2. (Non-uniqueness of realizations, II) Let X = [0, 1] with Lebesgue measure

μ, and let Y := {0, 1}[0,1] with the product σ -algebra. Let f : X → Y be the function

defined by

f (x) := (1x=y)y∈[0,1]

for all x ∈ [0, 1], where the indicator 1x=y equals 1 when x = y and zero otherwise, and

let g : X → Y be the zero function g(x) := 0. Observe that f (x) �= g(x) for all x ∈ [0, 1],

so f and g are certainly not equal almost everywhere. However, the product σ -algebra in

Y = {0, 1}[0,1] is the union of the pullbacks of the σ -algebras on {0, 1}I as I ranges over

at most countable subsets of [0, 1]. Thus, if E is measurable in Y, then E = π−1
I (EI ) for

some measurable subset EI of {0, 1}I , where πI : {0, 1}[0,1] → {0, 1}I is the projection

map. The function πI ◦ f : X → {0, 1}I is equal to πI ◦ g = 0 almost everywhere, thus

f ∗E = (πI ◦ f )∗(EI ) is equal modulo null sets to g∗E = (πI ◦ g)∗EI . We conclude that

[f ] = [g], despite the fact that f , g are not equal almost everywhere.

Note in the above example, while f and g do not agree almost everywhere, each

component of f agrees with the corresponding component of g almost everywhere, and

it is the latter that allows us to conclude that [f ] = [g]; this can also be derived from

Proposition 3.3. In particular, this example shows that the analogue of Proposition 3.3

for the space L0(X; Y ) of concrete measurable functions modulo almost everywhere

equivalence fails.

For certain choices of Y, there exist conditional elements y ∈ Cond(Y ) of Y that are not

represented by any concrete measurable map.

Example 5.3. (Non-realizability) Let X = pt be a point (with counting measure μ), and

let Y := {0, 1}[0,1]\{0}[0,1] be the product space {0, 1}[0,1] with a point {0}[0,1] removed,

endowed with the measurable structure induced from the product σ -algebra. Observe that

the point {0}[0,1] = {0[0,1]} is not measurable in {0, 1}[0,1] (all the measurable sets in this

space are pullbacks of a measurable subset of {0, 1}I for some countable I ⊂ [0, 1], and

{0}[0,1] is not of this form). Hence, every measurable subset E of {0, 1}[0,1]\{0}[0,1] has

a unique measurable extension Ẽ to {0, 1}[0,1]. Now let y ∈ Cond(Y ) be the conditional

element of Y defined by

y∗E = 10[0,1]∈Ẽ
;

this is easily seen to be an element of Cond(Y ). However, it does not have any concrete

realization f : X → Y . For if we had y = [f ], then we must have 10[0,1]∈Ẽ
= 1f (0)∈E

for every measurable subset E of {0, 1}[0,1]. However, f (0) ∈ Y must have at least one

coefficient equal to 1, and is thus contained in a cylinder set E whose extension Ẽ does not

contain 0[0,1], a contradiction.

Nevertheless, we are able to locate some situations in which conditional elements of Y

are represented by concrete measurable maps. From Proposition 3.2, we already can do this

whenever Y is a Polish space. We can also recover a concrete realization of a conditional

element of KBa in the case that K is a compact Hausdorff abelian group.
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PROPOSITION 5.4. (Conditional elements of compact abelian groups) Let K be a compact

Hausdorff abelian group. Then every conditional element k ∈ Cond(KBa) has a realiza-

tion by a concrete measurable map f : X → KBa .

Proof. Fix K , k. Then 〈k̂, k〉 ∈ Cond(T) for each k̂ ∈ K̂ (where, by abuse of notation, we

identify 〈k̂, ·〉 with Cond(〈k̂, ·〉)). We will apply Zorn’s lemma (in the spirit of the standard

proof of the Hahn–Banach theorem) to the following setup. Define a partial solution to be

a tuple (G, (fg)g∈G), where the following hold.

• G is a subgroup of K̂ .

• For each g ∈ G, fg : G → T is a concrete measurable map with [fg] = 〈g, k〉.

• For each g1, g2 ∈ G, one has fg1+g2
(x) = fg1

(x) + fg2
(x) for every x ∈ X (not just

μ-almost every x).

We place a partial order on partial solutions by setting (G, (fg)g∈G) f (G′, (f ′
g′)g′∈G′) if

G f G′ and fg = f ′
g for all g ∈ G. Since ({0}, (0)) is a partial solution, and every chain of

partial solutions has an upper bound, we see from Zorn’s lemma that there exists a maximal

partial solution (G, (fg)g∈G). We claim that G is all of K̂ . Suppose this is not the case,

then we can find an element k̂ of K̂ that lies outside of G. There are two cases, depending

on whether nk̂ ∈ G for some natural number n.

First suppose that nk̂ �∈ G for all n ∈ N. By Proposition 3.2, we can find a concrete

measurable map f
k̂

: X → T such that [f
k̂
] = 〈k̂, k〉. We then define f

nk̂+g
: X → T for

all n ∈ Z\{0} and g ∈ G by the formula

f
nk̂+g

(x) := nf
k̂
(x) + fg(x). (16)

If we set

G′ = {nk̂ + g : n ∈ Z, g ∈ G} (17)

to be the group generated by k̂ and G, we can easily check that (G′, (fg′)g′∈G) is a partial

solution that is strictly larger than (G, (fg)g∈G), contradicting maximality.

Now suppose that there is a least natural number n0 such that n0k̂ ∈ G. We can

find a concrete measurable map f̃
k̂

: X → T such that [f̃
k̂
] = 〈k̂, k〉. This map cannot

immediately be used as our candidate for f
k̂

because it does not necessarily obey the

consistency condition n0f̃k̂
(x) = f

n0k̂
(x) for all x ∈ X. However, this identity is obeyed

for almost all x ∈ X. Let N be the null set on which the identity fails. We then set f
k̂
(x)

to equal f̃
k̂
(x) when x �∈ N and equal to gn0

(f
n0k̂

(x)) when x ∈ N , where (as in the

previous section) gn0
: T → T is a measurable map for which n0gn0

(θ) = θ for all θ ∈ T.

Then, [f
k̂
] = [f̃

k̂
] = 〈k̂, k〉. If one then defines f

nk̂+g
for all n ∈ Z and g ∈ G by the same

formula as before, we see that this is a well-defined formula for fg′ for all g′ in the group

in equation (17), and that (G′, (fg′)g′∈G) is a partial solution that is strictly larger than

(G, (fg)g∈G), again contradicting maximality. This completes the proof that G = K̂ .

By Pontryagin duality in equation (4), for each x ∈ X, there is a unique element f (x) ∈

K such that f
k̂
(x) = 〈k̂, f (x)〉 for all k̂ ∈ K̂ . This gives a map f : X → KBa ; as all the

maps 〈k, f 〉 = f
k̂

are measurable, we see that f is also measurable as the σ -algebra of KBa

is generated by the characters k̂. From Theorem 3.6, we see that [f ] = k, and the claim

follows.
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One can ask if the proposition holds for all compact Hausdorff spaces, not just the

compact Hausdorff abelian groups. We were unable to make significant headway on this

question, but can at least treat the simple case when the base space X is atomic. (We thank

the referee for pointing out a serious error in the results claimed in this direction in a

previous version of this manuscript.)

LEMMA 5.5. (The case of an atomic space) Let K be a compact Hausdorff space and

suppose that X is a σ -finite atomic measure space. Then every element of Cond(KBa) is

represented by a concrete measurable map from X to KBa , unique up to almost everywhere

equivalence.

Note that Example 5.3 shows that the requirement that K be compact cannot be

completely omitted in this lemma.

Proof. By contracting all atoms in X down to points and removing all null sets, we may

assume without loss of generality that X is countable and discrete, with all points having

positive measure. (In particular, X has no non-trivial null sets and all functions on X are

measurable.)

From Theorem 2.2, we see that any two distinct functions F , F ′ : X → K are separated

at at least one point x ∈ X by preimages of disjoint balls with respect to a continuous map

π : K → S into a metric space, and hence are also distinct as elements of Cond(KBa)

as such preimages are measurable and every point in X has positive measure. This gives

uniqueness. It remains to show that every conditional element k ∈ Cond(KBa) of KBa

arises from a function from X to K. By Theorem 2.2, we may assume that KBa is a

closed subset of SA =
∏

α∈A Sα for some metric spaces Sα , with the product σ -algebra.

For each α ∈ A, let πα : KBa → Sα be the coordinate map, then πα(k) ∈ Cond(Sα). By

Proposition 3.2, there is a unique function sα : X → Sα such that πα(k) = [sα]. If we set

s : X → SA to be the tuple s := (sα)α∈A, then by Proposition 3.3, we have k = [s]. By

Proposition 3.4, this implies that πI (s) takes values everywhere in πI (K) for all countable

I ⊂ A, and hence by the closed nature of K, we see that s takes values in K everywhere.

Thus, k has a representation as a measurable map from X to KBa as required.

6. Towards a concrete version of the uncountable Moore–Schmidt theorem

One can raise the conjecture of whether Theorem 1.6 continues to hold if we use concrete

actions, coboundaries, and cocycles.

Conjecture 6.1. (Concrete uncountable Moore–Schmidt conjecture) Let � be a discrete

group acting concretely on a measure space X = (X, �X, μ), and let K be a compact

Hausdorff abelian group. Then a concrete KBa-valued cocycle ρ = (ργ )γ∈� on X is an

concrete coboundary if and only if the T-valued concrete cocycles k̂ ◦ ρ := (k̂ ◦ ργ )γ∈�

are concrete coboundaries for all k̂ ∈ K̂ .

The ‘only if’ part of the conjecture is easy; the difficulty is the ‘if’ direction. If ρ =

(ργ )γ∈� is a concrete coboundary with the property that k̂ ◦ ρ is a concrete coboundary

for all k̂ ∈ K̂ , then the abstraction [ρ] := ([ργ ])γ∈� is clearly an abstract coboundary

with k̂ ◦ [ρ] = [k̂ ◦ ρ] an abstract coboundary for all k̂ ∈ K̂ . Applying Theorem 1.6, we
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conclude that [ρ] is an abstract coboundary, thus there exists an abstract measurable map

F ∈ HomAbsMbl(Xμ; KBa) such that

[ργ ] = F ◦ T γ − F

for all γ ∈ �. By Proposition 5.4, we may then find a concrete measurable map

F̃ : X → KBa such that [F̃ ] = F . If we then introduce the concrete coboundary

ρ̃ := (F̃ ◦ T γ − F̃ )γ∈� ,

then we see that [ρ] = [ρ̃]. If we could conclude that ρ = ρ̃, we could establish

Conjecture 6.1. We are unable to do this, but by subtracting ρ̃ from ρ, we see that to

prove the above conjecture, it suffices to do so in the case ρ̃ = 0, which implies that

[〈k̂, ργ 〉] = 0, or equivalently (by Proposition 3.2) that 〈k̂, ργ 〉 vanishes almost everywhere

for each k̂, γ . Thus, Conjecure 6.1 can be equivalently formulated as follows.

Conjecture 6.2. (Concrete uncountable Moore–Schmidt conjecture, reduced version) Let

� be a discrete group acting concretely on a measure space X = (X, �X, μ), and let K be a

compact Hausdorff abelian group. Let ρ = (ργ )γ∈� be a concrete KBa-valued cocycle on

X with the property that 〈k̂, ργ 〉 vanishes μ-almost everywhere for each k̂ ∈ K̂ and γ ∈ �.

Then ρ is a concrete coboundary.

One easily verified case of this conjecture is when K is metrizable. Then K̂ is countable,

so for each γ ∈ �, we see that for almost every x ∈ X, 〈k̂, ργ (x)〉 = 0 for all k̂ ∈ K̂

simultaneously, and so ργ (x) = 0 for almost every x, which of course implies that ρ is

a coboundary. Note that this allows us to recover Theorem 1.1 from Theorem 1.6.

Another easy case is when � is countable, (X, �X, μ) is complete, and K is a torus

K = TA for some (possibly uncountable) A. By hypothesis, the cocycle equation

ργ1γ2
(x) = ργ1

◦ T γ2(x) + ργ2
(x) (18)

holds for each γ1, γ2 ∈ � for x outside of a null set. Since � is countable, we may make this

null set independent of γ1, γ2, and can also make it �-invariant. We may then delete this

set from X and assume without loss of generality that equation (18) holds for all x ∈ X.

Now we write ρ in coordinates as ργ (x) = (ργ ,α(x))α∈A. Then for each α ∈ A, ργ ,α(x)

vanishes for x outside of a null set Nα , which, as before, we can assume to be independent

of γ and �-invariant. By the axiom of choice, we may partition Nα into disjoint orbits of �:

Nα =
⋃

x∈Mα

{T γ x : γ ∈ �},

where Mα is a subset of Nα . If we then define the map Fα : X → T by setting

Fα(T γ x) := ργ ,α(x)

for x ∈ Mα and γ ∈ �, and Fα(x) = 0 for x �∈ Nα , then by the completeness of (X, X, μ),

we see that Fα is measurable (being zero almost everywhere) and from the cocycle

equation, we see that

ργ ,α(x) = Fα(T γ x) − Fα(x)
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for all x ∈ X, γ ∈ �, α ∈ A. Setting F : X → KBa to be the map F(x) := (Fα(x))α∈A, we

conclude that ργ (x) = F(T γ (x)) − F(x) for all γ ∈ � and x ∈ X, so that ρ is a concrete

coboundary as claimed in this case.

It is conceivable that the truth of this conjecture is sensitive to undecidable axioms in

set theory.
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A. Appendix. A counterexample to a general product theorem for conditional elements

In this appendix we establish the following proposition.

PROPOSITION A.1. (Counterexample to general product theorem) Let (X, �X, μ) be

the unit interval [0, 1) with the Borel σ -algebra �X and Lebesgue measure μ. Then

there exist concrete measurable spaces (Y1, �Y1
), (Y2, �Y2

) and conditional elements

y1 ∈ Cond(Y1), y2 ∈ Cond(Y2) such that there does not exist any conditional element

y ∈ Cond(Y1 × Y2) with π1(y) = y1 and π2(y) = y2, where πi : Y1 × Y2 → Yi are the

coordinate projections for i = 1, 2.

In particular, this proposition demonstrates that the equality

Cond(Y1 × Y2) = Cond(Y1) × Cond(Y2)

can fail without further hypotheses on Y1, Y2, such as being a Polish space (as in

Proposition 3.3) or compact Hausdorff with the Baire σ -algebra (as in Corollary 3.5).

This proposition is not required to prove any of the other results in this paper.

To construct Y1, Y2 we use the following.

LEMMA A.2. (Disjoint sets of full outer measure) There exist disjoint subsets Y1, Y2 ⊂ X

such that Y1, Y2 both have outer measure 1. (In particular, every subset of X of positive

measure has a non-empty intersection with both Y1 and Y2.)

Of course, any sets Y1, Y2 obeying the conclusions of this lemma are necessarily

non-measurable.

Proof. We partition X into Vitali equivalence classes X ∩ (x + Q) for x ∈ R. As Borel

sets of X have the cadinality 2ℵ0 of the continuum, we may well-order them as (Aβ)β<2ℵ0 ,

where β ranges over all ordinals of cardinality less than that of the continuum. By an

alternating transfinite recursion†, construct two disjoint sets Y1 = {xβ : β < 2ℵ0} and Y2 =

{yβ : β < 2ℵ0} such that

(i) xβ �= yβ and xβ is not in the same Vitali equivalence class of xγ for γ < β and

similarly yβ is not in the same Vitali equivalence class of yγ for γ < β.

(ii) xβ , yβ ∈ Ac
β whenever Ac

β is uncountable.

† We learned of this construction from math.stackexchange.com/questions/157532.

https://doi.org/10.1017/etds.2022.36 Published online by Cambridge University Press



2398 A. Jamneshan and T. Tao

One can always select xβ , yβ at each stage of the recursion because uncountable Borel

(or analytic) sets contain perfect sets and hence have cardinality 2ℵ0 , see e.g., [19,

Theorem 29.1]. By construction, for any Borel set A such that Y1 ⊂ A or Y2 ⊂ A it follows

that Ac is countable, implying that Y1, Y2 have outer measure 1.

Let Y1, Y2 be as in the above lemma. Let A be the Boolean algebra of X generated by

the half-open dyadic intervals [j/2n, (j + 1)/2n) in X, and for i = 1, 2, let �Yi
,Ai be the

restrictions of �X, A respectively to Yi . Clearly each (Yi , �Yi
) is a concrete measurable

space. SinceA generates �X as a σ -algebra, we see thatAi generates �Yi
as a σ -algebra;

also, as Yi has full outer measure and is therefore dense in X, we see that each A ∈ Ai

arises as φi(A) ∩ Yi for a unique φi(A) ∈ A. One then easily verifies that φi : Ai → A is

a Boolean algebra isomorphism. We have the following key property.

LEMMA A.3. (Weak σ -homomorphism) Let i = 1, 2. If (An)n∈N are a family of pairwise

disjoint sets in Ai with
⋃∞

n=1 An ∈ Ai , then the sets
⋃∞

n=1 φi(An) and φi(
⋃∞

n=1 An)

differ by a set of measure zero.

Proof. For each n, let Bn :=
⋃∞

m=1 Am\
⋃n−1

m=1 Am ∈ Ai . The set
⋂∞

n=1 φi(Bn) is a Borel

measurable subset of X. If it has positive measure, then by Lemma A.2, it intersects

Yi in at least one point y; as Bn = φi(Bn) ∩ Yi , we conclude that y lies in each of the

Bn, which contradicts the fact that
⋂∞

n=1 Bn = ∅. Thus
⋂∞

n=1 φi(Bn) has measure zero;

since φi(
⋃∞

n=1 An) is the disjoint union of
⋃∞

n=1 φi(An) and
⋂∞

n=1 φi(Bn), we obtain the

claim.

We combine this lemma with the following general extension theorem, which may be

of independent interest.

PROPOSITION A.4. (Extension theorem) Let (Y , �Y ) be a concrete measurable space,

with �Y generated by a Boolean algebraA. Let (X, �X, μ) be a finite measure space, and

let α : A→ Xμ be a Boolean algebra homomorphism. Then the following are equivalent:

(i) (extension to σ -algebra homomorphism) There exists a unique extension of α to a

σ -complete Boolean algebra homomorphism α̃ : �Y → Xμ.

(ii) (weak σ -homomorphism property) If (An)n∈N are a family of pairwise disjoint sets

inA with
⋃∞

n=1 An ∈ A, then one has

∞
∨

n=1

α(An) = α

( ∞
⋃

n=1

An

)

. (19)

Proof. Clearly (i) implies (ii). Now assume (ii). The uniqueness of a σ -complete Boolean

algebra homomorphism is clear since A generates �Y , so we focus on existence. By

Example 1.5, Xμ (viewed as a measure algebra) is not necessarily representable as a

σ -algebra of sets. So we cannot apply the σ -complete version of the Sikorski extension

theorem, see [26, §34]. Instead, we appeal to an extension theorem for vector-valued

measures†, viewing a σ -complete Boolean algebra (resp. Boolean algebra) homomorphism

† See [7] for any unexplained definition or result in the theory of vector measures.
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as a special type of vector-valued countably additive (resp. finitely additive) measure.

Indeed, observe that Xμ (viewed as a measure algebra) comes with a natural complete

metric d(a, b) := μ(a	b), and therefore can be embedded as a metric space into L1(Xμ)

by identifying each abstractly measurable subset a of Xμ with its indicator function

1a ∈ L1(Xμ). Here L1(Xμ) denotes the Banach space of absolutely integrable (abstractly)

measurable functions from Xμ to R (which can also be identified with the absolutely inte-

grable concretely measurable functions from (X, �X, μ) to R modulo almost everywhere

equivalence, see [10]).

The map F : A→ L1(Xμ) defined by F(A) := 1α(A) is a finitely additive vector

measure which is strongly continuous†. By the Carathéodory-Hahn-Kluvanek extension

theorem for vector measures [7, §I.5], F will have an extension to a countably additive

vector measure on (Y , �Y ) if F is weakly countably additive, that is it obeys the pre-

measure property 〈F(
⋃∞

n=1 An), f 〉 =
∑∞

n=1〈F(An), f 〉 (where 〈·, ·〉 denotes the duality

pairing between L1(Xμ) and L∞(Xμ)) for every f ∈ L∞(Xμ) and every countable family

(An) of pairwise disjoint sets in A such that
⋃∞

n=1 An ∈ Ai . But this property follows

from (1), which implies in particular that
∑∞

n=1 F(An) converges strongly in L1(Xμ) to

F(
⋃∞

n=1 An). Thus we have a countably additive extension F̃ : �Y → L1(Xμ). If A ∈

�Y , then F̃ (A) is necessarily an indicator function 1α̃(A) in L1(Xμ) for some abstractly

measurable subset α̃(A) ∈ Xμ of Xμ, because F̃ is constructed as a metric extension of

a uniformly continuous function on the dense set (A, dν) where dν is a metric associated

to a countably additive finite measure ν on �Y (see the proof of [7, §I.5, Theorem 2] for

details). The map α̃ : �Y → Xμ then gives the required extension.

Remark A.5. We sketch here an alternate proof of Proposition A.4 provided to us by the

anonymous referee. Let the notation and hypotheses be as in Proposition A.4(ii). The

Boolean algebra homomorphism α then induces a unique C∗-algebra homomorphism

T : BM(Y ,A) → L∞(X, �X, μ)

with T 1A = 1α(A) for all A ∈ A, where BM(Y ,A) is the closed linear span of the

set D := {1A : A ∈ A} in the uniform norm. The function ν : A→ [0, 1] defined by

ν(A) := μ(α(A)) is then a finitely-additive probability measure that is countably additive

on A. By the Carathéodory–Hahn extension, we may extend ν uniquely to a countably

additive probability measure on Y (which we will continue to call ν). Since D (and hence

BM(Y ,A) is dense in L1(Y , �Y , ν), T extends uniquely to a Markov homomorphism

T : L1(Y , �Y , ν) → L1(X, �X, μ). Applying [9, Theorem 12.10], we obtain a unique

measure algebra homomorphism β : �Y /Nν → �X/Nμ with T 1A = 1β(A) for all A ∈

�Y /Nν . Composing β with the quotient map from �Y to �Y /Nν gives the desired map α̃.

For i = 1, 2, we apply Proposition A.4 to the Boolean algebra homomorphism αi :

Ai → Xμ defined by αi(A) := [φi(A)] for any A ∈ Ai . By Lemma A.3, the property

in Proposition A.4(ii) holds, thus we can extend αi to a σ -complete Boolean algebra

homomorphism α̃i : Yi → Xμ, and thus yi := α̃
op
i is a conditional element of Yi for

† That is,
∑∞

n=1 F(An) converges in norm whenever (An) are pairwise disjoint sets inA.
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i = 1, 2. Now suppose for sake of contradiction that there was a conditional element

y ∈ Cond(Y1 × Y2) with π1(y) = y1 and π2(y) = y2. Then for every dyadic interval I,

we have

y∗((Y1 ∩ I ) × Y2) = y∗
1 (Y1 ∩ I ) = α̃1(Y1 ∩ I ) = α1(Y1 ∩ I ) = [I ]

and similarly

y∗(Y1 × (Y2 ∩ I )) = [I ]

and hence

y∗((Y1 × Y2) ∩ (I × I )) = [I ].

Letting I range over the dyadic intervals of length μ(I) = 2−n for a given natural

number n, we conclude that

y∗

(

(Y1 × Y2) ∩
⋃

I :μ(I)=2−n

(I × I )

)

= 1.

Taking intersections in n, we conclude that

y∗((Y1 × Y2) ∩ {(x, x) : x ∈ X}) = 1.

But as Y1, Y2 are disjoint, the intersection (Y1 × Y2) ∩ {(x, x) : x ∈ X} is empty. This

contradiction establishes Proposition A.1.

We close this appendix with a further application of Proposition A.4, in the spirit of

Corollary 3.5.

PROPOSITION A.6. (Conditional elements of product spaces, III) Let X = (X, �X, μ)

be a probability space, let Y = (Y , �Y ) be a concrete measurable space, and let K be a

compact Hausdorff space. Then Cond(Y × KBa) = Cond(Y ) × Cond(KBa).

Proof. We need to show that for any y ∈ Cond(Y ) and k ∈ Cond(KBa) there exists a

unique σ -complete Boolean homomorphism α : �Y ⊗ Ba(K) → Xμ such that α(E) =

y∗(E) for all E ∈ �Y and α(F ) = k∗(F ) for all F ∈ Ba(K), where we view �Y and

Ba(K) as subalgebras of the σ -algebra �Y ⊗ Ba(K).

Let A be the Boolean subalgebra of �Y ⊗ Ba(K) whose elements consist of finite

disjoint unions of ‘rectangles’ E × F where E ∈ �Y , F ∈ Ba(K). Clearly there is a

unique Boolean algebra homomorphism α : A→ Xμ such that α(E × F) = y∗(E) '

k∗(F ) for any E ∈ �Y , F ∈ Ba(K). Since A generates �Y ⊗ Ba(K) as a σ -algebra, it

suffices by Proposition A.4 to show that whenever (An)n∈N are a family of disjoint subsets

ofA such that
⋃∞

n=1 An ∈ A, that

α

( ∞
⋃

n=1

An

)

=

∞
∨

n=1

α(An).

By adding the complement of
⋃∞

n=1 An to the An, we may assume that
⋃∞

n=1 An = Y × K .

By breaking up each An into rectangles we may assume that An = En × Fn with En ∈ �Y
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and Fn ∈ Ba(K). Thus the En × Fn form a partition of Y × K , and it suffices to show

that

∞
∨

n=1

y∗(En) ' k∗(Fn) = 1.

By definition of Xμ, it suffices to show that

μ

( ∞
∨

n=1

y∗(En) ' k∗(Fn)

)

g 1 − ε

for any ε > 0.

Fix ε. By definition of the Baire σ -algebra, each Fn lies in the σ -algebra generated

by a continuous map to a compact metric space; since the product of countably many

compact metric spaces is metrizable, we can place all the Fn in a σ -algebra generated by a

continuous map to a single compact metric space S. We can then push forward K to S, thus

we may assume without loss of generality that K is a compact metric space, so Ba(K)

is now the Borel σ -algebra. The pushforward measure k∗μ is then a Borel probability

measure on the compact metric space K, and hence regular (see e.g. [5, Theorem 1.1]). In

particular, we can find an open neighborhood Un of Fn in K for each n such that

y∗(Un\Fn) f
ε

2n

and so it will suffice to show that

μ

( ∞
∨

n=1

y∗(En) ' k∗(Un)

)

g 1.

By construction, we have

∞
⋃

n=1

En × Un = Y × K .

Equivalently, for each y ∈ Y , the sets {Un : y ∈ En} form an open cover of K. As K is

compact, we thus see that for each y ∈ Y there exists a finite subset I ⊂ {n ∈ N : y ∈ En}

such that
⋃

n∈I Un = K . To put this another way, if we let F denote the collection of all

finite subsets I ⊂ N with
⋃

n∈I Un = K , then we have

⋃

I∈F

⋂

n∈I

En = Y .

As F is at most countable, we can totally order it so that every element has finitely many

predecessors. If for each I ∈ F we set

E′
I :=

⋂

n∈I

En\
⋃

J<I

⋂

n∈J

EJ
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then the E′
I form an at most countable partition of Y into measurable sets, hence the y∗(E′

I )

are an at most countable partition of 1 in Xμ. It thus suffices to show that

μ

( ∞
∨

n=1

y∗(En) ' k∗(Un) ' y∗(E′
I )

)

g μ(y∗(E′
I ))

for every I. But we have

∞
∨

n=1

y∗(En) ' k∗(Un) ' y∗(E′
I ) g

∨

n∈I

k∗(Un) ' y∗(E′
I ) g y∗(E′

I )

since the Un, n ∈ I are a finite cover of K, and the claim follows.
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