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1. Introduction

1.1. The countable Moore—Schmidt theorem. Suppose that X = (X, Xx, u) is a proba-
bility space, thus Xy is a o-algebra on X and i : ¥x — [0, 1] is countably additive with
w(X)=1.1f Y = (¥, Zy) is a measurable space and f : X — Y is a measurable map,
we define the pullback map f* : Ty — Xx by

fFE=f7N(E)
for E € Xy, and then define the pushforward measure f, i on Y by the usual formula

Jet(E) = n(f*E).

For reasons that will become clearer later, we will refer to measurable spaces and mea-
surable maps as concrete measurable spaces and concrete measurable maps respectively;
this creates a category CncMbl. We define Aut(X, X, i) to be the space of all concrete
invertible bimeasurable maps 7 : X — X such that T, = p; thisis a group. If I' = (T, -)
is a discrete group, we define a (concrete) measure-preserving action of I' on X to be a
group homomorphism y +— TV from I' to Aut(X, X, u). If K = (K, +) is a compact
Hausdorff abelian group (it is likely that the arguments here extend to non-Hausdorff
compact groups by quotienting out the closure of the identity element, but the Hausdorff
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case already captures all of our intended applications and so we make this hypothesis
to avoid some minor technical issues), which we endow with the Borel o-algebra £ x =
B(K), we define a K-valued (concrete measurable) cocycle for this action to be a family
P = (py)yer of concrete measurable maps p, : X — K such that for any y1, y» € T', the
cocycle equation

Pyiys = Py © T + py, (1)

holds p-almost everywhere. A cocycle p is said to be a (concrete measurable) coboundary
if there exists a concrete measurable map F : X — K such that for each y € I', one has

py=FoT” —F )

p-almost everywhere. Note that equation (2) (for all y) automatically implies equation (1)
(for all y1, y»), although the converse does not hold in general.

It is of interest to determine the space of all K-valued concrete measurable cobound-
aries. The following remarkable result of Moore and Schmidt [22, Theorem 4.3] reduces
this problem to the case of coboundaries taking values in the unit circle T = R/Z, at least
under certain regularity hypotheses on the data I', X, K. More precisely, let K denote the
Pontryagin dual of the compact Hausdorff abelian group K, that is to say the space of all
continuous homomorphisms k:k— (IQ, k) from K to T.

THEOREM 1.1. ((Countable) Moore—Schmidt theorem) Let I" be a discrete group acting

(concretely) on a probability space X = (X, Xx, i) and let K be a compact Hausdorff

abelian group. Assume furthermore:

(a) T is at most countable;

b)) X = (X, Zx, n) is a standard Lebesgue space (thus X is a Polish space, Xx is the
Borel o-algebra, and p is a probability measure on Xx);

(¢) Kis metrizable.

Then a K-valued concrete measurable cocycle p = (py)yer on X is a coboundary if and

only if the T-valued cocycles (l%, p) = ((12, Py))yer are coboundaries for allk € K.

In fact, the results in [22] extend to the case when I' and K are locally compact groups
(which are now assumed to be second countable instead of countable), and ((12, Py))yerl is
only assumed to be a coboundary for almost all k € K with respect to some ‘full” measure.
We will not discuss such extensions of this theorem here, but mention that the original
proof by Moore and Schmidt at this level of generality crucially relies on measurable
selection theorems.

The Moore—Schmidt theorem is a beautiful classification result which serves as a
relevant technical tool in ergodic theory and probability. It formulates a condition
for the triviality of the first cohomology class of cocycles—an important invariant of
measure-theoretic actions of groups—by describing the size of the set of characters
necessary and sufficient to test triviality. It is particularly helpful for understanding the
structure of cocycles. See e.g., [2, 4, 16] for applications in the structure theory of
non-conventional ergodic averages of multiple recurrence type, [1, 12] for applications
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to limit theorems in probability, and [3, 15, 23, 25] for some applications in other
classification and asymptotic results in ergodic theory.

We briefly sketch here a proof of Theorem 1.1. Using the ergodic decomposition
[11] (which takes advantage of the hypotheses (a), (b)), we may assume without loss of
generality that the action is ergodic. By definition, for each k € K, there exists a realization
o of an element of the group LO(X ; T) of concrete measurable functions from X to T,
modulo p-almost everywhere equivalence, such that

(k,py) =a; o TV — o (3)

p-almost everywhere. For any ki, ky € K, one sees from comparing equation (3) for

ki, k2, k1 + ko that the function Of ik, — % — %, is I'-invariant up to p-almost sure

equivalence, and hence equal in L°(X; T) to a constant ctki, ky) €T by the ergodicity
hypothesis. Viewing T as a divisible subgroup of the abelian group L%(X; T) (that is, for
any x € T and n € N, there exists y € T such that ny = x), a routine application of Zorn’s
lemma (we freely assume the axiom of choice in this paper) (see e.g., [14, pp. 46-47])
then lets us obtain a retract homomorphism w : LO(X; T) — T. If we define the modified
function @ := oy — w(ax), then we have &];l = 51,;1 + &,;2 p-almost everywhere for
each 121, 122 e K. By hypothesis (c), K is at most countable, and hence for w-almost
every point x € X, the map x > &;(x) is a homomorphism from K to T, and hence
by Pontryagin duality takes the form a;(x) = (12, F(x)) for some p-almost everywhere
defined map F : X — K, which one can verify to be measurable. One can then check that

py=FoT? —F

w-almost everywhere, giving the claim.

1.2. The uncountable Moore—Schmidt theorem. The hypotheses (a), (b), (c) were used
in the above proof, but one can ask if they are truly necessary for Theorem 1.1. Thus,
we can ask whether the Moore—Schmidt theorem holds for actions of uncountable discrete
groups I on spaces X that are not standard Lebesgue, with cocycles taking values in groups
K that are compact Hausdorff abelian, but not necessarily metrizable. We refer to this
setting as the ‘uncountable’ setting for short, in contrast to the ‘countable’ setting in which
hypotheses such as (a), (b), (c) are imposed. Our motivation for this is to remove similar
regularity hypotheses from other results in ergodic theory, such as the Host—Kra structure
theorem [16], which rely at one point on the Moore—Schmidt theorem. This in turn is
motivated by the desire to apply such structure theory to such situations as actions of
hyperfinite groups on spaces equipped with Loeb measure, which (as has been seen in
such work as [13, 27]) is connected with the inverse conjecture for the Gowers norms in
additive combinatorics. We plan to address these applications in future work.
Unfortunately, a naive attempt to remove the hypotheses from Theorem 1.1 leads
to counterexamples. The main difficulty is the Nedoma pathology: Once the compact
Hausdorff abelian group K is no longer assumed to be metrizable, the product Borel
o-algebra B(K) ® B(K) can be strictly smaller than the Borel o-algebra 8(K x K), and
the group operation + : K x K — K, while still continuous, can fail to be measurable
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when K x K is equipped with the product o-algebra B(K) ® B(K): see Remark 2.6.
As a consequence, one cannot even guarantee that the sum f + g of two measurable
functions f, g : X — K remains measurable, and so even the very definition of a K-valued
measurable cocycle or coboundary becomes problematic if one insists on endowing K with
the Borel o-algebra B(K).

Two further difficulties, of a more technical nature, also arise. One is that if X is no
longer assumed to be standard Lebesgue, then tools such as disintegration may no longer
be available; one similarly may lose access to measurable selection theorems when K is
not metrizable. The other is that if I" is allowed to be uncountable or K is allowed to
be non-metrizable, then one may have to manipulate an uncountable number of assertions
that each individually hold p-almost everywhere, but for which one cannot ensure that they
simultaneously hold p-almost everywhere, because the uncountable union of null sets need
not be null.

To avoid these difficulties, we will make the following modifications to the setup of the
Moore—Schmidt theorem, which turn out to be natural changes to make in the uncountable
setting. The most important change, which is needed to avoid the Nedoma pathology, is
to coarsen the o -algebra on the compact group K, from the Borel o-algebra to the Baire
o-algebra (see e.g. [6, Vol. 2] for a reference).

Definition 1.2. (Baire o-algebra) If K is a compact space, we define the Baireo -algebra
Ba(K) to be the o-algebra generated by all the continuous maps f : K — R. We use Kg,
to denote the concrete measurable space Kg, = (K, Ba(K)).

Since every closed subset F of a compact metric space S is the zero set of a real-valued
continuous function x > dist(x, F), we see that the Baire o-algebra Ba(K) of a compact
space K can equivalently be defined as the o -algebra generated by all the continuous maps
into compact metric spaces; another equivalent definition of Ba(K) is the o -algebra gen-
erated by closed G sets. Clearly, Ba(K) is a subalgebra of 8(K) which is equal to B(K)
when K is metrizable. However, it can be strictly smaller; see Remark 2.6. In Proposition
2.5, we will show that if K is a compact Hausdorff group, then the group operations on K
are measurable on K g,, even if they need not be on K. For this and other reasons, we view
K g, as the ‘correct’ measurable space structure to place on K when K is not assumed to
be metrizable. The observation that the Baire o-algebra is generally better behaved than
the Borel o -algebra in uncountable settings is well known; see for instance [9, §5.2].

To avoid the need to rely on disintegration and measurable selection, and to avoid
situations where we take uncountable unions of null sets, we shall adopt a ‘point-less’
or ‘abstract’ approach to measure theory, by replacing concrete measurable spaces (X, X)
with their abstract counterparts.

Definition 1.3. (Abstract measurable spaces) The category AbsMbl = Boolo’ of abstract
measurable spaces is the opposite category of the category Bool, of o-complete Boolean
algebras (or abstracto -algebras). (This is analogous to how the category of Stone spaces
is equivalent to the opposite category of Boolean algebras, or how the category of
affine schemes is equivalent to the opposite category of the category of commutative
rings. One could also adopt a non-commutative probability viewpoint, and interpret the
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category of abstract probability spaces as the opposite category to the category of tracial
commutative von Neumann algebras, but we will not need to do so in this paper.) That
is to say, an abstract measurable space (that is, an object in AbsMbl) is a Boolean
algebra X = (X, 0, 1, A, V, ) that is o-complete (all countable families have meets and
joins), and an abstract measurable map f € Homapsyvpi (X; V) (that is, a morphism in
AbsMbl) from one abstract measurable space X to another Y is a formal object of the form
f = (f*°, where f*:Y — Xis ao-complete homomorphism, that is to say a Boolean
algebra homomorphism that also preserves countable joins: f* \/2 E, = \/ve, [*E,
for all E, € Y. We refer to f* as the pullback map associated to f. Here op is a formal
symbol to indicate use of the opposite category; the space Homapsmpi(X; V) is thus
in one-to-one correspondence with the space Hompgol, (V; X) of o-complete Boolean
homomorphisms from Y to X. If f € Homapsmp1(X; Y) and g € Homapsml (Y Z)
are abstract measurable maps, the composition g o f € Homapsmp(X; Z) is defined by
the formula g o f = (f™* o g*)°P (or equivalently (g o f)* = f* o g*). Elements of the
o-complete Boolean algebra X will also be referred to as abstract measurable subsets of X.

We study the category of abstract measurable spaces in more detail in the followup
paper [17].

Note that any (concrete) measurable space (X, Xx) can be viewed as an abstract mea-
surable space by viewing the o -algebra X x as a o-complete Boolean algebra in the obvious
manner (replacing set-theoretic symbols such as @, X, U, N with their Boolean algebra
counterparts 0, 1, v, A) and identifying (X, Xx) (by some abuse of notation) with Xy,
and similarly any (concrete) measurable map f : X — Y between two measurable spaces
(X, Xx), (Y, Zx) can be viewed as an abstract measurable map in Homapsmp (X; Y) =
Homapsmpl (Zx; Xy) by identifying f with (f*)°P, where f* : ¥y — Xy is the pullback
map. By abuse of notation, we shall frequently use these identifications in the following
without further comment. One can then easily check that the category CneMbl of concrete
measurable spaces is a subcategory of the category AbsMbl of abstract measurable spaces
(in particular, the composition law for concrete measurable maps is consistent with that for
abstract measurable maps).

Example 1.4. Let pt be a point (with the discrete o -algebra); this is a concrete measurable
space, which is identified with the abstract measurable space given by the o-complete
Boolean algebra 2P' = {0, 1}. Then Homapsmp1(pt; N) can be identified with N (with
every natural number n giving an abstractly measurable map n € Homapsmpl (pt; N) =
Homgool, (2V; {0, 1}) defined by n*E = 1,cg for E C N).

An important further example for us of an abstract measurable space (that is not, in
general, represented by a concrete measurable space) will be as follows. If (X, Xx, u) is a
measure space, we define the (opposite) measure algebra X, to be the abstract measurable
space Xx/N,, where N, :={A € X : u(A) = 0} is the o-ideal of p-null sets, thus the
abstract measurable subsets of X, are equivalence classes [A] := {A'e X: AAA € Ny}
for A € X. We call [A] the abstraction of A and A a representative of [A].

Informally, the measure algebra X, is formed from X by ‘removing the null sets’
(without losing any sets of positive measure); this is an operation that does not make sense
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on the level of concrete measurable spaces, but is perfectly well defined in the category
of abstract measurable spaces. The measure p can be viewed as a countably additive
map from the measure algebra X, to [0, +oc]. There is an obvious ‘inclusion map’ ¢ €
Homapsmbl (X 5 X) = Hompgol, (Xx; Xx/N,), which is the abstract measurable map
defined by setting t*A = [A] for all A € X this is a monomorphism in the category of
abstract measurable spaces.

If f:X — Y is a concrete measurable map, we refer to [f]:=to f € Homapsmpl
(X; Y) as the abstraction of f, and f as a realization of [ f]; chasing all the definitions,
we see that [ f]*E = [ f*E] for all measurable subsets E of Y. Note that if f : X — Y,
g : X — Y are concrete measurable maps that agree p-almost everywhere, then [ f] = [g].
The converse is only true in certain cases: see §5. Furthermore, there exist abstract
measurable maps in Homapsmp1 (X5 ¥) that have no realizations as concrete measurable
maps from X to Y; again, see §5. As such, Homapsmp1 (X5 Y) is not equivalent, in general,
to the space L°(X; Y) of concrete measurable maps from X to ¥ up to almost everywhere
equivalence, although the two spaces are still analogous in many ways. Our philosophy is
that Homapsmpi (X5 Y) is a superior replacement for L%(X; Y) in uncountable settings,
as it exhibits fewer pathologies; for instance, it behaves well with respect to arbitrary
products, as seen in Proposition 3.3, whereas L%(X; ¥) does not (see Example 5.2). The
main drawback of working with X, is the inability to use ‘pointwise’ arguments; however,
it turns out that most of the tools we really need for our applications can be formulated
without reference to points. (Here we follow the philosophy of ‘conditional set theory’ as
laid out in [8].)

Example 1.5. Let X be the unit interval [0, 1] with the Borel o-algebra and Lebesgue
measure (. Then Homapsmpi (pt; X ;) can be verified to be empty. Thus X, contains no
‘points’, which explains why one cannot use ‘pointwise’ arguments when working with
X, as a base space. Note this argument also shows that X, is not isomorphic to a concrete
measurable algebra.

Define Aut(X,) to be the group of invertible elements 7 = (T*)°? of Homapsmni
(X, X,). Any element of Aut(X, X, u) can be abstracted to an element of Aut(X,,);
in fact, the abstraction lies in the subgroup Aut(X,, 1) of Aut(X,) consisting of maps T
that also preserve the measure, T, = p, but we will not need this measure-preservation
property in our formulation of the Moore—Schmidt theorem. We also remark that there can
exist elements of Aut(X,, ) that are not realized by a concrete element of Aut(X, X, ).
(For a simple example, let X = {1, 2, 3}, let X be the o-algebra generated by {1}, {2, 3},
and let p assign an equal measure of 1/2 to {1} and {2, 3}. Then there is an element of
Aut(X,,, n) that interchanges the equivalence classes of {1} and {2, 3}, but it does not arise
from any element of Aut(X, X, w). One can also modify Example 5.3 to generate further
examples of non-realizable abstract measure-preserving maps; we leave the details to the
interested reader.) We believe that Aut(X,) (or Aut(X, 1)) is a more natural replacement
for Aut(X, X, ) in the case when X is not required to be standard Lebesgue. An abstract
action of a discrete (and possibly uncountable) group I' on X, is defined to be a group
homomorphism y +— TV from I' to Aut(X,,). Clearly, any concrete measure-preserving
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action of I" on X also gives rise to an abstract measure-preserving action on X, but there
are abstract actions that are not represented by any concrete one (even if one is willing
to work with ‘near-actions’ in which the composition law T o TY2 = T¥1¥2 only holds
almost everywhere rather than everywhere).

If (X, X, ) is a probability space (not necessarily standard Lebesgue) and K is a
compact abelian group (not necessarily metrizable), then the measurable nature of the
group operations on Kg, makes the space Homapsmn1(X,,; Kg,) an abelian group: see
§3. If T is a (possibly uncountable) discrete group acting abstractly on X, we define an
abstract K-valued cocycle to be a collection p = (p,)yer of abstract measurable maps
Py € Homapsmpi (X;i; Kg,) such that

Pyiyy = Py 0 T7? + py,

for all y1, y» € I'. Note in comparison to equation (1) that we no longer need to introduce
the caveat ‘u-almost everywhere.” We say that an abstract K-valued cocycle is an abstract
coboundary if there is an abstract measurable map F' € Homapsmp1 (X i; Kg4) such that

py=FoT" — F

forally eT.

With these preliminaries, we are finally able to state the uncountable analogue of the
Moore—Schmidt theorem. As a minor generalization, we can also allow (X, X, ) to be
an arbitrary measure space rather than a probability space; in particular, (X, X, u) is
no longer required to be o-finite, again in the spirit of moving away from ‘countably
complicated’ settings.

THEOREM 1.6. (Uncountable Moore—Schmidt theorem) Let I" be a discrete group acting
abstractly on the measure algebra X, (viewed as an abstract measurable space) of a
measure space X = (X, X, u), and let K be a compact Hausdorff abelian group. Then
an abstract K-valued cocycle p = (py)yer on X, is an abstract coboundary if and only
if the T-valued abstract cocycles ko p = (k o Py)yer are abstract coboundaries for all
ke K.

We prove this result in §4; the key tool is a ‘conditional’ version of the Pontryagin
duality relationship between K and K, which we formalize as Theorem 3.6. Once this
result is available, the proof mimics the proof of the countable Moore—Schmidt theorem,
translated to the abstract setting. We avoid the use of the ergodic decomposition by
replacing the role of the scalars T by the invariant factor Homapsmbl (X 4 ™.

While we believe that the formalism of abstract measure spaces is the most natural one
for this theorem, one can still explore the question of to what extent Theorem 1.6 continues
to hold if one works with concrete actions, cocycles, and coboundaries instead of abstract
ones. We do not have a complete answer to this question, but we give some partial results
in §§5, 6; in particular, we recover Theorem 1.1 as a corollary of Theorem 1.6.

Remark 1.7. If S is an arbitrary abstract measurable space, then by the Loomis—Sikorski
theorem [20, 26], S is isomorphic to X/N for some concrete measurable space (X, X)
and some null ideal N of X. In particular, § is isomorphic to X, where u is the (non-

https://doi.org/10.1017/etds.2022.36 Published online by Cambridge University Press



An uncountable Moore—Schmidt theorem 2383

o -finite) measure on X that assigns 0 to elements of N and 400 to all other elements.
Thus in Theorem 1.6, one can replace the measure algebra X, by an arbitrary abstract
measurable space.

1.3. Notation. For any unexplained definition or result in the theory of measure
algebras, we refer the interested reader to [10], and for any unexplained definition or result
in the general theory of Boolean algebras, to [21, Part 1].

If S is a statement, we use 15 to denote its indicator, equal to 1 when S is true and 0 when
S is false. (In some cases, 1 and 0 will be interpreted as elements of a Boolean algebra,
rather than as numbers.)

2. The Baire o-algebra

In this section, we explore some properties of the measurable spaces Kg, = (K, Ba(K))
defined in Definition 1.2. We have already observed that Ba(K) = B(K) when K is a
metric space. The Baire o -algebra also interacts well with products.

LEMMA 2.1. (Baire o-algebras and products) Let K be a closed subspace of a product
Sa =1Tlyea S« of compact spaces Sy. Then Ba(K) is the restriction of the product
o-algebra By = Qe s Ba(Sy) to K:

Ba(K) ={ENK : E € Bp}.

Equivalently, Ba(K) is the o-algebra generated by the coordinate projections wy : K —
(S¢)Ba, @ € A.

We caution that this lemma does not assert that K itself lies in B4; see Remark 2.6
below for an explicit counterexample. Also note that the index set A is permitted to be
uncountable.

Proof. The collection of functions on K of the form f, o m, with @ € A and fy : S¢ —
R generate an algebra of continuous functions that separate points, and hence by the
Stone—Weierstrass theorem, the o-algebra they generate is equal to Ba(K). The claim
follows. (We are indebted to the anonymous referee for this simplified proof.) O

Lemma 2.1 combines well with the following theorem of Weil [28].

THEOREM 2.2. (Weil’s theorem) Every compact Hausdorff space is homeomorphic to a
closed subset of a product of compact metric spaces.

Lemma 2.1 also combines well with the following topological lemma.

LEMMA 2.3. Let K be a compact Hausdorff space, and let p = (pg)aca be a family of
continuous maps py : K — Sy from K to compact Hausdorff spaces Sq. Suppose that the
Pu Separate points, thus for every distinct k, k' € K, there exists a € A such that py (k) #
pa(k"). We view p : K — Sa as a map from K to Sa by setting p(k) = (o (k))aca. Then
p(K) is a closed subset of S, and p is a homeomorphism between K and p(K') (where we
give the latter the topology induced from the product topology on S4).
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Proof. Clearly p is continuous and injective (since the p, separate points), so p(K) is
compact and hence closed in the Hausdorff space S4. Thus p : K — p(K) is a continuous
bijection between compact Hausdorff spaces; it therefore maps compact sets to compact
sets, hence is an open map, and hence is a homeomorphism as required. O

In the case when K is a group, we can give a more explicit description of an embedding
p of the form described in Lemma 2.3.

COROLLARY 2.4. (Description of compact Hausdorff groups) Let K be a compact

Hausdorff group.

(1) There exists a family p = (pq)aca Of continuous unitary representations py :
K — Sy, @ € A, of K (thus each Sy is a unitary group and py is a continuous
homomorphism) such that p(K) is a closed subgroup of Sa, and p : K — p(K)
is an isomorphism of topological groups. The o-algebra Ba(K) is generated by the
representations py. R

(i) If K =(K,+) is abelian, and one defines the map : K — TK by (k) =
((12 k)jcp» then «(K) is a closed subgroup of TX, and «: K — «(K) is an
lsomorphlsm of topological groups. The o-algebra Ba(K) is generated by the
characters k € K. Furthermore, one can describe L(K) explicitly as

U(K) = (Oieg € TX 26 4z = 6, +6;, forall ki ko € K). @)
Proof. For part (i), we observe from the Peter—Weyl theorem that there are enough
continuous unitary representations of K to separate points, and the claim now follows from
Lemmas 2.3 and 2.1.

For part (ii), we observe from Plancherel’s theorem that the characters k:K — T for
kekK separate points, so by Lemma 2.3, we verify that ((K) is a closed subgroup of T
and that: : K — ((K) is an isomorphism of topological groups, and from Lemma 2.1, we
see that Ba(K) is generated by the characters ke K. AsKis compact, the Pontryagin
dual K is discrete, and by Pontryagin duality, K can be identified with the space of

homomorphisms k> 6; from K to T. This gives the description in equation (4). O

As a consequence of Corollary 2.4, we have the following proposition.

PROPOSITION 2.5. (Group operations measurable in Baire o-algebra) Let K = (K, -)
be a compact Hausdorff group. Then the group operations - : Kg, X Kgz — Kg, and
0~!: Kg, — Kg, are measurable. In particular, if K = (K, +) is a compact Hausdorff
abelian group, then the group operations + : Kg, X Kgqa — Kg, and — : Kg, — Kg,
are measurable.

Proof. By Corollary 2.4(i), we may view Kg, as a closed subgroup of a product of
unitary groups. The group operations are measurable on each such unitary group, and
hence measurable on the product, giving the claim. O

Remark 2.6. (Nedoma pathology) Let K be the non-metrizable compact Hausdorff abelian
group K = TR, and let K2 C K x K be the diagonal closed subgroup K2 = {(k, k) :
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k € K}. By Nedoma’s pathology [24], K is not measurable in 8(K) ® B(K). Indeed,
B(K) @ B(K) consists of the union of B1 ® B, as B, B range over countably generated
subalgebras of B(K). If K were in B(K) ® B(K), we conclude on taking slices that all
the points in K lie in a single countably generated subalgebra of B(K), but the latter has
cardinality at most 20 and the former has cardinality 22 , leading to a contradiction. This
shows that B(K) ® B(K) # B(K x K), and also shows that in Lemma 2.1, K need not
be measurable in S4. Also, by comparing this situation with Proposition 2.5, we conclude
that B(K) # Ba(K) in this case. This can also be seen directly: Ba(K) is the product
o -algebra on TR, which is also equal to the union of the pullbacks of the o-algebras of T’
for all countable subsets of /. In particular, a single point in K will not be measurable in
Ba(K), even though it is clearly measurable in B(K).

3. A conditional Pontryagin duality theorem

Throughout this section, X = (X, Xx, u) denotes a measure space; to avoid some
degeneracies, we will assume in this section that X has positive measure. We will use
the abstract measurable space X, as a base space for the formalism of conditional set
theory and conditional analysis, as laid out in [8] (although, as it turns out, we will not
need to draw upon the full power of this theory in this paper). (For instance, we will not
use the (measurable) topos-theoretic ability, which is powered by the completeness of X,
when viewed as a Boolean algebra (which is equivalent to X, being decomposable, and
in particular, is the case if (X, Xy, ) is o-finite, but is an assumption we will not need
in our analysis), to glue together different conditional objects along a partition of the base
space X, which allows one to develop, in particular, a theory of conditional metric spaces
and conditional topology.) In this formalism, many familiar objects such as numbers, sets,
and functions will have ‘conditional’ analogues which vary ‘measurably’ with the base
space X ,; to avoid confusion, we will then use the term ‘classical’ to refer to the original
versions of these concepts. Thus, for instance, we will have classical real numbers and
conditional real numbers, classical functions and conditional functions, and so forth. The
adjectives ‘classical’ and ‘conditional’ in this formalism are analogous to the adjectives
‘deterministic’ and ‘random’ in probability theory (for instance, the latter theory deals
with both deterministic real numbers and random real variables). Our ultimate objective
of this section is to obtain a conditional analogue of the Pontryagin duality identity (4).

We begin with some basic definitions.

Definition 3.1. (Conditional spaces) If Y = (Y, ) is any concrete measurable space, we
define the conditional analogue Cond(Y) = Cond X, (Y) of Y to be the space Cond(Y) =
Homppsmbi (X5 Y). Elements of Cond(Y) will be referred to as conditional elements
of Y. Thus, for instance, elements of Cond(R) = Homapsmpi (X ,; R) are conditional reals,
and elements of Cond(N) = Homapsmpi(X;; N) are conditional natural numbers. Every
(classical) element y € Y gives rise to a constant abstract measurable map Cond(y) €
Cond(Y), defined by setting Cond(y)*A = lye4 for A € Y (where the indicator 1y¢4 is
interpreted as taking values in the o-complete Boolean algebra X ;). We will usually abuse
notation by referring to Cond(y) simply as y. (This is analogous to how a constant function
X > c that takes a fixed value ¢ € Y for all inputs x € X is often referred to (by abuse of
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notation) as c. Strictly speaking, for the identification of y with Cond(y) to be injective, Y
needs to separate points (that is, for any distinct y, y" in Y, there exists A € Y that contains
y but not y’), but we will ignore this subtlety when abusing notation in this manner.)

Thus, for instance, if p = (o, )yer is an abstract K-valued cocycle, then each p, is a
conditional element of Kg,,.

As discussed in the introduction, every concrete measurable map f : X — Y into a
concrete measurable space Y gives rise to a conditional element [ f] € Cond(Y). In the
case that X is a Polish space, this is an equivalence.

PROPOSITION 3.2. (Conditional elements of compact metric or Polish spaces) Let K be a
Polish space. Then every conditional element k € Cond(K) has a realization by a concrete
measurable map F : X — K, unique up to w-almost everywhere equivalence.

Proof. Since X has positive measure, X, is non-trivial, and hence, we may assume K is
non-empty (since otherwise there are no conditional elements of K).

First suppose that K is Polish. We may endow K with a complete metric d. The space
K is separable, and hence for every n € N, there exists a measurable ‘rounding map’ f; :
K — S, to an at most countable subset S, of K with the property that

1
dik', fa(K)) < ” ®)

for all ¥ € K. If k € Cond(K) = Homgpsmpi(X,; K), then f, ok € Cond(S,) =
Homapsmbl (X5 Sp) (since f, can be viewed as an element of Homppsmpi(K; Sp)).
By taking representatives of the preimages (f, o k)*{s} = k*(f,7({s})) for each s € S,
and adjusting these representatives by null sets to form a partition of X, we can find a
measurable realization F,, : X — S, of f,, o k. Since d(f,,(k), fm (k")) < 1/n+ 1/m for
alln,m € Nand k' € K, we have d(Fy,(x), F;;(x)) < 1/n+ 1/m for each n, m € N and
w-almost every x € X. Thus, the sequence of measurable functions F;, : X — K is almost
everywhere Cauchy, and thus (see e.g. [18, Lemmas 1.10 and 4.6]) converges p-almost
everywhere to a measurable limit /' : X — K. To finish the claim of existence, it suffices
to show that [ F] = k, that is to say that

[F*(E)] = k*(E)

for all Borel subsets E of K. Since this claim is preserved under o -algebra operations, we
may assume without loss of generality that £ is an open ball £ = B(ko, r). Let 0 < r] <
rp < --- < r be astrictly increasing sequence of radii converging to r. If m > 2, then since
the F;, converge almost everywhere to F, we have

lim sup[F, (B(ko, rm—1))] < [F*(B(ko, rm))] < linrggf[F,T(B(ko, m+1))]

n—oo

in the o-complete Boolean algebra X . However, when n is sufficiently large depending
on m, we have from equation (5) that

[F,; (B(ko, rm—1))] = k" (f, (B(ko, rm—-1))) = k*(B(ko, rm—2))
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and

[F, (B(ko, rm-+1)] = k" (f (B(ko, rm+1))) < k*(B(ko, rm+2)),

and thus we have
k*(B(ko, rm—2)) < [F*(B(ko, rm))] < k*(B(ko, rm+2))

for all m > 2. Sending m — o0, using the o-complete homomorphism nature of both k*
and F*, we conclude that

[F*(B(ko, r)] = k" (B(ko, 1))

as required.

For uniqueness, suppose that F', G : X — K are two measurable maps with [F] = [G],
and thus F* E differs by a null set from G* E for every measurable E € K. If F is not equal
almost everywhere to G, then d(F, G) > 0 on a set of positive measure, and then by the
second countable nature of K, we may find a ball B for which F*B and G*B differ by
a set of positive measure, a contradiction. Thus F is equal to G u-almost everywhere as
claimed. O

Now we look at conditional elements of arbitrary products Hae 4 S0 = (Hae A Sas
®ae 4 Sq) of Polish spaces Sy = (Sy, Si). Here, as is usual, l_[ae 4 Sa is the Cartesian
product, and the product o-algebra ), 4 Se is the minimal o-algebra that makes all
the projection maps 7g : [[,c4 So — Sp measurable for f € A. We have the following
fundamentally important identity.

PROPOSITION 3.3. (Conditional elements of product spaces) Let (Sy)qeca be a family of
Polish spaces Sy = (Sy, S¢). Then one has the equality

Cond ( [ Sa> = [ ] Cond(s.)

€A aeA

formed by identifying each conditional element f of [ [ ,c o S With the tuple (774 © f)aca.

Proof. Itis clear that if f € Cond([],c4 Sa), then (;ry © f)gea lies in [, 4 Cond(Sy).
Now suppose that (fo)aea is an element of [ ], ., Cond(S). By Proposition 3.2, for each
o € A, we can find a concrete measurable map fa : X — Sy such that f, = fa]. Let
f: X — [lyen So be the map

F(x) = (fa())gea,

then fis a concrete measurable map. Set f = [f], then f € Cond(][,c4 S«)- By chasing
all the definitions, we see that (7, o f)*E = fE for any E € Sy, and hence (fy)qeca =
(Tg © flaea-

It remains to show that each tuple (fy)qea is associated to at most one f €
Cond(J[,c4 Sa)- Suppose that f, g € Cond(][,c4 Se) are such that 7y o f =7y 0g
for all @ € A. Then we have f*E = g*E for all generating elements E of the product
o-algebra ), So. As f*, g* are both o-algebra homomorphisms, we conclude that
f* = g* and hence f = g, giving the claim. O
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The hypothesis that S, are Polish cannot be relaxed to arbitrary concrete measurable
spaces, even when considering products of just two spaces; see Proposition A.1.

If f:Y — Z is a (classical) concrete measurable map between two concrete measur-
able spaces Y, Z, then we can define the conditional analogue Cond(f) : Cond(Y) —
Cond(Z) of this function by the formula

Cond(f)(y) = foy
for y € Cond(Y). By chasing the definitions, we also observe the functoriality property:
Cond(g o f) = Cond(g) o Cond(f) (6)

whenever f:Y — Z, g: Z — W are classical concrete measurable maps between
concrete measurable spaces Y, Z, W; using the identification from Proposition 3.3, we
also have the identity:

(Cond(f1), Cond(f2)) = Cond((f1, f2)) )

for any classical concrete measurable maps f1 : K — Si, fo : K — S, from a measurable
space K to Polish spaces S1, S2, and more generally,

(Cond(fo))weca = Cond((fo)aea) ®)

whenever f, : K — Sy, @ € A are classical concrete measurable maps from a measurable
space K to Polish spaces Sy.

Suppose that S is a concrete measurable space and K is a (possibly non-measurable)
subset of S, then the measurable space structure on S induces one on K by restricting
all the measurable sets of S to K. The inclusion map ¢ : K — S is then measurable, and
thus Cond(¢) is a conditional map from Cond(K) to Cond(S), which is easily seen to be
injective; thus (by abuse of notation), we can view Cond(K) as a subset of Cond(S). One
can then ask for a description of this subset. We can answer this in two cases.

PROPOSITION 3.4. (Description of Cond(K)) Let S = (S, S) be a concrete measurable
space, let K be a subset of S with the induced measurable space structure (K, K), and
view Cond(K) as a subset of Cond(S) as indicated above.

(1) If K is measurable in S, then Cond(K) consists of those conditional elements s €
Cond(S) of S such that s*K = 1.

() IfS=Sa=1[lyeas S« is the product of compact metric spaces S, with the product
o-algebra, and K is a closed (but not necessarily measurable) subset of Sa, then
Cond(K) consists of those conditional elements s4 € Cond(S4) of Sa such that
s;’;nl_l(m(K)) =1 for all at most countable I C A, where w; : Sy — Sj is the
projection to the product St = [[;¢; Si.

Proof. For part (i), it is clear that if k € Cond(K), then k*K = 1. Conversely, if s*K =1,
then s*K¢ =0, and hence s*E = s*F whenever E, F are measurable subsets of S
that agree on K (since s*(E N K¢) = s*(F N K¢) = 0). Thus, the o-complete Boolean
homomorphism s* : § — X, descends to a o-complete Boolean homomorphism on %,
so that s € Cond(K) as claimed.
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Now we prove part (ii). If k € Cond(K) and I C A is at most countable, then the
image m;(K) is a compact subset of the metrizable space S;, and is hence measurable
in S7; this also implies that nl_l(m (K)) is measurable in S4. Observe that Cond () (k)
is an element of Cond(rr; (K)), hence by (i), we have Cond(rrj) (k)*7;(K) = 1, and hence
k(e (o (K)) = 1.

Conversely, assume that s4 € Cond(S4) is such that sf‘nfl (7 (K)) = 1 for all at most
countable / C A. Let E be a measurable subset of S4 that is disjoint from K. The product
o-algebra Q.4 B(Sy) is equal to the union of the pullbacks 7} ();; B(S;)) as I ranges
over countable subsets of A (since the latter is a o-algebra contained in the former that
contains all the generating sets). Thus there exists an at most countable / such that E =
Jrfl (Ey) for some measurable subset E; of S;. Since E is disjoint from K, E; is disjoint
from 7;(K), and hence FE is disjoint from nfl(m(K)). Since s;';n;l(m(l()) =1, we
conclude that s E = 0 for all measurable E disjoint from K. Thus s% E = s7 F' whenever
E, F are measurable subsets of S that agree on K, and by arguing as in (i), we conclude
that s € Cond(K), giving (ii). O

As a corollary, we have the following variant of Proposition 3.3.

COROLLARY 3.5. (Conditional elements of product spaces, II) Let K, K’ be compact
Hausdorff spaces. Then Cond(Kg, x Kg,) = Cond(Kg,) x Cond(Kg,).

The proof given below extends (with only minor notational changes) to arbitrary
products of compact Hausdorff spaces, not just to products of two spaces, but the latter
case is the only one we need in this paper. We also give a generalization of Corollary 3.5
in Proposition A.6, in the case that X is a probability space.

Proof. By Theorem 2.2 and Lemma 2.1, we may assume Kg, is a subspace of a product
Sa = [lyea S« of compact metric spaces Sy, with the o-algebra induced from the product
o-algebra, and similarly that Ky is a subspace of S, = [],cas S;- From Proposition
3.4(ii), Cond(K g,) consists of those elements s4 € Cond(S4) such that sjnl_l (71 (K)) =
1 for all at most countable I C A. Similarly for Cond(Ké;a). From Lemma 2.1, we
have Kg, x K%a = (K x K')gg, and from Proposition 3.3, we have Cond(S4 x S;‘,) =
Cond(S4) x Cond(S;‘,), so by a second application of Proposition 3.4, we see that
Cond(Kg, x Kg,) consists of those elements (s4,s’,,) € Cond(S4) x Cond(S,,) such
that

(sa, 84 Gty (K)) x 0 (o (K')) = sty o (K)) A (5)) e o (KT) = 1
for all at most countable I C A, I’ C A’. The claim follows. O

We can use conditional analogues of classical functions to generate various operations
on conditional elements of concrete measurable spaces. For instance, suppose we have two
conditional real numbers x, y € Cond(R). Then we can define their sum x 4+ y € Cond(R)
by the formula

x +y = Cond(+)(x, y), 9)
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where we use Proposition 3.3 to view (x,y) as an element of Cond(R?), and + :
Cond(R?) — Cond(R) is the conditional analogue of the classical addition map + :
R? — R. Similarly for the other arithmetic operations; one then easily verifies using
equations (6), (7) that the space Cond(R) of conditional real numbers has the structure of a
real unital commutative algebra. This is analogous to the more familiar fact that L9(X; R)
is also a real unital commutative algebra. A similar argument (using Proposition 2.5 and
Corollary 3.5) shows that if K is a compact Hausdorff group, then Cond(Kg,) is also
a group, which will be abelian if K is abelian, and the group operations are conditional
functions in the sense given in [8].
Now we can give a conditional analogue of the Pontryagin duality relationship (4).

THEOREM 3.6. (Conditional Pontryagin duality) Let K be a compact Hausdorff abelian
group, and let t - Kg, — TX be the map

L(k) = (th, k)i
Then,

Cond(1)(Cond(Kg4)) = {(0p);. ¢ € Cond(T)X - 0; i, = 6, + 6, forall ki, ky € K},
(10

where we use Proposition 3.3 to identify Cond(']I“Ie ) with Cond(T)k . Also, Cond(1) :
Cond(Kg,) — Cond(TX) is injective.

Proof. For all 121, 122 ek , we have from definition of the group structure on K that
(ky + ko, ky = (k1. k) + (k. k)

for all classical elements k € Kg,. All expressions here are measurable in k, so the identity
also holds for conditional elements k € Cond(Kg,) (wWhere, by abuse of notation, we write
Cond((lg, -)) simply as (12, -) for any ke I%). From this, we see thatif k € Cond(Kg,), then
Cond(t) (k) lies in the set in the right-hand side of equation (10).

Now we establish the converse inclusion. By Corollary 2.4(ii), ¢ is a measurable
space isomorphism between K 8q and ((K) (where the latter is given the measurable
space structure induced from TX). Thus, Cond(:) is injective and Cond(t)(Cond(Kg,)) =
Cond(¢t(K)). Let 6 = (0,;),; ek be an element of the right-hand side of equation (10);
we need to show that # € Cond(:(K)). By Proposition 3.4(ii), it suffices to show that
e*ﬂfl(ﬂl(L(K))) =1 for all at most countable I C K. By replacing / with the group
generated by /, which is still at most countable, it suffices to do so in the case when [ is an
at most countable subgroup of K.

Let K; c T/ denote the group of homomorphisms from 7 to T, and thus

Ki ={()icr €T 1 &4; =& + & foralli, j € I}.

This is a closed subgroup of T!. Because T is a divisible abelian group, we see from
Zorn’s lemma that every homomorphism from 7 to T can be extended to a homomorphism
from K to T, and thus K; = 77 (¢(K)). From the hypotheses on 6, we see that (6;);c; is
a conditional element of K, which by Proposition 3.4(i) implies that (6;)7_, K; = 1, and
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hence
0 n;  (r (W(K))) = 0 (Kp) = 0, K = 1,

giving the claim. O

4. Proof of the uncountable Moore—Schmidt theorem
We now have enough tools to prove Theorem 1.6 by modifying the argument sketched
in the introduction to prove Theorem 1.1. We may assume that the space X has positive
measure, since if X has zero measure, then every abstract cocycle is trivially an abstract
coboundary.

Let I' be a discrete group acting abstractly on the measure algebra X, of an arbitrary
measure space, and let K be a compact Hausdorff abelian group. If p = (o, )yer is an
abstract K-valued coboundary, then by definition, there exists F' € Cond(Kg,) such that

py=FoTV —F
for all y € I', and hence for eachk € K , we have
(k, py) = (k, F) o T — (k, F)

for all y € K. Thus, each (12, p) is an abstract T-valued coboundary.
Conversely, suppose that for each k € K, (k, p) is an abstract T-valued coboundary;
thus we may find &y € Cond(T) such that

(k, py) =a; o TV — o (1)
forall k € K and y erl. 1f121,122 € Ie,then we have
ki + ka, py) = tki, p,) + (ka, py),
which, when combined with equation (11) and rearranged, gives
cki, ka) o TV = c(ky, ko),
where c(lgl, 122) € Cond(T) is the conditional torus element

C(lzl, /22) =Qp ik, T %, T Y (12)

1 2

Thus, if we define the invariant subgroup
Cond(T)" := {0 € Cond(T) : 0 o TY =6 forall y € T}

of Cond(T), then we have c(k;, k2) € Cond(T)" for all ky, k> € K.

We now claim that Cond(T)" is a divisible abelian group; thus for any # € Cond(T)"
and n € N, we claim that there exists 8 € Cond(?l‘)r such that n8 = 0. However, one can
easily construct a concrete measurable map g, : T — T such thatng,(0) =6 forall6 € T
(for instance, one can set g, (xmod Z) := (x/n)mod Z for 0 < x < 1), and the claim then
follows by setting 8 := Cond(g,)(#).

Since Cond(T)! is a divisible abelian subgroup of Cond(T), we see from Zorn’s lemma
that there exists a retract homomorphism w : Cond(T) — Cond(T)" (a homomorphism
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that is the identity on Cond(T)1); see e.g. [14, pp. 46-47]. For each ke 12, let &]g €
Cond(T) denote the conditional torus element

&12 = o — wloy). (13)
Applying w to both sides of equation (12) and subtracting, we conclude that

0= (14)

&/21-‘1-/22 a &/21 - &122
for all 121 , 122 e K. By Theorem 3.6, we conclude that (a); ¢ lies in Cond(¢) (Cond(K g4)),
that is to say, there exists F € Cond(Kg,) such that

5{]2 = (k, F)

for all k € K. However, from equations (11), (13), we have
(k,py) =a; o TV —&;
for all k € K and y € I', and hence
(k, py —(FoT? —F)) =0 (15)
forall k € K and y € I'. Applying the injectivity claim of Theorem 3.6, we conclude that
py—(FoTV —F) =0

forall y € I', and so p is an abstract K-valued coboundary as required.

5. Representing conditional elements of a space
Throughout this section, X = (X, Xx, n) is assumed to be a measure space of positive
measure.

If Y = (Y, XZy) is a concrete measurable space, and f : X — Y is a concrete mea-
surable map, then the abstraction [ f] € Homapsmmi (X5 ¥) = Cond(Y), defined in the
introduction, is a conditional element of ¥, and can be defined explicitly as

[fT"E = [f"E]

for E € Xy, where [ f*E] € X, is the abstraction of f*E € Xx in X,,. Thus, for instance,
Cond(c) is the abstraction of the constant function x > ¢ for all ¢ € Y. It is clear that if
f,g: X — Y are concrete measurable maps that agree p-almost everywhere, then [ ] =
[¢]. However, the converse is not true. One trivial example occurs when Y fails to separate
points.

Example 5.1. (Non-uniqueness of realizations, I) Let Y = {1, 2} with the trivial o -algebra
Yy = {@, Y}. Then, the constant concrete measurable maps 1 and 2 from X to Y are such
that [1] = [2], but 1 is not equal to 2 almost everywhere (if X has positive measure).

However, there are also counterexamples when Xy does separate points, as the
following example shows.
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Example 5.2. (Non-uniqueness of realizations, II) Let X = [0, 1] with Lebesgue measure
w, and let Y = {0, 1}1%1 with the product o-algebra. Let f : X — Y be the function
defined by

F(x) = 1y=y)yeo,1]

for all x € [0, 1], where the indicator 1,—, equals 1 when x = y and zero otherwise, and
let g : X — Y be the zero function g(x) := 0. Observe that f(x) # g(x) forall x € [0, 1],
so f and g are certainly not equal almost everywhere. However, the product o -algebra in
Y = {0, 1}1%11 is the union of the pullbacks of the o-algebras on {0, 1}’ as I ranges over
at most countable subsets of [0, 1]. Thus, if E is measurable in Y, then E = n;l (E;) for
some measurable subset E; of {0, 1}/, where 77 : {0, 1}I%11 — {0, 1}/ is the projection
map. The function 77 o f : X — {0, 1}/ is equal to 77; o g = 0 almost everywhere, thus
f*E = (7 o f)*(E) is equal modulo null sets to g*E = (77 o g)*E;. We conclude that
[ f1 = [g], despite the fact that f, g are not equal almost everywhere.

Note in the above example, while f and g do not agree almost everywhere, each
component of f agrees with the corresponding component of g almost everywhere, and
it is the latter that allows us to conclude that [ f] = [g]; this can also be derived from
Proposition 3.3. In particular, this example shows that the analogue of Proposition 3.3
for the space LO(X;Y) of concrete measurable functions modulo almost everywhere
equivalence fails.

For certain choices of Y, there exist conditional elements y € Cond(Y) of Y that are not
represented by any concrete measurable map.

Example 5.3. (Non-realizability) Let X = pt be a point (with counting measure 1), and
let ¥ := {0, 1}1%11\{0}[%1] be the product space {0, 1}I%!1 with a point {0}[®! removed,
endowed with the measurable structure induced from the product o -algebra. Observe that
the point {03011 = {0011} is not measurable in {0, 1}%1 (all the measurable sets in this
space are pullbacks of a measurable subset of {0, 1}1 for some countable I C [0, 1], and
{0}[%1 is not of this form). Hence, every measurable subset E of {0, 1}[0’1]\{0}[0’” has
a unique measurable extension E to {0, 1}1%1 Now let y € Cond(Y) be the conditional
element of Y defined by

* .
YE = Ljonegs

this is easily seen to be an element of Cond(Y). However, it does not have any concrete
realization f : X — Y. For if we had y = [f], then we must have 1yo01.z = 1f0)cE
for every measurable subset E of {0, 1301, However, f(0) € ¥ must have at least one
coefficient equal to 1, and is thus contained in a cylinder set E whose extension E does not
contain 0[0’1], a contradiction.

Nevertheless, we are able to locate some situations in which conditional elements of Y
are represented by concrete measurable maps. From Proposition 3.2, we already can do this
whenever Y is a Polish space. We can also recover a concrete realization of a conditional
element of Kg, in the case that K is a compact Hausdorff abelian group.
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PROPOSITION 5.4. (Conditional elements of compact abelian groups) Let K be a compact
Hausdorff abelian group. Then every conditional element k € Cond(Kg,) has a realiza-
tion by a concrete measurable map f : X — Kg,.

Proof. Fix K, k. Then (12, k) € Cond(T) for each kek (where, by abuse of notation, we
identify (12, -) with Cond((l@, -))). We will apply Zorn’s lemma (in the spirit of the standard
proof of the Hahn—Banach theorem) to the following setup. Define a partial solution to be
a tuple (G, (f,)geG), where the following hold.

G is a subgroup of K.

For each g € G, f; : G — T is a concrete measurable map with [ fo] = (g, k).

For each g1, g2 € G, one has f; 14,(x) = f4,(x) + fg, (x) for every x € X (not just

u-almost every x).
We place a partial order on partial solutions by setting (G, (fg)gec) < (G', (, é,) gec) if
G<G'and f, = fé forall g € G. Since ({0}, (0)) is a partial solution, and every chain of
partial solutions has an upper bound, we see from Zorn’s lemma that there exists a maximal
partial solution (G, (fg)gec). We claim that G is all of K. Suppose this is not the case,
then we can find an element & of K that lies outside of G. There are two cases, depending
on whether nk € G for some natural number 7.

First suppose that nk ¢ G for all n € N. By Proposition 3.2, we can find a concrete

measurable map f; : X — T such that [ f;] = (12, k). We then define fn]2+g : X — T for
all n € Z\{0} and g € G by the formula

Jokag ) = nfi(x) + fo (x). (16)
If we set
G =nk+g:neZ geG) A7)

to be the group generated by k and G, we can easily check that (G', (fg)g'ec) is a partial
solution that is strictly larger than (G, (fg)¢ec), contradicting maximality.

Now suppose that there is a least natural number ng such that nok € G. We can
find a concrete measurable map fk : X — T such that [ f,;] = (12, k). This map cannot
immediately be used as our candidate for f; because it does not necessarily obey the
consistency condition rng f,;(x) =/ ok (x) for all x € X. However, this identity is obeyed
for almost all x € X. Let N be the null set on which the identity fails. We then set f;(x)
to equal f,;(x) when x ¢ N and equal to g,,( fnolg(x)) when x € N, where (as in the
previous section) g,, : T — T is a measurable map for which nog,,(0) =6 forall € T.
Then, [f,;] = [f,;] = (IQ, k). If one then defines fn,2+g foralln € Z and g € G by the same
formula as before, we see that this is a well-defined formula for f, for all g" in the group
in equation (17), and that (G’, (f¢)g'ec) is a partial solution that is strictly larger than
(G, (fg)gec), again contradicting maximality. This completes the proof that G = K.

By Pontryagin duality in equation (4), for each x € X, there is a unique element f(x) €
K such that f;(x) = (12, f(x)) for all k € K. This gives amap f : X — Kgg; as all the
maps (k, f) = f; are measurable, we see that f' is also measurable as the o -algebra of K g,
is generated by the characters k. From Theorem 3.6, we see that [ f1=k, and the claim
follows. O
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One can ask if the proposition holds for all compact Hausdorff spaces, not just the
compact Hausdorff abelian groups. We were unable to make significant headway on this
question, but can at least treat the simple case when the base space X is atomic. (We thank
the referee for pointing out a serious error in the results claimed in this direction in a
previous version of this manuscript.)

LEMMA 5.5. (The case of an atomic space) Let K be a compact Hausdorff space and
suppose that X is a o -finite atomic measure space. Then every element of Cond(Kg,) is
represented by a concrete measurable map from X to K g,, unique up to almost everywhere
equivalence.

Note that Example 5.3 shows that the requirement that K be compact cannot be
completely omitted in this lemma.

Proof. By contracting all atoms in X down to points and removing all null sets, we may
assume without loss of generality that X is countable and discrete, with all points having
positive measure. (In particular, X has no non-trivial null sets and all functions on X are
measurable.)

From Theorem 2.2, we see that any two distinct functions F, F’' : X — K are separated
at at least one point x € X by preimages of disjoint balls with respect to a continuous map
m: K — § into a metric space, and hence are also distinct as elements of Cond(Kg,)
as such preimages are measurable and every point in X has positive measure. This gives
uniqueness. It remains to show that every conditional element k € Cond(Kg,) of Kg,
arises from a function from X to K. By Theorem 2.2, we may assume that Kg, is a
closed subset of S4 = [[,c4 Sa for some metric spaces S, with the product o -algebra.
For each o € A, let my : K, — Sy be the coordinate map, then 7, (k) € Cond(S,). By
Proposition 3.2, there is a unique function s, : X — Sy such that 7, (k) = [sq]. If we set
s : X — S4 to be the tuple s := (sy)qea, then by Proposition 3.3, we have k = [s]. By
Proposition 3.4, this implies that 777 (s) takes values everywhere in 777 (K) for all countable
I C A, and hence by the closed nature of K, we see that s takes values in K everywhere.
Thus, k has a representation as a measurable map from X to Kg, as required. O]

6. Towards a concrete version of the uncountable Moore—Schmidt theorem
One can raise the conjecture of whether Theorem 1.6 continues to hold if we use concrete
actions, coboundaries, and cocycles.

Conjecture 6.1. (Concrete uncountable Moore—Schmidt conjecture) Let I' be a discrete
group acting concretely on a measure space X = (X, Xx, ), and let K be a compact
Hausdorff abelian group. Then a concrete Kg,-valued cocycle p = (o,)yer on X is an
concrete coboundary if and only if the T-valued concrete cocycles ko 0= (12 © Py)yer
are concrete coboundaries for all k € K.

The ‘only if” part of the conjecture is easy; the difficulty is the ‘if” direction. If p =
(py)yer is a concrete coboundary with the property that ko p is a concrete coboundary
for all k € K , then the abstraction [p] := ([oy])yer is clearly an abstract coboundary
with k o [p] = [k o p] an abstract coboundary for all kek. Applying Theorem 1.6, we
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conclude that [p] is an abstract coboundary, thus there exists an abstract measurable map
F € Homapsmpbl (X 15 KBq) such that

[oyl=FoTV — F

for all y eI'. By Proposmon 5.4, we may then find a concrete measurable map
F:X—>K 84 such that [F ] = F. If we then introduce the concrete coboundary

pi=(FoT" — F)yer,

then we see that [p] = [p]. If we could conclude that p = p, we could establish
Conjecture 6.1. We are unable to do this, but by subtracting o from p, we see that to
prove the above conjecture, it suffices to do so in the case p = 0, which implies that
[(12, py)] = 0, or equivalently (by Proposition 3.2) that (12, Py ) vanishes almost everywhere
for each k, y. Thus, Conjecure 6.1 can be equivalently formulated as follows.

Conjecture 6.2. (Concrete uncountable Moore—Schmidt conjecture, reduced version) Let
I" be a discrete group acting concretely on a measure space X = (X, Xx, i), and let K be a
compact Hausdorff abelian group. Let p = (o, ), r be a concrete K g,-valued cocycle on
X with the property that (k, py) vanishes p-almost everywhere for each k € K and y el
Then p is a concrete coboundary.

One easily verified case of this conjecture is when K is metrizable. Then K is countable,
so for each y € I', we see that for almost every x € X, (12, py(x)) =0 for all kek
simultaneously, and so p, (x) = 0 for almost every x, which of course implies that p is
a coboundary. Note that this allows us to recover Theorem 1.1 from Theorem 1.6.

Another easy case is when I is countable, (X, Xy, u) is complete, and K is a torus
K = T4 for some (possibly uncountable) A. By hypothesis, the cocycle equation

Pyiys (X) = Py, oTyZ(x)—}—pyz(x) (18)

holds for each y, y» € T for x outside of a null set. Since I' is countable, we may make this
null set independent of y1, y», and can also make it I"-invariant. We may then delete this
set from X and assume without loss of generality that equation (18) holds for all x € X.
Now we write p in coordinates as oy, (x) = (0y,«(x))aca. Then for each o € A, py, o(x)
vanishes for x outside of a null set N, which, as before, we can assume to be independent
of y and I'-invariant. By the axiom of choice, we may partition N, into disjoint orbits of I'":

Ny= | J{T7x:yeT},

xXeMy

where M, is a subset of N, . If we then define the map F, : X — T by setting
Fot(Tyx) = Pya (x)

forx € My and y € I', and F,(x) = O forx € N,, then by the completeness of (X, X, ),
we see that F, is measurable (being zero almost everywhere) and from the cocycle
equation, we see that

,Oy,oz(x) = Fo(TVx) — Fy(x)
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forallx € X,y e '« € A.Setting F : X — Kg, tobe the map F(x) := (Fy(x))qea, We
conclude that p, (x) = F(T7 (x)) — F(x) forall y € I and x € X, so that p is a concrete
coboundary as claimed in this case.

It is conceivable that the truth of this conjecture is sensitive to undecidable axioms in
set theory.

Acknowledgments. A.J. was supported by DFG-research fellowship JA 2512/3-1. T.T.
was supported by a Simons Investigator grant, the James and Carol Collins Chair, the
Mathematical Analysis & Application Research Fund Endowment, and by NSF grant
DMS-1764034.

A. Appendix. A counterexample to a general product theorem for conditional elements
In this appendix we establish the following proposition.

PROPOSITION A.l. (Counterexample to general product theorem) Let (X, ¥x, i) be
the unit interval [0, 1) with the Borel o-algebra Yx and Lebesgue measure |i. Then
there exist concrete measurable spaces (Y1, Xy,), (Y2, Xy,) and conditional elements
y1 € Cond(Y7), y2 € Cond(Y2) such that there does not exist any conditional element
y € Cond(Y] x Y2) with m1(y) = y1 and my(y) = y2, where m; : Y1 X Yo — Y; are the
coordinate projections fori = 1, 2.

In particular, this proposition demonstrates that the equality
Cond(Y; x Y3) = Cond(Y;) x Cond(}>)

can fail without further hypotheses on Yi, Y, such as being a Polish space (as in
Proposition 3.3) or compact Hausdorff with the Baire o-algebra (as in Corollary 3.5).
This proposition is not required to prove any of the other results in this paper.

To construct Y1, Y> we use the following.

LEMMA A.2. (Disjoint sets of full outer measure) There exist disjoint subsets Y1, Y» C X
such that Y1, Yy both have outer measure 1. (In particular, every subset of X of positive
measure has a non-empty intersection with both Y1 and Y3.)

Of course, any sets Y, Y> obeying the conclusions of this lemma are necessarily
non-measurable.

Proof. We partition X into Vitali equivalence classes X N (x + Q) for x € R. As Borel
sets of X have the cadinality 2™ of the continuum, we may well-order them as (Ag) p<2%0>
where § ranges over all ordinals of cardinality less than that of the continuum. By an
alternating transfinite recursiont, construct two disjoint sets Y1 = {xg : 8 < 2%} and Y, =
{yg : B < 280} such that

(1) xg # yg and xg is not in the same Vitali equivalence class of x, for y < B and

similarly yg is not in the same Vitali equivalence class of y, for y < B.

(i) xp, yp € Al whenever A} is uncountable.

T We learned of this construction from math.stackexchange.com/questions/157532.
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One can always select xg, yg at each stage of the recursion because uncountable Borel
(or analytic) sets contain perfect sets and hence have cardinality 2%, see e.g., [19,
Theorem 29.1]. By construction, for any Borel set A such that Y| C A or Y> C A it follows
that A€ is countable, implying that Yy, Y» have outer measure 1. O

Let Y1, Y3 be as in the above lemma. Let A be the Boolean algebra of X generated by
the half-open dyadic intervals [j/2", (j + 1)/2") in X, and for i = 1, 2, let Xy, A; be the
restrictions of Xy, A respectively to Y;. Clearly each (Y;, Xy,) is a concrete measurable
space. Since A generates X x as a o-algebra, we see that A; generates Xy, as a o -algebra;
also, as Y; has full outer measure and is therefore dense in X, we see that each A € A;
arises as ¢; (A) N Y; for a unique ¢; (A) € A. One then easily verifies that ¢; : A; — Ais
a Boolean algebra isomorphism. We have the following key property.

LEMMA A.3. (Weak o-homomorphism) Leti = 1, 2. If (Ap)neN are a family of pairwise
disjoint sets in A; with \ e Ay € Aj, then the sets |7~ ¢i(Ay) and ¢i (e An)
differ by a set of measure zero.

Proof. Foreachn,let B, :=Jo_; A\ U:Z;ll Ap € A;. Theset ()~ ¢i(By,) is a Borel
measurable subset of X. If it has positive measure, then by Lemma A.2, it intersects
Y; in at least one point y; as B,, = ¢;(B,) NY;, we conclude that y lies in each of the
B,,, which contradicts the fact that ﬂzoz 1 B, = 0. Thus ﬂfloz 1| ¢i (By) has measure zero;
since ¢; (o2, Ap) is the disjoint union of ( J52 | ¢i (Ay) and (2 ¢i(By), we obtain the
claim. O]

We combine this lemma with the following general extension theorem, which may be
of independent interest.

PROPOSITION A.4. (Extension theorem) Let (Y, Xy) be a concrete measurable space,

with Xy generated by a Boolean algebra A. Let (X, Xx, 1) be a finite measure space, and

leta : A — X, be a Boolean algebra homomorphism. Then the following are equivalent:

(1) (extension to o-algebra homomorphism) There exists a unique extension of o to a
o -complete Boolean algebra homomorphism & : Xy — X ;.

(i) (weak o-homomorphism property) If (A,y)neN are a family of pairwise disjoint sets
in Awith | ;2 Ay € A, then one has

oo oo

\/ a4y = a< U An>. (19)

n=1 n=1

Proof. Clearly (i) implies (ii). Now assume (ii). The uniqueness of a o-complete Boolean
algebra homomorphism is clear since ‘A generates Xy, so we focus on existence. By
Example 1.5, X, (viewed as a measure algebra) is not necessarily representable as a
o-algebra of sets. So we cannot apply the o-complete version of the Sikorski extension
theorem, see [26, §34]. Instead, we appeal to an extension theorem for vector-valued
measurest, viewing a o -complete Boolean algebra (resp. Boolean algebra) homomorphism

T See [7] for any unexplained definition or result in the theory of vector measures.
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as a special type of vector-valued countably additive (resp. finitely additive) measure.
Indeed, observe that X, (viewed as a measure algebra) comes with a natural complete
metric d(a, b) := u(aAb), and therefore can be embedded as a metric space into L'(X w)
by identifying each abstractly measurable subset a of X, with its indicator function
l, e L'(X ). Here LY(X ) denotes the Banach space of absolutely integrable (abstractly)
measurable functions from X, to R (which can also be identified with the absolutely inte-
grable concretely measurable functions from (X, Xx, ) to R modulo almost everywhere
equivalence, see [10]).

The map F : A — LY(X w) defined by F(A) =1y is a finitely additive vector
measure which is strongly continuous+. By the Carathéodory-Hahn-Kluvanek extension
theorem for vector measures [7, §1.5], F will have an extension to a countably additive
vector measure on (Y, Xy) if F is weakly countably additive, that is it obeys the pre-
measure property (F((,~; An), f) = Y ne 1 (F(Ay), f) (where (-, -) denotes the duality
pairing between L' (X w) and L*°(X,)) forevery f € L°°(X,,) and every countable family
(A,) of pairwise disjoint sets in A such that | ;2 A, € A;. But this property follows
from (1), which implies in particular that ZZO: 1 F(A,) converges strongly in LY(x w) to
F(Ufloz1 A;). Thus we have a countably additive extension F: Xy —> LI(XM). If Ae
Ty, then F(A) is necessarily an indicator function 1g(4) in L'(x ) for some abstractly
measurable subset & (A) € X, of X,,, because F is constructed as a metric extension of
a uniformly continuous function on the dense set (A, d,,) where d,, is a metric associated
to a countably additive finite measure v on Xy (see the proof of [7, §1.5, Theorem 2] for
details). The map & : ¥y — X, then gives the required extension. O

Remark A.5. We sketch here an alternate proof of Proposition A.4 provided to us by the
anonymous referee. Let the notation and hypotheses be as in Proposition A.4(ii). The
Boolean algebra homomorphism « then induces a unique C*-algebra homomorphism

T :BM(Y,A) — L®(X, Tx, )

with T14 = 14(4) for all A € A, where BM(Y, A) is the closed linear span of the
set D= {14 : A € A} in the uniform norm. The function v : A — [0, 1] defined by
V(A) = pu(a(A)) is then a finitely-additive probability measure that is countably additive
on A. By the Carathéodory—Hahn extension, we may extend v uniquely to a countably
additive probability measure on Y (which we will continue to call v). Since D (and hence
BM(Y, A) is dense in Ll(Y , 2y, V), T extends uniquely to a Markov homomorphism
T : LI(Y, Xy, v) > LI(X, Yx, ). Applying [9, Theorem 12.10], we obtain a unique
measure algebra homomorphism g : Xy /N, — Xx /N, with T14 = 1ga) for all A €
Yy /N,. Composing 8 with the quotient map from Xy to Xy /N, gives the desired map &.

For i =1, 2, we apply Proposition A.4 to the Boolean algebra homomorphism «; :
A; — X, defined by o;(A) = [¢;(A)] for any A € A;. By Lemma A.3, the property
in Proposition A.4(ii) holds, thus we can extend ¢; to a o-complete Boolean algebra
homomorphism &; : Y; — X, and thus y; == &?p is a conditional element of Y; for

t That is, Z:le F(A,) converges in norm whenever (A,) are pairwise disjoint sets in A.
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i = 1,2. Now suppose for sake of contradiction that there was a conditional element
y € Cond(Y; x Y») with m1(y) = y; and m»(y) = y2. Then for every dyadic interval I,
we have

V(N xY)=yyinH=aNH)=a(Y1NI) =[]
and similarly
v (Y1 x (Y2n 1)) =[]
and hence
YY1 x Y)) N (I x 1)) = [I].

Letting I range over the dyadic intervals of length w(/) =27" for a given natural
number n, we conclude that

y*<(Y1 XYQ)Q U (IXI)) =1.

L:pu(l)=2""
Taking intersections in n, we conclude that
YY1 x )N {(x,x):x € X}) =1.

But as Yi, Y» are disjoint, the intersection (Y1 x Y2) N{(x, x) : x € X} is empty. This
contradiction establishes Proposition A.1.

We close this appendix with a further application of Proposition A.4, in the spirit of
Corollary 3.5.

PROPOSITION A.6. (Conditional elements of product spaces, III) Let X = (X, Xx, )
be a probability space, let Y = (Y, Zy) be a concrete measurable space, and let K be a
compact Hausdorff space. Then Cond(Y x Kg,) = Cond(Y) x Cond(Kg,).

Proof. We need to show that for any y € Cond(Y) and k € Cond(Kg,) there exists a
unique o-complete Boolean homomorphism « : Xy ® Ba(K) — X, such that «(E) =
y*(E) for all E € Xy and a(F) = k*(F) for all F € Ba(K), where we view Xy and
Ba(K) as subalgebras of the o-algebra Xy ® Ba(K).

Let A be the Boolean subalgebra of Yy ® Ba(K) whose elements consist of finite
disjoint unions of ‘rectangles’ E x F where E € Xy, F € Ba(K). Clearly there is a
unique Boolean algebra homomorphism « : A — X, such that «(E x F) = y*(E) A
k*(F) for any E € Xy, F € Ba(K). Since A generates Ty ® Ba(K) as a o-algebra, it
suffices by Proposition A.4 to show that whenever (A,),en are a family of disjoint subsets
of A such that ;2| A, € A, that

a< G An) = {7 a(Ap).

n=1 n=1

By adding the complement of | J;7 | A, to the A,,, we may assume that J;2; A, =Y x K.
By breaking up each A, into rectangles we may assume that A,, = E,, x F, with E;, € Xy
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and F,, € Ba(K). Thus the E, x F, form a partition of ¥ x K, and it suffices to show
that

\/ Y (En) ARHF) = 1.

n=1

By definition of X ,, it suffices to show that

u( \/ Y (En) A k*(Fn)) >1—¢

n=1

for any ¢ > 0.

Fix . By definition of the Baire o-algebra, each F; lies in the o-algebra generated
by a continuous map to a compact metric space; since the product of countably many
compact metric spaces is metrizable, we can place all the F}, in a o -algebra generated by a
continuous map to a single compact metric space S. We can then push forward K to S, thus
we may assume without loss of generality that K is a compact metric space, so Ba(K)
is now the Borel o-algebra. The pushforward measure k,u is then a Borel probability
measure on the compact metric space K, and hence regular (see e.g. [5, Theorem 1.1]). In
particular, we can find an open neighborhood U, of F}, in K for each n such that

“(Un\Fy) < —
y n n_Z"

and so it will suffice to show that

u( \ y*(En) Ak*(Un>> > 1.

n=1
By construction, we have

o0
UEnxUn=Y><K.

n=1

Equivalently, for each y € Y, the sets {U, : y € E,} form an open cover of K. As K is
compact, we thus see that for each y € Y there exists a finite subset I C {n e N: y € E,}
such that |, .; U, = K. To put this another way, if we let 7 denote the collection of all
finite subsets I C N with Une] U, = K, then we have

U ﬂ E,=7Y.
IeF nel

As ¥ is at most countable, we can totally order it so that every element has finitely many
predecessors. If for each I € ¥ we set

Ep=(E\ () Es

nel J<I nelJ
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then the E } form an at most countable partition of Y into measurable sets, hence the y*(E })
are an at most countable partition of 1 in X ,. It thus suffices to show that

u( \/ ¥ (En) AK*(Uy) A y*(E}>> > w(y*(Ep)

n=1

for every /. But we have

\/ Y (En) AR Un) AYH(E])) 2 \/ K*Un) A YH(E]) = y"(E})

n=1 nel
since the U,, n € I are a finite cover of K, and the claim follows. O
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