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Robert Israel “Bob” Jewett was born onDecember 14, 1937
in Providence, Rhode Island. His father, Abraham, had
emigrated from Poland/Ukraine to Canada in 1921 and
then to the USA in 1923, while his mother, Mame (Mary)
née Katz, was born in Providence to parents from Rus-
sia. In 1946, Bob’s family, including his older sister Ros-
alie, moved to Venice, California, a relocation partially
motivated by Bob’s problems with hay fever. Bob’s much
younger brother Phil was born in 1948.

Bob attended the local public schools and was very in-
terested, while at Venice High School, not only in physics
and mathematics, but also animals and insects. In 1955,
he started college at Caltech. There was no zoology ma-
jor, so he focused on physics and mathematics, eventually
the latter. In 1958, he received Honorable Mention for his
individual performance in the nationwide Putnam compe-
tition in mathematics, helping the Caltech team to place
third in the nation. Bob also stood out as a volleyball and
track and 昀椀eld star.

Bob graduated from Caltech in 1959 and went to the
University of Oregon for graduate work in mathematics.
Before this move, however, he worked for the summer at
Caltech’s Jet Propulsion Laboratory (JPL), in the coding
theory section headed by Solomon Golomb. He was also
employed there in the summers of 1960 and 1961. During
that time he wrote several research papers, one containing
the combinatorial Hales–Jewett theorem [HJ63].

Bob received his PhD in 1963, with a thesis on analy-
sis on locally compact abelian groups written under the
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Figure 1. Bob (center) with the ”Diggers” volleyball team,
1968.

direction of Karl Stromberg. He spent the next year as a
postdoc at the Institute of Advanced Study in Princeton.
This was followed by two years teaching at Uppsala Univer-
sity in Sweden. In 1966–69, Bob was an assistant profes-
sor at the University of Washington, during which period
he wrote his important paper [Jew69] in ergodic theory
leading to the Jewett–Krieger theorem. For the academic
year 1969–70, Bob taught at the IMPA in Rio de Janiero,
returning to the USA in 1970 to take a position at Western
Washington University (WWU) in Bellingham.

Shortly after arriving at WWU, in 1972, Bob shared
SIAM’s 昀椀rst Pólya Prize in Combinatorics, along with co-
honorees Ron Graham, Al Hales, Klaus Leeb, and Bruce
Rothschild, for his part in the Hales–Jewett theorem.
In 1975, Bob’s fundamental paper [Jew75] on convos
(a.k.a. topological hypergroups) appeared.
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Except for visits to UCLA (Spring 1974), the University
of Auckland (1976), the University of Oregon (1982–83),
and the University of Wisconsin (1984–85), Bob spent the
remainder of his career at WWU, retiring in 2010.

At the suggestion of Ron Graham, in 2016 Árpád Bényi,
Steve Butler, Amites Sarkar, and Jozsef Solymosi orga-
nized a celebratory meeting at WWU, titled “50 Years of
the Hales–Jewett Theorem.” This very successful event in-
volved three generations of researchers and attracted dis-
tinguished speakers from far and wide: Vitaly Bergelson,
Fan Chung, David Conlon, Ron Graham, Neil Hindman,
Imre Leader, Dhruv Mubayi, Jaroslav Nesetril, and Gabor
Tardos.

In 2014, Bob was hit by a car at a crosswalk. He sur-
vived the resulting operation and long rehabilitation with
his trademark stoicism and wonderful sense of humor in-
tact. Despite this setback, he was generally healthy until
the last few months of his life. He died peacefully on July
30, 2022.

The Hales–Jewett Theorem

Joel Spencer
The Hales–Jewett theorem [HJ63], which appeared in
1963, occupies a central place in the development of Ram-
sey theory. Indeed, it was this result that turned a col-
lection of Ramsey-type theorems into Ramsey theory; see
[GRS90, p. 35]. The mantra: complete disorder is impossible.

To take a basic case, Ramsey showed in 1930 that for
all ý, þ ∈ ℕ, there exists a suf昀椀ciently large Ā such that every
red/blue coloring of the complete graphþĀ contains either
a redþý or a blueþþ. The rediscovery of this result by Erdős
and Szekeres and the countless extensions and conjectures
of Erdős truly advanced the subject. Several other results
are in the same spirit. For example, much earlier, in 1916,
Issai Schur showed that if ℕ is 昀椀nitely colored, there is a
monochromatic solution to the equation ý + þ = ÿ. As
with Ramsey, Schur’s interests were elsewhere and his re-
sult was greatly extended bymany, especially Richard Rado
and Walter Deuber. In 1950, R.P. Dilworth showed that
appropriately large partially ordered sets must contain ei-
ther large chains or large antichains. The most important
result in this telling was van der Waerden’s theorem from
1927, stating that for all ý ∈ ℕ, there exists an Ā such that if{1, … , Ā} is ý-colored, theremust be amonochromatic arith-
metic progression of ý terms. This was long considered a
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beautiful number-theoretic result, but (as Al Hales recalls)
Bob Jewett felt it could be placed in a more general setting.
Their 昀椀nal result was purely combinatorial, removing the
algebraic structure. Indeed, it can be formulated in terms
of the classic children’s game Tic-Tac-Toe!

De昀椀ne �Ā� , the Ā-cube over ā elements, by�Ā� = {(ý1, … , ýĀ) ∶ ý� ∈ {0, 1, … , ā − 1}}.
(For ā = 2, this is the Hamming cube.) By a combinato-
rial line in �Ā� we mean a suitably ordered set of ā points�0, … , ��−1 in �Ā� such that each coordinate is either con-
stant or runs through 0, 1, … , ā−1 in that precise order. For
example, in �54,(2, 0, 3, 1, 0), (2, 1, 3, 1, 1), (2, 2, 3, 1, 2), (2, 3, 3, 1, 3)
form a combinatorial line. Combinatorial lines lie
on geometric lines in Ā-space but the converse is not
true. For example, in classic Tic-Tac-Toe played on �23 ,(2, 0), (1, 1), (0, 2) lie on a geometric line (and represent a
winning position in the game) but do not form a combi-
natorial line.

The Hales–Jewett theorem states that for all ÿ, ā ∈ ℕ,
there is an Ā such that if �Ā� is ÿ-colored, there necessarily
exists a monochromatic combinatorial line. For the game
enthusiasts: ÿ-player Tic-Tac-Toe with combinatorial lines
of length ā, played in suf昀椀ciently high dimensions, cannot
end in a draw!

The Hales–Jewett theorem immediately implies van der
Waerden’s theorem; just associate (ý1, … , ýĀ)with its base ā
value∑� ý�āĀ−�. But the Hales–Jewett theorem is combina-
torial; instead of 0, 1, … , ā − 1, we may take coordinate val-
ues Ā0, … , Ā�−1 in any space and still get a monochromatic
combinatorial line.

Let �ý(ÿ, ā) denote the minimal Ā such that the Hales–
Jewett theorem holds. The asymptotic upper bounds on�ý(ÿ, ā) as ā → ∞ are enormous, even for ÿ = 2. The
original proof of Hales and Jewett gave an upper bound
on �ý(2, ā) somewhat like the Ackermann function. In
1988, Shelah [She88] found an upper bound which is
primitively recursive. Let Āā�ÿÿ(ā) denote an exponential
tower of twos of height ā. Let ă�ă(ā) denote the ā-times
iterated Tower function, beginning at 1. Shelah’s bound
was roughlyă�ă(ā). The lower bound is exponential, so
there remains a very large gap.

The Hales–Jewett theorem lies at the heart of a group
of related results. The general theme is that for any 昀椀xed
structure Ă and ÿ ∈ ℕ, a suf昀椀ciently large ÿ-colored struc-
ture necessarily contains a monochromatic substructureă . For example, Gallai’s theorem from 1943 states that
if Ă is any 昀椀nite subset of ℝÿ and ℝÿ is 昀椀nitely colored,
then there exists amonochromatică homothetic to Ă . In-
deed, we may 昀椀nd aă = ýĂ +�with � ∈ ℝÿ and nonzero
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ý ∈ ℤ. Further, by compactness, for any ÿ we need onlyÿ-color a suitable 昀椀nite Ą ⊂ ℝÿ.
Gallai’s theorem is a fairly easy consequence of the

Hales–Jewett theorem. Another is the following extended
Hales–Jewett theorem, proved by Ron Graham and Bruce
Rothschild in 1969: For all ÿ, Ā, ā ∈ ℕ, there is an Ā such
that if �Ā� is ÿ-colored, there exists a monochromatic com-
binatorial Ā-space (a natural generalization of a combina-
torial line).

Figure 2. Caltech Big T
yearbook photo, 1959.

Gian-Carlo Rota felt that
Ramsey’s theorem should
hold in general lattices and,
speci昀椀cally, conjectured the
following vector space Ram-
sey theorem: For any 昀椀nite
昀椀eld � and ý, ÿ, ā ∈ ℕ, if Ā
is suf昀椀ciently large and theā-dimensional subspaces of�Ā (considered as a vector
space) are ÿ-colored, then
there exists a ý-dimensional
subspace ă , all of whose ā-
dimensional subspaces are
the same color. This was
proved by Graham & Roth-
schild and independently
by Klaus Leeb, a joint paper
appearing in 1972.

The Hales–Jewett theorem and its variants have
spawned extensions and applications in many direc-
tions. For example, the polynomial Hales–Jewett theorem,
proved by Bergelson and Leibman [BL99] in 1999, leads
to topological dynamics. It is slightly too complicated to
state here, but the reader may consult Walters [Wal00] for
short combinatorial proofs of it and a consequence, the
polynomial van der Waerden theorem. The latter states
that if Ă1, Ă2, … , Ăÿ are polynomials with integer coef昀椀-
cients and no constant term, then whenever ℕ is 昀椀nitely
colored, there exist �, þ ∈ ℕ such that � and � + Ă�(þ),1 ≤ � ≤ ÿ, all have the same color.

Joel Spencer

The Density Hales–Jewett
Theorem

Terence Tao
Van der Waerden’s theorem can be equivalently phrased as
a statement about in昀椀nite colorings: whenever the natural
numbers are 昀椀nitely colored, one of the color classes must
contain arbitrarily long arithmetic progressions. However,
the known proofs of this theorem did not shed much light
on which color class had this property, and why. In 1936,
Erdős and Turán conjectured what we would now call a
density version of the van der Waerden theorem: the asser-
tion that in fact any set of natural numbers of positive (up-
per) density contains arbitrarily long arithmetic progres-
sions. This of course would imply van der Waerden’s theo-
rem, since by the pigeonhole principle whenever one col-
ors the natural numbers into 昀椀nitely many classes, at least
one of themmust have positive density; but the claim is far
stronger, and formalizes the intuition that it is simply the
size of a set of natural numbers that forces the existence of
patterns such as arithmetic progressions contained inside
it.

The conjecture of Erdős and Turán was famously
demonstrated in 1975 by Szemerédi [Sze75] in a remark-
able tour de force of combinatorial reasoning, and the
conjecture is now known as Szemerédi’s theorem. This
theorem and its generalizations have had many applica-
tions in combinatorics and number theory; for instance,
in 2004 Green and I used it to show that the primes con-
tain arbitrarily long arithmetic progressions (despite hav-
ing density zero). In 1977, Furstenberg [Fur77] gave a
new proof of Szemerédi’s theorem that was both concep-
tual and highly in昀氀uential, using the tools of ergodic the-
ory, developing what is now known as the Furstenberg corre-
spondence principle to convert the problem to one of under-
standing the recurrence properties of dynamical systems.
Roughly speaking, the point was that every dense set of
integers could be interpreted as the set of return times for
some dynamical system—the set of times in which a par-
ticle traversing some state space returns to a given set of
states of positive measure. Furthermore, the dynamics of
this system could be made to be measure-preserving, al-
lowing the techniques of ergodic theory to come into play.

Spurred by the success of this ergodic theoretic ap-
proach, Furstenberg and his coauthors and students began
locating and proving density versions of many of the other
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landmark results of Ramsey theory. Some density versions
were false, and others could be established by variants of
Furstenberg’s methods, but establishing a density version
of the Hales–Jewett theorem (which would be a sweeping
generalization of Szemerédi’s theorem) turned out to be
particularly challenging. It was only in 1991 that Fursten-
berg and Katznelson [FK91] 昀椀nally managed to establish
this result by pushing the methods of ergodic theory to
their limits, applying them to systems of families of sets
which have only the barest hint of dynamical structure.
The proof is fearsomely complicated; for instance, just one
step of the argument relies on a Ramsey theorem of Carl-
son and Simpson which is in turn a signi昀椀cant strengthen-
ing of the Hales–Jewett theorem in which one requires a
color class to contain an in昀椀nite-dimensional combinato-
rial subspace, rather than simply a combinatorial line. It
was also purely qualitative: while it does show that a dense
subset of a suf昀椀ciently high-dimensional cube will neces-
sarily contain a combinatorial line, it does not specify at
all the precise relation between the density of the set and
the dimension required.

In 2009, inspired in part by his previous work on Sze-
merédi’s theorem, Gowers proposed to locate a purely
combinatorial proof of the density Hales–Jewett theorem
by a creative new paradigm—an online crowdsourced ef-
fort, where dozens of mathematicians, mostly communi-
cating through blogs and wikis, would contribute and de-
bate possible attack strategies. After a very intensive seven-
week effort involving thousands of comments by many
mathematicians, such a combinatorial proof was 昀椀nally
obtained in 2010, with the results eventually being pub-
lished in [Pol12] under the pseudonym“D.H.J. Polymath;”
the initials here stand for “Density Hales Jewett.” The Poly-
math project continued to solve a number of other prob-
lems in the same format; it has kept the same pseudonym
ever since, even though the other problems were no longer
directly related to the density Hales–Jewett theorem.

The Polymath proof of the density Hales–Jewett the-
orem was simpli昀椀ed in 2014 in a twelve-page paper of
Dodos, Kanellopoulos, and Tyros [DKT14], which as one
corollary gives what is arguably the shortest and most ele-
mentary proof of Szemerédi’s theorem, and also gives the
currently best-known quantitative bounds for the density
Hales–Jewett theorem. Research in this area is still ongo-
ing; for instance, there is a conjectural “density polyno-
mial Hales–Jewett theorem” (a density version of the poly-
nomial Hales–Jewett theorem of Bergelson and Leibman)
that should also be true, and would imply a staggering
number of other density Ramsey theorems already known
in the literature, but remains open at this time of writing.
Gowers [Gow22] provides further information about these
developments.

Terence Tao

On the Jewett–Krieger Theorem

Benjamin Weiss
The Jewett–Krieger theorem is one of the fundamental the-
orems lying on the interface between topological dynam-
ics and ergodic theory. In topological dynamics one stud-
ies the properties of the iterations of a homeomorphismĀ of a compact space Ą . In classical ergodic theory the
setting is that of a probability space (Ą,ℬ, Ā) and a mea-
surable invertible mapping Ā of Ą that preserves the mea-
sure Ā. The basic building blocks of measure preserving
transformations are those that are indecomposable, in the
sense that one cannot 昀椀nd a set � ∈ ℬ with 0 < Ā(�) < 1
such that Ā(�) = �. These are called ergodic systems.

It is a basic fact that a homeomorphism Ā of a compact
space Ą always has at least one invariant measure. Just as
the Borel probability measures on Ą form a compact con-
vex set in the weak* topology, so too the Ā-invariant prob-
ability measures form a compact convex set and it turns
out that its extreme points are exactly the invariant ergodic
measures for the transformation Ā. In particular, if there is
only one invariantmeasure, say ā, for Ā the system (Ą, ā, Ā)
is ergodic. Such topological dynamical systems are called
uniquely ergodic. This property has signi昀椀cant topologi-
cal consequences. Indeed, if Ą0 denotes the closed sup-
port of this unique measure ā then Ą0 is Ā-invariant and(Ą0, Ā) is a minimal system, which means that all orbits{ĀĀ(ý) ∶ Ā ∈ ℤ} are dense.

A rotation of the unit circle by an irrational multiple
of � is an example of a uniquely ergodic system. Prior to
the work of Bob Jewett most of the examples of uniquely
ergodic systems were extensions of various kinds of these
simple systems. When Kolmogorov de昀椀ned entropy as
a numerical invariant for measure preserving systems it
turned out that all the known examples of uniquely er-
godic systems had zero entropy. It was only in 1967 that
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Frank Hahn and Yitzhak Katznelson gave an involved con-
struction of a uniquely ergodic system with positive en-
tropy. It came as a complete surprise to all of the experts
in the 昀椀eld when Jewett published his result. For its state-
ment, the following de昀椀nition is needed. The product of
a system (Ą,ℬ, Ā, Ā) with itself is the mapping Ā × Ā on
the product probability space (Ą × Ą,ℬ × ℬ, Ā × Ā) where(Ā ×Ā)(ý, þ) = (Āý, Āþ). A system is called weakly mixing if
its product is ergodic. Examples of weakly mixing systems
are automorphisms of the torus with no eigenvalue that is
a root of unity.

Jewett’s theorem [Jew69] can be stated as follows.
For every weakly mixing system (Ą,ℬ, Ā, Ā) there is a

uniquely ergodic topological system (ą, ÿ), where ą is the Can-
tor set, with a unique invariant measure ā such that the systems(Ą,ℬ, Ā, Ā) and (ą, ā, ÿ) are isomorphic.

In one stroke the family of uniquely ergodic systems
was enlarged to include models of all weakly mixing sys-
tems. The natural question arose as to whether one could
drop the additional assumption of weak mixing. This was
accomplished in the following year by Wolfgang Krieger,
who proved the same theorem under only the (necessary)
condition of ergodicity. Krieger’s result appeared only in
1973 [Kri72] and in the meantime a different proof was
given by Georges Hansel and Jean-Pierre Raoult. It then
became clear that the property of unique ergodicity was
as prevalent as possible. The original proof of Jewett was
extended in 1979 to cover the ergodic case by Bellow and
Furstenberg [BF79]. Jewett needed a certain lemma which
was easy to prove under the hypothesis of weak mixing.
Bellow and Furstenberg showed that this property is true
for all ergodic systems by a clever use of Neil Hindman’s
famous combinatorial theorem.

The Jewett–Krieger theorem was extended to the setting
of measure preserving actions of the real line; this was
the original setting for ergodic theory, which started from
questions in statistical mechanics. This was done, 昀椀rst by
Konrad Jacobs assuming weak mixing, and then, in 1974,
by Denker and Eberlein [DE74] in the general ergodic case.

More generally one can consider actions of any locally
compact group �. To begin with one asks when every ac-
tion of � by homeomorphisms of a compact space 昀椀xes
some probability measure. The answer is if and only if
the group � is amenable. This class contains all solvable
groups but does not contain the free group on two ormore
generators. Indeed much of the classical ergodic theory
was extended to this class of groups and in particular, the
Jewett–Krieger theorem was established for all discrete ele-
mentary amenable groups in [Wei85]. In joint work with
Alain Rosenthal this was extended to all discrete amenable
groups. He wrote a series of papers containing this and
many other re昀椀nements in the following years.

In that same paper I outlined a different kind of exten-
sion. If (Ą,ℬ, Ā, Ā) and (ą, �, ā, ÿ) are two systems and
there is a measurable mapping � ∶ Ą → ą such that�Ā = ā and �Ā = ÿ� then the second is called a factor
of the 昀椀rst. I showed that every uniquely ergodic model
of the factor can be continuously extended to a uniquely
ergodic model of the larger system. This “relative” version
has been applied by Huang, Shao and Ye [HSY19] to prove
new results in the study of multiple ergodic averages.

Jewett’s result motivated many other results in the spirit
of 昀椀nding topological models formeasurable systems with
special properties. His work spawned an entire branch in
the interplay between measure and topology which is still
growing.

Benjamin Weiss

Jewett’s Hypergroups

Walter R. Bloom
The concept of a group-like structure where the product of
two elements results in a set rather than another element
has been around since the 昀椀rst half of the twentieth cen-
tury, but the tie-up with the topology of the underlying
space and Borel measures 昀椀rst appeared in the early 1970s
when Charles Dunkl [Dun73], Robert Jewett [Jew75] and
René Spector [Spe75] independently created locally com-
pact hypergroups with the view to developing standard
harmonic analysis on these spaces. There were also precur-
sors by Jean Delsarte in 1938, Boris Levitan in 1945, and
Salomon Bochner in 1956 with the study of generalised
translation operators.

There are technical differences between the various de昀椀-
nitions, but in the setting of analysis on topological group-
like structures, the basis for much subsequent research was
Jewett’s lengthy paper [Jew75], a remarkable work that de-
veloped the main harmonic analysis of what he termed
convos. It is Jewett’s rather extensive axiom scheme that
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has subsequently proved most in昀氀uential. In a nutshell,
we write þ for a locally compact Hausdorff space acting as
base space, �� for the Dirac (point) probability measure atý ∈ þ and ĀĀ(þ) for the convolution algebra of bounded
complex-valued regular Borel measures on þ, where ��∗��= ��∗� is a probability measure with compact support ý∗þ.
In the locally compact group case we have ý ∗ þ = ýþ, but
we are in unfamiliar territory when ý ∗ þ is a subset of þ
containing more than one point.

Figure 3. Passport photo, 1982.

We could list all the Jew-
ett axioms and discuss the
nuances of their relation-
ships, but this is better left
for the readers of his pa-
per. One principal hyper-
group axiom is that we have
a continuous map þ × þ ∋(ý, þ) → �� ∗ �� ∈ ĀĀ(þ),
with a suitable topology onĀĀ(þ). There is also an
involution ý → ý− on þ
respecting this convolution
operation ∗ in the sense
that ÿ ∈ ý ∗ þ if and only
if þ = ý−. Here, involution

takes the place of group inverse and ÿ is the neutral el-
ement of þ, taking the place of the group identity. We
then pass from the sparsely structured base space þ to the
more richly structured measure algebra ĀĀ(þ). For exam-
ple, the group operation of (left) translation is replaced by
the hypergroup operation of generalised (left) translation
on suitable functions Ā on þ:(Ā�) (þ) ≔ Ā (ý ∗ þ) ≔∫� Ā (ÿ) þ (�� ∗ ��) (ÿ) , þ ∈ þ.

At this stage we illustrate the theory with the important
case of double coset hypergroups � ⫽ �, where � is a lo-
cally compact group with left Haar measure ÿ� and � is a
compact subgroupwith normalisedHaarmeasure ÿ� , and
indeed this formed the basis of Jewett’s theory [Jew75, Sec-
tion 8.2]. The double coset space � ⫽ � = {�ā� ∶ ā ∈ �}
doesn’t inherit a multiplication from � if � isn’t normal,
but the space of measures on � ⫽ � does inherit a convo-
lution from the measure algebra ĀĀ (�).

[Jew75, Theorem 8.2B]: The space � ⫽ � with the quo-
tient topology and convolution���� ∗ ���� ≔∫� ������ þÿ�(ā)
is a hypergroup with neutral element ÿ = � = �1�.
(This equality of Radon measures and similar equalities
below are best understood by evaluating both sides at

continuous functions Ā; the integrand above then simpli-
昀椀es to Ā(�ýāþ�).) If ý ∈ � then (�ý�)− = �ý−1�. A left
Haar measure is given by

ÿ�⫽� = ∫� ���� þÿ�(ý).
The signi昀椀cance of (left) Haar measure is its invariance

under (left) translation.
[Jew75, Theorems 3.3F, 3.3G]: Let � = ÿ�⫽� . For every�-昀椀nite (with respect to �) nonnegative Borel-measurable

function Ā on � ⫽ � and ý ∈ � ⫽ �, Ā� is also �-昀椀nite,
∫�⫽� Ā� þ� = ∫�⫽� Ā þ� and Ā ∗ � = Ā (� ⫽ �)�,

where Ā ∈ Ā+ (� ⫽ �).
The representation theory of hypergroups has been well

developed in [Jew75, Chapter 11] and is vastly simpli昀椀ed
in the commutative case. Let (þ, ∗) be a commutative hy-
pergroup with neutral element ÿ, involution − and Haar
measure ÿ� . Bounded measurable functions � ∶ þ → ℂ
are called characterswhen�(ÿ) = 1, �(ý∗þ) = �(ý)�(þ) and�(ý−) = �(ý) for all ý, þ ∈ þ. The essential difference be-
tween characters on groups and characters on hypergroups
is that on groups it is easy to “shift around” the character
through �(ýþ) = �(ý)�(þ). For hypergroups the argument
isn’t so easy; the problem is that �(ý ∗ þ) is not the evalua-
tion of � at a point, but rather is in general an integral.

A locally bounded measurable function � ∶ þ → ℂ is
said to be positive de昀椀nite ifĀ∑�=1 Ā∑�=1 ý�ý��(ý� ∗ ý−� ) ≥ 0
for all choices of ý1, ý2, … , ýĀ ∈ þ, ý1, ý2, … , ýĀ ∈ ℂ andĀ ∈ ℕ. All continuous characters are automatically posi-
tive de昀椀nite and the dual þ' of þ is just the set of continu-
ous characters with the compact-open topology in which
case þ' must be locally compact.

For Ā ∈ ÿ1 (þ, ÿ�) we have the Fourier transform'Ā (�) ≔ ∫� Ā−�þÿ� .
[Lev64], [Jew75, Theorem 7.3I] (Levitan–Plancherel

theorem): There exists a unique nonnegative measure ��'
on þ' such that∫� |Ā|2 þÿ� = ∫�' ||'Ā||2 þ��'
for all Ā ∈ ÿ1 (þ, ÿ�) ) ÿ2 (þ, ÿ�), and �ā (þ)' is dense inÿ2 (þ', ��').
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The inverse Fourier transform of � ∈ ĀĀ (þ') is given
by (� (ý) ≔ ∫�' � (ý) þ�(�).

[Jew75, Theorems 12.3A, 12.3B] (Bochner’s theorem):

For � ∈ Ā+ (þ'), (� is continuous bounded positive de昀椀-
nite on þ. For every continuous bounded positive de昀椀nite
function Ā on þ there exists a unique � ∈ Ā+ (þ') such

that Ā = (�.
Back to double coset hypergroups, an interesting ex-

ample is given by the Naimark hypergroup [BH95, Sec-
tion 3.5.66], [Jew75, Sections 9.5 and 15.2] which arises
from a solution of a particular Sturm–Liouville bound-
ary value problem over ℝ+ (≃ ÿÿ(2, ℂ) ⫽ÿā(2)) or by
analysing the geometry of randomwalks on the hyperbolic
plane ℍ2. We obtain the convolution�� ∗ �� = 12 sinh ý sinh þ ∫�+�

|�−�| �� sinh ā þā
whenever ý, þ ∈ ℝ+\{0}, and Haar measure is given byþÿℝ+(ý) = (sinh2 ý) þý. Here ℝ'+ ≅ {�ÿ ∶ −1 ≤ � < ∞}
with characters (indexed by � = �2)

�ÿ(ý) = §̈
©

sinĀ�Ā sinh� if � ≠ 0,
�sinh� if � = 0

for all ý ∈ ℝ+. Note that �0 ∈ �0(ℝ+) and �−1 = 1. The
Plancherel measure on ℝ'+ is just∫ℝ'+ ℎ þ�ℝ'+ = 1� ∫∞

0 ℎ (��)√ā þā
and supp�ℝ'+ = {�� ∶ 0 ≤ ā < ∞} ⊊ ℝ'+.

The mark of an excellent paper is not only that it is
well written, novel, and makes a substantial contribution
to the 昀椀eld, but also that it lends itself to further devel-
opments across several areas. Here, these include har-
monic analysis, operator algebras, and differential equa-
tions. In particular, we highlight follow-up studies of neg-
ative de昀椀nite functions, the Lévy continuity theorem, the
Lévy–Khintchine formula and convolution semigroups,
all forming the basis of probability theory on hypergroups
and related structures; see [BH95] and the many papers
that have appeared since.

Walter R. Bloom

Al Hales
Bob and I were fellow students at Caltech, he a year ahead
of me. We met in about 1958, either at the Math Club or
on a volleyball court. By 1961wewere both in grad school,
he at the University of Oregon and I at Caltech. But during
the summers of 1959 and 1960 we were both working at
Caltech’s Jet Propulsion Lab (JPL) under the supervision of
SolomonGolomb. Bob remembered askingme for a good
place to read about van derWaerden’s theorem, and appar-
ently I suggested Khinchin’s “Three Pearls of Number The-
ory.” Later he told me that he thought he could see how
to generalize the theorem to structures other than the in-
tegers. So he drew me into the project and we started con-
sidering possible generalizations. Did we need two opera-
tions? Commutativity? Associativity? Units/inverses? Etc.
Eventually we decided that an arbitrary semigroup was the
right setting. But then it would work for a free semigroup,
and this is just the space of sequences! So we realized we
had proved that Ā-dimensional “Tic-Tac-Toe” has no tying
positions if Ā is large compared to the edge length! Using
a known result, this meant that the 昀椀rst player has a forced
win.

We could not resist considering the dual question, and
soon realized that using Hall’s theorem on distinct rep-
resentatives we could show that the second player could
force a tie if the edge length was large compared to the di-
mension Ā. We were pleased with our dual results, which
昀椀rst appeared in a JPL report, and decided to submit them
for publication. But we had no idea of their future.

Bob and I were coauthors of several other reports at
JPL, only one of which was published in the open liter-
ature: “Recent Results in Comma-free Codes.” This ap-
peared under the pseudonymB.H. Jiggs, standing for coau-
thors Baumert, Hales, Jewett, Golomb, Gordon and Self-
ridge (“i” being a dummy initial). After that our research
directions seemed to drift apart—his in the analytic di-
rection and mine in the algebraic direction. We always

Al Hales is a professor emeritus of mathematics at UCLA and adjunct research
staff at CCR-La Jolla. His email address is hales@ccr-lajolla.org.
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had plenty of math to talk about, but no further joint pa-
pers.

After we received our doctorates Bob went to the East
Coast and Europe for several years. Ginny and I were mar-
ried and spent a year in England and three years in Cam-
bridge, Mass. During this time we met with Bob on sev-
eral occasions, in Princeton and in the Boston area. Then
we both returned to the West Coast. I was at UCLA but
took a year’s sabbatical at the University of Washington in
1970–71, by which time Bob was at Western Washington
University (WWU) in Bellingham. So we had a number of
chances to meet with him in the Northwest.

Shortly after Ginny and I returned to UCLA from sab-
batical, Bob and I were each pleasantly surprised to receive
phone calls from Gian-Carlo Rota telling us that we would
be co-recipients (with Graham, Leeb, and Rothschild) of
SIAM’s 昀椀rst “Pólya Prize in Combinatorics,” based on our
joint paper. We traveled to Austin, Texas, in late 1972 for
this presentation.

Since Bob’s family lived in Southern California, he of-
ten traveled to our area to visit them, giving us a chance
to get together. In addition, I arranged for him to get a
visiting position at UCLA for a quarter in 1974.

Twenty years or so later all this changed—directions re-
versed! I took early retirement from UCLA and we moved
to La Jolla for me to take a new position at IDA/CCR. We
bought land on Orcas Island in Washington, and then
built a small vacation house there. So now we were trav-
eling up to Bob’s area every two or three months, and we
made a point of meeting him for dinner each time, usually
in Bellingham though sometimes on “our” island.

Also, during this period, I gave several colloquium talks
at WWU while passing through. And there was the won-
derful 2016 conference at WWU on “50 Years of the Hales–
Jewett Theorem.”

Bob recovered from his 2014 road accident, but his mo-
bility was certainly affected. The series of health problems
that followed did not seem to affect his wonderful sense
of humor. We continued to see Bob on trips to Orcas until
the pandemic began to affect all our travel plans. I think
the last time was in May 2021. As should be clear from
the above, he was more than a friend and colleague, essen-
tially a member of our extended family. We miss him very
much.

Al Hales

Richard J. Gardner
By 2016, when the “50 Years of the Hales–Jewett Theorem”
conference was held at WWU (Western Washington Uni-
versity), Bob Jewett had been retired for six years and by
choice no longer drove a car, so he was chauffeured to and
from his senior living home by volunteers. Still equipped
with a sharp mathematical mind, he graciously accepted
the attention, but to me seemed slightly bemused by all
the fuss.

Before the conference, most of the WWU math faculty
knew that Bob had done some 昀椀ne research, but many
were not fully aware of its signi昀椀cance. He was always
ready to talk about mathematics, yet almost never men-
tioned his own work. I only recall Bob giving a single
colloquium talk during the twenty years we overlapped at
WWU, a beautifully presented and entirely elementary ex-
position of Ă-adic addition and multiplication. In fact, al-
though he continued to publish some nice joint work spo-
radically, Bob’s major results, addressed in other articles
in this memorial tribute, were all in print by 1975. After
the WWU conference, I asked him why, given his obvious
talent. He said, “Nothing else turned up.”

Behind this reply lies Bob’s curious, and to some extent
unfathomable, personality. Early adventures described be-
low notwithstanding, he generally preferred not to take
any action unless it was necessary, and on occasion even
if it was. He was a procrastinator and somewhat forget-
ful. Lettersmight remain unopened. Bob sensed thatmost
forms could be ignored, and at some point while still em-
ployed even stopped completing his annual tax return, hav-
ing discovered that the IRS would do it for him. (Dear
reader, do not try this at home.) Like G.H. Hardy, he dis-
liked gadgets; he never owned a laptop or cellphone, and
never used email or the internet. His of昀椀ce PC was em-
ployed solely for exams and lecture notes produced with
outdated T3 software. Telephone was the only means for
long-distance communication, but during the thirty years
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Figure 4. Pólya prizewinners at the 2016 Western Washington
University conference. Left to right: Ron Graham, Bruce
Rothschild, Al Hales, Bob Jewett.

I knew him well and saw him often, Bob phoned me only
once.

Despite these peculiarities, Bob was an excellent and
very popular colleague. He was genial, modest, consider-
ate, witty, and always ready to have a chuckle. By chalking
reminders to himself on his of昀椀ce blackboard, he some-
how managed to arrive on time for committee meetings,
where his intelligence and straightforward good sense were
greatly appreciated. He attended most graduate oral ex-
ams and colloquium talks, and usually had insightful ques-
tions to ask the speaker. Bob’s wide knowledge of math-
ematics was a valuable departmental resource; his insight
took him quickly to the heart of the matter, and I do not
recall him being proved wrong in a mathematical discus-
sion.

There is no PhD program at WWU, but Bob was very
active in teaching master’s students. One recalls her class-
mates referring to Bob as “God,” because he seemed to
know all mathematics and how the different areas con-
nected. (In fact, Bob’s research straddles algebra and anal-
ysis, and discrete and continuous.) Others fondly remem-
ber his patience and sense of humor. In 2016, I used Bob’s
notes to teach Math 523, Advanced Calculus of Several
Variables. Designed for a quarter-long course, the notes
are a masterpiece of ef昀椀cient and almost error-free expo-
sition, not based on any textbook but developed from
scratch. Another set of Bob’s class notes, in a similar style,
focused on randomwalks. Bob was also a good undergrad-
uate teacher; some students might have preferred more le-
niency and less honesty—I don’t think Bob was capable of
being dishonest—but even they often recognized his bril-
liance and fundamental kindness. An ex-student I know,
now a successful teacher but rather lazy at the time, recalls

asking Bob for a letter of recommendation for a PhD pro-
gram. Bob gently replied, “I would have to tell them that
you don’t work very hard.” To the student, this frank as-
sessment from one of his favorite teachers was a much-
appreciated wake-up call. One might think that Bob’s ex-
ams would be as clever as he was, but on the contrary,
Bob always advocated for a completely straightforward ap-
proach to testing.

While young, Bob was athletic and adventurous. Dur-
ing his academic years in Sweden and Brazil, he learned
the languages well enough to give lectures and exams. In
Sweden, he was amused to be able to settle a tax dispute by
discovering that the Swedish and American versions of the
double-taxation treaty did not agree. At the end of his stay
in Sweden, in May 1966, he bought a Volvo, drove it into
Eastern Europe (a nontrivial matter at that time), shipped
it from Gothenburg to New York, and motored across the
Northern USA to Washington state, stopping to hike along
the way.

Bob told me there were women he would have married,
and those that would have married him, but none in both
groups. While I knewhim, he lived alone, apparently quite
contentedly, in accommodation unadorned by decoration
of any kind that always featured a recliner and a desk and
tables piled with books and assorted paper. But Bob was
not a loner. He welcomed company and could be counted
upon to enliven the chat at dinner tables or pubs. More
than one faculty spouse told me how much they enjoyed
Bob at departmental social gatherings: “At least if Bob was
there, there was somebody interesting to talk to.”

An observation of Virginia Hales helps reconcile the
contradictory aspects of Bob’s personality. She wrote, “He
seemed to only live in the moment, his mind was never
somewhere else when he was with you. . . It may have been
this last trait that made him absentminded when it came
to doing necessary tasks.” I agree. Spending time with
Bob was always fun, and it was a privilege and a pleasure
to know him.

Richard J. Gardner
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