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FOUNDATIONAL ASPECTS OF UNCOUNTABLE MEASURE

THEORY: GELFAND DUALITY, RIESZ REPRESENTATION,

CANONICAL MODELS, AND CANONICAL DISINTEGRATION

ASGAR JAMNESHAN AND TERENCE TAO

Abstract. We collect several foundational results regarding the interaction be-
tween locally compact spaces, probability spaces and probability algebras, and
commutative C∗-algebras and von Neumann algebras equipped with traces, in
the “uncountable” setting in which no separability, metrizability, or standard
Borel hypotheses are placed on these spaces and algebras. In particular, we re-
view the Gelfand dualities and Riesz representation theorems available in this
setting. We also present a canonical model that represents probability algebras
as compact Hausdorff probability spaces in a completely functorial fashion,
and apply this model to obtain a canonical disintegration theorem and to read-
ily construct various product measures. These tools are useful in applications
to “uncountable” ergodic theory (as demonstrated by the authors and others).
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1. Introduction

In this paper we establish various foundational results about the measure

theory (and also point set topology and functional analysis) of “uncountable”

spaces: topological spaces that are not required to be separable or Polish, mea-

surable spaces that are not required to be standard Borel, measure spaces that are

not required to be standard Lebesgue, and C∗-algebras that are not required to be

separable. In other work by us and other authors [21, 44, 42, 43] we use these

results to establish various results in “uncountable” ergodic theory (in which the

acting groups Γ are not required to be countable or the underlying probability

spaces/ algebras are not required to be separable), which in turn can be applied

to various “uncountable” systems constructed using ultraproducts and similar

devices to obtain combinatorial consequences.

In this paper we focus on the following (interrelated) families of results:

(i) The compactification of locally compact Hausdorff spaces, and the Gel-

fand dualities between categories of these spaces and various categories

of commutative C∗-algebras.

(ii) Riesz representation theorems on compact and locally compact Haus-

dorff spaces, leading to various “Riesz dualities” between categories of

compact or locally compact Hausdorff probability spaces and categories

of tracial commutative C∗-algebras.

(iii) Construction of a canonical model of probability algebras as compact

Hausdorff spaces with good category-theoretic properties (based on com-

bining the above dualities with a “probability duality” between abstract

probability spaces and tracial commutative von Neumann algebras).

(iv) Construction of a canonical disintegration of probability measures with

respect to a factor space, via the aforementioned canonical model, and the

use of this disintegration to construct relatively independent products.

(v) Connections with various Stone dualities between categories of Stone

spaces and categories of Boolean algebras, focusing in particular on the
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CH, CC∗Alg1 Definition 1.1
LCH, LCHp, (pt ↓ CH) Definition 2.1
CC∗Algnd, CC∗AlgMult,nd, (CC∗Alg1 ↓ C) Definition 2.3
CMet, Pol, CncMbl Definition 3.1
CncPrb, CMetPrb, CHPrb, (pt ↓ CH)Prb, Definition 5.1
PolPrb, LCHPrb, LCHpPrb

CC∗Algτ, (CC∗Alg1 ↓ C)τ, CC∗Algτnd, CC∗AlgτMult,nd Definition 5.10
Bool, Boolσ, AbsMbl, AbsPrb, PrbAlg Definition 6.1
CvNAlgτ Definition 7.1
Stone, Stoneσ Definition 9.1
CncNul, AbsNul, CHNul Definition 9.3

Table 1. A list of the categories in this paper and the location
where they are first defined or introduced.

duality provided by the Loomis–Sikorski theorem, and using this duality

to establish an abstract version of the Kolmogorov extension theorem.

Most of the above results are already known in the literature, though some-

times in a different guise; we discuss relevant references at all stages of this pa-

per. Our primary contribution is to synthesize them into an arrangement in which

they appear as different aspects of a coherent whole. As the above descriptions

indicate, we will rely hereby on the language of category theory to describe, or-

ganize, and interpret our results, as well as the results already in the literature.

Indeed, we found that an insistence on ensuring that various operations or iden-

tifications can be viewed as functors or natural transformations to be extremely

elucidating, for instance clarifying the different versions of the Baire algebra or

the Riesz representation theorem that exist in the literature by assigning each

such version to a slightly different category. We highlight the category-theoretic

notions of categorical product, natural isomorphism, and duality of categories

as being of particular relevance to our investigations. We review the basic termi-

nology of category theory we will need in Appendix A.

1.1. Compactification and Gelfand duality. In this paper we use the term

Gelfand duality to refer to a number of duality of categories between categories

of compact or locally compact Hausdorff spaces on one hand, and categories of

commutative C∗-algebras on the other. To illustrate the most basic example of

Gelfand duality, we introduce the compact Hausdorff category CH and the unital

commutative C∗-algebra category CC∗Alg1.

Definition 1.1 (CH and CC∗Alg1).

(i) A CH-space is a compact Hausdorff space X = (XSet,FX), that is to say

a set XSet equipped with a topology FX that makes the set compact and
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Hausdorff. A CH-morphism f : X → Y between two CH-spaces is a Set-

morphism (i.e., a function) fSet : XSet → YSet between the underlying sets

which is continuous, using the usual Set-composition law.

(ii) A CC∗Alg1-algebra is a unital commutative C∗-algebra A. A CC∗Alg1-

morphism Φ : A → B is a unital ∗-homomorphism fromA to B.

(iii) If X is a CH-space, we define C(X) to be the CC∗Alg1-algebra of contin-

uous functions f : X → C from X to the complex numbers C, endowed

with the obvious structure of a unital C∗-algebra. If T : X → Y is a CH-

morphism, we define C(T ) : C(Y) → C(X) to be the Koopman operator

C(T )( f ) ≔ f ◦ T .

(iv) If A is a CC∗Alg1-algebra, we define Spec(A) (the Gelfand spectrum

of A) to be the space HomCC∗Alg1
(A → C) of CC∗Alg1-morphisms

λ : A → C from A to C (viewing the latter as a CC∗Alg1-algebra),

equipped with the topology induced from the product topology on the

space CA of all functions from A to C; this is a CH-space thanks to

the Banach-Alaoglu theorem. If φ : A → B is a CC∗Alg1-morphism,

then Spec(Φ) : Spec(B) → Spec(A) is the CH-morphism defined by

Spec(Φ)(λ) ≔ λ ◦ Φ for all λ ∈ HomCC∗Alg1
(A → C).

It is a routine matter to verify that CH and CC∗Alg1 are categories, and

C : CH → CC∗Alg
op
1

and Spec : CC∗Alg
op
1
→ CH are functors between the

indicated categories.

It is well-known (see, e.g., [58], [68] or [25, Theorem 1.20]) that the functors

C, Spec are faithful and full which invert each other up to natural isomorphisms,

thus giving a duality of categories which we refer to as the Gelfand duality be-

tween CH and CC∗Alg1. We summarize all these facts as a single diagram

CC∗Alg
op
1

CH

SpecC
.

In fact we have the larger, essentially commuting, diagram of Gelfand dualities

depicted in Figures1 1.1, 1.2, where (roughly speaking)

• LCH is the category of locally compact Hausdorff spaces, with mor-

phisms required to be continuous;

1These figures, as well as several other figures in this paper, can be viewed as “coordinate
charts” of a single enormous diagram of categories that encompass a large number of types
of objects and morphisms that are studied in topology, measure theory, probability theory, and
operator algebras. This unified diagram is far too large and dense to depict in a presentable
fashion, so we have opted instead to only reveal portions of it at a time.
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• LCHp is the category of locally compact Hausdorff spaces, with mor-

phisms required to be both continuous and proper;

• (pt ↓ CH) is the category of pointed compact Hausdorff spaces, equipped

with a distinguished point, and with morphisms required to preserve this

point;

• β : LCH→ CH is the Stone–Čech compactification functor;

• Alex : LCHp → (pt ↓ CH) is the Alexandroff (or one-point) compactifi-

cation functor;

• CC∗Algnd is the category of commutative C∗-algebras with morphisms

taking values in the target algebra and required to be nondegenerate;

• CC∗AlgMult,nd is the category of commutative C∗-algebras with morphisms

taking values in the multiplier algebra and required to be nondegenerate;

• (CC∗Alg1 ↓ C) is the category of unital commutative C∗-algebras A en-

dowed with a distinguished unital ∗-homomorphism to C, with the mor-

phisms required to preserve this ∗-homomorphism;

• C0(X) is the space of continuous functions on X which vanish at infinity;

• Cb(X) is the space of bounded continuous functions on X;

• Mult is the multiplier algebra functor;

• Unit is the functor that adjoins a unit to a C∗-algebraA to create a unital

C∗-algebraA⊕C, with the coordinate ∗-homomorphism λ∗ : A⊕C→ C.

We describe these categories and functors in more detail in Section 2, where

we also present various commutativity relations and dualities of categories that

are implicit in Figures 1.1, 1.2, formalized as Theorem 2.4. Each of these func-

tors and equivalences already occur either implicitly or explicitly in the literature,

but to our knowledge this is the first time they have been combined into the above

two diagrams. In particular, we believe that these diagrams clarify an ambiguity

in the Gelfand duality literature in which morphisms between locally compact

Hausdorff spaces were sometimes, but not always, required to be proper, and

morphisms between C∗-algebras were sometimes, but not always, required to lie

in the target algebra rather than the multiplier algebra. This ambiguity is resolved

by noting that there are two natural categories LCH, LCHp of locally compact

Hausdorff spaces, and two natural categories CC∗Algnd, CC∗AlgMult,nd of com-

mutative C∗-algebras.

1.2. Baire algebras and Riesz duality. We now augment the Gelfand dualities

just discussed by endowing the locally compact Hausdorff spaces with a proba-

bility measure on one hand, and endowing the commutative C∗-algebras with a

trace on the other hand, giving rise to a new collection of dualities of categories



6 A. JAMNESHAN AND T. TAO

(CC∗Alg1 ↓ C)op CC∗Alg
op
nd

CC∗Alg
op
Mult,nd

CC∗Alg
op
1

(pt ↓ CH) LCHp LCH CH

Spec Spec

Unit Mult

Spec SpecC C0

Alex

Cb

β

C0 C

Figure 1.1. Gelfand dualities. Tailed arrows indicate faithful
functors; and an arrow with a doubled head indicates a full func-
tor. Unlabeled functors are forgetful functors. (These conventions
remain in force for all other diagrams of categories and functors
in this paper.) This diagram commutes up to natural isomor-
phisms.

(CC∗Alg1 ↓ C)op CC∗Alg
op
1

CC∗Alg
op
nd

CC∗Alg
op
Mult,nd

(pt ↓ CH) CH LCHp LCH

Spec Spec Spec SpecC C C0 C0

Figure 1.2. Forgetful functors in the locally compact and C∗-
algebra categories. This diagram also commutes up to natural
isomorphisms, but does not commute with the previous diagram.
Blue arrows indicate casting functors, as per Definition 1.7. We
do not deem the forgetful functor from LCHp to LCH (or from
CC∗Algnd to CC∗AlgMult,nd) to be casting, as these functors do
not commute with other casting functors we will use later, such
as Bairb and Bairc.

based on various forms of the Riesz representation theorem, which we shall term

“Riesz dualities”.

In order to describe these Riesz dualities, one must first address a fundamen-

tal measure-theoretic question, namely which σ-algebra one should associate to

a given topological space X. In the literature there are three commonly used op-

tions to choose from:

(i) The Borelσ-algebraBo(X), generated by the open (or equivalently, closed)

subsets of X.

(ii) The Cb-Baire σ-algebra Bab(X), generated by the bounded complex-

valued2 continuous functions Cb(X) of X (or equivalently, the space of

arbitrary continuous functions into C).

2We always endow R and C with the Borel σ-algebra.



FOUNDATIONAL ASPECTS OF UNCOUNTABLE MEASURE THEORY 7

(iii) The Cc-Baire σ-algebra Bac(X), generated by the compactly supported

complex-valued continuous functions Cc(X) of X (or equivalently, by the

space C0(X) ≔ Cc(X) of continuous complex-valued functions that vanish

at infinity). We also refer to Bac(X) as the C0-Baire σ-algebra. In Propo-

sition 3.3 we also establish the well-known fact that Bac(X) is generated

by the compact Gδ subsets of X.

When X is a compact metrizable space, the three σ-algebras Bo(X), Bab(X),

Bac(X) agree, and we also clearly have Bab(X) = Bac(X) for compact Hausdorff

spaces X; thus in these cases we can refer to both Bab(X) and Bac(X) simply as

the Baire σ-algebra Ba(X). In general we only have the obvious inclusions

(1.1) Bac(X) ⊆ Bab(X) ⊆ Bo(X);

see Remark 3.5 for further discussion. Note that once one leaves the CH setting,

there is no consensus in the literature as to which of Bab(X), Bac(X) should be

referred to as the Baire σ-algebra; the Cb-Baire algebra Bab(X) is favored for

instance in [9, Volume 2], [28], [20], [40], while the Cc-Baire algebra Bac(X) is

favored in [35], [64]. From our investigations we have concluded that the choice

of σ-algebra should be determined by the category one has chosen to work in.

Specifically:

• In the category Pol of Polish spaces, the Borel σ-algebras Bo(X) are the

most natural to use.

• In the category LCH of locally compact Hausdorff spaces, the Cb-Baire

σ-algebras Bab(X) are the most natural to use.

• In the category LCHp of locally compact Hausdorff spaces with proper

morphisms, the Cc-Baire σ-algebras Bac(X) are the most natural to use.

• In the category CH of compact Hausdorff spaces or the category (pt ↓ CH)

of pointed compact Hausdorff spaces, the Baire σ-algebras Ba(X) =

Bab(X) = Bac(X) are the most natural to use.

• In the category CMet of compact metrizable spaces, theσ-algebrasBo(X) =

Ba(X) = Bab(X) = Bac(X) agree, and one can use them interchangeably.

With these choices we obtain functors Bor : Pol → CncMbl, Bair : CH →

CncMbl, Bairb : LCH → CncMbl, Bairc : LCHp → CncMbl to the category

CncMbl of (concrete) measurable spaces, as detailed in Definition 3.1; see Fig-

ure 1.3. These functors also enjoy other pleasant category-theoretic properties,

for instance being compatible with various product constructions; see Proposi-

tion 3.2. These choices are compatible with the folklore philosophy that Baire

σ-algebras are “less pathological” than their Borel counterparts when working

in “uncountable” settings in which the spaces are not assumed to be separable,
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(pt ↓ CH) CH CMet

LCHp LCH Pol

Set CncMbl

Bair

Bairc

Bairb
Bor

Figure 1.3. Functors from topological categories to the concrete
measurable category CncMbl, which in turn has a forgetful func-
tor to the category Set of sets. This diagram commutes (as is re-
quired as per the casting conventions in Definition 1.7).

metrizable, or Polish. We caution that with the Baire algebra, individual points

and other compact sets may become non-measurable, but this turns out to be sur-

prisingly much less of a difficulty than one might initially imagine, particularly if

one adopts an “abstract”, “point-free” or “pointless” approach to measure theory

(see Section 6). See also [23, Remark 5.8] for a comparative analysis of the Borel

and Baire algebras in the context of Riesz representation theorems and product

space constructions.

Now that we have fixed the choice of σ-algebra to place on spaces in each of

the topological categories, one can define the notion of a Radon probability mea-

sure3 on CH-spaces, (pt ↓ CH)-spaces, LCH-spaces, and LCHp-spaces. In the

literature these Radon measures are usually defined on Borel sets and required

to be inner regular with respect to compact sets; with our “Baire-centric” phi-

losophy, the measures are instead defined on C0-Baire sets and are inner regular

with respect to compact4 Gδ sets. With this setup, it becomes possible to system-

atically attach Radon probability measures to the spaces in the categories CH,

(pt ↓ CH), LCH, LCHp to obtain categories CHPrb, (pt ↓ CH)Prb, LCHPrb,

LCHpPrb of various types of locally compact Hausdorff spaces equipped with a

Radon probability measure; see Definition 5.1. For the categories CH, (pt ↓ CH)

the Radon hypothesis is in fact automatic (see Proposition 4.2) and may thus be

omitted. On the dual side, one can similarly attach a “trace” to the algebras in

the categories CC∗Alg1, (CC∗Alg1 ↓ C), CC∗AlgMult,nd, CC∗Algnd to obtain cat-

egories CC∗Algτ
1
, (CC∗Alg1 ↓ C)τ, CC∗AlgτMult,nd, CC∗Algτnd of various types of

commutative C∗-algebras equipped with a trace. This is very much in line with

3We will not attempt to set up a Riesz representation theory for Polish spaces X, as these
spaces need not be locally compact and so the spaces Cc(X), C0(X) can be quite degenerate. See
[77] for some exploration of Riesz representation type theorems in the absence of a hypothesis
of local compactness.

4A Gδ set is a countable intersection of open sets, and an Fσ set is similarly a countable union
of closed sets.
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((CC∗Alg1 ↓ C)τ)op (CC∗Algτnd)
op (CC∗AlgτMult,nd)

op (CC∗Algτ
1
)op

(pt ↓ CH)Prb LCHpPrb LCHPrb CHPrb

Riesz Riesz

Unit Mult

Riesz RieszC C0

Alex

Cb

β

C0 C

Figure 1.4. Riesz dualities. This diagram commutes up to natural
isomorphisms. There are forgetful functors to the corresponding
categories in Figure 1.1.

((CC∗Alg1 ↓ C)τ)op (CC∗Algτ
1
)op (CC∗Algτnd)

op (CC∗AlgτMult,nd)
op

(pt ↓ CH)Prb CHPrb LCHpPrb LCHPrb

Riesz Riesz Riesz RieszC C C0 C0

Figure 1.5. Forgetful functors in the locally compact probabilis-
tic and tracial C∗-algebra categories. This diagram also commutes
up to natural isomorphisms, but does not commute with the pre-
vious diagram.

the philosophy of noncommutative probability, in which a noncommutative prob-

ability space is often defined as some sort of C∗-algebra equipped with a trace,

though in our case we are restricting attention solely to commutative C∗-algebras.

In Theorem 5.4 below we then establish the fundamental Riesz representation

theorems relating the categories CHPrb, (pt ↓ CH)Prb,LCHPrb,LCHpPrb

to their counterparts CC∗Algτ
1
, (CC∗Alg1 ↓ C)τ,CC∗AlgτMult,nd,CC∗Algτnd; our

main tools for this will be several existing versions of the Riesz representation

theorem (and the closely related Daniell-Stone representation theorem) in the

literature. As a consequence we obtain completely analogous versions of the

diagrams of categories in Figures 1.1, 1.2; see Figures 1.4, 1.5. A precise formu-

lation of this statement is given in Theorem 5.11.

1.3. Canonical models of abstract probability spaces. Given a probability

space X = (XCncMbl, µX) = (XSet,ΣX, µX), one can form the probability algebra5

XPrbAlg = (ΣX/NX
, µX), whereNX ≔ {E ∈ ΣX : µX(E) = 0} is the null ideal, ΣX/NX

is the quotient algebra with respect to the σ-idealNX (which is well defined as a

5This is a special case of the more familiar notion of a measure algebra, which corresponds
to the setting in which X is a measure space instead of a probability space.
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σ-complete Boolean algebra, though it need not be represented concretely as aσ-

algebra of sets), and µX : ΣX/NX
→ [0, 1] is the descent of the measure µX : ΣX →

[0, 1] (here we abuse notation and write µX for both the concrete measure and

its descent on the associated probability algebra). Informally, one should view

XPrbAlg as a “point-free” or “pointless” abstraction of X in which the null sets

have been “deleted”. Every measure-preserving map T : X → Y between prob-

ability spaces X, Y then gives rise to a PrbAlg-morphism6 TPrbAlg : XPrbAlg →

YPrbAlg (by convention, we implicitly define PrbAlg as an opposite category in

which the direction of all morphism arrows are reversed, see Definition 6.1 for

details), which remains unchanged if one modifies T on a null set; see Definition

6.1 for precise definitions.

A large part of ergodic theory can be viewed as taking place on probability al-

gebras, by replacing any concrete measure-preserving transformation T : X → X

with its abstract probability space counterpart TPrbAlg : XPrbAlg → XPrbAlg. This

“point-free” approach to ergodic theory seems particularly well suited for study-

ing actions of uncountable (discrete) groups, as by deleting the null sets in ad-

vance, one can avoid to a large extent the standard difficulty that an uncountable

union of null sets is null. See our previous paper [45] for an example of this

philosophy.

However, in some applications one would like to be able to reverse the ab-

straction process, and represent an abstract measure-preserving action by a con-

crete one, preferably with some additional regularity properties (such as conti-

nuity). If one insists on fixing the concrete model in advance, such a represen-

tation is not always possible, see, e.g., [27, §343, 344] or [34], where in [34] an

interesting example of a natural action (of the automorphism group of infinite di-

mensional Gaussian measure) is given which can only act in an abstract fashion

on the underlying measure space, and cannot be described in terms of a Borel

action.

If one imposes suitable “countability” hypotheses on the group and measure

space, however, one can model an abstract group action by a concrete one7, where

the action is now given by continuous maps. Here is a typical such theorem:

Theorem 1.2 (Continuous model for countable abstract systems). Let Γ be a

group, and let XPrbAlg be a probability algebra. Assume furthermore:

(a) Γ is at most countable.

6This is essentially the same concept as a measure space homomorphism from [30, Definition
5.1].

7We stress that an implicit requirement in Theorem 1.2 is that the sought model satisfies also
a separability hypothesis which is needed in applications of such separable models, for example
for disintegration of measures and ergodic decomposition.
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(b) The σ-complete Boolean algebra associated to XPrbAlg is separable.

Suppose that Γ acts on XPrbAlg by PrbAlg-morphisms T
γ

XPrbAlg
: XPrbAlg → XPrbAlg

for γ ∈ Γ. Then there exists a Cantor probability space X∗ = (X∗, µX∗) (with µX∗

a Borel probability measure) and an action of Γ on X∗ by measure-preserving

homeomorphisms T
γ

X∗
: X∗ → X∗, and a PrbAlg-isomorphism A : XPrbAlg →

X∗
PrbAlg

such that

(T γ

X∗
)PrbAlg ◦ A = A ◦ T

γ

XPrbAlg

for γ ∈ Γ.

Proof. This is a special case of [33, Theorem 2.15]. �

Informally, the above theorem asserts that under the “countability” hypothe-

ses (a), (b), an abstract measure-preserving system can be modeled by a concrete

and continuous measure-preserving system (on a Cantor space). The model pro-

vided by this theorem is not completely canonical; however, the full version of

[33, Theorem 2.15] asserts, roughly speaking, that any pair of abstract measure-

preserving systems (XPrbAlg, TXPrbAlg
), (YPrbAlg, TYPrbAlg

) connected by a factor map

π : XPrbAlg → YPrbAlg can be simultaneously modeled by compatible continu-

ous models. We refer the reader to [33] for a more precise statement. In the case

when XPrbAlg, YPrbAlg come from standard probability spaces X, Y and Γ is at most

countable, one can also invoke a well known theorem of von Neumann [81] to

model the PrbAlg-morphisms by concrete measurable maps on the indicated

spaces X, Y; see, e.g., [23, Theorem F.9].

For applications to uncountable ergodic theory, it is desirable to remove count-

ability hypotheses such as (a), (b) from the above type of theorem, and also make

the model completely canonical. This will be achieved in Section 7, in which we

construct a canonical model functor

PrbAlg CHPrb
Conc

that assigns to each probability algebra X a pair

Conc(X) = (Conc(X)CH, µConc(X))

consisting of a compact Hausdorff space Conc(X)CH equipped with a Radon

probability measure µConc(X) that models X in the sense that probability algebra

Conc(X)PrbAlg is (naturally) isomorphic to X, such that every PrbAlg-morphism

T : X → Y is assigned a continuous measure-preserving map Conc(T ) : Conc(X) →

Conc(Y) in a completely functorial fashion; see Theorem 7.6 for a precise state-

ment. The functor Conc turns out to be full and faithful, thus it identifies the

category PrbAlg of probability algebras with a subcategory of the much more

structured category CHPrb of compact Hausdorff probability spaces. The func-

toriality of Conc is convenient for ergodic theory applications, as it automatically



12 A. JAMNESHAN AND T. TAO

allows one to transfer any dynamical structure on the PrbAlg algebras to their

CHPrb counterparts via the canonical model. For instance, we now have an un-

countable version of Theorem 1.2:

Theorem 1.3 (Continuous model for uncountable abstract systems). Let Γ be a

group, and let XPrbAlg be a probability algebra. Suppose that Γ acts on XPrbAlg by

PrbAlg-morphisms T
γ

XPrbAlg
: XPrbAlg → XPrbAlg for γ ∈ Γ. Then there is action of

Γ on Conc(X) by measure-preserving homeomorphisms Conc(T γ

X
) : Conc(X) →

Conc(X) and a PrbAlg-isomorphism A : XPrbAlg → Conc(X)PrbAlg such that

Conc(T γ

X
)PrbAlg ◦ A = A ◦ T

γ

XPrbAlg

for γ ∈ Γ.

There are several ways to construct the canonical model Conc, but the easiest

way to proceed is via Riesz duality, and specifically to set

Conc(X) ≔ Riesz(L∞(X)CC∗Algτ
1
)

where L∞(X)CC∗Algτ
1

is the space of bounded (abstractly) measurable functions

on the probability algebra X, viewed as a unital tracial commutative C∗-algebra

(i.e., a CC∗Algτ
1
-algebra). One can view this construction in terms of a further

duality, namely a “probability duality” between the category PrbAlg of proba-

bility algebras and the category CvNAlgτ of commutative tracial von Neumann

algebras, with the functor L∞ : PrbAlg → (CvNAlgτ)op being one of the two

functors witnessing this equivalence of categories; see Figure 7.1. Versions of

this construction have implicitly appeared in the literature in several places [67],

[13], [22], [23, §12.3, 13.4], with the model referred to as the Stone model in

[23]. One can also proceed by applying Kakutani duality [46] to the Banach lat-

tice L1(X) rather than Gelfand duality to the C∗ algebra L∞(X); see [15]. In [36]

the canonical model Conc(X) is referred to as the Kakutani space of X.

In Section 9 we will also give an equivalent alternate construction of Conc us-

ing the Loomis–Sikorski theorem (which can be viewed as an instance of Stone

duality rather than Gelfand or Riesz duality). A version of this alternate construc-

tion also implicitly appears in [27], [18]. The canonical model functor Conc also

obeys certain universality properties analogous to those enjoyed by the Stone–

Čech functor β; see Propositions 7.6, 7.9.

Remark 1.4. The Banach spaces L∞(X) are almost never separable, and so the

canonical model spaces Conc(X) are also almost never separable, even when the

original probability algebra X is separable. As such, the canonical model can

only be constructed in this uncountable framework, and thus presents an advan-

tage of this framework over the more traditional countable setting of ergodic
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theory (even if one was initially only interested in separable spaces), in analogy

to how the Stone–Čech compactification can only be applied in similarly “un-

countable” frameworks in which the topological spaces one works with are not

required to obey any separability, metrizability or countability axioms.

In Theorem 1.2, the model spaces X∗ were not arbitrary topological spaces,

but had the structure of a Cantor space. In a similar vein, the model spaces

Conc(X) constructed by our canonical model have the structure of an (extremally

disconnected) Stone space (also called Stonean spaces), and furthermore enjoy

a remarkable property which we call the strong Lusin property: every bounded

Baire-measurable function is equal almost everywhere (as opposed to merely

outside of a set of small measure) to a unique continuous function. See Propo-

sition 7.4. Also, it turns out that the null Baire-sets of Conc(X) are precisely the

Baire-meager sets, see Remark 9.11.

1.4. Canonical disintegration. One application of the canonical model functor

Conc is to provide a canonical and functorial way to disintegrate a probability

measure with respect to a factor map. Disintegration theorems for measures go

back to the work of Rohklin [63]. There are many arrangements of this theorem;

we present here one from [72]. See also [30, Theorem 5.8] or [15, Th. 5] for a

similar statement.

Theorem 1.5 (Rohklin disintegration theorem). Let (X, µX) and (Y, µY ) be prob-

ability spaces, and let π : X → Y be a measurable map such that π∗µX = µY .

Assume furthermore:

(a) X is universally measurable and µ is a Borel measure.

(b) There is a measurable injective map from Y into a standard Borel space.

Then for µY -almost every y ∈ Y one can find a Borel probability measure µy on

π−1({y}) such that one has the identity
∫

X

f (x)g(π(x)) dµX(x) =
∫

Y

(∫

X

f (x) dµy(x)

)

g(y) dµY(y)

for all bounded measurable f : X → C, g : Y → C (in particular the integral
∫

X
f (x) dµy(x) is a measurable function of y). Furthermore, this assignment y 7→

µy is unique up to µY -almost everywhere equivalence.

Continuing the spirit of the “uncountable” approach to ergodic theory, we

would like to remove hypotheses such as (a) and (b) from this theorem. As stated,

the theorem can fail without these hypotheses; see, e.g., [15], [17, p. 624], [35, p.

210]. However, we can recover a disintegration (with additional uniqueness and

topological properties) as long as we pass to the canonical model to perform the

disintegration:
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Theorem 1.6 (Canonical disintegration). Let X, Y be PrbAlg-spaces, and let

π : X → Y be a PrbAlg-morphism. Then there is a unique Radon probability

measure µy on Conc(X)CH for each y ∈ Conc(Y) which depends continuously on

y in the vague topology in the sense that y 7→
∫

Conc(X)CH
f dµy is continuous for

every f ∈ C(Conc(X)), and such that

(1.2)
∫

Conc(X)
f (x)g(Conc(π)(x)) dµConc(X)(x) =

∫

Conc(Y)

(∫

Conc(X)CH

f dµy

)

g dµConc(Y)

for all f ∈ C(Conc(X)), g ∈ C(Conc(Y)). Furthermore, for each y ∈ Conc(Y), µy

is supported on the compact set Conc(π)−1({y}), in the sense that µY (E) = 0

whenever E is a measurable set disjoint from Conc(π)−1({y}). (Note that this

conclusion does not require the fibers Conc(π)−1({y}) to be measurable.)

We prove this theorem in Section 8. Among other things, this disintegration

gives a “concrete” way to construct relatively independent products of PrbAlg-

spaces, in the spirit of [30, §5.5]; see Theorem 8.1. The use of the canonical

model to perform canonical disintegration also appears in [36, §3], [22, Theorem

2.3]. In [36, §4] it is claimed that the canonical disintegration yields an ergodic

decomposition for abstract measure-preserving actions of arbitrary groups Γ, but

this claim is incorrect as stated; we provide a counterexample in Appendix B.

1.5. Connection to the Loomis–Sikorski theorem. In Section 9 we show that

if one “removes” the probability measures from the canonical model functor

PrbAlg CHPrb
Conc

one obtains an analogous Loomis–Sikorski functor

AbsMbl CHNul
LS

that takes an abstract measurable space X, and obtains a concrete model LS(X) of

this space, which has the structure of a compact Hausdorff space equipped with a

null ideal of the Baire σ-algebra. The original Boolσ-algebra X is then naturally

isomorphic to the Baire σ-algebra of LS(X), quotiented by the given null ideal.

In fact, LS(X) has the structure of a special type of Stone space which we call a

Stoneσ-space (a Stone space in which every Baire set8 differs from a clopen set

by a Baire-meager set), and the null ideal is also the ideal of Baire-meager sets.

The existence and basic properties of the functor LS is a fully functorial form of

the Loomis–Sikorski theorem [54, 70], and we establish it using Stone dualities

8In descriptive set theory, a Baire-measurable set is one that has the property of Baire (that
is, differing from an open set by a meager set). To avoid potential confusion, we stress that when
writing Baire set (or Baire meager set), then we always mean Baire measurable sets (or Baire
measurable sets that are also meager) in the sense introduced in Section 3, rather than in the
descriptive set theory sense (which we will not use here).
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relating the categories Bool,Boolσ of Boolean algebras and σ-complete Boolean

algebras with the categories Stone, Stoneσ of Stone spaces respectively; see Fig-

ure 9.1 for how these dualities relate to the functors LS and Conc. We then use LS

to give an alternate construction of Conc that proceeds via Stone duality instead

of Riesz duality. We remark that some very closely related constructions also

appear in [27], although our more “Baire-centric” presentation places a greater

emphasis on the role of the Baire σ-algebra, and also ties the construction to the

operator-algebraic formalism of C∗-algebras and von Neumann algebras rather

than the order-theoretic formalism of Riesz algebras.

As a byproduct of this analysis we are also able to clarify the nature of cat-

egorical products in the categories AbsMbl, Stoneσ,CHNul (or of the categori-

cal coproduct in Boolσ), in particular revealing some subtle differences between

the product
∏AbsMbl on abstract measurable spaces, and the product

∏CncMbl of

concrete measurable spaces (the former being a strict subset of the latter in a

category-theoretic sense). As one manifestation of this distinction, we establish

in Theorem 9.18 a version of the Kolmogorov extension theorem in the abstract

measurable category AbsMbl that does not require any regularity hypotheses on

the factor spaces, in contrast with the classical version of this theorem in the con-

crete measurable category CncMbl, which fails in general unless one imposes

hypotheses such as the standard Borel property on the factor spaces.

Stone duality is the restriction of a more general duality between (coher-

ent) locales and distributive lattices (locales are the basic structures in point-free

topology). We will not pursue such generality here since the cost of introduc-

ing more categories to the already long list of categories that are employed in

this paper would outweigh the restricted benefits such generality would have to

our aim of connecting the separate categorical aspects of measure-theoretic dy-

namics9. However, there are many parallels between our efforts to develop solid

foundations for point-free measure theory (with a view towards ergodic theory)

and locale theory. We would like to point out several existing parallel efforts

in the same direction. Fremlin’s treatise [27] develops systematically (abstract)

measure theory on general measure algebras. Pavlov establishes a Gelfand-type

duality for commutative (not necessarily tracial) von Neumann algebras in [60].

The main result of [60] proves that the following five categories are equivalent:

(1) the opposite category of commutative von Neumann algebras; (2) compact

9This would also duplicate existing efforts, as the recent paper [60] already provides a de-
tailed overview on Stone-type dualities with a list of relevant references (to which we refer the
interested reader).
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strictly localizable enhanced measurable spaces; (3) measurable locales; (4) hy-

perstonean locales; (5) hyperstonean spaces. This provides a “von Neumann du-

ality” which is to measurable spaces as Gelfand dualities are to locally compact

spaces, probability dualities are to probability algebras, and Riesz dualities are

to locally compact probability spaces. However, we will not discuss further these

dualities here. We point out that deriving the equivalence between the categories

in (1) and (2) is essentially10 identical to our second construction of the canonical

model with the help of Stone duality and the Loomis–Sikorski theorem.

We thank the anonymous referee for pointing out the following interesting

references at the intersection of point-free topology and measure theory [12, 10,

38, 73, 78, 79] and continuous logic [7, 8, 41]. We hope to investigate further

these connections in future work.

1.6. Casting conventions. In this section, we introduce the concept of a casting

functor, which we use as a device to formally identify objects in different cate-

gories. It is inspired by the use of casting conventions in programming languages,

and is conventional in nature, that is to say our choice of functors which we de-

clare to be casting primarily serves us to organize better the numerous categories

related to each other in this paper. As for our category-theoretical notation, we

refer the reader to Appendix A.

A diagram of categories, such as the one depicted in the various figures in this

paper, is a collection of categories together with some functors between these

categories. Such a diagram is commutative if for any pair of categories C,C′ in

the diagram, there is at most one11 functor from C to C′ that can be obtained

by composing finitely many of the functors in the diagram. The diagrams in our

figures are not always commutative, but the subdiagram consisting of just the

functors depicted by blue arrows will always be commutative. We exploit this

commutativity via the following useful notational convention:

Definition 1.7 (Casting operators). Define a casting functor (or casting opera-

tor) to be any one of the following functors:

(i) A functor depicted in blue in any of the diagrams of categories in this

paper.

10Pavlov’s notion of a "measurable locale" is closely related to our notion of an "abstract mea-
surable space" with the difference that Pavlov requires completeness of the underlying Boolσ-
algebra and quotients out by the "universal" σ-ideal.

11Strictly speaking, it would be more natural from a category-theoretic perspective to require
the functor from C to C′ to merely be unique up to natural isomorphisms (which are also required
to satisfy a coherence condition with respect to the other functors in the diagram); however we
shall abuse notation in this paper by identifying various "canonically isomorphic" objects in order
not to deal with this ambiguity.
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(ii) The identity functor idC on any category C.

(iii) The vertex functors Vertex : (C ↓ X)→C, Vertex : (X ↓ C) → C that

map a (C ↓ X)-object Y → X or (X ↓ C)-object X → Y to its vertex object

XC, and any morphism f in (C ↓ X) or (X ↓ C) to the corresponding C-

morphism fC.

(iv) Any finite composition of functors from the above list.

The casting functors in this paper are chosen to form a commutative diagram;

thus for any two categoriesC,C′ there is at most one casting functor CastC→C′ : C→C′

from the former to the latter. If such a casting functor exists, we say that C can

be casted to C′, and for any C-object X = XC we define the cast of X to C′ to

be the corresponding object in C′, we write XC′ for CastC→C′(X), and refer to

XC′ as the cast of X to C′ (and XC as a promotion of XC′ to C). We may cast or

promote morphisms in C, different notions of products and coproducts in C to

C′ in a similar fashion. Thus for instance a C′-morphism has at most one promo-

tion to a C-morphism if the casting functor is faithful. (Informally, one should

view the C′-cast or C′-promotion of a mathematical structure associated to C as

the “obvious” corresponding C′-structure associated to the C-structure, with the

choice of casting functors in the diagrams in this paper formalizing what “obvi-

ous” means.)

When a mathematical expression or statement requires an object or morphism

to lie in C, but an object or morphism in another category C′ appears in its place,

then it is understood that a casting operator from C′ to C is automatically applied.

In particular, if a statement is said to “hold in C” or “be interpreted in C”, or if an

object or morphism is to be understood as a C-object or a C-morphism, then the

appropriate casting operators to C are understood to be automatically applied.

We will sometimes write X =C Y to denote the assertion that an identity X = Y

holds in C.

If one composes a named functor Func on the left or right (or both) with

forgetful casting functors, the resulting functor will also be called Func when

there is no chance of confusion (or if the ambiguity is irrelevant).

There is significant overlap12 between the concepts of a casting functor and

a forgetful functor, but with the conventions we adopt in this paper, not every

casting functor is forgetful, and not every forgetful functor is casting. Similarly,

most of the casting functors we will use are faithful in nature, but there is a key

exception, namely the abstraction functors Abs that map concrete spaces to their

abstract counterparts.

12Indeed, from the perspective of Definition 1.7, a common “abuse of notation” in mathemat-
ics is to interpret every forgetful functor as a casting functor.
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The following examples will help illustrate this casting convention (the def-

initions of the categories are given in the body of the paper, see Table 1 for the

location of these definitions).

Example 1.8.

(i) If X = XCHPrb = (XSet,FX, µX) is a compact Hausdorff probability space,

then XCH = (XSet,FX) is the associated compact Hausdorff space, XCncMbl =

Bair(XCH) = (XSet,ΣX) is the associated measurable space, XCncPrb =

(XCncMbl, µX) is the associated concrete probability space, ΣX = Ba(X) is

the associated Boolσ-algebra, XPrbAlg = (Ba(X)/NX
, µX) is the associated

probability algebra, and XSet is the set X with no additional structures.

(ii) If T : X → Y is a CncPrb-morphism, then TBoolσ : YBoolσ → XBoolσ is the

associated pullback map.

(iii) If X is a CH-space and Y is an AbsPrb-space, then X ×AbsMbl K denotes

the abstract measurable space XAbsMbl ×
AbsMbl YAbsMbl.

(iv) If X ∈ CncMbl and Y ∈ CH, we write “T : X → Y is a AbsMbl-

morphism from X to Y” as shorthand for “T : XAbsMbl → YAbsMbl is an

AbsMbl-morphism from XAbsMbl to YAbsMbl”.

(v) If f : X → Y is an AbsPrb-morphism, we write “ f is an AbsMbl-

epimorphism” as shorthand for “ fAbsMbl : XAbsMbl → YAbsMbl is an AbsMbl-

epimorphism”.

(vi) Let X = (X,X, µ) ∈ CncPrb, Y = (Y,Y, ν) ∈ CncPrb be concrete

probability spaces, and let f : X → Y be a measurable map. Then f is

a CncMbl-morphism, and can be promoted to a CncPrb-morphism if

and only if f∗µ = ν.

(vii) If X ∈ CncPrb, Y, Z ∈ CH, f : XCncMbl → YCncMbl is a CncMbl-morphism,

π : Y → Z is a CH-morphism, and g : XAbsPrb → ZAbsPrb is an AbsPrb-

morphism, we say that the identity π ◦ f = g holds in AbsMbl, and write

π ◦ f =AbsMbl g, if πAbsMbl ◦ fAbsMbl = gAbsMbl.

(viii) If f1, f2 : X → Y are CncPrb-morphisms that agree almost everywhere,

then they agree in PrbAlg: f1 =PrbAlg f2, that is to say the PrbAlg-

morphisms ( f1)PrbAlg : XPrbAlg → YPrbAlg and ( f2)PrbAlg : XPrbAlg → YPrbAlg

agree. (The converse implication can fail; see [45, Examples 5.1, 5.2].)

2. Gelfand dualities

In this section we construct the various categories and functors in Figure

1.1, and verify that the diagram commutes up to natural isomorphism (mostly

by appealing to existing literature). We begin by constructing the Alexandroff
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compactification (also known as the one-point compactification), which in our

formalism is given by a functor Alex : LCHp → (pt ↓ CH).

Definition 2.1 (Alexandroff compactification).

(i) An LCH-space is a locally compact Hausdorff space X = (XSet,FX).

An LCH-morphism f : X → Y between LCH-spaces X = (XSet,FX),

Y = (YSet,Y) is a continuous function fSet : XSet → YSet, with the usual

Set-composition law.

(ii) LCHp is the subcategory of LCH consisting of the same class of spaces

(thus every LCH-space is an LCHp-space and vice versa), and the LCHp-

morphisms consisting of those LCH-morphisms T : X → Y which are

proper (thus the pullback T ∗(K) ≔ T−1
Set

(K) of any compact subset K of

Y is compact in X).

(iii) (pt ↓ CH) is the coslice category of CH with respect to a point pt, as

defined in Definition A.5. Thus, a (pt ↓ CH)-space X = (XCH, ∗) is a CH-

space XCH equipped with a distinguished CH-morphism ∗ : pt→ CH (by

abuse of notation we use ∗ to refer simultaneously to all distinguished

morphisms of all (pt ↓ CH)-spaces). A (pt ↓ CH)-morphism T : X → Y

between (pt ↓ CH)-spaces X, Y is a CH-morphism T : XCH → YCH such

that T ◦ ∗ = ∗, with the usual Set-composition law.

(iv) If X is an LCHp-space, the (pt ↓ CH)-space Alex(X) is defined as the

disjoint union Alex(X)Set ≔ XSet ⊔ {∞}, with distinguished morphism ∗

mapping pt to ∞, equipped with the topology FAlex(X) consisting of sets

that are either open in X, or are the complement in Alex(X)Set of a com-

pact set in X. If T : X → Y is an LCHp-morphism, then Alex(T ) : Alex(X) →

Alex(Y) is the map defined by Alex(T )Set(x) ≔ T (x) when x ∈ X and

Alex(T )Set(∞) ≔ ∞.

It is clear that LCH,LCHp are categories with a faithful functor from LCHp

to LCH. One easily verifies that if T : X → Y is an LCHp-morphism then

Alex(T ) : Alex(X) → Alex(Y) is continuous; from this it is not difficult to

verify that Alex : LCHp → (pt ↓ CH) is a faithful functor between the indi-

cated categories. Note that without the properness hypothesis in the definition of

LCHp-morphism, Alexwould fail to be a functor taking values in (pt ↓ CH). For

instance, formally applying Alex to the non-proper zero map 0: R → R would

lead to a discontinuous map Alex(0) : R⊔{∞} → R⊔{∞} which mapped all real

numbers R to 0 and mapped ∞ to ∞, which is not a (pt ↓ CH)-morphism. One

also observes an obvious faithful forgetful functor from (pt ↓ CH) to CH, and

obvious forgetful faithful and full functors from CH to LCHp and from LCHp

to LCH.
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Remark 2.2. The functor Alex is not full. For instance, the (pt ↓ CH)-morphism

from Alex(R) to Alex(R) that maps all of Alex(R) = R⊔{∞} to∞ does not arise

from applying Alex to an LCHp-morphism.

Now we define the additional C∗-algebra categories and their Gelfand duali-

ties13.

Definition 2.3 (Gelfand dualities).

(i) If A is a commutative C∗-algebra, we use Mult(A) to denote its mul-

tiplier algebra, that is to say the space of pairs (L,R) of bounded oper-

ators on A obeying the double centralizer condition aL(b) = R(a)b for

all a, b ∈ A. As is well-known, this has the structure of a CC∗Alg1-

algebra. If f = (L,R) ∈ Mult(A), we write f b for L(b) and a f for R(a),

thus (a f )b = a( f b). Note that A can be identified with a subalgebra of

Mult(A).

(ii) A CC∗Algnd-algebra is a commutative C∗-algebra. A CC∗Algnd-morphism

Φ : A → B between CC∗Algnd-algebras A,B is a ∗-homomorphism

Φ : A→ B which is non-degenerate14 in the sense that the linear span of

Φ(A)B ≔ {Φ(a)b : a ∈ A, b ∈ B} is dense in B. Composition is given by

the usual Set-composition.

(iii) A CC∗AlgMult,nd-algebra is a commutative C∗-algebra. A CC∗AlgMult,nd-

morphism Φ : A→ B between CC∗AlgMult,nd-spacesA,B is a ∗- homo-

morphism15 Φ̃ : A→ Mult(B) which is non-degenerate in the sense that

the linear span of Φ̃(A)B ≔ {Φ̃(a)b : a ∈ A, b ∈ B} is dense in B. It is

known (see, e.g., [62, Corollary 2.51]) that Φ̃ can be uniquely extended

to a CC∗Alg1-morphism Mult(Φ) : Mult(A) → Mult(B). The compo-

sition Ψ ◦ Φ : A → C of two CC∗AlgMult,nd-morphisms Φ : A → B,

Ψ : B → C is then defined to be the unique CC∗AlgMult,nd-morphism for

which

(2.1) Mult(Ψ ◦ Φ) = Mult(Ψ) ◦ Mult(Φ).

(The existence and uniqueness of this morphism follows from [2, Propo-

sition 1].)

13We refer the interested reader to [25, Chapter 1] for the basic background in operator alge-
bras required in this paper.

14Such morphisms were referred to as proper homomorphisms in [61].
15In particular, we caution that CC∗AlgMult,nd is not a concrete category, because the mor-

phisms Φ : A → B are not described by concrete functionsA to B, but only by functions from
A to the larger set Mult(B). Similarly, the composition law for these morphisms is not the usual
Set-composition, but is instead defined indirectly by requiring (2.1).
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(iv) (CC∗Alg1 ↓ C) is the slice category of CC∗Alg1 over C, as defined in

Definition A.5. Thus, a (CC∗Alg1 ↓ C)-algebra is a CC∗Alg1-algebra

ACC∗Alg1
equipped with a CC∗Alg1 -morphism ∗ : ACC∗Alg1

→ C. A

(CC∗Alg1 ↓ C)-morphism Φ : A → B between (CC∗Alg1 ↓ C)-algebras

A,B is a CC∗Alg1-morphism ΦCC∗Alg1
: ACC∗Alg1

→ BCC∗Alg1
such that

∗ ◦ ΦCC∗Alg1
= ∗.

(v) The functors C : CH → CC∗Alg1, Spec : CC∗Alg1 → CH induce func-

tors C : (pt ↓ CH)→ (CC∗Alg1 ↓ C), Spec : (CC∗Alg1 ↓ C)→ (pt ↓ CH)

as per Example A.13 (identifying C with C(pt) and pt with Spec(C)).

(vi) If X is an LCHp-space, C0(X) is the CC∗Algnd-algebra of continuous

functions f : X → C that vanish at infinity (i.e., for any ε > 0 there is a

compact subset K of X outside of which one has | f | ≤ ε). If T : X → Y

is an LCHp-morphism, C0(T ) : C0(Y) → C0(X) is the Koopman operator

C0(T )( f ) ≔ f ◦ T ; this is easily verified to be a CC∗Algnd-morphism

(note it is essential here that T is proper).

(vii) If X is an LCH-space, C0(X) is the CC∗AlgMult,nd-algebra of continuous

functions f : X → C that vanish at infinity, and Cb(X) is the CC∗Alg1-

algebra of bounded continuous functions f : X → C. Note that Cb(X) can

be identified with Mult(C0(X)). If T : X → Y is an LCH-morphism, we

define C0(T )( f ) : C0(Y) → C0(X) and Cb(T )( f ) : Cb(Y) → Cb(X) to be the

Koopman operators C0(T )( f ) ≔ f ◦T for f ∈ C0(Y) and Cb(T )( f ) ≔ f ◦T

for f ∈ Cb(Y) (here we use the identification of Cb(X) and Mult(C0(X))

to define C0(T )).

(viii) IfA is a CC∗Algnd-algebra, Spec(A) ≔ HomCC∗Algnd(A → C) is the set

of CC∗Algnd-morphisms from A to C (i.e., non-zero *-homomorphisms

fromA to C), with the topology induced from CA, and with Spec(T )λ =

λ◦T for any CC∗Algnd-morphisms T : A → B and λ : B → C. Similarly

with CC∗Algnd replaced by CC∗AlgMult,nd throughout.

(ix) If A ∈ CC∗Algnd, we define Unit(A) ∈ (CC∗Alg1 ↓ C) to be the

CC∗Alg1-algebra Unit(A)CC∗Alg1
≔ A ⊕ C of formal sums a + c1 with

a ∈ A, c ∈ C, together with the coordinate CC∗Alg1-morphism from

A⊕C to C that maps a+c1 to c. If T : A→ B is a CC∗Algnd-morphism,

we define the (CC∗Alg1 ↓ C)-morphism Unit(T ) : Unit(A)→ Unit(B)

by defining Unit(T )CC∗Alg1
(a + c1) ≔ Ta + c1 for a ∈ A, c ∈ C.

(x) We define the Stone–Čech compactification functor β : LCH → CH to

be the functor β ≔ Spec ◦ Cb.
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(xi) We have obvious forgetful functors from (CC∗Alg1 ↓ C) to CC∗Alg1,

from CC∗Alg1 to CC∗Algnd (note that any unital *-homomorphism is

automatically non-degenerate), and from CC∗Algnd to CC∗AlgMult,nd.

We then have

Theorem 2.4 (Gelfand dualities). The categories in Figures 1.1, 1.2 are indeed

categories, and the functors in these figures are indeed functors between the in-

dicated categories, with the indicated faithfulness and fullness properties. Fur-

thermore, both of these diagrams commute up to natural isomorphisms. (In par-

ticular, each pair of vertical functors generates a duality of categories.)

Proof. The verification of the category and functor axioms are routine, as are the

faithfulness for the horizontal functors in both figures. As mentioned in the in-

troduction, the duality of categories between CH and CC∗Alg1 is proven in [58]

(or [25, Theorem 1.20]), which then implies the duality of categories between

(pt ↓ CH) and (CC∗Alg1 ↓ C) by abstract nonsense (as well as the obvious iden-

tifications pt ≡ Spec(C) and C ≡ C(pt)). The duality of categories between

LCHp and CC∗Algnd can be found in [61] or [25, Theorem 1.31]. The duality

of categories between LCH and CC∗AlgMult,nd is established in [3, Theorem 2].

Note that these dualities ensure that the vertical functors in Figures 1.1, 1.2 are

full and faithful.

The commutativity (up to natural isomorphisms) of the three squares in Fig-

ure 1.2 follows easily from the observation that C(X) = C0(X) when X is a CH-

space. This also gives the commutativity of the middle square of Figure 1.1. For

the commutativity of the functors in the right square of Figure 1.1, one uses the

definition of β and the identification of Cb with Mult ◦ C0, which one can rou-

tinely verify to be a natural isomorphism. The latter identification also ensures

that Cb is faithful. Finally, to verify the commutativity of the left square of Fig-

ure 1.1 it suffices to establish a natural isomorphism between C ◦ Alex : CH →

(CC∗Alg1 ↓ C)op and Unit ◦ C0 : CH → (CC∗Alg1 ↓ C)op, but this follows

easily after noting that every function f ∈ C(Alex(X)) for a CH-space X can be

uniquely expressed as f = f ′ + c1 for some f ′ ∈ C0(X) (which we identify with

an element of C(Alex(X)) in the obvious fashion) and some c ∈ C. �

Example 2.5. Let 0 : N → N be the zero LCH-morphism on the LCH-space

N = {0, 1, . . . }. The CC∗AlgMult,nd-morphism C0(0) : C0(N)→ C0(N) can be iden-

tified with the ∗-homomorphism C̃0(0) : C0(N) → Cb(N) (identifying Cb(N) with

the multiplier algebra of C0(N)) defined by C̃0(0)(a) ≔ a(0)1 for any a ∈ C0(N).

Note that C̃0(0) does not take values in C0(N), which reflects the fact that 0 is not

a proper map and thus not an LCHp-morphism; it also reflects the non-concrete
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nature of the category CC∗AlgMult,nd. The CH-morphism β(0) : βN → βN is the

constant zero map, and the CC∗Alg1-morphism Cb(0) : Cb(N) → Cb(N) is de-

fined by Cb(0)(a) ≔ a(0)1 for any a ∈ Cb(N). Note that Cb(N) is also naturally

isomorphic to C(βN).

Remark 2.6. The functors in Figure 1.1 do not all commute with the functors

in Figure 1.2, but are instead related to each other by various natural transfor-

mations. For instance, there is a natural monomorphism from the identity func-

tor idLCH : LCH → LCH to ForgetCH→LCH ◦ β : LCH → LCH, reflecting

the canonical inclusion of an LCH-space X in its Stone–Čech compactifica-

tion βX. Closely related to this is the well-known fact (see, e.g., [82, Chap-

ter 10]) that β : LCH → CH is left-adjoint to ForgetCH→LCH : CH → LCH.

However, there is no such adjoint relationship for the Alexandroff compactifi-

cation, as there are no LCHp-morphisms from non-compact spaces to compact

spaces. On the other hand, one can construct a natural epimorphism from the

functor β ◦ ForgetLCHp→LCH : LCHp → CH to the functor Forget(pt↓CH)→CH ◦

Alex : LCHp → CH, reflecting the canonical projection from the Stone–Čech

compactification to the Alexandroff compactification; we leave the details to the

interested reader.

Remark 2.7. Every LCH-morphism T : X → Y between LCH spaces extends

to a CH-morphism β(T ) : βX → βY between the associated Stone–Čech com-

pactifications, but not every such CH-morphism from βX to βY arises from an

LCH-morphism from X to Y; that is to say, the functor β is not full. For in-

stance, if p is an element of βN\N (i.e., a non-principal ultrafilter) then the con-

stant CH-morphism from βN to βN that maps all elements of βN to p does not

arise from any LCH-morphism on N. Applying Gelfand duality, we conclude

that every CC∗AlgMult,nd-morphismΦ : A→ B between CC∗AlgMult,nd-algebras

induces a CC∗Alg1-morphism Mult(Φ) : Mult(A) → Mult(B) which extends

the *-homomorphism Φ̃ : A → Mult(B), but not every CC∗Alg1-morphism

from Mult(A) to Mult(B) arises in this fashion (i.e., Mult is not full). For

instance, with p as before, and identifying Mult(C0(N)) with Cb(N), the map

Ψ : Cb(N)→ Cb(N) defined by

Ψ( f ) ≔ (lim
n→p

f (n))1

(where limn→p f (n) denotes the limiting value of f along the ultrafilter p) is a

CC∗Alg1-endomorphism on Cb(N) that does not arise from applying Mult to

any CC∗AlgMult,nd-morphism on C0(N), basically because the restriction of Ψ to

C0(N) vanishes and is therefore not non-degenerate.
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For future reference we record some variants of Urysohn’s lemma in these

categories.

Proposition 2.8 (Urysohn properties). Let X be an LCH-space and K ⊆ XSet be

compact. In (i),(ii),(iii) further assume that K ⊆ U for some open U ⊆ XSet.

(i) There exists an open V ⊆ XSet with compact closure V such that K ⊆ V ⊆

V ⊆ U.

(ii) (Urysohn’s lemma) There exists f ∈ Cc(X) with 0 ≤ f ≤ 1 such that

f (x) = 1 for all x ∈ K and f (x) = 0 for all x ∈ Uc.

(iii) There exists a compact Gδ-set K̃ such that K ⊆ K̃ ⊆ U.

(iv) K is Gδ if and only if there exists f ∈ C0(X) with 0 ≤ f ≤ 1 such that

K = f ∗{1}.

Proof. Claims (i) and (ii) are standard facts (e.g., see [65, Theorems 2.7 and

2.10]). As for (iii), use (i) and (ii) to find a continuous function f : X → [0, 1]

such that f (x) = 0 for all x ∈ K and f (x) = 1 for all x ∈ Vc where K ⊆ V ⊆ V ⊆

U and V is compact. Then the claim follows with

K̃ ≔ f ∗
[

0,
1
2

]

=

∞
⋂

n=2

f ∗
[

0,
1
2
+

1
n

)

.

Finally, we show (iv). If K =
⋂∞

n=1 Un is a Gδ set for some decreasing open

Un ⊆ XSet, then by (ii) there exist fn ∈ Cc(X), 0 ≤ fn ≤ 1 such that fn(x) = 1 for

all x ∈ K and fn(x) = 0 for all x ∈ Uc
n for all n ≥ 1. Then

∑∞
n=1 2−n fn converges in

the Banach space C0(X) to an element f ∈ C0(X) with f ∗{1} = K and 0 ≤ f ≤ 1.

Conversely, if there exists f ∈ C0(X) with 0 ≤ f ≤ 1 and f ∗{1} = K, then

K =

∞
⋂

n=1

f ∗
(

1 −
1
n
, 1 +

1
n

)

is a Gδ set. �

As one application of Urysohn’s lemma, we can classify the monomorphisms

and epimorphisms in CH,LCH,LCHp, (pt ↓ CH).

Proposition 2.9 (Morphisms of locally compact categories). Let C be one of the

categories CH,LCH,LCHp, (pt ↓ CH).

(i) A C-morphism is a C-monomorphism if and only if it is injective.

(ii) A C-morphism is a C-epimorphism if and only if it has dense image. If

C = CH,LCHp, (pt ↓ CH), it is also true that a C-morphism is a C-

epimorphism if and only if it is surjective.

(iii) IfC = CH,LCHp, (pt ↓ CH), then everyC-bimorphism is aC-isomorphism.
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Note that the canonical embedding of N into βN is an LCH-morphism which

is injective and has dense image, but is not surjective, which shows that the claim

(iii) and the second claim in (ii) cannot be extended to C = LCH.

Proof. Since C is a category of sets, by Lemma A.14 and Example A.7, ev-

ery injective (resp. surjective) C-morphism is a C-monomorphism (resp. epimor-

phism). By the identification of elements of a C-space X with the C-morphisms

from a point (or two points, in the case C = (pt ↓ CH)) to X, everyC-monomorphism

is also injective. This yields (i).

Now we show (ii). By continuity and the Hausdorff property, everyC-morphism

with dense image is a C-epimorphism. Next, we show that any C-epimorphism

has a dense image (cf. [82, Proposition 10.18]). Suppose for contradiction that

T : X → Y is a C-epimorphism with non-dense image T (X) , Y . By Proposi-

tion 2.8(ii), one can find a non-trivial continuous function f : Y → [0, 1] which

vanishes on T (X). The graphing functions S 0, S 1 : Y → Y × [0, 1] defined by

S 0(Y) ≔ (y, 0) and S 1(Y) ≔ (y, f (y)) are then distinct C-morphisms such that

S 0 ◦ T = S 1 ◦ T , contradicting the hypothesis that T is an C-epimorphism.

This gives the first part of (ii). To conclude, we need to show that for C =

CH,LCHp, (pt ↓ CH), that every C-morphism with dense image is surjective.

For C = CH, (pt ↓ CH) this follows since the image is compact. For C = LCHp,

let T : X → Y be an LCHp-morphism with dense image, and let y ∈ Y . Let K

be a compact neighborhood of y in Y , then the set T (T−1(K)) is compact (by

the proper continuous nature of T ) and contains y in its closure (as T has dense

image), hence y ∈ T (T−1(K)) ⊆ T (X). Thus T is surjective as required.

Finally, the assertions in (iii) follow from (i), (ii) and the well-known fact that

any proper bijective continuous function is a homeomorphism. �

As is well-known, the Stone–Čech and Alexandroff compactifications serve

as universal “maximal” and “minimal” compactifications of an LCH-space (or

LCHp-space) X. We can formalize these statements in category-theoretic lan-

guage as follows. Define a compactification of an LCH-space X as a pair (X̃, ιX)

such that X̃ ∈ CH and ιX : X → X̃LCH is an LCH-monomorphism with dense im-

age. By Proposition 2.9, ιX is an LCH-bimorphism, hence we could equivalently

define a compactification as a pair (X̃, ιX) such that X̃ ∈ CH and ιX : X → X̃LCH is

an LCH-bimorphism. The class Compact(X) of all such compactifications of X

forms a partially ordered set (and so can be viewed as a small category), with or-

dering (X̃, ιX) ≤ (X̃′, ιX′) whenever there is a CH-morphism π̃ : X̃ → X̃′ such that

ιX′ ◦ π̃LCH = ιX. The Stone-Čech functor β gives one compactification (βX, ιX,β) in

Compact(X), where ιX,β : X → (βX)LCH is the canonical inclusion; the Alexan-

droff functor gives another compactification (Alex(X), ιX,Alex) in Compact(X),
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β(X)LCH

X X̃LCH

Alex(X)LCH

πLCH
ιX,β

ιX

ιX,Alex
π′

LCH

Figure 2.1. The universal properties of the Stone-Čech and
Alexandroff compactifications. For any compactification (X̃, ιX)
of an LCH-space X, there are unique CH-morphisms π, π′ that
make the above diagram commute (in LCH).

where by abuse of notation Alex(X) is Alex applied to X viewed as an LCHp-

space, and ιX,Alex : X → Alex(X)LCH is the canonical inclusion. It is then routine

to verify that these two compactifications are the least and greatest elements in

Compact(X); see Figure 2.1. Using Gelfand duality, one can also identify com-

pactifications of an LCH-space X (up to natural isomorphisms) with unital subal-

gebras of Cb(X) that contain C0(X)⊕C, somewhat in the spirit of the fundamental

theorem of Galois theory; we leave the details to the interested reader.

3. Baire algebras

In this section we describe all the categories and functors depicted in Figure

1.3.

Definition 3.1 (Topological and measurable categories and functors).

(i) A CMet-space is a compact metrizable space X = (XSet,FX). A CMet-

morphism is a continuous function between CMet-spaces.

(ii) A Pol-space is a Polish space X = (XSet,FX) (i.e., a separable topological

space that is completely metrizable). A Pol-morphism is a continuous

function between Pol-spaces.

(iii) A CncMbl-space is a concrete measurable space X = (XSet,ΣX), i.e., a set

XSet endowed with a σ-complete Boolean algebra ΣX of subsets of XSet.

A CncMbl-morphism is a measurable map between CncMbl-spaces. In

(i)-(iii), composition is given by the usual Set-composition law.

(iv) Forgetful functors from CMet to CH,Pol are defined in the obvious fash-

ion.

(v) If X is a Pol-space (resp. LCH-space, LCHp-space), one defines Bor(X) ≔

(XSet,Bo(X)) (resp. Bairb(X) ≔ (XSet,Ba(X)), Bairc(X) ≔ (XSet,Bac(X))).

If T is a Pol-morphism (resp. LCH-morphism, LCHp-morphism), we

define Bor(T ) ≔ T (resp. Bairb(T ) ≔ T , Bairc(T ) ≔ T ). (Here we
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abuse notation by identifying C-morphisms T with their underlying Set-

morphism TSet for the concrete categoriesC = Pol,LCH,LCHp,CncMbl.)

(vi) We define Bair ≔ Bairc ◦ ForgetCH→LCHp
= Bairb ◦ ForgetCH→LCH.

It is a routine matter to verify that the categories and functors in Figure 1.3 are

indeed categories and functors with the indicated faithfulness properties, and that

the diagram commutes. Note that it is essential that LCHp-morphisms T : X →

Y be proper in order for Bairc to be a functor, since otherwise the Koopman

operator f 7→ f ◦ T would not map Cc(Y) to Cc(X).

We recall some standard product constructions in these categories (the reader

is referred to Appendix A.3 for our category-theoretic notation of categorical

and non-categorical products and how these can be functorially related to each

other):

Proposition 3.2 (Products in topological and measurable categories).

(i) The categories Set, CH, (pt ↓ CH), CncMbl admit categorical products
∏Set,

∏CH,
∏(pt↓CH),

∏CncMbl, defined for arbitrarily many factors.

(ii) The categories CMet, Pol admit categorical products
∏CMet,

∏Pol, de-

fined for at most countably many factors.

(iii) The category LCH admits categorical products
∏LCH, defined for finitely

many factors.

(iv) The category LCHp does not admit categorical products, not even for

two factors.

(v) With the exception of the categorical CncMbl-product, all the categori-

cal products listed in (i), (ii), (iii) are related in the sense of Definitions

A.26 and A.29 (see Example A.27 and Remark A.30) to each other with

respect to the casting functors in Figure 1.3.

(vi) (Weil’s theorem) Every CH-space K is CH-isomorphic to a compact sub-

space of a product
∏CH

α∈A S α of CMet-spaces. In fact one can take each

S α to be a compact subset of R.

(vii) If (S α)α∈A is a family of CMet-spaces and K is a closed CH-subspace of
∏CH

α∈A S α, then KCncMbl is the restriction of (
∏CH

α∈A S α)CncMbl to KSet (that

is, the measurable sets in KCncMbl are precisely the sets of the form E ∩

KSet, where E is measurable in (
∏CH

α∈A S α)CncMbl), even if KSet itself fails

to be measurable in (
∏CH

α∈A S α)CncMbl.

(viii) All the categorical products listed in (i), (ii) agree with each other in the

sense of Definitions A.26 and A.29 with respect to the casting functors in

Figure 1.3.
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Proof. The assertions in (i) are standard; for instance, the existence of the cate-

gorical product in CH, for instance, follows readily from Tychonoff’s theorem.

For CMet there is the issue of how to assign the metric on a countable prod-

uct
∏CMet

n∈N Xn of the factor metric spaces Xn = ((Xn)Set, dn) in a manner that is

compatible with the product topology, but this can be achieved in any number of

ways, e.g., by using the metric

d ((xn)n∈N, (yn)n∈N) ≔
∑

n∈N

2−n dn(xn, yn)
1 + dn(xn, yn)

(this construction can also be used to verify that the product of countably many

Polish spaces is Polish).

The assertions in (ii) and (iii) are also well-known (the category LCH does

not admit general infinite products, since if it did, then so would the category

of locally compact Hausdorff abelian groups. However, there is no product of

countably many copies of the real numbers in the category of locally compact

Hausdorff abelian groups, for if there were, then by the universal property of the

categorical product, it would become a real Hausdorff topological vector space,

contradicting the well known fact that the only locally compact Hausdorff topo-

logical vector spaces are finite-dimensional.).

To verify (iv), suppose there would exist a categorical product ofRwith itself,

say X. Then for any point y ∈ R, there must exist unique proper maps {y}×R→ X

and R × {y} → X by the universal property of the categorical product X. This

implies that R × R embeds properly into X, but then the projection maps from X

to R cannot be proper, giving the claim.

Claim (v) follows from a routine expansion of the definitions, with matters

boiling down to establishing easy identities such as (
∏CMet

n∈N Xn)CH =
∏CH

n∈N(Xn)CH

for a countable sequence Xn of CMet spaces.

Claim (vi) was established in [83]; for a canonical construction, take A ≔

C(K), set S f ≔ f (K) for f ∈ C(K), and identify each point k ∈ K with the

tuple ( f (k)) f∈C(K); the required properties are then easily verified using Urysohn’s

lemma 2.8.

Claim (vii) was established in [45, Lemma 2.1]. For Claim (viii), the only

non-routine step is in establishing that Bair(
∏

α∈A Xα) =
∏

α∈A Bair(Xα) for any

(possibly uncountable) family (Xα)α∈A of CH-spaces, and that Bor(
∏

n∈N Xn) =
∏

n∈N Bor(Xn) for any countable family of Pol-spaces. The first claim follows

from (vi), (vii) (and is also proven in [77, Proposition 2.3]), and the second fol-

lows from constructing a countable subbase for
∏

n∈N Xn arising from open balls

in the individual Xn. �
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The compatibility of the CH and CncMbl products via the Baire functor

Bair (which, as mentioned above, was first proven in [77, Proposition 2.3]) is

one of the major reasons why it is preferable to use the Baire σ-algebra instead

of the Borel σ-algebra for CH-spaces. On the other hand, the LCH product is

not compatible with the CncMbl product even when multiplying just two spaces

together. For instance, if X is a discrete LCH-space with cardinality greater than

the continuum, then X ×LCH X is also discrete, hence every subset is Cb-Baire-

measurable (every indicator function is bounded continuous). In particular, the

diagonal {(x, x) : x ∈ X} is Cb-Baire-measurable. On the other hand, it is easy

to see that every set E measurable in the product space Bab(X) ×CncMbl Bab(X)

has the property that the slices Ex ≔ {y ∈ X : (x, y) ∈ X} lie in a countably

generated σ-algebra. By cardinality considerations, the diagonal does not have

this property, hence Bab(X×LCH X) , Bab(X)×CncMblBab(X), demonstrating the

incompatibility of the LCH and CncMbl products.

We have the following useful descriptions of the Cb-Baire and Cc-Baire σ-

algebras:

Proposition 3.3 (Characterization of Baire algebras).

(i) Let X be an LCH-space. Then B ∈ Bab(X) if and only if there exist

a sequence of real fn ∈ Cb(X), n ∈ N and A ∈ Bo(
∏Pol

n∈N R) such that

B = (
∏Pol

n∈N fn)∗(A).

(ii) Let X be an LCHp-space. Then B ∈ Bac(X) if and only if there exist

a sequence of continuous functions fn : X → [0, 1], n ∈ N and A ∈

Bo(
∏CMet

n∈N [0, 1]) such that B = (
∏CMet

n∈N fn)∗(A). Equivalently, Bac(X) is

generated by all compact Gδ subsets of X.

Proof. We begin with (i). The set of all B of the form B = (
∏Pol

n∈N fn)∗(A) for

some real fn ∈ Cb(X) and A ∈ Bo(
∏Pol

n∈N R) is a σ-algebra that contains the

preimages f ∗(E) of any Borel subset E of C by elements f of Cb(X), and thus

containsBab(X). To obtain the converse inclusion, it suffices to show that for any

fixed real fn ∈ Cb(X), n ∈ N, the collection {A ∈ Bo(
∏Pol

n∈N R) : (
∏

n∈N fn)∗(A) ∈

Bab(X)} is all of Bo(
∏Pol

n∈N R). Since this collection is a σ-algebra, it suffices to

show that it contains all closed subsets F of
∏Pol

n∈N R. Let F be such a closed set,

and let g : X → [0, 1] be the function g(x) ≔ min(dist(( fn(x))n∈N, F), 1) for x ∈ X

(using a suitable product metric on
∏Pol

n∈N R). Then g ∈ Cb(X) and F = g∗{0},

giving the claim. This proves (i).

Now we establish16 (ii). The first claim can be shown similarly to (i). By

Proposition 2.8(iv), every Gδ set K is of the form K = f ∗{1} for some f ∈ C0(X)

16We are indebted to Minghao Pan for pointing out a mistake in the proof of Proposition
3.3(ii) in a preliminary manuscript.
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which shows that the σ-algebra generated by the compact Gδ sets is included

in Bac(X). Conversely, for any real f ∈ Cc(X), the level sets { f ≥ r}, r ∈ R

belong to the σ-algebra generated by compact Gδ-sets, and hence the entirety of

Bac(X) does also (decomposing complex-valued functions in Cc(X) into real and

imaginary parts). This gives (ii). �

As is well-known, an illustrative example of the subtleties of uncountable

topological spaces is provided by the first uncountable ordinal ω1.

Proposition 3.4. Let the intervals [0, ω1) and [0, ω1] be endowed with the order

topology.

(i) The space [0, ω1) is an LCH-space (or LCHp-space) which is countably

compact, sequentially compact, and first countable, but not compact, σ-

compact, paracompact or second countable. The space [0, ω1] is a CH-

space which is not first countable.

(ii) Both [0, ω1) and [0, ω1] are zero-dimensional.

(iii) A subset of [0, ω1) (resp. [0, ω1]) is compact if and only if it is complete17.

Moreover, every compact subset of [0, ω1) is Gδ.

(iv) Both [0, ω1) and [0, ω1] are completely normal, but neither is perfectly

normal.

(v) Every complex continuous function on [0, ω1) (resp. [0, ω1]) is eventually

constant. Therefore, we have Cc([0, ω1)) = C0([0, ω1)) and C([0, ω1]) =

Cb([0, ω1)) = C0([0, ω1)) ⊕ C.

(vi) One has Bac([0, ω1)) = Bab([0, ω1)) ( Bo([0, ω1)) and Bac([0, ω1]) =

Bab([0, ω1]) ( Bo([0, ω1]).

(vii) Both the Stone-Čech compactification β[0, ω1) and the Alexandroff com-

pactification Alex([0, ω1)) are identifiable18 with [0, ω1].

Proof. A proof of the properties in (i), (v) can be found in [74, §42], and (vii)

follows easily from (v). As for (ii), notice that we will not be able to construct

a strictly decreasing infinite sequence in [0, ω1) or [0, ω1], and therefore the col-

lection of intervals (α, β], α < β together with {0} forms a base of clopen subsets

respectively. See [74, §39.7] for the characterization of compactness in terms of

completeness for subsets of [0, ω1) and [0, ω1]. This characterization implies that

every compact subset of [0, ω1) can be viewed as a closed subset of a compact

interval in [0, ω1). A compact interval in [0, ω1) is second-countable with respect

17An ordered set is said to be complete if every non-empty subset has an infimum and a
supremum.

18This should be contrasted with the fact that the Stone-Čech compactification of ω0 (the first
infinite ordinal) is much larger than its Alexandroff compactification.
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to the subspace topology, and hence is metrizable. It is well-known that closed

subsets of metric spaces are Gδ, giving (iii).

See [74, §39.6] for a proof that [0, ω1) and [0, ω1] are completely normal.

To prove that neither are perfectly normal, it is enough to find a closed set that

is not Gδ respectively. It is easy to see that {ω1} is not Gδ in [0, ω1]. We show

that the set A = {α ∈ [0, ω1) : α limit ordinal} is not Gδ in [0, ω1). Let O be

an open set including A. Then for each γ ∈ A there exists αγ ∈ ω1 such that

(αγ, γ] = [αγ+1, γ] ⊆ O. Define f : A→ [0, ω1) to be f (γ) := αγ+1. By Fodor’s

Pressing Down Lemma (e.g., see [51, Lemma III.6.14]), there exist α ∈ ω1 and a

set B ⊆ A which has nonempty intersection with any unbounded closed subset of

ω1 such that f (β) = α for all β ∈ B. By construction, [α, ω1) ⊆ O. Now let (On)

be a sequence in [0, ω1) such that A ⊆ On for all n. For each n choose αn such that

[αn, ω1) ⊆ On. Then α∗ = sup{αn} is a countable ordinal and [α∗, ω1) ⊆
⋂

n On.

As such a ray [α∗, ω1) must include a successor ordinal, A ,
⋂

n On.

Now we establish (vi). From (v) we have Cc(([0, ω1)) = Cb(([0, ω1)), hence

Bac([0, ω1)) = Bab([0, ω1)); similarly, from the compactness of [0, ω1] one has

Bac([0, ω1]) = Bab([0, ω1]) = Ba([0, ω1]). By (1.1) it remains to show that

Bab([0, ω1)) , Bo([0, ω1)) and Ba([0, ω1]) , Bo([0, ω1]). To establish the first

claim, it suffices to show that the set A of all limit ordinals smaller in ω1 is

not Baire-measurable (as a closed set it is clearly Borel-measurable). If for con-

tradiction A were an element of Bab([0, ω1)), by Proposition 3.3 there would

exist fn ∈ Cb([0, ω1)), B ∈ Bo(
∏Pol

n∈N R) such that A = (
∏

n fn)∗(B). By Propo-

sition 3.4(v), each fn is eventually constant with some constant value cn for all

ordinals larger or equal than αn. If (c1, c2, . . .) ∈ B, then (
∏

n fn)∗(B) includes

the interval [supn{αn}, ω1), and thus cannot be A, giving a contradiction. Hence

(c1, c2, . . .) < B, in which case there exists some ci which is not an element of the

ith projection of B, so if β ∈ (
∏

n fn)∗(B) then β < αi, and thus also in this case A

cannot be (
∏

n fn)∗(B), again giving the contradiction.

It remains to show Ba([0, ω1]) , Bo([0, ω1]). But this follows after observ-

ing from (v) that every Baire-measurable subset of [0, ω1] is either bounded, or

has a bounded complement, so in particular the Borel-measurable set [0, ω1) (or

the complement {ω1}) is not Baire-measurable. Alternatively, we can also derive

this from [11, Proposition 1.4] which establishes the following equivalence: If

X is an LCH-space (resp. LCHp-space) and A ∈ Bac(X) is closed, then A is

σ-compact if and only if A is Baire measurable in β(X). Now [0, ω1) is clearly

closed in Bac([0, ω1)) but by Proposition 3.4(i) is not σ-compact, so [0, ω1) is

not in Ba(β(X)) = Ba([0, ω1]) by Proposition 3.4(vii). �
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Remark 3.5. We now discuss when the inclusions in (1.1) are strict. The in-

clusion Bac(X) ⊆ Bab(X) is strict when X is an uncountable discrete space.

Proposition 3.3(i), (v) offers an obvious (though not obviously useful) neces-

sary and sufficient condition for Bac(X) = Bab(X): For all f ∈ Cb(X) there

exist fn ∈ Cc(X), n ∈ N, A ∈ Bo(
∏CMet

n∈N Xn), where the Xn ⊆ R are compact,

such that f ∗({0}) = (
∏

n∈N fn)∗(A). Another merely sufficient condition is that any

f ∈ Cb(X) is the pointwise limit of a sequence of functions in C0(X). This condi-

tion is equivalent to saying that X is σ-compact or that the C∗-algebra C0(X) has

a countable approximate identity. However, Proposition 3.4(vi) shows that this

condition is not necessary in order to have Bac(X) = Bab(X).

Proposition 3.4(vi) also gives examples in which Bab(X) , Bo(X). A suffi-

cient condition for Bab(X) = Bo(X) is that X is perfectly normal19. However, as

the example of an uncountable discrete space showed, being perfectly normal is

definitely not enough to also have Bac(X) = Bab(X).

Remark 3.6. From the Gelfand dualities in Figure 1.1, it is not difficult to show

that for an LCH-space X (which we also view as an LCHp-space) that Bac(X)

is the restriction of the Baire algebra Ba(Alex(X)) of the Alexandroff compact-

ification Alex(X) to X, while Bab(X) is similarly the restriction of the Baire

algebra Ba(βX) of the Stone–Čech compactification βX to X. Thus we see that

the two canonical compactifications and two canonical Baire algebras of locally

compact Hausdorff spaces are naturally divided up between the two categories

LCH, LCHp.

4. Regular measures and τ-additivity

In the theory of both Baire and Borel probability measures it is common to

impose additional axioms such as inner or outer regularity, τ-additivity, or the

Radon measure property; see, e.g., [49]. We recall the relevant notions.

Definition 4.1 (Regularity properties). Let X = (XCncMbl,FX) be a CncMbl

space XCncMbl = (XSet,ΣX) equipped with a topology FX on XSet. Let µX be a

finite measure on X.

(i) We say that µ is τ-additive in X if

sup
α∈A

µ(Oα) = µ(O)

19A topological space X is said to be perfectly normal if two disjoint closed sets E, F can be
perfectly separated by a continuous function, that is there is f : X → [0, 1] such that f ∗({0}) = E

and f ∗({1}) = F. Equivalently, X is perfectly normal if it is normal and every closed set is Gδ.
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whenever (Oα)α∈A is a net of open measurable sets Oα ∈ ΣX which is

non-decreasing (thus Oα ⊆ Oβ whenever α ≤ β, and O ≔
⋃

α∈A Oα is

also open measurable).

(ii) If 〈adjective〉 is an adjective pertaining to subsets of X which applies in

particular to the empty set, such as “closed”, “closed Gδ”, “compact”, or

“compact Gδ”, we say that µ is 〈adjective〉 inner regular in X if

µ(E) = sup{µ(F) : F ∈ ΣX, F ⊆ E, F 〈adjective〉}

for all E ∈ ΣX. Similarly, if 〈adjective〉 be an adjective pertaining to

subsets of X which applies in particular to the whole set XSet, such as

“open”, or “open Fσ”, we say that µ is 〈adjective〉 outer regular in X if

µ(E) = inf{µ(O) : O ∈ ΣX, E ⊆ O,O 〈adjective〉}

for all E ∈ ΣX.

(iii) We say that µ is Radon in X if it is compact Gδ inner regular.

Using µ(Ec) = µ(X) − µ(E) we easily verify the logical implications

Radon ⇐⇒ compact Gδ inner regular

⇓

closed Gδ inner regular ⇐⇒ open Fσ outer regular

⇓

closed inner regular ⇐⇒ open outer regular

in Hausdorff spaces (in which compact sets are closed). In metrizable spaces we

can reverse the second downward arrow (because closed sets are automatically

Gδ), and in CH-spaces we can reverse the first downward arrow (because closed

sets are automatically compact). For Borel measures, the notions of compact

inner regularity (also known as tightness) and open outer regularity are the most

frequently employed, but for Baire probability measures the notion of closed

Gδ inner regularity (or equivalently open Fσ outer regularity) is of more use. In

particular we will not make much use of the concept of compact inner regularity

in this paper. As we shall shortly see, the property of τ-additivity is automatic in

CH-spaces, but can be non-trivial in non-compact spaces.

It is a well-known theorem of Ulam (see, e.g. [35], [20, Theorem 7.1.4] or

[76, Proposition 4.2]) that Borel probability measures on CMet-spaces are auto-

matically Radon. We review several further results (also reasonably well-known)

of this type:

Proposition 4.2 (Automatic regularity of Borel and Baire measures). Let C be

one of CMet, Pol, CH, (pt ↓ CH), LCH, LCHp, let X be a C-space, and let µ be
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a probability measure on XCncMbl (here we use the casting functors from Figure

1.3).

(i) µ is closed Gδ inner regular and open outer Fσ regular. (In particular µ

is closed inner regular and open outer regular.)

(ii) If C = CMet, CH, (pt ↓ CH), LCH, LCHp, then µ is Radon in X if and

only if it is τ-additive.

(iii) If C = CMet, CH, (pt ↓ CH), then µ is both Radon and τ-additive in X.

Proof. We begin with (i). By applying forgetful functors it suffices to check the

cases C = Pol, LCH, LCHp. For C = Pol this follows from Ulam’s tightness

theorem (see, e.g., [20, Theorem 7.1.4]), noting that in Pol-spaces closed sets are

automatically Gδ due to metrizability. Now we establish the claim for C = LCH.

It suffices to establish closed Fσ inner regularity. Let E ∈ ΣX = Bab(X), then by

Proposition 3.3(i) we have E = T ∗A for some LCH-morphism T : X → YLCH

and some Pol-space Y (indeed one can take Y =
∏Pol

n∈N R). Applying the C = Pol

case of (i) to the pushforward measure T∗µ, we see that for any ε > 0 there is a

closed Gδ subset F of A such that T∗µ(A\F) ≤ ε, hence µ(E\T ∗F) ≤ ε. Since

T ∗F is a closed Gδ subset of E, this establishes closed Gδ inner regularity when

C = LCH. The case C = LCHp is obtained similarly using Proposition 3.3(ii).

We also remark that the C = CH case was established in [9, II, 7.1.8].

Now we establish (ii). By applying forgetful functors it suffices to establish

the claim for C = LCH, LCHp. We begin with the C = LCH case. Suppose first

that µ is Radon in X, and O =
⋃

α∈A OA for some non-decreasing net (Oα)α∈A of

open Baire sets whose union O is also open Baire. By the Radon hypothesis, for

any ε there is a compact Gδ subset K of O such that µ(O\K) ≤ ε. By compact-

ness, K is covered by a finite number of the Oα, hence (by the non-decreasing net

hypothesis) one has K ⊆ Oβ ⊆ O for some β ∈ A, which establishes τ-additivity.

Conversely, suppose µ is τ-additive in X, and let O be Baire open in X. Consider

the family F of open Baire subsets U of O with the property that U ⊆ K ⊆ O

for some compact Gδ K, ordered by set inclusion. This is a non-decreasing net of

open Baire sets, and from Proposition 2.8 we see that every x ∈ U is contained

in at least one set U from this family F . From τ-additivity we conclude that

µ(O) = sup{µ(U) : U ∈ F }

and hence

(4.1) µ(O) = sup{µ(K) : K compact Gδ},

which gives the Radon property for Baire open sets O. Now if E is a Baire set

and ε > 0, we see from (i) that there is an open Fσ set O ⊃ E such that

µ(O\E) ≤ ε
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then by (4.1) there is a compact Gδ set K ⊆ O such that

µ(O\K) ≤ ε.

Applying (i) again we also have an open Fσ set U ⊃ O\E such that

µ(U) ≤ 2ε.

The set K\U is then a compact Gδ subset of E with

µ(E\(K\U)) ≤ 3ε.

Since ε > 0 is arbitrary, we conclude the Radon property for general Baire sets

E.

The claim (iii) follows from (i) and (ii) after noting in these categories that

closed sets are automatically compact. (A slightly weaker version of this claim,

dropping the Gδ requirement, is also established in [20, Theorem 7.1.5].) �

5. Riesz representation theorems

We can now introduce the probability theory analogues CMetPrb, CHPrb,

(pt ↓ CH)Prb, PolPrb, LCHPrb, LCHpPrb of the topological categories CMet,

CH, (pt ↓ CH), Pol, LCH, LCHp, as well as the analogue CncPrb of CncMbl.

We will do this by following a general categorical construction called action cat-

egories (see Definition A.33).

Definition 5.1 (Topological-probabilistic categories). LetC = CMet, CH, (pt ↓ CH),

Pol, LCH, LCHp, and let CPrb be the string formed by appending Prb to C.

(i) Let the functor Prb : C → Set send an object X in C to the set Prb(X)

of Radon probability measures on XCncMbl = (XSet,ΣX) (using the casting

functors from Figure 1.3) and a C-morphism f : X → Y to the pushfor-

ward map Prb( f ) : Prb(X) → Prb(Y) defined by Prb( f )(µ) = f∗µ, that

is to say f∗µ(E) = µ( f ∗(E)) for all E ∈ ΣX. We define the category CPrb

to be the action category20 C ⋉ Prb; see Definition A.33.

(ii) We can construct the category CncPrb of concrete probability spaces

by a similar construction using the functor Prb : Set associating to any

CncMbl-space the set of probability measures on it (see Example A.35).

By Proposition 4.2 we see that the requirement that Prb(X) are Radon prob-

ability measures can be dropped when C = CMet,CH, and replaced with τ-

additivity when C = LCH,LCHp. By definition, any Radon probability mea-

sure µX on XC generates a CPrb-promotion (XC, µX) of the C-space XC to a

CPrb-space. We note the subtle difference between an LCHPrb-space and an

20This category can be identified with the category whose objects are Radon probability
spaces on C-spaces and whose morphisms are measure-preserving C-morphisms.
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(pt ↓ CH)Prb CHPrb CMetPrb

LCHpPrb LCHPrb PolPrb

Set CncPrb

Figure 5.1. Functors from topological-probabilistic categories to
the concrete probabilistic category CncPrb, which in turn has a
forgetful functor to the category Set of sets. Every category here
has a forgetful casting functor to its counterpart in Figure 1.3, and
the union of these two diagrams together with these functors com-
mutes.

LCHpPrb-space: both spaces are locally compact Hausdorff spaces equipped

with a Radon probability measure, but in the former case the measure is de-

fined on the Cb-Baire σ-algebra, but in the latter case the measure is defined on

the smaller C0-Baire σ-algebra. However, the distinction between the two types

of Radon probability measure (as well as the Borel measure counterpart) can

be erased in practice; see Corollary 5.5 below. We also note that the category

(pt ↓ CH)Prb of pointed CH spaces equipped with a probability measure is

not the same as the (significantly less interesting) category (pt ↓ CHPrb) of

pointed CHPrb-spaces, as in the latter the distinguished point would be required

to support the entire probability measure thanks to the definition of a CHPrb-

morphism.

The functors in Figure 1.3 have analogues in probabilistic categories which

we depict in Figure 5.1. All of these functors will be deemed to be casting func-

tors, as are the forgetful functors from CPrb to C for each category C appearing

in Definition 5.1.

We now focus on the Riesz representation theory for LCHPrb-spaces and

LCHpPrb-spaces. We begin with the basic theory of linear functionals on C0(X)

and Cb(X) for LCH-spaces X; these notions will end up being identified via Riesz

dualities with Radon measures on X and βX respectively.

Definition 5.2 (Functionals). Let X be an LCH-space (which can also be identi-

fied with an LCHp-space). A C0-functional (resp. Cb-functional) on X is a com-

plex linear functional λ : C0(X) → C (resp. λ : Cb(X) → C).

(i) We say that a C0-functional (resp. Cb-functional) λ is non-negative if

λ( f ) ≥ 0 whenever f ≥ 0 is a real non-negative element of C0(X) (resp.

Cb(X)).
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(ii) We say that a C0-functional (resp. Cb-functional) λ is τ-smooth if one has

limα λ( fα) = 0 whenever ( fα)α∈A is a net of real elements of C0(X) (resp.

Cb(X)) which is non-increasing (thus fα(x) ≤ fβ(x) whenever α ≥ β and

x ∈ X) and converges pointwise to zero, thus limα fα(x) = 0 for all x ∈ X.

(iii) We say that C0-functional (resp. Cb-functional) λ is a C0-state (resp. Cb-

state) if it is non-negative and has operator norm 1.

(iv) We say that a C0-functional (resp. Cb-functional) λ is represented by a

Radon probability measure µX on X (or by the pair (X, µX)) if one has

λ( f ) =
∫

X
f dµX for all f in C0(X) (resp. Cb(X)).

If X is a CH-space, there is no distinction between C0(X) and Cb(X), and so we

drop the “C0” and “Cb” prefixes in this case.

Intuitively, a τ-smooth functional is one which “assigns no mass” to βX\X;

we formalize this intuition later in Theorem 5.4(iii). In Examples 5.6, 5.7, 5.8

below we give examples of Cb-states that are not τ-smooth.

Proposition 5.3 (Properties of functionals). Let X be an LCH-space (resp. an

LCHp-space).

(i) If λ is a non-negative Cb-functional (resp. C0-functional) on X, then it is

bounded; in particular it is a scalar multiple of a Cb-state (resp. C0-state).

(ii) Every C0-state λ on X is τ-smooth.

(iii) Any Radon probability measure µX on X represents a unique τ-smooth

Cb-state (resp. C0-state) λ.

(iv) Every C0-state λ on X has a unique extension to a state on the Alexandroff

compactification Alex(X).

(v) Every C0-state λ on X has a unique extension to a Cb-state on X. Further-

more, this extension is τ-smooth.

Proof. We begin with (i). It suffices to establish boundedness of λ applied to non-

negative real f in C0(X) or Cb(X). When λ is a Cb-functional this is immediate

from the bounds

0 ≤ λ( f ) ≤ λ(1)‖ f ‖Cb(X)

arising from non-negativity. Now suppose λ is a C0-functional. If λ is unbounded

for non-negative real f , then for each n ∈ N there exists non-negative fn ∈ C0(X)

with ‖ fn‖C0(X) ≤ 2−n such that λ( fn) ≥ 1. But then by non-negativity f ≔
∑∞

n=1 fn

is an element of C0(X) such that λ( f ) ≥ λ(
∑N

n=1 fn) ≥ N for any N ∈ N, which is

absurd. Thus λ is bounded.

To prove (ii), let ε > 0, then we can find a f ∈ C0(X) with ‖ f ‖C0(X) ≤ 1 and

|λ( f )| ≥ 1−ε. By multiplying by a phase we may assume λ( f ) is real and positive,

and taking real parts we may assume f is real, then by replacing f with | f | we
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may assume that f takes values in [0, 1]. As f ∈ C0(X), there exists a compact

subset K of X such that | f (x)| ≤ 1
2 outside of K. By Proposition 2.8 we may find

χ ∈ Cc(X) taking values in [0, 1] with χ = 1 on K. Then for any g ∈ C0(X) taking

values in [0, 1], we have

λ( f ) + λ((1 − χ)g) ≤ ‖ f + (1 − χ)g‖C0(X) ≤ 1

and hence λ((1 − χ)g) ≤ ε.

Now suppose that ( fα)α∈A is a non-increasing net in C0(X) whose limit is zero.

We need to show that limα λ( fα) = 0. By rescaling we may assume that fα takes

values in [0, 1] for at least one α, and then for all α after refining the net. By the

previous discussion we have

λ((1 − χ) fα) ≤ ε.

Meanwhile, the net (χ fα)α∈A of continuous functions has uniform compact sup-

port and converges monotonically to zero, hence by Dini’s theorem for nets (see,

e.g., [48, p. 239]) it converges uniformly. This implies that limα λ(χ fα) = 0,

hence

limα|λ( fα)| ≤ ε.

Since ε > 0 is arbitrary, we obtain the claim.

Now we prove (iii). Define λ( f ) ≔
∫

X
f dµ for f ∈ Cb(X) (resp. f ∈ C0(X)). It

is clear that λ is non-negative and has operator norm at most 1. From the Radon

property we have that for any ε > 0 there exists compact K such that µX(Kc) ≤ ε,

and then by using the cutoff χ as before one can establish that λ has operator

norm at least 1 − ε for any ε > 0, and is hence a state; repeating the previous

arguments then also give τ-smoothness. Uniqueness of the represented state λ is

clear from definition.

Now we prove (iv). Using the identification C(Alex(X)) ≡ C0(X) ⊕C, we can

define an extension λ̃ : C(Alex(X)) → C of λ by the formula

λ̃( f + c1) ≔ λ( f ) + c

for f ∈ C0(X) and c ∈ C (where we embed C0(X) in C(Alex(X)) in the usual

fashion). It is not difficult to see that λ̃ is non-negative with λ̃(1) = 1, hence λ̃ is

a state. Conversely, every state λ̃ on the (pt ↓ CH)-space Alex(X) has λ̃(1) = 1,

so the extension is unique by linearity.

Finally, we show (v). Let Cb(X)+ (resp. C0(X)+) denote the real nonnegative

elements of Cb(X) (resp. C0(X)). For any f ∈ Cb(X)+, define

λ̃( f ) ≔ sup{λ(g) : g ∈ C0(X)+, g ≤ f }

where we use g ≤ f to denote the pointwise domination g(x) ≤ f (x) for all

x ∈ X. Since λ is a C0-state, we see that 0 ≤ λ̃( f ) ≤ ‖ f ‖Cb(X). One clearly has
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superadditivity λ̃( f1 + f2) ≥ λ̃( f1) + λ̃( f2) for f1, f2 ∈ Cb(X)+. Next, observe that

if f1, f2 ∈ Cb(X)+ and g ∈ C0(X)+ is such that g ≤ f1 + f2, then g = g1 + g2

for some g1, g2 ∈ C0(X)+ with g1 ≤ f1 and g2 ≤ f2; for instance one can take

g1 ≔ min( f , g1) and g2 ≔ g−g1. From this we see that we in fact have additivity

λ̃( f1 + f2) = λ̃( f1) + λ̃( f2) for nonnegative f1, f2 ∈ Cb(X)+. We also have the

homogeneity property λ̃(c f ) = cλ̃( f ) for c ≥ 0 and f ∈ Cb(X)+. Thus λ̃ extends

to a Cb-functional on X, which we continue to call λ̃. By construction, λ̃ is non-

negative. For any real f ∈ Cb(X) we then have

−‖ f ‖Cb(X) ≤ λ̃( f ) ≤ ‖ f ‖Cb(X),

which implies for any complex f ∈ Cb(X) and phase eiθ that

Reeiθλ̃( f ) = λ(Reeiθ f ) ≤ ‖ f ‖Cb(X);

taking suprema in θ, we conclude that λ̃ has operator norm at most 1. Since λ̃

extends λ which already had operator norm 1, we conclude that λ̃ has operator

norm exactly equal to 1 and is hence a Cb-state. If λ̃ were not τ-smooth, then

there would exist ε > 0 and a non-increasing net ( fα)α∈A of functions fα ∈ Cb(X)+
converging pointwise to zero such that λ̃( fα) > ε for all ε. If we then let B

be the collection of all g ∈ C0(X)+ such that λ(g) > ε and g ≤ fα for some

α ∈ A, ordered by pointwise domination ≤, then (g)g∈B is a non-increasing net

converging pointwise to zero. Thus λ would not be τ-smooth, contradicting (iii).

Thus λ̃ is τ-smooth.

It remains to show that λ̃ is the unique extension of λ to a Cb-state. If λ′ is

another such extension, we see from repeating the proof of (ii) that for any ε > 0

there exists χ ∈ Cc(X) taking values in [0, 1] such that λ′((1 − χ)g) ≤ ε and also

λ̃((1 − χ)g) ≤ ε for any g ∈ Cb(X) taking values in [0, 1]. On the other hand

λ′ and λ̃ both agree with λ on χg. By the triangle inequality we conclude that

|λ′(g) − λ̃(g)| ≤ 2ε for all g ∈ Cb(X) taking values in [0, 1], hence on sending

ε→ 0 and using linearity we conclude that λ′, λ̃ are identical. �

We now give the Riesz representation theorems for the categories CMet, CH,

(pt ↓ CH), LCHp, LCH. These results are largely contained in prior literature,

but are presented here in the notation of this paper.

Theorem 5.4 (Riesz representation theorem). Let C = CMet, CH, (pt ↓ CH),

LCHp, LCH, and let X be a C-space.

(i) (Riesz representation theorem) Every C0-state λ on X is represented by

a unique promotion of X to a CPrb-space (X, µX). (In other words, for

each state λ there is a unique Radon measure µX on X such that λ( f ) =
∫

X
f dµX for all f ∈ C0(X).)
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(ii) (Daniell-Stone representation theorem) IfC = LCH, then every τ-smooth

Cb-state λ on X is represented by a unique promotion of X to a CPrb-

space (X, µX).

(iii) (Relationship with Stone–Čech compactification) If C = LCH and λ is a

Cb-state on X, then there is a unique promotion of βX to a CHPrb-space

(βX, µβX) such that λ( f ⇂X) =
∫

βX
f dµβX for all f ∈ C(βX) (where f ⇂X is

the restriction of βX to X, where we identify the latter with a subspace of

the former). Furthermore, the Cb-state λ is τ-smooth if and only if βX\X

has zero outer measure in the sense that

inf{µβX(E) : E ∈ ΣβX, E ⊃ βX\X} = 0.

We refer to [49] for a further study of how the Riesz representation theorem

interacts with the Stone–Čech compactification. For instance, the second part of

Theorem 5.4(iii) is essentially [49, Theorem 2.4].

Proof. The claim (i) for C = CH can be found for instance in [77, §2], [76, The-

orem 3.3], [37], [20, Theorem 7.4.1], [23, Theorem 5.7], or [31]. This implies

the cases C = CMet, (pt ↓ CH) of claim (i) after applying forgetful casting func-

tors. We remark that the presentation in [37] is particularly compatible with the

category-theoretic viewpoint adopted in this paper.

Now we show (i) for C = LCHp. This result appears for instance in [76,

Theorem 4.1] or [77, §3], but for the convenience of the reader we give a proof

here. We begin with existence. By Proposition 5.3(iv), we can extend λ to a state

λ̃ : C(Alex(X)) → C on Alex(X) (viewing X as a subspace of Alex(X) and C0(X)

as a subalgebra of C(Alex(X))). By the C = CH case of (i), λ̃ is represented by

a Radon probability measure µAlex(X) on Alex(X). Now let K be a compact Gδ

subset of X. From Proposition 3.3 (as well as the Tietze extension theorem and

Urysohn’s lemma) we see that the C0-Baire σ-algebras Bac(X),Bac(Alex(X))

both agree with Bac(K) = Ba(K) when restricted to K. Thus µAlex(X) may be

restricted to a finite Baire measure µK on the CH-space K. These measures are

compatible with each other in the sense that µK′ is the restriction of µK to K′

whenever K′ is a compact Gδ subset of K. We now define a C0-Baire measure µX

on X by

µX(E) ≔ sup{µK(E ∩ K) : K ⊆ X, compact Gδ}.

Since each µK is countably additive of total mass at most one, one easily verifies

that µX is countably additive also with total mass at most one. As µAlex(X) is com-

pact Gδ inner regular on X, each µK is compact Gδ inner regular on K, which then

implies that µX is compact Gδ inner regular. If f ∈ Cc(X), then from Proposition
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2.8 f is supported in some compact Gδ set K, and
∫

X

f dµX =

∫

K

f dµK =

∫

Alex(X)
f dµAlex(X) = λ̃( f ) = λ( f ).

Thus λ is represented by µX on Cc(X), and hence also on C0(X) by taking uniform

closures. Since λ is a state, µX must therefore have total mass one, and is thus a

Radon probability measure as required.

To show uniqueness, observe that if λ is represented by any other Radon

probability measure µ′X on X, then by the uniqueness aspect in the C = CH case

of (i), µ′
X

must agree with µX on each compact Gδ set K, and then by compact Gδ

inner regularity µ′
X

and µX must be identical.

Now we establish (ii). By [9, Theorem 7.8.6] (see also [20, Theorem 4.5.2]),

there exists a unique τ-additive probability measure µX onBac(X) that represents

λ. The claim now follows from Proposition 4.2(ii).

Now, we establish (i) for C = LCH. By Proposition 5.3(v), we can extend

λ to a τ-smooth Cb-state λ̃ on X, which by (ii) is represented by a Radon prob-

ability measure µX on X. Hence the C0-state λ is also represented by µX. If λ

is represented by another Radon probability measure µ′
X
, then from dominated

convergence and τ-smoothness we see that λ̃ is also represented by µ′x, hence

µX = µ
′
X

by (ii), giving uniqueness.

Finally, we establish (iii). Every function in Cb(X) has a unique extension

to C(βX), hence the Cb-state λ on X can be identified with a state on βX. The

existence and uniqueness of the promotion (βX, µβX) then follows from the C =

CH case of (i). If λ is τ-smooth, then by (ii) λ is also represented by a Radon

probability measure µX on X, hence for any ε > 0 there is a compact Gδ subset K

of X with µX(K) ≥ 1−ε. From the C = CH case of (i) we see that µX and µβX must

agree when restricted to K, thus µβX(K) ≥ 1 − ε, or equivalently µβX(βX\K) ≤ ε.

Hence βX\X has zero outer measure.

Conversely, if βX\X has zero outer measure, then by the Radon property

for every ε there exists a compact Gδ subset K of βX contained in X such that

µβX(K) ≥ 1 − ε, or equivalently µβX(βX\K) ≤ ε. From Proposition 2.8 we also

see that K is a compact Gδ subset of X. Arguing using Dini’s theorem as in the

proof of Proposition 5.3(iii) we conclude that λ is τ-smooth. �

As a corollary of the Riesz representation theorem, one can extend Radon

measures on the smaller σ-algebras in (1.1) to larger ones in a canonical fashion:

Corollary 5.5 (Canonical extension). Let X be an LCH-space (and hence also

an LCHp-space).

(i) Any Radon probability measure on (XSet,Bac(X)) has a unique extension

to a Radon probability measure on (XSet,Bab(X)).



42 A. JAMNESHAN AND T. TAO

(ii) Any Radon probability measure on (XSet,Bab(X)) has a unique extension

to a compact inner regular measure on (XSet,Bo(X)).

For CH-spaces this corollary is well known (see, e.g., [20, Theorem 7.3.1],

[23, Proposition 5.4]).

Proof. We begin with (i). If µX is a Radon probability measure on (XSet,Bac(X)),

then by Proposition 5.3(iii) it represents a C0-state λ on X (viewed as an LCHp-

space). By Theorem 5.4(i), λ is also represented by a Radon probability measure

µ̃X on (XSet,Bab(X)). By construction,
∫

X
f dµX =

∫

X
f dµ̃X for all f ∈ Cc(X). By

Proposition 2.8, if K is a compact Gδ subset of X, then 1K can be expressed as the

pointwise limit of a decreasing sequence of functions Cc(X), thus by monotone

convergence µX, µ
′
X

agree on compact Gδ functions, hence on all C0-Baire func-

tions by the Radon property. The Radon property also ensures uniqueness of the

extension (here we use the fact from Proposition 3.3 that compact Gδ functions

are C0-Baire measurable).

Now we prove (ii). If µ′X is a Radon probability measure on (XSet,Bab(X)),

then by Proposition 5.3 it represents a C0-state λ on X (viewed as an LCH-space).

By the Riesz–Markov–Kakutani theorem [47], there is a compact inner regular

probability measure µ′′
X

on (XSet,Bo(X)) which represents λ. By arguing as before

we see that µ′′
X
, µ′

X
agree on compact Gδ sets, which by the regularity properties

implies that µ′′
X
(E) ≥ µ′

X
(E) for all Cb-Baire E. Taking complements we also have

µ′′
X
(E) ≤ µ′

X
(E). Thus µ′′

X
extends µ′

X
. The uniqueness of the extension follows

from the uniqueness aspect of the Riesz–Markov–Kakutani theorem. �

The following examples show that the relationship between states and proba-

bility measures deteriorates if hypotheses such as the Radon property, τ-additivity,

or τ-smoothness are dropped.

Example 5.6 (Generalized limit functionals). As is well-known, the Hahn-Banach

theorem allows one to (non-uniquely) extend the limit functional lim: C0(N) ⊕

C → C to a generalized limit functional λ : Cb(N) → C which is a Cb-state

on N. Such a state is not τ-smooth: indeed, the sequence of indicator functions

1n≥N for N ∈ N is non-decreasing and converges pointwise to zero in N, but

λ(1n≥N) = 1 does not converge to zero. In particular, λ is not represented by any

Radon probability measure on N. Indeed, the restriction of λ to C0(N) is zero, so

any probability measure that could represent λwould vanish, which is absurd. On

the other hand, identifying Cb(N) with C(βN), we see that λ will be represented

by a Radon probability measure on βN, but this measure will assign full mea-

sure to βN\N, so the second part of Theorem 5.4(iii) will not apply. (Conversely,
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any Radon probability measure supported on βN\N generates a generalized limit

functional.)

Example 5.7 (Dieudonné’s measure). Let F be the collection of unbounded

closed subsets of [0, ω1). We claim that this collection is closed under count-

able intersections. Indeed, if (Fn)n∈N is a sequence of unbounded closed subsets,

then F ≔
⋂

n∈N Fn is closed. If for contradiction F is bounded by some countable

ordinal α, then by repeatedly using the unbounded nature of the Fn we can find

countable ordinals α j,n > α in Fn for all j, n ∈ N such that α j+1,n > supm α j,m

for all j, n ∈ N. The countable ordinal sup j,n α j,n is equal to sup j α j,n for every

n, hence is greater than α and lies in every Fn and hence in F, contradicting the

choice of α.

One can check that each Borel subset of [0, ω1) either contains an element of

F , or is disjoint from an element of F , but not both, by first verifying this for

closed sets and then noting that the claim is preserved by σ-algebra operations.

Define Dieudonné measure21 µ[0,ω1) on ([0, ω1),Bo([0, ω1)) by setting µ[0,ω1)(E)

to equal 1 when E contains an element of F and 0 when E is disjoint from an

element of F . Then the above properties ensure that µ[0,ω1) is a probability mea-

sure, which then represents a Cb-state λ, which by Proposition 3.4(v) assigns to

each f ∈ Cb(X) the limiting value of f at ω1. If we define Dieudonné measure

µ[0,ω1] on [0, ω1] to be the extension of µ[0,ω1) to ([0, ω1],Bo([0, ω1]) by giving

{ω1} zero mass, we then see that µ[0,ω1] is a Borel probability measure that repre-

sents the same state on [0, ω1] as the Dirac measure δω1 , despite the two measures

differing on Borel sets (although they do agree on Baire subsets of [0, ω1], in ac-

cordance with Theorem 5.4 and Proposition 4.2(iii)). The state λ also vanishes on

C0([0, ω1)), but this is not a contradiction because λ is not τ-smooth (and µ[0,ω1)

is not τ-additive or Radon).

Example 5.8. Let X be an uncountable discrete LCH-space, then Bac(X) is the

countable-cocountable σ-algebra (consisting of countable sets and their comple-

ments), while Bab(X) = Bo(X) is the discrete σ-algebra (since every indicator

function is bounded continuous). One can then check that a probability measure

on (X,Bac(X)) is Radon iff it is τ-additive iff it is supported on an at most count-

able set. (For instance, the probability measure that assigns 0 to countable sets

and 1 to cocountable sets has none of these properties.) Meanwhile, a probability

measure on (X,Bab(X)) = (X,Bo(X)) is Radon iff it is compact inner regular iff

21An early appearance of this example (in the Borel case) is in [35, §53] as Exercise 10. In
the literature, the example is attributed to Dieudonné (e.g., see [9, 65]), and the related reference
cited is [14].
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it is τ-additive iff it is supported on an at most countable set. This is of course

consistent with Proposition 4.2 and Corollary 5.5.

Now we can establish the Riesz duality analogues of the Gelfand dualities in

Figures 1.1, 1.2. IfA is a C∗-algebra, define a state onA to be a bounded linear

functional τ : A → C which is non-negative (it maps non-negative elements to

non-negative reals) and is of operator norm 1. Note that this is consistent with

the definition of a state for the algebras C0(X), Cb(X) in Definition 5.2(iii). We

need a technical lemma:

Lemma 5.9 (Extension of states).

(i) Let A be a CC∗AlgMult,nd-algebra. Then every state τA on A has a

unique extension τMult(A) to a state on Mult(A).

(ii) Let A be a CC∗Algnd-algebra. Then every state τA on A has a unique

extension τUnit(A) to a state on Unit(A).

Proof. We first prove (i). By Gelfand duality (Theorem 2.4) we may assume that

A = C0(X) for some LCH-space X, in which case we can identify Mult(A)

with Cb(X). The claim now follows from Proposition 5.3(v). One can also avoid

Gelfand duality by using approximate units of A as a substitute for the cutoff

functions χ that arise in the proof of Proposition 5.3(v); we leave this alternate

argument to the interested reader.

The proof of (ii) is completely analogous, using Proposition 5.3(iv) in place

of Proposition 5.3(v). Alternatively, one can extend the trace directly via the

formula τUnit(A)(a+c1) ≔ τA(a)+c; we leave the details to the interested reader.

�

We can now attach traces to the categories (CC∗Alg1 ↓ C), CC∗Alg1, CC∗Algnd,

CC∗AlgMult,nd to obtain new categories (CC∗Alg1 ↓ C)τ, CC∗Algτ
1
, CC∗Algτnd,

CC∗AlgτMult,nd, in a manner dual to how probability measures were attached to

the categories (pt ↓ CH), CH, LCHp, LCH:

Definition 5.10 (Tracial commutative C∗-algebra categories). Let C be equal to

(CC∗Alg1 ↓ C), CC∗Alg1, CC∗Algnd, or CC∗AlgMult,nd. Let C′ be the Gelfand

dual C = (pt ↓ CH), CH, LCHp, LCH to C, thus we have functors C0 : C′ → Cop

and Spec : Cop → C′ (note that we can write C0 as C if C′ = (pt ↓ CH), CH). Let

CPrb be the category defined in Definition 5.1.

(i) A Cτ-algebra is a pair A = (AC, τA), where AC is a C-algebra and

τA : AC → C is a state.

(ii) A Cτ-morphism Φ : A → B between two Cτ-algebras A = (AC, τA),

B = (BC, τB) is a C-morphism ΦC : A → B which is required to obey
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the relation

(5.1) τB ◦ ΦC = τA

if C = (CC∗Alg1 ↓ C), CC∗Alg1, CC∗Algnd. When C = CC∗AlgMult,nd

one cannot impose (5.1) because the morphism ΦC describes a function

Φ̃C fromA to Mult(B), rather than a function fromA to B. Instead, one

instead imposes the slightly different relation

τMult(B) ◦ Mult(ΦC) = τMult(A)

where the extended states τMult(A), τMult(B) are defined by Lemma 5.9.

(iii) One defines a forgetful functor from Cτ to C in the obvious fashion.

(iv) If X = (XC′ , µX) is a C′Prb-space, we define C0(X) to be the Cτ-algebra

C0(X) ≔ (C0(XC′), τ), where τ is the C0(XC′)-state represented by µX. If

T : X → Y is a C′Prb-morphism, we define C0(T ) : C0(Y) → C0(X) to

be the unique Cτ-morphism from C0(Y) to C0(X) with C0(T )C = C0(TC′).

When C′ = CH, (pt ↓ CH) we abbreviate C0 as C.

(v) If A = (AC, τA) is a Cτ-algebra, we define Riesz(A) to be the C′Prb-

space (Spec(A), µ), where µ is the unique Radon probability measure

on Spec(A) that represents τA (after using Gelfand duality to identify

A with C0(Spec(A))), as guaranteed by Theorem 5.4(i). If Φ : A → B

is a Cτ-morphism, we define Spec(Φ) : Spec(B) → Spec(A) to be the

unique C′Prb-morphism such that Spec(Φ)C′ = Spec(ΦC).

By using Gelfand duality and Theorem 5.4(i) (and also Lemma 5.9 in the

case C = CC∗AlgMult,nd), we can verify that Cτ is indeed a category, and that

the functors C0 : CPrb → (Cτ)op and Riesz : (Cτ)op → CPrb form a duality of

categories; we refer to these dualities of categories as “Riesz dualities”. The hor-

izontal functors on the first row of Figures 1.1, 1.2 extend in an obvious fashion

to their tracial counterparts (using Lemma 5.9 as necessary), which by Riesz du-

ality then allows one to analogously extend the functors on the second row as

well to their probabilistic counterparts, and similarly for the “diagonal” functor

Cb. Routine verification then gives

Theorem 5.11 (Riesz dualities). The categories in Figures 1.4, 1.5 are indeed

categories, and the functors in these figures are indeed functors between the in-

dicated categories, with the indicated faithfulness and fullness properties. Fur-

thermore, both of these diagrams commute up to natural isomorphisms. (In par-

ticular, each pair of vertical functors generates a duality of categories.)

Remark 5.12. Corollary 5.5(i) can be interpreted category-theoretically as guar-

anteeing the existence of the “forgetful functor” from LCHpPrb to LCHPrb that
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Pol CH CHPrb

Set CncMbl CncPrb

AbsMbl AbsPrb

Boolop Bool
op
σ PrbAlg

Bor
Bair

Abs Abs

Algid Inc

Conc

Figure 6.1. Basic functors between concrete and abstract proba-
bilistic and measurable categories. All the casting functors (dis-
played in blue) commute with each other, but the non-casting
functors (displayed in black) need not commute with the rest of
the diagram. Note that the categories in the first two rows have
a faithful casting functor to Set and are thus concrete categories,
while the other categories in this diagram should be viewed as be-
ing more abstract in nature. The canonical model functor Conc,
which crucially allows one to return from an abstract category to
a concrete one, will be constructed in the next section.

appears in Figures 1.4, 1.5. Theorem 5.4(iii) (and Proposition 5.3(iii)) can simi-

larly be interpreted as a guarantee for the existence of the functor β : LCHPrb→

CHPrb.

6. Abstract probability theory

In previous sections we have already seen the categories CncMbl,CncPrb

of concrete measurable spaces and concrete probability spaces respectively, as

well as their compact Hausdorff counterparts CH and CHPrb. Being concrete,

these categories also have faithful forgetful functors to Set. In this section we

introduce some more abstract categories of measurable and probability spaces

(and their associated Boolean algebras) that we will use in the sequel. These

categories are summarized in Figure 6.1.

Definition 6.1 (Abstract categories).

(i) A Bool-algebra is an abstract Boolean algebra B = (B, 0, 1,∧,∨, ·). A

Bool-morphism is a Boolean algebra homomorphism between Boolean

algebras, with the usual composition law.

(ii) Boolσ is the subcategory of Bool in which the Boolσ-algebras are those

Bool-algebras B which are σ-complete (every countable family (En)n∈N

in B has a meet
∨

n∈N En and a join
∧

n∈N En), and the Boolσ-morphisms

Φ : B → B′ are those Bool-morphisms which preserve countable meets
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and joins, thusΦ
(∨

n∈N En

)

=
∨

n∈NΦ(En) andΦ
(∧

n∈N En

)

=
∧

n∈NΦ(En)

for En ∈ B.

(iii) AbsMbl is the opposite category to Boolσ (as defined in Definition A.4).

An AbsMbl-space is also called an abstract measurable space, and an

AbsMbl-morphism an abstractly measurable map.

(iv) LetA ∈ Boolσ. A probability measure onA is a function µ : A → [0, 1]

such that µ(0) = 0, µ(1) = 1, and µ
(∨

n∈N En

)

=
∑

n∈N µ(En) whenever

En are pairwise disjoint elements ofA (thus En ∧ Em = 0 for all distinct

n,m ∈ N). We define the functor Prb : AbsMbl → Set to assign to a

σ-algebra A the set Prb(A) of probability measures on A and to an

AbsMbl-morphism f : B → A the pushforward map Prb( f ) : Prb(B)→

Prb(A) defined as the pullback Prb( f )(µ) = µ◦ f . We define the category

AbsPrb of abstract probability spaces and abstract measure-preserving

maps to be the action category AbsMbl ⋉ Prb (see Definition A.33).

(v) We define the category PrbAlg of probability algebras22 as a (non-full)

subcategory of the category AbsPrb = AbsMbl ⋉ Prb, where we addi-

tionally require that the set Prb(A) only contains probability measures

on the σ-algebraA that have the additional property that µ(E) > 0 when-

ever E ∈ A is non-zero. We let Inc be the faithful functor from AbsPrb

to PrbAlg.

(vi) There are obvious forgetful functors from AbsPrb to AbsMbl and from

Boolσ to Bool.

(viii) If X = (XSet,ΣX) is a CncMbl-space, we define the abstraction Abs(X)

to be the AbsMbl-space ΣX, where the σ-algebra ΣX of X is viewed as

an abstract σ-algebra. Similarly if T : X → Y is a CncMbl-morphism,

we define Abs(T ) to be the AbsMbl-morphism Abs(T ) : ΣX → ΣY cor-

responding to the Boolσ-morphism TBoolσ : ΣY → ΣX defined as the pull-

back map TBoolσ(E) ≔ T ∗(E) for E ∈ ΣY . The abstraction functor Abs

from CncPrb to AbsPrb is defined similarly.

(ix) If X = (XBoolσ , µX) is an AbsPrb-space, we define Alg(X) to be the

PrbAlg-space Alg(X) ≔ (XBoolσ/NX
, µX), where XBoolσ/NX

denotes the

quotientσ-algebra with respect to theσ-idealNX ≔ {E ∈ XBoolσ : µX(E) =

0}, also called the null ideal, and µX : XBoolσ/NX
→ [0, 1] is the de-

scent of µX : XBoolσ → [0, 1] to XBoolσ/NX
(by an abuse of notation). If

T : X → Y is an AbsPrb-morphism, we define the PrbAlg-morphism

22These are special cases of measure algebras, in which the measure µ is not required to map
1 to 1.
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Alg(T ) : Alg(X) → Alg(Y) by the commutative diagram

Alg(X) Alg(Y)

X Y

ιX

Alg(T )

ιY

T

where ιX, ιY denote the canonical inclusions.

It is a routine matter to check that this defines categories and functors as de-

picted in Figure 6.1 (with the exception of Conc), with the indicated faithfulness

and fullness properties, and with all the casting functors (depicted in blue) com-

muting with each other.

Informally, the abstraction functors Abs “abstract away the points” from a

concrete measurable or probability space, and the probability algebra functor

Alg “deletes the null sets”. The faithful functor Inc : PrbAlg → AbsPrb re-

interprets a probability algebra as a special type of abstract probability space,

namely one in which there are no non-trivial null sets.

Remark 6.2. The Boolσ-algebra Ã = ForgetPrbAlg→Bool
op
σ

(A) associated to a

PrbAlg-algebraA has stronger properties thanσ-completeness; as is well-known,

these Boolean algebras are in fact complete and obey the countable chain condi-

tion (see, e.g., [27, 322G, 322C]). Also, the requirement that the Boolσ-morphism

Φ̃ : Ã → B̃ associated to a PrbAlg-morphism Φ : B → A be σ-complete can be

dropped as it follows automatically from the Boolean homomorphism hypothe-

sis. These facts are easy to establish, but we shall not do so here as they will not

be needed in our arguments.

Remark 6.3. One can also enlarge the category PrbAlg by replacing the class

of PrbAlg-morphisms with the more general class of Markov operators, which

is the abstract analogue of the class of probability kernels on CncPrb-spaces.

These categories are studied in [23, Ch. 13] and [80] respectively. However, we

will not investigate these categories further here.

For future reference we develop some of the basic category-theoretic prop-

erties of these abstract categories, focusing on the classification of monomor-

phisms and epimorphisms, and the structure of products. We begin with the

Boolean categories.

Lemma 6.4 (Properties of Boolean categories). Let C = Bool,Boolσ.

(i) A C-morphism is a C-monomorphism (resp. C-epimorphism) if and only

if it is injective (resp. surjective). Any C-bimorphism is a C-isomorphism.
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(ii) Dually, an AbsMbl-morphism f is a monomorphism (resp. epimorphism)

if and only if f is surjective (resp. injective), and any AbsMbl-bimorphism

is an AbsMbl-isomorphism.

(iii) IfΦ is a PrbAlg-morphism, then Inc(Φ)AbsMbl is an AbsMbl-epimorphism

and Φ is a PrbAlg-epimorphism.

(iv) The category C admits categorical coproducts for arbitrarily many fac-

tors. As a consequence, AbsMbl admits a categorical products for arbi-

trarily many factors.

(v) The categorical Boolσ-coproduct contains the categorical Bool-coproduct,

but does not agree with it (in the sense of Definition A.26, where follow-

ing Example A.27, we interpret Bool and Boolσ as cocartesian symmetric

monoidal categories) with respect to the forgetful functor from Boolσ to

Bool.

Remark 6.5. There is no categorical product in PrbAlg (for reasons similar to

Remark A.25), but one can build infinite tensor products in PrbAlg in the sense

of Definition A.29 following a similar construction as in Example A.35.

Proof. The “if” portion of the first part of (i) follows from Proposition A.14,

since there is a faithful forgetful functor from C to Set. The “only if” portion of

the first part of (i) for monomorphisms follows by observing that elements E of a

C-algebra X can be identified with C-morphisms from the 22-element C-algebra

2{0,1} to X. The “only if” portion of the first part of (i) for epimorphisms was

established in23 [52]. The last part of (i) follows from the first part, since any

bijective C-morphism is clearly a C-isomorphism.

The claim (ii) is immediate from (i) applied to C = Boolσ.

Now we prove (iii). If Φ : (Y, ν) → (X, µ) is a PrbAlg-morphism, then we

have ν(Inc(Φ)(E)) = µ(E) for all E ∈ X. As (X, µ), (Y, ν) are both PrbAlg-

algebras, this implies that Inc(Φ)(E) = 0 if and only if E = 0. Thus Inc(Φ) is

an injective Boolσ-morphism, hence Inc(Φ) is an AbsMbl-epimorphism by (ii).

By Lemma A.14, Φ is thus also a PrbAlg-epimorphism.

The claim (iv) is a special case of the fact that categories of algebraic struc-

tures with a set of operations admit all small limits and colimits, in particular,

arbitrary categorical products and coproducts, see [1, Theorem 5.30 and Remark

1.56], for the special case of C = Bool,Boolσ see, e.g., [50, Theorems 11.2,

12.12].

For claim (v), from the universality of both coproducts we always have a

canonical Bool-map f :
∐Bool

α∈A Xα →
∐Boolσ

α∈A
Xα for any Boolσ-algebras Xα. The

fact that this is in fact a canonical Bool-inclusion (i.e., injective) was shown in

23We are indebted to Badam Baplan for this reference.
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[52], we will also demonstrate it in Corollary 9.16 after we describe the categor-

ical coproduct in Boolσ more explicitly; we will not need this fact until then. To

show that the two coproducts do not agree, let X be the Borel σ-algebra of [0, 1],

then as is well-known X ⊗Boolσ X can be identified with the Borel σ-algebra of

[0, 1]2 (see, e.g., Proposition 6.7(iv)), whileX⊗BoolX is instead the smaller Bool-

algebra of finite disjoint unions of rectangles E × F with E, F ∈ X, and it is easy

to see that the inclusion map from the latter to the former is the canonical map

and fails to be a Bool-isomorphism. �

The functors Alg : AbsPrb → PrbAlg and Inc : PrbAlg → AbsPrb do not

quite generate an equivalence of categories, but they come close to it:

Lemma 6.6 (Passing to the probability algebra).

(i) Alg ◦ Inc is naturally isomorphic to idPrbAlg.

(ii) There is a natural monomorphism ι from Inc ◦ Alg to idAbsPrb.

Proof. If X = (X, µX) is a PrbAlg-space then the AbsPrb-space Inc(X) =

(X, µX) has no non-trivial null sets, so Alg(Inc(X)) can be identified with X

again. It is then a routine matter to verify that this yields the natural monomor-

phism required for (i).

If X = (X, µX) is an AbsPrb-space, then

Inc(Alg(X)) = (X/N , µX)

where N is the null ideal of X. The quotient map from X to X/N is a Boolσ-

morphism which is surjective, hence by Lemma 6.4(ii) it induces an AbsMbl-

monomorphism fromX/N toX. This AbsMbl-monomorphism is clearly measure-

preserving and can thus be promoted to an AbsPrb-monomorphism from Inc(Alg(X))

to X by Lemma A.14. It is then a routine matter to verify that this yields the nat-

ural monomorphism required for (ii). �

The relationship between the CncMbl-categorical product to the AbsMbl-

categorical product is subtle: they are not completely compatible with respect

to abstraction functor Abs, nevertheless there is a lot of partial compatibility in

special cases.

Proposition 6.7 (Relation between categorical products in CncMbl and AbsMbl).

Let A be a set.

(i) The categorical product
∏CncMbl

A is contained in the categorical product
∏CncMbl

A (with respect to the abstraction functor Abs).

(ii) The categorical product in CncMbl does not agree with the categorical

product in AbsMbl when A = {1, 2}.
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(iii) If C = Pol,CH, then the categorical product in C agrees with the cat-

egorical product in AbsMbl for arbitrary A, with respect to the casting

functor CastC→AbsMbl (which is either Abs ◦ Bor or Abs ◦ Bair).

(iv) If X is a CncMbl-space and K is a CH-space, then (X×CncMblKCncMbl)AbsMbl

is a categorical product of XAbsMbl and KAbsMbl.

Proof. The claim (ii) is a corollary of (i), since the σ-algebra of
∏CncMbl

α∈A Xα is

generated by the projection maps to Xα. For (iii), in [45, Proposition A.1] an ex-

ample is given of AbsMbl-morphisms y1 : Z → (Y1)AbsMbl, y2 : Z → (Y2)AbsMbl

for some AbsMbl-space Z and CncMbl-spaces Y1, Y2 which do not jointly arise

from an AbsMbl-morphism y : Z → (Y1×
CncMbl Y2)AbsMbl. In contrast, the univer-

sal nature of the categorical product in AbsMbl implies that y1, y2 must jointly

arise from an AbsMbl-morphism (y1, y2)AbsMbl : Z → Y1 ×
AbsMbl Y2. The claim

(iii) follows.

For Claim (iv), it suffices by (A.3) to show that

HomAbsMbl















Y →















C
∏

α∈A

Xα















AbsMbl















=
∏

α∈A

HomAbsMbl (Y → (Xα)AbsMbl)

for any C-spaces Xα and AbsMbl-space Y . For C = Pol this follows from [45,

Proposition 3.3] (and [45, Remark 1.7]; for C = CH this similarly follows from

[45, Corollary 3.5] (extended to arbitrary products as noted in that paper) and [45,

Remark 1.7]. The claim (v) similarly follows from [45, Proposition A.5]. �

In Section 9 we will use the (functorial form of the) Loomis–Sikorski theorem

to give a more explicit description of the categorical product in AbsMbl.

Proposition 6.7(iv) has the following consequence. Let C = Pol,CH, and let

K1,K2,K3 be C-spaces. Then any measurable binary operation · : K1 × K2 →

K3 (that is to say, a CncMbl-morphism24 from K1 ×
CncMbl K2 to K3 induces a

“conditional binary operation”

(6.1) · : HomAbsMbl(Y → K1) × HomAbsMbl(Y → K2)→ HomAbsMbl(Y → K3)

for any AbsMbl-space Y , since Proposition 6.7(iv) ensures that the left-hand side

is identifiable with HomAbsMbl(Y → K1 ×
C K2), and then one can compose with

(·)AbsMbl : (K1 ×
C K2)AbsMbl → (K3)AbsMbl to obtain the desired conditional map.

Thus for instance for any AbsMbl-space Y one can give HomAbsMbl(Y → R)

the structure of a commutative partially ordered unital real algebra, and also

HomAbsMbl(Y → C) the structure of a commutative unital *-algebra, by con-

structions of this form (as well as analogues for ternary operations, in order to

establish properties such as associativity). (These observations can also be placed

24Here we use the casting conventions from Definition 1.7, thus for instance K1 ×
CncMbl K2 is

shorthand for (K1)CncMbl ×
CncMbl (K2)CncMbl.
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CncPrb (CvNAlgτ)op (CC∗Algτ
1
)op

AbsPrb PrbAlg CHPrb

Abs

L∞

Proj Riesz

Alg

L∞

Conc

L∞ C

Figure 7.1. Construction of the canonical model functor. The di-
agram commutes up to natural isomorphisms.

in the more general framework of conditional analysis, as developed in [19], par-

ticularly if Y arises from a probability algebra; but we will not need this theory

in the current paper.)

7. The canonical model

In this section we construct the canonical model via von Neumann and Riesz

duality, as per Figure 7.1. We first need to introduce a category of von Neumann

algebras.

Definition 7.1 (Von Neumann algebra). A CvNAlgτ-algebra (A, τA) is a com-

mutative von Neumann algebra A equipped with a faithful trace τA, that is

to say a ∗-linear functional τA : A → C with τA(1) = 1, and τA(aa∗) ≥ 0

for any a ∈ A, with equality if and only if a = 0. A CvNAlgτ-morphism

Φ : (A, τA) → (B, τB) between CvNAlgτ-algebras is a von Neumann algebra

homomorphism Φ̃ : A→ B such that τA = τB ◦ Φ̃.

It is clear that CvNAlgτ forms a category. Every von Neumann algebra is also

a unital C∗-algebra, and a faithful trace on a commutative von Neumann algebra

becomes a state on the associated C∗-algebra. From this it is easy to see that there

is a forgetful faithful functor from CvNAlgτ to CC∗Algτ
1
.

The most familiar construction of CvNAlgτ-algebras comes from L∞ spaces.

Indeed, if X = (XCncMbl, µX) is a CncPrb-space, then the Banach algebra L∞(X)

of equivalence classes [ f ] of bounded (concretely) measurable functions f : X →

C up to almost everywhere equivalence, and endowed with the essential supre-

mum norm ‖ f ‖L∞(X) and the trace τ( f ) ≔
∫

X
f dµ, is well-known to be a CvNAlgτ-

algebra. Furthermore, if T : X → Y is a CncPrb-morphism, then the Koopman

operator L∞(T ) : L∞(Y) → L∞(X) defined by

L∞(T )([ f ]) ≔ [ f ◦ T ]

for bounded concretely measurable f : Y → C, is a CvNAlgτ-morphism. Thus

we see that L∞ : CncPrb→ (CvNAlgτ)op is in fact a functor.

We can factor this functor through the functor Alg ◦ Abs from the previ-

ous section, by defining an analogous L∞ functor on the category PrbAlg of
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probability algebras. Indeed, if X = (Inc(X)Boolσ , µX) is a PrbAlg-space, we

can define L∞(X) to be the space of all AbsMbl-morphisms f : Inc(X) → C

(i.e., f ∈ HomAbsMbl(Inc(X) → C) = HomAbsMbl(Inc(X)AbsMbl → CAbsMbl))

which are bounded in the sense that | f | ≤ M for some M ≥ 0 (or equivalently

fBoolσ({z ∈ C : |z| ≤ M}) = 1), with ‖ f ‖L∞(X) defined to equal the infimum of

all such M. (Note there is no need to identify functions that agree almost every-

where since the base space is already a probability algebra.) Using conditional

operations such as (6.1), one can verify that L∞(X) is a CC∗Alg1-algebra. Every

element E of Inc(X)Boolσ generates an idempotent element 1E of L∞(X), defined

by setting 1∗E(F) for F ∈ CBoolσ to equal E when F contains 1 but not 0, E when

F contains 0 but not 1, 1 when F contains both 0 and 1, and 0 when F contains

neither 0 and 1. We refer to finite linear combinations of idempotents as simple

functions, it is easy to see that these form a dense subspace of L∞(X). One can

then define a state τ on this algebra by defining

τ















N
∑

n=1

cn1En















≔

N
∑

n=1

cnµX(En)

for any finite sequence of complex numbers cn and En ∈ Inc(X)Boolσ , and then

extending by density; one can verify that this indeed defines a state (this is es-

sentially an abstraction of the standard construction of the Lebesgue integral that

proceeds first by integrating simple functions). Thus L∞(X) can be viewed as an

element of CC∗Algτ
1
. One can also construct an abstract L1(X)-space (see Re-

mark 9.13) and show that L1(X) is the predual of L∞(X) (see the duality between

abstract L∞ and L1 spaces in [27, §365]). It then follows from Sakai’s character-

ization of von Neumann algebras [66] that L∞(X) is indeed a CvNAlgτ-algebra.

To emphasize the analogy between CncPrb-spaces and PrbAlg-spaces, we

also write
∫

X

f ≔

∫

X

f dµX ≔ τ( f )

for any PrbAlg-space X = (Inc(X)Boolσ , µX) and f ∈ L∞(X). If T : X → Y is

a PrbAlg-morphism, one can define the CvNAlgτ-morphism L∞(T ) : L∞(Y) →

L∞(X) by the Koopman operator

L∞(T )( f ) ≔ f ◦ Inc(T )AbsMbl

which can be verified to indeed be a CvNAlgτ-morphism (this is an abstraction

of the change of variables formula for the Lebesgue integral). Some tedious but

routine verification (see, e.g., [60]) then shows that L∞ : PrbAlg→ (CvNAlgτ)op

is a functor with

L∞ = L∞ ◦ Alg ◦ Abs.
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By abuse of notation we can also write L∞ : AbsPrb → (CvNAlgτ)op for the

composition L∞ = L∞ ◦ Alg, giving rise to the commutativity of the left half of

Figure 7.1 (omitting the functor Proj).

Now suppose that (A, τA) is a CvNAlgτ-algebra. We can form the collection

PA of real projections inA, that is to say elements p ∈ A such that p = p∗ = p2.

As is well-known, these projections have the structure of a Boolσ-algebra, with

p ∧ q = pq, p = 1 − p, p ∨ q = 1 − (1 − p)(1 − q), and with
∨

n∈N pn =
∑

n∈N pn (in the L2 topology) if the pn are disjoint. The trace τA then becomes

a countably additive probability measure on PA, and we write Proj(A, τA) for

the probability algebra

Proj(A, τA) ≔ (PA, τA).

If Φ : (A, τA) → (B, τB) is a CvNAlgτ-morphism, we observe that the asso-

ciated von Neumann homomorphism Φ̃ : A → B maps projections in PA to

projections in PB, in a manner that preserves the trace as well as being a Boolσ-

morphism. We then define Proj(Φ) : Proj(B, τB) → Proj(A, τA) to be the

PrbAlg-morphism associated with this Boolσ-morphism. It is then a routine mat-

ter to verify that Proj is a functor from (CvNAlgτ)op to PrbAlg.

We claim that Proj and L∞ form a duality of categories between CvNAlgτ

and PrbAlg. First suppose that X = (Inc(X)Boolσ , µX) is a PrbAlg-space. For

every E ∈ Inc(X)Boolσ , it is easy to see that the indicator function 1E is a

projection in L∞(X). Conversely we claim that all projections in L∞(X) are of

this form. If p ∈ L∞(X), then since p − p2 = 0, p is an AbsMbl-morphism

from X to C that becomes the zero morphism after concatenation with the map

z 7→ z − z2, viewed as an AbsMbl-endomorphism on C. Pulling back, we con-

clude that pBoolσ({0, 1}) = 1, and hence p = 1E where E ≔ pBoolσ({1}). Using this

correspondence E 7→ 1E it is a routine matter to see that X is PrbAlg-isomorphic

to Proj(L∞(X)), and further routine verification shows that this isomorphism is

natural. Now let (A, τA) be a CvNAlgτ-algebra. By definition, we see that the

von Neumann algebra L∞(Proj(A, τA)) is the closure (in L∞) of formal linear

combinations of projections, which one can arrange to be pairwise disjoint. One

can observe (by repeated use of the identity25 ‖a‖A = max(‖ap‖A, ‖a(1 − p)‖A)

in a commutative von Neumann algebra for arbitrary a ∈ A and projections p)

that the corresponding actual linear combination of these projections in A has

25The inequality max(‖ap‖A, ‖a(1 − p)‖A) ≤ ‖a‖A is immediate from ‖ab‖ ≤ ‖a‖‖b‖ for all
a, b ∈ A and ‖p‖ = 1 for all projections p. On the other hand, for any projection p and integer
n ≥ 1, we have ‖an‖1/n = ‖(ap)n + (a(1 − p))n‖1/n ≤ (‖ap‖n + ‖a(1 − p)‖n)1/n. The converse
inequality now follows from applying Gelfand’s spectral radius formula ‖b‖ = lim ‖bn‖1/n (note
that every b ∈ A is normal in a commutative von Neumann algebra) to both sides of the previous
inequality.
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the same norm in A as the L∞ norm of the formal linear combination; the two

expressions also have the same trace. Also, from the spectral theorem one can

show that any element in A can be approximated in norm to arbitrary accu-

racy by finite linear combinations of projections. From these facts one can show

that L∞(Proj(A, τA)) is CvNAlgτ-isomorphic to Proj(A, τA), and further rou-

tine verification shows that this isomorphism is natural. This gives the required

duality of categories. In particular Proj, L∞ are full and faithful. We refer the

interested to the independent work of Pavlov [60], where (see [60, §3.5]) this du-

ality (and in fact more general dualities for commutative not necessarily tracial

von Neumann algebras) are discussed in depth.

If we now define

Conc ≔ Spec ◦ Forget(CvNAlgτ)op→CC∗Alg
op
1
◦ L∞

then by construction Conc is a functor from PrbAlg to CHPrb. All the three

functors used to create Conc are faithful and full functors, so Conc is a faithful

and full functor as well. It is now a routine matter to establish

Theorem 7.2 (Construction of canonical model). The categories in Figures 7.1

are indeed categories, and the functors in these figures are indeed functors be-

tween the indicated categories, with the indicated faithfulness and fullness prop-

erties. Furthermore, the diagram commutes up to natural isomorphisms.

Now we establish some basic properties of the canonical model. Lusin’s the-

orem asserts that C(X) (after identifying functions that agree almost everywhere)

becomes a dense subspace of L∞(X) in the L2 topology. We now consider the

following stronger property:

Definition 7.3 (Strong Lusin property). A CHPrb-space X has the strong Lusin

property if every equivalence class [ f ] in L∞(X) = L∞(XCncPrb) contains precisely

one element of C(X), thus one has an identification L∞(X) ≡ C(X).

Most CHPrb-spaces will not have this property, but remarkably the canonical

models do:

Proposition 7.4 (Basic properties of canonical model).

(i) (Conc is a model) The functor CastCHPrb→PrbAlg ◦ Conc : PrbAlg →

PrbAlg is naturally isomorphic to the identity. In particular, Conc is full

and faithful.

(ii) (Strong Lusin property) For any PrbAlg-space X, Conc(X) has the strong

Lusin property.
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Proof. Let X be a PrbAlg-space. Then from Figure 7.1 we have a natural CC∗Algτ
1
-

isomorphism

Forget(CvNAlgτ)op→(CC∗Algτ
1
)op(L∞(X)) ≡ C(Conc(X)).

As L∞(X) is a tracial von Neumann algebra, it comes with an L2 metric by the

Gelfand–Naimark–Segal construction, which by the above isomorphism agrees

with the L2 metric on Conc(X). By Lusin’s theorem, the closure of the closed

unit ball of C(Conc(X)) in the L2(Conc(X)) topology is the closed unit ball of

L∞(Conc(X)) (here we apply a forgetful functor to view Conc(X) as a CncPrb-

space). Also, in the tracial von Neumann algebra L∞(Conc(X)), the closed unit

ball is also closed in L2. We conclude that

C(Conc(X)) = L∞(Conc(X))

which is the strong Lusin property. This implies the natural CvNAlgτ-isomorphism

L∞(X) ≡ L∞(Conc(X))

which on applying Proj gives (i). �

Note how Theorem 1.3 is immediate from Theorem 7.2 and Proposition 7.4(i).

Remark 7.5. A measure space with the strong Lusin property is referred to as

a “perfect measure space” in [67], in which a version of the canonical model

functor construction just presented is given. An alternate proof of Proposition

7.4(ii) using Banach lattice arguments is given in [23, Proposition 12.25].

Analogously to how the Stone–Čech compactification βX can be viewed as

a universal compactification of an LCH-space X, one can view Conc(X) as

an “universal concrete model” of a PrbAlg-space X. To formalize this claim,

we define a concrete model for a PrbAlg-space X to be (X̃, ι), where X̃ is a

CHPrb-space and the AbsPrb-morphism ι : Inc(X) → X̃AbsPrb is an AbsMbl-

monomorphism. We let Model(X) be the category of all such models, with a

Model(X)-morphism T : (X̃, ι)→ (X̃′, ι′) to be a CHPrb-morphism TCHPrb : X̃ →

X̃′ such that ι′ =AbsPrb T ◦ ι (i.e., ι′ = ι ◦ TAbsPrb). (Note that this gives Model(X)

the structure of a partially ordered set.)

Proposition 7.6 (Universality of the canonical model). Let X be a PrbAlg-space.

(i) If (X̃, ι) is a concrete model of X, then X̃PrbAlg is PrbAlg-isomorphic to

X, and ι is the composition of Inc applied to that isomorphism, with the

natural monomorphism of Inc(X̃) to XAbsPrb. Conversely, if X̃ is PrbAlg-

isomorphic to X, then the pair (X̃, ι) is a concrete model of X, where ι is

defined as above.
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Conc(X) Conc(Y)

Inc(X) Inc(Y)

Conc(π)

ι′

Inc(π)

ι′

Figure 7.2. Every PrbAlg-morphism π : X → Y gives rise to
an AbsPrb-morphism Inc(π) : Inc(X) → Inc(Y) and a CHPrb-
morphism Conc(π) : Conc(X) → Conc(Y), linked by the above
commutative diagram in AbsPrb, with ι the canonical inclusions.
Casting functors have been suppressed to reduce clutter.

(ii) (Conc(X), ιConc(X)) is a concrete model of X, where ιConc(X) : Inc(X) →

Conc(X)AbsPrb is the canonical inclusion formed by applying first Inc to

the natural isomorphism from X to Conc(X)PrbAlg from Proposition 7.4

and then composing it with the natural monomorphism from Inc(Conc(X)PrbAlg)

to Conc(X)AbsPrb from Lemma 6.6(ii). (The naturality of this model is then

depicted in Figure 7.2.)

(iii) A concrete model (X̃, ι) is an initial object (as defined in Definition A.6)

of Model(X) if and only if X̃ has the strong Lusin property. In particular,

by Proposition 7.4(ii), the concrete model in (ii) is initial in Model(X).

Proof. We begin with (i). If (X̃, ι) is a concrete model, then by duality the mor-

phism

ForgetAbsPrb→AbsMbl(ι) ≡ ForgetPrbAlg→Bool
op
σ
◦ Alg(ι)

is a Boolσ-epimorphism; from Lemma 6.4(iii) it is also a Boolσ-monomorphism,

hence a Boolσ-isomorphism by Lemma 6.4(i). Thus ι is now invertible in AbsMbl

and also measure-preserving (i.e., an AbsPrb-morphism), hence it is also invert-

ible in AbsPrb. Applying Alg we conclude that X̃PrbAlg is PrbAlg-isomorphic

to X, with ι related to this isomorphism as indicated. The converse implication is

routine.

Claim (ii) follows from (i) and Proposition 7.4(i), so we turn to (iii). First

suppose that (X̃, ι) obeys the strong Lusin property. We need to show that for any

concrete model (X̃′, ι′) of X there is precisely one CHPrb-morphism T : X̃ → X̃′

with ι′ =AbsPrb T ◦ ι. To show existence, we start with the obvious CC∗Alg1-map

Φ : C(X̃′)→ L∞(X̃′) ≡ L∞(X) ≡ C(X̃)

and apply Spec and natural isomorphisms to obtain a CH-morphism

T : X̃ → X̃′

with the property that f ◦T and f agree in L∞(X) for every f ∈ C(X̃′). In particular
∫

X̃
f ◦T =

∫

X̃′
f . By Theorem 5.4 this implies that T can be promoted to a CHPrb-

morphism. From Lusin’s theorem we see that C(X̃′) is dense in L∞(X̃′) ≡ L∞(X)
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using the L2(X) topology, and using this one can show that 1E ◦ T and 1E agree

in L∞(X) for any E ∈ X̃′
Boolσ

, thus ι′ =AbsPrb T ◦ ι as desired. This establishes

existence. To show uniqueness, we see that if T ′ : X̃ → X̃′ is any other CHPrb-

morphism with ι′ =AbsPrb T ′ ◦ ι, then for f ∈ C(X̃′), f ◦ T, f ◦ T ′ ∈ C(X̃) agree

in L∞(X̃) and are thus equal as continuous functions. Thus, for any x̃ ∈ X̃, we

have f (T (x̃)) = C(T ′(x̃)) for all f ∈ C(X̃′). Since the functions in C(X̃′) separate

points, we obtain T = T ′, giving uniqueness.

Conversely, if (X̃, ι) is initial in Model(X), then by the preceding discussion

it is Model(X)-isomorphic to (Conc(X), ι(X)), and then it is straightforward to

derive the strong Lusin property of X̃ from that of Conc(X). �

Remark 7.7. With a bit more effort, one can show that every concrete model

(X̃, ι) of a PrbAlg-space X comes with a canonical identification of C(X̃) as a

CC∗Alg-subalgebra of L∞(X) that is dense in the L2 topology, and conversely any

such dense subalgebra gives rise to a concrete model, unique up to Model(X)-

isomorphism (cf. [23, §12.3]); this duality of subalgebras and models is analo-

gous for instance to the fundamental theorem of Galois theory. The morphisms in

Model(X) then are canonically identified with inclusions maps in L∞(X). When

X̃ has the strong Lusin property, C(X̃) is identified with all of L∞(X), which ex-

plains the universality. We leave the verifications of these claims to the interested

reader. The situation can again be compared with the Stone–Čech compactifica-

tion, in which the role of the functor L∞ is instead played by Cb.

Remark 7.8. As one quick application of the canonical model functor Conc one

can construct infinite tensor products
⊗PrbAlg

on PrbAlg (in the sense of Defi-

nition A.29) on arbitrarily many factors by starting with infinite tensor products
⊗CHPrb

on CHPrb (by observing, similarly to Example A.31, that we can real-

ize CHPrb as an action category which then comes with a canonical tensor prod-

uct making CHPrb a semicartesian symmetric monoidal category with arbitrar-

ily infinite tensor products)26, and then defining the tensor product
⊗PrbAlg

α∈A
Xα of

PrbAlg-spaces Xα to be
⊗CHPrb

α∈A
Conc(Xα) casted back to PrbAlg. (We caution

however that
⊗CHPrb

α∈A
Conc(Xα) need not obey the strong Lusin property, and

thus need not to be equal to Conc(
⊗PrbAlg

α∈A
Xα).) An alternative way to construct

the tensor product is to use probability duality and the standard tensor product

operation on von Neumann algebras (which gives CvNAlgτ the structure of a

cosemicartesian symmetric monoidal category). We leave it to the reader to ver-

ify that these two tensor products are equal up to natural isomorphisms.

26Notice that the CncPrb and CH tensor products both agree with the CncMbl categorical
products basically by construction.
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As is well known, every continuous function from an LCH-space X to a CH-

space K has a unique continuous extension to the Stone–Čech compactification

βX, giving an equivalence

HomLCH(X → K) ≡ HomCH(βX → K).

In category-theoretic language, β is left-adjoint to the forgetful functor from CH

to LCH. There is an analogous property for the canonical model:

Proposition 7.9 (Canonical representation). If X is a PrbAlg-space and K is a

CH-space, then to every AbsMbl-morphism f : Inc(X) → K there is a unique

CH-morphism f̃ : Conc(X) → K which extends (or represents) f in the sense

that f =AbsMbl f̃ ◦ ι′, where ι′ : Inc(X) → Conc(X) is the canonical AbsPrb-

morphism. In other words, one has an equivalence

HomAbsMbl(Inc(X) → K) ≡ HomCH(Conc(X) → K).

Proof. We first prove existence. The AbsMbl-morphism f induces a pullback

map f ∗ : C(K) → L∞(X), since for any g ∈ C(K), g ◦ f is an AbsMbl-morphism

from Inc(X) to a bounded subset of C and can thus be identified with an element

of L∞(X). By construction, L∞(X) ≡ C(Conc(X)). Thus we may apply the func-

tor Spec to obtain a CH-morphism Spec( f ∗) : Conc(X) → K (after performing

some natural identifications), and the required property f =AbsMbl f̃ ◦ ι′ can be

verified by chasing all the definitions.

To prove uniqueness, suppose we have two CH-morphisms f̃ , f̃ ′ : Conc(X) →

K with f̃ ◦ι′ = f̃ ′◦ι′. Then for any g ∈ C(K), g◦ f̃ and g◦ f̃ ′ agree in L∞(Conc(X)),

hence agree in C(Conc(X)) by the strong Lusin property. Since C(K) separates

points, we conclude that f̃ = f̃ ′, giving uniqueness. �

As a corollary of this proposition, we see that Conc is left-adjoint27 to the

casting functor CastCHPrb→PrbAlg. As another corollary, if K is a CHPrb-space,

then by applying the above equivalence to the canonical inclusion ι : Inc(K) →

K we obtain a CHPrb-morphism π : Conc(K) → K, which one can check to be

a natural transformation from Conc ◦ CastCHPrb→PrbAlg to idCHPrb. Thus one can

view any CHPrb-space K as a “factor” of its canonical model Conc(K), and one

can view the AbsPrb-space Inc(K) as an abstract full measure subspace of both

of these CHPrb-spaces in which all the null sets have been “deleted”.

We close this section with a surjectivity property of the morphisms generated

the canonical model functor (cf. Lemma 6.4(iii)).

27Indeed, since (left-)adjoints are unique up to natural isomorphisms, one could take this
fact as a definition of the canonical model functor Conc if desired, although then to verify the
remaining properties of the model claimed in this section seems to require an equivalent amount
of work to that in the approach presented here.
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Proposition 7.10. If T : X → Y is a PrbAlg-morphism, then Conc(T ) : Conc(X) →

Conc(Y) is surjective.

Proof. Suppose for contradiction that Conc(T ) is not surjective. Then from Urysohn’s

lemma one can find non-zero g ∈ C(Conc(Y)) such that g ◦ Conc(T ) = 0. By the

strong Lusin property, g is non-zero in L∞(Conc(Y)), thus by taking sublevel

sets there is a positive measure subset of Conc(Y) whose pullback by Conc(T )

is a null set in Conc(X). But this contradicts the measure-preserving nature of

Conc(T ). �

8. Canonical disintegration

In this section we prove Theorem 1.6. We begin with existence. Let X, Y

be PrbAlg-spaces, and let π : X → Y be a PrbAlg-morphism. Then Conc(π)

is a CHPrb-morphism from Conc(X) to Conc(Y), which gives rise to a Koop-

man operator π∗ : L2(Conc(Y)) → L2(Conc(X)) defined in the obvious fashion.

This operator is an L2 isometry, so we can identify L2(Conc(Y)) with a closed

subspace of L2(Conc(X)), and similarly identify L∞(Conc(Y)) with a subspace

of L∞(Conc(X)). We let f 7→ E( f |Conc(Y)) be the orthogonal projection from

L2(Conc(X)) to L2(Conc(Y)). From construction we see that
∫

Conc(X)
f g dµConc(X) =

∫

Conc(X)
E( f |Conc(Y))g dµConc(X)(8.1)

=

∫

Conc(Y)
E( f |Conc(Y))g dµConc(Y)

for all f ∈ L∞(Conc(X)) an g ∈ L∞(Conc(Y)) (making heavy use of the above

identifications). By duality and Hölder’s inequality we conclude the contractive

property

‖E( f |Conc(Y))‖L∞(Conc(Y)) ≤ ‖ f ‖L∞(Conc(X))

so in particular E( f |Conc(Y)) is an element of L∞(Conc(Y)). By Proposition

7.4(ii), we can identify L∞(Conc(Y)) with C(Conc(Y)) (and L∞(Conc(X)) with

C(Conc(X))), so by abuse of notation we also view E( f |Conc(Y)) as an element

of C(Conc(Y)) for any f ∈ C(Conc(X)). In particular, for any y ∈ Conc(Y), we

have a functional f 7→ E( f |Conc(Y))(y) on Conc(X)CH, which one can easily

verify to be a state. Applying Theorem 5.4, one can represent this functional by

a Radon probability measure µy on Conc(X)CH, thus

E( f |Conc(Y))(y) =
∫

Conc(X)CH

f dµy

for all f ∈ C(Conc(X)) and y ∈ Conc(Y). In particular y 7→
∫

Conc(X)CH
f dµy is con-

tinuous and from (8.1) we conclude (1.2). This establishes existence. For unique-

ness, let µ′y, y ∈ Conc(Y) be another candidate disintegration. Then for any f ∈
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C(Conc(X)), we see from (1.2) that the continuous function y 7→
∫

Conc(X)CH
f dµy−

∫

Conc(X)CH
f dµ′y is orthogonal (in L2(Conc(Y))) to all elements of C(Conc(Y)), and

hence is identically zero (here we view C(Conc(Y)) ≡ L∞(Conc(Y)) as a subspace

of L2(Conc(Y))). Thus for every y ∈ Conc(Y), we have
∫

Conc(X)CH

f dµy =

∫

Conc(X)CH

f dµ′y

for all f ∈ C(Conc(X)). Applying Theorem 5.4, we conclude that µy = µ
′
y, giving

uniqueness.

Finally we need to show that µy(E) = 0 when E is measurable and disjoint

from Conc(π)−1({y}). By inner regularity we may assume that E is compact Gδ.

Then Conc(π)(E) is compact and disjoint from y, hence by Proposition 2.8 one

can find χ ∈ C(Conc(Y)) such that χ(y′) = 1 for y′ ∈ Conc(π)(E) and χ(y) =

0. We also view χ as an element of C(Conc(X)), then E(χ|Conc(Y)) = χ, in

particular
∫

Conc(X)CH

χ dµy = χ(y) = 0

and hence µy(E) = 0 as required. This concludes the proof of Theorem 1.6.

By following the construction in [30, Section 5.5], one can use the canonical

disintegration to build relative products of probability algebras, but now without

the need to impose any regularity hypotheses on the algebras.

Theorem 8.1 (Relative products in PrbAlg). Suppose that one has PrbAlg-

morphisms π1 : X1 → Y, π2 : X2 → Y. Then there exists a PrbAlg-commutative

diagram

X1 ⊗Y X2

X1 X2

Y

Π1 Π2

π1 π2

for some PrbAlg-space X1 ⊗Y X2 and PrbAlg-morphisms Π1 : X1 ⊗Y X2 → X1,

Π2 : X1 ⊗Y X2 → X2, which of course also leads to the CvNAlgτ-commutative

diagram

L∞(X1 ⊗Y X2)

L∞(X1) L∞(X2)

L∞(Y)

L∞(Π1) L∞(Π2)

L∞(π1) L∞(π2)

,
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such that one has

(8.2)
∫

X1⊗Y X2

f1 f2 =

∫

Y

E( f1|Y)E( f2|Y)

for all f1 ∈ L
∞(X1), f2 ∈ L

∞(X2), where we use the above commutative dia-

gram to embed L∞(Y) into L∞(X1), L∞(X2), and embed these algebras in turn

into L∞(X1 ⊗Y X2). Furthermore, Inc(X1 ⊗Y X2)Boolσ is generated by Inc(X1)Boolσ

and Inc(X2)Boolσ (where we identify the latter with subalgebras of the former in

the obvious fashion).

Proof. From the canonical disintegration we have probability measures µy,i on

Conc(Xi)CH for y ∈ Conc(Y) and i = 1, 2 that depend continuously on y in the

vague topology, and such that

E( fi|Conc(Y))(y) =
∫

Conc(Xi)CH

fi dµy,i

for fi ∈ C(Conc(Xi)) and y ∈ Conc(Y). We then define a probability measure µ

on Conc(X1)CH ×
CH Conc(X2)CH by the formula

∫

Conc(X1)CH×
CHConc(X2)CH

f (x1, x2) dµ(x1, x2)

≔

∫

Conc(Y)

(∫

Conc(X1)CH

∫

Conc(X2)CH

f (x1, x2) dµy,2(x2)dµy,1(x1)

)

dµConc(Y)(y).

Note from continuity in the vague topology (using Stone-Weierstrass to approx-

imate f uniformly by linear combinations of tensor products f1(x1) f2(x2) of con-

tinuous functions f1, f2 if desired) that the expression in parentheses is a bounded

continuous function on y. The well-definedness of µ follows from the Riesz rep-

resentation theorem (Theorem 5.4). From construction we have
∫

Conc(X1)CH×
CHConc(X2)CH

f1(x1) f2(x2) dµ(x1, x2) =
∫

Y

E( f1|Y)E( f2|Y)

for any f1 ∈ L
∞(X1), f2 ∈ L

∞(X2), where we identify L∞(Xi) with C(Conc(Xi)). If

we then define

X1 ⊗Y X2 ≔ (Conc(X1)CH ×
CH Conc(X2)CH, µ)PrbAlg

then we obtain the identity (8.2). By Stone-Weierstrass, the finite linear combi-

nations of products f1 f2 with f1 ∈ L
∞(X1), f2 ∈ L

∞(X2) are dense in L∞(X1 ⊗Y

X2) in the L2 topology, hence any element of Inc(X1 ⊗Y X2)Boolσ can be ap-

proximated to arbitrarily small error by a finite boolean combination of ele-

ments of Inc(X1)Boolσ , Inc(X2)Boolσ . Since X1 ⊗Y X2 is a probability algebra, ev-

ery element in Inc(X1 ⊗Y X2)Boolσ then lies in the Boolσ-algebra generated by

Inc(X1)Boolσ , Inc(X2)Boolσ . The claim follows. �
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Stoneσ Stone CH CHNul CHPrb

Bool
op
σ Boolop CncMbl CncNul CncPrb

AbsMbl AbsNul AbsPrb

PrbAlg

Clopenσ

Meager

Clopen BairStoneσ

id

Stone

Abs Abs Abs

LS

⊖
AlgInc

Conc

Figure 9.1. Alternative construction of the canonical model func-
tor Conc. Casting functors (in blue) commute, but the other func-
tors only partially commute with the rest of the diagram.

One can show that the relative (tensor) product ⊗Y gives the slice category

PrbAlg ↓ Y the structure of a semicartesian symmetric monoidal category with

arbitrarily infinite tensor products; we leave the details to the interested reader.

An alternative construction of relative products of probability algebras (in the

equivalent form of relative coproducts) is given in [28, Section 458].

9. Alternate construction via the Loomis–Sikorski theorem

In this section we provide an alternate construction of the canonical model

functor that avoids use of Riesz and probability dualities, proceeding instead via

Stone duality. This alternate construction is lengthier, but reveals more topologi-

cal features of the canonical model, in particular that it is a Stone space in which

the null sets are precisely the Baire-meager sets. The functor Conc constructed

in this fashion is not strictly speaking identical to the one constructed in Section

7, but will turn out to be equivalent up to natural isomorphism.

The construction is summarized in Figure 9.1. As this figure indicates, it re-

quires several additional categories and functors. We begin with the categories

and functors associated to Stone duality. Define a Baire-meager set to be a Baire

set that is also meager (the countable union of nowhere dense sets).

Definition 9.1 (Stone duality).

(i) Stone is the full subcategory of CH where the Stone-spaces are Stone

spaces (i.e., totally disconnected CH-spaces, or equivalently, CH-spaces

whose clopen sets form a base for the topology).
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(ii) Stoneσ is the subcategory of Stone where the Stoneσ-spaces are Stone-

space whose Baire-measurable sets are equal to clopen sets modulo Baire-

meager sets, and whose Stoneσ-morphisms are Stone-morphism such

that pullbacks of Baire-meager sets are Baire-meager.

(iii) There is the obvious forgetful faithful functor from Stoneσ to Stone, and

the forgetful full faithful functor from Stone to CH.

(iv) If B is a Bool-algebra, Stone(B) is the Stone-space

Stone(B) ≔ HomBool(B → {0, 1}),

which we view as a compact subspace of the Stone-space {0, 1}B and

thus is also a Stone-space. If Φ : B → B′ is a Bool-homomorphism, we

define the Stone-morphism Stone(Φ) : Stone(B′) → Stone(B) by the

formula

Stone(Φ)(α) ≔ α ◦Φ

for all α ∈ Stone(B).

(v) If X is a Stone-space, Clopen(X) is the Bool-algebra of clopen subsets of

Stone(X). If f : X → Y is a Stone-morphism, Clopen( f ) : Clopen(Y)→

Clopen(X) is the Bool-morphism defined by

Clopen( f )(E) ≔ f −1(E)

for E ∈ Clopen(Y).

(vi) The functor Stoneσ : Boolσ → Stoneσ (resp. Clopenσ : Stoneσ →

Boolσ) is the unique functor that commutes with the corresponding func-

tor Stone : Bool→ Stone (resp. Clopen : Stone→ Bool) and the faith-

ful functors from Stoneσ,Boolσ to Stone,Bool.

Proposition 9.2 (Preliminary Loomis–Sikorski theorem).

(i) If X is a Stone-space, then the Baire σ-algebra of XCH is generated by

the clopen subsets of X.

(ii) If a subset E of X is equal up to a meager set to a clopen subset of X,

then the meager and clopen set is determined uniquely by E.

(iii) The categories and functors in Definition 9.1 are well-defined and have

the faithful and fullness properties indicated in Figure 9.1.

(iv) Also, Stone, Clopen form a duality of categories between Bool and

Stone, and similarly Stoneσ, Clopenσ form a duality of categories be-

tween Boolσ and Stoneσ.

Proof. For (i), observe that as the clopen subsets of the X separate points, the

linear combinations of indicator functions of these clopen subsets are dense in

C(X) by the Stone-Weierstrass theorem. The claim follows.
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The claim (ii) is immediate from the Baire category theorem (no non-empty

clopen set is meager). Now we turn to (iii), (iv). The well-definedness of the cat-

egories and functors in Definition 9.1(i)-(v) is clear. The fact that Stone, Clopen

give a duality of categories is standard (e.g., see [50, Chapter 3]). To verify

that Stoneσ is well-defined, we need to show that for a Boolσ-algebra B, that

the Baire sets of Stone(BBool) are clopen modulo Baire-meager sets, and for a

Boolσ-morphism φ : B → B′ that the Stone-morphism

Stone(φBool) : Stone(B′Bool)→ Stone(B
′
Bool)

pulls back Baire-meager sets to Baire-meager sets. For the first claim, observe

from the σ-completeness of B that the collection of subsets of Stone(BBool)

that differ from a clopen set by a Baire-meager set is a σ-algebra of Baire sets

containing the clopen sets, giving the claim. For the second claim, let us call

a subset of a Stone-space X Baire-meager* if it is Baire measurable and can

be covered by countably many nowhere dense compact sets, each of which is

the intersection of countably many clopen sets. Repeating the arguments from

the first claim we see that every Baire set is uniquely representable as a clopen

set modulo Baire-meager* sets, hence the notions of Baire-meager* and Baire-

meager coincide (since trivially every Baire-meager* set is Baire-meager). It is

not difficult to verify that Stone(φBool) pulls back Baire-meager* sets to Baire-

meager* sets, giving the second claim.

To verify that Clopenσ is well-defined, we have to show that for a Stoneσ-

space X, that the Bool-algebra Clopen(XStone) is σ-complete, and that for a

Stoneσ-morphism T : X → Y , the Bool-morphism Clopen(TStone) can be pro-

moted to a Boolσ-morphism. For the first claim, let En, n ∈ N be an increas-

ing sequence of clopen sets in XStone, then
⋃

n∈N En is Baire measurable, hence

equal modulo a Baire-meager set to a unique clopen set E. By the Baire cat-

egory theorem, the clopen Baire-meager sets En\E are empty, thus E is the

join of the En in the clopen Bool-algebra, giving28 the first claim. For the sec-

ond claim, if En is a decreasing sequence of clopen sets in Clopen(XStone) with
∧

n∈N En = 0, then
⋂

n∈N En is Baire-meager, hence so is the pullback
⋂

n∈N T ∗En,

hence
∧

n∈N T ∗En = 0, giving the second claim.

If X is a Stoneσ-space, then we see that Stoneσ(Clopenσ(X)) is equal in

Stone to Stone(Clopen(XStone))) by chasing the definitions, which by ordinary

Stone duality is Stone-isomorphic to X. Therefore the Stoneσ-spaces X and

Stoneσ(Clopenσ(X)) are homeomorphic, hence also Stoneσ-isomorphic since

28We caution however that the σ-completeness of the clopen algebra does not imply that a
countable union of clopen sets is clopen, because the countable join of the clopen algebra need
not be given by countable union.
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the definition of the category Stoneσ is purely topological in nature. It is then

a routine matter to verify that this isomorphism is natural. Similarly, if B is a

Boolσ space, then Clopenσ(Stoneσ(B)) is Bool-isomorphic to B, hence also

Boolσ-isomorphic as the definition of Boolσ is purely Boolean algebra-theoretic

in nature, and again it is a routine matter to verify that the isomorphism is nat-

ural. The remaining claims in (iii), (iv) then follow from a tedious but routine

verification. �

As one quick corollary of the above proposition we see that a categorical

product on Stone (resp. Stoneσ) exists and agrees with the categorical coproduct

on Bool (resp. Boolσ) with respect to Stone, Clopen (resp. Stoneσ, Clopenσ).

The Stone product can be verified to agree with the CH product with respect to

the forgetful faithful functor, but the situation with the Stoneσ product is more

subtle; as we shall see in Remark 9.17, the Stoneσ product is a (non-trivial)

quotient of the Stone product. Similarly for AbsMbl (which is an equivalent

category to Stoneσ, as can be seen from Figure 9.1). As another application

of the Stone dualities in the above proposition and Lemma 6.4(i), as well as29

Lemma A.14, we see that for C = Stone, Stoneσ, that a C-morphism is a C-

monomorphism (resp. a C-epimorphism) if and only if it is injective (resp. sur-

jective).

Next, we “factor” the forgetful functors from CHPrb, CncPrb, AbsPrb to

CH, CncMbl, AbsMbl respectively in Figure 6.1 by inserting categories inter-

mediate between measurable spaces and measure spaces, in which there is an

ideal of null sets, but no actual measure assigned to the space.

Definition 9.3 (Null set categories).

(i) An AbsNul-space is a pair X = (XAbsMbl,NX), where XAbsMbl = X is

an AbsMbl-space and NX is a σ-ideal of X (a downwardly closed sub-

set of X containing 0 that is closed under countable joins). Elements of

NX will be called null sets of the AbsNul-space, and NX itself will be

called the null ideal. An AbsNul-morphism T : X → Y between AbsNul-

spaces X = (XAbsMbl,NX), Y = (YAbsMbl,NY) is an AbsMbl-morphism

TAbsMbl : XAbsMbl → YAbsMbl such that TBoolσ(NX) ⊆ NY (i.e., null sets

pull back to null sets). There are obvious forgetful functors from AbsNul

to AbsMbl, and from AbsPrb to AbsNul (where the null ideal is the

ideal of sets of measure zero).

29One also needs the fact (easily obtained from Zorn’s lemma) that any Bool-homomorphism
φ : B′ → {0, 1} on a Bool-subalgebra B′ of a Bool-algebra B can be extended (not necessairly
uniquely) to B.
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(ii) A CncNul-space is a pair X = (XCncMbl,NX), where XCncMbl is a CncMbl-

space, and XAbsNul ≔ (XAbsMbl,NX) is an AbsNul-space. A CncNul-

morphism T : X → Y is a CncMbl-morphism TCncMbl : XCncMbl → YCncMbl

such that TAbsMbl : XAbsMbl → YAbsMbl can be promoted to an AbsNul-

morphism from XAbsNul to YAbsNul. There are obvious forgetful functors

from CncNul to CncMbl and CncPrb to CncNul, and an abstraction

functor Abs from CncNul to AbsNul.

(iii) A CHNul-space is a pair X = (XCH,NX), where XCH is a CH-space,

and XCncNul ≔ (XCncMbl,NX) is a CncNul-space. A CHNul-morphism

T : X → Y is a CH-morphism TCH : XCH → YCH such that TCncMbl :

XCncMbl → YCncMbl can be promoted to an CncNul-morphism from XCncNul

to YCncNul. There are obvious forgetful functors from CHNul to CH, from

CHNul to CncNul, and from CHPrb to CncNul.

(iv) If X is a Stoneσ-space, Meager(X) = XCHNul is the CHNul-space (XCH,NX),

where NX is the ideal of Baire-meager sets in XCH. If T : X → Y is

a Stoneσ-space, then Meager(T ) = TCHNul is the unique promotion of

TCH : XCH → YCH to a CHNul-morphism from XCHNul to YCHNul. (Here

it is important that Stoneσ-morphisms pull back Baire-meager sets to

Baire-meager sets.)

It is easy to verify that the categories and functors in Definition 9.3 are well-

defined. This defines all the casting functors (the functors in blue) in Figure 9.1,

and it is routine to check that these casting functors commute with each other

(and with the casting functors in Figure 6.1), and have the indicated faithfulness

and fullness properties.

We define the Loomis–Sikorski functor LS : AbsMbl → CHNul by the for-

mula

LS ≔ Meager ◦ Stoneσ.

From the functorial properties already established in Figure 9.1 we see that LS

is full and faithful, as depicted in that figure. This functor can be viewed as an

analogue of the canonical model functor Conc : PrbAlg→ CHPrb, but between

categories of measurable spaces rather than categories of probability spaces.

Next, we define a deletion functor ⊖ from AbsNul to AbsMbl:

Definition 9.4 (Deletion functor).

(i) If X = (X,NX) is an AbsNul-space, we define ⊖(X) to be the AbsMbl-

space

⊖(X) ≔ X/NX.
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(ii) If T : X → Y is an AbsNul-morphism between AbsNul-spaces X =

(X,NX), Y = (Y,NY ), we let ⊖(T ) : ⊖ (X) → ⊖(Y) be the AbsMbl-

morphism defined by setting ⊖(T )Boolσ : ΣY/NY → ΣX/NX be the descent

of TBoolσ : ΣY → ΣX by quotienting out the null ideals.

It is not difficult to verify that ⊖ is a functor from AbsNul to AbsMbl.

Remark 9.5. Using Stone duality, one can identify an AbsNul-space with a

Stoneσ-space X together with an open subset U of X with the property that the

countable join (in the clopen algebra) of any clopen subsets of U remains in

U. The deletion functor then corresponds to deleting this open set U from the

Stoneσ-space X to create a new Stoneσ-space X\U. This may help explain the

term “deletion functor”. Related to this, there is a natural monomorphism from ⊖

to ForgetAbsNul→AbsMbl, where the AbsMbl-inclusion ι : ⊖ (X) → XAbsMbl for an

AbsNul-space X is defined by requiring ιBoolσ : ΣX → ΣX/NX to be the quotient

map. It is a routine matter to verify that this is indeed a natural monomorphism.

Remark 9.6. Applying Stone and Gelfand duality to the full and faithful functor

of Stone to CH, one expects to have a full faithful functor from Bool to CC∗Alg1.

This functor can be described explicitly by mapping a Bool-algebra B to the

associated CC∗Alg1-algebra C ⊗ B formed by taking the C∗-algebra closure of

formal complex linear combinations of elements of B (which can be given the

structure of a *-algebra), and also mapping Bool-morphisms accordingly. We

leave the details to the interested reader.

Now we can give our version of the well-known Loomis–Sikorski theorem

that gives a concrete representation to Boolσ-algebras (or AbsMbl-spaces).

Theorem 9.7 (Loomis–Sikorski theorem). The functor ⊖ ◦ CastCHNul→AbsNul ◦

LS is naturally isomorphic to idAbsMbl. In particular, by Remark 9.5, there is a

natural monomorphism from idAbsMbl to CastCHNul→AbsMbl ◦ LS.

Proof. If X is an AbsMbl-space, we define the associated AbsMbl-isomorphism

φX : ⊖ (LS(X)AbsNul) = LS(X)Boolσ/NLS(X) → X

via its opposite

(φX)Boolσ : ΣX → LS(X)Boolσ/NLS(X)

by the formula

(φX)Boolσ(E) ≔ π({α ∈ LS(X) : α(E) = 1}),

where π : LS(X)Boolσ → LS(X)Boolσ/NLS(X) is the quotient Boolσ-morphism. It is

clear that (φX)Boolσ is a Boolσ-morphism; it is injective by Proposition 9.2(ii),
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and surjective because LS(X)CH can be promoted to a Stoneσ-space. By Lemma

6.4(ii), φX is an AbsMbl-isomorphism, and it is a routine matter to then conclude

that X 7→ φX is a natural isomorphism. �

Remark 9.8. The usual formulation of the Loomis–Sikorski theorem (as given

for instance in [27, 314M]) completes the Baire σ-algebra LS(X)Boolσ on LS(X)

by including any set which differs from a clopen set by an arbitrary meager set

(not just a Baire-meager set), and similarly enlarging the null ideal to contain

all meager sets. From Proposition 9.2(ii), this does not affect the quotient Boolσ-

algebra which remains isomorphic to XBoolσ . However, this modification of LS(X)

would no longer lie in CHNul as the σ-algebra no longer is given by the Baire

σ-algebra. One can view this more traditional Loomis–Sikorski construction as

the completion of the one used in this paper, but we have (perhaps surprisingly)

found the hypothesis of completeness for the σ-algebras one encounters to be of

little benefit, whereas the use of Baire σ-algebras is much more compatible with

the topological structure of the spaces involved.

We now construct an alternate version Conc′ : PrbAlg → CHPrb of the

canonical model functor Conc : PrbAlg→ CHPrb.

Theorem 9.9 (Alternate canonical model functor).

(i) There exists a unique functor Conc′ : PrbAlg→ CHPrb such that

CastCHPrb→CHNul ◦ Conc
′ = LS ◦ CastAbsPrb→AbsMbl ◦ Inc

and the natural monomorphism from

ForgetAbsPrb→AbsMbl ◦ Inc

to

CastCHNul→AbsMbl ◦ LS ◦ CastAbsPrb→AbsMbl ◦ Inc

can be promoted to a natural monomorphism from Inc to CastCHPrb→AbsPrb◦

Conc′.

(ii) Conc′ is naturally isomorphic to Conc.

We remark that a variant of this construction appears implicitly in [18, §3],

where in particular the strong Lusin property of the model is noted, which is

already also mentioned in [15, 36] prior to [18].

Proof. For (i), we define Conc′(X) for a PrbAlg-space X to be the promotion

of Conc′(X)CncNul ≔ LS(Inc(X)AbsMbl) to a CHPrb-space defined by setting

µConc′(X) to be the pushforward of µX using the natural AbsMbl-inclusion from

Inc(X)AbsMbl to Conc′(X)AbsMbl, and for any PrbAlg-morphism T : X → Y defin-

ing Conc′(T ) : Conc′(X) → Conc′(Y) to be the unique promotion of Conc′(T )CncNul =
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LS(Inc(T )AbsMbl) to a CHPrb-morphism from Conc′(X) to Conc′(Y). It is a rou-

tine matter to show that this defines a functor. To verify the properties in (i), the

only non-trivial task is to show that the null ideal of Conc′(X) agrees with the

Baire-meager ideal. By construction all Baire-meager sets have measure zero,

hence as Conc′(X) comes from a Stoneσ-space, it suffices to show that non-

empty clopen sets have positive measure. But by construction, the measure that

µConc′(X) assigns to a clopen set is equal to the measure that µX assigns to the

corresponding element of Inc(X)Boolσ arising from Stone duality, and the claim

follows from the probability algebra nature of X. Finally, the uniqueness claim

in (i) is easily verified by expanding out all the definitions.

Now we prove (ii). From (i) we see that for any PrbAlg-space X, (Conc′(X), ιX)

is a concrete model of X, where ιX : Inc(X) → Conc′(X)AbsPrb is the natural

monomorphism. By construction, every indicator function in L∞(Conc′(X)) is

equal (modulo almost everywhere equivalence) to the unique indicator function

of a clopen set, which of course lies in C(Conc′(X)). By linearity and density

we conclude that every function in L∞(Conc′(X)) is equivalent to a function

in C(Conc′(X)). Since the topology of Conc′(X) is generated by clopen sets,

and non-empty clopen sets have positive measure, we see that any two dis-

tinct elements in C(Conc′(X)) also differ in L∞(Conc′(X)). Thus Conc′(X) obeys

the strong Lusin property L∞(Conc′(X)) = C(Conc′(X)), hence by Proposition

7.6(iii) (Conc′(X), ιX) is a initial concrete model of X. By Proposition 7.4 the

same is true for Conc, and it is then a routine matter to construct the natural

isomorphism between Conc and Conc′. �

Remark 9.10. One can dispense with the Loomis–Sikorski functor to construct

the canonical model directly from Stone duality30 by relying on the Carathéodory

extension theorem. Indeed, if (X, µ) is a PrbAlg-algebra, we can apply Stone du-

ality, the Stone–Weierstraß theorem and the Carathéodory–Hahn–Kolmogorov

extension theorem to extend the finitely additive measure µ from Clopen(Conc(X))

to Ba(Conc(X)), and then verify as above that the null ideal coincides with the

ideal of Baire meager sets, giving the claim.

In view of this natural isomorphism (and also because Conc′ is easily verified

to be injective on objects) one can replace Conc′ by Conc without any substantial

change to the statements in this paper if desired.

Remark 9.11 (Equivalent forms of the strong Lusin property). From the above

equivalences it is not difficult to see that for any CHPrb-space X, the following

claims are equivalent:

30We thank the anonymous referee for suggesting this alternative proof.



FOUNDATIONAL ASPECTS OF UNCOUNTABLE MEASURE THEORY 71

(i) X has the strong Lusin property.

(ii) X is CHPrb-isomorphic to Conc(Y) (or equivalently, Conc′(Y)) for some

PrbAlg-space Y .

(iii) X is CH-isomorphic to a Stoneσ-space, and the ideal of Baire null sets

coincides with the ideal of Baire-meager sets.

In particular, the measures on a CHPrb-space X with the strong Lusin property

are hyperdiffusive31 in the sense of Fishel and Parret [24] (all measurable meager

sets are null). The results of [24] then imply that such measures are also normal

in the sense of Dixmier [16], in that one has supα
∫

X
fα =

∫

X
f whenever fα, α ∈

A is an increasing family in C(X) indexed by a directed set A that has a least

upper bound f in the lattice C(X). (Note that this is not the same as asserting

that f is the pointwise supremum of the fα.) Also, because the Boolσ-algebra

associated to a PrbAlg-space is complete, one can show that spaces obeying

any of (i), (ii), (iii) are not merely Stoneσ-spaces, but are in fact Stonean spaces

(extremally disconnected Stone spaces), as the category of such spaces (with

open continuous morphisms) is known (see, e.g., [71]) to be dual to the category

of complete Boolean algebras. We also remark that measures obeying the second

conclusion of (iii) are referred to as category measures in [59]. We also mention

[56, 57, 69, 75] for variations of these themes in the theory of Banach lattices.

Remark 9.12. In [27], Fremlin employs the concrete model provided by the tra-

ditional Loomis–Sikorski representation (see Remark 9.8) to develop basic re-

sults in abstract measure theory (we collected some examples in Remark 9.13).

As shown in [27, §363 C], the traditional Loomis–Sikorski concrete model en-

joys a strong Lusin property. Also it can be used to define arbitrary categorical

coproducts in Boolσ and arbitrarily infinite tensor products in PrbAlg (see [27,

Section 325]). However it lacks the functorial properties of our canonical model

(as developed in Section 7) and thus the category-theoretical compatibility with

the adjacent topological and functional analytic categories. For example we can

provide two constructions of our canonical model based on Stone duality and

on Riesz duality respectively, whereas the traditional Loomis–Sikorski concrete

model rests only on Stone duality. This compatibility is essential in applications

of the canonical model to uncountable ergodic theory (cf., [45, 44, 42, 21]).

Remark 9.13. As demonstrated in [27], one can develop many basic results in

measure theory for measure algebras in abstract form and relate them to their

classical counterparts for the traditional Loomis–Sikorski model. For example in

[27, Sections 363-366], abstract Lp-spaces on measure algebras are introduced.

31Such measures were also termed residual in [6].
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Given a Bool-algebra X, the space of abstract simple functions S(X) is defined

to be the linear hull of indicator functions 1E, where E is in the clopen alge-

bra Stone(X)Bool (see [27, §361 D]). Then the L∞-space of X is defined to be

C(Stone(X)) (see [27, §363 A]), and it shown thatS(X) is dense in C(Stone(X))

(see [27, §363 C]). If (X, µ) is a measure algebra, the abstract L∞-space of X

can be identified with the concrete L∞-space of its traditional Loomis–Sikorski

space. This identification is in the sense of a simultaneous Riesz32 space isomor-

phism and Banach space isomorphism. Hence a strong Lusin property starting

with C(Stone(X)) as the definition of an abstract L∞-space is derived.

The abstract L0-space of (X, µ) is defined to be the set of all Set-functions

f : R→ X such that

(i) f (r) =
∨

r′>r f (r′) for all r ∈ R,

(ii)
∧

r∈R f (r) = 0,

(iii)
∨

r∈R f (r) = 1,

see [27, §364 A]. (This definition mimics the defining properties of the level set

function r 7→ { f > r} for a real measurable function f : X → R, where now X is

a concrete measure space.) This abstract L0-space is isomorphic to the space of

Boolσ-homomorphisms Hom (Bo(R)→ X) as Riesz spaces (see [27, Theorem

364 D]). Moreover, the abstract S(X), L∞(X) spaces are Riesz subspaces of the

abstract L0(X) (see [27, §364 K]). Using the level-set description of abstract mea-

surable maps, an abstract L1-norm can be introduced by the traditional Lebesgue

integral

‖ f ‖1 ≔

∫ ∞

0
µ(| f | > r)dr,

which allows to derive a definition of abstract Lp-spaces as

Lp(X) ≔ { f ∈ L0(X) : ‖| f |p‖1 < ∞},

where {| f |p > r} is equal to {| f | > r1/p} for r ≥ 0 and 1 ∈ X otherwise (see [27,

§366 A]). It can be shown that these abstract Lp-spaces are isomorphic to the

concrete Lp-spaces of the Loomis–Sikorski concrete model in the sense of Riesz

space and Banach space isomorphies (see [27, §365 B, 366 B]). One can check

that the definition of L∞, L2 in [27], when applied to a PrbAlg-space, agrees (up

to natural identifications) with the one given here.

It is remarkable that several basic results such as the Radon-Nikodým the-

orem, the Lp-Lq-duality and existence of conditional expectations have proofs

in abstract Lp-spaces without using a concrete representation (cf., [27, §366 D,

32A Riesz space is an ordered vector space in which the order and vector space structures are
compatible.
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§365 E, §365 R]). The Radon-Nikodým theorem can be used to construct relative

products (see [28, Section 458]).

Next we give an explicit description of the categorical product in AbsMbl.

This will be done in terms of a categorical product on CHNul:

Definition 9.14 (CncNul, CHNul and AbsMbl products).

(i) Let Xα = ((Xα)CncMbl,NXα), α ∈ A be a family of CncNul-spaces. We

define the product
∏CncNul

α∈A Xα to be the CncNul-space

X ≔ (XCncMbl,NX),

where XCncMbl ≔
∏CncMbl

α∈A (Xα)CncMbl, and NX is the σ-ideal of XCncMbl

generated by
⋃

β∈A(πβ)Boolσ(NXβ),where (πβ)CncMbl : XCncMbl → (Xβ)CncMbl

are the canonical CncMbl-projections. We also promote the πβCncMbl
to

CncNul-morphisms πβ : X → Xβ in the obvious fashion.

(ii) If Xα, α ∈ A are a family of CHNul-spaces, we define
∏CHNul

α∈A Xα to

be the unique CHNul-space whose cast to C is
∏C

α∈A(Xα)C for C =

CH,CncNul, and define the projections πβ :
∏CHNul

α∈A Xα → Xβ similarly.

(iii) Let Xα, α ∈ A be a family of AbsMbl-spaces. We define the product
∏AbsMbl

α∈A Xα as

AbsMbl
∏

α∈A

Xα ≔ ⊖ ◦ CastCHNul→AbsNul















CHNul
∏

α∈A

LS(Xα)















with the AbsMbl-projection morphisms πβ :
∏AbsMbl

α∈A Xα → Xβ defined

analogously.

Proposition 9.15 (Universality of CncNul-product and AbsMbl-product).

(i) For C = CncNul,CHNul,AbsMbl, the C-product defined in Definition

9.14 is universal.

(ii) The CH, CHNul, CncMbl, and CncNul products agree with each other

with respect to forgetful functors, and the categorical product in CncNul

agrees with the categorical product in AbsMbl with respect to ⊖◦CastCncNul→AbsNul.

Proof. We first prove (i) for C = CncNul. Thus suppose we have CncNul-

morphisms fα : Y → Xα, and we wish to lift these to a common CncNul-morphism

f : Y → X with X ≔
∏CncNul

α∈A Xα and fβ = πβ ◦ f for all β ∈ A. Uniqueness fol-

lows easily from the universality of the CncMbl-product; but existence also fol-

lows easily from observing that the CncMbl-morphism ( fα)CncMbl
α∈A

: YCncMbl →

XCncMbl can be promoted to a CncNul-morphism from Y to X. The claim (i) for

C = CHNul is established similarly. The claims (ii) are then routinely verified

(using Proposition 3.2(viii)).
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It remains to verify the C = AbsMbl case of (i). Let let fα : Y → Xα, α ∈ A

be AbsMbl-morphisms for various AbsMbl-spaces Y, Xα. We wish to show that

there is a unique AbsMbl-morphism f : Y →
∏AbsMbl

α∈A Xα whose projections to

Xβ equal fβ for all β ∈ A. For existence, we apply the categorical product in

CHNul to LS( fα) : LS(Y) → LS(Xα) to obtain a map (LS( fα))CHNul
α∈A

: LS(Y) →
∏CHNul

α∈A LS(Xα). Applying ⊖ ◦ CastCHNul→AbsNul and the Loomis–Sikorski theo-

rem, we obtain an AbsMbl-morphism f with the required properties. To obtain

uniqueness, it suffices to show that the pullbacks of (Xα)Boolσ to (
∏AbsMbl

α∈A Xα)Boolσ

generate the entire Boolσ-algebra. The pullbacks of LS(Xα)Boolσ to (
∏CHNul

α∈A LS(Xα))Boolσ

generate the entire Boolσ-algebra. The claim follows by applying⊖◦CastCHNul→AbsNul

and the Loomis–Sikorski theorem. �

Now we can complete the proof of Lemma 6.4.

Corollary 9.16. The categorical Bool-coproduct is contained in the categorical

Boolσ-coproduct.

Proof. For Boolσ-algebras Xα, our task is to show that the natural Bool-map

from
∐Bool

α∈A Xα to
∐Boolσ

α∈A
Xα is injective. We may assume that none of the Xα are

the 20-element Boolean algebra {0 = 1}, as the claim is trivial in this case. As is

well-known, one can explicitly write down a Boolean coproduct
∐Bool

α∈A Xα as the

Bool-algebra of formal finite joins of disjoint “rectangles” Eα1 ⊗ · · · ⊗ Eαn
with

Eαi
∈ Xαi

and α1, . . . , αn ∈ A, so it suffices to show that the image of any such

“rectangle” in
∐Boolσ

α∈A
Xα is non-zero if all of the Eαi

are non-zero.

For each Boolσ-space Xα we can form a CHNul-space X̃α ≔ LS((Xα)AbsMbl),

which is non-empty since the Xα are not 20-element algebras. We then form the

categorical product in CHNul

X̃ ≔

CHNul
∏

α∈A

X̃α.

Each element Eαi
then has a counterpart Ẽαi

∈ (X̃αi
)Boolσ defined by

Ẽαi
≔ φαi

(Eαi
)

where φαi
is the natural Bool-isomorphism between Clopen(Stone((Xαi

)Bool))

and (Xαi
)Bool. Since Eαi

is non-zero, Ẽαi
is not in the null ideal of X̃αi

. From the

axiom of choice, we then see that the product set

n
∏

i=1

Ẽαi
×

∏

α,α1 ,...,αn

X̃αi

does not lie in the null ideal of X̃, and the claim follows. �
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Remark 9.17. The above theory also provides a reasonably explicit, albeit strange,

description of the categorical product in Stoneσ. Namely, one can identify
∏Stoneσ

α∈A
Xα

with the space of Bool-morphisms from
∏CncMbl

α∈A (Xα)CncMbl onto the trivial al-

gebra {0, 1} that annihilate all the Baire-meager sets in
∏CH

α∈A(Xα)CH (this is a

Stone-space, but not necessarily a Stoneσ-space). By restricting these Bool-

morphisms to clopen sets we obtain a Stone-morphism from (
∏Stoneσ

α∈A
Xα)Stone to

∏Stone
α (Xα)Stone, which is surjective (a Stone-epimorphism) by the dual of Corol-

lary 9.16. We leave the verification of these claims to the interested reader.

We now combine the above product theory with the Loomis–Sikorski functor

and the Riesz representation theorem to give a version of the Kolmogorov exten-

sion theorem in the category AbsMbl of abstract measurable spaces. Unlike the

classical Kolmogorov extension theorem, no regularity properties (such as stan-

dard Borel properties) on the underlying measurable spaces are required; on the

other hand, the measures constructed live in the categorical product in AbsMbl

rather than the categorical CncMbl-product.

Theorem 9.18 (Abstract Kolmogorov extension theorem). Let (Xα)α∈A be a fam-

ily of AbsMbl-spaces indexed by some (possibly uncountable) set A. Suppose

that for each finite subset F of A, one has a probability measure µF on the

AbsMbl-space XF ≔
∏

α∈F Xα, thus promoting this AbsMbl-space XF to an

AbsPrb-space (XF , µF). Suppose furthermore that whenever F ⊆ F′ ⊆ A are

finite, one has (πXF′→XF
)∗µF′ = µF where πXF′→XF

: XF′ → XF is the canoni-

cal AbsMbl-projection, thus πXF′→XF
can be promoted to an AbsPrb-morphism

from (XF′ , µF′) to (XF , µF). Then there exists a unique probability measure µA

on the AbsMbl-space XA ≔
∏

α∈A Xα such that (πXA→XF
)∗µA = µF for all finite

F ⊆ A.

Proof. We begin with existence. By Proposition 9.15, one can identify XF with

⊖ ◦ CastCHNul→AbsNul(X̃F) where X̃F is the CHNul-space X̃F ≔
∏CHNul

α∈F LS(Xα),

and similarly for XA. The probability measure µF on XF then induces a probabil-

ity measure µ̃F on X̃F which annihilates the null ideal of this CHNul-space. For

F ⊆ F′ ⊆ A finite, one easily checks that

πX̃F′→X̃F
µ̃F′ = µ̃F

where πX̃F′→X̃F
: X̃F′ → X̃F is the canonical CHNul-projection. By the Riesz

representation theorem, each µ̃F represents a state λF : C(X̃F) → C on X̃F . If we

identify C(X̃F) with a subalgebra of C(X̃F′ ) and of C(X̃A) for F ⊆ F′ ⊆ A, we see

that λF and λF′ agree on C(X̃F) for all finite F ⊆ F′ ⊆ A. But from the Stone-

Weierstrass theorem, the union of the C(X̃F) for F ⊆ A finite is dense in C(X̃A).

Thus we see that the states λF on X̃F extend to a state λA : C(X̃A) → C on X̃A.
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By the Riesz representation theorem (Theorem 5.4), this state is represented by

a probability measure µ̃A on X̃A, and the uniqueness aspect of this theorem we

have

πX̃A→X̃F
µ̃A = µ̃F

for any finite F ⊆ A, where πX̃A→X̃F
: X̃A → X̃F is the canonical CHNul-projection.

In particular, µ̃A annihilates the pullback of any null ideal of an individual factor

X̃α of X̃F , and hence annihilates the entire null ideal. As such, µ̃A descends to a

probability measure µA on XA, which has the required properties. This establishes

existence.

For uniqueness, suppose there is another measure µ′
A

on XA with the stated

properties. Then as before this induces a measure µ̃′
A

on X̃A that annihilates the

null ideal. This represents a functional λ′
A

on X̃A that agrees with λF on C(X̃F)

for every finite F ⊆ A, and hence is identically equal to λA by density. From the

uniqueness aspect of the Riesz representation theorem, we then have µ̃′A = µ̃A,

hence µ′A = µA, giving uniqueness. �

It is a classical fact [5] that the analogue of Theorem 9.18 for CncMbl fails

without additional hypotheses on the factor spaces. However, the analogue of

Theorem 9.18 for CH (using the Baire σ-algebra) follows easily from the Riesz

representation theorem by a variant of the argument used to prove Theorem 9.18.

Remark 9.19. We sketch an alternative "dual" proof of our abstract Kolmogorov

theorem suggested to us by the anonymous referee. Suppose that (Xα)α∈A is a

direct system of Boolσ-algebras. Then we want to verify that any consistent

family (µα)α∈A of abstract probability measures in the sense as stated in The-

orem 9.18, where µα is a probability measure on Xα such that (Xα, µα) pro-

motes to an AbsPrb-space, extends to a unique probability measure µ on the

Boolσ-direct limit lim
−−→α∈A

Xα. As for existence, we observe that the direct limit

lim
−−→α∈A

Alg(Xα, µα) exists in PrbAlg (see, e.g., [27, 328 H]), and by the universal

property of direct limits, there is a unique Boolσ-morphism from lim
−−→α∈A

Xα to

the cast of lim
−−→α∈A

Alg(Xα, µα) in Boolσ (with respect to the forgetful functor).

Uniqueness follows from the fact that the Boolσ-algebra lim
−−→α∈A

Xα is generated

by the images of the Boolσ-algebras Xα.

Appendix A. Review of category theory

In this appendix we review some concepts and notations in category theory

that we will need. A prominent role will be played by various categorical and

non-categorical notions of products and coproducts. The interested reader is ad-

ditionally referred to standard introductory textbooks on category theory, e.g.

[53, 55], and to [39, Chapter 1] for an introduction to (symmetric) monoidal
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categories which formalize relevant notions of Fubini type products (resp. co-

products) that are prevalent in probabilistic categories.

A.1. Categories and functors.

Definition A.1 (Category). A category C is a class of objects (which we refer to

as C-objects, C-spaces or C-algebras), together with a set HomC(X → Y) asso-

ciated to any pair X, Y ∈ C of C-objects, whose elements we call C-morphisms

f : X → Y from the domain X to the codomain Y . The category C is equipped

with a composition operation ◦ : HomC(Y → Z)×HomC(X → Y)→ HomC(X →

Z) for any three C-objects X, Y, Z which is associative in the sense that

( f ◦ g) ◦ h = f ◦ (g ◦ h)

whenever f : Z → W, g : Y → Z, h : X → Y are C-morphisms. We also assume

that to every C-object X ∈ C there is an identity C-morphism idX : X → X such

that

f = f ◦ idX = idY ◦ f

for every C-morphism f : X → Y from one C-object X to another Y .

As a general convention, when the ambient category C is clear from context,

we will drop the prefix C-, for instance C-morphisms will also be referred to a

“morphism in C”, or simply a “morphism” if it is clear which category one is

working in.

We now give two fundamental examples of categories: the categories of sets

and groups.

Example A.2 (The category Set). A Set-object (or Set-space) is a set X. A Set-

morphism is a function f : X → Y between two sets. Composition of two Set-

morphisms f : X → Y , g : Y → Z is given by the usual composition law (g ◦

f )(x) ≔ g( f (x)) for x ∈ X.

Example A.3 (The category Grp). A Grp-object is a group G = (GSet, ·). A

Grp-morphism f : G → H is a group homomorphism fSet : GSet → HSet between

the underlying sets. Composition of two Grp-morphisms is given by the Set-

composition law.

One can take a category C and “reverse all its arrows” to obtain a new cate-

gory Cop:

Definition A.4 (Opposite category). Let C be a category. We define the opposite

category Cop as follows.

(i) A Cop-object is the same as a C-object.
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X Z X Z

Y Y

g

f

g

f◦g
f

g◦ f

Figure A.1. A diagram in C on the left, and its counterpart in Cop

on the right. Note the reversed direction of all the arrows.

Y

Y ′ X

Y ′′

Figure A.2. The composition of morphisms in a slice category.

(ii) A Cop-morphism f : X → Y of two Cop-objects X, Y is a C-morphism

f : Y → X.

(iii) The composition g ◦ f of two Cop-morphisms f and g is defined by the

composition of C-morphisms f ◦ g, see Figure A.1.

By abuse of notation we identify (Cop)op with C in the obvious fashion.

Definition A.5 (Slice category). Let C be a category. We denote by C ↓ X the

slice category over an object X ∈ C, where (C ↓ X)-objects are C-morphisms

Y → X, i.e., C-morphisms whose codomain is X, and (C ↓ X)-morphisms are

C-morphisms g : Y → Y ′ from a (C ↓ X)-object f : Y → X to another (C ↓ X)-

object f ′ : Y ′ → X such that the identity f ′ ◦ g = f holds in C. See Figure A.2,

for a diagram of how composition is defined in C ↓ X.

Dually, we can define the coslice category X ↓ C with respect to an X ∈ C,

whose objects are C-morphisms X → Y , i.e., C-morphisms whose domain is

X, and whose morphisms are C-morphisms g : Y ′ → Y from a (X ↓ C)-object

f ′ : X → Y ′ to another (X ↓ C)-object f : X → Y such that the identity g ◦ f ′ = f

holds in C.

We isolate some special types of morphisms and objects:

Definition A.6 (Special morphisms and objects). Let C be a category.

(i) A C-morphism π : X → Y is a C-epimorphism if whenever f , f ′ : Y → Z

are C-morphisms with f ◦ π = f ′ ◦ π, one has f = f ′.
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Z X Z X

Y Y

f◦π

π

ι◦ f

ff
ι

Figure A.3. If π is an epimorphism, then f is uniquely deter-
mined by f ◦ π. If ι is a monomorphism, then f is uniquely deter-
mined by ι ◦ f .

(ii) Dually, a C-morphism ι : Y → X is a C-monomorphism if whenever

f , f ′ : Z → Y are C-morphisms with ι ◦ f = ι ◦ f ′, one has f = f ′.

(iii) A C-bimorphism φ is a C-epimorphism that is also a C- monomorphism.

(iv) A C-morphism φ : X → Y is a C-isomorphism if there is an inverse C-

morphism φ−1 : Y → X such that idX = φ
−1 ◦ φ and idY = φ ◦ φ

−1.

(v) A C-morphism φ : X → X is a C-endomorphism if the domain and

codomain are the same object, and aC-automorphism if it is aC-endomorphism

and a C-isomorphism.

(vi) A C-object X is terminal (resp. initial) if for every C-object Y there is a

unique C-morphism from Y to X (resp. from X to Y).

See also Figure A.3.

Clearly the composition of twoC-monomorphisms is again aC-monomorphism,

and similarly for C-epimorphisms. Every C-isomorphism is a C-bimorphism.

The converse is true for some of the categories we will study here (e.g., Set,

Bool, Boolσ, CH, Stone, AbsMbl), but not all (for instance, the inclusion map

from (0, 1) to [0, 1] is a Pol-bimorphism but not a Pol-isomorphism).

Example A.7. It is easily verified that a function X → Y between two sets X, Y ∈

Set (i.e., a Set-morphism) is a Set-monomorphism if and only if it is injective,

a Set-epimorphism if and only if it is surjective, and a Set-isomorphism (or Set-

bimorphism) if and only if it is bijective. The analogous claims for the category

Grp are also true, but not as easy to demonstrate; the difficult step is to show that

for any proper subgroup H of G there is a group homomorphism f : H → K into

a third group K that admits more than one extension to a group homomorphism of

G. A canonical choice of such a K is provided by the amalgamated free product

G ∗H G (which, in the categorical language used in this paper, is the categorical

colimit of the diagram G ← H → G) . On the other hand, not all CncMbl-

epimorphisms are surjective; for instance, the inclusion of {1} into {1, 2}, where

we endow {1, 2} with the trivial σ-algebra {∅, {1, 2}}, is a CncMbl-epimorphism

which is not surjective. (The existence of non-surjective CncMbl-epimorphisms
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causes difficulty when trying to represent abstract measurable maps by concrete

ones; see [45, §5] for further discussion.)

A pair of categories C,C′ can be related to each other by functors33.

Definition A.8 (Functor). Let C,C′ be categories. A functor

Func = FuncC→C′ : C → C
′

assigns to each C-object X a C′-object Func(X), and to each C-morphism f =

fX→Y a C’-morphism Func( f ) = Func( fX→Y) = Func( f )Func(X)→Func(Y) such that

Func( fY→Z ◦ gX→Y) = Func( f )Func(Y)→Func(Z) ◦ Func(g)Func(X)→Func(Y)

for any C-functors fY→Z, gX→Y between the C-objects X, Y, Z.

Example A.9 (Identity functor). For every category C there is the identity func-

tor idC : C → C that acts trivially on the objects and morphisms of the category.

Example A.10 (Forgetful functors). For every unlabeled arrow in the diagrams

of categories in this paper between two functors C, C′, there is an obvious forget-

ful functor ForgetC→C′ , which is a functor that takes any C-object X and “for-

gets” some structure on it to produce a C′-object (which by abuse of notation we

often also call X), and usually leaves the C-morphisms unchanged (but now inter-

preted as C′-morphisms). For instance, there is a forgetful functor ForgetGrp→Set

formed by taking a group K = (K, ·) and forgetting the group structure, to only

retain the underlying set K. We consider the composition of two or more forget-

ful functors to again be a forgetful functor, thus for instance ForgetCH→Set is the

forgetful functor ForgetCncMbl→Set ◦ ForgetCH→CncMbl. In most cases (particu-

larly when the forgetful functor is deemed to be a casting functor, see Definition

1.7) we will not need to explicitly refer to such functors by name.

One can compose functors together in the obvious fashion to obtain further

functors. We record some special types of functors:

Definition A.11 (Special functors). Let C,C′ be categories.

(i) A functor Func : C → C′ is faithful (resp. full) if for any two C-objects

X, Y , the map

Func : HomC(X → Y)→ HomC′(Func(X) → Func(Y))

is injective (resp. surjective). In the diagram of categories in this paper,

we use arrows with tails֌ between categories to indicate faithful func-

tors (resp. arrows with two heads in one direction։ to indicate full func-

tors). We use arrows with tails and two heads֌→ between categories to

indicate a functor which is both faithful and full.
33We will work exclusively with covariant functors in this paper.
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When Func : C → C′ is a faithful functor, then we also call C a sub-

category of C′. If the faithful functor is full, we call C a full subcategory

of C′.

(iii) A functor Func : C → C′ is invertible34 if it has an inverse Func−1 : C′ →

C that is also a functor. Invertible functors are indicated by arrows with

heads in both directionsև։.

Example A.12. The forgetful functor from Boolσ to Bool is by definition faith-

ful. In fact, all the forgetful functors we use in this paper are faithful. On the

other hand, the abstraction functor Abs : CncMbl → AbsMbl is not even faith-

ful, even if it arguably deserves to be classified as a forgetful functor; for in-

stance, if X is a CncMbl-space with the trivial σ-algebra, then any permutation

on X is a CncMbl-morphism that becomes the identity AbsMbl-morphism when

applying Abs.

We point out that the following example is not usually considered in category

theory.

Example A.13 (Range of a functor). If Func : C → C′ is a functor that is in-

jective on objects, then we can define the category Func(C) to be the category

whose Func(C)-objects are of the form Func(X) for some C-object X, and whose

Func(C)-morphisms are of the form Func( f ) for some C-morphism f , with the

obvious composition law. This is then a subcategory of C′ with the obvious faith-

ful functor.

The following lemma is trivial but useful:

Lemma A.14 (Faithful functors, epimorphisms, and monomorphisms). If a func-

tor Func : C֌ C′ is faithful and f is aC-morphism with Func( f ) aC′-monomorphism

(resp.C′-epimorphism), then f is also aC-monomorphism (resp.C-epimorphism).

In particular, if C is a concrete category (so that there is a faithful forgetful func-

tor to Set), every injective C-morphism is monomorphic, and every surjective

C-morphism is epimorphic.

A.2. Natural transformations. We now recall the notion of a natural transfor-

mation between two functors. This notion helps us capture what it means for a

given construction (such as a categorical or monoidal product or coproduct) in

a category to be “functorial”, and what it means for one such construction to

be “contained in” another, even when the underlying category is abstract rather

than concrete. It also makes precise the (often vaguely defined) concept of what

it means for a certain morphism to be “canonical”.

34It would strictly speaking be more natural from a category theory perspective to work with
equivalence of categories here rather than invertible functors.
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Definition A.15 (Natural transformation). Let Func, Func′ : C → C′ be two

functors between categoriesC,C′. A natural transformation Nat : Func→ Func′

from Func to Func′ is an assignment of a C′-morphism Nat(X) to each C-object

X such that the diagram

Func(X) Func′(X)

Func(Y) Func′(Y)

Nat(X)

Func( f ) Func′( f )

Nat(Y)

commutes for every C-morphism f : X → Y . We say that Nat is a natural iso-

morphism (resp. natural monomorphism, natural epimorphism) if Nat(X) is a

C′-isomorphism (resp. C′-monomorphism, C′-epimorphism) for every C-object

X.

An equivalence of categories between two categories C,C′ is a pair of func-

tors Func : C → C′, Func′ : C′ → C such that Func′ ◦ Func is naturally iso-

morphic to idC and Func ◦ Func′ is naturally isomorphic to idC′ . A duality

of categories between two categories C,C′ is a pair of functors Func : Cop →

C′, Func′ : C′ → Cop such that Func′ ◦ Func is naturally isomorphic to idCop and

Func ◦ Func′ is naturally isomorphic to idC′ .

We will refer to a canonicalC-map (resp. C-monomorphism,C-epimorphism,

C-isomorphism) between two C-objects X, Y to be the morphism given by the

“obvious” natural transformation (resp. natural monomorphism, epimorphism,

isomorphism) that can relate the two objects, in those cases where the “obvious”

choice of natural transfomation is clear from context.

Example A.16. If Nat : Func1 → Func2 is a natural isomorphism then so is its

inverse Nat−1 : Func2 → Func1, defined in the obvious fashion.

Example A.17. The identity functor establishes a duality of categories between

an arbitrary category C and its opposite category Cop. Further examples of dual-

ities of categories are given in Figure A.4.

A.3. Categorical products, inverse limits, and tensor products. In this sec-

tion, we recall the concepts of categorical products and coproducts, inverse and

direct limits, and symmetric monoidal categories (the latter category-theoretically

formalizes a general notion of tensor products). We then discuss how to com-

bine and category-theoretically compare these concepts in order to apply them to

relate various product constructions for the topological, probabilistic and func-

tional analytic objects introduced in this paper.

Definition A.18 (Categorical products and coproducts). Let C be a category.
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(CC∗Alg1 ↓ C)op CC∗Alg
op
1

CC∗Alg
op
nd

CC∗Alg
op
Mult,nd

(pt ↓ CH) CH LCHp LCH

((CC∗Alg1 ↓ C)τ)op (CC∗Algτ
1
)op (CC∗Algτnd)

op (CC∗AlgτMult,nd)
op

(pt ↓ CH)Prb CHPrb LCHpPrb LCHPrb

(CvNAlgτ)op

PrbAlg

Boolop AbsMbl

Stone Stoneσ

Spec Spec Spec SpecC C C0 C0

Riesz Riesz Riesz RieszC C C0 C0

ProjL∞

Stone StoneσClopen Clopenσ

Figure A.4. The dualities of categories that appear in this paper.
The rows correspond to Gelfand dualities, Riesz dualities, prob-
ability dualities, and Stone dualities respectively. Various addi-
tional functors between these categories have been omitted for
clarity.

(i) A categorical product of a family Xα, α ∈ A of objects in C is an ob-

ject X ∈ C such that there is an indexed family (πα)α∈A of C-morphisms

πα : X → Xα satisfying the following universal property: If Y is an-

other object in C and ( fα)α∈A is another indexed family of C-morphisms

fα : Y → Xα, then there exists a unique C-morphism φ : Y → X such that

πα ◦ φ = fα for each α ∈ A. Note that if a categorical product of the Xα

exists, then it is unique up to C-isomorphisms. In this case, we denote the

categorical product by
∏

α∈A Xα =
∏C

α∈A Xα.

(ii) Dually, a categorical coproduct of a family Xα, α ∈ A of objects inC is an

object X ∈ C such that there is an indexed family (ια)α∈A of C-morphisms

ια : Xα → X satisfying the following universal property: If Y is an-

other object in C and ( fα)α∈A is another indexed family of C-morphisms

fα : Xα → Y , then there exists a unique C-morphism φ : X → Y such that

φ ◦ ια = fα for each α ∈ A. Note that if a categorical coproduct of the
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Y

X1 × X2 X2

X1

f1

φ

f2

π2

π1

Figure A.5. A diagram of the universal property of the categori-
cal product of a pair X1, X2 of objects in a category C. A similar
diagram exists for the coproduct X1 ⊔ X2 (after reversing all the
arrows).

Xα exists, then it is unique up to C-isomorphisms. In this case, we denote

the categorical coproduct by
∐

α∈A Xα =
∐C

α∈A Xα.

For products (resp. coproducts) of two objects in C we use X1 × X2 = X1 ×
C X2

(resp. X1 ⊔ X2 = X1 ⊔
C X2) as shorthand for

∏C
α∈{1,2} Xα (resp.

∐C
α∈{1,2} Xα). See

Figure A.5.

Example A.19. Given a family Xα, α ∈ A of sets Xα, the Cartesian product
∏

α∈A Xα is a categorical product of the Xα in Set, and the disjoint union
⊎

α∈A Xα

is a categorical coproduct in Set.

Remark A.20. Let (Xα)α∈A be a family of objects in some category C. If a cate-

gorical product
∏

α∈A Xα exists, then (after making some obvious canonical iden-

tifications) one has the identity

HomC















Y →

C
∏

α∈A

Xα















=

Set
∏

α∈A

HomC(Y → Xα)

for any C-object Y; indeed this can be viewed as an alternate definition of a

categorical product in C. Similarly, if a categorical coproduct
∐C

α∈A Xα exists,

then one has the identity

HomC















C
∐

α∈A

Xα → Y















=

Set
∐

α∈A

HomC(Xα → Y),

after making the obvious canonical identifications.

Example A.21. A categorical product
∏

α∈A Kα of groups Kα can be constructed

by taking the Cartesian product
∏Set

α∈A Kα and endowing it with the group opera-

tion in the obvious fashion. A categorical coproduct
∐Grp

α∈A
Kα can be formed by

the free product construction.

Definition A.22 (Inverse and direct limits). Let C be a category.
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(i) Let (Xα)α∈A be a directed35 family of objects Xα ∈ C such that there is a

family of C-morphisms fα,β : Xβ → Xα for all α ≤ β satisfying

– fα,α = idXα for all α;

– fα,γ = fα,β ◦ fβ,γ for all α ≤ β ≤ γ.

Then we call the tuple (Xα, fα,β) an inverse system of objects and mor-

phisms in C. A C-object X is called an inverse limit of the inverse system

(Xα, fα,β) if there exists a family of C-morphisms πα : X → Xα for each α

satisfying πα = fα,β ◦ πβ for all α ≤ β. The pair (X, πα) must satisfy the

following universality property. If (Y, ψα) is another pair of a C-object Y

and C-morphisms ψα : X → Xα for all α such that ψα = fα,β ◦ ψβ for all

α ≤ β, then there must exist a unique g : Y → X such that the diagram

Y

X

Xβ Xα

fα,β

ψβ ψα

g

πβ πα

commutes for all α ≤ β. If the inverse system (Xα, fα,β) possesses an

inverse limit X in C, then we denote this inverse limit by X = lim
←−−α∈A

Xα.

By the universality property, if an inverse limit exists, then its is unique

up to C-isomorphisms.

(ii) Let (Xα)α∈A be a directed family of objects Xα ∈ C such that there is a

family of C-morphisms fα,β : Xα → Xβ for all α ≤ β satisfying

– fα,α = idXα for all α;

– fα,γ = fβ,γ ◦ fα,β for all α ≤ β ≤ γ.

Then we call the tuple (Xα, fα,β) a direct system of objects and morphisms

in C. A C-object X is called an direct limit of the direct system (Xα, fα,β)

if there exists a family of C-morphisms ια : Xα → X for each α satisfying

ια = ιβ ◦ fα,β for all α ≤ β. The pair (X, ια) must satisfy the following

universality property. If (Y, λα) is another pair of a C-object Y and C-

morphisms λα : X → Xα for all α such that λα = λβ ◦ fα,β for all α ≤ β,

35A partially ordered set (A,≤) is said to be directed if for each pair α, β ∈ A there is γ ∈ A

such that α ≤ γ and β ≤ γ.
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then there must exist a unique h : X → Y such that the diagram

Xα Xβ

X

Y

ια ιβ

fα,β

λα λβ

h

commutes for all α ≤ β. If the direct system (Xα, fα,β) possesses a direct

limit X in C, then we denote this direct limit by X = lim
−−→α∈A

Xα. By the

universality property, if a direct limit exists, then its is unique up to C-

isomorphisms.

Example A.23. The inverse limit of a Set-inverse system (Xα, fα,β) is a par-

ticular subset of the Cartesian product
∏Set

α Xα determined by the family of

Set-morphisms fα,β. On the other hand, the direct limit of a Set-direct system

(Xα, fα,β) is a particular quotient of the disjoint union
∐Set

α Xα determined by the

family of Set-morphisms fα,β. We have similar constructions in the category Grp

of groups (cf. Example A.21).

There is a link between inverse and direct limits:

Remark A.24. Let (Xα, fα,β) be an inverse system of objects and morphisms in

some category C. If the inverse limit lim
←−−α

Xα exists, then (after making some

obvious canonical identifications) one has the identity

HomC















Y → lim
←−−
α

Xα















= lim
←−−
α

HomC(Y → Xα)

for any C-object Y; indeed this can be viewed as an alternate definition of inverse

limits. Similarly, if (Xα, fα,β) is a direct system of objects and morphisms in some

category C and its direct limit lim
−−→α

Xα exists, then

HomC















lim
−−→
α

Xα → Y















= lim
←−−
α

HomC(Xα → Y),

after making the obvious canonical identifications.

In measure theory, there are natural product constructions which are not cat-

egorical as the following example discusses.

Example A.25. Let X = (X,X, µ) and Y = (Y,Y, ν) be CncPrb-spaces (i.e., con-

crete probability spaces), as defined in Definition 5.1. Then the usual probability
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space product (also known as the Fubini product),

X ×CncPrb Y = (X × Y,X ⊗Y, µ × ν)

will almost never be categorical. For instance, if X = Y = [0, 1] with Lebesgue

measure, then the diagonal set [0, 1]∆ ≔ {(x, x) : x ∈ [0, 1]} ⊆ X × Y equipped

with Lebesgue probability measure is another product of X and Y (it projects

via CncPrb-morphisms to both X and Y), but has no CncPrb-morphism to

X ×CncPrb Y . Indeed, categorical products almost never exist in CncPrb, because

of the non-uniqueness of joinings. In fact, the area of optimal transport would be

completely trivial if there existed categorical products in CncPrb!

The lack of categorical products in probabilistic categories is dually reflected

in the lack of categorical coproducts in corresponding categories of tracial com-

mutative C∗- and von Neumann algebras. However in both cases there are natu-

ral notions of products resp. coproducts. In the probabilistic categories, these are

the previously mentioned Fubini products (a similar construction is available in

the category of probability algebras, see Remark 7.8), and in the algebraic cate-

gories, we have the dual notion of tensor products. The formalism of (symmet-

ric) monoidal categories allows to capture these non-categorical product (resp.

coproduct) constructions, and monoidal functors help to relate them.

Definition A.26 (Symmetric monoidal categories and functors). Let C be a cat-

egory.

(i) A symmetric monoidal structure on a category C is defined by the fol-

lowing data:

(1) A bifunctor ⊗ : C × C → C called the tensor product;

(2) an object I called the identity object or unitor;

(3) and four natural isomorphisms, called the structure isomorphisms,

satisfying the following coherence conditions:

(a) the associator α with components

αX,Y,Z : (X ⊗ Y) ⊗ Z → X ⊗ (Y ⊗ Z)

satisfying the pentagon identity which can be expressed via

the commutative diagram
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(X ⊗ Y) ⊗ (W ⊗ Z)

X ⊗ (Y ⊗ (W ⊗ Z)) ((X ⊗ Y) ⊗W) ⊗ Z

X ⊗ ((Y ⊗W) ⊗ Z) (X ⊗ (Y ⊗W)) ⊗ Z

αX,Y,W⊗Z αX⊗Y,W,Z

αX,Y,W⊗idZidX ⊗αY,W,Z

αX,Y⊗W,Z

(b) the left unitor λ with components

λX : I ⊗ X → X

and the right unitor ρ with components

ρX : X ⊗ I→ X

satisfying the triangle identity which can be expressed via the

commutative diagram

A ⊗ (I ⊗ B) (A ⊗ I) ⊗ B

A ⊗ B

idX ⊗λY ρX⊗idY

αX,I,Y

(c) the braiding β with components

βX,Y : X ⊗ Y → Y ⊗ X

satisfying the hexagon identity which can be expressed via the

commutative diagram

(X ⊗ Y) ⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z) ⊗ X

(Y ⊗ X) ⊗ Z Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗ X)

αX,Y,Z βX,Y⊗Z

αY,Z,XβX,Y⊗idZ

αY,X,Z idY⊗βX,Z

Moreover, we require that

βY,X ◦ βX,Y = idX⊗Y .

A symmetric monoidal category is a tuple

(C,⊗, I) = (C,⊗, I, α, λ, ρ, β)

where C is a category equipped with a symmetric monoidal structure

given by the data ⊗, I, α, λ, ρ, β. We call X ⊗ Y the tensor product of
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X, Y ∈ C. If A is a finite index, and Xα, α ∈ A are C-objects, then we

denote by
⊗

α∈A
Xα =

⊗C

α∈A
Xα their tensor product.

(ii) A symmetric monoidal category (C,⊗, I) is said to be semicartesian

(resp. cosemicartesian) if the unitor I is a terminal (resp. initial) object.

(iii) Let (C,⊗C, IC, αC, λC, ρC, βC) and (D,⊗D, ID, αD, λD, ρD, βD) be symmet-

ric monoidal categories. A functor F : C → D is said to be a braided

monoidal functor if there are

(1) a natural transformation from the bifunctor ⊗D ◦F×F to the bifunc-

tor F ◦ ⊗C with components denoted by φX,Y ,

(2) and a morphism φ : ID → F(IC) inD,

such that for all X, Y, Z ∈ C the following diagrams commute inD:

(F(X) ⊗D F(Y)) ⊗D F(Z) F(X) ⊗D (F(Y) ⊗D F(Z))

F(X ⊗C Y) ⊗D F(Z) F(X) ⊗D F(X ⊗ Z)

F((X ⊗C Y) ⊗C Z) F(X ⊗C (Y ⊗C Z))

αD

idX⊗DφY,ZφX,Y⊗DidZ

φX⊗CY,Z φX,Y⊗CZ

F◦αC

F(X) ⊗D ID F(X) ⊗D F(IC)

F(X) F(X ⊗C IC)

φX,IC

idF(X)⊗Dφ

F(ρC)

ρD

ID ⊗D F(Y) F(IC) ⊗D F(Y)

F(Y) F(IC ⊗C Y)

φ⊗DidF(Y)

λD φIC,Y

F(λC)
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F(X) ⊗D F(Y) F(Y) ⊗D F(X)

F(X ⊗C Y) F(Y ⊗C X)

βD

F(βC)

φX,Y φY,X

(iv) A functor from a semicartesian symmetric monoidal category (C,⊗C, IC)

to another one (D,⊗D, ID) is said to be braided if it is braided as a func-

tor of symmetric monoidal categories and additionally the following di-

agrams commute for all X, Y ∈ C (where φX,Y are the components of the

natural transformation in the definition of a braided functor above):

F(X) ⊗D F(Y)

F(X) F(X ⊗C Y)

φX,Y
πF(X)

F(πX )

F(X) ⊗D F(Y)

F(X ⊗C Y) F(Y)

πF(Y)
φX,Y

F(πY )

Dually, one can define braided functors between cosemicartesian sym-

metric monoidal categories, the details of which we leave to the reader.

If F : C → D is braided monoidal functor between symmetric monoidal cat-

egories C and D, then we say that tensor products in C are related to tensor

products inD (with respect to F). If the natural transformation with components

φX,Y is a natural monomorphism (resp. natural isomorphism), then we say that

tensor products in C are contained in (resp. agree with) tensor products in D

(with respect to F).

Example A.27 (Cartesian and cocartesian monoidal categories). Let C be a cat-

egory with finite categorical products. In particular, C has a terminal object,

namely the empty categorical product (this is a consequence of the universal

property for the empty categorical product). We can equip C with a semicarte-

sian symmetric monoidal structure, where the tensor product is the categorical

product, the unitor is the terminal object, and the structure isomorphisms are de-

fined in the obvious way. Semicartesian symmetric monoidal categories arising

from categories with finite categorical products are called Cartesian monoidal

categories.

Dually, if C is category with finite categorical coproducts (such a category has

always an initial object, namely the empty coproduct), then we can equip C with

a cosemicartesian symmetric monoidal structure, where the tensor product is the
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categorical coproduct, the unitor is the initial object, and the structure isomor-

phisms are defined in the obvious way. Cosemicartesian symmetric monoidal

categories arising from categories with finite categorical coproducts are called

cocartesian monoidal categories.

Remark A.28. By [32, Theorem 3.5], C is semicartesian if and only if there are

natural transformations from the functor − ⊗ Y to the identity functor idC and

from the functor X ⊗ − to idC for all X, Y ∈ C with components πX and πY , that

is, the diagrams

(A.1)

X ⊗ Y X X ⊗ Y Y

X′ ⊗ Y X′ X ⊗ Y ′ Y ′

πX

πX′

f⊗idY f

πY

gidX⊗g

πY′

commute for all C-morphisms f : X → X′ and g : Y → Y ′. Moreover, these

natural transformations are required to be compatible with the left and right un-

itor in the obvious way. We call the components πX and πY the projections or

marginalizations.

Dually, C is cosemicartesian if and only if there are natural transformations

from idC to −⊗ Y and from idC to X ⊗− for all X, Y ∈ C with components ιX and

ιY , that is, the diagrams

(A.2)

X X ⊗ Y Y X ⊗ Y

X′ X′ ⊗ Y Y ′ X ⊗ Y ′

ιX

ιX′

f⊗idYf

ιY

g idX⊗g

ιY′

commute for all C-morphisms f : X → X′ and g : Y → Y ′. Moreover, these nat-

ural transformations are required to be compatible with the left and right unitor

in the obvious way. We call the components ιX and ιY the inclusions.

Symmetric monoidal categories help to formalize finite categorical and non-

categorical notions of products. To formalize infinite products in semicartesian

(resp. semicocartesian) categories, we can combine finite monoidal tensor prod-

ucts with inverse (resp. direct) limits.
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Definition A.29 (Infinite tensor products). (cf. [29, Definition 3.1]) Let (C,⊗, I)

be a semicartesian symmetric monoidal category. Let (X j) j∈J be a family of ob-

jects in C. Let A be the directed set of finite subsets of J ordered by inclusion.

For α ∈ A, put XF ≔
⊗

α∈F
Xα, and for α ≤ β in A, consider the C-morphism

fα,β : Xβ → Xα (given by (A.1)). The pair (Xα, fα,β) forms an inverse system in C.

An inverse limit lim
←−−α

Xα, if it exists, is said to be an infinite tensor product of the

X j, if it preserves the functor − ⊗ Y for every C-object Y , that is,

(lim
←−−
α

Xα) ⊗ Y = lim
←−−
α

(Xα ⊗ Y)

(up to canonical identifications).

Dually, we can define infinite tensor products in a cosemicartesian symmetric

monoidal category replacing inverse systems and limits by direct systems and

limits.

We denote by
⊗

j∈J
X j =

⊗C

j∈J
X j the infinite tensor product of the X j.

Let (C,⊗C, IC) and (D,⊗D, ID) be semicartesian (resp. cocartesian) symmet-

ric monoidal categories both admitting infinite tensor products. A braided functor

F : C → D is said to relate infinite tensor products if F preserves inverse limits

(resp. direct limits). We can then also speak of that infinite tensor products in C

are contained in (agree with) infinite tensor products inD.

Remark A.30. Notice that in a category where infinite categorical products

(resp. coproducts) exist, the infinite tensor products in the associated cartesian

symmetric monoidal category coincide with infinite categorical products (resp. co-

products).

Example A.31. It follows from the construction of (Fubini type) product mea-

sure spaces in [9, Chapter 3.5] or [26, Chapter 254] (note that no separability

or standard Borel hypotheses are needed for these product space constructions

on arbitrary probability spaces) that CncPrb has the structure of a cocartesian

symmetric monoidal category which admits infinite tensor products. However,

this tensor product does not give CncPrb the structure of a Cartesian symmetric

monoidal category, as already noted in Example A.25.

IfC is a semicartesian symmetric monoidal category andC′ cartesian monoidal

category, then any functor Func : C → C′ relates the two tensor products; how-

ever, the two tensor products only agree with respect to Func if one has the

relation

(A.3) HomC′















Y → Func















C
⊗

α∈A

Xα





























=

Set
∏

α∈A

HomC′(Y → Func(Xα))
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for all C′-objects Y and C-objects Xα, in the sense that the natural map from the

left-hand side to the right-hand side is bijective. Similarly, C-tensor product is

only contained in the C′-tensor product if one has

HomC′















Y → Func















C
⊗

α∈A

Xα





























⊆

Set
∏

α∈A

HomC′(Y → Func(Xα))

for all C′-objects Y and C-objects Xα, in the sense that the natural map from the

left-hand set to the right-hand set is injective. There are similar equivalences for

categorical coproducts which we leave to the reader.

The following examples may help illustrate these relations:

Example A.32. The categorical product
∏Grp agrees with the categorical prod-

uct
∏Set (the direct product of groups uses the Cartesian product of the under-

lying sets), but the categorical coproduct
∐Grp, while canonically related to the

categorical Set-coproduct, does not agree with it or even contain it (the canonical

Set-morphism between the two coproducts maps all of the identity elements of

each group to a single point). The categorical coproduct
∐Boolσ does not agree

with the categorical coproduct
∐Bool, but does at least contain it (for instance, if

X,X′ are Boolσ-algebras, then the categorical coproduct X⊗BoolσX′ contains the

categorical coproduct X ⊗Bool X′ as a Boolean subalgebra).

We review a special case of the construction of Grothendieck categories,

called action categories, which will be useful for us to associate to a category of

spaces (resp. algebras) a corresponding category of probability spaces (resp. tra-

cial algebras).

Definition A.33 (Action category). Let C be a category and P : C → Set be

a functor. The objects of the associated action category C ⋉ P consist of pairs

(X, µ), where X ∈ C and µ ∈ P(X), and a C ⋉ P-morphism from a C ⋉ P-object

(X, µ) to another C⋉P-object (Y, ν) is a C-morphism f : X → Y with the property

that P( f )(µ) = ν.

Remark A.34. Suppose that C is a Cartesian symmetric monoidal category and

P : C → Set is a braided functor such that categorical products in C agree with

product of sets with respect to P. By chasing definitions, one can verify that the

action category C ⋉ P has the structure of a semicartesian symmetric monoidal

category with the induced tensor product (X, µ) ⊗C⋉P (Y, ν) ≔ (X ⊗C Y, µ × ν),

where µ × ν is the unique element in P(X ⊗C Y) which corresponds to (µ, ν) ∈

P(X) ×Set P(Y).

Moreover if C admits arbitrary categorical products and P preserves inverse

limits (resp. direct limits), then C⋉P admits infinite tensor products with respect

to the induced tensor product.
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Example A.35. Consider the category of concrete measurable spaces CncMbl.

The functor Prb : CncMbl → Set sends an object (X,ΣX) ∈ CncMbl to the

set Prb(X,ΣX) of probability measures on (X,ΣX) and a morphism f : (X,ΣX) →

(Y,ΣY) in CncMbl to the pushforward map Prb( f ) : Prb(X,ΣX) → Prb(Y,ΣY )

defined by Prb( f )(µ) = f∗µ. The action category C⋉P can be identified with the

category CncPrb of concrete probability spaces and measure-preserving maps.

Since CncMbl admits arbitrary categorical products, CncPrb admits infinite ten-

sor products (cf. Remark A.31).

Appendix B. A counterexample to a claim of Halmos

Suppose that X = (Inc(X)Boolσ , µX) is a PrbAlg-space, and let Γ be a discrete

group acting on X by PrbAlg-isomorphisms, thus for each γ ∈ Γ one has an

PrbAlg-isomorphism T γ : X → X such that T γT γ′ = T γγ′ for γ, γ′ ∈ Γ. We can

form the invariant factor InvΓ(X) by replacing the Boolσ-algebra Inc(X)Boolσ by

the invariant subalgebra

Inc(X)ΓBoolσ
≔ {E ∈ Inc(X)Boolσ : (T γ)∗E = E for all γ ∈ Γ}.

There is then an obvious factor PrbAlg-morphism π : X → InvΓ(X). Applying

the canonical model functor Conc, we obtain a CHPrb-morphism Conc(π) : Conc(X) →

Conc(InvΓ(X)), and applying canonical disintegration (Theorem 1.6), we may

disintegrate µConc(X) into probability measures µy supported on fibers Conc(π)−1({y})

for all y ∈ Conc(InvΓ(X)). From the uniqueness of the disintegration it fol-

lows that the measures µy are invariant with respect to the continuous action

γ 7→ Conc(T γ). It was asserted without proof in [36, §4] that these measures are

furthermore ergodic with respect to this action, that is to say all invariant Baire-

measurable subsets on Conc(X) have measure 1 or 0 with respect to µy. The

purpose of this appendix is to supply a counterexample to this claim in which

Γ is uncountable. The failure is somewhat dramatic in the sense that every fiber

measure µy is non-ergodic. We are unable to determine whether the claim may

still hold for countable Γ, either for all y or for almost all y.

To build the counterexample, we first define the CHPrb-space

Y ≔ Conc([0, 1])

where the unit interval [0, 1] is given the usual Lebesgue measure. Clearly for any

natural number n, [0, 1] can be partitioned into n measurable subsets of measure

1/n, so the same is true for Conc([0, 1]). In particular we see that every point

y in Y has zero outer measure, in the sense that it can be contained in sets of

arbitrarily small measure.
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Next, we define the product space

X ≔ Y ×CHPrb

CHPrb
∏

y∈Y

{−1, 1}

where {−1, 1} is the discrete two-element multiplicative group with probability

Haar measure. In particular, each element of X takes the form

(y1, (αy2)y2∈Y)

with y1 ∈ Y and αy2 ∈ {−1,+1} for y2 ∈ Y . We abbreviate
∏CHPrb

y∈Y {−1, 1} as

{−1, 1}Y; this is a compact Hausdorff abelian group equipped with Haar prob-

ability measure µ{−1,1}Y . For any f ∈ L1(X) we have a conditional expectation

E( f |Y) ∈ L1(Y) defined by

E( f |Y)(y) ≔
∫

{−1,1}Y
f (y, α) dµ{−1,1}Y (α).

Observe that for any h ∈ C(Y) and any finite subset I ⊆ Y , the function

h ⊗
∏

y∈I ǫy : X → C defined by

h ⊗
∏

y∈I

ǫy

(

y1, (αy2)y2∈Y

)

≔ h(y1)
∏

y∈I

αy

is an element of C(X). If I is empty we write h⊗
∏

y∈I ǫy as h⊗1. From the Stone–

Weierstrass theorem we see that the space of finite linear combinations of such

functions h ⊗
∏

y∈I ǫy is dense in C(X) in the uniform topology, and hence also

dense in L2(X) in the L2 topology.

We let Γ be the discrete abelian multiplicative group

Γ = HomCH(Y → {−1, 1})

of continuous maps γ : Y → {−1,+1} from Y to {−1, 1}. We define a CHPrb-

action T γ : X → X of Γ on X by the formula

T γ(y1, (αy2)y2∈Y) ≔ (y1, (αy2γ(y1)γ(y2))y2∈Y).

It is not difficult to verify (using Fubini’s theorem) that this is a CHPrb-action.

The intuition here is that the set

{(y1, (αy2)y2∈Y) : αy1 = +1}

appears to be an invariant subset of X “of measure 1/2”. However, it turns out

that this set is not Baire measurable and so will not show up in the invariant factor

of XPrbAlg. However, when passing to the canonical models, there are analogues

of this invariant set which are measurable with respect to the individual µy and

can be used to contradict the ergodicity of these measures.

We turn to the details. For any h ∈ C(Y) we see that h ⊗ 1 is an invari-

ant element of L2(X); on taking closures we see that L2(Y) is contained in the
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invariant factor of L2(X). We claim that this is the entire invariant factor. To

show this, it suffices by the Alaoglu-Birkhoff theorem [4] to check that for every

f ∈ L2(X), that the element of minimal norm in the closed convex hull of the or-

bit { f ◦T γ : γ ∈ Γ} is equal to E( f |Y). By density and linearity it suffices to verify

this when f is of the form f = h ⊗
∏

y∈I ǫI for some h ∈ C(Y) and finite I ⊆ Y .

If I is empty this follows from the invariance of the h ⊗ I, so now suppose that

I is non-empty. Then E( f |Y) = 0 and the objective is now to show that convex

combinations of f ◦ T γ can have arbitrarily small L2(X) norm.

Direct calculation shows that for any γ ∈ Γ we have

T γ f =

















∏

y∈I

γ(y)

















(hγ|I|) ⊗
∏

y∈I

ǫI,

where |I| > 0 denotes the cardinality of I. If |I| is even, we can use Urysohn’s

lemma to choose γ ∈ Γ so that
∏

y∈I γ(y) = −1, and thus

T γ

















h ⊗
∏

y∈I

ǫy

















= −h ⊗
∏

y∈I

ǫy,

giving the claim in this case. If instead |I| is odd, we use the fact that I has

zero outer measure and Urysohn’s lemma to find γ ∈ Γ such that γ = +1 on a

neighbourhood of I of arbitrarily small measure, and −1 otherwise, then we see

that the function

1 + T γ

2

















h ⊗
∏

y∈I

ǫy

















is bounded and supported on a set of arbitrarily small measure, hence is arbi-

trarily small in L2(X) norm as required. This establishes that Y is the invari-

ant factor of X: InvΓ(XPrbAlg) ≡ YPrbAlg. Thus the projection map π : XPrbAlg →

InvΓ(XPrbAlg) can be identified with the obvious projection map from X to Y ,

casted to PrbAlg.

Now we pass to the canonical models Conc(X), Conc(Y). For y ∈ Conc(Y),

we have from construction that

(B.1)
∫

Conc(X)
f dµy = E( f |Y)(y)

for f ∈ C(Conc(X)) ≡ L∞(X), where we view E( f |Y) ∈ L∞(Y) as an element of

C(Conc(Y)). We claim that the function 1⊗ ǫy ∈ L
∞(X) ≡ C(Conc(X)) is invariant

but non-constant in L∞(Conc(X), µy), which will demonstrate the non-ergodicity

of µy.



FOUNDATIONAL ASPECTS OF UNCOUNTABLE MEASURE THEORY 97

To do this it will suffice to establish the identities
∫

Conc(X)
(1 ⊗ ǫy) dµy = 0

∫

Conc(X)
|(1 ⊗ ǫy)|

2 dµy = 1
∫

Conc(X)

∣

∣

∣(1 ⊗ ǫy) ◦ T γ − (1 ⊗ ǫy)
∣

∣

∣

2
dµy = 0

for all γ ∈ Γ. But direct calculation shows that

E(1 ⊗ ǫy|Y)(y′) = 0

E
(

|1 ⊗ ǫy|
2|Y

)

(y′) = 1

E

(

∣

∣

∣(1 ⊗ ǫy) ◦ T γ − (1 ⊗ ǫy)
∣

∣

∣

2
|Y

)

(y′) = |γ(y) − γ(y′)|2

for any y′ ∈ Y , and the claim now follows from (B.1).
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