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1 | INTRODUCTION

Abstract

Assuming that Siegel zeros exist, we prove a hybrid ver-
sion of the Chowla and Hardy-Littlewood prime tuples
conjectures. Thus, for an infinite sequence of natural
numbers x, and any distinct integers k4, ..., hy, h;, s h’f,
we establish an asymptotic formula for

D AM A+ hy) - A+ b + B - A(n + h)

n<x

forany 0 < k < 2and # > 0. Specializing to either £ = 0
or k = 0, we deduce the previously known results on the
Hardy-Littlewood (or twin primes) conjecture and the
Chowla conjecture under the existence of Siegel zeros,
due to Heath-Brown and Chinis, respectively. The range
of validity of our asymptotic formula is wider than in
these previous results.

MSC 2020
11N37 (primary), 11N36 (secondary)

1.1 | The Hardy-Littlewood-Chowla conjecture and Siegel zeroes

LetA: N — {—1, +1} denote the Liouville function. We have the following well known conjecture

of Chowla [3]:
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3318 | TAO AND TERAVAINEN

Conjecture 1.1 (Chowla’s conjecture). Let h;, s h’f be distinct fixed natural numbers for some
fixed # > 1. Then'

EpexA(n + B}) - A(n + B.) = 0(1)
as X — o0.

Here and in the sequel, n is understood to range over natural numbers, and we use the averaging
1

notation E,c 4 f(n) := i Ynea f(n) for any set A of a finite cardinality |A|. The reasons for the
primes in the notation hi, s h’f is for compatibility with Conjecture 1.3.

For # = 1, Chowla’s conjecture is equivalent to the prime number theorem, but the conjecture
is open for all #Z > 2, although a slightly weaker ‘logarithmically averaged’ conjecture is known to
hold for # = 2 [27] or for odd ¢ [28, 29]. All the discussion here concerning the Liouville function
A has a counterpart for the Mébius function u, but for simplicity of exposition we restrict attention
to the Liouville function here.

The analogous conjecture for the von Mangoldt function A : N — R™ is the well-known prime

tuples conjecture of Hardy and Littlewood [10]:

Conjecture 1.2 (Hardy-Littlewood prime tuples conjecture). Let hy,...,h; be distinct fixed
natural numbers for some fixed k > 0. Then

Epex A+ hy) - A(n + hy) = & + 0(1)

as x — oo, where the singular series © is defined by the formula
@ :=[]5, (8))
p

the local factors 8, are defined by

—k
By = Encz/prhp(n+hy) - Ay(n+ hy) = (1 - %) (1 LT hk};D (mod P)|> 12)

and A, : Z/pZ — R* is the local von Mangoldt function A ,(n) := ﬁln;eo (p)- (In this paper, we
adopt the convention that the empty product is equal to 1.)

It is not difficult to show the asymptotic

ﬁp=1+0<#>, (1.3)

so the product in (1.1) converges, though it could vanish if the h, ..., b cover a complete set of
residues modulo p for some prime p. Conjecture 1.2 is trivial for k = 0 and equivalent to the
prime number theorem for k = 1, but is open for all other values of k, with the k = 2 case already
implying the notorious twin prime conjecture.

* See Section 2 for our conventions on asymptotic notation.
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HARDY-LITTLEWOOD-CHOWLA WITH A SIEGEL ZERO 3319

It is natural to unify Conjectures 1.1 and 1.2 as follows.

Conjecture 1.3 (Hardy-Littlewood-Chowla conjecture). Let k,# > 0, and let hy, ..., by, h, ..., h;
be distinct fixed natural numbers. Then

Epnex A+ hy) - A(n + h)A(n + h) - A(n + b)) = @ + 0(1)

as x — oo, where @ is defined by (1.1) when # = 0 and is equal to 0 otherwise.

Clearly Conjectures 1.1 and 1.2 correspond to the special cases k = 0 and # = 0, respectively, of
Conjecture 1.3. One could also generalize this conjecture by replacing the formsn + hj,n + h;, by
more general linear forms a;n + b;, a;,n + bj.,, no two of which are scalar multiples of each other,
but we do not do so here in order to simplify the notation.

Only the k + ¢ < 1 cases of Conjecture 1.3 are currently known, even if one assumes the gen-
eralized Riemann hypothesis, though see [26] for some recent progress in the function field case,
and the recent works [15], [16] for some progress on an averaged version of this conjecture. On
the other hand, it turns out (perhaps surprisingly) that some progress on this conjecture can be
made under an opposing hypothesis, namely the existence of a Siegel zero. We use the notational
conventions from Heath-Brown’s work [11]:

Definition 1.4 (Siegel zero). A Siegel zero f3 is a real number associated to a primitive quadratic
Dirichlet character y of conductor g, such that L(8, x) = 0 and

1

B=1-
nlogg,

for some 7 > 10 (which we call the quality of the zero).

The lower bound on 7 is mostly in order to ensure that log log 7 is positive; the precise numerical
value of the lower bound is not important. From Siegel’s theorem, we have the (ineffective) upper
bound

n < q, (1.4)

on the quality of a Siegel zero for any € > 0.

There are prior results in the literature towards Conjecture 1.3 in the presence of a Siegel zero
when only either the von Mangoldt function or the Liouville function appears in the correlation.
These results are due to Heath-Brown [11] in the case of two-point correlations of the von Man-
goldt function, and due to Chinis [2] in the case of the Chowla conjecture (with previous work by
German and Katai [6] on the two-point case). We can summarize them as follows:

Theorem 1.5 (Prior results on Hardy-Littlewood-Chowla given a Siegel zero). Suppose that one
has a Siegel zero § with associated conductor q,, and quality 7.

(i) [11, Theorem 1] For any distinct fixed natural numbers h,, h,, one has

1
[EHSXA(I’I + hl)A(n + h’2) =S+ O<w)

uniformly for all q}2(50 <x< q)3(00’ where @ is defined by (1.1).
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3320 | TAO AND TERAVAINEN

(ii) [6, Theorem 2] One has

E cxA(mA(n +1) < + e(x)

_1
loglogn
loglogn)/3
for q)ICO <x< qiog ogn)/
choice of Siegel zero).
(iii) [2, Theorem 1.2] For any distinct fixed natural numbers k', .., h/,, one has

, Where €(x) is a quantity that goes to zero as x — oo (uniformly in the

1
(loglogn)1/2 log'/12

EpcxA(n + h) - A(n + h) <

(loglogn)/3
forq)l(Ostqxg gn/3

The main result of this paper is the following common generalization and strengthening of
these results.

Theorem 1.6 (New results on Hardy-Littlewood—Chowla given a Siegel zero). Let 0 < k < 2 and
¢ >0, andlet hy,..., hy, h’l, s h; be fixed distinct natural numbers. Suppose that one has a Siegel
zero 3 with associated conductor q, and quality 7. Let 0 < g, <1 be fixed, and let x lie in the
range

10k+3 +¢, 1/2
q > '<x<qy . 3)

Then we have

— L [ as

log 10 max(1,k) 77

EncxA(n + hy) - At + h)A(n + h) - A(n+ h,)) =& +0

where @ is as in Conjecture 1.3.

Remark 1.7. The k-dependent exponent of 10k in the range (1.5) can be improved somewhat,
particularly when k = 1, but we will not attempt to optimize it here. On the other hand, in order to
improve the exponent % in (1.5) in the case k = 0, it seems necessary to be able to obtain non-trivial
bounds on short character sums such as

Z}((n +h) - x(n+h)

nel
for intervals I of length less than q)l(/ 2, which is beyond the range of direct application of the Weil
bounds and completion of sums (and for # > 1 we were not able to adapt the Burgess argument
[1] to such sums due to the lack of multiplicative structure). The exponent in (1.6) can
similarly be improved, but we will not attempt to do so here.

10 max(1,k)

Note that Theorem 1.6 improves the dependence on the quality 7 of Siegel zero, and also allows
for correlations that involve both the von Mangoldt function A and the Liouville function 4, so
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HARDY-LITTLEWOOD-CHOWLA WITH A SIEGEL ZERO | 3321

long as the former function appears at most two times. This latter restriction is an inherent lim-
itation of our current state of knowledge of correlations for functions like the divisor function
7 :=1 % 1; in particular, k-point correlations E, ., 7(n + hy) --- 7(n + h) are currently only well
understood when k < 2.

As a direct corollary to Theorem 1.6, we can state the following strengthening of previous
results.

Corollary 1.8. Suppose that one has a Siegel zero § with associated conductor q,, and quality 7). Let
0 < gy < 1 be fixed.

(i) For any distinct fixed natural numbers h,, h,, one has

E,c A0+ h)A(+ hy) =G + 0 —
< 1og!/2 5

uniformly for all qj(l/ < x g qzm, where @ is defined by (1.1).

(ii) For any distinct fixed natural numbers h;, ..., h,, one has

1

! /
[Ensxl‘l(l’l + hl) - Aln + hf) < m

1/2+¢, 1/2

uniformly for all q,, £x< q?(
(iii) For any fixed integer h # 0, one has

1

Ejpj<pexAp + ) < log"/10 7

21/2+¢, 1/2

X

7

uniformly for all q ¥

<x<q

Corollary 1.8(ii) can further be applied to strengthen Chinis’s result [2, Corollary1.1] on Sarnak’s
conjecture on Mdbius disjointness being true at infinitely many scales under the assumption of
Siegel zeros. Applying Corollary 1.8 and Sarnak’s argument for the implication from Chowla’s
conjecture to Sarnak’s conjecture (as in [2]), we see that, under the hypotheses of Corollary 1.8,
for any fixed deterministic f : N - C, we have

D Am)f(n) = o(x)

n<x
in the range q;(/ 0 < x g qgl/z. This improves on the range g’ < X < q;?glogn/ *in[2].
Corollary 1.8(iii) relates to the conjecture (considered in, for example, [23], [25], [15], [16]) that
E| hi<p<x A(p + h) = o(r(x)), proving it for infinitely many x under the existence of infinitely
many Siegel zeros (of arbitrarily high quality).
We lastly note that, after the submission of this paper, Matoméki and Merikoski [17] proved a
quantitatively stronger version of Corollary 1.8(i).
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3322 | TAO AND TERAVAINEN

1.2 | Overview of proof

The general strategy for proving results such as Theorem 1.6 is now well known: in the presence
of a Siegel zero (and for x comparable in log-scale to g,,), the function 4 ‘pretends’” to be like the
Dirichlet character y, and the von Mangoldt function A = u * log similarly ‘pretends’ to be like
x * log, so the correlation in (1.6) is of comparable complexity to the average

Encx(x #log)(n + hy) - (x * log)(n + h)x(n + b)) - x(n + hy)

(in practice we also have to insert some sieve weights to account for the fact that not all numbers
are rough). This is a twisted and weighted version of the divisor correlation

EnxT(n+hy) - t(n+ hy)

which, as previously mentioned, is well understood for k < 2, basically because the Weil bounds
for Kloosterman sums ensure that 7 has level of distribution at least 2/3, the key point being
that this is larger than 1/2. The twist by y introduces the need to estimate character sums
such as

[EnSx)((n + hl) )((I’l + hk))((n + h;) "')((n + hlf),

which can be adequately controlled by the Weil estimates for character sums since we are in the
regime x > q)l{/ 2,

To make this strategy rigorous, we will approximate the functions A, 4 by a series of more
tractable approximants that involve the exceptional character y (as well as the scale x). We will

do this by executing the following steps in order.

() Replace the Liouville function 4 with an approximant Ag;ege;, Which is a completely multi-

plicative function that agrees with 4 at small primes and agrees with y at large primes. (This
step was also performed in [2, 6].)

(ii) Replace the von Mangoldt function A with an approximant Ag;ege;, Which is the Dirichlet con-
volution y * log multiplied by a Selberg sieve weight v to essentially restrict that convolution
to almost primes. (This step essentially also appears in [11].)

(iii) Replace Asiegel With a more complicated truncation Agiegel which has the structure of a ‘Type
I'sum’, and which agrees with Ag;e,. 0n numbers that have a ‘typical’ factorization.

(iv) Replace the approximant Agjeger With @ more complicated approximant Agiegel which has
the structure of a ‘“Type I sum’. (This step is inspired by a similar Type I approxima-
tion to the divisor function 7 (and its higher order generalizations) recently introduced in
[18,19].)

(v) Now that all terms in the correlation have been replaced with tractable Type I sums, use
standard Euler product calculations and Fourier analysis, similar in spirit to the proof of
the pseudo-randomness of the Selberg sieve majorant for the primes in [9, Appendix D], to
evaluate the correlation to high accuracy.

T Following [8], we informally say that one arithmetic function f ‘pretends’ to be another g if they are often close to each
other when evaluated at rough numbers.
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HARDY-LITTLEWOOD-CHOWLA WITH A SIEGEL ZERO | 3323

More succinctly, the proof of Theorem 1.6 proceeds by justifying all of the following
approximations:

Epex A + hy) = A(n + b )A(n + h) = A(n + k)

®
N Epx A+ hy) - A+ ) Agieger(n + hy) - Asieger(n + h’f)

@n

~ [En<xA51egel(n + hl) ASiegel(n + hk)/lsiegel(n + h;) ASiegel(n + h;)

(zll) , ) 1.7
~ |En<xASIege1(n +h ) Aslegel(n + ]’lk)/lslege](n + hl) . slegel(n +h )

@) l ’

R Epey Slegel(n +hy) - Slegel(n + hk)/ls jege 1(n +hi) - Slegel(n +h),)

()

r GO,

where the precise meaning of the symbol % is given in (2.11) below.

The steps (i)-(v) are executed in Sections 4-8, respectively. Interestingly, the hypothesis k < 2
is only used in step (iv) of this process.

Steps (i) and (ii) of the strategy rely ultimately on the well-known phenomenon that in the pres-
ence of a Siegel zero, one has y(p) = —1 for most primes p that are comparable to the conductor
g, in log-scale. Traditionally, such phenomena are justified using complex-analytic methods, and
in particular by exploiting the Deuring-Heilbronn phenomenon. It turns out that an alternate
approach relying almost entirely on elementary methods leads instead to significantly superior
dependence on the quality # of the zero; see Proposition 3.5. This eventually enables us to obtain
a wider x range in Theorem 1.6 than in previous results.

Step (iii) involves splitting Agjege, Which is a kind of character-twisted divisor sum, into two

parts as /18 +2°  where A% accounts for the small divisors (with a smooth truncation)
iegel Siegel Siegel

and lgiegel accounts for the large divisors. It turns out that lgiegel has a negligible contribution to
the correlation (basically because smooth numbers become extremely rare at large scales). This

is shown by first constructing a majorant for Agiegel (in Lemma 6.1) that after some Euler product

computations is seen to be small ‘on average’ in a suitable sense.
Steps (iv) and (v) morally speaking amount to computing correlations such as

Encx n=a(q)(X * 10g(n))(x * log(n + h)) (1.8)

with power-saving error term (for1 < a < g < x% for a small § > 0), as well as correlations of the
form

[Engxf(n + hl) f(n + hk)’ (1.9)

where f(n) = ¥4, 4<xs bg is @ Type I sum with explicit coefficients b;. However, both of these
tasks are rather tedious as such; the first correlation (1.8) has secondary main terms of order

1t would probably be possible to execute steps (ii) and (iii) in the opposite order, but that would offer no noteworthy

simplifications, as we would still need to construct a majorant for lslegel
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3324 | TAO AND TERAVAINEN

O(@) times the main term (cf., [4]), and we would need a fully explicit asymptotic in terms of
h, a, q; meanwhile, evaluating the second correlation (1.9) with the Goldston-Yildirim approach
[7] leads to some tricky contour integrals. We therefore smoothen Ag;ege; by inserting a smooth par-
tition of unity; the smoothness of the resulting functions makes handling error terms easier, just
as in the smoothed approach to Goldston-Yildirim type correlations in [9, Appendix D]. We can
also avoid explicitly obtaining asymptotics for sums such as (1.8) by using the Dirichlet hyperbola
method, although the main ingredient for evaluating such correlations (namely Kloosterman sum
bounds) is still needed. Our use of smooth weights does still necessitate some lengthy yet stan-
dard Fourier-analytic computations, but the arithmetic input is easier than in a direct approach
involving an evaluation of (1.8) and (1.9).

2 | NOTATION

2.1 | Asymptotic notation

For the rest of the paper, we let k, 7, hy, ..., hk,hi, ...,h’f,eo,ﬁ,)(, gy M X be as in Theorem 1.6,
save that we will not require the hypothesis k < 2 except in Section 5, and that we do not impose
the restriction (1.5) on x > 1 before Section 4. We use the asymptotic notation X < Y,Y > X, or
X = O(Y) to denote the bound |X| < CY where C is a constant which is allowed to depend on
the ‘fixed’ quantities k, ¢, h, ..., hy, h;, s h’f, €o; We permit the constants to be ineffective. Thus,
for instance, the singular series @ in Conjecture 1.3 obeys the bound © = O(1). If we need the
constant C to depend on additional parameters, we will indicate this by subscripts, for instance,
X <, Y denotes the bound |X| < C,Y where C, depends on the parameter A as well as the fixed
quantities. We write X <Y for X < Y <« X.

By shrinking ¢, if necessary, we may assume that ¢, is sufficiently small depending on k, . We
will also assume that 7 is sufficiently large depending on the fixed quantities, since otherwise the
claim follows from standard upper bound sieves (such as Lemma 3.2). By (1.4), this also means
that g, (and hence x) is also sufficiently large depending on the fixed quantities.

2.2 | Indicator and exponential functions

If Sisasentence, we use 1 to denote its indicator, thus 1¢ = 1 when Sistrueand 15 = 0 otherwise.
If E is a set, we use 1j to denote the indicator function 15(n) :=1,cg.

In addition to the notation e() := >, we also write eq(a) :=e(a/q) = e271a/q for natural
numbers g and a € Z/qZ. We also write ||6]|g, for the distance of 6 to the nearest integer.

2.3 | Primes and prime factorization

Unless otherwise specified, all sums and products will be over the natural numbers N = {1, 2, ... },
with the exception of sums and products involving the variable p (or p’, p;, etc.), which will be
over primes. We define an exceptional prime to be a prime p* such that y(p*) # —1; sums over p*
(or pj, etc.) will always be understood to be over exceptional primes.
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HARDY-LITTLEWOOD-CHOWLA WITH A SIEGEL ZERO | 3325

If n is a natural number and p is a prime, we let n(,,) denote the largest power of p dividing n,
thus from the fundamental theorem of arithmetic

n= H Vl(p). (21)
p
For any threshold z > 1, we may therefore factor a natural number n as

n= n(<z)n(>z), (22)

where the z-smooth and z-rough components n(,), i ) of n are defined as

Ni<z) = H N(p)

p<z

N(>z) -= H N(p)-

p>z

For a prime p, we let

N(p) = {n(p) .ne N} = {1,p, pz, }
denote the multiplicative semigroup generated by p, and similarly for a threshold z > 1 we write
N(SZ) = {n(sz) .ne N}
N(>Z) = {n(>z) .ne N}

for the multiplicative semigroups of z-smooth and z-rough numbers, respectively.

If d, ..., d,, are natural numbers, we use (d;,...,d,,) and [d;, ..., d,,] to denote their greatest
common divisor and least common multiple, respectively. We use d (gq) to denote the reduction
of dto Z/q7, and q|d to denote the assertion that g divides d (or equivalently d = 0 (q)).

A function ¢ : N™ — C of m natural numbers dy, ..., d,,, is multiplicative if one has

g(dyd), ..., d,d ) = g(dy, ., dp)g(d), ... d!)

whenever (d, - d,,,d] -- d),) = 1. Observe the Euler product identity

Y gd,,...d,) =[]E, (2.3)
p

dyodyy

whenever the left-hand side is absolutely convergent, where the Euler factors E,, are defined as

E,:= Y g(dy,...dy).

dl""’dm EN(p)

‘We observe the localized form

Y g dy) =]]E, (2.4)

dl ,A..,deN<§Z> p<z
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3326 | TAO AND TERAVAINEN

of the Euler product identity for any threshold z > 0; in particular, if ¢ is non-negative, then

> g(dynndy) < []Ep 2.5)

dyrortiy <2 p<z

We will frequently rely on Dirichlet convolution

S x gt =Y f(5).

din
We let pointwise product take precedence over convolution, thus, for instance,
Fifa = fafa=(f1f2) % (f3fa)
From (2.2), we observe the identity
f=f*fon (2.6)

for any multiplicative function f and any threshold z > 1, where

f(<Z) = le(gz)

o =g,

are the restrictions of f to z-smooth and z-rough numbers, respectively. Thus, for instance, 1) =
1y < Observe that this splitting respects Dirichlet convolutions, in the sense that

(f * 9o = fien) * Yy (F* Disz) = Fom) * Yo 2.7)

forany f,g: N — C.

2.4 | Scales

We will make frequent use of the scales
1
R := x!/log>m>0on (2.8)
and
€0
D 1= x10G+0) (2.9)

We will also occasionally need the auxiliary scale

R, := x!/Viogn, (2.10)
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HARDY-LITTLEWOOD-CHOWLA WITH A SIEGEL ZERO 3327

The reader may wish to keep in mind the hierarchy of scales
1 <logn <logg, <logx <Ry <R<D<x.

which follows easily from (1.4). The conductor g, lies between log x and x? but can be either
smaller or larger than R, R, or D.
‘We adopt the notation

logy
lo =
&2 logz
for the logarithm of y to base z for any y, z > 0, and use the notation X ~ Y as an abbreviation
for

x=v+0—L1 | (2.11)

1
log 10 max(1,k) n

Thus, for instance, the estimate (1.6) can be abbreviated to
Epex A+ hy) = A(n + h)A(n + h)) - A(n+ h)) = @.
The scales R, R, D have been chosen so that certain combinations of these scales with x, 7, 4,

that will arise in our calculations are negligible with respect to the relation ~. More precisely, we
observe for future reference that due to (1.5), (2.8), (2.9), (2.10), (1.4), we have relations

logp x <log, D =<1 (212)
1
log, R < log, R = log 5max(1lk) 9 ~ 0 213)
k 1
(loglk2 x)logg Ry = logsm=( 2 ~ 0 (2.14)
logk x k____
gi = logZ™@h ¥~ 0 (2.15)
log" 7
2k y2(k+2) ,Ak+1/2 ¢ 2k 2k+2)eg | 4k+1/2 _
R“D 4y x¢o < xlogl/(smax(l,k))77 100+) ™ Toks Lzg +gp—1 ~0 216)
x
(logg(l) x)exp(—+/logn/2) = (logo(l) n) exp(—y/logn/2) ~ 0 (217)
_% -—
q,* logfW x < x 41%+3+0) 10g0M) x 0 (2.18)

as well as the estimate

1 _ _glog
eXp (_§ logg D ) = &XPp ( 80(k + 2)

1/5max(1,k)

7 ) <4 log_A 7 (2.19)
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3328 | TAO AND TERAVAINEN

for all A > 0. Also, for k = 1, 2, we note for future reference that

3
(\/}R2)5(’“U D2(k+¢) q?{/Z s

< x4(k—1)+9 L 3e,-1

2 10k

x1-2¢
- (2.20)
~0

. 3 9 1 1 _
smcez(k—1)+5m<1—%<1fork_1,2.

2.5 | The Selberg sieve

We fix a smooth function ¢ : R — R supported on [—1,1] that equals to 1 on [-1/2,1/2], and
define the smooth cutoffs

Y (n) :=1P(log, n) (2.21)
and
¥.,(n) :=1—19(log, n) (2.22)

for any z > 1. We then define the Selberg sieve’

2
v(n) = | Y udpg(d) ) . (223)
dln
Note that v is an upper bound sieve for 1., gy, thus
1sp)(n) < v(n) (2.24)

for all natural numbers n.

3 | TOOLS

In this section, we collect some (mostly standard) estimates on various arithmetic functions which
will be used in our main argument.

" Here we use the Selberg sieve with smoothed coefficients, which was implicitly introduced by Goldston and Yildirim;
see, for instance, [9, Appendix D] for further discussion. Other sieve approximants to 1,y could be used as a substitute
for this sieve if desired; for instance, the beta sieve was used in place of a Selberg sieve in the recent work [17], which
appeared subsequently to the initial release of this paper.
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3.1 | Multiplicative number theory bounds

We recall the crude divisor bound
(n) <, nt (3.1

for any n > 1 and € > 0; see, for example, [20, (2.20)].
From the Euler product formula,

wn(-2)’

p

and the fact that ¢ has a simple pole at s = 1 with residue 1 and no zeroesin {s : |s — 1| < %}, we
see that

I <1— lg) =(1+0(s=1D)(s-1) (3.2)
D p
whenever s is a complex number with Res > 1 and |s — 1| < %

From Mertens’ theorem, we easily verify that

in(ol ,1
z M < log(1 + ology z) 3.3)

p<z

for any o > 0 and R,z > 1, as can be seen by verifying the cases ologzz <1 and ologgz > 1
separately; in exponential form, we thus have

in(o1 ,1
H (1 + O<M>> < (1 + ologg z)°W, (3.4)
p<z

Mertens’ theorem also gives (by dyadic decomposition) the bounds

2 1 _ Z exp(—log, p) _ exp(—log,y) (35)
£ pl+1/logz £ p log, y )

and
H <1 - ﬂ) =, log™" z (3.6)
p<z p
forany y > z > 2 and m > 1. In particular,
1 o(1)

We recall an elementary inequality of Landreau [14] that allows one to upper bound the divisor
function 7 by a Type I sum:

Lemma 3.1 (Landreau’s inequality).
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3330 | TAO AND TERAVAINEN

(i) Ifnis a natural number andy > z > 1, then we can factor
N =Nephy o Ny, (3.8

whereny, ..., n,, <y liein N,y and 0 < m <1+log,,, n. Also, n,) is the product of at most
log, n primes.
(ii) Ife > 0O, then

)<, Y (@ (3.9)

d|n:d<n®

foralln > 1. In particular, by (2.9), one has

(n) < 2 7(d)°® (3.10)

dln:d<D

forn < x.

Proof. Observe from the greedy algorithm that any number in N is either greater than y, or
contains a factor between y/z and y. Iterating this fact, we can factor n.,) = n, --- n,, where
ny,...,n,, <y and all but at most one of the n,, ..., n,,, are greater than or equal to y/z. This gives
the bound m <1 +log, /, n. Since n ;) is the product of primes greater than z, the total number
of primes is at most log, n. This gives (i).

For (ii), we apply (i) with y = n¢ and z = n?/2 and use (2.12) to obtain the factorization (3.8)
with Nspe/2) the product of O,(1) primes, m = O.(1), and n,, ..., n,, < n®. Using the elementary
inequality t(ab) < t(a)7r(b), we conclude that

(n) < t(ny) - t(n,,)
and hence by the pigeonhole principle
(n) < 7(d)™
for d equal to one of the n, ..., n,,,. The claim (ii) follows. O

We also record a standard sieve upper bound, which can easily be deduced from the
fundamental lemma of sieve theory (or the large sieve):

Lemma 3.2 (Sieve upper bound). Suppose that for every prime p < x there is a natural number
0 < w(p) < 1, and let E be a subset of {n : n < x}which avoids at least w(p) residue classes modulo
p foreach p < x. Then we have

Encxle(m) <[] (1 - ?)

p<x

Proof. We may assume that w(p) < p for all p, since otherwise E is empty and the claim is trivial
(of course, this assumption is only non-trivial for the very small primes p = O(1)). By Mertens’
theorem, the contribution of the primes x!/1%° < p < x to the right-hand is < 1, so we may replace
the product ], here with [, 1/100.

psX
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Let g be the multiplicative function g(d) := [] pld: p<x1/100 %. By the fundamental lemma of

sieve theory (see [12, Lemma 6.3]), we can find weights /121r € [-1,1] foralld < \/} such that

< 2/1; (3.11)
dln
for all natural numbers n, and
Y Aad< [ a-gpy. (3.12)
d<x1/2 p<x1/100

For each d < x'/2, let E; be the set formed by removing the w(p) residue classes modulo p
from{n : n < x} for all p|d. Then from (3.11) (with n replaced by [] pexl/100: gl D), we have the

pointwise bound

Z /1; 1Ed

del/Z

and thus

Encxlp(m) < ) ATE,clp, (n).

d<x1/2
From the Chinese remainder theorem, we have
1
Encxlp, () = 9(@)+0( )
and thus by (3.12)
w(p) 1
[EngxlEd(n) < ]Jmo <1 - —p ) + _x1/2 .
psXx

By Mertens’ theorem (3.6), the second term on the right-hand side is certainly dominated by the
former, and the claim follows. O

We also record the following easy consequence of the Chinese remainder theorem.

Lemma 3.3 (Chinese remainder theorem). Let d, ..., d,s be natural numbers for some 2 < k' <
k+¢, andsetd :=[d,,...,di].

(1) If(d;,d;) does not divide h; — h; for some 1 <i < j

(ii) If instead (d;, d;) divides h; — h forall1<i<j
a (d) such that szl L4 in+h; = In=a (@) Furthermore, a = —h; (d;) forall j = 1,...,k', and
dx=d; - dy.

k', then H 1 1dn+n, vanishes for all n.
k', then there is a unique residue class

//\ //\

Proof. All the claims are immediate except for the existence of the residue class a in part (ii) (the
final part of (ii) following from the general relation [j ’m’dk/ I TT1<ic j<kr(d;; d;)). By the Chinese

remainder theorem we may assume that the d; are all powers of a single prime p. Then we have
d = d; for some 1 < i < k/, and the claim follows by setting a := —h;. O
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3332 | TAO AND TERAVAINEN

3.2 | Some fourier analysis
Recall the Fourier inversion formula: if g : R — C is a Schwartz function, then one has
g(u) = / e (1) dt (3.13)
R

for all u € R, where the Fourier transform f : R — C of ¢ is another Schwartz function defined
by the formula

@) = ~/e”"g(u)du

As a special case of this, if ¢ : R — C is a function such that u — e*@(u) is Schwartz, then
eto(u) = / e (t) dt
R
for all u € R, where
f@) = %/Re(””)”qa(u) du.

In particular, for any real n, z > 0, we have

plog,m = [ —-r@ar (314)

R nlogz

Evaluating this formula at n = 1, we conclude that

¢@=Amwt (3.15)

and if one differentiates at n = 1 instead one obtains the variant identity

—Mm=/u+mwwn (3.16)
R

As an application of these Fourier representations, we give an analogue of Lemma 3.2 for the
Selberg sieve v (cf., [22, Lemma 3], [24, Proposition 14]):

Lemma 3.4 (Selberg sieve concentrates on almost primes). Let 0< ¢’ <7, and let 1<
dl,...,dk,d’ d < x be integers. Then

f’

n<x Hv(n + h; )ld [n+h; H ld’ |n+h’

(d; --- d, d’ ...d/,)O(l) 0 ok
<y L B / H min(ology p,1) | — + RZ

dy - did) -+ d), log" R plddy x

(3.17)

forany A > 0.
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The % error term is negligible in practice. The o variable of integration is technical and as
a first approximation the reader is invited to replace o with 1 (and delete the integral). The key
feature of this estimate are the factors of min(c logy p, 1), which make the left-hand side of (3.17)
small when d, ..., d; have one or more small prime factors. With further effort, one could obtain
a more precise asymptotic for the left-hand side of (3.17) (in the spirit of [9, Theorem D.3]) but we
will not need to do so here.

Proof. 1t is convenient to relabel by writing k' :=k + ¢ and hy,; := h;., diyj = d;. for j =
1,...,#". By Lemma 3.3, we may assume that (d;, dj)lh; —h;foralll1 <i<j< k’. In particular, if
wesetd :=[d,,..,d;]andd’ :=[d,,...,dp],thend < d, ---dj and d’ < d; - d.

By (2.23), the left-hand side of (3.17) may be expanded as

k k'
Z IEnsx 1_11 :ulpsR(d})/ﬂpgR(d;,) r[ 1d7|n+h}v’
= Jj=

d.dl,...dl.d J
where d;.k = [dj,d;.,d;.’] for j =1,..,k and d;‘.‘ =d; for j=k+ 1,...,k’. From Lemma 3.3, we
see that the average E, Hf/zl 1d;|n+hj vanishes unless (d, d;)lhi —hjforalll<i<j<k,in

k
which case it is equal to T ! + O(%). The contribution of the error O(%) is of size O(%), SO

..... d*, |
1 k!
it suffices to show that

k
ITj=1 1< (@Dt (@) Thcicjar Lear atyin-n,
[d},...d})]

d) ! !

* 7(d")°W . do
< ————— | | min(olog; p,1) —-.
4 /1 d logkR g . oA

We can expand the left-hand side using (3.14) and Fubini’s theorem as

k ' "
[Tz u@Du@D Tl icicicr Yiarayin—n.
j=1 1<i<j<k! (. d))h—h
/ ) — U | | JICAYIGY: I 24
R2k 1+it’, 14it") i1 J J J

dd’d.d K B A =
1dp oty [d*’...,d;,]szl(d;)logR (d;’) TogR

for some Schwartz function f. Changing variables using the substitution o :=1+ 2?21 |t;.| +
|t;.’ |, and using the rapid decay of f and the triangle inequality, it will suffice to establish the
pointwise bound

k
[Tjoy mdDuED T cicjair Learain-, o1 700
<o

i v T 100" R log" R g min(o logg p, 1)

d.d",d!d U B R
DAy diody [d*’...,dl'{,]szl(d})logR (d;.’) TogR

!/ 14
for all Lsensly € R.
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3334 | TAO AND TERAVAINEN

By (2.3) and the fact that y is supported on square-free numbers, the left-hand side factors as
an Euler product [], E, where

L+it] 140t 1+it 1+it)
E = F P} 9 seey >
p P\ logR ’ logR logR ’~ logR

and
k
ITjo KEDRE) T cicjchr Ly @iy

) k z! z!
d!.d!...d, d{1,p} [d}, . di i) H].:l(d;.) J(d;’) j

! 1 / "N . __
Fp(zl,z1 s ...,zk,zk) =

From the triangle inequality, we have

E,=1+0|—— (318)
1+lo R
p g
whend! . =1and
(p)
1
Ep < d’_ (3.19)

(p)

when dép) > 1, hence by (3.5) we have

! \O(1)
[1E4, <z@)°™.
p>R

Now let p < R and dép) > 1. Then from the triangle inequality, we have

1

! 1 ! 1

Fp(zl,z1 e ,zk,zk) < R
(p)

whenever Z/1’ zi’ s s z{{, ZIZ
the Mobius coefficients ,u(d;.), ,u(d;.’ ) and the hypothesis (d;,d;)|h; — h; forall 1 <i < j < k', we

see that

are complex numbers of size O(@), while from the cancellation in

From the Cauchy integral formula (in the case o logy p < 1) or (3.19) (otherwise), we have
12 .
Epd(p) < min(o logg p, 1).

Finally, suppose that p < R and dEp) = 1. Then from the triangle inequality, we have
F ' "' ZMN=1+0 1
p(Z1’Z1 ,...,zk,zk) =1+ E

k* %k
ditions ((d}),)s (d;.k)(p))lhi — h; permit d}, d}’ to equal p for h; in at most one residue class a (p),

. 1 . .
whenever zg, z;’ , .., 2, z!" are complex numbers of size O(@), while from noting that the con-
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we have

/ "
Zd},d}’e{l,p} when hj=a (p) Hh_,:a (€2) p(d j)'“(d j )-1

F,(0,..,00=1+

a€z/pz p

_ 1)2#{j=1 ..... k:hjza (P} _ 1

_ a
=1+ ) >

CHR () =1k
p

k
_ _1
_ﬁ"<1 p>

due to (1.2). From the Cauchy integral formula (in the case o log p < logR) or (3.18) (otherwise),
we thus have

k .
_ ;o 1 min(o logg p,1)
EP_EPd(p)_ﬁl’(l_E) +O<f >

and hence by (1.3)

i I 1
Epdé < |1- E 140 w +0 i .
p) p p p?

From Mertens’ theorem (3.4), we have

min(o lo ,1
[T (10 moC B2 D) | o( 1)) g
D<R p p

Putting all this together, we see that

HEPdEp) < O-O(l)f(d/)o(l) H <1 —_ E) H min(o logg p, 1)
p Pp<R:ptd p p<R:pld

and hence by Mertens’ theorem (3.6)

O.O(I)T(d//)o(l)

I |E d | < min(o logy p, 1).
p R E>
p ®) log“ R p<Rpld

From (2.1), we have

[[¢'®=d =<d,dy,
p

and the claim follows. [l
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3.3 | Elementary consequences of a Siegel zero

Recall from Section 2 that we use p* to denote primes that are exceptional in the sense that y(p*) #
—1. It is a well-known phenomenon that exceptional primes become rare at scales comparable in
log-scale to g Iz For instance, in [11, Lemma 3], it was shown that"

1 & lo
ogp < 24y

D - (3.20)
pr<gs p y/logn
while in [6] it was shown more generally that
log p* logq
2 gf < exp <logq x) X (3.21)
prex P * 7 4/logn
for g}% < x < q?gk’g"/ ?.In fact, we can do better:
1+
Proposition 3.5. Let € > 0. Then for any x > q)(2 , one has
log, x
Yy L« —2 (3.22)
14e p 7
9, <prsx
and for any natural number m > 2, we have
1 m
— < —. (3.23)
l+e 1+e p* ‘ nl/m
2(m—1)

9™ <p*<qy

1—¢
The first bound is non-trivial for x as large as q;}( °, while the second bound is non-trivial for

1—¢
}1(/ 10879 1t is not difficult to recover (3.21) (and hence (3.20)) from the

above proposition by taking a suitable linear combination of (3.22) and (3.23) for m < 4/logn, and
10/+/logn

using Mertens’ theorem to control the contribution of exceptional primes p* < g, (say);
we leave the details to the interested reader.

primes p* as small as q

1+¢

Proof. For any x > q)(T , we have from [20, Exercise 11.2.3(g)] that

Z 1*TM = (logx +y)L(, )+ L', x) + Og(q;/lo)_

n<x

—&/10

P and hence

From Siegel’s theorem, we have L(1, y) >, q

1x x(n) L
Z — = L(, y) <logx + f(l’)() + OE(1)>. (3.24)

n<x

T Strictly speaking, these results only claim to control the set where y(p*) = 1, ignoring the relatively small number of
primes where y(p*) = 0, but it is not difficult to modify the arguments to also include the latter set.
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HARDY-LITTLEWOOD-CHOWLA WITH A SIEGEL ZERO 3337

From [20, Theorem 11.4], we also have %(1, x) <nloggq,. Thus, (3.24) gives

1% y(n
> 214, pmlosa,, (3.25)

Ttc
n<q,’

1+s 1+e

while applying (3.24) with x replaced by q,* , xg, 2 and subtracting we obtain

3 I*TX(”) = L(1, y)(logx + O,(1)). (3.26)

2 2
q,° <n<xq,

On the other hand, from the non-negativity and multiplicativity of 1 % y, we have

1% x(n) 1x x(n) 1x x(p)
Z AV — 4 Z — 2

=z
e R e 1 145 p

2 2 2 2
q,° <n<xq, n<q, gy~ <pPsX

Since 1 * y(p)is non-negative and is at least one when p is exceptional, the first claim (3.22) fol-
lows.
In a similar vein, since any n < q 10 has < (20 ) representations in the form »’py --- p,,, with

qg(1+5)/ ’< D1 <Py <+ < Py, WE have for any natural number m > 2 that
z 1% x(n)
Lie n
q,” <n<q
> <20m> ! Z 1% x(n) Z 1 x(py) 1% x(pp)
> A
m lt+e n 14e 1+e P Pm
n<q,* 47" <pr<<Pm<qp " Pl ptn
-1
20m 1x x(n) 1
m T+e h 14e I+e by Py
n<q12 qx"l<p1< -<pi, <q;M11) D esDtn
1
-1 Z 1+¢ 21+El p*
_ (20m Z 1% y(n) 4™ <pj. pmsqx(m ) D DT, distinct P17Pm
m < n m!
n<q,?
(1+8)/2

Observe that once n < g, and some of the exceptional primes p7, ..., p; Jj < m have been
chosen, the restrictions that the exceptional prime p* . be distinct from p7, ..., p¥ and not divide
Jj+1 1 J
1+e 1+e

n only excludes at most 2m primes p* i+ from the range qu <p¥ . .<q )2((’" Y, since n has at most

j+1 S
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3338 | TAO AND TERAVAINEN

m factors in this range. Thus we have

n m
<n<gqy? n<q)(T

m
2" -
-1 e % p*
Z L x(n) <20m> Z 1% x(n) 97" <p*<qy

1+e

q,’

where the asterisk in the sum means that we are allowed to delete the 2m largest terms from the
sum (or delete the sum entirely, that is, replace it by zero, if there are fewer than 2m terms in all).
The estimates (3.25) and (3.26) then give

1/m
. 1 (*™)mIL(1, x)logg, m
. — < < Tm
L(1, x)nlogg, nl/m

3k
1+e 14 P
Tk, 20m—1
qxzm <p'<q)((m )

One can reinstate the top 2m terms from the sum on the left-hand side, since their contribution

is<m/ q)l(/ @m) < mn~1/™ by the Siegel bound (1.4). The claim (3.23) follows. O

1/2
Corollary 3.6. Let q§(1+5)/ P<xg q;’( . We have

Z # < exp(—+/logn/2)

Rosp¥<x

and

min(log®! 5 log, p*,1) 1
g lgR <« —.
N DS log™7

This bound will be used in steps (i) and (ii) of the main argument.
Proof. From (3.22) (with ¢ = 1) and (1.5), we have
1 U]
Z = < £ < exp(—+/logn/2)
qy<p*<x "
and from (3.23), we similarly have
Z 1 m
L p* nl/m
1

1
m 2 m—
4y <p*<q,

for all m > 2. Summing over 2 < m < y/logn + 1, we obtain the first claim.
Now we prove the second claim. The contribution of those p* with p* > xlog" 7 g acceptable
by (3.5), while the contribution of those p* with p* < R/ log™"7 is also acceptable by (3.3). Thus
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it remains to show that

1 1

p*  log™ip '

R1/1og04 5 <p* <xlog01 7

The contribution of those p* with g, < p* < x'¢" 7 is acceptable by (3.22) (for ¢ = 1), (1.5), while
the contribution of those p* with R'/ log"*y < p* < g, is acceptable by (3.23) (for e =1 and 2 <
m < log®’ 5, say) and (2.8). O

3.4 | Consequences of the Weil bound for character sums

Let f : Z — Z be a polynomial of degree O(1). If p is a prime, we have the standard Weil bounds

Z Xp(f(n))ep(an) < p1/2

nez/pz

uniformly for all integers a whenever f is not a constant multiple of perfect square modulo p,
where y, is the quadratic character modulo p; see [30] (or [21]). When f is a constant multiple of
a perfect square, we can of course use the trivial bound of O(p). Since the exceptional modulus g,
is a fundamental discriminant, it is of the form 2/ p, --- p,,, for some j < 3 and distinct odd primes
D1 - » P> and so from the Chinese remainder theorem, we obtain the bounds

Z x(f(n)e, (an) < T(qx)o(l)q)l(/z 42

nez/q,z

uniformly in a, where d is the largest factor of g, for which f is a constant multiple of a perfect
square modulo d. Applying (3.1) and completion of sums (see [12, Lemma 12.1]), we conclude that

B a () <, /> d"/?

nel

for any interval I of length at most g, and any ¢ > 0; by subdividing longer intervals into intervals
of length gq o plus a remainder, we conclude that

Y 2(F) <. ¢/ a2 (ﬂ ' 1> 327)
nel q)(

for any interval I and any € > 0.
This gives us the following bounds:

Lemma3.7. Letd,, ..., d; ., be natural numbers. Let I be an interval in [1, x]. Let J be a non-empty
subset of {1, ...,k + ¢}, and for each j € J, let d;. be a factor of d;. Then

k+¢
Encx11(n) li[ La jn+n H?( nh < q1/2+8(d1 i q )1/2<; + l)
n<x = jlnth; d;. € 3x X q,dy - diyp X

Jer

for any € > 0, where we use the notation hy, ; := h; forj=1,..,¢.
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3340 | TAO AND TERAVAINEN

This bound will be used in step (v) of the main argument, to dispose of any ‘Type I sum’
contributions that are twisted by one or more factors of the exceptional character y.

Proof. By Lemma 3.3, we may assume that (d;,d;)|h; — h; for all 1 <i < j < k + ¢ and replace
the conditions d;|n + h; with n = a (d) where

d .= [dl’ s dk+f] = dl .. dk+f

and
a=—h;(d;)

for j =1,...,k + £. Our task is now equivalent to showing that

dn+a+h;

3T o ()
. : d q,d
n:dn+a€l jeJ Jj X

We can write the left-hand side as

Y x(f()

n:dn+a€l
where
dn+a+h;
fo) =[] —5—

jel j

Suppose that there is a prime p not dividing d such that f is a constant multiple of a square modulo
a+h;

p- Then the roots — (p) of f must experience a repetition, and hence p divides h; — h; for
some 1 <i < j<k+7.Since the hy, ..., h;, . are fixed, this forces p = O(1). From the Chinese
remainder theorem (and the fact that q,isa fundamental discriminant), we conclude that the
largest factor d’ of g, for which f is a constant multiple of a square modulo d'is 0((d, qd,))- The
claim now follows from (3.27). O

3.5 | Consequences of Kloosterman sum bounds

We recall’ Estermann’s form [5]
Y eglux +upx)| <@gy, up )
XEZ/qZ:(x,q9)=1

of the Weil bound for Kloosterman sums, where x* is the inverse of x in Z/qZ and u,,u, are
arbitrary integers. From this and a simple change of variables, we see that

|[En1,n2621wn1n2=a (q)eq(ulnl + u2n2)| < T(Q)q_3/2(u1’ Uz, q)l/z (3-28)

T For the applications in this paper, one could also proceed using the weaker but more elementary bounds of Kloosterman
[13], as the important thing is that we gain a power savings over the trivial bound of g, at the cost of degrading the numerical
exponent 10k in (1.5) somewhat. We leave the details of this variant of the argument to the interested reader.
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for any natural number q and integers w, a, u;, u, with (w,q) = (a,q) = 1, where we use the
averaging notation

L L
En ez f(min) 1= = 3 3 flm.ny)
n=1n,=1
whenever f : Z? — C is a periodic function with some period L (thus, f(n, + Lmy,n, + Lm,) =
f(ny,n,) for all integers n,, n,, m;, m,).
We will need to extend the bound (3.28) to the case where a shares a common factor with g,
and where we also insert a periodic weight:

Lemma 3.8 (Fourier coefficients on a hyperbola). Let q be a natural number, and let a,u,,u, be
integers. Let q, be a factor of q such that (a,q)|q,. Let f : Z*> — C be a 1-bounded” function with
period qo. Then

3/2 —
|[En1,nzezf(n1’ n2)1n1n2=a (q)eq(ulnl + “2”2)| < T(Qo)zqo/ T(Q)q 3/2(u1’ U, q)l/z'

The factor r(qo)zqg/ ? can be improved somewhat, but we will not attempt to optimize it here.
This bound will be needed in step (iv) of the main argument, in order to dispose of the non-Type
I portion Agiegel to the Siegel approximant Agjege-

Proof. If nyn, = a (q), then from considering the prime factorizations of n;, n,, a, g we see that
(n1,q0), (n,,qy) must be factors of (a,q) and hence of q,; also, we have ((n,,qy)(n,,qy),q) =
(a,qy) = (a,q). Thus there are at most 7(g,)* possible choices for (n;,q),(n,,q), and by the
triangle inequality it suffices to show that

[En, nyezf (1, 1)1y 0, = (gr8q (a1 + Uphy)| < QS/ZT(Q)Q_3/2(U1, uy, ). (3.29)

under the additional hypothesis that f is supported in the region where (1, q,) = q;, (15, qo) = ¢,
for some factors q;, g, of g, with

(@192, = (a,9). (3.30)

In particular, if we write ¢’ := (aiq), then the quantity w = % is a primitive element of Z/q'Z.

Making the change of variables n; = q;n/, n, = g,n,, we can now rewrite the left-hand side
of (3.29) as

1 /! /
E“En;,n;ezf(‘h”p Q2n2)1wn§ = (@8 qiny + uyqrny)l.

By Fourier inversion and the Plancherel formula, we have

fl@n}, gn)) = Z z ckl,kzeqo(quln; +kaqon)),
ki€z/(q0/91)Z ky€2/(q0/q2)Z

A function f is 1-bounded if | f(x)| < 1 for all x in the domain of f.
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3342 | TAO AND TERAVAINEN

where the coefficients ¢ ;, obey the bound
Z 2 |ck1’k2|2 <L
kiez/(qo/a1)Z ky€2/(q0/q2)Z
and hence by Cauchy-Schwarz
do
el < =7 775

kyez/(qo/a1)Z k,€2/(q0/92)Z q," 4,

Thus by the triangle inequality and pigeonhole principle, we can bound the left-hand side of (3.29)
by

do q q
32 32 [En;,n;ezlwn; = @)% < <u1 + qu—())‘h”l + (”2 + kzq—())‘h”z)
4, 49,
for some integers k, k,. Since 1

! —
wnyn,= a

vanishes unless the integers (u; + k; qio)ql’ (uy + kzj—o)q2 are divisible by q/q’ = (a, q). Since w

_a_(gnisa q'-periodic function of n,n}, this expression
(a,9)

a

and g 2re both primitive in Z/q’Z, we may then apply (3.28) and bound the left-hand side

of (3.2@) by
0 q\ g q\ % 12
R V) @\ T g, ) g

1 2

which we can rewrite as

o —3/241/2
W(G,Q)q d=,
q," 4,

q q
d:= <<u1 +k1—>‘h, (uz +k,— )qz’q>'
9o 9o

By construction, we have

where

<“1 + k1i>‘h = <“2 + kzi>‘b =q=0(d)
o do
and hence by taking suitable linear combinations

W00 92 = 42909192 = 9909192 = 0 (d).

We conclude in particular that d|q,q;g,(1;, u,, q), and the claim follows (noting from (3.30) that
(a,9) < q1q2)- O

From Lemma 3.8 and the Fourier inversion formula, one can express the periodic function
f(ny,n)1, ,,—q (g as a linear combination of Fourier phases e, (u;n, + u,n,) with good bounds
on the Fourier coefficients. However, the contribution of those terms in which one of u;,u, is
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divisible by g (or by a very large factor of q) will be inconvenient to handle. We therefore perform
the following substitute expansion:

Lemma 3.9 (Modified Fourier expansion). Let q be a natural number, and let a be an integer. Let
qo be a factor of q such that (a, q)|q,. Let f : Z?> — C be a 1-bounded function with period q,. Define
q, := (qo(a, q), q). Then we have

!/

0
Fm)ly pma ) = Tf (11, 1)1, 1,=a (gl Lommp.)=(a,0)

+ Z Cuy u, Uiy + Upny),
U U,EZ/qZ: %Jrul,uz

where « is the quantity

and the coefficients ¢, ,, obey the bounds

lew | < 20000020} 1(@)g ™2 (uy, Uy, )2

Proof. We may assume without loss of generality that 1 < a < g. Let A denote the collection
of those 1 < a’ < g such that a’ = a (g)) and (a’, q) = (a,q). From Lemma 3.8, we see that the
Fourier coefficient

[Enl,nzezf(nl’ n2)(1n1n2=a (@ — 1n1n2=a’ (q))eq(ulnl + uz”lz) (33D
for u;,u, € Z/q7 is bounded in magnitude by Zf(qo)zqg/zr(q)q‘3/2(u1, u,,q)/?foranya’ € A.
We claim furthermore that this Fourier coefficient vanishes whenever one of u;, u, is divisible by
q/qo- Indeed, suppose, for instance, that u, is divisible by g/qo, so that n, — f(n,n,)e,(un; +
u,n,) is q,-periodic for any n,. To obtain the vanishing of (3.31), it suffices to show that

1n1n2=a (@ = Z 1n1n2=a’ @ (3.32)
M,EZ[qZ:ny=a; (qp) MEZ[qZ:ny=a; (qp)

for any integers n,, a,. But since (a’, q) = (a, q), we can write a’ = wa (q) for some primitive w €
Z/qZ;since @’ = a ((qy(a, q),q)) we have w = 1 ((qy, q/(a, q))); as we have the freedom to adjust
w by an arbitrary multiple of q/(a, ), we may in fact assume that w = 1 (q,). The claim (3.32)
then follows after applying the change of variables n, — wn, on the right-hand side. We argue
similarly if u, is divisible by q/q, instead of u,.

Averaging in a’, we conclude that the Fourier coefficient

[Enl,nzezf(nl’ n2)(1n1n2:a (@ — [Ea’eAlnan:a’ (q))eq(ul ny + u2n2)

is bounded in magnitude by Zr(qo)zqg/zr(q)q‘3/2(u1, u,,q)"/2, and vanishes whenever u; or u,
vanish in Z/qZ. To establish the claim, it now suffices by the Fourier inversion formula to obtain

d 'y 'TTOT "0SLLEIYT

sdny woxy

dNy) SUONIPUOL) PUE SWIST, Y 908 “[$Z0T/L0/6Z) U0 AIBiqrT QUIUQ Ko[iy SO “BILIONI[E) JO ANSIOANN Aq £99Z [*SWII/Z] | 1°01/10p/wod KofiKreaqrout

puE-suLI)/woo KA

2591 SUOWILIOD) dANEAI) 9[qratjdde o) £q POUIGAS AIE SAIIIE V() 25N JO SonI 10j ATBIQIT QUIUQ Ka[1Ap UO (SUONIP



3344 | TAO AND TERAVAINEN

the identity

/
Evealn=a (@ = = In=a pling=teo)

for any integer n. By the Chinese remainder theorem, it suffices to establish this identity at each
prime p, that is to say it suffices to show that

appjo
[E/_ JOY- (! ni)— ‘1:Ij=—.]~_ ]1 J)= J
a'=a (p/0):(a’,p/)=(a,p’) "n=a’ (p)) pi n=e (p/0)~(n,p/)=(a,p’)
whenever p is a prime, 0 < j, < j, and a is an integer with (a, p/)| p/o, where ap 1= 1% it j > jo

and (a, p/) = p’o, and a, = 1 otherwise. But this follows by a direct case analysis.

* If j = jo, then the conditions (a’, p/) = (a, p/) and (n, p/) = (a, p/) are redundant, «,, = 1, a’

is restricted to a single residue class mod p/, and both sides are equal to 1,,_ a (pio)-
* Ifj < j,and(a, p/) < plo, then the conditions (a’, p/) = (a, p/) and (n, p/) = (a, p/) are redun-

dant, a, =1, a’ is restricted to p/~Jo residue classes mod p/, and both sides are equal to
1

pi=o lf’l:a (plo):

* If j < j, and (a, p/) = po, then a, = ﬁ, a’ is restricted to ijl p’~Jo residue classes mod p/,

and both sides are equal to ﬁ ﬁln:a (plo)- O

4 | FIRST STEP: REPLACING THE LIOUVILLE FUNCTION WITH A
SIEGEL MODEL

We now execute step (i) of the strategy outlined in the introduction. From (2.6), we have the
splitting

A = A<r) * ARy

In view of Corollary 3.6, we expect 4 to resemble the exceptional character y on the rough numbers
N(>g)- It is therefore natural to introduce the Siegel approximant

Asiegel ‘= A(<R) * X(>R)» (4.1)

thus Agjeger i the completely multiplicative function that agrees with A for primes p < R and agrees
with y for primes p > R. Similar approximants were also introduced in [2, 6]. Clearly 4, Agjegel are
both bounded by 1:

[2(n)], | Asiegel (W] < 1. 4.2)
The error between A and Agjeq Can be controlled by exceptional primes and by rough numbers:

Lemma 4.1 (Error bound between 4 and Ag;e,c1). For any natural number n < 2x, one has

An) = Agioga(n) < Y1+ ) 1eyw®m/d). (4.3)

p*|n,R<p*<x/R d<2R:d|n
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Proof. 1f n is not divisible by any exceptional prime p* > R, then we have A(n) = Ag;ge1(1) since
A, Asiegel agree on every prime dividing n. Clearly (4.3) holds in this case. If n is divisible by an
exceptional R < p* < x/R, then the first term on the right-hand side of (4.3) is at least one, and
the claim (4.3) then follows from (4.2).

The only remaining case is if » is divisible by an exceptional prime p* > x/R, so n = p*d for
some d < 2R. Since n/d = p* > x/R is prime, the second term on the right-hand side of (4.3) is
at least one, and the claim (4.3) again follows from (4.2). O

In this section, we establish
Proposition 4.2 (Replacing A with a Siegel model). We have
Encx A+ hy) - A(n + h)A(n + hy) -+ A(n + K))
R Epx A+ hy) - A+ B )Agieqe1 (1 + RY) -+ Agieger (R + ).
From (4.2) and the triangle inequality, it suffices to show that
Epcx A0+ hy) -+ A(n + hy)|A(n + h;.,) — Agiegel (M + h;.,)| ~0

=/

for each 1 < j’ < 7. Applying Lemma 4.1, it suffices to show the bounds

Y Epc A+ hy) - A+ )1 ey 0 (4.4)
R<p*<x/R J
and
n+ h;.,
Z Epcx A+ hy) - A+ W)Ly 1ox/r) d ~ 0. (*5)
d<2R J

We begin with (4.4). For n<x and 1< j <k, the quantity A(n+ h;) is bounded by
log(2x)1 o \/E)(n +h j) unless we are in the exceptional case where n + h; is of the form p' for

some prime p < 4/2x (cf. the sieve of Eratosthenes). The contribution of such exceptional cases
can easily be shown to be = 0, so it suffices to show that

(logfx) Y Encxlisyam®+h) 1 o+ hk)lp*|n+h;, ~ 0.
R<p*<x/R

Let p* be as in the above sum. Changing variables, we have
En<x1(>\/§)(n + hl) 1(2\/5)(}’1 =+ hk)lp*|n+h;,
1 / /
< E[EHSZX/P* 1(2\/5)(19*71 +h, — hj’) 1(2\5)(13*71 +h - ]’lj,).

Let C, be a sufficiently large constant depending on hy, ..., h, h;.,. Then for any prime Cj < p <

* * ! * !’
1/ 2x other than p*, the support set ofl(z\/z)(p n+h; — hj,) 1(2@)@ n+h, — hj,) excludes
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k residue classes modulo p. Thus by’ Lemma 3.2, we have
Enerl, =t h) 1+ )Ly < — I1 -k
n<xt(z /20t M V2ot T ) pintn, < T3 =
J p . , p
Co<p<min(2x/p*,4/2x): p#p*

and hence by Mertens’ theorem (3.6) and the bound p, < x/R

logﬁ x

k
(log" X)Epcily (R + 1) o 1 oi(m+ hk)lp*|n+h;, < b

The claim (4.4) now follows from Corollary 3.6 and (2.17).
Now we prove (4.5). Arguing as in the proof of (4.4), it suffices to show that

n+h,
J
(log“ x) ) Ensx1@@<n+h1>~~-1(35)01+hk>1d|n+h;,1<>x/m( 5 ): 0. (46

d<2R

For d < 2R, we have after change of variables that

n+h,
J
[En<x1(> /_2x)(n + h’l) 1(> /—2x)(n + hk)1d|n+h3, 1(>x/R)( d >

1
< EIEH'<2x/d1(>\/2_x)(dn + hl - h;,) oe 1(2\/5)((1” + h’k - h;.,)l(?x/R)(n).

With C,, as before, we see that for any prime C, < p < /2x not dividing d, we are excluding k + 1
residue classes modulo p (since h;, is distinct from h,, ..., h; ), hence by Lemma 3.2

n+h,
Jj 1
Encxli am® +h) 1 s+ hk)1d|n+h;, 1(>x/R)<T><<E 11 <1 - —>
Cosp<yV2x:ptd

and hence by Mertens’ theorem (3.6)

n+n,
J
(Ing x)[En@cl(; /—2x)(n + hl) cee 1(2 /—2x)(n + hk)1d|n+h;_, 1(>x/R)< d )

1 1
1 =)
< dlogx g( +O<p>>

By (2.5), we may therefore bound the left-hand side of (4.6) by

L (14 vo( L))
10gxp<2R p p

By (3.6). this latter quantity is O(log, R), and the claim follows from (2.13).

 One could also use Lemma 3.4 here instead if desired to give a comparable estimate.
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5 | SECOND STEP: REPLACING THE VON MANGOLDT FUNCTION
WITH A SIEGEL MODEL

We now execute step (ii) of the strategy outlined in the introduction. In order to (mostly) restrict
to rough numbers, we will insert the Selberg sieve v defined in (2.23). Namely, observe that

A —Av

is supported on prime powers p/ with p < R and can be crudely bounded by O(log® x) on such
powers. Since the number of such powers of size O(x) is crudely bounded by O(R log x), one easily
sees from the triangle inequality that

[EnsxA(n + hl) A(n + hk)/lsiegel(n + h;) ASiegel(n + h;) ( )
5.1
~ IEnSxAV(n + hl) e AV(n + hk)/lsmgel(n + ]’l;) e /lsiegel(n + h’f)
(with plenty of room to spare in the error term). Next, we expand

Av = (u * log).

Since u is expected to be close to y on rough numbers, and the Selberg sieve v is mostly restricted
to such numbers, it is then natural to introduce the Siegel approximant

Agieger 1= (x * log)v.
From the triangle inequality, we have the crude bounds
Av(n),ASiegel(n) < v(n)log x. (5.2)
We also have the following bound for the error between Av and Ag;eger:

Lemma 5.1. Forn < 2x, we have the bounds

Av(n) = Agjegel(n) < E(n) + F(n) + G(n), (53)
where
Em) =] D lppu+ D L[ (5.4)
Ry<p*<y/2x R0<p<\/z
log x.F(n) := ( D T(SRO)(d)O(1)>v(n)logx. (5.5)
1<d<D:d|n
G(n) := > 1,1, Av(n/p). (5.6)

V2x<p*<2x/R1/2

Proof. If n is divisible by an exceptional R, < p* £ V/2x, then E > t(n)v(n) log x, and (5.3) then
follows from (5.2) and (5.4). Similarly if n is divisible by the square of a prime p > R,, (which must
then necessarily be at most 1/2x).
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Next, suppose that n is not divisible by any exceptional prime p* > R, nor by any square p? of
aprime p > R,. We write

x *log=(1* y)* pu=log=(1x*y)*A.

Note that 1 * y(d) is only non-zero when d is the product of exceptional primes times a perfect
square, so if d|n and n is as above, then d must be the product of some primes less than or equal
to R,. Also Zdl . A(d) = logn. Thus, for n as above, we have

X *log(n) < t(neg ) logn,

where we recall that ng  is the largest factor of n that is the product of primes less than or equal
to Ry. Applying (3.10) (with n replaced by n<g ), we have

1(n(cg,)) < 2 T(cy)(d)°P
1<d<D:d|n

and the claim (5.3) now follows in this case from (5.5).

We are left with the case where n is divisible by an exceptional prime p* > 4/2x. Then n = dp*
for some d < v/2x. The only factors of n that are less than or equal to R are factors of d as well,
thus v(n) = v(d). Since

x xlog(n) = y = 1% wx*log(n) =y * 1% A(n)
and y * 1 vanishes at all factors of n except for 1 and p*, we have
X *log(n) = A(n) + (1 + x(p")HA()
and thus

A(n) - ASiegel(”) < Av(d)

If p* > 2x/R/2, then d < R'/2, and hence v(d) vanishes by (2.23). The claim (5.3) now follows in
this case from (5.6). O

Now we can prove
Proposition 5.2 (Replacing A with a Siegel model). We have
Epcx A+ hy) = A+ W) Asieger( + 1)) - Agieger(n + 1))
R EpexNsiegel (1 + 1) =+ Agiegel (1 + My ) Asieger (1 + hy) - Asiegel(n + %
In view of (5.1), it suffices to show that
Ence AV( + hy) o AV + i) Asioqer (1 + 1)) -+ Asioger(n + 7

~ [EnsxASiegel(n + hl) ASiegel(n + hk)/lsiegel(n + hD lSiegel(n + h;)
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By (4.2) and the triangle inequality, it suffices to show that

EpcxAv(n + hy) - Av(n + hye) = Agiegel (1 + 1) - Agiegel (1 + )| = 0.
From (5.3), we have

Agjegel(n + hj) = Av(n + hj) + O(E(n + h;) + F(n+ hj) +G(n+hj))
for j = 1,..., k. Multiplying these estimates together, we conclude that

Agiegel (N + hy) -+ Agjeger(n + hy) = Av(n + hy) -+ Av(n + hy)

k
+ O(ZE(n +h) [ (w+E+F+6)0n+ hj/)>

j=1 1<)/ <k j'#]

k
+ O<2F(n +h) H (Av+F +G)(n+ hj,)>
=1

1<) <k 4]

k
+ o(Z Gn+h) [ Ww+om+ hj,))

j=1 1<j/<k: j'#]

By the triangle inequality and relabeling, it thus suffices to establish the bounds

k
Encx B+ h) [[(Av +E+F+G)(n+h)) ~ 0 (5.7)
Jj=2
and
k
EncxF(n+h) [J(Av + F +G)n + h) ~ 0 (5.8)
Jj=2
and
k
EncxG(n+ ) [J(Av + G)(n + ) ~ 0. (5.9)
j=2

We begin with (5.9), which is a variant of (4.5). We can bound (Av+G)(n+hj) by
O(log(Zx)l(ZRl/zx)(n + hj)), and we also have the bound

Gn+h) <10g2%) Y Lppuan Loris® +hy)
V2x<p*<2x/R1/?

unless n + h; is of the form p™ for some p < RY*and m > 1, or p/p™ for some p < RY/*, m > 2,
and v/2x < p’ < 2x/RV/2.
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There are only O(x log x/R'/*) such exceptional values of n and their contribution is easily seen
to be negligible using (3.1). Thus it will suffice to show that

k
k
(log® x) > Encl prnth, H 1 gy +hy) 2 0. (5.10)
V/2x<p*<2x/R1/2 Jj=1

Making the change of variables n = p*n’ — h; and using Lemma 3.2 and Mertens’ theorem (3.6),

we see that

k

1
Encxlpsnen 1opya(m+h) < ———.
n<x - p¥|n+ 111211 (>RY#) J p* logkR

The claim (5.10) now follows from Corollary 3.6 and (2.8).
Now we turn to (5.7). Observe using (3.10) that

(MW +E+F+G)n+h) < > @)Y v(n + hy)logx
d;<D:dj|n+h;

and so we can bound the left-hand side of (5.7) by

< (logk X) Z a + Z a, (5.11)
0
Ry<p*<v/2x Ry<po<V/2x
where
k
. o1
ag = Z T(dl ...dk) ( )En<x1d|n+h1Hldj|n+hjv(n+hj)'

dy,endp <D j=1

\/2x. Ifd > v/2x,thend = po for some p, > x'/4.

= ;—Z in this case, which certainly gives a negligible
0

V2x.

/ f( )dO' Dk+1R2k

Let d be equal to p, or p0 for some prime p,,

From (3.1), one has the crude bound a; <,

A Q><//\

contribution. Hence we may assume that d
Applying Lemma 3.4 and (3.1), we have

ag <<A

for any A > 0, where

7([d, d,]d, --- d, )°D '
2 [d cli ]jz Z [ min(ologgp,1) ).
dyd <2 »H1IR2 k pldd; -dy

Using Euler products (2.5), we can bound

f@< ] Exo),
p<v2x
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where

r([d(p), d,1d, - dk)O(l)
[d(p), dq1d; -+ di

min(o logy p, 1)1P"’d1"'dk .

If p # py, then d(p) =1, and we can calculate

in(ol ,1
E(o)<1 +o<%)_

p
From (3.4), we then have

I1 E,(0) <@ +0clogg V2x)°VE, (0) < (logy” x)VE, (o).
p<v2x

Also, we have the crude bound

r(d)o(l)
E,, (o)< ———.

Putting all these estimates together, and choosing A large enough, we conclude that

logd™ x k+1p2k
ag < 7(d)°™ S — + DR .
dlog“R x

Inserting this into (5.11) and using Corollary 3.6, (2.17), (2.16), we obtain the claim (5.7).
Finally, we establish (5.8). Observe from (5.5) and (5.6) that

(Av+F+G)n+hj) < Z T(SRO)(dj)O(D v(n+ h;)logx
d;<D’d;In+h;

and so it suffices to show that

k k
(Ing x) z <H T(SRO)(dj)O(1)>IEn<x H 1dj|n+hj'1/(n + hj) ~ 0.

dy,dg<Did;>1 \ j=1 Jj=1

Applying Lemma 3.4 and (3.1), we may estimate the left-hand side as

Z H§=1 T(sRO)(dj)O(D / *©
1

. do
min(o lo , 1) —
d, - d, H (o'logg p,1) oA

pld;---dy

<y (logﬁ X)
dy,...dp<D:d;>1
R2kDK+1(1ogk x)
+ X

for any A > 0. The second term is =~ 0 by (2.16). Replacing the condition d; > 1 by (d;, ..., d}) #
1, ..., 1), removing the constraints d,, ..., d; < D, and factoring the Euler product using (2.5), the
first term can be bounded by

(logt x) /1 (H Ey(0) - 1> = (5.12)

P<Ry
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where

3 I}, 7(dp°®
E,(0) = Z jdl—(;k min(o log; p, 1) el
1

Direct calculation gives

_ in(ol ,1
Ep(g)zHo(%),

From (3.4), we have

H Ep(0) < (1 +ologg R,)°M
P<Ry

and hence

( II Ep(a)> -1 < 0%V logg R,

P<Ry
We can thus bound (5.12) for A large enough by
< (logllg x)logg Ry,

which is ~ 0 by (2.14). This concludes the proof of (5.9) and hence of Proposition 5.2.

6 | THIRD STEP: REPLACING THE LIOUVILLE SIEGEL MODEL
WITH A TYPE I APPROXIMANT

We now execute step (iii) of the strategy outlined in the introduction. From (4.1), (2.7), (2.6) and
Mobius inversion, we have

Asiegel = A(<r) * (MX)(<r) * X(<R) * X(>R)
= (A% uX)<r) * X-
We now split

_ it b
Asiegel = Agieqel T Asicgerr (6.1)

# . .
where ASiegel is the Type I approximant

Agiegel = 'u)()(SR)lpSD *X (6.2)

and 2°. s the error
Siegel

Agiegel = #X)(sR)¢>D * X (6.3)
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Here ¥ p, 9. p are the smooth cutoffs defined in (2.21) and (2.22). In particular, we see that
Asieger(n) = lgiegel(n) whenever n gy < \/B Since \/1_) is significantly larger than R, and R-
smooth numbers become extremely sparse at scales much larger than R, we thus see that Agjeqels
Agiegel agree with each other for ‘typical’ n, and would thus be heuristically expected to be close

to each other; in other words, /lgiege would be expected to be small on average.

1
Unfortunately, ﬂ.giegel, Agiegel are not bounded. However, we can still obtain a reasonable bound
on the latter quantity:

Lemma 6.1. For any n < 2x, we have

A eqer(n) < H(n), (6.4)
where
H(n) := 2 a(d) (6.5)
d<D:d|n

and a(d) are non-negative quantities obeying the bounds

Z T(d)A@ <,y exp (—% logy D> (6.6)

d<D d

forany A > 1.
Remark 6.2. Note that by (2.19), we have
1 —A
exp(—g logp D) <4 log™ (6.7)

for any A > 1. We shall need (6.7) later, but we stated Lemma 6.1 in a stronger form to emphasize
that it does not use any information on exceptional characters.

Proof. From (6.3) and the triangle inequality, we have
Agiegel(n) =B X(>R)(n) < |B] * 1(>R)(l’l), (6.8)
where
B =@ * ux)<ryP>p * X(<r)- (6.9)

To control 3, we perform a Fourier expansion on . ,, which is the only term on the right-hand
side of (6.9) which is not multiplicative. Applying Fourier inversion (3.13) to the function g(u) :=
e *(1 — ((logp R)u) and setting u := logy n, we conclude the identity

Yo p(n) = / Rk f(1) dt, (6.10)
R
where

f@) := % /0 " e~(HDX (1 — p((logp, R)X)) dx.
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From the triangle inequality, we have
flH) < exp(—% logp D) <4 log‘A 7
for any A > 0, while from repeated integration by parts, we have

1
f) <y W

for any positive integer A. Combining the two bounds, we conclude that

exp(—3 logg D)

f(1) <y L (6.11)
forany A > 0.
From (6.9) and (6.10), we have
B0 = | Ams e,
where
By =@ = /i)()(sza)(‘)‘l‘)%’te * X(<R)- (6.12)

From (6.8) and the triangle inequality, we then have

B < [ 1815 10010 .
The function |3;| is multiplicative and supported on Ny, thus

18,1 * 1)) < [T 18: ().

P<R
From (6.12), we see that
1B:(p))I =1

when p < R and y(p) = —1 (because 1 * uy agrees with 4 * ud = 153, on N(,,)), and

. _J
1B,(p))| = plek = exp(jlogg p)

when p < R and y(p) = 0. For y(p) = +1, the situation is more complicated: direct calculation
gives

1+it

16z(Pj) = Pj(Pm),
where P; is the polynomial

Pi(z) :=1-2z+22" — - + (-1)/22/.
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Note that |P;(1)| < 1 and P’ (z) < jOW(1 + |z|J~1) for any z, hence by the fundamental theorem
of calculus

sdny woxy

P;(2)] <1+ 0(|z —1]j°0)

whenever |z| < 1 + -. Also from the triangle inequality, we have |P; (2)| < jlz|/ for |z| > 1. We

thus have
P;(2)] < min(1 + j°P|z — 1], exp(O(j log|z| + 1 + log j)))
for |z| > 1. Thus regardless of the value of y(p), we have the upper bound
18,(p))] < exp(O(a, )
for p < R, where q, pi is the quantity
a, pi = min(jS(1 + |¢|) logg p, jlogg p + 1 +log j)

for some large constant C > 1 and for all j > 1, with the convention a;; = 0. We conclude that

1B, | = 1(>R)(n) < exp <O( Z at’”(p)>>'
P<R

To convert the right-hand side into Type I sums, we apply Lemma 3.1(i) to split
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n= I’l(>R)n1 e nm,

where m = O(1) and ny, ..., n,,, < D lie in N(¢g). We then have

npy = (M) = (M) p)

for all p < R, and hence

puE-suLI)/woo KA

m

Qtngp < Z{ Q)
i=

Using the definition of a, ,; and the inequality (j; + j,) <¢ j< + j§, we conclude that
m
1B * 1> y(n) < exp (O(Z D at,(ni)(p)>>
i=1 p<k

and hence (since m = O(1)), we have

1] * 1(>gy(n) < exp <O<2 afinﬂ(p)))
P<R

= H (1 + (eXP(O(at,(ni)(p))) B D)

p<R
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for some i = 1, ..., m. In particular, we see that

Bl * oM < Y, L@ [T (expO(ay, »-1).

d<D:d|n P<R

We therefore obtain the bound (6.4) with

ad) 1= 1@ [ T (exp(0Caq, ) =1)17 01 dr.

R p<R

It remains to establish the bound (6.6). We use Fubini’s theorem and Euler product expansion (2.5)
to bound

A ) —
¥« d)Aoc(d) - / ( Z(HJ) (exp(0(a,p1) 1)>|f(t)|dt.
R p<R

d<D j=1 p’
For j > 2, we use the crude bound
exp(0(a, ) < O pOL/108R)  (O0)
for p < R to conclude that

(1 + JYA(exp(O(a, ) 1)
pj

(o]
j=2

for any p < R. For j = 1, we have

< 1
A —
p2

exp(O(at’pj )) <14 O(min((1 + |¢]) logg p, 1)),

and thus using 1 4+ x < e¥, we obtain

(+3) NA ) .
£y a+j (eXPI()?(at,p/)) 1 <1+ 0, (min((1 + p|t|)logR p,1) 1o, < # )

min((1 + |t]) 1o .1
<exp<oA< (0 + [t])logg p )+i2>)‘
p p
From Mertens’ theorem (3.3), we have

e <OA(min((1+ |tl|))1ong,1)) . #> _ exp (OA(Z (min((1+ |;|)10ng, D, #>)>

p<R p<R

< 2+ ¢,

and hence

> @2 <y [ @+l dr
R

Using (6.11), we obtain (6.6) as required. O
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Now we can prove

Proposition 6.3 (Replacing Agjeqe; With a Type I approximant). We have

[EnsxASiegel(n + hl) ASiegel(n + hk)ASiegel(n + hﬁ) ASiegel(n + h/f)

~ [EnSxASiegel(n +hy) - ASlegel(n + hk)/1 (n+ h;) : (n+h, )

Siegel Slegel

From Lemma 6.1, we have

Slegel(n +h; ) - ASlegel(n + h,) + O(H(n + I’l, ))

for j = 1, ..., 7. Multiplying these estimates using (4.2) and the triangle inequality, and relabeling,
we reduce to showing that

[EnstASiegel(n + hl) .. ASiegel(n + hk)|H(n + hi) . H(n + h;,) ~0
forany 1 < ¢’ < ¢. By (5.2), it suffices to show that

(logk XEpextV(n + hy) - tv(n + R)H(n + ) - H(n + k) =~ 0. (6.13)
Expanding out (6.5), the left-hand side is

Z a(d)) - oc(d;,,)(logk Eax V(R + hy) - v+ B ey &, In+h,

!’ ’
dj,d’,, <D

using (3.10), one can bound this further by
k K
< Y @)W e 1(d)°Valdys) - aldip)logh X, [[ v+ m) [ ] 14 n4n,

dy,esdyr <D j=1 j=1

where we use the notations k’ :=k + ¢/, Py = h;., and dy,; := d;. for j =1,...,7". Applying
Lemma 3.4, we can bound this by

d )W ... (d, )W (d e alds,
<y (long)/ w(dy) 7( Z) dOl( k1) - o(dyr)
..... deSD 1 Qg
k' p2k
(1, mincrosp.v )2+ 28
X
pld; -

k' p2k
for any A > 0. The contribution of the latter term DR
term can be bounded by

o d oM ... r(d, )0
g X / z w(d) y ;( ) H min(o logg p, 1) d—j
10gA77 dy <D 1%k pld; 9

is ~ 0 due to (2.16). By (6.6), the former
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for any A > 0, which by (2.5) can be bounded by

logR /
E (G)
logA 7 lg)

where

7(d;)°W .. 7(d, )°W
d, - dy

min(o log; p, l)lp‘dl“'dk.

‘We can bound

E (0)<1 O<m1n(cr logy p, 1))

p

so by (3.4), (2.15) and setting A large enough we conclude (6.13). This completes the proof of
Proposition 6.3.

7 | FOURTH STEP: REPLACING THE VON MANGOLDT SIEGEL
MODEL WITH A TYPE I APPROXIMANT

We now execute step (iv) of the strategy outlined in the introduction. In this step, we will achieve
power savings in many of our error terms, and as a consequence we can often afford to lose factors
such as x°@), in contrast to other sections where even a loss of log x is often unacceptable.

It is convenient to perform a smooth dyadic decomposition of the convolution y * log in order
to run a smoothed version of the Dirichlet hyperbola method. Let ¢ : R — R be a smooth even
function supported on [—1, 1] of total mass one. For any ¢ > 0, define the function

®,(n) := ¢(log ?),

which is a smooth cutoff to the interval [t /e, et]. Then for any natural number n, one has the

identity
« dt « n dt
/0 (I)[(n)logtT _/0 ¢(log ?>10gt—

= / ¢(u)(logn —u) du 7.1
R

= logn,

where we made the change of variables u :=logn — logt. We conclude that
« dt
x *log(n) = / x % ®;(n) logt— (7.2)
0

As it turns out, the Dirichlet convolution y * @, is of an adequate ‘Type I’ form when ¢ < Dq}zf
orx/t < (Dq}z{ ). Accordingly, we split

x *log=(y * log)Ji + (x = log)b,
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HARDY-LITTLEWOOD-CHOWLA WITH A SIEGEL ZERO 3359

where (y # log)* is the Type I approximant

2

(x * log)(n) = / Cx @ (mlogt
0

0 dt
+f | Pana s/ = g 73)

® dt
+ /qu( ¢>(Dq)z()2(x/t))( * @Dq}z((n) logtT,

and (y * log)b is the error

= dt
(x * log)b(n) = / ¢>(qu)2(x/t))( % (P, — @qu)logt—. (7.4)
Dq)z( X X t

Thus, (y * log) is the modification of y * log formed by replacing the cutoff ®, with Opg2 in
X

the intermediate range Dq)z( <t<g of t (using a smoothed version of the upper cutoff ¢

X
g
@ in order to facilitate some technical computations in the next section). As it turns out,
it will be the second term in the right-hand side of (7.3) (in which the ®; term is supported in
values > x/(Dq3)?, so that the x term is supported in values < (Dq;)?) that will give the main
contributions, being a more complicated version of the (untwisted) Type I sum (3, 2 1) * log.

We then have a similar spliting

_ Al b
Asiegel = ASiegel + ASiegel’

where
# . f
ASiegel := (y * log)"v
and
A, =(y * log)bv
Siegel * :

We have good bounds on the distribution of (y log)b or Agiege in residue classes a (q) with g

1
almost as large as x2/3, as long as (a, q) is not too large:

Proposition 7.1 (2/3 level of distribution). Let 0 < € < %, 1 < q £ x, and a be an integer. Let I be
a subinterval of [0, 2x]. Let f : Z — [—-1,1] be a q,-periodic function.

(i) We have

9/2
n—a X (aa q)3/2q)(/ q3/2 xO(E)(a, Q)z 1
< +1-0() D1/2 xe |

DS 10g)"(n)f<

nel:n=a (q)
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3360 | TAO AND TERAVAINEN

(ii) If e is sufficiently small depending on k, ¢, €,, then we have

9/2 3/2

n—a x| 9 4 1
Z Agwgel(n)f( > <<g (CL, q)O(l)a W +

nel:n=a (q) q xE

The powers of (a,q) and g, are of minor importance and these terms can be neglected on
a first reading. The key point here is that we can have a power savings over the trivial bound of
0.(x'*¢ /q) even when q is somewhat above x!/2 (indeed, the above bounds can remain non-trivial
as g approaches x2/3).

Proof. We first prove (i). Note that 0 < (y * log)b(n) < x * log(n). From (3.1), we may bound the
left-hand side of the claim by O.(x°®)(1 + x/q)). From this, we see that we may assume without
loss of generality that we may take ¢ is sufficiently small depending on k’, and we may also assume
that ¢ < x2/3, since otherwise the above crude bound is already dominated by x°©)¢'/2 and hence

3/2,9/23/2
by Z M. By shrinking I slightly (and using (3.1) to treat the error), we may assume that
Y § T X100 Y g 1 shghtly g

I c[x!7¢ 2x].
The integrand in (7.4) is only non-zero in the range Dq)z( <t<x/ (Dq)z()z. By the fundamental
theorem of calculus, one has

3 ’
-2 == [ &L,

Dgq;
where
®,(n) :=¢' (log %)
so by the triangle inequality (and increasing e slightly), it will suffice to show that

x1+O(£)(a’ q)z x1-¢

+
D1/2q q

%, (P2 Yl i < 20020 g +
n=a (q) q

for all Dq}2( <t< x/(Dq)Zf)z.
We can approximate 1; by a cutoff ¢; : R — R supported on I obeying ¥;(y) = 1 whenever
dist(y,I) > x'~2, and additionally obeying the derivative estimates

P (y) < x172 (7.5)

for all j > 0 and y € R, with the error being acceptable by (3.1). It thus remains to establish the
bound
x1+0(5)(a’ q)z

Dl/zq

> f< = )z,bf(n)x « &,(n) <. x°9(a,q)*?q}/*q"/* +
nza(@ ~ 2

The left-hand side can be rewritten as

2, X&) a0 <M>

ny,np q
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HARDY-LITTLEWOOD-CHOWLA WITH A SIEGEL ZERO 3361

By the triangle inequality, it suffices to show that

x1+O(£)(a, q)z

% 0(e) 3/2,7/2 1/2
D X )@ ()P ()L (g, <e X0, )P "M + Daa,

ny,n;
foranya’ € Z/(qq,Z) with a =a(q). Iifwesetq, := (a, q)q, then (d, qq,,) divides g,. Writing
q(/) = ((a,5 qqx)q07 qq)()

and using Lemma 3.9 and the triangle inequality and (3.1), we obtain the bound

. d 3/2 _
3 X )@ )G ()L (g < X —=X +q. 27T ), (7.6)
ny.n x aq
112 X
where
X = | D x)® ) ()l s (gm0~ a0,)
ny,ny
and
Y = 2 (ul,uz,qqx)l/z Z tibt(nz)z,bl(nlnz)eqqx(uln1 + u,n,)|.
U E€Z/(qq, 2):qq, /qotur uy niny

We first estimate the quantity Y. From repeated summation by parts, we have

i - x/t ¢
®,(n));(nyny)e, (un, + u,n,) <, x +0E
nlz,i;z (n)pr(nyny)e (U ng M) <K luy /(@@ )lr )z 1u2/ (@@ ) lr/2
xO(a)

/99 ez 2/ agy ey 2
Writing u; = du’, u, = du/, withd = (uy, u,, qq)()l/z, we then have
xO(z)

Y < di/?
- X 2 aqy 141/(qq, /Dllgz 1105/ (@q, /Dllg/z

dlqqy 1<u;,u;<T

qq, a9, \\*
<<E XO(E) dz d1/2 (T 10g <2 + T))
lgq,

<, xo(f)qzq;.

Thus we see that the contribution of Y is acceptable. Now we consider the contribution of X. From
Mobius inversion, we have

d
1(n1nz,qqx)=(a’,qqx) = Z M(W ) Lajnn,-
d:(a’.qq,)ldlqq, e
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3362 | TAO AND TERAVAINEN

By (3.1) and the triangle inequality, one thus has

X < x0© Z X(nl)(i)t(n2)¢1(n1n2)1n1n2=a’ (q(’))ld|n1n2

ny,ny

for some d with (a’, qq,)Id|qq,- On the one hand, we see from (3.1) (noting that the constraints
nyn, = a’ (qy), d|nyn, constrain nn, to at most one residue class modulo [d, g/ ]) that

X <, x0©_X (7.7)
‘ [d,q}]

On the other hand, we can write

n
X < x°0| ¥ F(ny.my)¢' (log =2 Jr(mny)|.

ny.ny
where F is the [d, g ]-periodic function
F(l’ll, l’l2) = X(nl)lnlnzza’ (qé)ldlnlnz.

By Fourier expansion and Poisson summation, we can then write

X < xO(E) Z F(gl’ gZ)IP(gl’ §2) )

yA
Ere—=
51 §2 dq(’)
where

F(§,8) = [Enl,nzF("1an2)e(—n1§1 - ny6y),

and
V(6,6 = /0 /0 D, (x,)r(xyx5)e(x, & + x,€,) dxdx,.

From the area-preserving change of variables (u;,u,) := (log xt—z,xlxz) and the fundamental
theorem of calculus, we have

w(0,0) = /R /0 & (uy )y () duyduty = 0,

and from integration by parts, one has the bounds

x 140 ()
" A+ E DA+ gD

P(§,,6) <

for any m > 0. Meanwhile, using the trivial bound |F(&;,£,)| < 1andt, f > Dq)zf, we have

X Ko x0@ ¥ A+ Dg DT

z
(g PN}
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HARDY-LITTLEWOOD-CHOWLA WITH A SIEGEL ZERO 3363

for any m > 0, and thus

—-m
X <<m c xom(i) D_q)i
’ [d, q;]

forany m > 0.In particular, if[d, g/ | < D'/ 2q)z(, we have X <, 1 (say) by choosing m large enough.
Comparing this with (7.7), we conclude that

0 __ X

X<<EX
1/242
D/q)(

in all cases. Inserting these bounds back into (7.6) and writing g, = (a, q)q,, and bounding

q) < (d@',99,)q0 < ¢5 = (0,90,

we conclude that

3 0(e) x(a,q)2 3/2,7/2 1/2
z X(n1)¢’t(n2)¢l(n1n2)1n1n2=a’ (qq) e X V200 +(a,q) a, g )
ny,ny D%/*qq,

and the claim (i) follows.
Now we prove (ii). Expanding out the Selberg sieve v as

v(in) = Y aglyp, (7.8)

d<R?

for some sieve weights a,; that can be crudely bounded using (3.1) as
a; < 7(d) <, x°, (7.9)

we see from the triangle inequality and pigeonhole principle (noting that 3 ; p. % <, x) that

n—a
Z Agiegel(n)f<—q > <, x*

nel:n=a (q)

¢ ¥ et

nel:n=a (q);d|n

for some d < R%. We can restrict attention to those d with (d, q)|(a, q), since otherwise the sum
is empty. The conditions n = a (g), d|n can then be combined into a single congruence class n =
a’ ([g,d]), with (d’,[g,d]) < d(a, q); on this class, the quantity f(”q;a) can be viewed as a q,-

periodic function of ?q_—g]/. Applying (i) (with ¢ replaced by 3¢), we have

d Y (= 10g)b(n)f<"_a>
nel:n=a (q);dln q
dx |43, Q)3/2%9(/2[q, d]’/? x00d3/2(a,q? 1

< [q.d] +1-0() D1/2 X3 |
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3364 | TAO AND TERAVAINEN

W9 < (an) and then bounding [g, d] < gd and d < R?, we conclude

q

Writing ﬁ

q x1-0() D1/2 X€

Rﬁ(a q)5/2 9/2 3/2 O(E)RS 3
)<<E X L X (@9’ @a|

Z Slegel(n)f <

nel:n=a (q)

Using (2.10) and (2.9), we obtain the claim for ¢ small enough. O
Now we can prove
Proposition 7.2 (Replacing Agjege; With a Type I approximant). Assume k < 2. Then we have

[EnsxASiegel(n + hl) Aslegel(n + hk)/‘LSlegel(n + h,) ASlegel(n + h/f)

~E (n+hy) - (n+hk)/1 (n+hj) - (n+h).

n<x Slegel Slegel Siegel Slegel

Proof. The claim is trivial for k = 0, so we may assume that k € {1, 2}. By the triangle inequality
and relabeling it suffices to show the bounds

/
Ens Slegel(n + hl)/lsleg l(n + hl) : Slegel(n +h ) ~0 (7.10)
when k = 1, and the bounds
Encx Slegel(n + 1) Agjegel(n + hz)/lslegel(n +hy) - Slegel(n +n L)~ (7.11)
and
Encx Slegel(n + hl)ASlegel(n + hz)/lslegel(n +hy) - Slegel(n +h )R (7.12)
when k = 2.
We begin with (7.10). Let € > 0 be a sufficiently small quantity. From (6.2) and (3.1), we have
Aglegel = Y bylgx(n/d) (7.13)
d<D
for some weights b, of size
by < 7(d)1og®V x <, x°. (7.14)

Since
1 (d)F' !
Y o L =
dsDk/—l

(due to (3.1)), we thus see from the pigeonhole principle that the left-hand side of (7.10) is bounded
by

o ) ¢ n+ h;.
/ !/
<<E X (E)[d 5 eee ’df] IEHSXASiegel(n + hl) I I 1d}|n+h}X d’
j=1 j
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HARDY-LITTLEWOOD-CHOWLA WITH A SIEGEL ZERO | 3365

for some d;, . d’f < D. By translating (and removing negligible errors), we may assume that h; =
0. Settingd := [d;, ...,d" ], we see that the constraints d; |n + h;. are either inconsistent, or restrict

+h!
n to a single residue class a (d) with (a,d) < 1, and then Hle )((nd—,]) is a g, -periodic function
j

of "d;a. Applying Proposition 7.1(ii) (with a suitable multiple of €), we bound the left-hand side
of (7.10) by

xO(s)q9/2d3/2
X
<. T + ; (715)
Bounding d < D¥'~! and using (2.20), we see that the right-hand side is ~ 0 for ¢ a sufficiently
small constant, giving the claim.

Now we consider (7.11) and (7.12). Again let € > 0 be sufficiently small. From (7.2), (7.3) and the
pigeonhole principle, we can bound both left-hand sides (up to negligible errors) by

+h,
<, x9© Epcx Slegel(n +h )( Z x(d,)®, ( >)v(n + h,)
d,|n+h, d, (716)
’
Slegel(n +h) ) Slegel(n +h )

for some 1 < t < x (note that the summation vanishes for ¢ outside this range).

We now use a version of the Dirichlet hyperbola method. First suppose that ¢ > \/1 then the
summand vanishes unless d, < \/; Expanding out using (7.13), (7.8) much as before and now
using

N d,,d,,d,..,d
dy<y/x:d, <R%d) ... d!, <D [dz, dy. dy 3

we can bound the contribution of the d, < \/} case by

O(e) 7 l ! n+ hz a n+ h;
<, x99d,, dy,d!, ..., dL]|E ey slegel(" + R @i, @ 0 I Ly x| —
J=1 J

for some d, < v/x, d, <R? and d, .. ,d/, < D. Writing d := [d,,d,,d],...,d)] and arguing as

+h
2), we can
d,

before, using summation by parts to deal with the slowly varying function ®,(~

again bound this expression by (7.15). Bounding d « \/ERZD"/_2 and using (2.20), we see that
the right-hand side is = 0 for ¢ small enough, giving the claim.

Finally, suppose that ¢t < \/} Now we make the change of variables d} := "th and rewrite
2
the bound as
0O\E, h ®,(d; h h
< OB, A+ )| Y @ dr () v+ hy)
dy|n+h,
(n+hj) - (n+Hh)|.

Slegel Slegel
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Observe that the summand vanishes unless d < \/E Now we can repeat the previous arguments
(using d in place of d,, and the g, -periodic function y in place of ®;, noting that (2.20) can handle
several additional losses of g, ) to conclude. O

8 | FIFTH STEP: COMPUTING THE TYPE I CORRELATIONS
We now execute step (v) of the strategy outlined in the introduction by establishing
Proposition 8.1 (Evaluating the Type I correlation). We have

E (n+hy)-- (n+ hk)/l (n+h)-- (n+h)~ (8.1)

n<x Slegel Slegel Siegel Slegel

where © is the quantity in Conjecture 1.3.

Clearly Theorem 1.6 follows immediately from concatenating together Propositions 4.2, 5.2, 6.3,
7.2, 8.1 using (1.7).

We first dispose of the easy case # > 0, in which & vanishes. For 1 < j < k, we see from (7.3)
and replacing d by n/d in the first and third factors, and truncating the very small or very large
values of t (where the summand vanishes) that

(x * log)(n) = Z ®,(d)y(n/d) logt
1/100 din

100x
t [ b/ Y @i /dy@log: (82)
Dq dln

4

100x dt
+ / o gz (x/1) 2 Ppg2(d)x(n/d)logt=—.
D> X i X t

V4

In all of these terms, the summands vanish unless d <« (in)z. One can then write

(xlogfm= 3 (Wn/d)x(d)+cax ().

d<(Dg3)?:d|n

where ¥ : Rt — R is the smooth function

100x dt
W) = / Ve (/09,0 log 2 83)
Dq;
and ¢, is the coefficient
Dq;,
¢ :=/ cp(d)logt@
1/100

100x dt
+/ , 1,b>(Dq )2(X/t)q)qu(d)lOgt—.
Dq

74
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For the current analysis, we will need the crude bound

o(1)

Y|y < 1o x,c¢; < 1og®W x,
(¥l v g d g

where we use the total variation norm

Ifllry := sup [fO)] + / £ dy.
y>0

R

Combining this with the expansion (7.8), we see that

Nw= ¥ Cm+ Y saax(p), (84)

d<<R2(Dq)2()2 din d<<R2(Dq)2()2 :d’|d|n

where ¥; : R* — R is a smooth function and g, ; is a coefficient obeying the bounds

1Wyllry < (), gg0 < 7(d)°V 10g"M x. (8.5)
Using the decomposition (7.13) to expand /lgiegel(n+h;), we can thus write Agiegel(n+
# # ’ # ’
hy) s Ngrege (M + HDAG o (M + R e A (n+ hy ) as
2 hd1 ,,,,, dies o) d]’c(”)

k+¢
n+h;
J
j=1 JETUlk+1,...k+¢} J

for some smooth functions h; ;4 g @ R —> Rwith
1oeees (SRS ER k

..........

!/
k+j
summation by parts to deal with the hdl,,..,dk#,d; o] coefficients, we may thus bound the left-hand

side of (8.1) by

and with the convention that h; i= h;. and d =d;, j for j =1,...,7. From Lemma 3.7(ii) and

<, q)l(/2+z 1og®® x Z Z

Jc{l,...k} dl,...,dk<<R2(Dq)2()2;dk+1,...,dk+,¢<D;d;|djVjeJ

dy o dyp, g ) 27(d)OD (@O0 — L 41
(d, K d,) ' “T(dy) (dy) a,d, - dy + x

which on evaluating the d; sums, and then writing d := d, --- d}, can be bounded by

< ¢/ lg?Wx Y (d,q)()l/zr(d)‘)(”(iﬁ). (8.6)

d<<D2(k+f)(Rq)2()2k qld
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From (2.16), we see that

_x
q}1{/2+50/2

d <« D+t )(Rq)z{)Zk <

so that

1 1.1
q,d x q}l(/2+Eo/2d’

and then by (2.5), we can bound (8.6) by

(d.g, )1/2r<d>0<1>

<, q O(l) X H Z . (8.7)

PSXdeN(,)

One can calculate

(d,q,)"e(d)°D

sy 1
<1+0(=
3 SO civod)

dEN(p)

when p t g, and

(d, g,)"2(d)0D
Z 5 <1

dEN(p)

otherwise, thus by (3.7) the preceding expression (8.7) is

< ‘570“( 0(1) 150
q)( Tq)() 0g X

€
which by (3.1) is

_f
< q,* log®® x

if ¢ is small enough. Applying (2.18), we conclude that

E (n+hy)-- (n+hk)/1 (n+h)-2, (n+h))=0.

n<xly Slegel Slegel Siegel Slegel

This concludes the treatment of the £ > 0 case.
Now suppose that # = 0. The above arguments allow us to dispose of the g, 5 contributions
in (8.4), leaving us with the task of showing that

k
| > Wy (n+h)~@

J=1d;<R¥(Dg3)?:d;In+h;

This is a correlation of Goldston-Yildirim type and can be calculated by a lengthy but straightfor-
ward calculation, basically a more careful variant of Lemma 3.4. We follow the Fourier-analytic
method laid out in [9, Appendix D], as follows. Using Lemma 3.3, (8.5), and summation by parts,
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we can write the left-hand side here as

[icicjcr Yandpin—n, 1 [* &
SiUs 0j)Ini=N;

- Y +h.)d
Z < [dy, ... d,] x/) H dj(y J) y

dy ey clk<<R2(Dq)()2 j=1

+o< 7(d)°W - 7(d).)° M 1og?™ x )) .
X

Using (3.1), the contribution of the error term is at most

(RDq;)*x*

<
€ x

for any € > 0, which is = 0 for € small enough due to (2.16). Thus it remains to show that

H]<l<]<k (d; d)|h —h; 1
D ! / H‘Pd(y+h)dy ©.

di,...,
dy..dy <(RD 2k L

The contribution of those y with y < x'~% is bounded by

[h<i<je Ldidpin—n;

o) 5
[dy, ..., di]

X% log 7(d})°W - 7(d, )°W.

dy e dy <R2(Dg3 )2

Bounding Lid, d))| hi_hj[dl, s A ] < and using (3.1), we see that this contribution is =~ 0.

Thus it will suffice to establish the p01ntw1$e bound

[M<icjac 1 (d 4 )Ih 'y
[dl’ cee sy

H‘Pd O +h)~ (8.8)

dy,,dg<RA(Dg3)?

2
for all x'~% < y < x. Note that the restrictions on d, ..., d, can be dropped due to the support of
the lpdj .
By construction, we have

y+h;
Y.y +hj)= Z X(do)/«l(dﬂ/«‘(dz)@( d >¢<R(d1)¢<R(d2) (8.9)
0

do.dydy 2 [dody dy]=d

This function is not multiplicative in d, but it can be Fourier expanded as a linear combination of
multiplicative functions:

Lemma 8.2 (Fourier expansion). We have

Per(d) = /R L r(ydr, 810)

d logR

d 'y 'TTOT "0SLLEIYT

sdny woxy

sdy) SUONIPUOL) PUE SWIDL, U 998 “[$Z0Z/LO/6T] U0 AIeIqr] SUIUQ AO[IAY *SOT “BILION[ED JO ANSIOAIUN AQ €99 [*SWI/ZT [ 1°01/10p/woa Kofim-reiqrjour

puE-suLI)/woo KA

2591 SUOWILIOD) dANEAI) 9[qratjdde o) £q POUIGAS AIE SAIIIE V() 25N JO SonI 10j ATBIQIT QUIUQ Ka[1Ap UO (SUONIP



3370 | TAO AND TERAVAINEN

and

y+h;
<I>< 7 >=10gx/ 1+rF(t)dt (8.11)
dlogx

forallreal d > 1, and some measurable functions f,F; : R — C obeying the decay estimates
JO <, @+ eD™™ (8.12)
and
Fi(t) <, L+t (8.13)
forallt € Rand m > 0, as well as the identities
/f(t) dt=1 (8.14)
R
and
/Fj(t)(l +it)dt =1. (8.15)
R

Proof. From (2.21) and (3.14), we obtain (8.10) with

70 1= o [ 0y du

the Fourier transform of u — e*®(u). From repeated integration by parts, we have the rapid
decrease (8.12), while from (3.15) we have

/ F@)dt = p(0) = 1
R

giving (8.14).
Next, from (8.3), we have

y+h; [ log(x/t) dt
q’( 7 >—/0 II)(W q)dt(y"'hj)logtT,

log(x/t)
log x

y+h; log x y+h
o) = [ ¢<2log<Dq§()S>¢<l°g

By Fourier inversion (3.14), we then have (8.11) where

Fi(0) = logx/ (1+u)u/ _logx s )¢ logy+h
210g(Dg2)’

for any natural number d. Writing s = , we can rewrite this as

! +slogx—logd>(1—s) ds.

/ +(s—u)log x)(l —8)dsdu,
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which on making the change of variables v := u — s factors as

log x ; y+h ; log x
F.(t) = == +iv g [ —vl d / (1+it)s 1—s)ds )
(1) oy (/Re qb( og p v ogx> v> Re P —Zlog(Dq)z()S (1-s)ds

From the triangle inequality, one has

/ e(1+it)v¢ <10g y+ h
R

while from integration by parts (and (2.9)), one has

; log x
(1+it)s 1-35)d 14 (D)™
/Re ¢<—210g(Dq)2()S>( 5) ds <, (1+[t])

for any m > 0, thus yielding (8.13). Also, from (3.16), and integration by parts one has

. d _(Y+h;
/RFj(t)(1+lt)dt=—E<D< i >|x=0

=0+ hj)‘b’(y +hj)
e log(x/t) , y+h dt
_/0 ¢(210g(Dq}2()>¢ <1°g t >1°gt7
% h,
=/ ¢/<10gy+ >logtg
0

= [ ¢ wogty + )~ ) du

:/qu(u) du

J 1
—vl dv< —
v ogx) v Togx

h;
where we have used the observation that z,b(—zll(;gg(();/;z)) equals to 1 on the support of ¢’(log —y+t L)
X
(since one then has x/t < x/y < xa(z)). This gives (8.15). O

Inserting the expansions (8.10), (8.11) back into (8.9), we see that

x(dp)u(d))u(d,)
,(y +h;) =log" x / / / ﬁ F(tg) (1)) f (t,)dtodty dt,.
R do.dy dy: [dd1 dy]=

d log x d logR dzlogR

Inserting this back into the left-hand side of (8.8) and factoring the Euler product using (2.3), we
can thus write that left-hand side as

log" x/skH Do 1eta HF(toj)f(tlJ)f(tzj)dtojdtljdtzj, (8.16)
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where
[M<icjac 1 (dl,d )Ih —y
EPJO,l’---Jz,k . Z [d,, ... H d SLo,jstrjota (8.17)
dl,...,dkEN(p> 1 ’
and
e x(dy)u(dy)u(d,) (8.18)
Cd to by oty *= 1+itg  14it; 14ty ’
do,dy,dy:[dy,dy,dy]=d ;Tlogx ;TlogR ;logR
do dl dz

From the triangle inequality, one has the crude bound

1
EP,to,l ----- b 1+ O<p1+1/logR> (8.19)

Using (8.12) and (8.13), we see that the contribution of the integral in which the quantity

[t] ;= sup |

i)l
0<i<2;1€j<k

exceeds (say) logl/ 19R is negligible. Thus we may restrict attention to the regime
[t] < 1og1/10 R.

We can improve the above analysis to restrict the region of ¢ further. From Taylor expansion, one
has the more precise bound

(1 +t1)*logg p
Ep’t(),l"“’tz,k =1-= <
p p

1
+ O(?)

when p < R. Using this bound in place of (8.19) when log p < (1 + |¢|)~3 log R and using Mertens’
theorem (3.3) and (3.6), we obtain the refined estimate

I1E. ot e (1+ 11O log* (8.20)
p=C

for any C > 1. Using (8.12) and (8.13), we see that the contribution of the integral in which |¢]| >
1og1/ (100i) 7 (say) is negligible. Thus we may restrict attention to the regime

[t] < logl/(look) 7. (8.21)

We now perform an even more precise analysis of the Euler factors E,, . Letus first sup-
pose that p is larger than C, for some sufficiently large C, (depending on Ay, ..., i, k). Then p

does not divide [, ¢; ;< (h; — h;). Thus in order for the sum in (8.17) to be non-zero, at most one
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of the d jcan be greater than 1, and hence

k o
Dito,15 -

=1

We expand ¢ using (8.18). For [ > 1, the sum in (8.18) only consists of those terms with

Plitojtjota,j

d, = p', and thus

l
c __xp) |, _1 1
pl)to,j’tl,j’tz,j - 14 1+noj) 1+ity 1+ify
p logx p logR p logR

In particular, from Taylor expansion, we have

< min ((1 + [t]) logg p, 1)%). (8.22)

C
Pl poly jplaj

For I = 1, the sum in (8.18) consists of those terms with d,, d,,d, € {1, p}, excluding the triple
dy=d; =d, =0, thus

)((p)1 1 1 1

Cptotioty = 1+ity T Ty T L
1 TogR TogR
p ogx p og p og
We thus have
E Z ptOJ?tlj’IZJ 1 1 1 1
Dloss ‘ 1+ify L+ity
- p logR p logR

O(min((l +[t]) logg p, 1)?

p? -

For p > C,, we may use the trivial bound ¢ <« 1 to factor

Dilo,jty jola,j

k c . 2
B Pt oty jpla min((1 + |¢])logg p, 1)
Ep,to,l,---,tz,k = (1 + Z —p >exp <O< 02 .

j=1

Since

min((1 + |t])log, p, 1)? 1+ [t])?
Z (« Ilz gr P, 1) < @+l Z ;/2 « lolR’
R P log’R P 2

we thus have

_ 1 ptO)’le’tZJ
H EPJo,l ----- bk — €Xp (O<10gR>> H < Z >
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Let us compare Cpito b1 joba against the quantity
! =1 1 1 1 1-—|-1
Dilojit1,jola,j T - L+t j - L+t - L+ity j -
p logx p logR p logR

The two quantities agree unless p is exceptional. From the triangle inequality, we have the crude
bound

’ 1
Cptojtiptay T Cptoptrptay S T

p]ogx

and when p < x we can use Taylor expansion and (8.21) to also obtain the bound

o 1/(100k) 2
Cptojtiitzg ~ Sptoptrpty < (108 nlogg p)°.

Thus in all cases one has the bound

1/(100k
, . (log/¢ ’vlog ) 03
Cp,fo,j,ll,j,tz,j - CPsfo,jJ1,jJ2,j < p exceptional (8.23)

P logx

k l
.t o,
<1+ 3 st >
J=1p=Cy

Applying Corollary 3.6, we conclude that

1
E,, , =exp| Ol ———
pgo Pontok < <10g”(7")77)>

= O(exp(—logy p)), we have

e

Bounding 1+nlj > 1+u2J

p logR p logR

1
. = e ~ + O(exp(—2logy p)),

Pilo,jptajotaj
p logx

while from Taylor expansion we see for p < x that

c =—1+0((1 + |t|)log, p)

Dilojol1, sl

1
i + O+ |t])1og, p)

p g (8.24)

1 1
- 1+“0,j + O<10g1/(6k) }7 logR p>

p log x

due to (8.21), (2.8). Combining the bounds, we see that

/ _ 1 . gR p _
cp,to‘j,llyj,tzyj - 1+lt0} + O<m1n (10g1/(6k) eXp( 2 logR p)))

p log x
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for all p > C,. From Mertens’ theorem ((3.3) for logy p < 10g1/ (100k)77 and (3.5) for log, p >
log!/1%%) ) we have
min (+ logg p, exp(—2log p)>
logl/G0,, OBR R 1
2 < Lo/
D p log 7

(say). We conclude that

k
1
H EP,fo,l ----- o = XP <O<10g1/T)n>) pH Z T‘OJ

J=1 log x

The function

ko1

H 1=-Xia 57
3 1

p>Cy Hj:l(l - ﬁ)

converges to a holomorphic function of 51, ..., s, in the polydisk H’;zl{s ;¢ |s; — 1] < 1/2}whichis
bounded in magnitude by O(1) (since each factor here is 1 + O(1/p?)). From the Cauchy integral
formula, we conclude that

H - 1_p = H —J(1+max(|sl—1| s = 11)
p=Cy szl(l - pTJ) p>C, HJ e —)

when |§s; — 1], ..., |8, — 1] < %. Observing from (1.2) that

ko1
1‘2;:15

H?:l(l - %)

p

for p > C,,, we conclude (using (8.21)) that

k 1
1= X — g
P 1+ ]
Il - (0T )) 1%

1 p=Cy
Hj:l 1- L o j

p Togx

and thus (by (8.21), (2.8))

T1 Bocoytrse = oxp (O<1 1/(7k) >> I15 H 1+Lt0 ‘ (8.25)

p=2Cy Jj=1 D 1+ log x
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Now we turn attention to the small primes p < C,. Using (8.17) and (8.22), we have

Ih<i<jr Ldidpin—n; gCp\ >
EP,fo,l ----- i = Z [d, d] H djto,jstr,jota,j +0 <(1+ |t|) ¢R >
9 ]_

dy,....dg €41, p} "

for p < C,), which we rewrite as

H1<l<]<k (d;d )|h h
H d tO]

t it
dy,..di €{1,p}:[dy..di ]=p

logC,\ 2
O<<(1+|t|)1(:ngo> >

From (8.21) and (2.8), the error term is certainly O( 7 /(m ). From (8.23), (8.24), (8.21) and (2.8),

we similarly have
——1+0[ ———
cPJo,j,h,j,lz,j - 1Og1/(7k) 7

for p < C, and thus

1
Cdjuto oty jotaj = M(dj) + O<—gl/(7k) >

for j =0,..., k. This gives

Iicicjck Ldnain—h; 1
EP’IO,I ----- bk = 1+ Z u(dy) - u(dy) » J T +0 ]

1/(7k)
dy i €{1,p}: [dyn.ndy ]=p log/ 7

If the h; occupy m distinct residue classes by,...,b,, modulo p, then the constraint
Iicicjck Ld,.d,)ln—h; constrains the index set {i : d; = p}tobe asubset of one of thesets{i : h; =
bj (p)tfor j =1,...,m, which must be non-empty if [d;, ..., di ] is to equal p. From the alternating
sign of the Mobius function, each j has a net contribution of —% to the above sum, thus

m 1
EP’fo,l ----- by — 1- E + O<10g1/(7k) 7 >

From (1.2), we have

and thus
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by Taylor expansion and (8.21), we then have

k
1 1
EP,tOJ ..... bk = ‘BP H 1- 1 L+itg ; + O<1Og1/(7k) 77>

J=1 D + log x

for p < C,. If we now fix C, so that all the previous estimates are justified, we have

k
1 1
H Ep.tg e bk = H Py H 1= Y + O<10g1/(7k),7>

p<Cq p<Cy Jj=1 p log x

and hence by (8.25), (3.5) and (1.1)

K 1 1 1 '
E =& 1-— - +0 1-—
I I Pulg 1ok .
5 0.1l2k 1;[ lell p1+ 11:;(1; 10g1/(7k) 7 1;[ p1+loéx
K 1 log™* x
=6 | | I | 1-— - +0 .
p j=1 p1+1::lg[?£j <log1/(7k)77>

From the Euler product formula (3.2) as well as (8.21), we conclude that

k —k
log™™ x
_ —k -
I IEP’tO,l ,,,,, 6, = ©log™ x I |(1 + o) + O(logl/(ﬂ‘)n).

p Jj=1

Inserting this bound into (8.16), and using (8.12) and (8.13) to remove the restriction (8.21), we can
thus write the left-hand side of (8.8) as

k
[ TG+t ) )F ) dig sl
R j=1

Applying (8.14) and (8.15), this is = &, giving the claim. This (finally!) concludes the proof of
Theorem 1.6.
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