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Abstract

Define the Collatz map Col : N+1 → N+1 on the positive integersN+1 = {1, 2, 3, . . . } by setting Col(ý) equal to

3ý + 1 when N is odd and ý/2 when N is even, and let Colmin (ý) := infÿ∈N Colÿ (ý) denote the minimal element

of the Collatz orbit ý,Col(ý),Col2 (ý), . . . . The infamous Collatz conjecture asserts that Colmin (ý) = 1 for all

ý ∈ N+ 1. Previously, it was shown by Korec that for any ÿ >
log 3
log 4

≈ 0.7924, one has Colmin (ý) ≤ ý ÿ for almost

all ý ∈ N + 1 (in the sense of natural density). In this paper, we show that for any function ÿ : N + 1 → R with

limý→∞ ÿ (ý) = +∞, one has Colmin (ý) ≤ ÿ (ý) for almost all ý ∈ N + 1 (in the sense of logarithmic density).

Our proof proceeds by establishing a stabilisation property for a certain first passage random variable associated

with the Collatz iteration (or more precisely, the closely related Syracuse iteration), which in turn follows from

estimation of the characteristic function of a certain skew random walk on a 3-adic cyclic group Z/3ÿZ at high

frequencies. This estimation is achieved by studying how a certain two-dimensional renewal process interacts with

a union of triangles associated to a given frequency.
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1. Introduction

1.1. Statement of main result

LetN := {0, 1, 2, . . . } denote the natural numbers, so thatN+1 = {1, 2, 3, . . . } are the positive integers.

The Collatz map Col : N + 1 → N + 1 is defined by setting Col(ý) := 3ý + 1 when N is odd and

Col(ý) := ý/2 when N is even. For any ý ∈ N + 1, let Colmin(ý) := min ColN(ý) = infÿ∈N Colÿ (ý)
denote the minimal element of the Collatz orbit ColN(ý) := {ý,Col(ý),Col2(ý), . . . }. We have the

infamous Collatz conjecture (also known as the 3ý + 1 conjecture):

Conjecture 1.1 (Collatz conjecture). We have Colmin(ý) = 1 for all ý ∈ N + 1.

We refer the reader to [14], [6] for extensive surveys and historical discussion of this conjecture.

While the full resolution of Conjecture 1.1 remains well beyond the reach of current methods, some

partial results are known. Numerical computation has verified Colmin(ý) = 1 for all ý ≤ 5.78 × 1018

[17], for all ý ≤ 1020 [18], and most recently for all ý ≤ 268 ≈ 2.95 × 1020 [3], while Krasikov and

Lagarias [13] showed that

#{ý ∈ N + 1 ∩ [1, ý] : Colmin(ý) = 1} � ý0.84

for all sufficiently large x, where #ý denotes the cardinality of a finite set E, and our conventions for

asymptotic notation are set out in Section 2. In this paper, we will focus on a different type of partial

result, in which one establishes upper bounds on the minimal orbit value Colmin(ý) for ‘almost all’

ý ∈ N+ 1. For technical reasons, the notion of ‘almost all’ that we will use here is based on logarithmic

density, which has better approximate multiplicative invariance properties than the more familiar notion

of natural density (see [20] for a related phenomenon in a more number-theoretic context). Due to the

highly probabilistic nature of the arguments in this paper, we will define logarithmic density using the

language of probability theory.

Definition 1.2 (Almost all). Given a finite non-empty subset R of N + 1, we define1 Log(ý) to be a

random variable taking values in R with the logarithmically uniform distribution

P(Log(ý) ∈ ý) =
∑

ý ∈ý∩ý
1
ý∑

ý ∈ý
1
ý

for all ý ⊂ N+1. The logarithmic density of a set ý ⊂ N+1 is then defined to be limý→∞ P(Log(N+1∩
[1, ý]) ∈ ý), provided that the limit exists. We say that a property ÿ(ý) holds for almost all ý ∈ N + 1

if ÿ(ý) holds for N in a subset of N + 1 of logarithmic density 1, or equivalently if

lim
ý→∞
P(ÿ(Log(N + 1 ∩ [1, ý]))) = 1.

In Terras [21] (and independently Everett [8]), it was shown that Colmin(ý) < ý for almost all

N. This was improved by Allouche [1] to Colmin(ý) < ý ÿ for almost all N, and any fixed constant

ÿ > 3
2
− log 3

log 2
≈ 0.869; the range of ÿ was later extended to ÿ >

log 3

log 4
≈ 0.7924 by Korec [9]. (Indeed,

in these results one can use natural density instead of logarithmic density to define ‘almost all’.) It

is tempting to try to iterate these results to lower the value of ÿ further. However, one runs into the

difficulty that the uniform (or logarithmic) measure does not enjoy any invariance properties with respect

to the Collatz map: in particular, even if it is true that Colmin(ý) < ý ÿ for almost all ý ∈ [1, ý], and

Colmin(ý ′) ≤ ý ÿ
2

for almost all ý ′ ∈ [1, ý ÿ ], the two claims cannot be immediately concatenated to

1In this paper, all random variables will be denoted by boldface symbols, to distinguish them from purely deterministic quantities
that will be denoted by non-boldface symbols. When it is only the distribution of the random variable that is important, we will
use multi-character boldface symbols such as Log, Unif or Geom to denote the random variable, but when the dependence or
independence properties of the random variable are also relevant, we shall usually use single-character boldface symbols such as
a or j instead.
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imply that Colmin(ý) ≤ ý ÿ
2

for almost all ý ∈ [1, ý], since the Collatz iteration may send almost all of

[1, ý] into a very sparse subset of [1, ý ÿ ], and in particular into the exceptional set of the latter claim

Colmin(ý ′) ≤ ý ÿ
2

.

Nevertheless, in this paper, we show that it is possible to locate an alternate probability measure

(or, more precisely, a family of probability measures) on the natural numbers with enough invariance

properties that an iterative argument does become fruitful. More precisely, the main result of this paper

is the following improvement of these ‘almost all’ results.

Theorem 1.3 (Almost all Collatz orbits attain almost bounded values). Let ÿ : N + 1 → R be any

function with limý→∞ ÿ (ý) = +∞. Then one has Colmin(ý) < ÿ (ý) for almost all ý ∈ N + 1 (in the

sense of logarithmic density).

Thus, for instance, one has Colmin(ý) < log log log log ý for almost all N.

Remark 1.4. One could ask whether it is possible to sharpen the conclusion of Theorem 1.3 further,

to assert that there is an absolute constant ÿ0 such that Colmin(ý) ≤ ÿ0 for almost all ý ∈ N + 1.

However, this question is likely to be almost as hard to settle as the full Collatz conjecture and out

of reach of the methods of this paper. Indeed, suppose for any given ÿ0 that there existed an orbit

ColN(ý0) = {ý0,Col(ý0),Col2(ý0), . . . } that never dropped below ÿ0 (this is the case if there are

infinitely many periodic orbits, or if there is at least one unbounded orbit). Then probabilistic heuristics

(such as equation (1.16) below) suggest that for a positive density set of ý ∈ N+ 1, the orbit ColN(ý) =
{ý,Col(ý),Col2(ý), . . . } should encounter one of the elements Colÿ (ý0) of the orbit of ý0 before

going belowÿ0, and then the orbit of N will never dip belowÿ0. However, Theorem 1.3 is easily seen2 to

be equivalent to the assertion that for any ÿ > 0, there exists a constantÿÿ such that Colmin(ý) ≤ ÿÿ for

all N in a subset of N+1 of lower logarithmic density (in which the limit in the definition of logarithmic

density is replaced by the limit inferior) at least 1 − ÿ; in fact, (see Theorem 3.1), our arguments give a

constant of the formÿÿ � exp(ÿ−ÿ (1) ), and it may be possible to refine the subset so that the logarithmic

density (as opposed to merely the lower logarithmic density) exists and is at least 1 − ÿ. In particular,3

it is possible in principle that a sufficiently explicit version of the arguments here, when combined

with numerical verification of the Collatz conjecture, can be used to show that the Collatz conjecture

holds for a set of N of positive logarithmic density. Also, it is plausible that some refinement of the

arguments below will allow one to replace logarithmic density with natural density in the definition

of ‘almost all’.

1.2. Syracuse formulation

We now discuss the methods of proof of Theorem 1.3. It is convenient to replace the Collatz map

Col : N + 1 → N + 1 with a slightly more tractable acceleration ý ↦→ Col ÿ (ý ) (ý) of that map. One

common instance of such an acceleration in the literature is the map Col2 : N + 1 → N + 1, defined

by setting Col2(ý) := Col2(ý) =
3ý+1

2
when N is odd and Col2 (ý) := ý

2
when N is even. Each

iterate of the map Col2 performs exactly one division by 2, and for this reason Col2 is a particularly

convenient choice of map when performing ‘2-adic’ analysis of the Collatz iteration. It is easy to see

that Colmin(ý) = (Col2)min(ý) for all ý ∈ N + 1, so all the results in this paper concerning Col

may be equivalently reformulated using Col2. The triple iterate Col3 was also recently proposed as an

acceleration in [5]. However, the methods in this paper will rely instead on ‘3-adic’ analysis, and it will

be preferable to use an acceleration of the Collatz map (first appearing to the author’s knowledge in [7]),

which performs exactly one multiplication by 3 per iteration. More precisely, let 2N + 1 = {1, 3, 5, . . . }

2Indeed, if the latter assertion failed, then there exists a ÿ such that the set {ý ∈ N+1 : Colmin (ý ) ≤ ÿ } has lower logarithmic
density less than 1− ÿ for every C. A routine diagonalisation argument then shows that there exists a function f growing to infinity
such that {ý ∈ N + 1 : Colmin (ý ) ≤ ÿ (ý ) } has lower logarithmic density at most 1 − ÿ, contradicting Theorem 1.3.

3We thank Ben Green for this observation.
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denote the odd natural numbers, and define the Syracuse map Syr : 2N + 1 → 2N + 1 (OEIS A075677)

to be the largest odd number dividing 3ý + 1; thus, for instance,

Syr(1) = 1; Syr(3) = 5; Syr(5) = 1; Syr(7) = 11.

Equivalently, one can write

Syr(ý) = Colÿ2 (3ý+1)+1(ý) = Affÿ2 (3ý+1) (ý), (1.1)

where for each positive integer ÿ ∈ N + 1, Affÿ : R→ R denotes the affine map

Affÿ (ý) :=
3ý + 1

2ÿ

and for each integer M and each prime p, the p-valuation ÿý (ý) of M is defined as the largest natural

number a such that ýÿ divides M (with the convention ÿý (0) = +∞). (Note that ÿ2(3ý + 1) is always

a positive integer when N is odd.) For any ý ∈ 2N + 1, let Syrmin(ý) := min SyrN(ý) be the minimal

element of the Syracuse orbit

SyrN(ý) := {ý, Syr(ý), Syr2(ý), . . . }.

This Syracuse orbit SyrN(ý) is nothing more than the odd elements of the corresponding Collatz orbit

ColN(ý), and from this observation it is easy to verify the identity

Colmin(ý) = Syrmin(ý/2ÿ2 (ý ) ) (1.2)

for any ý ∈ N + 1. Thus, the Collatz conjecture can be equivalently rephrased as

Conjecture 1.5 (Collatz conjecture, Syracuse formulation). We have Syrmin(ý) = 1 for all ý ∈ 2N+ 1.

We may similarly reformulate Theorem 1.3 in terms of the Syracuse map. We say that a property

ÿ(ý) holds for almost all ý ∈ 2N + 1 if

lim
ý→∞
P(ÿ(Log(2N + 1 ∩ [1, ý]))) = 1,

or equivalently if ÿ(ý) holds for a set of odd natural numbers of logarithmic density 1/2. Theorem 1.3

is then equivalent to

Theorem 1.6 (Almost all Syracuse orbits attain almost bounded values). Let ÿ : 2N + 1 → R be a

function with limý→∞ ÿ (ý) = +∞. Then one has Syrmin(ý) < ÿ (ý) for almost all ý ∈ 2N + 1.

Indeed, if Theorem 1.6 holds and ÿ : N+1 → R is such that limý→∞ ÿ (ý) = +∞, then from equation

(1.2), we see that for any ÿ ∈ N, the set of ý ∈ N+ 1 with ÿ2(ý) = ÿ and Colmin(ý) = Syrmin(ý/2ÿ) <
ÿ (ý) has logarithmic density 2−ÿ. Summing over any finite range 0 ≤ ÿ ≤ ÿ0, we obtain a set of

logarithmic density 1− 2−ÿ0 on which the claim Colmin(ý) < ÿ (ý) holds, and on sending ÿ0 to infinity

one obtains Theorem 1.3. The converse implication (which we will not need) is also straightforward and

left to the reader.

The iterates Syrÿ of the Syracuse map can be described explicitly as follows. For any finite tuple


ÿ = (ÿ1, . . . , ÿÿ) ∈ (N+1)ÿ of positive integers, we define the composition Aff 
ÿ = Affÿ1 ,...,ÿÿ : R→ R
to be the affine map

Affÿ1 ,...,ÿÿ (ý) := Affÿÿ (Affÿÿ−1
(. . . (Affÿ1

(ý)) . . . )).

A brief calculation shows that

Affÿ1 ,...,ÿÿ (ý) = 3ÿ2−| 
ÿ |ý + ýÿ ( 
ÿ), (1.3)
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where the size | 
ÿ | of a tuple 
ÿ is defined as

| 
ÿ | := ÿ1 + · · · + ÿÿ, (1.4)

and we define the n-Syracuse offset map ýÿ : (N + 1)ÿ → Z[ 1
2
] to be the function

ýÿ ( 
ÿ) :=

ÿ∑
ÿ=1

3ÿ−ÿ2−ÿ[ÿ,ÿ]

= 3ÿ−12−ÿ[1,ÿ] + 3ÿ−22−ÿ[2,ÿ] + · · · + 312−ÿ[ÿ−1,ÿ] + 2−ÿÿ , (1.5)

where we adopt the summation notation

ÿ [ ÿ ,ý ] :=

ý∑
ÿ= ÿ

ÿÿ (1.6)

for any 1 ≤ ÿ ≤ ý ≤ ÿ; thus, for instance, | 
ÿ | = ÿ [1,ÿ] . The n-Syracuse offset map ýÿ takes values in

the ring Z[ 1
2
] := {ý

2ÿ
: ý ∈ Z, ÿ ∈ N} formed by adjoining 1

2
to the integers.

By iterating equation (1.1) and then using equation (1.3), we conclude that

Syrÿ (ý) = Aff 
ÿ (ÿ) (ý ) (ý) = 3ÿ2−| 
ÿ
(ÿ) (ý ) |ý + ýÿ ( 
ÿ (ÿ) (ý)) (1.7)

for any ý ∈ 2N + 1 and ÿ ∈ N, where we define n-Syracuse valuation 
ÿ (ÿ) (ý) ∈ (N + 1)ÿ of N to be

the tuple


ÿ (ÿ) (ý) :=
(
ÿ2(3ý + 1), ÿ2 (3Syr(ý) + 1), . . . , ÿ2 (3Syrÿ−1 (ý) + 1)

)
. (1.8)

This tuple is referred to as the n-path of N in [12].

The identity in equation (1.7) asserts that Syrÿ (ý) is the image of N under a certain affine map

Aff 
ÿ (ÿ) (ý ) that is determined by the n-Syracuse valuation 
ÿ (ÿ) (ý) of N. This suggests that in order to

understand the behaviour of the iterates Syrÿ (ý) of a typical large number N, one needs to understand

the behaviour of n-Syracuse valuation 
ÿ (ÿ) (ý), as well as the n-Syracuse offset map ýÿ. For the former,

we can gain heuristic insight by observing that for a positive integer a, the set of odd natural numbers

ý ∈ 2N + 1 with ÿ2 (3ý + 1) = ÿ has (logarithmic) relative density 2−ÿ. To model this probabilistically,

we introduce the following probability distribution:

Definition 1.7 (Geometric random variable). If ÿ > 1, we use Geom(ÿ) to denote a geometric random

variable of mean ÿ, that is to say Geom(ÿ) takes values in N + 1 with

P(Geom(ÿ) = ÿ) = 1

ÿ

(
ÿ − 1

ÿ

)ÿ−1

for all ÿ ∈ N + 1. We use Geom(ÿ)ÿ to denote a tuple of n independent, identically distributed (or iid

for short) copies of Geom(ÿ), and use X ≡ Y to denote the assertion that two random variables X,Y

have the same distribution. Thus, for instance,

P(a = ÿ) = 2−ÿ

whenever a ≡ Geom(2) and ÿ ∈ N + 1, and more generally

P(
a = 
ÿ) = 2−| 
ÿ |

whenever 
a ≡ Geom(2)ÿ and 
ÿ ∈ (N + 1)ÿ for some ÿ ∈ N.
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In this paper, the only geometric random variables we will actually use are Geom(2) and Geom(4).
We will then be guided by the following heuristic:

Heuristic 1.8 (Valuation heuristic). If N is a ‘typical’ large odd natural number, and n is much smaller

than log ý , then the n-Syracuse valuation 
ÿ (ÿ) (ý) behaves like Geom(2)ÿ.

We can make this heuristic precise as follows. Given two random variables X,Y taking values in the

same discrete space R, we define the total variation ýTV(X,Y) between the two variables to be the total

variation of the difference in the probability measures; thus

ýTV(X,Y) :=
∑
ÿ ∈ý

|P(X = ÿ) − P(Y = ÿ) |. (1.9)

Note that

sup
ý⊂ý

|P(X ∈ ý) − P(Y ∈ ý) | ≤ ýTV(X,Y) ≤ 2 sup
ý⊂ý

|P(X ∈ ý) − P(Y ∈ ý) |. (1.10)

For any finite non-empty set R, let Unif (ý) denote a uniformly distributed random variable on R. Then

we have the following result, proven in Section 4:

Proposition 1.9 (Distribution of n-Syracuse valuation). Let ÿ ∈ N, and let N be a random variable

taking values in 2N + 1. Suppose there exist an absolute constant ý0 > 0 and some natural number

ÿ′ ≥ (2 + ý0)ÿ such that N mod 2ÿ
′

is approximately uniformly distributed in the odd residue classes

(2Z + 1)/2ÿ′Z of Z/2ℓZ, in the sense that

ýTV(N mod 2ÿ
′
,Unif ((2Z + 1)/2ÿ′Z)) � 2−ÿ

′
. (1.11)

Then

ýTV( 
ÿ (ÿ) (N),Geom(2)ÿ) � 2−ý1ÿ (1.12)

for some absolute constant ý1 > 0 (depending on ý0). The implied constants in the asymptotic notation

are also permitted to depend on ý0.

Informally, this proposition asserts that Heuristic 1.8 is justified whenever N is expected to be

uniformly distributed modulo 2ÿ
′
for some ÿ′ slightly larger than 2ÿ. The hypothesis in equation (1.11)

is somewhat stronger than what is actually needed for the conclusion in equation (1.12) to hold, but this

formulation of the implication will suffice for our applications. We will apply this proposition in Section

5, not to the original logarithmic distribution Log(2N + 1 ∩ [1, ý]) (which has too heavy a tail near 1

for the hypothesis in equation (1.11) to apply), but to the variant Log(2N + 1 ∩ [ÿ, ÿÿ]) for some large

y and some ÿ > 1 close to 1.

Remark 1.10. Another standard way in the literature to justify Heuristic 1.8 is to consider the Syracuse

dynamics on the 2-adic integers Z2 := lim←−−ÿ Z/2
ÿZ, or more precisely on the odd 2-adics 2Z2 + 1. As

the 2-valuation ÿ2 remains well defined on (almost all of) Z2, one can extend the Syracuse map Syr

to a map on 2Z2 + 1. As is well known (see, e.g., [14]), the Haar probability measure on 2Z2 + 1 is

preserved by this map, and if Haar(2Z2 + 1) is a random element of 2Z2 + 1 drawn using this measure,

then it is not difficult (basically using the 2-adic analogue of Lemma 2.1 below) to show that the random

variables ÿ2(3Syr ÿ (Haar(2Z2 + 1)) + 1) for ÿ ∈ N are iid copies of Geom(2). However, we will not use

this 2-adic formalism in this paper.

In practice, the offset ýÿ ( 
ÿ) is fairly small (in an Archimedean sense) when n is not too large; indeed,

from equation (1.5), we have

0 ≤ ýÿ ( 
ÿ) ≤ 3ÿ2−ÿÿ ≤ 3ÿ (1.13)

https://doi.org/10.1017/fmp.2022.8 Published online by Cambridge University Press
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for any ÿ ∈ N and 
ÿ ∈ (N + 1)ÿ. For large N, we then conclude from equation (1.7) that we have the

heuristic approximation

Syrÿ (ý) ≈ 3ÿ2−| 
ÿ
(ÿ) (ý ) |ý

and hence by Heuristic 1.8, we expect Syrÿ (ý) to behave statistically like

Syrÿ (ý) ≈ 3ÿ2−|Geom(2)ÿ |ý = ý exp(ÿ log 3 − |Geom(2)ÿ | log 2) (1.14)

if n is much smaller than log ý . One can view the sequence ÿ ↦→ ÿ log 3− |Geom(2)ÿ | log 2 as a simple

random walk on R with negative drift log 3− 2 log 2 = log 3
4
. From the law of large numbers, we expect

to have

|Geom(2)ÿ | ≈ 2ÿ (1.15)

most of the time; thus we are led to the heuristic prediction

Syrÿ (ý) ≈ (3/4)ÿý (1.16)

for typical N; indeed, from the central limit theorem or the Chernoff bound, we in fact expect the

refinement

Syrÿ (ý) = exp(ÿ (ÿ1/2)) (3/4)ÿý (1.17)

for ‘typical’ N. In particular, we expect the Syracuse orbit ý, Syr(ý), Syr2 (ý), . . . to decay geomet-

rically in time for typical N, which underlies the usual heuristic argument supporting the truth of

Conjecture 1.1; see [16], [10] for further discussion. We remark that the multiplicative inaccuracy of

exp(ÿ (ÿ1/2)) in equation (1.17) is the main reason why we work with logarithmic density instead of

natural density in this paper (see also [11], [15] for a closely related ‘Benford’s law’ phenomenon).

1.3. Reduction to a stabilisation property for first passage locations

Roughly speaking, Proposition 1.9 lets one obtain good control on the Syracuse iterates Syrÿ (ý) for

almost all N and for times n up to ý log ý for a small absolute constant c. This already can be used in

conjunction with a rigorous version of equation (1.16) or (1.17) to recover the previously mentioned

result Syrmin(ý) ≤ ý1−ý for almost all N and some absolute constant ý > 0; see Section 5 for details.

In the language of evolutionary partial differential equations, these types of results can be viewed as

analogous to ‘almost sure’ local wellposedness results, in which one has good short-time control on the

evolution for almost all choices of initial condition N.

In this analogy, Theorem 1.6 then corresponds to an ‘almost sure’ almost global wellposedness result,

where one needs to control the solution for times so large that the evolution gets arbitrary close to the

bounded state ý = ÿ (1). To bootstrap from almost sure local wellposedness to almost sure almost global

wellposedness, we were inspired by the work of Bourgain [4], who demonstrated an almost sure global

wellposedness result for a certain nonlinear Schrödinger equation by combining local wellposedness

theory with a construction of an invariant probability measure for the dynamics. Roughly speaking,

the point was that the invariance of the measure would almost surely keep the solution in a ‘bounded’

region of the state space for arbitrarily long times, allowing one to iterate the local wellposedness theory

indefinitely.

In our context, we do not expect to have any useful invariant probability measures for the dynamics

due to the geometric decay in equation (1.16) (and indeed Conjecture 1.5 would imply that the only

invariant probability measure is the Dirac measure on {1}). Instead, we can construct a family of

probability measures ÿý that are approximately transported to each other by certain iterations of the
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Syracuse map (by a variable amount of time). More precisely, given a threshold ý ≥ 1 and an odd

natural number ý ∈ 2N + 1, define the first passage time

ÿý (ý) := inf{ÿ ∈ N : Syrÿ (ý) ≤ ý},

with the convention that ÿý (ý) := +∞ if Syrÿ (ý) > ý for all n. (Of course, if Conjecture 1.5 were true,

this latter possibility could not occur, but we will not be assuming this conjecture in our arguments.)

We then define the first passage location

Passý (ý) := Syrÿý (ý ) (ý)

with the (somewhat arbitrary and artificial) convention that Syr∞(ý) := 1; thus Passý (ý) is the first

location of the Syracuse orbit SyrN(ý) that falls inside [1, ý], or 1 if no such location exists; if we ignore

the latter possibility, then Passý can be viewed as a further acceleration of the Collatz and Syracuse

maps. We will also need a constant ÿ > 1 sufficiently close to one. The precise choice of this parameter

is not critical, but for sake of concreteness we will set

ÿ := 1.001. (1.18)

The key proposition is then

Proposition 1.11 (Stabilisation of first passage). For any y with 2N + 1 ∩ [ÿ, ÿÿ] is non-empty (and in

particular, for any sufficiently large y), let Nÿ be a random variable with distribution Nÿ ≡ Log(2N +
1 ∩ [ÿ, ÿÿ]). Then for sufficiently large x, we have the estimates

P(ÿý (Nÿ) = +∞) � ý−ý (1.19)

for ÿ = ýÿ, ýÿ
2

, and also

ýTV(Passý (Nýÿ ), Passý (Nýÿ2 )) � log−ý ý (1.20)

for some absolute constant ý > 0. (The implied constants here are also absolute.)

Informally, this theorem asserts that the Syracuse orbits of Nýÿ and N
ýÿ2 are almost indistinguishable

from each other once they pass x, as long as one synchronises the orbits so that they simultaneously pass

x for the first time. In Section 3, we shall see how Theorem 1.6 (and hence Theorem 1.3) follows from

Proposition 1.11; basically the point is that equations (1.19) and (1.20) imply that the first passage map

Passý approximately maps the distribution ÿýÿ of Passýÿ (N
ýÿ2 ) to the distribution ÿý of Passý (Nýÿ ),

and one can then iterate this to map almost all of the probabilistic mass of Nÿ for large y to be arbitrarily

close to the bounded state ý = ÿ (1). The implication is very general and does not use any particular

properties of the Syracuse map beyond equations (1.19) and (1.20).

The estimate in equation (1.19) is easy to establish; it is equation (1.20) that is the most important

and difficult conclusion of Proposition 1.11. We remark that the bound ofÿ (log−ý ý) in equation (1.20)

is stronger than is needed for this argument; any bound of the form ÿ ((log log ý)−1−ý) would have

sufficed. Conversely, it may be possible to improve the bound in equation (1.20) further, perhaps all the

way to ý−ý .

1.4. Fine-scale mixing of Syracuse random variables

It remains to establish Proposition 1.11. Since the constant ÿ in equation (1.18) is close to 1, this

proposition falls under the regime of a (refined) ‘local wellposedness’ result, since from the heuristic in

equation (1.16) (or equation (1.17)), we expect the first passage timeÿý (Nÿ) to be comparable to a small

multiple of log Nÿ . Inspecting the iteration formula in equation (1.7), the behaviour of the n-Syracuse

valuation 
ÿ (ÿ) (Nÿ) for such times n is then well understood thanks to Proposition 1.9; the main remaining
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difficulty is to understand the behaviour of the n-Syracuse offset map ýÿ : (N + 1)ÿ → Z[ 1
2
], and more

specifically to analyse the distribution of the random variable ýÿ (Geom(2)ÿ) mod 3ý for various ÿ, ý ,

where by abuse of notation we use ý ↦→ ý mod 3ý to denote the unique ring homomorphism from Z[ 1
2
]

to Z/3ýZ (which in particular maps 1
2

to the inverse 3ý+1
2

mod 3ý of 2 mod 3ý ). Indeed, from equation

(1.7), one has

Syrÿ (ý) = ýÿ ( 
ÿ (ÿ) (ý)) mod 3ý (1.21)

whenever 0 ≤ ý ≤ ÿ and ý ∈ 2N+1. Thus, if ÿ,N, ÿ′, ý0 obey the hypotheses of Proposition 1.9, one has

ýTV(Syrÿ (N) mod 3ý , ýÿ (Geom(2)ÿ) mod 3ý ) � 2−ý1ÿ

for all 0 ≤ ý ≤ ÿ. If we now define the Syracuse random variables Syrac(Z/3ÿZ) for ÿ ∈ N to be

random variables on the cyclic group Z/3ÿZ with the distribution

Syrac(Z/3ÿZ) ≡ ýÿ (Geom(2)ÿ) mod 3ÿ (1.22)

then from equation (1.5), we see that

Syrac(Z/3ÿZ) mod 3ý ≡ Syrac(Z/3ýZ) (1.23)

whenever ý ≤ ÿ, and thus

ýTV(Syrÿ (N) mod 3ý , Syrac(Z/3ýZ)) � 2−ý1ÿ.

We thus see that the 3-adic distribution of the Syracuse orbit SyrN(N) is controlled (initially, at least)

by the random variables Syrac(Z/3ÿZ). The distribution of these random variables can be computed

explicitly for any given n via the following recursive formula:

Lemma 1.12 (Recursive formula for Syracuse random variables). For any ÿ ∈ N and ý ∈ Z/3ÿ+1Z, one

has

P(Syrac(Z/3ÿ+1Z) = ý) =
∑

1≤ÿ≤2×3ÿ:2ÿý=1 mod 3 2−ÿP
(
Syrac(Z/3ÿZ) = 2ÿý−1

3

)
1 − 2−2×3ÿ

,

where 2ÿý−1
3

is viewed as an element of Z/3ÿZ.

Proof. Let (a1, . . . , aÿ+1) ≡ Geom(2)ÿ+1 be ÿ + 1 iid copies of Geom(2). From equation (1.5) (after

relabeling the variables (a1, . . . , aÿ+1) in reverse order (aÿ+1, . . . , a1)) we have

ýÿ+1 (aÿ+1, . . . , a1) =
3ýÿ (aÿ+1, . . . , a2) + 1

2a1
(1.24)

and thus we have

Syrac(Z/3ÿ+1Z) ≡ 3Syrac(Z/3ÿZ) + 1

2Geom(2) ,
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where 3Syrac(Z/3ÿZ) is viewed as an element of Z/3ÿ+1Z, and the random variables

Syrac(Z/3ÿZ),Geom(2) on the right-hand side are understood to be independent. We therefore have

P(Syrac(Z/3ÿ+1Z) = ý) =
∑

ÿ∈N+1

2−ÿP

(
3Syrac(Z/3ÿZ) + 1

2ÿ
= ý

)

=

∑
ÿ∈N+1:2ÿý=1 mod 3

2−ÿP

(
Syrac(Z/3ÿZ) = 2ÿý − 1

3

)
.

By Euler’s theorem, the quantity 2ÿý−1
3

∈ Z/3ÿZ is periodic in a with period 2 × 3ÿ. Splitting a into

residue classes modulo 2 × 3ÿ and using the geometric series formula, we obtain the claim. �

Thus, for instance, we trivially have Syrac(Z/30Z) takes the value 0 mod 1 with probability 1;

then by the above lemma, Syrac(Z/3Z) takes the values 0, 1, 2 mod 3 with probabilities 0, 1/3, 2/3
respectively; another application of the above lemma then reveals that Syrac(Z/32Z) takes the values

0, 1, . . . , 8 mod 9 with probabilities

0,
8

63
,
16

63
, 0,

11

63
,

4

63
, 0,

2

63
,
22

63

respectively; and so forth. More generally, one can numerically compute the distribution of

Syrac(Z/3ÿZ) exactly for small values of n, although the time and space required to do so increases

exponentially with n.

Remark 1.13. One could view the Syracuse random variables Syrac(Z/3ÿZ) as projections

Syrac(Z/3ÿZ) ≡ Syrac(Z3) mod 3ÿ (1.25)

of a single random variable Syrac(Z3) taking values in the 3-adics Z3 := lim←−−ÿ Z/3
ÿZ (equipped with

the usual metric ý (ý, ÿ) := 3−ÿ3 (ý−ÿ) ), which can for instance be defined as

Syrac(Z3) ≡
∞∑
ÿ=0

3 ÿ2−a[1, ÿ+1]

= 2−a1 + 312−a[1,2] + 322−a[1,3] + . . .

where a1, a2, . . . are iid copies of Geom(2); note that this series converges in Z3, and the equivalence

of distribution in equation (1.25) follows from equations (1.22) and (1.5) after reversing4 the order of

the tuple (a1, . . . , aÿ) (cf. (1.24)). One can view the distribution of Syrac(Z3) as the unique stationary

measure for the discrete Markov process5 on Z3 that maps each ý ∈ Z3 to 3ý+1
2ÿ

for each ÿ ∈ N + 1

with transition probability 2−ÿ (this fact is implicit in the proof of Lemma 1.12). However, we will not

explicitly adopt the 3-adic perspective in this paper, preferring to work instead with the finite projections

Syrac(Z/3ÿZ) of Syrac(Z3).
While the Syracuse random variables Syrac(Z/3ÿZ) fail to be uniformly distributed on Z/3ÿZ, we

can show that they do approach uniform distribution ÿ → ∞ at fine scales (as measured in a 3-adic

sense), and this turns out to be the key ingredient needed to establish Proposition 1.11. More precisely,

we will show

4As an alternative to reversing the order of the tuple (a1, . . . , aÿ) , one could instead index time by the negative integers
−1, −2, −3, . . . rather than the positive integers 1, 2, 3, . . . , viewing Syrac(Z3) as the outcome of an ‘ancient’ Syracuse iteration
that extends to arbitrarily large negative times (and whose initial condition is irrelevant). This perspective toward the Syracuse
variables is arguably more natural and could be adopted elsewhere in the paper; however, we have chosen (mostly for aesthetic
reasons) to index time by positive integers rather than negative ones, which necessitates some reversal of the labeling at some
junctures.

5This Markov process may possibly be related to the 3-adic Markov process for the inverse Collatz map studied in [24]. See
also a recent investigation of 3-adic irregularities of the Collatz iteration in [23].
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Proposition 1.14 (Fine-scale mixing of n-Syracuse offsets). For all 1 ≤ ÿ ≤ ÿ one has

Oscÿ,ÿ (P(Syrac(Z/3ÿZ) = ý mod 3ÿ))ý ∈Z/3ÿZ �ý ÿ
−ý (1.26)

for any fixed ý > 0, where the oscillation Oscÿ,ÿ (ýý )ý ∈Z/3ÿZ of a tuple of real numbers ýý ∈ R indexed

by Z/3ÿZ at 3-adic scale 3−ÿ is defined by

Oscÿ,ÿ (ýý )ý ∈Z/3ÿZ :=
∑

ý ∈Z/3ÿZ

������ýý − 3ÿ−ÿ
∑

ý ′∈Z/3ÿZ:ý ′=ý mod 3ÿ

ýý ′

������ . (1.27)

Informally, the above proposition asserts that the Syracuse random variable Syrac(Z/3ÿZ) is approx-

imately uniformly distributed in ‘fine-scale’ or ‘high-frequency’ cosetsý +3ÿZ/3ÿZ, after conditioning

to the event Syrac(Z/3ÿZ) = ý mod 3ÿ. Indeed, one could write the left-hand side of equation (1.26)

if desired as

ýTV(Syrac(Z/3ÿZ), Syrac(Z/3ÿZ) + Unif (3ÿZ/3ÿZ))

where the random variables Syrac(Z/3ÿZ),Unif (3ÿZ/3ÿZ) are understood to be independent. In

Section 5, we show how Proposition 1.11 (and hence Theorem 1.3) follows from Proposition 1.14 and

Proposition 1.9.

Remark 1.15. One can heuristically justify this mixing property as follows. The geometric random

variable Geom(2) can be computed to have a Shannon entropy of log 4; thus, by asymptotic equipartition,

the random variable Geom(2)ÿ is expected to behave like a uniform distribution on 4ÿ+ý (ÿ) separate

tuples in (N + 1)ÿ. On the other hand, the range Z/3ÿZ of the map 
ÿ ↦→ ýÿ ( 
ÿ) mod 3ÿ only has

cardinality 3ÿ. While this map does have substantial irregularities at coarse 3-adic scales (for instance,

it always avoids the multiples of 3), it is not expected to exhibit any such irregularity at fine scales, and

so if one models this map by a random map from 4ÿ+ýÿ (ÿ) elements to Z/3ÿZ, one is led to the estimate

in equation (1.26) (in fact, this argument predicts a stronger bound of exp(−ýÿ) for some ý > 0, which

we do not attempt to establish here).

Remark 1.16. In order to upgrade logarithmic density to natural density in our results, it seems necessary

to strengthen Proposition 1.14 by establishing a suitable fine-scale mixing property of the entire random

affine map AffGeom(2)ÿ , as opposed to just the offset ýÿ (Geom(2)ÿ). This looks plausibly attainable

from the methods in this paper, but we do not pursue this question here.

To prove Proposition 1.14, we use a partial convolution structure present in the n-Syracuse offset map,

together with Plancherel’s theorem, to reduce matters to establishing a superpolynomial decay bound

for the characteristic function (or Fourier coefficients) of a Syracuse random variable Syrac(Z/3ÿZ).
More precisely, in Section 6, we derive Proposition 1.14 from

Proposition 1.17 (Decay of characteristic function). Let ÿ ≥ 1, and let ÿ ∈ Z/3ÿZ be not divisible by

3. Then

Eÿ−2ÿÿ ÿSyrac(Z/3ÿZ)/3ÿ �ý ÿ
−ý (1.28)

for any fixed ý > 0.

A key point here is that the implied constant in equation (1.28) is uniform in the parameters ÿ ≥ 1

and ÿ ∈ Z/3ÿZ (assuming of course that ÿ is not divisible by 3), although as indicated, we permit this

constant to depend on A.

Remark 1.18. In the converse direction, it is not difficult to use the triangle inequality to establish the

inequality

|Eÿ−2ÿÿ ÿSyrac(Z/3ÿZ)/3ÿ | ≤ Oscÿ−1,ÿ (P(Syrac(Z/3ÿZ) = ý mod 3ÿ))ý ∈Z/3ÿZ
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whenever ÿ is not a multiple of 3 (so in particular the function ý ↦→ ÿ−2ÿÿ ÿ ý/3ÿ has mean zero on

cosets of 3ÿ−1Z/3ÿZ). Thus Proposition 1.17 and Proposition 1.14 are in fact equivalent. One could also

equivalently phrase Proposition 1.17 in terms of the decay properties of the characteristic function of

Syrac(Z3) (which would be defined on the Pontryagin dual Ẑ3 = Q3/Z3 of Z3), but we will not do so

here.

The remaining task is to establish Proposition 1.17. This turns out to be the most difficult step in the

argument, and is carried out in Section 7. From equations (1.5) and (1.22) and reversing the order of

the random variables a1, . . . , aÿ (cf. equation (1.24)), we can describe the distribution of the Syracuse

random variable by the formula

Syrac(Z/3ÿZ) ≡ 2−a1 + 312−a[1,2] + · · · + 3ÿ−12−a[1,ÿ] mod 3ÿ, (1.29)

with (a1, . . . , aÿ) ≡ Geom(2)ÿ; this also follows from equation (1.25). If this random variable

Syrac(Z/3ÿZ) was the sum of independent random variables, then the characteristic function of

Syrac(Z/3ÿZ) would factor as something like a Riesz product of cosines, and its estimation would be

straightforward. Unfortunately, the expression in equation (1.29) does not obviously resolve into such a

sum of independent random variables; however, by grouping adjacent terms 32 ÿ−22−a[1,2 ÿ−1] , 32 ÿ−12−a[1,2 ÿ ]

in equation (1.29) into pairs, one can at least obtain a decomposition into the sum of independent expres-

sions once one conditions on the sums b ÿ := a2 ÿ−1 + a2 ÿ (which are iid copies of a Pascal distribution

Pascal). This lets one express the characteristic functions as an average of products of cosines (times a

phase), where the average is over trajectories of a certain random walk v1, v[1,2] , v[1,3] , . . . in Z2 with

increments in the first quadrant that we call a two-dimensional renewal process. If we color certain

elements of Z2 ‘white’ when the associated cosines are small, and ‘black’ otherwise, then the problem

boils down to ensuring that this renewal process encounters a reasonably large number of white points

(see Figure 3 in Section 7).

From some elementary number theory, we will be able to describe the black regions of Z2 as a union

of ‘triangles’ Δ that are well separated from each other; again, see Figure 3. As a consequence, whenever

the renewal process passes through a black triangle, it will very likely also pass through at least one

white point after it exits the triangle. This argument is adequate so long as the triangles are not too large

in size; however, for very large triangles, it does not produce a sufficient number of white points along

the renewal process. However, it turns out that large triangles tend to be fairly well separated from each

other (at least in the neighbourhood of even larger triangles), and this geometric observation allows one

to close the argument.

As with Proposition 1.14, it is possible that the bound in Proposition 1.17 could be improved, perhaps

to as far as ÿ (exp(−ýÿ)) for some ý > 0. However, we will not need or pursue such a bound here.

2. Notation and preliminaries

We use the asymptotic notation ÿ � ý , ý � ÿ , or ÿ = ÿ (ý ) to denote the bound |ÿ | ≤ ÿý for an

absolute constant C. We also write ÿ � ý for ÿ � ý � ÿ . We also use ý > 0 to denote various small

constants that are allowed to vary from line to line or even within the same line. If we need the implied

constants to depend on other parameters, we will indicate this by subscripts unless explicitly stated

otherwise; thus, for instance, ÿ �ý ý denotes the estimate |ÿ | ≤ ÿýý for some ÿý depending on A.

If E is a set, we use 1ý to denote its indicator; thus 1ý (ÿ) equals 1 when ÿ ∈ ý and 0 otherwise.

Similarly, if S is a statement, we define the indicator 1ÿ to equal 1 when S is true and 0 otherwise; thus,

for instance, 1ý (ÿ) = 1ÿ∈ý . If ý, ý are two events, we use ý ∧ ý to denote their conjunction (the event

that both ý, ý hold) and ý to denote the complement of E (the event that E does not hold).

The following alternate description of the n-Syracuse valuation 
ÿ (ÿ) (ý) (variants of which have

frequently occurred in the literature on the Collatz conjecture; see, e.g., [19]) will be useful.
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Lemma 2.1 (Description of n-Syracuse valuation). Let ý ∈ 2N + 1 and ÿ ∈ N. Then 
ÿ (ÿ) (ý) is the

unique tuple 
ÿ in (N + 1)ÿ for which Aff 
ÿ (ý) ∈ 2N + 1.

Proof. It is clear from equation (1.7) that Aff 
ÿ (ÿ) (ý ) ∈ 2N+1. It remains to prove uniqueness. The claim

is easy for ÿ = 0, so suppose inductively that ÿ ≥ 1 and that uniqueness has already been established

for ÿ − 1. Suppose that we have found a tuple 
ÿ ∈ (N + 1)ÿ for which Aff 
ÿ (ý) is an odd integer. Then

Aff 
ÿ (ý) = Affÿÿ (Affÿ1 ,...,ÿÿ−1
(ý)) = 3Affÿ1 ,...,ÿÿ−1

(ý) + 1

2ÿÿ

and thus

2ÿÿAff 
ÿ (ý) = 3Affÿ1 ,...,ÿÿ−1
(ý) + 1. (2.1)

This implies that 3Affÿ1 ,...,ÿÿ−1
(ý) is an odd natural number. But from equation (1.3), Affÿ1 ,...,ÿÿ−1

(ý)
also lies in Z[ 1

2
]. The only way these claims can both be true is if Affÿ1 ,...,ÿÿ−1

(ý) is also an odd natural

number, and then by induction (ÿ1, . . . , ÿÿ−1) = 
ÿ (ÿ−1) (ý), which by equation (1.7) implies that

Affÿ1 ,...,ÿÿ−1
(ý) = Syrÿ−1 (ý).

Inserting this into equation (2.1) and using the fact that Aff 
ÿ (ý) is odd, we obtain

ÿÿ = ÿ2(3Syrý−1(ý) + 1)

and hence by equation (1.8), we have 
ÿ = 
ÿ (ÿ) as required. �

We record the following concentration of measure bound of Chernoff type, which also bears some

resemblance to a local limit theorem. We introduce the gaussian-type weights

ÿÿ (ý) := exp(−|ý |2/ÿ) + exp(−|ý |) (2.2)

for any ÿ ≥ 0 and ý ∈ Rý for some ý ≥ 1, where we adopt the convention that exp(−∞) = 0 (so that

ÿ0 (ý) = exp(−|ý |)). Thus ÿÿ (ý) is comparable to 1 for ý = ÿ (ÿ1/2), decays in a gaussian fashion in

the regime ÿ1/2 ≤ |ý | ≤ ÿ and decays exponentially for |ý | ≥ ÿ.

Lemma 2.2 (Chernoff type bound). Let ý ∈ N + 1, and let v be a random variable taking values in Zý

obeying the exponential tail condition

P(|v| ≥ ÿ) � exp(−ý0ÿ) (2.3)

for all ÿ ≥ 0 and some ý0 > 0. Assume the non-degeneracy condition that v is not almost surely

concentrated on any coset of any proper subgroup of Zý . Let 
ÿ := Ev ∈ Rý denote the mean of v. In this

lemma all implied constants, as well as the constant c, can depend on d, ý0, and the distribution of v. Let

ÿ ∈ N, and let v1, . . . , vÿ be n iid copies of v. Following equation (1.6), we write v[1,ÿ] := v1 + · · · + vÿ.

(i) For any 
ÿ ∈ Zý , one has

P

(
v[1,ÿ] = 
ÿ

)
� 1

(ÿ + 1)ý/2ÿÿ

(
ý

(

ÿ − ÿ 
ÿ

))
.

(ii) For any ÿ ≥ 0, one has

P
(
|v[1,ÿ] − ÿ 
ÿ | ≥ ÿ

)
� ÿÿ (ýÿ).
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Thus, for instance for any ÿ ∈ N, we have

P ( |Geom(2)ÿ | = ÿ) � 1√
ÿ + 1

ÿÿ (ý(ÿ − 2ÿ))

for every ÿ ∈ Z, and

P ( | |Geom(2)ÿ | − 2ÿ| ≥ ÿ) � ÿÿ (ýÿ)

for any ÿ ≥ 0.

Proof. We use the Fourier-analytic (and complex-analytic) method. We may assume that n is positive

since the claim is trivial for ÿ = 0. We begin with (i). Let S denote the complex strip ÿ := {ÿ ∈ C :

|Re(ÿ) | < ý0}, then we can define the (complexified) moment generating function ý : ÿý → C by the

formula

ý (ÿ1, . . . , ÿý) := E exp((ÿ1, . . . , ÿý) · v),

where · is the usual bilinear dot product. From equation (2.3) and Morera’s theorem, one verifies that

this is a well-defined holomorphic function of d complex variables on ÿý , which is periodic with respect

to the lattice (2ÿÿZ)ý . By Fourier inversion, we have

P(v[1,ÿ] = 
ÿ) = 1

(2ÿ)ý
∫
[−ÿ,ÿ ]ý

ý
(
ÿ
ý
)ÿ

exp
(
−ÿ
ý · 
ÿ

)
ý
ý.

By contour shifting, we then have

P(v[1,ÿ] = 
ÿ) = 1

(2ÿ)ý
∫
[−ÿ,ÿ ]ý

ý
(
ÿ
ý + 
ÿ

)ÿ
exp

(
−(ÿ
ý + ÿ) · 
ÿ

)
ý
ý

whenever 
ÿ = (ÿ1, . . . , ÿý) ∈ (−ý0, ý0)ý . By the triangle inequality, we thus have

P(v[1,ÿ] = 
ÿ) �
∫
[−ÿ,ÿ ]ý

���ý (
ÿ
ý + 
ÿ

)��� ÿ exp
(
−
ÿ · 
ÿ

)
ý
ý.

From Taylor expansion and the non-degeneracy condition we have

ý (
ÿ) = exp

(

ÿ · 
ÿ + 1

2
Σ(
ÿ) +ÿ (|
ÿ |3)

)

for all 
ÿ ∈ ÿý sufficiently close to 0, where Σ is a positive definite quadratic form (the covariance matrix

of v). From the non-degeneracy condition we also see that |ý (ÿ
ý) | < 1 whenever 
ý ∈ [−ÿ, ÿ]ý is not

identically zero, hence by continuity |ý (ÿ
ý + 
ÿ) | ≤ 1 − ý whenever 
ý ∈ [−ÿ, ÿ]ý is bounded away from

zero and 
ÿ is sufficiently small. This implies the estimates

|ý (ÿ
ý + 
ÿ) | ≤ exp
(

ÿ · 
ÿ − ý |
ý |2 +ÿ (| 
ÿ |2)

)

for all 
ý ∈ [−ÿ, ÿ]ý and all sufficiently small 
ÿ ∈ Rý . Thus we have

P(v[1,ÿ] = 
ÿ) �
∫
[−ÿ,ÿ ]ý

exp
(
−
ÿ · ( 
ÿ − ÿ 
ÿ) − ýÿ|
ý |2 +ÿ (ÿ| 
ÿ |2)

)
ý
ý

� ÿ−1/2 exp
(
−
ÿ · ( 
ÿ − ÿ 
ÿ) +ÿ (ÿ| 
ÿ |2)

)
.
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If | 
ÿ − ÿ 
ÿ | ≤ ÿ, we can set 
ÿ := ý( 
ÿ − ÿ 
ÿ)/ÿ for a sufficiently small c and obtain the claim; otherwise

if | 
ÿ − ÿ 
ÿ | > ÿ, we set 
ÿ := ý( 
ÿ − ÿ 
ÿ)/| 
ÿ − ÿ 
ÿ | for a sufficiently small c and again obtain the claim.

This gives (i), and the claim (ii) then follows from summing in 
ÿ and applying the integral test. �

Remark 2.3. Informally, the above lemma asserts that as a crude first approximation we have

v[1,ÿ] ≈ ÿ 
ÿ + Unif ({ý ∈ Zý : ý = ÿ (
√
ÿ)}), (2.4)

and in particular

|Geom(2)ÿ | ≈ Unif (Z ∩ [2ÿ −ÿ (
√
ÿ), 2ÿ +ÿ (

√
ÿ)]), (2.5)

thus refining equation (1.15). The reader may wish to use this heuristic for subsequent arguments (for

instance, in heuristically justifying equation (1.17)).

3. Reduction to stabilisation of first passage

In this section, we show how Theorem 1.6 follows from Proposition 1.11. In fact, we show that

Proposition 1.11 implies a stronger claim6:

Theorem 3.1 (Alternate form of main theorem). For ý0 ≥ 2 and ý ≥ 2, one has

1

log ý

∑
ý ∈2N+1∩[1,ý ]:Syrmin (ý )>ý0

1

ý
� 1

logý ý0

or equivalently

P(Syrmin(Log(2N + 1 ∩ [1, ý])) ≤ ý0) ≥ 1 −ÿ
(

1

logý ý0

)
.

In particular, by equation (1.2), we have

P(Colmin(Log(N + 1 ∩ [1, ý])) ≤ ý0) ≥ 1 −ÿ
(

1

logý ý0

)

for all ý ≥ 2.

In other words, for ý0 ≥ 2, one has Syrmin(ý) ≤ ý0 for all N in a set of odd natural numbers of

(lower) logarithmic density 1
2
− ÿ (log−ý ý0), and one also has Colmin(ý) ≤ ý0 for all N in a set of

positive natural numbers of (lower) logarithmic density 1 −ÿ (log−ý ý0).
Proof. We may assume that ý0 is larger than any given absolute constant, since the claim is trivial for

bounded ý0. Let ýý0
⊂ 2N + 1 denote the set

ýý0
:= {ý ∈ 2N + 1 : Syrmin(ý) ≤ ý0}

of starting positions N of Syracuse orbits that reach ý0 or below. Let ÿ be defined by equation (1.18),

let ý ≥ 2, and let Nÿ be the random variables from Proposition 1.11. Let ýý = ýý,ý0
denote the event

that ÿý (Nýÿ ) < +∞ and Passý (Nýÿ ) ∈ ýý0
. Informally, this is the event that the Syracuse orbit of Nýÿ

reaches x or below and then reaches ý0 or below. (For ý < ý0, the latter condition is automatic, while

for ý ≥ ý0, it is the former condition which is redundant.)

Observe that if ÿý (Nýÿ2 ) < +∞ and Passý (Nýÿ2 ) ∈ ýý0
, then

ÿýÿ (N
ýÿ2 ) ≤ ÿý (Nýÿ2 ) < +∞

6We thank the anonymous referee for suggesting this formulation of the main theorem.
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and

SyrN(Passý (Nýÿ2 )) ⊂ SyrN(Passýÿ (N
ýÿ2 ))

which implies that

Syrmin(Passýÿ (N
ýÿ2 )) ≤ Syrmin(Passý (Nýÿ2 )) ≤ ý0.

In particular, the event ýýÿ holds in this case. From this and equations (1.19), (1.20) and (1.10), we have

P(ýýÿ ) ≥ P(Passý (Nýÿ2 ) ∈ ýý0
∧ ÿý (Nýÿ2 ) < +∞)

≥ P(Passý (Nýÿ2 ) ∈ ýý0
) −ÿ (ý−ý)

≥ P(Passý (Nýÿ ) ∈ ýý0
) −ÿ (log−ý ý)

≥ P(ýý) −ÿ (log−ý ý)

whenever x is larger than a suitable absolute constant (note that the ÿ (ý−ý) error can be absorbed into

the ÿ (log−ý ý) term). In fact, the bound holds for all ý ≥ 2, since the estimate is trivial for bounded

values of x.

Let ý = ý (ý, ý0) be the first natural number such that the quantity ÿ := ýÿ
−ý

is less than ý
1/ÿ
0

. Since

ý0 is assumed to be large, we then have (by replacing x with ÿÿ
ÿ−2

in the preceding estimate) that

P(ý
ÿÿ ÿ−1 ) ≥ P(ý

ÿÿ ÿ−2 ) −ÿ ((ÿ ÿ log ÿ)−ý)

for all ÿ = 1, . . . , ý. The event ý
ÿÿ−1 occurs with probability 1 −ÿ (ÿ−ý), thanks to equation (1.19) and

the fact that Nÿ ≤ ÿÿ ≤ ý0. Summing the telescoping series, we conclude that

P(ý
ÿÿý−1 ) ≥ 1 −ÿ (log−ý ÿ)

(note that the ÿ (ÿ−ý) error can be absorbed into the ÿ (log−ý ÿ) term). By construction, ÿ ≥ ý
1/ÿ2

0
and

ÿÿ
ý

= ý, so

P(ýý1/ÿ ) ≥ 1 −ÿ (log−ý ý0).

If ýý1/ÿ holds, then Passý1/ÿ (Ný) lies in the Syracuse orbit SyrN(Ný), and thus Syrmin(Ný) ≤
Syrmin(Passý1/ÿ (Ný)) ≤ ý0. We conclude that for any ý ≥ 2, one has

P(Syrmin(Ný) > ý0) � log−ý ý0.

By definition of Ný (and using the integral test to sum the harmonic series
∑

ý ∈2N+1∩[ý,ýÿ ]
1
ý

), we

conclude that ∑
ý ∈2N+1∩[ý,ýÿ ]:Syrmin (ý )>ý0

1

ý
� 1

logý ý0

log ý (3.1)

for all ý ≥ 2. Covering the interval 2N + 1 ∩ [1, ý] by intervals of the form 2N + 1 ∩ [ÿ, ÿÿ] for various

y, we obtain the claim. �

Now let ÿ : 2N + 1 → [0, +∞) be such that limý→∞ ÿ (ý) = +∞. Set ÿ̃ (ý) := infý ∈2N+1:ý ≥ý ÿ (ý),
then ÿ̃ (ý) → ∞ as ý → ∞. Applying Theorem 3.1 with ý0 := ÿ̃ (ý), we conclude that

∑
ý ∈2N+1∩[1,ý ]:Syrmin (ý )> ÿ (ý )

1

ý
� 1

logý ÿ̃ (ý)
log ý
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for all sufficiently large x. Since 1

logý ÿ̃ (ý) goes to zero as ý → ∞, we conclude from telescoping series

that the set {ý ∈ 2N + 1 : Syrmin(ý) > ÿ (ý)} has zero logarithmic density, and Theorem 1.6 follows.

4. 3-adic distribution of iterates

In this section, we establish Proposition 1.9. Let ÿ,N, ý0, ÿ
′ be as in that proposition; in particular,

ÿ′ ≥ (2 + ý0)ÿ. In this section, we allow implied constants in the asymptotic notation, as well as the

constants ý > 0, to depend on ý0.

We first need a tail bound on the size of the n-Syracuse valuation 
ÿ (ÿ) (N):

Lemma 4.1 (Tail bound). We have

P(| 
ÿ (ÿ) (N) | ≥ ÿ′) � 2−ýÿ.

Proof. Write 
ÿ (ÿ) (N) = (a1, . . . , aÿ), then we may split

P(| 
ÿ (ÿ) (N) | ≥ ÿ′) =
ÿ−1∑
ý=0

P(a[1,ý ] < ÿ′ ≤ a[1,ý+1])

(using the summation convention in equation (1.6)), and so it suffices to show that

P(a[1,ý ] < ÿ′ ≤ a[1,ý+1]) � 2−ýÿ

for each 0 ≤ ý ≤ ÿ − 1.

From Lemma 2.1 and equation (1.3), we see that

3ý+12−a[1,ý+1]N +
ý+1∑
ÿ=1

3ý+1−ÿ2−a[ÿ,ý+1]

is an odd integer, and thus

3ý+1N +
ý+1∑
ÿ=1

3ý+1−ÿ2a[1,ÿ−1]

is a multiple of 2a[1,ý+1] . In particular, when the event a[1,ý ] < ÿ′ ≤ a[1,ý+1] holds, one has

3ý+1N +
ý+1∑
ÿ=1

3ý+1−ÿ2a[1,ÿ−1] = 0 mod 2ÿ
′
.

Thus, if one conditions to the event a ÿ = ÿ ÿ , ÿ = 1, . . . , ý for some positive integers ÿ1, . . . , ÿý , then N

is constrained to a single residue class ÿ mod 2ÿ
′

depending on ÿ1, . . . , ÿý (because 3ý+1 is invertible

in the ring Z/2ÿ′Z). From equations (1.11) and (1.9), we have the quite crude estimate

P(N = ÿ mod 2ÿ
′) � 2−ÿ

′

and hence

P(a[1,ý ] ≤ ÿ′ < a[1,ý+1]) �
∑

ÿ1 ,...,ÿý ∈N+1:ÿ[1,ý ]<ÿ′
2−ÿ

′
.
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The tuples (ÿ1, . . . , ÿý ) in the above sum are in one-to-one correspondence with the k-element subsets

{ÿ1, ÿ [1,2] , . . . , ÿ [1,ý ]} of {1, . . . , ÿ′ − 1}, and hence have cardinality
(ÿ′−1

ý

)
; thus

P(a[1,ý ] < ÿ′ ≤ a[1,ý+1]) � 2−ÿ
′
(
ÿ′ − 1

ý

)
.

Since ý ≤ ÿ − 1 and ÿ′ ≥ (2 + ý0)ÿ, the right-hand side is ÿ (2−ýÿ) by Stirling’s formula (one can also

use the Chernoff inequality for the sum of ÿ′ − 1 Bernoulli random variables Ber( 1
2
), or Lemma 2.2).

The claim follows. �

From Lemma 2.2, we also have

P(|Geom(2)ÿ | ≥ ÿ′) � 2−ýÿ.

From equation (1.9) and the triangle inequality, we therefore have

ýTV( 
ÿ (ÿ) (N),Geom(2)ÿ) =
∑


ÿ∈(N+1)ÿ: | 
ÿ |<ÿ
|P( 
ÿ (ÿ) (N) = 
ÿ) − P(Geom(2)ÿ = 
ÿ) | +ÿ (2−ýÿ).

From Definition 1.7, we have

P(Geom(2)ÿ = 
ÿ) = 2−| 
ÿ |

so it remains to show that ∑

ÿ∈(N+1)ÿ: | 
ÿ |<ÿ

|P( 
ÿ (ÿ) (N) = 
ÿ) − 2−| 
ÿ | | � 2−ýÿ. (4.1)

By Lemma 2.1, the event 
ÿ (ÿ) (N) = 
ÿ occurs precisely when Aff 
ÿ (N) is an odd integer, which by

equation (1.3), we may write (for 
ÿ = (ÿ1, . . . , ÿÿ)) as

3ÿ2−ÿ[1,ÿ]N + 3ÿ−12−ÿ[1,ÿ] + 3ÿ−22−ÿ[2,ÿ] + · · · + 2−ÿÿ ∈ 2N + 1.

Equivalently one has

3ÿN = −3ÿ−1 − 3ÿ−22ÿ1 − · · · − 2ÿ[1,ÿ−1] + 2 | 
ÿ | mod 2 | 
ÿ |+1.

This constrains N to a single odd residue class modulo 2 | 
ÿ |+1. For | 
ÿ | < ÿ′, the probability of falling in

this class can be computed using equations (1.11) and (1.9) as 2−| 
ÿ | + ÿ (2−ÿ′). The left-hand side of

equation (4.1) is then bounded by

� 2−ÿ
′
#{ 
ÿ ∈ (N + 1)ÿ : | 
ÿ | < ÿ′} = 2−ÿ

′
(
ÿ′ − 1

ÿ

)
.

The claim now follows from Stirling’s formula (or Chernoff’s inequality), as in the proof of Lemma 4.1.

This completes the proof of Proposition 1.9.

5. Reduction to fine-scale mixing of the n-Syracuse offset map

We are now ready to derive Proposition 1.11 (and thus Theorem 1.3) assuming Proposition 1.14. Let x

be sufficiently large. We take y to be either ýÿ or ýÿ
2

. From the heuristic in equation (1.16) (or equation

(1.17)), we expect the first passage time Passý (Nÿ) to be roughly

Passý (Nÿ) ≈
log Nÿ/ý
log(4/3)
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with high probability. Now introduce the quantities

ÿ0 :=

⌊
log ý

10 log 2

⌋
(5.1)

(so that 2ÿ0 � ý0.1) and

ÿ0 :=

⌊
ÿ − 1

100
log ý

⌋
. (5.2)

Since the random variable Nÿ takes values in [ÿ, ÿÿ], we see from equation (1.18) that we would expect

the bounds

ÿ0 ≤ ÿý (Nÿ) ≤ ÿ0 (5.3)

to hold with high probability. We will use these parameters ÿ0, ÿ0 to help control the distribution of

ÿý (Nÿ) and Passý (Nÿ) in order to prove equations (1.19) and (1.20).

We begin with the proof of equation (1.19). Let ÿ0 be defined by equation (5.1). Since Nÿ ≡
Log(2N + 1 ∩ [ÿ, ÿÿ]), a routine application of the integral test reveals that

ýTV(Nÿ mod 23ÿ0 ,Unif ((2Z + 1)/23ÿ0Z)) � 2−3ÿ0

(with plenty of room to spare), hence by Proposition 1.9

ýTV( 
ÿ (ÿ0) (Nÿ),Geom(2)ÿ0) � 2−ýÿ0 . (5.4)

In particular, by equation (1.10) and Lemma 2.2, we have

P(| 
ÿ (ÿ0) (Nÿ) | ≤ 1.9ÿ0) ≤ P(|Geom(2)ÿ0 | ≤ 1.9ÿ0) +ÿ (2−ýÿ0 ) � 2−ýÿ0 � ý−ý (5.5)

(recall we allow c to vary even within the same line). On the other hand, from equations (1.7) and (1.5),

we have

Syrÿ0 (Nÿ) ≤ 3ÿ02−| 
ÿ
(ÿ0 ) (Nÿ ) |Nÿ +ÿ (3ÿ0 ) ≤ 3ÿ02−| 
ÿ

(ÿ0 ) (Nÿ ) |ýÿ
3 +ÿ (3ÿ0 )

and hence if | 
ÿ (ÿ0) (Nÿ) | > 1.9ÿ, then

Syrÿ0 (Nÿ) � 3ÿ02−1.9ÿ0ýÿ
3 +ÿ (3ÿ0 ).

From equations (5.1) and (1.18) and a brief calculation, the right-hand side isÿ (ý0.99) (say). In particular,

for x large enough, we have

Syrÿ0 (Nÿ) ≤ ý,

and hence ÿý (Nÿ) ≤ ÿ0 < +∞ whenever | 
ÿ (ÿ0) (Nÿ) | > 1.9ÿ0 (cf., the upper bound in equation (5.3)).

The claim in equation (1.19) now follows from equation (5.5).

Remark 5.1. This argument already establishes that Syrmin(ý) ≤ ý ÿ for almost all N for any ÿ > 1/ÿ;

by optimising the numerical exponents in this argument one can eventually recover the results of Korec

[9] mentioned in the introduction. It also shows that most odd numbers do not lie in a periodic Syracuse

orbit, or more precisely that

P(Syrÿ (Nÿ) = Nÿ for some ÿ ∈ N + 1) � ý−ý .
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Indeed, the above arguments show that outside of an event of probability ý−ý , one has Syrm (Nÿ) ≤ ý

for some m ≤ ÿ0, which we can assume to be minimal amongst all such m. If Syrÿ (Nÿ) = Nÿ for some

n, we then have

Nÿ = Syrÿ(M)−m (M) (5.6)

for M := Syrm (Nÿ) ∈ [1, ý] that generates a periodic Syracuse orbit with period ÿ(M). (This period

ÿ(M) could be extremely large, and the periodic orbit could attain values much larger than x or y, but we

will not need any upper bounds on the period in our arguments, other than that it is finite.) The number

of possible pairs (M,m) obtained in this fashion isÿ (ýÿ0). By equation (5.6), the pair (M,m) uniquely

determines Nÿ . Thus, outside of the aforementioned event, a periodic orbit is only possible for at most

ÿ (ýÿ0) possible values of Nÿ ; as this is much smaller than y, we thus see that a periodic orbit is only

attained with probabilityÿ (ý−ý), giving the claim. It is then a routine matter to then deduce that almost

all positive integers do not lie in a periodic Collatz orbit; we leave the details to the interested reader.

Now we establish equation (1.20). By equation (1.10), it suffices to show that for ý ⊂ 2N+1∩ [1, ý],
that

P(Passý (Nÿ) ∈ ý) = (1 +ÿ (log−ý ý))ý +ÿ (log−ý ý) (5.7)

for some quantity Q that can depend on ý, ÿ, ý but is independent of whether y is equal to ýÿ or ýÿ
2

(note that this bound automatically forcesý = ÿ (1) when x is large, so the first error termÿ (log−ý ý)ý
on the right-hand side may be absorbed into the second term ÿ (log−ý ý)). The strategy is to manipulate

the left-hand side of equation (5.7) into an expression that involves the Syracuse random variables

Syrac(Z/3ÿZ) for various n (in a range ýÿ depending on y) plus a small error, and then appeal to

Proposition 1.14 to remove the dependence on n and hence on y in the main term. The main difficulty

is that the first passage location Passý (Nÿ) involves a first passage time ÿ = ÿý (Nÿ) whose value is

not known in advance; but by stepping back in time by a fixed number of steps ÿ0, we will be able to

express the left-hand side of equation (5.7) (up to negligible errors) without having to explicitly refer to

the first passage time.

The first step is to establish the following approximate formula for the left-hand side of equation (5.7).

Proposition 5.2 (Approximate formula). Let ý ⊂ 2N + 1 ∩ [1, ý] and ÿ = ýÿ, ýÿ
2

. Then we have

P(Passý (Nÿ) ∈ ý) =
∑
ÿ∈ýÿ

∑

ÿ∈A(ÿ−ÿ0 )

∑
ý ∈ý′

P(Aff 
ÿ (Nÿ) = ý) +ÿ (log−ý ý) (5.8)

where ýÿ is the interval

ýÿ :=

[
log(ÿ/ý)

log 4
3

+ log0.8 ý,
log(ÿÿ/ý)

log 4
3

− log0.8 ý

]
, (5.9)

ý ′ is the set of odd natural numbers ý ∈ 2N + 1 such that ÿý (ý) = ÿ0 and Passý (ý) ∈ ý with

exp(− log0.7 ý) (4/3)ÿ0ý ≤ ý ≤ exp(log0.7 ý) (4/3)ÿ0ý, (5.10)

and for any natural number ÿ′, A(ÿ′) ⊂ (N + 1)ÿ′ denotes the set of all tuples (ÿ1, . . . , ÿÿ′) ∈ (N + 1)ÿ′
such that

|ÿ [1,ÿ] − 2ÿ| < log0.6 ý (5.11)

for all 0 ≤ ÿ ≤ ÿ′.
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A key point in the formula in equation (5.8) is that the right-hand side does not involve the passage

time ÿý (Nÿ) or the first passage location Passý (Nÿ), and the dependence on whether y is equal to ýÿ

or ýÿ
2

is confined to the range ýÿ of the summation variable n, as well as the input Nÿ of the affine map

Aff 
ÿ. (In particular, note that the set ý ′ does not depend on y.) We also observe from equations (5.9),

(5.1) and (5.2) that ýÿ ⊂ [ÿ0, ÿ0], which is consistent with the heuristic in equation (5.3).

Proof. Fix E, and write 
ÿ (ÿ0) (Nÿ) = (a1, . . . , aÿ0
). From equations (5.4) and (1.10) and Lemma 2.2,

we see that for every 0 ≤ ÿ ≤ ÿ0, one has

P(|a[1,ÿ] − 2ÿ| ≥ log0.6 ý) � exp(−ý log0.2 ý).

Hence, if A(ÿ0) is the set defined in the proposition, we see from the union bound that

P( 
ÿ (ÿ0) (Nÿ) ∉ A
(ÿ0) ) � log−10 ý (5.12)

(say); this can be viewed as a rigorous analogue of the heuristic in equation (2.5). Hence

P(Passý (Nÿ) ∈ ý) = P(Passý (Nÿ) ∈ ý ∧ 
ÿ (ÿ0) (Nÿ) ∈ A
(ÿ0) ) +ÿ (log−ý ý).

Suppose that 
ÿ (ÿ0) (Nÿ) ∈ A
(ÿ0) . For any 0 ≤ ÿ ≤ ÿ0, we have from equations (1.7) and (1.13) that

Syrÿ (Nÿ) = 3ÿ2−a[1,ÿ]Nÿ +ÿ (3ÿ0 )

and hence by equations (5.11) and (5.1) and some calculation

Syrÿ (Nÿ) = (1 +ÿ (ý−0.1))3ÿ2−a[1,ÿ]Nÿ . (5.13)

In particular, from equation (5.11), one has

Syrÿ (Nÿ) = exp(ÿ (log0.6 ý)) (3/4)ÿNÿ (5.14)

for all 0 ≤ ÿ ≤ ÿ0, which can be viewed as a rigorous version of the heuristic in equation (1.17). With

regards to Figure 1, equation (5.14) asserts that the Syracuse orbit stays close to the dashed line.

As ÿý (Nÿ) is the first time n for which Syrÿ (Nÿ) ≤ ý, the estimate in equation (5.14) gives an

approximation

ÿý (Nÿ) =
log(Nÿ/ý)

log 4
3

+ÿ (log0.6 ý); (5.15)

note from equations (5.1) and (1.18) and a brief calculation that the right-hand side automatically lies

between 0 and ÿ0 if x is large enough. In particular, if ýÿ is the interval in equation (5.9), then equation

(5.14) will imply that ÿý (Nÿ) ∈ ýÿ whenever

Nÿ ⊂ [ÿ + 2 log0.8 ý, ÿÿ − 2 log0.8 ý];

a straightforward calculation using the integral test (and equation (5.12)) then shows that

P(ÿý (Nÿ) ∈ ýÿ) = 1 −ÿ (log−ý ý). (5.16)

Again, see Figure 1. Note from equations (5.1) and (5.2) that ýÿ ⊂ [ÿ0, ÿ0]; compare with equation (5.3).
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Figure 1. The Syracuse orbit ÿ ↦→ Syrÿ (Nÿ), where the vertical axis is drawn in shifted log-scale. The

diagonal lines have slope − log(4/3). For times n up to ÿ0, the orbit usually stays close to the dashed

line and hence usually lies between the two dotted diagonal lines; in particular, the first passage time

ÿý (Nÿ) will usually lie in the interval ýÿ . Outside of a rare exceptional event, for any given ÿ ∈ ýÿ ,

Syrÿ−ÿ (Nÿ) will lie in ý ′ if and only if ÿ = ÿý (Nÿ) and Syrÿ (Nÿ) lies in E; equivalently, outside of a

rare exceptional event, Passý (Nÿ) lies in E if and only if Syrÿ−ÿ (Nÿ) lies in ý ′ for precisely one ÿ ∈ ýÿ .

Now suppose that n is an element of ýÿ . In particular, ÿ ≥ ÿ0. We observe the following implications:

• If ÿý (Nÿ) = ÿ, then certainly ÿý (Syrÿ−ÿ0 (Nÿ)) = ÿ0.

• Conversely, if ÿý (Syrÿ−ÿ0 (Nÿ)) = ÿ0 and 
ÿ (ÿ0) (Nÿ) ∈ A
(ÿ0) , we have

Syrÿ (Nÿ) ≤ ý < Syrÿ−1 (Nÿ), which by equation (5.14) forces

ÿ =
log(Nÿ/ý)

log 4
3

+ÿ (log0.6 ý),

which by equations (5.15) and (5.2) implies that ÿý (Nÿ) ≥ ÿ − ÿ0, and hence

ÿý (Nÿ) = ÿ − ÿ0 + ÿý (Syrÿ−ÿ0 (Nÿ)) = ÿ.

We conclude that for any ÿ ∈ ýÿ , the event

(
ÿý (Nÿ) = ÿ

)
∧

(
Passý (Nÿ) ∈ ý

)
∧

(

ÿ (ÿ0) (Nÿ) ∈ A

(ÿ0)
)

holds precisely when the event

ýÿ,ÿ :=
(
ÿý (Syrÿ−ÿ0 (Nÿ)) = ÿ0

)
∧

(
Passý (Syrÿ−ÿ0 (Nÿ)) ∈ ý

)
∧

(

ÿ (ÿ0) (Nÿ) ∈ A

(ÿ0)
)

does. From equation (5.16), we therefore have the estimate

P(Passý (Nÿ) ∈ ý) =
∑
ÿ∈ýÿ
P(ýÿ,ÿ) +ÿ (log−ý ý).
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With ý ′ the set defined in the proposition, we observe the following implications:

• If ýÿ,ÿ occurs, then from equations (5.14) and (5.15), we have

Syrÿ−ÿ0 (Nÿ) = exp(ÿ (log0.6 ý)) (3/4)ÿý (Nÿ )−ÿ0Nÿ = exp(ÿ (log0.6 ý)) (4/3)ÿ0ý

and hence (
Syrÿ−ÿ0 (Nÿ) ∈ ý ′) ∧ (


ÿ (ÿ0) (Nÿ) ∈ A
(ÿ0)

)
. (5.17)

• Conversely, if equation (5.17) holds, then from equation (5.14), we have

Syrÿ
′ (Nÿ) = exp(ÿ (log0.6 ý)) (4/3)ÿ−ÿ0−ÿ′Syrÿ−ÿ0 (Nÿ) ≥ exp(ÿ (log0.6 ý))Syrÿ−ÿ0 (Nÿ)

for all 0 ≤ ÿ′ ≤ ÿ − ÿ0, and hence by equation (5.10)

Syrÿ
′ (Nÿ) > ý

for all 0 ≤ ÿ′ ≤ ÿ − ÿ0. We conclude that

Passý (Nÿ) = ÿ − ÿ0 + Passý (Syrÿ−ÿ0 (Nÿ)) = ÿ

thanks to the definition of ý ′, and hence also

ÿý (Nÿ) = ÿý (Syrÿ−ÿ0 (Nÿ)) ∈ ý.

In particular, the event ýÿ,ÿ holds.

We conclude that we have the equality of events

ýÿ,ÿ =
(
Syrÿ−ÿ0 (Nÿ) ∈ ý ′) ∧ (


ÿ (ÿ0) (Nÿ) ∈ A
(ÿ0)

)

for any ÿ ∈ ýÿ . Since the event 
ÿ (ÿ0) (Nÿ) ∈ A
(ÿ0) is contained in the event 
ÿ (ÿ−ÿ0) (Nÿ) ∈ A

(ÿ−ÿ0) , we

conclude from equation (5.12) that

P(Passý (Nÿ) ∈ ý) =
∑
ÿ∈ýÿ
P

( (
Syrÿ−ÿ0 (Nÿ) ∈ ý ′) ∧ (


ÿ (ÿ−ÿ0) (Nÿ) ∈ A
(ÿ−ÿ0)

))
+ÿ (log−ý ý).

Suppose that 
ÿ = (ÿ1, . . . , ÿÿ−ÿ) is a tuple in A
(ÿ−ÿ) , and ý ∈ ý ′. From Lemma 2.1, we see that

the event
(
Syrÿ−ÿ0 (Nÿ) = ý

)
∧

(

ÿ (ÿ−ÿ0) (Nÿ) = 
ÿ

)
holds if and only if Aff 
ÿ (Nÿ) ∈ ý ′, and the claim

in equation (5.8) follows. �

Now we compute the right-hand side of equation (5.8). Let ÿ ∈ ýÿ , 
ÿ ∈ A
(ÿ−ÿ0) , and ý ∈ ý ′. Then

by equation (1.3), the event Aff 
ÿ (Nÿ) = ý is only non-empty when

ý = ýÿ−ÿ0
( 
ÿ) mod 3ÿ−ÿ0 . (5.18)

Conversely, if equation (5.18) holds, then Aff 
ÿ (Nÿ) = ý holds precisely when

Nÿ = 2 | 
ÿ | ý − ýÿ−ÿ0
( 
ÿ)

3ÿ−ÿ0
. (5.19)

Note from equations (5.11) and (1.13) that the right-hand side of equation (5.19) is equal to

22(ÿ−ÿ0)+ÿ (log0.6 ý) ý +ÿ (3ÿ−ÿ0 )
3ÿ−ÿ0

,
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which by equations (5.10) and (5.1) simplifies to

exp(ÿ (log0.7 ý)) (4/3)ÿý.

Since ÿ ∈ ýÿ , we conclude from equation (5.9) that the right-hand side of equation (5.19) lies in

[ÿ, ÿÿ]; from equations (5.18) and (1.5), we also see that this right-hand side is a odd integer. Since

Nÿ ≡ Log(2N + 1 ∩ [ÿ, ÿÿ]) and

∑
ý ∈2N+1∩[ÿ,ÿÿ ]

1

ý
=

(
1 +ÿ

(
1

ý

))
ÿ − 1

2
log ÿ,

we thus see that when equation (5.18) occurs, one has

P(Aff 
ÿ (Nÿ) = ý) = 1(
1 +ÿ ( 1

ý
)
)
ÿ−1

2
log ÿ

2−| 
ÿ |
3ÿ−ÿ0

ý − ýÿ−ÿ0
( 
ÿ) .

From equations (5.10), (5.1) and (1.13), we can write

ý − ýÿ−ÿ0
( 
ÿ) = ý −ÿ (3ÿ0 ) = (1 +ÿ (ý−ý))ý

and thus

P(Aff 
ÿ (Nÿ) = ý) = 1 +ÿ (ý−ý)
ÿ−1

2
log ÿ

2−| 
ÿ |3ÿ−ÿ0

ý
.

We conclude that

P(Passý (Nÿ) ∈ ý) =
1 +ÿ (ý−ý)
ÿ−1

2
log ÿ

∑
ÿ∈ýÿ

3ÿ−ÿ0

∑

ÿ∈A(ÿ−ÿ0 )

2−| 
ÿ |
∑

ý ∈ý′:ý=ýÿ−ÿ0
( 
ÿ) mod 3ÿ−ÿ0

1

ý

+ÿ (log−ý ý).

We will eventually establish the estimate

3ÿ−ÿ0

∑

ÿ∈A(ÿ−ÿ0 )

2−| 
ÿ |
∑

ý ∈ý′:ý=ýÿ−ÿ0
( 
ÿ) mod 3ÿ−ÿ0

1

ý
= ý +ÿ (log−ý ý) (5.20)

for all ÿ ∈ ýÿ , where Z is the quantity

ý :=
∑
ý ∈ý′

3ÿ0P(ý = Syrac(Z/3ÿ0Z) mod 3ÿ0)
ý

. (5.21)

Since from equation (5.9), we have

#ýÿ = (1 +ÿ (log−ý ý))ÿ − 1

log 4
3

log ÿ,

we see that equation (5.20) would imply the bound

P(Passý (Nÿ) ∈ ý) = (1 +ÿ (log−ý ý)) 2

log 4
3

ý +ÿ (log−ý ý)

which would give the desired estimate in equation (5.7) since Z does not depend on whether y is equal

to ýÿ or ýÿ
2

.
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It remains to establish equation (5.20). Fix ÿ ∈ ýÿ . The left-hand side of equation (5.20) may be

written as

E1(a1 ,...,aÿ−ÿ0
) ∈A(ÿ−ÿ0 ) ýÿ (ýÿ−ÿ0

(a1, . . . , aÿ−ÿ0
) mod 3ÿ−ÿ0 ), (5.22)

where (a1, . . . , aÿ−ÿ0
) ≡ Geom(2)ÿ−ÿ0 and ýÿ : Z/3ÿ−ÿ0Z→ R+ is the function

ýÿ (ÿ) := 3ÿ−ÿ0

∑
ý ∈ý′:ý=ÿ mod 3ÿ−ÿ0

1

ý
. (5.23)

We have a basic estimate:

Lemma 5.3. We have ýÿ (ÿ) � 1 for all ÿ ∈ ýÿ and ÿ ∈ Z/3ÿ−ÿ0Z.

Proof. We can split

ýÿ (ÿ) ≤
∑

(ÿ1 ,...,ÿÿ0
) ∈Nÿ0

ýÿ,ÿ1 ,...,ÿÿ0
(ÿ),

where

ýÿ,ÿ1 ,...,ÿÿ0
(ÿ) := 3ÿ−ÿ0

∑
ý ∈ý′:ý=ÿ mod 3ÿ−ÿ0 ;(ÿ1 ,...,ÿÿ0

):= 
ÿ (ÿ0 ) (ý )

1

ý
.

We now estimate ýÿ,ÿ1 ,...,ÿÿ0
(ÿ) for a given (ÿ1, . . . , ÿÿ0

) ∈ Nÿ0 . If ý ∈ ý ′, then on setting

(ÿ1, . . . , ÿÿ0
) := 
ÿ (ÿ0) (ý), we see from equation (1.7) that

3ÿ02−ÿ[1,ÿ0 ]ý + ýÿ0
(ÿ1, . . . , ÿÿ0

) ≤ ý < 3ÿ02−ÿ[1,ÿ0−1]ý + ýÿ0−1(ÿ1, . . . , ÿÿ0−1)

which by equations (5.2) and (1.13) implies that

3ÿ02−ÿ[1,ÿ0 ]ý ≤ ý � 3ÿ02−ÿ[1,ÿ0−1]ý

or equivalently

3−ÿ02ÿ[1,ÿ0−1]ý � ý ≤ 3−ÿ02ÿ[1,ÿ0 ]ý. (5.24)

Also, from equation (1.7), we have that

3ÿ0ý + 2ÿ[1,ÿ0 ]ýÿ0
(ÿ1, . . . , ÿÿ0

) = 2ÿ[1,ÿ0 ] mod 2ÿ[1,ÿ0 ]+1

and so M is constrained to a single residue class modulo 2ÿ[1,ÿ0 ]+1. In equation (5.23), we are also

constraining M to a single residue class modulo 3ÿ−ÿ0 ; by the Chinese remainder theorem, these

constraints can be combined into a single residue class modulo 2ÿ[1,ÿ0 ]+13ÿ−ÿ0 . Note from the integral

test that

∑
ý0≤ý ≤ý1:ý=ÿ mod ÿ

1

ý
≤ 1

ý0

+
∑

ý0+ÿ≤ý ≤ý1:ý=ÿ mod ÿ

1

ý

≤ 1

ý0

+ 1

ÿ

∫ ý1

ý0

ýý

ý

=
1

ý0

+ 1

ÿ
log

ý1

ý0

(5.25)

https://doi.org/10.1017/fmp.2022.8 Published online by Cambridge University Press



26 Terence Tao

for any ý0 ≤ ý1 and any residue class ÿ mod ÿ. In particular, for ÿ ≤ ý0, we have

∑
ý0≤ý ≤ý1:ý=ÿ mod ÿ

1

ý
� 1

ÿ
logÿ

(
ý1

ý0

)
. (5.26)

If 2ÿ[1,ÿ0 ] ≤ ý0.5 (say), then the modulus 2ÿ[1,ÿ0 ]+13ÿ−ÿ0 is much less than the lower bound on M in

equation (5.24), and we can then use the integral test to bound

ýÿ,ÿ1 ,...,ÿÿ0
(ÿ) � 3ÿ−ÿ0 (2ÿ[1,ÿ0 ]+13ÿ−ÿ0 )−1 logÿ

(
3−ÿ02ÿ[1,ÿ0 ]ý

3−ÿ02ÿ[1,ÿ0−1]ý

)
� 2−ÿ[1,ÿ0 ]ÿÿ0

� 2−ÿ[1,ÿ0 ]/2.

Now suppose instead that 2ÿ[1,ÿ0 ] > ý0.5; we recall from equation (1.7) that

ÿÿ0
= ÿ2

(
3(3ÿ02−ÿ[1,ÿ0−1]ý + ýÿ0−1(ÿ1, . . . , ÿÿ0−1)) + 1

)
so

2ÿÿ0 � 3ÿ02−ÿ[1,ÿ0−1]ý + ýÿ0−1 (ÿ1, . . . , ÿÿ0−1) � 3ÿ02−ÿ[1,ÿ0−1]ý

(using equations (1.13) and (5.24) to handle the lower order term). Hence we we have the additional

lower bound

ý � 3−ÿ02ÿ[1,ÿ0 ] .

Applying equation (5.25) with ý0 equal to the larger of the two lower bounds on M, we conclude that

ýÿ,ÿ1 ,...,ÿÿ0
(ÿ) � 3ÿ−ÿ0

3−ÿ02ÿ[1,ÿ0 ]
+ 3ÿ−ÿ0 (2ÿ[1,ÿ0 ]+13ÿ−ÿ0 )−1 logÿ

(
3−ÿ02ÿ[1,ÿ0 ]ý

3−ÿ02ÿ[1,ÿ0−1]ý

)
� 3ÿ2−ÿ[1,ÿ0 ] + 2−ÿ[1,ÿ0 ]ÿÿ0

� 2−ÿ[1,ÿ0 ]/2

since 2−ÿ[1,ÿ0 ] ≤ ý−1/42−ÿ[1,ÿ0 ]/2 ≤ 3−ÿ2−ÿ[1,ÿ0 ]/2 for ÿ ∈ ýÿ . Thus we have

ýÿ (ÿ) �
∑

ÿ1 ,...,ÿÿ0
∈N

2−ÿ[1,ÿ0 ]/2

and the claim follows from summing the geometric series. �

From the above lemma and equation (5.12), we may write equation (5.22) as

Eýÿ (ýÿ−ÿ0
(a1, . . . , aÿ−ÿ0

) mod 3ÿ−ÿ0 ) +ÿ (log−ý ý)

which by equation (1.22) is equal to

∑
ÿ ∈Z/3ÿ−ÿ0Z

ýÿ (ÿ)P(Syrac(Z/3ÿ−ÿ0Z) = ÿ) +ÿ (log−ý ý).
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From equations (5.9) and (5.2), we have ÿ − ÿ0 ≥ ÿ0. Applying Proposition 1.14, Lemma 5.3 and the

triangle inequality, one can thus write the preceding expression as

∑
ÿ ∈Z/3ÿ−ÿ0Z

ýÿ (ÿ)32ÿ0−ÿP(Syrac(Z/3ÿ0Z) = ÿ mod 3ÿ0) +ÿ (log−ý ý)

and the claim in equation (5.20) then follows from equation (5.23).

6. Reduction to Fourier decay bound

In this section, we derive Proposition 1.14 from Proposition 1.17. We first observe that to prove

Proposition 1.14, it suffices to do so in the regime

0.9ÿ ≤ ÿ ≤ ÿ. (6.1)

(The main significance of the constant 0.9 here is that it lies between
log 3

2 log 2
≈ 0.7925 and 1.) Indeed,

once one has equation (1.26) in this regime, one also has from equation (1.23) that

∑
ý ∈Z/3ÿ′Z

���3ÿ−ÿ′P(Syrac(Z/3ÿZ) = ý mod 3ÿ) − 3ÿ−ÿ′P(Syrac(Z/3ÿZ) = ý mod 3ÿ)
��� �ý ÿ

−ý

whenever 0.9ÿ ≤ ÿ ≤ ÿ ≤ ÿ′, and the claim in equation (1.26) for general 10 ≤ ÿ ≤ ÿ then follows from

telescoping series, with the remaining cases 1 ≤ ÿ < 10 following trivially from the triangle inequality.

Henceforth we assume equation (6.1). We also fix ý > 0, and let ÿý be a constant that is sufficiently

large depending on A. We may assume that n (and hence m) are sufficiently large depending on ý,ÿý,

since the claim is trivial otherwise.

Let (a1, . . . , aÿ) ≡ Geom(2)ÿ, and define the random variable

Xÿ := 2−a1 + 312−a[1,2] + · · · + 3ÿ−12−a[1,ÿ] mod 3ÿ,

thus Xÿ ≡ Syrac(Z/3ÿZ). The strategy will be to split Xÿ (after some conditioning and removal of

exceptional events) as the sum of two independent components, one of which has quite large entropy

(or more precisely, Renyi 2-entropy) in Z/3ÿZ thanks to some elementary number theory, and the other

having very small Fourier coefficients at high frequencies thanks to Proposition 1.17. The desired bound

will then follow from some ÿ2-based Fourier analysis (i.e., Plancherel’s theorem).

We turn to the details. Let E denote the event that the inequalities

|a[ÿ, ÿ ] − 2( ÿ − ÿ) | ≤ ÿý(
√
( ÿ − ÿ) (log ÿ) + log ÿ) (6.2)

hold for every 1 ≤ ÿ ≤ ÿ ≤ ÿ. The event E occurs with nearly full probability; indeed, from Lemma 2.2

and the union bound, we can bound the probability of the complementary event ý by

P(ý) �
∑

1≤ÿ≤ ÿ≤ÿ
ÿ ÿ−ÿ (ýÿý(

√
( ÿ − ÿ) (log ÿ) + log ÿ))

�
∑

1≤ÿ≤ ÿ≤ÿ
exp(−ýÿý log ÿ) + exp(−ýÿý log ÿ)

� ÿ2ÿ−ýÿý

� ÿ−ý−1 (6.3)
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if ÿý is large enough. By the triangle inequality, we may then bound the left-hand side of equation

(1.26) by

Oscÿ,ÿ (P((Xÿ = ý ) ∧ ý))ý ∈Z/3ÿZ +ÿ (ÿ−ý−1),

so it now suffices to show that

Oscÿ,ÿ (P((Xÿ = ý ) ∧ ý))ý ∈Z/3ÿZ �ý,ÿý
ÿ−ý.

Now suppose that E holds. From equation (6.2), we have

a[1,ÿ] ≥ 2(ÿ − 1) − ÿý(
√
ÿ log ÿ + log ÿ) > ÿ

log 3

log 2

since
log 3

log 2
< 2 and n is large. Thus, there is a well-defined stopping time 0 ≤ k < ÿ, defined as the

unique natural number k for which

a[1,k] ≤ ÿ
log 3

log 2
− (ÿý)2 log ÿ < a[1,k+1] .

From equation (6.2), we have

k = ÿ
log 3

2 log 2
+ÿ (ÿý

√
ÿ log ÿ).

It thus suffices by the union bound to show that

Oscÿ,ÿ (P((Xÿ = ý ) ∧ ý ∧ ýý ))ý ∈Z/3ÿZ �ý,ÿý
ÿ−ý−1 (6.4)

for all

ý = ÿ
log 3

2 log 2
+ÿ (ÿý

√
ÿ log ÿ), (6.5)

where ýý is the event that k = ý , or equivalently that

a[1,ý ] ≤ ÿ
log 3

log 2
− (ÿý)2 log ÿ < a[1,ý+1] . (6.6)

Fix k. In order to decouple the events involved in equation (6.4), we need to enlarge the event E

slightly, so that it only depends on a1, . . . , aý+1 and not on aý+2, . . . , aÿ. Let ýý denote the event that

the inequalities in equation (6.2) hold for 1 ≤ ÿ < ÿ ≤ ý + 1; thus ýý contains E. Then the difference

between E and ýý has probability ÿ (ÿ−ý−1) by in equation (6.3). Thus by the triangle inequality, the

estimate in equation (6.4) is equivalent to

Oscÿ,ÿ (P((Xÿ = ý ) ∧ ýý ∧ ýý ))ý ∈Z/3ÿZ �ý,ÿý
ÿ−ý−1.

From equations (6.6) and (6.2), we see that we have

ÿ
log 3

log 2
− (ÿý)2 log ÿ ≤ a[1,ý+1] ≤ ÿ

log 3

log 2
− 1

2
(ÿý)2 log ÿ (6.7)

whenever one is in the event ýý ∧ ýý . By a further application of the triangle inequality, it suffices to

show that

Oscÿ,ÿ
(
P((Xÿ = ý ) ∧ ýý ∧ ýý ∧ ÿý,ý)

)
ý ∈Z/3ÿZ �ý,ÿý

ÿ−ý−2
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for all l in the range

ÿ
log 3

log 2
− (ÿý)2 log ÿ ≤ ý ≤ ÿ

log 3

log 2
− 1

2
(ÿý)2 log ÿ, (6.8)

where ÿý,ý is the event that a[1,ý+1] = ý.
Fix l. If we let ý = ýÿ,ý,ý : Z/3ÿZ→ R denote the function

ý(ý ) = ýÿ,ý,ý (ý ) := P((Xÿ = ý ) ∧ ýý ∧ ýý ∧ ÿý,ý), (6.9)

then our task can be written as

∑
ý ∈Z/3ÿZ

������ý(ý ) −
1

3ÿ−ÿ

∑
ý ′∈Z/3ÿZ:ý ′=ý mod 3ÿ

ý(ý ′)

������ �ý,ÿý
ÿ−ý−2.

By Cauchy-Schwarz, it suffices to show that

3ÿ
∑

ý ∈Z/3ÿZ

������ý(ý ) −
1

3ÿ−ÿ

∑
ý ′∈Z/3ÿZ:ý ′=ý mod 3ÿ

ý(ý ′)

������ 2 �ý,ÿý
ÿ−2ý−4. (6.10)

By the Fourier inversion formula, we have

ý(ý ) = 3−ÿ
∑

ÿ ∈Z/3ÿZ

���
∑

ý ′∈Z/3ÿZ
ý(ý ′)ÿ−2ÿÿ ÿý ′/3ÿ���

ÿ2ÿÿ ÿý /3ÿ

and

1

3ÿ−ÿ

∑
ý ′∈Z/3ÿZ:ý ′=ý mod 3ÿ

ý(ý ′) = 3−ÿ
∑

ÿ ∈3ÿ−ÿZ/3ÿZ

���
∑

ý ′∈Z/3ÿZ
ý(ý ′)ÿ−2ÿÿ ÿý ′/3ÿ���

ÿ2ÿÿ ÿý /3ÿ

for any ý ∈ Z/3ÿZ, so by Plancherel’s theorem, the left-hand side of equation (6.10) may be written as

∑
ÿ ∈Z/3ÿZ:ÿ∉3ÿ−ÿZ/3ÿZ

������
∑

ý ∈Z/3ÿZ
ý(ý )ÿ−2ÿÿ ÿý /3ÿ

������ 2.

By equation (6.9), we can write∑
ý ∈Z/3ÿZ

ý(ý )ÿ−2ÿÿ ÿý /3ÿ
= Eÿ−2ÿÿ ÿXÿ/3ÿ1ýý∧ýý∧ÿý,ý

.

On the event ÿý,ý , one can use equations (1.5) and (1.29) to write

Xÿ = ýý+1 (aý+1, . . . , a1) + 3ý+12−ýýÿ−ý−1 (aÿ, . . . , aý+2) mod 3ÿ.

The key point here is that the random variable 3ý+12−ýýÿ−ý−1 (aÿ, . . . , aý+2) is independent of

a1, . . . , aý+1, ýý , ýý , ÿý,ý . Thus we may factor∑
ý ∈Z/3ÿZ

ý(ý )ÿ−2ÿÿ ÿý /3ÿ
= Eÿ−2ÿÿ ÿ (ýý+1 (aý+1 ,...,a1) mod 3ÿ)/3ÿ1ýý∧ýý∧ÿý,ý

× Eÿ−2ÿÿ ÿ (2−ýýÿ−ý−1 (aÿ ,...,aý+2) mod 3ÿ−ý−1)/3ÿ−ý−1

.
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For ÿ in Z/3ÿZ that does not lie in 3ÿ−ÿZ/3ÿZ, we can write ÿ = 3 ÿ2ýÿ ′ mod 3ÿ, where 0 ≤ ÿ <

ÿ − ÿ ≤ 0.1ÿ and ÿ ′ is not divisible by 3. In particular, from equation (6.5), one has

ÿ − ý − ÿ − 1 ≥ 0.9ÿ − ÿ log 3

2 log 2
−ÿ (ÿý

√
ÿ log ÿ) − 1 � ÿ.

Then by equation (1.23), we have

Eÿ−2ÿÿ ÿ (2−ýýÿ−ý−1 (aÿ ,...,aý+2) mod 3ÿ−ý−1)/3ÿ−ý−1

= Eÿ−2ÿÿ ÿ ′Syrac(Z/3ÿ−ý− ÿ−1Z)/3ÿ−ý− ÿ−1

and hence by Proposition 1.17 this quantity is ÿý′ (ÿ−ý′) for any ý′. Thus we can bound the left-hand

side of equation (6.10) by

�ý′ ÿ−2ý′ ∑
ÿ ∈Z/3ÿZ

���Eÿ−2ÿÿ ÿ (ýý+1 (aý+1 ,...,a1) mod 3ÿ)/3ÿ1
ýý∧ýý∧ÿý,ý

��� 2 (6.11)

(where we have now discarded the restriction ÿ ∉ 3ÿ−ÿZ/3ÿZ); by Plancherel’s theorem, this expression

can be written as

�ý′ ÿ−2ý′
3ÿ

∑
ýý+1∈Z/3ÿZ

P((ýý+1 (aý+1, . . . , a1) = ýý+1) ∧ ýý ∧ ýý ∧ ÿý,ý)2.

Remark 6.1. If we ignore the technical restriction to the events ýý , ýý , ÿý,ý , this quantity is essentially

the Renyi 2-entropy (also known as collision entropy) of the random variableýý+1 (aý+1, . . . , a1) mod 3ÿ.

Now we make a key elementary number theory observation:

Lemma 6.2 (Injectivity of offsets). For each natural number n, the n-Syracuse offset mapýÿ : (N+1)ÿ →
Z[ 1

2
] is injective.

Proof. Suppose that (ÿ1, . . . , ÿÿ), (ÿ′1, . . . , ÿ′ÿ) ∈ (N + 1)ÿ are such that ýÿ (ÿ1, . . . , ÿÿ) =

ýÿ (ÿ′1, . . . , ÿ′ÿ). Taking 2-valuations of both sides using equation (1.5), we conclude that

−ÿ [1,ÿ] = −ÿ′[1,ÿ] .

On the other hand, from equation (1.5), we have

ýÿ (ÿ1, . . . , ÿÿ) = 3ÿ2−ÿ[1,ÿ] + ýÿ−1 (ÿ2, . . . , ÿÿ)

and similarly for ÿ′
1
, . . . , ÿ′ÿ, hence

ýÿ−1 (ÿ2, . . . , ÿÿ) = ýÿ−1 (ÿ′2, . . . , ÿ′ÿ).

The claim now follows from iteration (or an induction on n). �

We will need a more quantitative 3-adic version of this injectivity:

Corollary 6.3 (3-adic separation of offsets). Let ÿý be sufficiently large, let n be sufficiently large

(depending onÿý), let k be a natural number, and let l be a natural number obeying equation (6.8). Then

the residue classes ýý+1(ÿý+1, . . . , ÿ1) mod 3ÿ, as (ÿ1, . . . , ÿý+1) ∈ (N + 1)ý+1 range over ý + 1-tuples

of positive integers that obey the conditions

|ÿ [ÿ+1, ÿ ] − 2( ÿ − ÿ) | ≤ ÿý

(√
( ÿ − ÿ) (log ÿ) + log ÿ

)
(6.12)
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for 1 ≤ ÿ < ÿ ≤ ý + 1 as well as

ÿ [1,ý+1] = ý, (6.13)

are distinct.

Proof. Suppose that (ÿ1, . . . , ÿý+1), (ÿ′1, . . . , ÿ′ý+1
) are two tuples of positive integers that both obey

equations (6.12) and (6.13), and such that

ýý+1 (ÿý+1, . . . , ÿ1) = ýý+1(ÿ′ý+1, . . . , ÿ
′
1) mod 3ÿ.

Applying equation (1.5) and multiplying by 2ý , we conclude that

ý+1∑
ÿ=1

3 ÿ−12ý−ÿ[1, ÿ ] =

ý+1∑
ÿ=1

3 ÿ−12
ý−ÿ′[1, ÿ ] mod 3ÿ. (6.14)

From equation (6.13), the expressions on the left and right sides are natural numbers. Using equations

(6.12) and (6.8), and Young’s inequality ÿý ÿ
1/2 log1/2 ÿ ≤ ÿ

2
ÿ + 1

2ÿ
ÿ2
ý

log ÿ for a sufficiently small

ÿ > 0, the left-hand side may be bounded for ÿý large enough by

ý+1∑
ÿ=1

3 ÿ−12ý−ÿ[1, ÿ ] � 2ý
ý+1∑
ÿ=1

3 ÿ2−2 ÿ+ÿý (
√
ÿ log ÿ+log ÿ)

� exp(− (ÿý)2

2
log ÿ)3ÿ

ý+1∑
ÿ=1

exp

(
− ÿ log

4

3
+ÿ (ÿý ÿ

1/2 log1/2 ÿ) +ÿ (ÿý log ÿ)
)

� exp

(
− (ÿý)2

4
log ÿ

)
3ÿ

ý+1∑
ÿ=1

exp(−ý ÿ)

� ÿ−
(ÿý)2

4 3ÿ;

in particular, for n large enough, this expression is less than 3ÿ. Similarly for the right-hand side of

equation (6.14). Thus these two sides are equal as natural numbers, not simply as residue classes modulo

3ÿ:

ý+1∑
ÿ=1

3 ÿ−12ý−ÿ[1, ÿ ] =

ý+1∑
ÿ=1

3 ÿ−12
ý−ÿ′[1, ÿ ] . (6.15)

Dividing by 2ý , we conclude ýý+1 (ÿý+1, . . . , ÿ1) = ýý+1 (ÿ′ý+1
, . . . , ÿ′

1
). From Lemma 6.2, we conclude

that (ÿ1, . . . , ÿý+1) = (ÿ′
1
, . . . , ÿ′

ý+1
), and the claim follows. �

In view of the above lemma, we see that for a given choice of ýý+1 ∈ Z/3ÿZ, the event

(ýý+1 (aý+1, . . . , a1) = ýý+1) ∧ ýý ∧ ýý ∧ ÿý,ý

can only be non-empty for at most one value (ÿ1, . . . , ÿÿ) of the tuple (a1, . . . , aÿ). By Definition 1.7,

such a value is attained with probability 2−ÿ[1,ÿ] = 2−ý , which by equation (6.8) is equal to ÿÿ ( (ÿý)2)3−ÿ.

We can thus bound equation (6.11) (and hence the left-hand side of equation (6.10)) by

�ý′ ÿ−2ý′+ÿ ( (ÿý)2) ,

and the claim now follows by taking ý′ large enough. This concludes the proof of Proposition 1.14

assuming Proposition 1.17.
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7. Decay of Fourier coefficients

In this section, we establish Proposition 1.17, which, when combined with all the implications established

in preceding sections, will yield Theorem 1.3.

Let ÿ ≥ 1, let ÿ ∈ Z/3ÿZ be not divisible by 3, and let ý > 0 be fixed. We will not vary n or ÿ in this

argument, but it is important that all of our estimates are uniform in these parameters. Without loss of

generality we may assume A to be larger than any fixed absolute constant. We let ÿ = ÿÿ, ÿ : Z[ 1
2
] → C

denote the character

ÿ(ý) := ÿ−2ÿÿ ÿ (ý mod 3ÿ)/3ÿ , (7.1)

where ý ↦→ ý mod 3ÿ is the ring homomorphism from Z[ 1
2
] to Z/3ÿZ (mapping 1

2
to 1

2
mod 3ÿ =

3ÿ+1
2

mod 3ÿ). Note that ÿ is a group homomorphism from the additive group Z[ 1
2
] to the multiplicative

group C, which is periodic modulo 3ÿ, so it also descends to a group homomorphism from Z/3ÿZ to

C, which is still defined by the same formula in equation equation (7.1). From equation (1.29), our task

now reduces7 to establishing the following claim.

Proposition 7.1 (Key Fourier decay estimate). Let ÿ be defined by equation (7.1), and let (a1, . . . , aÿ) ≡
Geom(2)ÿ be n iid copies of the geometric distribution Geom(2) (as defined in Definition 1.7). Then

the quantity

ÿÿ (ÿ) := Eÿ(2−a1 + 312−a[1,2] + · · · + 3ÿ−12−a[1,ÿ] ) (7.2)

obeys the estimate

ÿÿ (ÿ) �ý ÿ
−ý (7.3)

for any ý > 0, where we use the summation convention a[ÿ, ÿ ] := aÿ + · · · + a ÿ from equation (1.6).

7.1. Estimation in terms of white points

To extract some usable cancellation in the expression ÿÿ (ÿ), we will group the sum on the left-hand

side into pairs. For any real ý > 0, let [ý] denote the discrete interval

[ý] := { ÿ ∈ N + 1 : ÿ ≤ ý} = {1, . . . , �ý�}.

For ÿ ∈ [ÿ/2], set b ÿ := a2 ÿ−1 + a2 ÿ , so that

2−a1 + 312−a[1,2] + · · · + 3ÿ−12−a[1,ÿ] =
∑

ÿ∈[ÿ/2]
32 ÿ−22−b[1, ÿ ] (2a2 ÿ + 3) + 3ÿ−12−b[1,�ÿ/2� ]−aÿ

when n is odd, where we extend the summation notation in equation (1.6) to the b ÿ . For n even, the

formula is the same except that the final term 3ÿ−12−b[1,�ÿ/2� ]−aÿ is omitted. Note that the b1, . . . , b �ÿ/2�
are jointly independent random variables taking values in N + 2 = {2, 3, 4, . . . }; they are iid copies of a

Pascal (or negative binomial) random variable Pascal ≡ NB(2, 1
2
) on N + 2, defined by

P(Pascal = ÿ) = ÿ − 1

2ÿ

for ÿ ∈ N + 2.

For any ÿ ∈ [ÿ/2], a2 ÿ is independent of all of the b1, . . . , b �ÿ/2� except for b ÿ . For n odd, aÿ is

independent of all of the b ÿ . Regardless of whether n is even or odd, once one conditions on all of the

7Note that we have reversed the order of variables a1, . . . , aÿ from that in equation (1.5), as this will be a slightly more
convenient normalization for the arguments in this section.

https://doi.org/10.1017/fmp.2022.8 Published online by Cambridge University Press



Forum of Mathematics, Pi 33

b ÿ to be fixed, the random variables a2 ÿ , ÿ ≤ [ÿ/2] (as well as aÿ, if n is odd) are all independent of

each other. We conclude that

ÿÿ (ÿ) = E ���
∏

ÿ∈[ÿ/2]
ÿ (32 ÿ−22−b[1, ÿ ] , b ÿ )���

ý(3ÿ−12−b[1,�ÿ/2� ] )

when n is odd, with the factor ý(2−b[1,�ÿ/2� ] ) omitted when n is even, where ÿ (ý, ÿ) is the conditional

expectation

ÿ (ý, ÿ) := E (ÿ(ý(2a2 + 3)) |a1 + a2 = ÿ) (7.4)

(with (a1, a2) ≡ Geom(2)2) and

ý(ý) := Eÿ(ý2−Geom(2) ).

Clearly |ý(ý) | ≤ 1, so by the triangle inequality we can bound

|ÿÿ (ÿ) | ≤ E
∏

ÿ∈[ÿ/2]
| ÿ (32 ÿ−22−b[1, ÿ ] , b ÿ ) | (7.5)

regardless of whether n is even or odd.

From equation (7.4), we certainly have

| ÿ (ý, ÿ) | ≤ 1. (7.6)

We now perform an explicit computation to improve upon this estimate for many values of x (of the form

ý = 32 ÿ−22−ý) in the case ÿ = 3, which is the least value of ÿ ∈ N + 2 for which the event a1 + a2 = ÿ

does not completely determine a1 or a2. For any ( ÿ , ý) ∈ (N + 1) × Z, we can write

ÿ(32 ÿ−22−ý+1) = ÿ−2ÿÿÿ ( ÿ ,ý) , (7.7)

where ÿ ( ÿ , ý) = ÿÿ, ÿ ( ÿ , ý) ∈ (−1/2, 1/2] denotes the argument

ÿ ( ÿ , ý) :=

{
ÿ32 ÿ−2 (2−ý+1 mod 3ÿ)

3ÿ

}
(7.8)

and {} : R/Z→ (−1/2, 1/2] is the signed fractional part function; thus {ý} denotes the unique element

of the coset ý + Z that lies in (−1/2, 1/2].
Let 0 < ÿ < 1

100
be a sufficiently small absolute constant to be chosen later; we will take care to

ensure that the implied constants in many of our asymptotic estimates do not depend on ÿ. Call a point

( ÿ , ý) ∈ [ÿ/2] × Z black8 if

|ÿ ( ÿ , ý) | ≤ ÿ, (7.9)

and white otherwise. We let ý = ýÿ, ÿ ,ÿ = ÿÿ, ÿ denote the black and white points of [ÿ/2] × Z
respectively; thus we have the partition [ÿ/2] × Z = ý �ÿ .

Lemma 7.2 (Cancellation for white points). If ( ÿ , ý) is white, then

| ÿ (32 ÿ−22−ý , 3) | ≤ exp(−ÿ3).

8This choice of notation was chosen purely in order to be consistent with the color choices in Figures 2, 3, 4.
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Proof. If a1, a2 are independent copies of Geom(2), then after conditioning to the event a1 +a2 = 3, the

pair (a1, a2) is equal to either (1, 2) or (2, 1), with each pair occurring with (conditional) probability

1/2. From equation (7.4), we thus have

ÿ (ý, 3) = 1

2
ÿ(5ý) + 1

2
ÿ(7ý) = ÿ(5ý)

2
(1 + ÿ(2ý))

for any x, so that

| ÿ (ý, 3) | = |1 + ÿ(2ý) |
2

.

We specialise to the case ý := 32 ÿ−22−ý . By equation (7.7), we have

ÿ(2ý) = ÿ−2ÿÿÿ ( ÿ ,b[1, ÿ ] )

and hence by elementary trigonometry

| ÿ (32 ÿ−22−ý , 3) | = cos(ÿÿ ( ÿ , ý)).

By hypothesis we have

|ÿ ( ÿ , ý) | > ÿ

and the claim now follows by Taylor expansion (if ÿ is small enough); indeed one can even obtain an

upper bound of exp(−ýÿ2) for some absolute constant ý > 0 independent of ÿ. �

From the above lemma, equation (7.6) and the law of total probability, we see that

|ÿÿ (ÿ) | ≤ E exp(−ÿ3#{ ÿ ∈ [ÿ/2] : b ÿ = 3, ( ÿ , b[1, ÿ ]) ∈ ÿ}).

As we shall see later, we can interpret the ( ÿ , b[1, ÿ ]) with b ÿ = 3 as a two-dimensional renewal process.

To establish Proposition 7.1 (and thus Proposition 1.17 and Theorem 1.3), it thus suffices to show the

following estimate.

Proposition 7.3 (Renewal process encounters many white points).

E exp(−ÿ3#{ ÿ ∈ [ÿ/2] : b ÿ = 3, ( ÿ , b[1, ÿ ]) ∈ ÿ}) �ý ÿ
−ý. (7.10)

We remark that this proposition is of a simpler nature to establish than Proposition 7.1 as it is entirely

‘non-negative’; it does not require the need to capture any cancellation in an oscillating sum, as was the

case in Proposition 7.1.

7.2. Deterministic structural analysis of black points

The proof of Proposition 7.3 consists of a ‘deterministic’ part, in which we understand the structure of

the white set W (or the black set B), and a ‘probabilistic’ part, in which we control the random walk

b[1, ÿ ] and the events b ÿ = 3. We begin with the former task. Define a triangle to be a subset Δ of

(N + 1) × Z of the form

Δ = {( ÿ , ý) : ÿ ≥ ÿΔ ; ý ≤ ýΔ ; ( ÿ − ÿΔ ) log 9 + (ýΔ − ý) log 2 ≤ ýΔ } (7.11)

for some ( ÿΔ , ýΔ ) ∈ (N + 1) × Z (which we call the top-left corner of Δ) and some ýΔ ≥ 0 (which we

call the size of Δ); see Figure 2.
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Figure 2. A triangle Δ , which we have drawn as a solid region rather than as a subset of the discrete

lattice Z2.

Lemma 7.4 (Structure of black set). The black set ý ⊂ [ÿ/2] × Z of points ( ÿ , ý) with |ÿ ( ÿ , ý) | ≤ ÿ can

be expressed as a disjoint union

ý =

⊎
Δ∈T

Δ

of trianglesΔ , each of which is contained in [ ÿ
2
− 1

10
log 1

ÿ
]×Z. Furthermore, any two trianglesΔ ,Δ ′ in T

are separated by a distance ≥ 1
10

log 1
ÿ

(using the Euclidean metric on [ÿ/2] ×Z ⊂ R2). (See Figure 3.)

Proof. We first observe some simple relations between adjacent values of ÿ. From equation (7.8) (or

equation (7.7)), we observe the identity

32( ÿ∗− ÿ)2(ý−ý∗)ÿ ( ÿ , ý) = ÿ ( ÿ∗, ý∗) mod Z (7.12)

whenever ÿ ≤ ÿ∗ and ý ≥ ý∗. Thus, for instance,

ÿ ( ÿ + 1, ý) = 9ÿ ( ÿ , ý) mod Z (7.13)

and

ÿ ( ÿ , ý − 1) = 2ÿ ( ÿ , ý) mod Z. (7.14)

Among other things, this implies that

ÿ ( ÿ , ý) = ÿ ( ÿ + 1, ý) − 4ÿ ( ÿ , ý − 1) mod Z

and hence by the triangle inequality

|ÿ ( ÿ , ý) | ≤ |ÿ ( ÿ + 1, ý) | + 4|ÿ ( ÿ , ý − 1) |. (7.15)
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Figure 3. The black set is a union of triangles, in the strip [ ÿ
2
− 1

10
log 1

ÿ
] × Z, that are separated from

each other by � log 1
ÿ
. The red dots depict (a portion of) a renewal process v1, v[1,2] , v[1,3] that we will

encounter later in this section; our main objective will be to establish that this process usually contains

a fair number of white points. We remark that the average slope 16
4

= 4 of this renewal process will

exceed the slope
log 9

log 2
≈ 3.17 of the triangle diagonals, so that the process tends to exit a given triangle

through its horizontal side. The coordinate j increases in the rightward direction, while the coordinate

l increases in the upward direction.

These identities have the following consequences. Call a point ( ÿ , ý) ∈ [ÿ/2] × Z weakly black if

|ÿ ( ÿ , ý) | ≤ 1

100
.

Clearly any black point is weakly black. We have the following further claims.

(i) If ( ÿ , ý) is weakly black, and either ( ÿ + 1, ý) or ( ÿ , ý − 1) is black, then ( ÿ , ý) is black. (This follows

from equation (7.13) or (7.14) respectively.)

(ii) If ( ÿ + 1, ý), ( ÿ , ý − 1) are weakly black, then ( ÿ , ý) is also weakly black. (Indeed, from equation

(7.15), we have |ÿ ( ÿ , ý) | ≤ 5
100

, and the claim now follows from equation (7.13) or (7.14).)

(iii) If ( ÿ − 1, ý) and ( ÿ , ý − 1) are weakly black, then ( ÿ , ý) is also weakly black. (Indeed, from equation

(7.13), we have |ÿ ( ÿ , ý) | ≤ 9
100

, and the claim now follows from equation (7.14).)

Now we begin the proof of the lemma. Suppose ( ÿ , ý) ∈ [ÿ/2] × Z is black, then by equations (7.9)

and (7.8), we have

ÿ32 ÿ−2 (2−ý+1 mod 3ÿ)
3ÿ

∈ [−ÿ, ÿ] mod Z

and hence

ÿ3ÿ−1 (2−ý+1 mod 3ÿ)
3ÿ

∈ [−3ÿ+1−2 ÿÿ, 3ÿ+1−2 ÿÿ] mod Z.
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On the other hand, since ÿ is not a multiple of 3, the expression
ÿ3ÿ−1 (2−ý+1 mod 3ÿ)

3ÿ
is either equal to 1/3

or 2/3 mod Z. We conclude that

3ÿ+1−2 ÿÿ ≥ 1

3
, (7.16)

so the black points in [ÿ/2] × Z actually lie in [ ÿ
2
− 1

10
log 1

ÿ
] × Z.

Suppose that ( ÿ , ý) ∈ [ÿ/2] × Z is such that ( ÿ , ý ′) is black for all ý ′ ≥ ý; thus

|ÿ ( ÿ , ý ′) | ≤ ÿ

for all ý ′ ≥ ý. From equation (7.14), this implies that

ÿ ( ÿ , ý ′) = 2ÿ ( ÿ , ý ′ + 1)

for all ý ′ ≥ ý, hence

ÿ ( ÿ , ý ′) ≤ 2ý−ý
′
ÿ

for all ý ′ ≥ ý. Repeating the proof of equation (7.16), one concludes that

3ÿ+1−2 ÿ2ý−ý
′
ÿ ≥ 1

3
,

which is absurd for ý ′ large enough. Thus it is not possible for ( ÿ , ý ′) to be black for all ý ′ ≥ ý.

Now let ( ÿ , ý) ∈ [ÿ/2]×Z be black. By the preceding discussion, there exists a unique ý∗ = ý∗ ( ÿ , ý) ≥ ý

such that ( ÿ , ý ′) is black for all ý ≤ ý ′ ≤ ý∗, but such that ( ÿ , ý∗ + 1) is white. Now let ÿ∗ = ÿ∗( ÿ , ý) ≤ ÿ

be the unique positive integer such that ( ÿ ′, ý∗) is black for all ÿ∗ ≤ ÿ ′ ≤ ÿ , but such that either ÿ∗ = 1

or ( ÿ∗ − 1, ý∗) is white. Informally, ( ÿ∗, ý∗) is obtained from ( ÿ , ý) by first moving upward as far as one

can go in B, then moving leftwards as far as one can go in B; see Figure 4. As one should expect from

glancing at this figure (or Figure 3), ( ÿ∗, ý∗) should be the top-left corner of the triangle containing ( ÿ , ý),
and the arguments below are intended to support this claim.

By construction, ( ÿ∗, ý∗) is black; thus by equation (7.9), we have

|ÿ ( ÿ∗, ý∗) | = ÿ exp(−ý∗) (7.17)

for some ý∗ ≥ 0. From equation (7.12) this implies in particular that

|ÿ ( ÿ ′, ý ′) | ≤ ÿ exp(−ý∗ + ( ÿ ′ − ÿ∗) log 9 + (ý∗ − ý ′) log 2) (7.18)

whenever ÿ ′ ≥ ÿ∗, ý ′ ≥ ý∗, with equality whenever the right-hand side is strictly less than 1/2.

Let Δ∗ denote the triangle with top-left corner ( ÿ∗, ý∗) and size ý∗. If ( ÿ ′, ý ′) ∈ Δ∗, then by equation

(7.18), we have

|ÿ ( ÿ ′, ý ′) | ≤ 32( ÿ′− ÿ∗)2(ý∗−ý′)ÿ exp(−ý∗) ≤ ÿ

and hence every element of Δ∗ is black (and thus lies in [ ÿ
2
− ý log 1

ÿ
] × Z).

Next, we make the following claim:

(*) Every point ( ÿ ′, ý ′) ∈ [ÿ/2] × Z that lies outside of Δ∗, but is at a distance of at most 1
10

log 1
ÿ

to

Δ∗, is white.
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Figure 4. The proof of Lemma 7.4. The points connecting ( ÿ , ý) to ( ÿ , ý∗), and from ( ÿ , ý∗) to ( ÿ∗, ý∗),
are known to be black, while the points ( ÿ , ý∗ + 1), ( ÿ∗ − 1, ý∗) are known to be white. The point ( ÿ ′, ý ′)
can be in various locations, as illustrated by the red dots here. From equation (7.18), one can obtain

that every point in the dashed triangle Δ∗ is black (and every point in the Case 1 region is weakly

black), which can treat the Case 1 locations of ( ÿ ′, ý ′) (and also forces ( ÿ , ý) to lie inside Δ∗). In Case

2, ( ÿ ′, ý ′) can be to the right or left of ( ÿ , ý∗ + 1), but in either case one can show that if ( ÿ ′, ý ′) is black,

then ( ÿ ′, ý∗ + 1) (displayed here in blue) is weakly black and hence ( ÿ , ý∗ + 1) is weakly black and in

fact black, a contradiction. Similarly, in Case 3, ( ÿ ′, ý ′) can be above or below ( ÿ∗ − 1, ý∗), but in either

case one can show that if ( ÿ ′, ý ′) is black, then so ( ÿ∗ − 1, ý ′) (displayed here in green) is weakly black

and hence ( ÿ∗ − 1, ý∗) is weakly black and in fact black, again giving a contradiction.

To verify Claim (*), we divide into three cases (see Figure 4):

Case 1: ÿ ′ ≥ ÿ∗, ý ′ ≤ ý∗. In this case we have from equation (7.11) that

ý∗ < ( ÿ ′ − ÿ∗) log 9 + (ý∗ − ý ′) log 2 ≤ ý∗ +
log 9 + log 2

10
log

1

ÿ

and hence

ÿ exp(−ý∗ + ( ÿ ′ − ÿ∗) log 9 + (ý∗ − ý ′) log 2)ÿ1− log 9+log 2
10 <

1

2
.

Applying the equality case of equation (7.18), we conclude that

ÿ = ÿ exp(−ý∗ + ( ÿ ′ − ÿ∗) log 9 + (ý∗ − ý ′) log 2)ÿ1− log 9+log 2
10 > ÿ

and thus ( ÿ ′, ý ′) is white as claimed.

Case 2: ÿ ′ ≥ ÿ∗, ý ′ > ý∗. In this case we have from equation (7.11) that

0 < (ý ′ − ý∗) log 2 ≤ log 2

10
log

1

ÿ
(7.19)
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and

( ÿ ′ − ÿ∗) log 9 ≤ ý∗ +
log 9

10
log

1

ÿ
(7.20)

(say). Suppose for contradiction that ( ÿ ′, ý ′) was black; thus

|ÿ ( ÿ ′, ý ′) | ≤ ÿ.

From equations (7.19) and (7.12) (or equation (7.14)) this implies that

|ÿ ( ÿ ′, ý∗ + 1) | ≤ ÿ1− log 2
10 ,

so in particular ( ÿ ′, ý∗ + 1) is weakly black.

If ÿ ′ ≥ ÿ , then from equations (7.18) and (7.20), we also have

|ÿ ( ÿ ′ − 1, ý∗) | ≤ ÿ1− log 9
10 , (7.21)

thus ( ÿ ′ − 1, ý∗) is weakly black. Applying claim (ii) and the fact that ( ÿ ′, ý∗ + 1) is weakly black, we

conclude that ( ÿ ′ − 1, ý∗ + 1) is weakly black. Iterating this argument, we conclude that ( ÿ ′′, ý∗ + 1)
is weakly black for all ÿ∗ ≤ ÿ ′′ ≤ ÿ ′. In particular, ( ÿ , ý∗ + 1) is weakly black; since ( ÿ , ý∗) is black

by construction of ý∗, we conclude from Claim (i) that ( ÿ , ý∗ + 1) is black. But this contradicts the

construction of ý∗.
Now suppose that ÿ ′ < ÿ . From construction of ý∗, ÿ∗, we see that ( ÿ ′ + 1, ý∗) is black, hence weakly

black; since ( ÿ ′, ý∗ + 1) is weakly black, we conclude from Claim (iii) that ( ÿ ′ + 1, ý∗ + 1) is weakly

black. Iterating this argument, we conclude that ( ÿ ′′, ý∗ + 1) is weakly black for all ÿ ′ ≤ ÿ ′′ ≤ ÿ ; thus in

particular ( ÿ , ý∗ + 1) is weakly black, and we obtain a contradiction as before.

Case 3: ÿ ′ < ÿ∗. Clearly this implies ÿ∗ > 1; also, from equation (7.11), we have

− log 2

10
log

1

ÿ
≤ (ý∗ − ý ′) log 2 ≤ ý∗ +

log 2

10
log

1

ÿ
(7.22)

and

0 < ( ÿ∗ − ÿ ′) log 9 ≤ log 9

10
log

1

ÿ
. (7.23)

Suppose for contradiction that ( ÿ ′, ý ′) was black; thus

|ÿ ( ÿ ′, ý ′) | ≤ ÿ.

From equations (7.23) and (7.12) (or equation (7.13)) we thus have

|ÿ ( ÿ∗ − 1, ý ′) | ≤ ÿ1− log 9
10 . (7.24)

If ý ′ ≥ ý∗, then from equations (7.22) and (7.12), we then have

|ÿ ( ÿ∗ − 1, ý∗) | ≤ ÿ1− log 9+log 2
10 ,

so ( ÿ∗ − 1, ý∗) is weakly black. By construction of ÿ∗, ( ÿ∗, ý∗) is black, hence by Claim (i) ( ÿ∗ − 1, ý∗) is

black, contradicting the construction of ÿ∗.
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Now suppose that ý ′ < ý∗. From equation (7.24), ( ÿ∗ − 1, ý ′) is weakly black. On the other hand, from

equations (7.22) and (7.18) that

|ÿ ( ÿ∗, ý ′ + 1) | ≤ ÿ1− log 2
10

so ( ÿ∗, ý ′+1) is also weakly black. By Claim (ii), this implies that ( ÿ∗−1, ý ′+1) is weakly black. Iterating

this argument, we see that ( ÿ∗ − 1, ý ′′) is weakly black for all ý ′ ≤ ý ′′ ≤ ý∗, hence ( ÿ∗ − 1, ý∗) is weakly

black and we can obtain a contradiction as before. This concludes the treatment of Case 3 of Claim (*).

We have now verified Claim (*) in all cases. From this claim and the construction ( ÿ∗, ý∗) from ( ÿ , ý),
we now see that ( ÿ , ý) must lie in Δ∗; indeed, if ( ÿ , ý∗) was outside of Δ∗, then one of the (necessarily

black) points between ( ÿ∗, ý∗) and ( ÿ , ý∗) would violate Case 1 of Claim (*), and similarly if ( ÿ , ý∗) was in

Δ∗ but ( ÿ , ý) was outside Δ∗, then one of the (necessarily black points) between ( ÿ , ý∗) and ( ÿ , ý) would

again violate Case 1 of Claim (*); see Figure 4. Furthermore, for any ( ÿ ′, ý ′) ∈ Δ∗, that ý∗( ÿ ′, ý ′) = ý∗
and ÿ∗( ÿ ′, ý ′) = ÿ∗. In other words, we have

Δ∗ = {( ÿ ′, ý ′) ∈ ý : ý∗( ÿ ′, ý ′) = ý∗; ÿ∗( ÿ ′, ý ′) = ÿ∗},

and so the triangles Δ∗ form a partition of B. By the preceding arguments, we see that these triangles lie

in [ ÿ
2
− 1

10
log 1

ÿ
] ×Z and are separated from each other by at least 1

10
log 1

ÿ
. This proves the lemma. �

Remark 7.5. One can say a little bit more about the structure of the black set B; for instance, from

Euler’s theorem, we see that B is periodic with respect to the vertical shift (0, 2×3ÿ−1) (cf. Lemma 1.12),

and one could use Baker’s theorem [2] that (among other things) establishes a Diophantine property of
log 3

log 2
in order to obtain some further control on B. However, we will not exploit any further structure of

the black set in our arguments beyond what is provided by Lemma 7.4.

7.3. Formulation in terms of holding time

We now return to the probabilistic portion of the proof of Proposition 7.3. Currently we have a finite

sequence b1, . . . , b �ÿ/2� of random variables that are iid copies of the sum a1 + a2 of two independent

copies a1, a2 of Geom(2). We may extend this sequence to an infinite sequence b1, b2, b3, . . . of iid

copies of a1 +a2. Recalling from definition that W is a subset of [ÿ/2] ×Z, the point ( ÿ , b[1, ÿ ]) can only

lie in W when ÿ ∈ [ÿ/2]. Thus the left-hand side of equation (7.10) can then be written as

E exp(−ÿ3#{ ÿ ∈ N + 1 : b ÿ = 3, ( ÿ , b[1, ÿ ]) ∈ ÿ}).

We now describe the random set {( ÿ , b[1, ÿ ]) : ÿ ∈ N + 1, b ÿ = 3} as9 a two-dimensional renewal

process (a special case of a renewal-reward process). Since the events b ÿ = 3 are independent and each

occur with probability

P(b ÿ = 3) = P(Pascal = 3) = 1

4
> 0, (7.25)

we see that almost surely one has b ÿ = 3 for at least one ÿ ∈ N. Define the two-dimensional holding

time Hold ∈ (N + 1) × (N + 2) to be the random shift (j, b[1,j]), where j is the least positive integer

for which bj = 3; this random variable is almost surely well defined. Note from equation (7.25) that

the first component j of Hold has the distribution j ≡ Geom(4). A little thought then reveals that the

random set

{( ÿ , b[1, ÿ ]) : ÿ ∈ N + 1, b ÿ = 3} (7.26)

9We are indebted to Marek Biskup for this suggestion.
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has the same distribution as the random set

{v1, v[1,2] , v[1,3] , . . . }, (7.27)

where v1, v2, . . . are iid copies of Hold, and we extend the summation notation in equation (1.6) to the

v ÿ ; thus, for instance, v[1,ý ] := v1 + · · · + vý . In particular, we have

#{ ÿ ∈ N + 1 : b ÿ = 3, ( ÿ , b[1, ÿ ]) ∈ ÿ} ≡ #{ý ∈ N + 1 : v[1,ý ] ∈ ÿ},

and so we can write the left-hand side of equation (7.10) as

E
∏
ý∈N+1

exp(−ÿ31ÿ (v[1,ý ])); (7.28)

note that all but finitely many of the terms in this product are equal to 1.

We now pause our analysis of equations (7.10) and (7.28) to record some basic properties about the

distribution of Hold.

Lemma 7.6 (Basic properties of holding time). The random variable Hold has exponential tail (in the

sense of equation (2.3)), is not supported in any coset of any proper subgroup of Z2 and has mean

(4, 16). In particular, the conclusion of Lemma 2.2 holds for Hold with 
ÿ = (4, 16).

Proof. From the definition of Hold and equation (7.25), we see that Hold is equal to (1, 3) with

probability 1/4, and on the remaining event of probability 3/4, it has the distribution of (1,Pascal′) +
Hold′, where Pascal′ is a copy of Pascal that is conditioned to the event Pascal ≠ 3, so that

P(Pascal′ = ÿ) = 4

3

ÿ − 1

2ÿ
(7.29)

for ÿ ∈ N + 2\{3}, and Hold′ is a copy of Hold that is independent of Pascal′. Thus Hold has the

distribution of (1, 3)+(1, b′
1
)+· · ·+(1, b′

j−1
), where b′

1
, b′

2
, . . . are iid copies of Pascal′ and j ≡ Geom(4)

is independent of the b′
ÿ . In particular, for any ý = (ý1, ý2) ∈ R2, one has from monotone convergence

that

E exp(Hold · ý) =
∑
ÿ∈N

1

4

(
3

4

) ÿ−1

exp ((1, 3) · ý) (E exp((1,Pascal′) · ý)) ÿ . (7.30)

From equation (7.29) and dominated convergence, we have E exp((1,Pascal′) · ý) < 4
3

for k sufficiently

close to 0, which by equation (7.30) implies that E exp(Hold · ý) < ∞ for k sufficiently close to zero.

This gives the exponential tail property by Markov’s inequality.

Since Hold attains the value (1, 3) + (1, ÿ) for any ÿ ∈ N+2\{3} with positive probability, as well as

attaining (1, 3) with positive probability, we see that the support of Hold is not supported in any coset

of any proper subgroup of Z2. Finally, from the description of Hold at the start of this proof we have

EHold =
1

4
(1, 3) + 3

4
((1,EPascal′) + EHold) ;

also, from the definition of Pascal′, we have

EPascal =
1

4
3 + 3

4
EPascal′.
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We conclude that

EHold = (1,EPascal) + 3

4
EHold;

since EPascal = 2EGeom(2) = 4, we thus have EHold = (4, 16) as required. �

The following lemma allows us to control the distribution of first passage locations of renewal

processes with holding times ≡ Hold, which will be important for us as it lets us understand how such

renewal processes exit a given triangle Δ:

Lemma 7.7 (Distribution of first passage location). Let v1, v2, . . . be iid copies of Hold, and write

vý = (jý , lý ). Let ý ∈ N, and define the first passage time k to be the least positive integer such that

l[1,ý ] > ý. Then for any ÿ , ý ∈ N with ý > ý, one has

P(v[1,k] = ( ÿ , ý)) � ÿ−ý (ý−ý)

(1 + ý)1/2ÿ1+ý
(
ý

(
ÿ − ý

4

))
,

where ÿ1+ý (ý) = exp(− |ý |2
1+ý ) + exp(−|ý |) was the function defined in equation (2.2).

Informally, this lemma asserts that as a rough first approximation one has

v[1,k] ≈ Unif
({
( ÿ , ý) : ÿ =

ý

4
+ÿ ((1 + ý)1/2); ý < ý ≤ ý +ÿ (1)

})
. (7.31)

Proof. Note that by construction of k one has l[1,k] − lk ≤ ý, so that lk ≥ l[1,k] − ý. From the union

bound, we therefore have

P(v[1,k] = ( ÿ , ý)) ≤
∑
ý∈N+1

P((v[1,ý ] = ( ÿ , ý)) ∧ (lý ≥ ý − ý));

since vý has the exponential tail and is independent of v1, . . . , vý−1, we thus have

P(v[1,k] = ( ÿ , ý)) �
∑
ý∈N+1

∑
ýý ≥ý−ý

∑
ÿý ∈N+1

ÿ−ý ( ÿý+ýý )P(v[1,ý−1] = ( ÿ − ÿý , ý − ýý )).

Writing ýý = ý − ý + ý ′
ý
, we then have

P(v[1,k] = ( ÿ , ý)) � ÿ−ý (ý−ý)
∑
ý∈N+1

∑
ý′
ý
∈N

∑
ÿý ∈N+1

ÿ−ý ( ÿý+ý
′
ý
)P(v[1,ý−1] = ( ÿ − ÿý , ý − ý ′ý )).

We can restrict to the region ý ′
ý
≤ ý, since the summand vanishes otherwise. It now suffices to show that∑

ý∈N+1

∑
0≤ý′

ý
≤ý

∑
ÿý ∈N+1

ÿ−ý ( ÿý+ý
′
ý
)P

(
v[1,ý−1] = ( ÿ − ÿý , ý − ý ′ý )

)

� (1 + ý)−1/2ÿ1+ý
(
ý

(
ÿ − ý

4

))
. (7.32)

This is in turn implied by ∑
ý∈N+1

∑
0≤ý′

ý
≤ý
ÿ−ýý

′
ýP(v[1,ý−1] = ( ÿ ′, ý − ý ′ý ))

� (1 + ý)−1/2ÿ1+ý
(
ý

(
ÿ ′ − ý

4

))
(7.33)
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for all ÿ ′ ∈ Z, since equation (7.32) then follows by replacing ÿ ′ by ÿ − ÿý , multiplying by exp(−ý ÿý ),
and summing in ÿý (and adjusting the constants c appropriately). In a similar vein, it suffices to show that

∑
ý∈N+1

P(v[1,ý−1] = ( ÿ ′, ý′)) � (1 + ý′)−1/2ÿ1+ý′
(
ý

(
ÿ ′ − ý′

4

))

for all ý′ ∈ N, since equation (7.33) follows after setting ý′ = ý − ý ′
ý
, multiplying by exp(−ýý ′

ý
), and

summing in ý ′
ý

(splitting into the regions ý ′
ý
≤ ý/2 and ý ′

ý
> ý/2 if desired to simplify the calculations).

From Lemma 7.6 and Lemma 2.2, one has

P(v[1,ý−1] = ( ÿ ′, ý′)) � ý−1ÿý−1 (ý(( ÿ ′, ý′) − (ý − 1) (4, 16))) ,

and the claim now follows from summing in k and a routine calculation (splitting for instance into the

regions 16(ý − 1) ∈ [ý′/2, 2ý′], 16(ý − 1) < ý′/2, and 16(ý − 1) > 2ý′). �

7.4. Recursively controlling a maximal expression

We return to the study of the left-hand side of equation (7.10), which we have expressed as equation

(7.28). For any ( ÿ , ý) ∈ N + 1 × Z, let ý( ÿ , ý) denote the quantity

ý( ÿ , ý) := E
∏
ý∈N

exp(−ÿ31ÿ (( ÿ , ý) + v[1,ý ])) (7.34)

then we have the recursive formula

ý( ÿ , ý) = exp(−ÿ31ÿ ( ÿ , ý))Eý(( ÿ , ý) + Hold). (7.35)

Observe that for each ( ÿ , ý) ∈ N + 1 × Z, we have the conditional expectation

E

( ∏
ý∈N+1

exp(−ÿ31ÿ (v[1,ý ])) |v1 = ( ÿ , ý)
)
= ý( ÿ , ý)

since after conditioning on v1 = ( ÿ , ý), then the v[1,ý ] have the same distribution as ( ÿ , ý) + v′
[1,ý−1] ,

where v′
1
, v′

2
, . . . is another sequence of iid copies of Hold. Since v1 has the distribution of Hold, we

conclude from the law of total probability that

E
∏
ý∈N+1

exp(−ÿ31ÿ (v[1,ý ])) = Eý(Hold).

From equation (7.28), we thus see that we can rewrite the desired estimate in equation (7.10) as

Eý(Hold) �ý ÿ
−ý. (7.36)

One can think of ý( ÿ , ý) as a quantity controlling how often one encounters white points when one

walks along a two-dimensional renewal process ( ÿ , ý), ( ÿ , ý) +v1, ( ÿ , ý) +v[1,2] , . . . starting at ( ÿ , ý) with

holding times given by iid copies of Hold. The smaller this quantity is, the more white points one is

likely to encounter. The main difficulty is thus to ensure that this renewal process is usually not trapped

within the black triangles Δ from Lemma 7.4; as it turns out (and as may be evident from an inspection

of Figure 3), the large triangles will be the most troublesome to handle (as they are so large compared

to the narrow band of white points surrounding them that are provided by Lemma 7.4).

Suppose that we can prove a bound of the form

ý( ÿ , ý) �ý max(�ÿ/2� − ÿ , 1)−ý (7.37)
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for all ( ÿ , ý) ∈ (N + 1) × Z; this is trivial for ÿ ≥ ÿ/2 but becomes increasingly non-trivial for smaller

values of j. Then

ý(Hold) �ý max(�ÿ/2� − j, 1)−ý �ý ÿ
−ýjý

where j ≡ Geom(4) is the first component of Hold. As Geom(4) has exponential tail, we conclude

equation (7.36) and hence Proposition 7.3, which then implies Propositions 7.1, 1.17 and Theorem 1.3.

It remains to prove equation (7.37). Roughly speaking, we will accomplish this by a downward

induction on j, or more precisely, by an upward induction on a quantity m, which is morally equivalent

to �ÿ/2�− ÿ . To make this more precise, it is convenient to introduce the quantitiesýÿ for anyÿ ∈ [ÿ/2]
by the formula

ýÿ := sup
( ÿ ,ý) ∈(N+1)×Z: ÿ≥�ÿ/2�−ÿ

max(�ÿ/2� − ÿ , 1)ýý( ÿ , ý). (7.38)

Clearly we have

ýÿ ≤ ÿý, (7.39)

sinceý( ÿ , ý) ≤ 1 for all ÿ , ý; this bound can be thought of as supplying the ‘base case’ for our induction).

We trivially have ýÿ ≥ ýÿ−1 for any 1 ≤ ÿ ≤ ÿ/2. We will shortly establish the opposite inequality:

Proposition 7.8 (Monotonicity). We have

ýÿ ≤ ýÿ−1 (7.40)

whenever ÿý,ÿ ≤ ÿ ≤ ÿ/2 for some sufficiently large ÿý,ÿ depending on ý, ÿ.

Assuming Proposition 7.8, we conclude from equation (7.39) and a (forward) induction on m that

ýÿ ≤ ÿý
ý,ÿ

�ý 1 for all 1 ≤ ÿ ≤ ÿ/2, which gives equation (7.37). This in turn implies Proposition

7.3, and hence Proposition 7.1, Proposition 1.17, and Theorem 1.3.

It remains to establish Proposition (7.8). Let ÿý,ÿ ≤ ÿ ≤ ÿ/2 for some sufficiently large ÿý,ÿ . It

suffices to show that

ý( ÿ , ý) ≤ ÿ−ýýÿ−1 (7.41)

whenever ÿ = �ÿ/2� − ÿ and ý ∈ Z. Note from equation (7.38) that we immediately obtain ý( ÿ , ý) ≤
ÿ−ýýÿ, but to be able to use ýÿ−1 instead of ýÿ, we will apply equation (7.35) at least once, in order

to estimate ý( ÿ , ý) in terms of other values ý( ÿ ′, ý ′) of Q with ÿ ′ > ÿ . This causes a degradation in the

ÿ−ý term, even when m is large; to overcome this loss we need to ensure that (with high probability)

the two-dimensional renewal process visits a sufficient number of white points before we use ýÿ−1 to

bound the resulting expression. This is of course consistent with the interpretation of equation (7.10) as

an assertion that the renewal process encounters plenty of white points.

We divide the proof of equation (7.41) into three cases. Let T be the family of triangles from

Lemma 7.4.

Case 1: ( ÿ , ý) ∈ ÿ . This is the easiest case, as one can immediately get a gain from the white point

( ÿ , ý). From equation (7.35), we have

ý( ÿ , ý) = exp(−ÿ3)Eý(( ÿ , ý) + Hold).

For any ( ÿ ′, ý ′) ∈ (N + 1) × Z, we have from equation (7.38) (applied with m replaced by ÿ − 1) that

ý(( ÿ , ý) + ( ÿ ′, ý ′)) ≤ max(�ÿ/2� − ÿ − ÿ ′, 1)−ýýÿ−1 = max(ÿ − ÿ ′, 1)−ýýÿ−1
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since ÿ + ÿ ′ ≥ ÿ + 1 = �ÿ/2� − (ÿ − 1). Replacing ( ÿ ′, ý ′) by Hold (so that ÿ ′ has the distribution of

Geom(4)) and taking expectations, we conclude that

ý( ÿ , ý) ≤ exp(−ÿ3)ýÿ−1Emax(ÿ − Geom(4), 1)−ý.

We can bound

max(ÿ − ÿ, 1)−1 ≤ ÿ−1 exp

(
ÿ

(
ÿ logÿ

ÿ

))
(7.42)

for any ÿ ∈ N + 1; indeed this bound is trivial for ÿ ≥ ÿ, and for ÿ < ÿ one can use the concave nature

of ý ↦→ log(1 − ý) for 0 < ý < 1 to conclude that

log
(
1 − ÿ

ÿ

)
ÿ/ÿ ≥

log
(
1 − ÿ−1

ÿ

)
(ÿ − 1)/ÿ

which rearranges to give the stated bound. Replacing r by Geom(4) and raising to the ýth power, we

obtain

ý( ÿ , ý) ≤ exp(−ÿ3)ÿ−ýýÿ−1E exp

(
ÿ

(
ý logÿ

ÿ
Geom(4)

))
.

For m large enough depending on ý, ÿ, we then have

ý( ÿ , ý) ≤ exp(−ÿ3/2)ÿ−ýýÿ−1 (7.43)

which gives equation (7.41) in this case (with some room to spare).

Case 2: ( ÿ , ý) ∈ Δ for some triangle Δ ∈ T, and ý ≥ ýΔ − ÿ

log2 ÿ
. This case is slightly harder than

the preceding one, as one has to walk randomly through the triangle Δ before one has a good chance to

encounter a white point, but because this portion of the walk is relatively short, the degradation of the

weight ÿ−ý during this portion will be negligible.

We turn to the details. Set ý := ýΔ − ý; thus 0 ≤ ý ≤ ÿ

log2 ÿ
. Let v1, v2, . . . be iid copies of Hold,

write vý = (jý , lý ) for each k with the usual summation notations in equation (1.6), and define the first

passage time k ∈ N + 1 to be the least positive integer such that

l[1,k] > ý. (7.44)

This is a finite random variable since the lý are all positive integers. Heuristically, k represents the

time in which the sequence first exits the triangle Δ , assuming that this exit occurs on the top edge

of the triangle. It is in principle possible for the sequence to instead exit Δ through the hypotenuse of

the triangle, in which case k will be somewhat larger than the first exit time; however, as we shall see

below, the Chernoff bound in Lemma 7.7 can be used to show that the former scenario will occur with

probability � 1, which will be sufficient for the purposes of establishing equation (7.41) in this case.

By iterating equation (7.35) appropriately (or using equation (7.34)), we have the identity

ý( ÿ , ý) = E
[
exp

(
−ÿ3

k−1∑
ÿ=0

1ÿ (( ÿ , ý) + v[1,ÿ ])
)
ý(( ÿ , ý) + v[1,k])

]
(7.45)

and hence by equation (7.38)

ý( ÿ , ý) ≤ ýÿ−1E

[
exp

(
−ÿ

3

2
1ÿ (( ÿ , ý) + v[1,k])

)
max(ÿ − j[1,k] , 1)−ý

]
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which by equation (7.42) gives

ý( ÿ , ý) ≤ ÿ−ýýÿ−1E exp

(
−ÿ

3

2
1ÿ (( ÿ , ý) + v[1,k])

)
exp

(
ÿ

(
ý logÿ

ÿ
j[1,k]

))
.

To prove equation (7.41) in this case, it thus suffices to show that

E exp

(
−ÿ

3

2
1ÿ (( ÿ , ý) + v[1,k])

)
exp

(
ÿ

(
ý logÿ

ÿ
j[1,k]

))
≤ 1. (7.46)

Since exp(−ÿ3/2) ≤ 1 − ÿ3/4, we can upper bound the left-hand side by

E exp

(
ÿ

(
ý logÿ

ÿ
j[1,k]

))
− ÿ3

4
P(( ÿ , ý) + v[1,k] ∈ ÿ). (7.47)

We begin by controlling the first term on the right-hand side of equation (7.47). By definition, the

first passage location ( ÿ , ý) + v[1,k] takes values in the region {( ÿ ′, ý ′) ∈ Z2 : ÿ ′ > ÿ, ý ′ > ýΔ }. From

Lemma 7.7, we have

P(( ÿ , ý) + v[1,k] = ( ÿ ′, ý ′)) � ÿ−ý (ý
′−ýΔ )

(1 + ý)1/2ÿ1+ý
(
ý

(
ÿ ′ − ÿ − ý

4

))
. (7.48)

Summing in ý ′, we conclude that

P(j[1,k] = ÿ ′ − ÿ) � (1 + ý)−1/2ÿ1+ý
(
ý

(
ÿ ′ − ÿ − ý

4

))
for any ÿ ′; informally, j[1,k] is behaving like a Gaussian random variable centred at ý/4 with standard

deviation � (1 + ý)1/2. In particular, because of the hypothesis ý ≤ ÿ

log2 ÿ
, we have

P(j[1,k] = ÿ) � exp(−|ÿ |)

when ÿ > ÿ

log2 ÿ
(say). With our hypotheses ý ≤ ÿ

log2 ÿ
and ÿ ≥ ÿý,ÿ , the quantity

ý logÿ

ÿ
is much

smaller than 1, and by using the above bound to control the contribution when j[1,k] >
ÿ

log2 ÿ
, we have

E exp

(
ÿ

(
ý logÿ

ÿ
j[1,k]

))
≤ E exp

(
ÿ

(
ý logÿ

ÿ

ÿ

log2 ÿ

))
+ÿ

(
exp

(
−ý ÿ

log2 ÿ

))

= 1 +ÿ
(

ý

logÿ

)
. (7.49)

Now we turn attention to the second term on the right-hand side of equation (7.47). Using equation

(7.48) to handle all points ( ÿ ′, ý ′) outside the region ý ′ = ýΔ +ÿ (1) and ÿ ′ = ÿ+ ý
4
+ÿ ((1+ý)1/2), we have

P

(
( ÿ , ý) + v[1,k] =

(
ÿ + ý

4
+ÿ ((1 + ý)1/2), ýΔ +ÿ (1)

))
� 1 (7.50)

for a suitable choice of implied constants in the O-notation that is independent of ÿ (cf. equation (7.31)).

On the other hand, since ( ÿ , ý) ∈ Δ and ý = ýΔ − ý, we have from equation (7.11) that

0 ≤ ( ÿ − ÿΔ ) log 9 ≤ ýΔ − ý log 2

and thus (since 0 < 1
4

log 9 < log 2) one has

−ÿ (1) ≤ ( ÿ ′ − ÿΔ ) log 9 ≤ ýΔ +ÿ (1)
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whenever ÿ ′ = ÿ + ý
4
+ ÿ ((1 + ý)1/2), with the implied constants independent of ÿ. We conclude that

with probability � 1, the first passage location ( ÿ , ý) + v[1,k] lies outside of Δ , but at a distance ÿ (1)
from Δ , hence is white by Lemma 7.4. We conclude that

P(( ÿ , ý) + v[1,k] ∈ ÿ) � 1 (7.51)

and equation (7.41) (and hence equation (7.46)) now follows from equations (7.47), (7.49) and (7.51)

since ÿ ≥ ÿý,ÿ .

Case 3: ( ÿ , ý) ∈ Δ for some triangle Δ ∈ T, and ý < ýΔ − ÿ

log2 ÿ
. This is the most difficult case,

as one has to walk so far before exiting Δ that one needs to encounter multiple white points, not just a

single white point, in order to counteract the degradation of the weight ÿ−ý. Fortunately, the number of

white points one needs to encounter is ÿý,ÿ (1), and we will be able to locate such a number of white

points on average for m large enough.

We will need a large constant P (much larger than A or 1/ÿ, but much smaller than m) depending

on ý, ÿ to be chosen later; the implied constants in the asymptotic notation below will not depend on P

unless otherwise specified. As before, we set ý := ýΔ − ý, so now ý > ÿ

log2 ÿ
. From equation (7.11), we

have

( ÿ − ÿΔ ) log 9 + ý log 2 ≤ ýΔ

, while from Lemma 7.4, one has ÿΔ + ýΔ
log 9

≤ � ÿ
2
� ≤ ÿ + ÿ, hence

ý ≤ log 9

log 2
ÿ. (7.52)

We again let v1, v2, . . . be iid copies of Hold, write vý = (jý , lý ) for each k, and define the first passage

time k ∈ N + 1 to be the least positive integer such that equation (7.44) holds. From equation (7.45), we

have

ý( ÿ , ý) ≤ Eý(( ÿ , ý) + v[1,k]).

Applying equation (7.35), we then have

ý( ÿ , ý) ≤ E exp
���
−ÿ3

ÿ−1∑
ý=0

1ÿ (( ÿ , ý) + v[1,k+ý])���
ý(( ÿ , ý) + v[1,k+ÿ ]). (7.53)

Applying equation (7.38) to ý(( ÿ , ý) + v[1,k+ÿ ]) = ý( ÿ + j[1,k+ÿ ] , ý + l[1,k+ÿ ]), we have

max(�ÿ/2� − ÿ − j[1,k+ÿ ] , 1)ýý(( ÿ , ý) + v[1,k+ÿ ]) ≤ ýÿ−1

(since ÿ + j[1,k+ÿ ] ≥ ÿ + 1 ≥ �ÿ/2� − (ÿ − 1)). We can rearrange this inequality as

ý(( ÿ , ý) + v[1,k+ÿ ]) ≤ ÿ−ýýÿ−1 max

(
1 −

j[1,k+ÿ ]
ÿ

,
1

ÿ

)−ý
;

inserting this back into equation (7.53), we conclude that

ý( ÿ , ý) ≤ ÿ−ýýÿ−1E exp
���
−ÿ3

ÿ−1∑
ý=0

1ÿ (( ÿ , ý) + v[1,k+ý])���
max

(
1 −

j[1,k+ÿ ]
ÿ

,
1

ÿ

)−ý
.
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Thus, to establish equation (7.41) in this case, it suffices to show that

E exp
���
−ÿ3

ÿ−1∑
ý=0

1ÿ (( ÿ , ý) + v[1,k+ý])���
max

(
1 −

j[1,k+ÿ ]
ÿ

,
1

ÿ

)−ý
≤ 1. (7.54)

Let us first consider the event that j[1,k+ÿ ] ≥ 0.9ÿ. From Lemma 7.7 and the bound in equation (7.52),

we have

P(j[1,k] ≥ 0.8ÿ) � exp(−ýÿ)

(noting that 0.8 > 1
4

log 9

log 2
) while from Lemma 2.2 (recalling that the jý are iid copies of Geom(4)), we

have

P(j[k+1,k+ÿ ] ≥ 0.1ÿ) �ÿ exp(−ýÿ)

and thus by the triangle inequality

P(j[1,k+ÿ ] ≥ 0.9ÿ) �ÿ exp(−ýÿ).

Thus the contribution of this case to equation (7.54) is ÿÿ,ý(ÿý exp(−ýÿ)) = ÿÿ,ý(exp(−ýÿ/2)). If

instead we have j[1,k+ÿ ] < 0.9ÿ, then

max

(
1 −

j[1,k+ÿ ]
ÿ

,
1

ÿ

)−ý
≤ 10ý.

Since m is large compared to ý, ÿ, to show equation (7.54) it thus suffices to show that

E exp
���
−ÿ3

ÿ−1∑
ý=0

1ÿ (( ÿ , ý) + v[1,k+ý])���
≤ 10−ý−1. (7.55)

Since the left-hand side of equation (7.55) is at most

P
���
ÿ−1∑
ý=0

1ÿ (( ÿ , ý) + v[1,k+ý]) ≤
10ý

ÿ3

���
+ exp(−10ý),

it will suffice to establish the bound

P
���
ÿ−1∑
ý=0

1ÿ (( ÿ , ý) + v[1,k+ý]) ≤
10ý

ÿ3

���
≤ 10−ý−2 (7.56)

(say).

Roughly speaking, the estimate in equation (7.56) asserts that once one exits the large triangle Δ ,

then one should almost always encounter at least 10ý/ÿ3 white points by a certain time ÿ = ÿý,ÿ (1).
To prove equation (7.56), we introduce another random statistic that measures the number of trian-

gles that one encounters on an infinite two-dimensional renewal process ( ÿ ′, ý ′), ( ÿ ′, ý ′) + v1, ( ÿ ′, ý ′) +
v[1,2] , . . . , where ( ÿ ′, ý ′) ∈ (N + 1) × Z and v1, v2, . . . are iid copies of Hold. (We will eventually set

( ÿ ′, ý ′) := ( ÿ , ý) + v[1,k] , so that the above renewal process is identical in distribution to ( ÿ , ý) + v[1,k] ,
( ÿ , ý) + v[1,k+1] , ( ÿ , ý) + v[1,k+2] , . . . .)

Given an initial point ( ÿ ′, ý ′) ∈ (N + 1) × Z, we recursively introduce the stopping times t1 =

t1( ÿ ′, ý ′), . . . , tr = tr( ÿ′,ý′) ( ÿ , ý) by defining t1 to be the first natural number (if it exists) for which
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( ÿ ′, ý ′) + v[1,t1 ] lies in a triangle ÿ1 ∈ T, then for each ÿ > 1, defining tÿ to be the first natural number (if

it exists) with ý ′ + l[1,tÿ ] > ýÿÿ−1
and ( ÿ ′, ý ′) + v[1,tÿ ] lies in a triangle ÿÿ ∈ T. We set r = r( ÿ ′, ý ′) to be

the number of stopping times that can be constructed in this fashion (thus, there are no natural numbers

k with ý + l[1,ý ] > ýÿr
and ( ÿ ′, ý ′) + v[1,ý ] black). Note that r is finite since the process ( ÿ ′, ý ′) + v[1,ý ]

eventually exits the strip [ÿ/2] × Z when k is large enough, at which point it no longer encounters any

black triangles.

The key estimate relating r with the expression in equation (7.56) is then

Lemma 7.9 (Many triangles usually implies many white points). Let v1, v2, . . . be iid copies of Hold.

Then for any ( ÿ ′, ý ′) ∈ (N + 1) × Z and any positive integer R, we have

E exp
���
−

tmin(r,ý)∑
ý=1

1ÿ (( ÿ ′, ý ′) + v[1, ý]) + ÿmin(r, ý)���
≤ exp(ÿ), (7.57)

where 0 < ÿ < 1/100 is the sufficiently small absolute constant that has been in use throughout this

section.

Informally the estimate in equation (7.57) asserts that when r is large (so that the renewal process

( ÿ ′, ý ′), ( ÿ ′, ý ′) + v1, ( ÿ ′, ý ′) + v[1,2] , . . . passes through many different triangles), then the quantity∑tmin(r,ý)
ý=1

1ÿ (( ÿ ′, ý ′) + v[1, ý] is usually also large, implying that the same renewal process also visits

many white points. This is basically due to the separation between triangles that is given by Lemma 7.4.

Proof. Denote the quantity on the left-hand side of equation (7.57) by ý (( ÿ ′, ý ′), ý). We induct on R.

The case ý = 1 is trivial, so suppose ý ≥ 2 and that we have already established that

ý (( ÿ ′′, ý ′′), ý − 1) ≤ exp(ÿ) (7.58)

for all ( ÿ ′′, ý ′′) ∈ (N + 1) × Z. If r = 0, then we can bound

exp
���
−

tmin(r,ý)∑
ý=1

1ÿ (( ÿ ′, ý ′) + v[1, ý]) + ÿmin(r, ý)���
≤ 1.

Suppose that r ≠ 0, so that the first stopping time t1 and triangle ÿ1 exists. Let k1 be the first natural

number for which ý ′+ l[1,k1 ] > ýΔ1
; then k1 is well-defined (since we have an infinite number of lý , all of

which are at least 2) and k1 > t1. The conditional expectation of exp(−∑tmin(r,ý)
ý=1

1ÿ (( ÿ ′, ý ′) + v[1, ý]) +
ÿmin(r, ý)) relative to the random variables v1, . . . , vk1

is equal to

exp
���
−

k1∑
ý=1

1ÿ (( ÿ ′, ý ′) + v[1, ý]) + ÿ���
ý (1ÿ (( ÿ ′, ý ′) + v[1,k1 ] , ý − 1)

which we can upper bound using the inductive hypothesis in equation (7.58) as

exp
(
−1ÿ (( ÿ ′, ý ′) + v[1,k1 ]) + 2ÿ

)
.

We thus obtain the inequality

ý (( ÿ ′, ý ′), ý) ≤ P(r = 0) + exp(2ÿ)E1r≠0 exp(−1ÿ (( ÿ ′, ý ′) + v[1,k1 ]))

so to close the induction it suffices to show that

E1r≠0 exp(−1ÿ (( ÿ ′, ý ′) + v[1,k1 ])) ≤ exp(−ÿ)P(r ≠ 0).
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Since the left-hand side is equal to

P(r ≠ 0) − (1 − 1/ÿ)P((r ≠ 0) ∧ (( ÿ ′, ý ′) + v[1,k1 ] ∈ ÿ))

and ÿ > 0 is a sufficiently small absolute constant, it will thus suffice to establish the bound

P((r ≠ 0) ∧ (( ÿ ′, ý ′) + v[1,k1 ] ∈ ÿ)) � P(r ≠ 0).

For each ý ∈ N + 1, triangle Δ1 ∈ T, and ( ÿ ′′, ý ′′) ∈ Δ1, let ýý,Δ1 , ( ÿ′′,ý′′) denote the event that

( ÿ ′, ý ′) + v[1, ý] = ( ÿ ′′, ý ′′), and ( ÿ ′, ý ′) + v[1, ý′ ] ∈ ÿ for all 1 ≤ ý′ < ý. Observe that the event r ≠ 0 is

the disjoint union of the events ýý,Δ1 , ( ÿ′′,ý′′) . It therefore suffices to show that

P
(
ýý,Δ1 , ( ÿ′′,ý′′) ∧ (( ÿ ′, ý ′) + v[1,k1 ] ∈ ÿ)

)
� P(ýý,Δ1 , ( ÿ′′,ý′′) ). (7.59)

We may of course assume that the event ýý,Δ1 , ( ÿ′′,ý′′) occurs with non-zero probability. Conditioning to

this event, we see that ( ÿ ′, ý ′) + v[1,k1 ] has the same distribution as (the unconditioned random variable)

( ÿ ′′, ý ′′) + v[1,k′′ ] , where the first passage time k′′ is the first natural number for which ý ′′ + l[1,k′′ ] > ýΔ1
.

By repeating the proof of equation (7.51), one has

P(( ÿ ′′, ý ′′) + v[1,k′′ ] ∈ ÿ |ýý,Δ1 , ( ÿ′′,ý′′) ) � 1

giving equation (7.59). This establishes the lemma. �

To use this bound we need to show that the renewal process ( ÿ , ý) + v[1,k] , ( ÿ , ý) + v[1,k+1] , ( ÿ , ý) +
v[1,k+2] , . . . passes either through many white points or through many triangles. This will be established

via a probabilistic upper bound on the size ýΔ of the triangles encountered. The key lemma in this

regard is

Lemma 7.10 (Large triangles are rarely encountered shortly after a lengthy crossing). Let ( ÿ , ý) be an

element of a black triangle Δ with ý := ýΔ − ý obeying ý > ÿ

log2 ÿ
(where we recall ÿ = �ÿ/2� − ÿ), and

let k be the first passage time associated to s defined in Lemma 7.7. Let ý ∈ N and 1 ≤ ý′ ≤ ÿ0.4. Let

ýý,ý′ denote the event that ( ÿ , ý) + v[1,k+ý] lies in a triangle Δ ′ ∈ T of size ýΔ′ ≥ ý′. Then

P(ýý,ý′) � ý2 1 + ý
ý′

+ exp(−ýý2 (1 + ý)).

As in the rest of this section, we stress that the implied constants in our asymptotic notation are

uniform in n and ÿ.

Proof. We can assume that

ý′ ≥ ÿý2(1 + ý) (7.60)

for a large constant C, since the claim is trivial otherwise.

From Lemma 7.7, we have equation (7.48) as before, so on summing in ÿ ′, we have

P(ý + l[1,ý ] = ý
′) � exp(−ý(ý ′ − ýΔ ))

and thus

P(ý + l[1,ý ] ≥ ýΔ + ý2(1 + ý)) � exp(−ýý2(1 + ý)).

Similarly, from Lemma 2.2, one has

P(l[k+1,k+ý] ≥ ý2(1 + ý)) � exp(−ýý2 (1 + ý))
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and thus

P(ý + l[1,k+ý] ≥ ýΔ + 2ý2 (1 + ý)) � exp(−ýý2(1 + ý)).

In a similar spirit, from equation (7.48) and summing in ý ′ one has

P( ÿ + j[1,k] = ÿ ′) � ý−1/2ÿ1+ý
(
ý

(
ÿ ′ − ÿ − ý

4

))
so in particular

P

(���j[1,k] − ý

4

��� ≥ ý0.6
)
� exp(−ýý0.2) � ý2 1 + ý

ý′

from the upper bound on ý′. From Lemma 2.2, we also have

P(|j[k+1,k+ý] | ≥ ý0.6) � exp(−ýý0.6) � ý2 1 + ý
ý′

and hence

P

(���j[1,k+ý] − ý

4

��� ≥ 2ý0.6
)
� ý2 1 + ý

ý′
.

Thus, if ý ′ denotes the event that ý + l[1,k+ý] ≥ ýΔ + 2ý2(1 + ý) or |j[1,k+ý] − ý
4
| ≥ 2ý0.6, then

P(ý ′) � ý2 1 + ý
ý′

+ exp(−ýý2 (1 + ý)). (7.61)

We will devote the rest of the proof to establishing the complementary estimate

P(ýý,ý′ ∧ ý̄ ′) � ý2 1 + ý
ý′

(7.62)

which together with equation (7.61) implies the lemma.

Suppose now that we are outside the event ý ′, and that ( ÿ , ý) + v[1,k+ý] lies in a triangle Δ ′; thus

ý + l[1,k+ý] = ýΔ +ÿ (ý2 (1 + ý)) (7.63)

and

j[1,k+ý] =
ý

4
+ÿ (ý0.6) = ý

4
+ÿ (ÿ0.6) (7.64)

thanks to equation (7.52). From equation (7.11), we then have

0 ≤ ÿ + j[1,k+ý] − ÿΔ′ ≤ 1

log 9
ýΔ′ − log 2

log 9
(ýΔ′ − ý − l[1,k+ý]). (7.65)

Suppose that the lower tip of Δ ′ lies well below the upper edge of Δ in the sense that

ýΔ′ − ýΔ′

log 2
≤ ýΔ − 10.

Then by equation (7.63), we can find an integer ÿ ′ = ÿ + j[1,k+ý] +ÿ (ý2(1 + ý)) such that ÿ ′ ≥ ÿΔ′ and

0 ≤ ÿ ′ − ÿΔ′ ≤ 1

log 9
ýΔ′ − log 2

log 9
(ýΔ′ − ýΔ ).
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In other words, ( ÿ ′, ýΔ ) ∈ Δ ′. But by equation (7.64), we have

ÿ ′ = ÿ + ý

4
+ÿ (ÿ0.6) +ÿ (ý2(1 + ý)) = ÿ + ý

4
+ÿ (ÿ0.6).

From equation (7.11), we have

0 ≤ ( ÿ − ÿΔ ) log 9 ≤ ýΔ − ý log 2

and hence (since ý ≥ ÿ

log2 ÿ
and 1

4
log 9 < log 2)

0 ≤ ( ÿ ′ − ÿΔ ) log 9 ≤ ýΔ .

Thus ( ÿ ′, ýΔ ) ∈ Δ . Thus Δ and Δ ′ intersect, which by Lemma 7.4 forces Δ = Δ ′, which is absurd since

( ÿ , ý) + v[1,k+ý] lies in Δ ′ but not Δ (the l coordinate is larger than ýΔ ). We conclude that

ýΔ′ − ýΔ′

log 2
> ýΔ − 10.

On the other hand, from equation (7.11), we have

ýΔ′ − ýΔ′

log 2
≤ ý + l[1,k+ý]

hence by equation (7.63), we have

ýΔ′ − ýΔ′

log 2
= ýΔ +ÿ (ý2(1 + ý)). (7.66)

From equations (7.65), (7.66) and (7.63), we then have

0 ≤ ÿ + j[1,k+ý] − ÿΔ′ ≤ 1

log 9
ýΔ′ − log 2

log 9
(ýΔ′ − ý − l[1,k+ý])

= − log 2

log 9
(ýΔ − ý − l[1,k+ý] +ÿ (ý2(1 + ý)))

= ÿ (ý2 (1 + ý))

so that

ÿ + j[1,k+ý] = ÿΔ′ +ÿ (ý2(1 + ý)).

Thus, outside the event ý ′, the event that ( ÿ , ý) + v[1,k+ý] lies in a triangle Δ ′ can only occur if

( ÿ , ý) + v[1,k+ý] lies within a distance ÿ (ý2 (1 + ý)) of the point ( ÿΔ′ , ýΔ ).
Now suppose we have two distinct triangles Δ ′,Δ ′′ in T obeying equation (7.66), with ýΔ′ , ýΔ′′ ≥ ý′

with ÿΔ′ ≤ ÿΔ′′ . Set ý∗ := ýΔ + �ý′/2�, and observe from equation (7.11) that ( ÿ∗, ý∗) ∈ Δ ′ whenever ÿ∗
lies in the interval

ÿΔ′ ≤ ÿ∗ ≤ ÿΔ′ + 1

log 9
ýΔ′ − log 2

log 9
(ýΔ′ − ý∗)

and similarly ( ÿ∗, ý∗) ∈ Δ ′′ whenever

ÿΔ′′ ≤ ÿ∗ ≤ ÿΔ′′ + 1

log 9
ýΔ′′ − log 2

log 9
(ýΔ′′ − ý∗).
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By Lemma 7.4, these two intervals cannot have any integer point in common; thus

ÿΔ′ + 1

log 9
ýΔ′ − log 2

log 9
(ýΔ′ − ý∗) ≤ ÿΔ′′ .

Applying equation (7.66) and the definition of ý∗, we conclude that

ÿΔ′ + 1

2

log 2

log 9
ý′ +ÿ (ý2(1 + ý)) ≤ ÿΔ′′

and hence by equation (7.60)

ÿΔ′′ − ÿΔ′ � ý′.

We conclude that for the triangles Δ ′ in T obeying equation (7.66) with ýΔ′ ≥ ý′, the points ( ÿΔ′ , ýΔ ) are

� ý′-separated. Let Σ denote the collection of such points; thus Σ is a � ý′-separated set of points, and

outside of the event ý ′, ( ÿ , ý) + v[1,k+ý] can only occur in a triangle Δ ′ with ýΔ′ ≥ ý′ if

dist(( ÿ , ý) + v[1,k+ý] , Σ) � ý2(1 + ý).

We conclude that

P(ýý,ý′ ∧ ý̄ ′) � P
(
dist(( ÿ , ý) + v[1,k+ý] , Σ) � ý2(1 + ý)

)
.

From equation (7.48), we see that

P

(
( ÿ , ý) + v[1,k+ý] = ( ÿΔ′ , ýΔ ) +ÿ (ý2(1 + ý))

)

� ý2(1 + ý)
ý1/2 ÿ1+ý

(
ý

(
ÿΔ′ − ÿ − ý

4

))

� ý2(1 + ý)
ý′

∑
ÿ′= ÿΔ′+ÿ (ý′)

1

ý1/2ÿ1+ý
(
ý

(
ÿ ′ − ÿ − ý

4

))
.

Summing and using the � ý′-separated nature of Σ, we conclude that

P

(
dist(( ÿ , ý) + v[1,k+ý] , Σ) � ý2 (1 + ý)

)
� ý2(1 + ý)

ý′

∑
ÿ′∈Z

1

ý1/2ÿ1+ý
(
ý

(
ÿ ′ − ÿ − ý

4

))

� ý2(1 + ý)
ý′

and the claim in equation (7.62) follows. �

From Lemma 7.10, we have

P(ýý,4ý (1+ý)3) � ý2 1

4ý(1 + ý)2
+ exp(−ýý2 (1 + ý))

whenever 0 ≤ ý ≤ ÿ0.1. Thus by the union bound, if ý∗ denotes the union of the ýý,4ý (1+ý)3 for

0 ≤ ý ≤ ÿ0.1, then

P(ý∗) � ý24−ý.
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Next, we apply Lemma 7.9 with ( ÿ ′, ý ′) := ( ÿ , ý) + v[1,k] to conclude that

E exp
���
−

tmin(r,ý)∑
ý=1

1ÿ (( ÿ , ý) + v[1,k+ý] + ÿmin(r, ý)���
≤ exp(ÿ),

where now r = r(( ÿ , ý) + v[1,k]) and tÿ = tÿ (( ÿ , ý) + v[1,k]). If we then let ý∗ to be the event that

exp
���
−

tmin(r,ý)∑
ý=1

1ÿ (( ÿ , ý) + v[1,k+ý] + ÿmin(r, ý)���
> 10ý+2 exp(ÿ)

then by Markov’s inequality we have

P(ý∗) ≤ 10−ý−2.

Outside of the event ý∗, we have

exp
���
−

tmin(r,ý)∑
ý=1

1ÿ (( ÿ , ý) + v[1,k+ý] + ÿmin(r, ý)���
� 10ý

which implies that

tmin(r,ý)∑
ý=1

1ÿ (( ÿ , ý) + v[1,k+ý]) � ÿmin(r, ý) −ÿ (ý).

In particular, if we set ý := �ý2/ÿ4�, we have

tý∑
ý=1

1ÿ (( ÿ , ý) + v[1,k+ý]) �
ý2

ÿ3
(7.67)

whenever we lie outside of ý∗ and r ≥ ý.

Now suppose we lie outside of both ý∗ and ý∗, so in particular equation (7.67) holds. To prove

equation (7.56), it will now suffice to show the deterministic claim

ÿ−1∑
ý=0

1ÿ (( ÿ , ý) + v[1,k+ý]) >
10ý

ÿ3
. (7.68)

We argue by contradiction. Suppose that equation (7.68) fails; thus

ÿ−1∑
ý=0

1ÿ (( ÿ , ý) + v[1,k+ý]) ≤
10ý

ÿ3
.

Then the point ( ÿ , ý) + v[1,k+ý] is white for at most 10ý/ÿ3 values of 0 ≤ ý ≤ ÿ − 1, so in particular for

P large enough there is 0 ≤ ý ≤ 10ý/ÿ3 + 1 = ÿý,ÿ (1) such that ( ÿ , ý) + v[1,k+ý] is black. By Lemma

7.4, this point lies in a triangle Δ ′ ∈ T. As we are outside ý∗, the event ýý,4ý (1+ý3) fails, so we have

ýΔ′ < 4ý(1 + ý)3.
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Thus by equation (7.11), for ý′ in the range

ý + 10 × 4ý(1 + ý)3 < ý′ ≤ ÿ − 1,

we must have ý + l[1,k+ý′ ] > ýΔ′ , hence we exit Δ ′ (and increment the random variable r). In particular, if

ý + 10 × 4ý(1 + ý)3 + 10ý/ÿ3 + 1 ≤ ÿ − 1,

then we can find

ý′ ≤ ý + 10 × 4ý(1 + ý)3 + 10ý/ÿ3 + 1 = ÿ ý,ý,ÿ (1)

such that ý+ l[1,k+ý′ ] > ýΔ′ and ( ÿ , ý) +v[1,k+ý] is black (and therefore lies in a new triangle Δ ′′). Iterating

this R times, we conclude (if P is sufficiently large depending on ý, ÿ) that r ≥ ý and that tý ≤ ÿ.

Choosing P large enough so that all the previous arguments are justified, the claim in equation (7.68)

now follows from equation (7.67), giving the required contradiction. This (finally!) concludes the proof

of equation (7.41), and hence Proposition 7.8. As discussed previously, this implies Propositions 7.3,

7.1, 1.17 and Theorem 1.3.
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