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Abstract

We establish convergence in norm and pointwise almost everywhere for

the non-conventional (in the sense of Furstenberg) bilinear polynomial er-

godic averages

AN (f, g)(x) :=
1

N

N∑
n=1

f(Tnx)g(TP (n)x)

as N →∞, where T : X → X is a measure-preserving transformation of a

σ-finite measure space (X,µ), P (n) ∈ Z[n] is a polynomial of degree d ≥ 2,

and f ∈ Lp1(X), g ∈ Lp2(X) for some p1, p2 > 1 with 1
p1

+ 1
p2
≤ 1. We

also establish an r-variational inequality for these averages (at lacunary

scales) in the optimal range r > 2. We are also able to “break duality” by

handling some ranges of exponents p1, p2 with 1
p1

+ 1
p2
> 1, at the cost of

increasing r slightly.

This gives an affirmative answer to Problem 11 from Frantzikinakis’ open

problems survey for the Furstenberg–Weiss averages (with P (n) = n2),

which is a bilinear variant of Question 9 considered by Bergelson in his

survey on Ergodic Ramsey Theory from 1996. This also gives a contri-

bution to the Furstenberg–Bergelson–Leibman conjecture. Our methods

combine techniques from harmonic analysis with the recent inverse theo-

rems of Peluse and Prendiville in additive combinatorics. At large scales,

the harmonic analysis of the adelic integers AZ also plays a role.
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1. Introduction

1.1. Non-conventional polynomial ergodic averages. Define a measure-pre-

serving system to be a triple X = (X,µ, T ), where X = (X,µ) is a σ-finite

measure space, and T : X → X is an invertible bimeasurable map that is

measure-preserving in the sense that µ(T (E)) = µ(E) for all measurable E. In

the literature it is common to also require X = (X,µ) to have finite measure

(and often one normalizes (X,µ) to be a probability space), but our main

theorem will not require this hypothesis.
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Let Z[n] denote the space of all formal polynomials P (n) in one indetermi-

nate n with integer coefficients. Such a polynomial P (n) ∈ Z[n] can of course

be identified with a function P : Z→ Z, thus, for instance, n is identified with

the identity function n 7→ n and n2 is identified with the quadratic function

n 7→ n2. (Later on we will also identify P with maps P : R → R on other

commutative rings R, such as the reals R, the p-adic integers Zp, or the profi-

nite integers Ẑ.) Given any polynomials P1(n), . . . , Pk(n) ∈ Z[n], measurable

functions f1, . . . , fk ∈ L0(X) (see Section 2 for a definition of this space), and

a real number N ≥ 1, we can define the non-conventional polynomial ergodic

average A
P1(n),...,Pk(n)
N ;X (f1, . . . , fk) ∈ L0(X) by the formula

(1.1) A
P1(n),...,Pk(n)
N ;X (f1, . . . , fk)(x) := En∈[N ]f1(TP1(n)x) · · · fk(TPk(n)x),

where En∈[N ]f(n) := 1
bNc

∑bNc
n=1 f(n). (See Section 2 for a more general defini-

tion of this averaging notation.) The terminology “non-conventional” for such

multilinear averages was introduced in [35] and is now standard in the ergodic

theory literature (see, e.g., [36], [44]). We will usually abbreviate A
P1(n),...,Pk(n)
N ;X

as AP1,...,Pk
N or even AN when this does not cause confusion. As AN only

depends on the integer part bNc of N , one could have restricted N to the

positive integers Z+; however it will be convenient to generalize to real-valued

N in order to use certain scaling arguments.

Example 1.2 (Integer shift system). The integer shift system Z=(Z, µZ, TZ)

is the set of integers Z equipped with counting measure µZ and the shift

TZ(x) := x− 1. For our purposes, this system will be “universal” for all other

measure-preserving systems, in a sense formalized by the Calderón transfer-

ence principle; see Proposition 3.2(ii). This will be a particularly convenient

system to work in due to the extensive Fourier-analytic structure available on

the additive group of integers Z, which can be connected, in particular, (in the

“major arc” regime) to the corresponding Fourier-analytic structures on other

locally compact abelian groups, such as the adelic integers AZ; see Figure 7.

In this system one has

AP1,...,Pk
N (f1, . . . , fk)(x) = En∈[N ]f1(x− P1(n)) · · · fk(x− Pk(n)).

Our main results will concern the bilinear averages

A
n,P (n)
N (f, g)(x) = En∈[N ]f(Tnx)g(TP (n)x) =

1

bNc

bNc∑
n=1

f(Tnx)g(TP (n)x)

for a given polynomial P (n) ∈ Z[n], but as motivation we shall also discuss the

classical ergodic average

An
Nf(x) = En∈[N ]f(Tnx) =

1

bNc

bNc∑
n=1

f(Tnx)
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and the linear polynomial average

A
P (n)
N f(x) = En∈[N ]f(TP (n)x) =

1

bNc

bNc∑
n=1

f(TP (n)x).

A central problem in ergodic theory is to understand convergence in norm

and pointwise almost everywhere for the non-conventional polynomial ergodic

averages (1.1) as N →∞. This line of investigations has been initiated in the

early 1930s by von Neumann’s mean ergodic theorem [70] and Birkhoff’s point-

wise ergodic theorem [7] (see Theorem 1.7) and led to profound generalizations

such as Bourgain’s polynomial pointwise ergodic theorem [11], [12], [13] (see

Theorem 1.8) and Furstenberg’s ergodic proof [33] of Szemerédi’s theorem [79].

Furstenberg’s proof was also the starting point of the multiple/multilinear er-

godic theory (see Theorems 1.15 and 1.16) arising in ergodic Ramsey theory

that also motivates this paper. Pointwise convergence is the most natural as

well as the most difficult type of convergence to establish. It requires sophisti-

cated tools in analysis, ergodic theory and probability. Especially, the context

of pointwise convergence of (1.1) will require an understanding of quantitative

forms of pointwise convergence, which we briefly illustrate below.

Given some non-conventional average AN (f1, . . . , fk) of some functions

f1, . . . , fk, with each fi belonging to some Lebesgue space Lpi(X), one can

pose the following questions:

(i) (Norm convergence). Does AN (f1, . . . , fk) converge in Lp(X) norm as

N →∞ for some exponent p > 0?

(ii) (Almost everywhere convergence). Does AN (f1, . . . , fk) converge point-

wise almost everywhere (with respect to µ, of course) as N →∞?

(iii) (Maximal inequality). Can one bound the Lp(X) norm of the maximal

function supN∈Z+
|AN (f1, . . . , fk)|, (or equivalently, the Lp(X; `∞) norm

of the sequence of averages (AN (f1, . . . , fk))N∈Z+) for some p > 0 in

terms of the norms ‖fi‖Lpi (X)? More precisely, one is concerned with the

following bound:

(1.3) ‖ sup
N∈Z+

|AN (f1, . . . , fk)|‖Lp(X) .p1,...,pk,p ‖f1‖Lp1 (X) · · · ‖fk‖Lpk (X).

(See Section 2 for the asymptotic notation used in this paper.)

(iv) (Variational inequality). Can one bound the Lp(X) norm of the r-varia-

tional norm ‖(AN (f1, . . . , fk))N∈Z+‖V r , (or equivalently, the Lp(X;V r)

norm of the sequence of averages (AN (f1, . . . , fk))N∈Z+) for some p > 0

and some 1 ≤ r < ∞ in terms of the norms ‖fi‖Lpi (X)? More precisely,

one is concerned with the following bound:

(1.4)∥∥‖(AN (f1, . . . , fk))N∈Z+‖V r

∥∥
Lp(X)

.p1,...,pk,p,r ‖f1‖Lp1 (X) · · · ‖fk‖Lpk (X).
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The r-variational norm is defined by

‖(AN (f1, . . . , fk))N∈Z+‖V r

:= sup
N∈Z+

|AN (f1, . . . , fk)|+ ‖(AN (f1, . . . , fk))N∈Z+‖V r ,

where ‖(AN (f1, . . . , fk))N∈Z+‖V r is given by the following expression

sup
J∈Z+

sup
N0≤···≤NJ
Nj∈Z+

( J−1∑
j=0

|ANj+1(f1, . . . , fk)−ANj (f1, . . . , fk)|r
)1/r

;(1.5)

here the supremum is taken over all finite increasing sequences in Z+.

(See Section 2 for a more general definition of the variational norm V r

and its properties.)

These questions are all related to each other. For instance, if variational

inequality (1.4) holds, then one automatically has a maximal inequality (1.3).

Moreover, (1.4) immediately ensures that the quantity in (1.5) is finite almost

everywhere, which in turn implies almost everywhere convergence of the se-

quence (AN (f1, . . . , fk))N∈Z+ as N →∞. Norm convergence then also follows

(for p <∞) by (1.3) and the dominated convergence theorem. This variational

norm approach to ergodic theorems was advocated, in particular, by Bourgain

[12], and it is very useful in pointwise convergence problems with arithmetic

features.

We say that a tuple (p1, . . . , pk, p) of exponents is Hölder if 1
p = 1

p1
+· · ·+ 1

pk
and Banach if p1, . . . , pk, p ≥ 1. If a tuple (p1, . . . , pk, p) is both Hölder and

Banach, then from Hölder’s inequality and the triangle inequality in the Banach

space Lp(X) one has

(1.6) ‖AN (f1, . . . , fk)‖Lp(X) ≤ ‖f1‖Lp1 (X) · · · ‖fk‖Lpk (X)

regardless of the choice of polynomials P1(n), . . . , Pk(n). Thus it is natural to

restrict attention to the case of exponents that are both Hölder and Banach.

The Hölder hypothesis is particularly essential for ergodic theory applications

as it is needed in order to apply the Calderón transference principle; see Propo-

sition 3.2(ii). However, we will be able to “break duality” in our main result

by allowing certain non-Banach exponents p < 1 while still maintaining the

Hölder property; see Section 11. On the integer shift model Z, the estimates

become trivial (and of little use) in the super-Hölder regime 1
p <

1
p1

+ · · ·+ 1
pk

,

and false in the opposite sub-Hölder regime 1
p >

1
p1

+ · · ·+ 1
pk

; see Remark 3.11.

It is technically convenient to sparsify the set of scales N that one is

ranging over to define a maximal or variational function. For instance, one

could replace the positive integers Z+ by the dyadic integers

2N := {2k : k ∈ N}.
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More generally, we can work with sets D = {N1, N2, . . . } of positive reals

1 ≤ N1 < N2 < · · · that are λ-lacunary for some λ > 1, in the sense that

Nj+1/Nj > λ

for all j ∈ Z+; one defines λ-lacunarity for finite sequences {N1, . . . , Nk} of

positive reals 1 ≤ N1 < · · · < Nk in a similar fashion. Variational estimates on

such lacunary sets are sometimes referred to as “long variation estimates” in

the literature; they are somewhat weaker than full variation estimates but are

often still sufficient for applications such as demonstrating almost everywhere

convergence.

We will only concern ourselves in this paper with the existence of a limit

of an ergodic average, and not attempt to compute what the limiting average

actually is. The nature of this limiting average is now fairly well understood (at

least when f1, . . . , fk ∈ L∞(X) and X has finite measure) thanks to the theory

of characteristic factors and the equidistribution theory of nilmanifolds; see, for

instance, [3], [4], [30] for further discussion. In particular, for a description of

the limit in the case when the polynomials all have distinct degrees, which is of

course the case of primary interest here, we refer to [19]. We also remark that

the limit in this case is determined entirely by the projection of the functions

to the rational factor (the factor spanned by periodic functions), which is the

ergodic theory analogue of the “major arc” component of the functions. These

results are also related to recurrence and Roth and Szemerédi type theorems

(see, e.g., [33], [35], [34], [5], [79]), which also motivate this paper, but we will

not discuss these topics further here.

1.2. Linear averages. We now recall the standard ergodic theorems for

the classical ergodic averages An
N :

Theorem 1.7 (Classical ergodic averages). Let X=(X,µ, T ) be a measure-

preserving system, and let f ∈ Lp(X) for some 1 ≤ p ≤ ∞.

(i) (Mean ergodic theorem). If 1 < p < ∞, then An
Nf converges in Lp(X)

norm.

(ii) (Pointwise ergodic theorem). If 1 ≤ p < ∞, then An
Nf converges point-

wise almost everywhere.

(iii) (Maximal ergodic theorem). If 1 < p ≤ ∞, then one has

‖(An
Nf)N∈Z+‖Lp(X;`∞) .p ‖f‖Lp(X).

(iv) (Variational ergodic theorem)). If 1 < p <∞ and r > 2, then one has

‖(An
Nf)N∈Z+‖Lp(X;V r) .p,r ‖f‖Lp(X).

Proof. Parts (i)–(iii) are standard, particularly in the case when X has

finite measure, and are due to von Neumann [70], Birkhoff [7], and Hopf [42];

the maximal inequality (for σ-finite X) can also be established by transference
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to the integer shift case (Z, µZ, TZ) and then applying the Hardy–Littlewood

maximal inequality. (This also gives a weak-type endpoint for (iii).) The

variational estimate was established by Bourgain [12, Cor. 3.26] in the p = 2

case, and the general case was established in [49]; this estimate can then be

used to recover the mean and pointwise ergodic theorems in the σ-finite case

as mentioned previously. �

We have (slightly weaker) analogues of these results for other linear poly-

nomial averages:

Theorem 1.8 (Linear polynomial averages). Let X = (X,µ, T ) be a

measure-preserving system, let P (n) ∈ Z[n], and let f ∈ Lp(X) for some

1 ≤ p ≤ ∞.

(i) (Mean ergodic theorem). If 1 < p <∞, then A
P (n)
N f converges in Lp(X)

norm.

(ii) (Pointwise ergodic theorem). If 1 < p < ∞, then A
P (n)
N f converges

pointwise almost everywhere.

(iii) (Maximal ergodic theorem). If 1 < p ≤ ∞, then one has

‖(AP (n)
N f)N∈Z+‖Lp(X;`∞) .p,P ‖f‖Lp(X).(1.9)

(iv) (Variational ergodic theorem). If 1 < p <∞ and r > 2, then one has

(1.10) ‖(AP (n)
N f)N∈Z+‖Lp(X;V r) .p,r,P ‖f‖Lp(X).

Proof. Part (i) follows for p = 2 by a routine application of the spectral

theorem (or one can invoke Theorem 1.15 below), and the other values of p then

follow from a density argument. Parts (ii), (iii) were established by Bourgain

[12, Th. 1] (see also [11], [13]). Part (iv) was established in the p = 2 case by

the first author in [54, Prop. 1.5] by adapting the methods of Bourgain, and in

full generality by the second author and his collaborators in [66]; see also [68].

In [54, §8] it is also shown that (1.10) fails at the endpoint p = r = 2. For p = 1,

in contrast to Theorem 1.7(ii), pointwise convergence in Theorem 1.8(ii) fails

for any monomial P (n) = nd of degree d ≥ 2, as was shown in [17], [56]. �

Theorem 1.8 is proven via the circle method. The implementation of this

method can be summarized in the following two sentences:

(i) Plancherel’s theorem and Weyl sum estimates are used to control the

contribution of minor arcs.

(ii) Multifrequency harmonic analysis is used to control the contribution of

major arcs.

We now briefly sketch some more details of Bourgain’s proof for maximal

inequality (1.9). The key estimate to establish is (1.9) when p = 2 and (X,µ, T )

is the integer shift system, where N is restricted to a finite lacunary set I, and
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with f assumed to be in the Schwartz–Bruhat space S(Z) ⊂ `1(Z) to avoid

technicalities; see Section 4 for a definition of this space. In this setting we

have the convenient Fourier representation

FZA
P (n)
N f(ξ) = ϕN,Z(ξ)FZf(ξ)

for any ξ ∈ T, where using the averaging notation (2.2) the symbol ϕN,Z(ξ) is

given by

(1.11) ϕN,Z(ξ) := En∈[N ]e(P (n)ξ),

where e(θ) := e2πiθ and the Fourier transform FZf are defined in Section 4.

Standard Weyl sum estimates (see [48, Lemma 20.3, p. 462]) reveal that for

some small δ, ε > 0, one has

|ϕN,Z(ξ)| .P N−δ,(1.12)

unless ξ is in a major arc, which roughly speaking means that ξ is close to
a
q mod 1 for some a ∈ Z and some small positive integer 1 ≤ q ≤ N ε. One

can then use (1.12) and Plancherel’s theorem to dispose of the minor arc case

when ξ is not in a major arc, and then after a dyadic decomposition the main

task is to establish an estimate roughly of the shape

‖(AP (n)
N f)N∈I‖`2(Z;`∞) .r,P,λ 2−cl‖f‖`2(Z)

for all l ∈ N, λ > 1 and some constant c = cr,P > 0, where I ⊂ [1,+∞) is

an arbitrary finite λ-lacunary set and the Fourier transform of f is restricted

to the set of “l-major arc” frequencies ξ of the form ξ = a
q + O(2−10l) mod 1

(say) for some q ∼ 2l. (Informally, this is morally equivalent by the uncertainty

principle to f being a linear combination of functions that are approximately

constant on arithmetic progressions of spacing q for various q ∼ 2l and diameter

∼ 210l; see Remark 5.20.) In fact, at a given (large) scale N one can restrict

to even narrower major arcs, of width O(2dl/Nd) say. A finer analysis of the

symbol (1.11) reveals that for a major arc frequency ξ = a
q + θ mod 1,

ϕN,Z

Å
a

q
+ θ mod 1

ã
has an approximate factorization

(1.13) ϕẐ

Å
a

q
mod 1

ã
ϕN,R(θ),

where the “arithmetic symbol” ϕẐ : Q/Z→ C is defined by

(1.14) ϕẐ

Å
a

q
mod 1

ã
:= En∈Z/qZe

Å
aP (n)

q

ã
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and the “continuous symbol” ϕN,R : R→ C is defined by

ϕN,R(θ) :=
1

N

∫ N

0
e(θP (t)) dt.

The influence of the arithmetic symbol ϕẐ (which does not depend on N) can

be easily factored out in the p = 2 case by Plancherel’s theorem, and the

task then readily reduces to that of establishing a multifrequency maximal

inequality (see [13, Lemma 4.1]). This result in turn is ultimately derived

from a variational inequality for averages of vector-valued L2 functions (see

[13, Lemma 3.30]), in the spirit of Lépingle’s inequality.

1.3. Bilinear averages. Now we turn to multilinear averages. For the norm

convergence problem in the case of finite measure and Banach exponents the

situation is well understood, thanks to the following result of Host–Kra and

Leibman:

Theorem 1.15 (Multilinear mean ergodic theorem). Let (X,µ, T ) be a

measure-preserving system of finite measure, let P1(n), . . . , Pk(n) ∈ Z[n], and

let fi ∈ Lpi(X) for all i = 1, . . . , k and some exponents 1 ≤ pi ≤ ∞ with
1
p1

+ · · · + 1
pk
≤ 1. Then the averages AP1,...,Pk

N (f1, . . . , fk) converge in Lp(X)

norm for any 0 < p <∞ with 1
p1

+ · · ·+ 1
pk
< 1

p .

Proof. The case p1 = · · · = pk = ∞, p = 2 is established in [43], [57] (see

also [82] and [1] for quite different proofs and generalizations); one can then

extend to other 0 < p < ∞ by Hölder’s inequality, and the case of general

p1, . . . , pk then follows by a standard limiting argument using (1.6). �

There is a long history of prior partial results (e.g., [44], [83], [2], [5],

[31], [36]) towards Theorem 1.15, as well as generalizations to actions of other

nilpotent groups than Z (i.e., averages involving multiple measure-preserving

transformations T1, . . . , Tk that generate a nilpotent group); we refer the reader

to [3], [4], [30] for surveys. In several cases it is possible to “break duality” by

permitting 1
p1

+ · · ·+ 1
pk

to exceed 1; see Section 11 below.

For pointwise convergence and for two linear polynomials, one also has

the following results:

Theorem 1.16 (Two linear polynomials). Let (X,µ, T ) be a measure-

preserving system with finite measure, let P1(n), P2(n) ∈ Z[n] have degree 1 with

distinct leading coefficients, and let 1 < p1, p2 ≤ ∞ be such that 1
p1

+ 1
p2
< 3

2 .

Then for f ∈ Lp1(X), g ∈ Lp2(X), the averages AP1,P2

N (f, g) converge pointwise

almost everywhere.

Proof. For the case p1 = p2 = ∞, see Bourgain [14]; an alternate proof

was also given by Demeter [21]. To extend to the remaining cases of p1, p2
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one applies a bilinear maximal inequality of Lacey [55] and a standard limiting

argument. �

We now at last come to the main result of our paper, which concerns an

opposing case to Theorem 1.16 in which one has one linear polynomial and one

strictly nonlinear polynomial.

Theorem 1.17 (Main theorem). Let (X,µ, T ) be a measure-preserving

system, let P (n) ∈ Z[n] have degree d ≥ 2, and let f ∈ Lp1(X), g ∈ Lp2(X) for

some 1 < p1, p2 <∞ with 1
p1

+ 1
p2

= 1
p ≤ 1.

(i) (Mean ergodic theorem) The averages A
n,P (n)
N (f, g) converge in Lp(X)

norm.

(ii) (Pointwise ergodic theorem) The averages A
n,P (n)
N (f, g) converge point-

wise almost everywhere.

(iii) (Maximal ergodic theorem) One has

‖(An,P (n)
N (f, g))N∈Z+‖Lp(X;`∞) .p1,p2,P ‖f‖Lp1 (X)‖g‖Lp2 (X).

(iv) (Long variational ergodic theorem) If r > 2 and λ > 1, one has

(1.18) ‖(An,P (n)
N (f, g))N∈D‖Lp(X;V r) .p1,p2,r,P,λ ‖f‖Lp1 (X)‖g‖Lp2 (X)

whenever D ⊂ [1,+∞) is λ-lacunary.

We now give some remarks about this theorem.

(i) Theorem 1.17(i) already follows from Theorem 1.15 when (X,µ) has finite

measure; in fact for this particular average, the results are essentially

already contained in [36]. However, it appears to be new in the σ-finite

setting, and the proof method is completely different from methods used

to establish Theorem 1.15.

(ii) Theorem 1.17(ii) is completely new for general measure-preserving sys-

tems,1 even when f, g ∈ L∞(X) and X has finite measure. In particular,

Theorem 1.17(ii) when specialized to the case P (n) = n2 answers the

second part of [30, Prob. 11] for the Furstenberg–Weiss averages [36]

(see also [35]), which is a bilinear variant of the problem considered

1This result (and also part (iii)) was claimed in [29]. However, there appear to be several

gaps in the arguments. Firstly, in [29, pp. 23] it is claimed without giving details that

the Caldéron transference principle can be applied for the super-Hölder exponent triplet

`2×`2→`2, but if one carefully works through the arguments provided in [29, pp. 10–11] for

these exponents, one loses a factor of N1/2 in the estimates (as h now needs to be controlled

in `2 norm rather than `∞ norm) and thus cannot pass to the limit N → ∞. Secondly, in

[29, pp. 26], bilinear maximal estimates are obtained for the super-Hölder exponent triplets

`1 × `r → `r and `r × `1 → `r, but the assertion in that paper that bilinear interpolation

then gives Hölder exponent estimates such as `1 × `∞ → `1 or `r × `r
′
→ `1 is false.
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by Bergelson [3, Question 9, pp. 52]; see also [4, §6, pp. 838]. The-

orem 1.17 is also a contribution towards establishing the Furstenberg–

Bergelson–Leibman conjecture [6, §5.5, p. 468], which asserts the follow-

ing. Given integers d, k,m,N ∈ Z+, let T1, . . . , Td : X → X be a family

of invertible measure-preserving transformations of a probability measure

space (X,µ) that generates a nilpotent group of step m. Assume that

P1,1, . . . , Pi,j , . . . , Pd,k ∈ Z[n]. Then for any f1, . . . , fk ∈ L∞(X), the

non-conventional multiple polynomial averages

En∈[N ]

k∏
j=1

fj(T
P1,j(n)
1 · · ·TPd,j(n)

d x)

converge pointwise for µ-almost every x ∈ X as N → ∞. This con-

jecture is a widely open problem in ergodic theory that was promoted

in person by Furstenberg (see [1, p. 6662] and [53]) before being pub-

lished in [6]. Bergelson–Leibman [6] showed that convergence may fail if

the transformations T1, . . . , Td generate a solvable group. Our main the-

orem solves this conjecture in the case d = 1, k = 2 with P1,1(n) = n

and P1,2(n) = P (n) ∈ Z[n] with degP ≥ 2. Pointwise convergence for

non-conventional polynomial averages has previously been established for

some special measure-preserving systems, such as exact endomorphisms

and K-automorphisms [24] and nilsystems [58].

(iii) Our methods of proofs break down in the linear case d = 1 (as the minor

arc contributions are no longer negligible), and so we are unable to give

an alternate proof of Theorem 1.16.

(iv) For p > 1 (i.e., above the line of duality), Theorem 1.17(iii) follows easily

from past results. Indeed, from several applications of Hölder’s inequality

one has

‖(An,P (n)
N (f, g))N∈Z+‖Lp(X;`∞)

≤ ‖(An
N (|f |p0)|)N∈Z+‖

1/p0
Lp1/p0 (X;`∞)

‖(AP (n)
N (|g|p′0)|)N∈Z+‖

1/p′0

Lp2/p
′
0 (X;`∞)

for any 1 < p0 < ∞. In the p > 1 case one can select p0 so that p0 < p1

and p′0 < p2, and the claim now follows from Theorem 1.8(iii). However,

the p = 1 case (i.e., on the line of duality) is new, even when p1 = p2 = 2.

Also, the simple argument given above does not seem to easily adapt to

give the p > 1 cases of the other components (i), (ii), (iv) of the theorem,

although it does permit one to reduce those cases of (i), (ii) to the case

in which f, g ∈ L∞(X) by the usual limiting argument. A continuous

analogue of Theorem 1.17(iii) was previously established in [61] (see also

[60], [37]).
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(v) Theorem 1.17(iv) is the key result in the theorem, and it easily implies the

other parts of the theorem, as we shall show in Section 3. The condition

r > 2 is necessary, as no variational estimate is possible for r ≤ 2; see

Corollary 12.4. The situation can be contrasted with that in [25], in which

a certain bilinear paraproduct was shown to enjoy r-variation estimates

for some values of r < 2.

(vi) A modification of our arguments (taking particular advantage of linear

Lp improving estimates) is able to “break duality” and establish some

cases of Theorem 1.17 in the non-Banach regime p < 1, with the range

of exponents being particularly strong in the case of norm convergence

on spaces of finite measure; see Section 11. A similar “breaking duality”

phenomenon occurred in [22]; also, in [61, Th. 2] a continuous analogue of

part (iii) of the theorem was established that “broke duality” by allowing

p to lie in the range p > d−1
d , which is best possible up to the endpoint;

see [61, §3].

(vii) The requirement that X be σ-finite can be dropped by observing that

f ∈ Lp1(X), g ∈ Lp2(X) have σ-finite supports (since p1, p2 < ∞), and

hence the invariant set
⋃
n∈Z T

n(supp(f)∪ supp(g)) is also σ-finite. Since

the averages A
n,P (n)
N (f, g) are all supported on this invariant σ-finite set,

one can restrict to the σ-finite case without loss of generality.

1.4. Overview of proof. We now give an overview of the proof of Theo-

rem 1.17. The arguments follow the basic framework of the arguments used

to establish the linear results in Theorem 1.8, but with several new difficulties

arising that require substantial new ideas to overcome. Most notably,

(a) Plancherel’s theorem and Weyl sum estimates ([48, Lemma 20.3, p. 462])

are no longer sufficient by themselves to control the contribution of the

minor arcs, thus defeating a “naive” implementation of the circle method.

(b) The bilinear analogue

(1.19) mẐ

Å
a1

q
mod 1,

a2

q
mod 1

ã
:= En∈Z/qZe

Å
a1n+ a2P (n)

q

ã
of the arithmetic symbol ϕẐ defined in (1.14) cannot be factorized as a

tensor product of a function of a1
q mod 1 and a function of a2

q mod 1. As

a consequence, symbol (1.19), despite being independent of N , cannot be

disposed of purely by linear tools such as Plancherel’s theorem (even in

the model case p1 = p2 = 2) due to a bilinear nature of the problem and

must be treated in tandem with the continuous features.

Our resolution to these problems can be summarized by the following two

sentences:
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(i) Additive combinatorics (and, more specifically, Peluse–Prendiville the-

ory), as well as Hahn–Banach separation theorem, Ionescu–Wainger mul-

tiplier theory, and the `p(Z) improving theory of Han–Kovač–Lacey–

Madrid–Yang on the integers Z, are used to control the contribution of

minor arcs. This is a bilinear theory of the minor arcs.

(ii) Adelic harmonic analysis (which combines the continuous harmonic anal-

ysis of the reals R with the arithmetic harmonic analysis of the profinite

integers Ẑ), as well as Ionescu–Wainger multiplier theory, two-parameter

Rademacher–Menschov argument, shifted square function estimates, and

the Lp(Ẑ) improving theory on the profinite integers Ẑ, are used to control

the contribution of major arcs.

We now discuss the strategy in more detail.

1.4.1. Standard reductions. Following Bourgain [11], it suffices to establish

the variational estimate (3.3) on a finite λ-dyadic set D of scales, and by using

the Calderón transference principle we can work with the integer shift system Z.

For technical reasons, it is also convenient to remove the lower half n ≤ N/2

of the averaging operator (1.1) and only retain the upper half n > N/2, but

we ignore this step for the sake of discussion. These standard reductions are

reviewed in Section 3. We will need to establish the variational estimate for all

choices of (p1, p2), but the most important case is when p1 = p2 = 2 (and hence

p = 1), where it is easiest to establish a certain exponential decay that can then

be propagated to all other choices of exponents (p1, p2) by interpolation. For

the sake of discussion, we therefore restrict attention to the p1 = p2 = 2 case.

1.4.2. Minor arcs estimates. Again following Bourgain, we would now like

to restrict the functions f, g to major arcs in Fourier space. In the linear

setting this could be accomplished relatively easily using Plancherel’s theorem

and decay estimates (1.12) for the symbol (1.11) on minor arcs. However, in

the bilinear setting Plancherel’s theorem and the classical Weyl estimate [48,

Lemma 20.3, p. 462] are insufficient to obtain satisfactory control on the minor

arc contribution. Instead we use a deep recent inverse theorem of Peluse and

Prendiville [74] and Peluse [73] from the additive combinatorics literature (see

Theorem 6.3), which asserts that for every 0 < δ ≤ 1 and bounded functions

f, g : [−O(Nd), O(Nd)] → C with ‖f‖`∞ , ‖g‖`∞ ≤ 1, if ‖AN (f, g)‖`1 ≥ δNd,

then f must weakly correlate with the indicator function of a progression P =

{qm ∈ Z+ : m ∈ [N ′]} with q . δ−O(1) and δO(1)N . N ′ ≤ N , in the sense

that ‖f ∗ 1−P ‖`1 & δO(1)N ′Nd provided that N & δ−O(1). In other words, it

says that the function f has a major arc structure at scale N , which is precisely

stated using Fourier-transform language in Proposition 6.6. However, for our

application, we need to replace the `∞ control with (suitably normalized) `2

control. To do this we shall use the Hahn–Banach theorem to interpret this
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inverse theorem as a structural description of certain dual functions associated

to the averaging operator AN ; see Corollary 6.10. We also need to utilize the

multiplier theory of Ionescu and Wainger [47] to maintain the separation of

major and minor arcs during this process; see Proposition 6.15.

Then combine the latter with recent linear Lp-improving estimates on Z
by Han–Kovač–Lacey–Madrid–Yang [41] (see also Dasu–Demeter–Langowski

[20]) to relax the hypotheses to `2; see Corollary 6.22. The final conclusion

of this analysis is the single-scale minor arc estimate in Theorem 5.12, which

roughly speaking (with the notation from (2.1)) asserts that

(1.20) ‖AN (f, g)‖`1 . (2−O(l) + 〈LogN〉−O(1))‖f‖`2‖g‖`2

unless the Fourier transform of f and g are supported on major arcs of width

respectively O(2lN−1) and O(2dlN−d). (The disparity is due to the different

degrees in the polynomials n, P (n).) Inequality (1.20) can be thought of as a

bilinear variant of inequality (1.12), which was derived from classical Weyl’s

inequality [48, Lemma 20.3, p. 462]. This bilinear inequality (1.20) is a very

useful result that we will apply repeatedly in our arguments.

1.4.3. Major arcs estimates : a first glimpse. One can now restrict atten-

tion to major arcs, in which f has Fourier support supported at combinations

α+θ mod 1 of “arithmetic frequencies” α∈Q/Z and “continuous frequencies”

θ ∈R. The “height” of the arithmetic frequency α will be bounded by some

threshold 2l1 , and the magnitude |θ| of the continuous frequency will similarly

be bounded by some threshold 2k1 for some large negative k1. With some

additional effort, g can similarly be restricted to major arc frequencies that

are the combination of an arithmetic frequency of height at most 2l2 and a

continuous frequency of magnitude at most 2k2 . Naively, the height of an

arithmetic frequency α = a
q mod 1 with (a, q) = 1 might be defined to equal q

(or inf{2l : q≤2l}, if one wishes to view height as a dyadic integer). However,

for technical reasons, it is often more convenient to replace this naive notion

of height with a more complicated variant of height implicitly introduced by

Ionescu and Wainger [47] that enjoys better multiplier theory (the losses in-

curred here are only polynomial in l rather than exponential); see Appendix A.

In order to decouple the continuous aspects of the analysis from the arithmetic

aspects, it turns out to be convenient to embed the integers Z into the adelic

integers2 AZ := R× Ẑ = R×
∏
p Zp; this embedding ι : Z→ AZ is the Fourier

2One could also work with various projections R × Z/QZ of the adelic integers, which

amounts to requiring a common denominator Q to the arithmetic frequencies being used;

but the adelic formalism is cleaner in that it automatically handles uniformity in the Q

parameter. Also we believe it lends some conceptual clarity to the strategy of separating the

continuous and arithmetic aspects of the analysis.
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adjoint of the addition map π : R × Q/Z → T defined by π(θ, α) := α + θ

that was implicitly used to define major arcs. The advantage of working in

the adelic framework is that several key linear and bilinear Fourier symbols

on the integers, when transferred to the adelic integers, can be treated in a

fairly unified way and can be cleanly decomposed or approximated into simpler

symbols that exhibit a useful tensor product structure, so that the continu-

ous and arithmetic aspects of the symbols involved become almost completely

decoupled; see also Figures 1 and 2.

1.4.4. Major arcs estimates : paraproduct-type decomposition. The objec-

tive is now to obtain, for a given choice of height scales l1, l2, variational bounds

on the average AN (f, g) under the assumption that f, g have Fourier supports

associated to major arcs of heights 2l1 , 2l2 respectively, with the bounds enjoy-

ing exponential decay in the parameter l := max(l1, l2). At a given scale N , one

can use the Ionescu–Wainger multiplier theory to restrict the Fourier trans-

form of f to major arcs of width about 2lN−1, and similarly restrict the Fourier

transform of g to major arcs of width about 2dlN−d. (As before the disparity is

due to the different degrees in the polynomials n, P (n).) For any given scale N ,

Theorem 5.12 gives the desired exponential gain in l; the problem is how to

sum in N . To overcome this difficulty we perform a certain paraproduct de-

composition (5.27) and (5.28) centered around a finite number of (arithmetic)

frequencies. This contrasts sharply with the classical theory of paraproducts

that are centered at the frequency origin. Here, again an indispensable role is

played by the Ionescu–Wainger projections (5.15) and (5.16), which will allow

us to control “low-low,” “low-high,” “high-low,” and “high-high” paraproducts

by employing the methods from continuous harmonic analysis.

1.4.5. Major arcs estimates : “low-low” case and “small scales”. For the

sake of exposition, let us initially focus on the “low-low” case when one can

restrict the width of the major arcs further to 2−uN−1 and 2−duN−d where u

is moderately large (about 2ρl for some small constant ρ). The argument then

splits into the treatment of “small scales” 2u<N<22u and “large scales” N>

22u. (The contribution of extremely small scales N≤2u can be easily discarded,

thanks to the exponential decay factors present in the single scale estimates).

For small scales, in the linear theory we used the Rademacher–Menshov type

inequality [66], which was quite efficient. Here, due to the bilinear nature of the

problem the situation is much more complicated. We begin with performing

some Fourier-analytic approximations at the adelic integer level, analogous to

(1.13), to replace averages such as AN (f, g) with an expressions of the form

B(fN , gN ), where the bilinear operator B is now independent of N . This is the

key idea of the major arcs analysis, which is encapsulated in the model estimate

(7.24) of Theorem 7.23. The same idea is also exploited in the “large scales” to

establish estimate (7.25) of Theorem 7.23. After these approximations, we use
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a two-parameter Rademacher–Menshov argument and Khinchine’s inequality

to reduce the variational estimates to a single scale estimates; such arguments

lose factors that are essentially logarithmic in the number of scales, which in

the small scale regime gives a loss of uO(1), but this is acceptable thanks to the

exponential gains in l, which again can be derived from (1.20).

1.4.6. Major arcs estimates : “low-low” case and “large scales”. At large

scales, the major arcs become extremely narrow, so much so that the arithmetic

frequencies at the center of these arcs can be given a common denominator Q

with 1
Q much larger than the width of these arcs. In this regime it becomes

possible to use a quantitative version of the Shannon sampling theorem (The-

orem 4.18) to transfer from the integers Z to the adelic integers AZ = R × Ẑ
while essentially preserving all function space norms of interest. The behavior

in the continuous variable R is relatively tractable due to the Ionescu–Wainger

multiplier theory and [66]. The main difficulty is to understand the nature of

the associated “arithmetic” average AẐ on the profinite integers Ẑ, which is a

compact commutative ring. By some use of p-adic methods (see Appendix C),

we will obtain a non-trivial Lp-improving estimate for this average, while from

yet another invocation of Theorem 5.12 we will also obtain exponential decay

in l for these averages (for the L2 theory at least, and the remaining cases

can then be treated by interpolation). By combining these estimates with

some general manipulation of variational norms, and also relying primarily on

a vector-valued version of Lépingle’s inequality from [69] to handle the varia-

tional behavior in the continuous variable R, we can obtain acceptable control

on the contribution of the large scales.

1.4.7. Major arcs estimates : remaining cases. The other cases (“high-

high,” “low-high,” “high-low”) can be treated by modifications of the method;

the main new difficulties are to obtain some additional decay when one is

relatively far from the arithmetic frequencies at the center of the major arcs

(that is to say, when the continuous component of the frequency is large).

By interpolation one only needs to obtain this decay for the `2 theory. In

the “high-high” case one can obtain such a decay using Theorem 5.12 once

again, exploiting almost orthogonality in order to sum over scales N . In the

remaining “low-high” and “high-low” cases we will obtain the required decay

by applying an elementary integration by parts to a certain bilinear symbol

associated to the averaging operation AN (see Lemma 7.26). On the other

hand, this decay is at risk of being overwhelmed by the increased oscillations

present in the symbol. To avoid this we use shifted Calderón–Zygmund theory

(see Appendix B), of the type used for instance in [63], that allows one to

handle certain types of oscillating Fourier multipliers losing only acceptable

logarithmic factors in the estimates. The idea of shifted maximal estimates
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was also recently exploited in [46] in the context of establishing pointwise

ergodic theorems for the polynomial averages on nilpotent groups; it seems to

be decisive in problems when the operators in question cannot be interpreted

as convolution operators corresponding to an abelian convolution.

1.4.8. Final remarks. Finally, we emphasize that the proof of Theorem 1.17

can also be adapted (and simplified) to give an alternate proof of Theorem 1.8

(but in which one only controls the long variation rather than the full varia-

tion). We sketch the changes needed to the argument as follows. The exponent

p1 is now fixed to equal ∞ (so that p = p2), and the first function f is fixed

to equal 1 (which allows for several simplifications, for instance the parameter

l1 can be taken to be 0, and s1 can be taken to be −u). All appearances of

1p1=p2=2 are now replaced by 1p1=∞,p2=2. Various linear estimates, such as

Ionescu–Wainger multiplier estimates, shifted Calderón–Zygmund estimates,

and Lepingle’s inequality, do not hold in general at the `∞ endpoint, but are

trivially true when applied to the specific function f = 1 in `∞, so this does

not cause difficulty. Theorem 5.12 needs to be modified to an `∞ × `2 → `2

estimate with f = 1, but in this case the required gain of 2−cl + 〈LogN〉−cC1

is immediate from Plancherel’s theorem and Weyl sum estimates [48, Lemma

20.3, p. 462], thus avoiding the need to invoke the Peluse–Prendiville theory.

1.5. Open questions. While our main interest is in averaging operators

on the integers Z, in the course of our arguments it became natural to also

consider the analogous averaging operators on other locally compact abelian

domains such as R,Z/QZ,R × Z/QZ,Z/pjZ,Zp, Ẑ, and AZ, with the adelic

integers AZ playing a particularly central role, at least on a conceptual level;

see Figure 1. The connection can be summarized by the slogan

Major arc analysis on Z ≈ Low frequency analysis on AZ,

where “low frequency” has to be interpreted in both a continuous and arith-

metic sense; see Figure 7. In particular, the adelic averaging operators AN,AZ

defined in (7.12) emerge as a simplified model for the integer averaging opera-

tors AN,Z, and further investigations into similar problems in discrete harmonic

analysis may wish to begin by first understanding adelic models of such prob-

lems, particularly in “true complexity zero” situations in which one suspects

that the major arc contributions are dominant or equivalently that the minor

arc contribution is negligible. In fact, the method of proof of Theorem 1.17

relies in an essential way on the negligibility of the minor arc contribution; in

the language of additive combinatorics, this reflects the fact that the pattern

(x, x − n, x − P (n)) has “true complexity zero” in the sense of Gowers and

Wolf [39]. In the language of ergodic theory, the corresponding assertion is

that the minimal characteristic factor of the averages A
n,P (n)
N is the rational

Kronecker (or profinite) factor Krat generated by the periodic functions.
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We close our introduction with some questions relating to Theorem 1.17

that remain open.

(1) Does Theorem 1.17 continue to hold if one of p1, p2 is allowed to be infinite?

Certainly from Theorem 1.8 the maximal inequality (Theorem 1.17(iii))

will still hold if one or both of p1, p2 are infinite, but the situation for the

other parts of the theorem are less clear (except in the special case where

p1 =∞ and f is constant, or p2 =∞ and g is constant). Given the ability

to break duality, the endpoints p1 = 1, p2 = 1 could also be investigated.

(2) Is the analogue of Theorem 1.17(iv) true for the full variation, in which

the lacunarity hypothesis on D is omitted? Equivalently, can the implied

constant in (1.18) be made uniform in λ? The problem is likely to be

significantly simpler if the sharp truncation 1n≤N implicit in the definition

of the averages A
n,P (n)
N is replaced by a smoother weight. Note that the

linear analogue of this question was already resolved in Theorem 1.8(iv).

(3) To what extent can the results in Theorem 1.17 extend to other bilinear av-

erages A
P1(n),P2(n)
N , or more ambitiously to general multilinear polynomial

ergodic averages A
P1(n),...,Pk(n)
N ? We refer to Bergelson’s surveys [3, Ques-

tion 9, pp. 52], [4, §6, pp. 838]. It is not difficult to adapt Theorem 1.17

to cover averages A
P1(n),P2(n)
N in which one of the P1, P2 is linear (i.e., of

degree 1) and the other is non-linear, however when both P1, P2 are non-

linear a refinement of the Peluse–Prendiville theory may be required. We

hope to investigate these averages in future work.

(4) Is there some analogue of these methods that can cover patterns of higher

complexity? A natural first step would be to recover some portion of

Theorem 1.16 (which has “true complexity one” in the Gowers–Wolf [39]

sense) by these methods.

(5) What are explicit ranges of exponents p1, p2 for which one can “break

duality” with in Theorem 1.17? In the model case p1 = p2 (so that p =

p1/2 = p2/2), Lemma 11.1 suggests that one should be able to take p in

the range p > 1 − 1
d2+d−1

, or even p > 1 − 1
2d in the d = 2 case, with the

latter range also expected if [41, Conj. 1.5] holds. It should also be possible

to recover the optimal range r > 2 of the variational exponent r below the

line of duality. (Our current arguments incur a loss in this parameter that

depends on how close (1/p1, 1/p2) is to (1/2, 1/2).)

(6) Theorem 1.17(iv) gives variational estimates in V r norms for r > 2, and

in Section 12 the r = 2 endpoint is shown to be false. However, there still

remains the question of whether a jump inequality (analogous to Doob’s

inequality for martingales) is true at the r = 2 endpoint. Such endpoint

jump inequalities were established in [68] for linear polynomial averages

on Zk.
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(7) Theorem 1.17 was focused on unweighted averages

A
n,P (n)
N (f, g)(x) = En∈[N ]T

nf(x)TP (n)g(x),

but one can pose similar questions3 for the truncated singular integral

analogue
∑

0<|n|<N
1
nT

nf(x)TP (n)g(x); currently only single-scale super-

Hölder estimates are known [26]. In the linear setting (resp. the bilinear

setting for two linear polynomials), the theory for the averages and the

truncated singular integrals are similar; see [68] (resp. [55]). Bounds on

the (untruncated) bilinear continuous singular integrals were obtained in

[60], [62], [61], [63].

(8) To what extent do the implied constants in Theorem 1.17 depend on the

coefficients of P? The estimate in [41, Th. 1.6] suggests that the depen-

dence of constants is at worst polynomial; on the other hand, [68, Cor. 1.15]

suggests that one may be able to obtain bounds uniform in the coefficients,

by lifting the problem to Zd and establishing an analogue of Theorem 1.17

in that setting. (However, this latter strategy would require a multidi-

mensional version of the theory of Peluse and Prendiville, which may be

highly nontrivial.) We also hope to investigate the latter multidimensional

strategy in future work.

(9) Can the results here on the (rational) integers Z be extended to rings of

integers in more general number fields, such as the ring Z[i] of Gauss-

ian integers? Certainly the adelic formalism is exceptionally well adapted

to this setting [81], but other components of the argument may require

significantly more effort to generalize appropriately.

(10) Assuming that P ∈ R[n], it also makes sense to ask whether Theorem 1.17

holds with the averages A
n,bP (n)c
N (f, g) in place of A

n,P (n)
N (f, g). This kind

of question for linear polynomial averages was considered by Bourgain

in [13]. One could also replace the polynomial P with elements of other

Hardy fields, in the spirit of [8], [9], or by random functions of polynomial

growth, in the spirit of [32]. In fact these variants may be simpler than the

polynomial case, as the only major arc that is expected to be significant is

the one centered at the origin.

(11) As mentioned previously, there is a well-developed theory of characteris-

tic factors for the limiting values of non-conventional polynomial averages

AN (f1, . . . , fk) when the functions f1, . . . , fk lie in L∞(X) and X has finite

3One could also consider fractional integral type expressions

En∈[N ](n/N)−αTnf(x)TP (n)g(x)

for 0 < α < 1, but these can be easily expressed as linear combinations of the unweighted

averages via summation by parts and so would be expected to obey nearly identical estimates

to those averages.
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measure; see [3], [4], [30]. To what extent does this theory extend to other

Lp spaces and to the case when X is merely σ-finite, for instance for the

average A
n,P (n)
N (f, g) studied in Theorem 1.17?
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2. Notation

In this section we set out some basic notation used throughout the paper.

2.1. Elementary number theory. We use Z+ := {1, 2, . . . } to denote the

positive integers and N := {0, 1, 2, . . . } to denote the natural numbers. For any

N > 0, [N ] denotes the discrete interval [N ] := {n ∈ Z+ : n ≤ N}. The set

{2, 3, 5, . . . } of all prime numbers will be denoted by P. If q1, q2 ∈ Z+, we write

q1|q2 if q1 divides q2. If a, q ∈ Z+, we let (a, q) denote the greatest common

divisor of a and q. We let [q]× := {a ∈ [q] : (a, q) = 1} denote the elements of

[q] that are coprime to q.

2.2. Magnitudes and asymptotic notation. We use the Japanese bracket

notation

〈x〉 := (1 + |x|2)1/2

for any real or complex x. We use bxc to denote the greatest integer less than

or equal to x. All logarithms in this paper will be to base 2, and for any N ≥ 1,

we define the logarithmic scale LogN of N by the formula

(2.1) LogN := blogNc,

thus LogN is the unique natural number such that 2LogN ≤ N < 2LogN+1.

For any two quantities A,B, we will write A . B, B & A, or A = O(B)

to denote the bound |A| ≤ CB for some absolute constant C. If we need the

implied constant C to depend on additional parameters, we will denote this

by subscripts; thus, for instance, A .ρ B denotes the bound |A| ≤ CρB for

some Cρ depending on ρ. We write A ∼ B for A . B . A. To abbreviate the

notation we will sometimes explicitly permit the implied constant to depend

on certain fixed parameters (such as the polynomial P ) when the issue of

uniformity with respect to such parameters is not of relevance.
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2.3. Averages, indicators, and cutoffs. We use the averaging notation

En∈Af(n) :=
1

#A

∑
n∈A

f(n)(2.2)

for any finite non-empty set A, where #A denotes the cardinality of A; in other

words, En∈Af(n) is the integral of f against normalized counting measure on A.

Note, in particular, that En∈[N ]f(n) = 1
N

∑N
n=1 f(n) when N ∈ Z+. We use

1E to denote the indicator function of a set E. Similarly, if S is a statement,

we use 1S to denote its indicator, equal to 1 if S is true and 0 if S is false.

Thus, for instance, 1E(x) = 1x∈E .

Throughout this paper we fix a cutoff function η : R → [0, 1] that is a

smooth even function supported on [−1, 1] that equals one on [−1/2, 1/2]. All

constants are permitted to depend on η. For any k ∈ Z, we let η≤k : R→ [0, 1]

denote the rescaled version of η:

η≤k(ξ) := η(ξ/2k).

2.4. Function spaces. All vector spaces in this paper will be over the com-

plex numbers C.

If T : V → W is a continuous linear map between normed vector spaces

V,W , we use ‖T‖V→W to denote its operator norm. If B : V1 × V2 → W is a

continuous bilinear map between normed vector spaces V1, V2,W , we similarly

use ‖B‖V1×V2→W to denote its operator norm.

If (X,µ) is a measure space, we let L0(X) be the space of all µ-measurable

complex-valued functions defined on X, with the usual convention of identi-

fying functions that agree µ-almost everywhere. The space of all functions in

L0(X) whose modulus is integrable with p-th power is denoted by Lp(X) for

p ∈ (0,∞), whereas L∞(X) denotes the space of all essentially bounded func-

tions in L0(X). If 1 ≤ p ≤ ∞ is an exponent, the dual exponent 1 ≤ p′ ≤ ∞
is defined by the usual relation 1/p + 1/p′ = 1. When X is endowed with

counting measure, we will abbreviate Lp(X) to `p(X) or even `p.

We can extend these notions to functions taking values in a finite dimen-

sional normed vector space V = (V, ‖ · ‖V ), for instance L0(X;V ) is the space

of measurable functions from X to V (up to almost everywhere equivalence),

and

Lp(X;V ) :=
¶
F ∈ L0(X;V ) : ‖F‖Lp(X;V ) := ‖‖F‖V ‖Lp(X) <∞

©
.(2.3)

One can extend these notions to infinite-dimensional V , at least if V is sepa-

rable, but we will almost always be able to work in finite-dimensional settings

(or we can quickly reduce to such a setting by a standard approximation ar-

gument).

For any finite dimensional normed vector space (B, ‖·‖B) and any sequence

(at)t∈I of elements of B indexed by a totally ordered set I, and any exponent
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1 ≤ r <∞, the r-variation seminorm is defined by the formula

(2.4) ‖(at)t∈I‖V r(I;B) := sup
J∈Z+

sup
t0≤···≤tJ
tj∈I

( J−1∑
j=0

‖a(tj+1)− a(tj)‖rB
)1/r

,

where the supremum is taken over all finite increasing sequences in I, and it is

set by convention to equal zero if I is empty. Taking limits as r →∞ we also

adopt the convention

‖(at)t∈I‖V∞(I;B) := sup
t≤t′∈I

‖a(t′)− a(t)‖B.

The r-variation norm for 1 ≤ r ≤ ∞ is defined by

(2.5) ‖(at)t∈I‖V r(I;B) := sup
t∈I
‖at‖B + ‖(at)t∈I‖V r(I;B).

This clearly defines a norm on the space of functions from I to B. If B = C,

then we will abbreviate V r(I;X) to V r(I) or V r, and V r(I;X) to V r(I) or V r.

If (X,µ) is a measure space, then using (2.5) and (2.3), one can explicitly write

Lp(X;V r) =
¶
F ∈ L0(X;V r) : ‖F‖Lp(X;V r) := ‖‖F‖V r‖Lp(X) <∞

©
.

Note that the V r norm is non-decreasing in r and comparable to the `∞

norm when r =∞. We also observe the simple triangle inequality

(2.6) ‖(at)t∈I‖V r(I;X) . ‖(at)t∈I1‖V r(I1;X) + ‖(at)t∈I2‖V r(I2;X)

whenever I=I1]I2 is an ordered partition of I, thus t1<t2 for all t1∈I1, t2∈I2.

In a similar spirit we have the bound

(2.7) ‖(at)t∈I‖V r(I;X) . ‖(at)t∈I‖`r(I;X) ≤ ‖(at)t∈I‖`1(I;X).

From Hölder’s inequality one easily establishes the algebra property

(2.8) ‖(atbt)t∈I‖V r . ‖(at)t∈I‖V r‖(bt)t∈I‖V r

for any scalar sequences (at)t∈I, (bt)t∈I.

2.5. Tensor products. Given two functions f : X → C, g : Y → C, we

define their tensor product f ⊗ g : X → Y → C by the formula

f ⊗ g(x, y) := f(x)g(y).

One can also define the formal tensor product f⊗g of elements f ∈ V , g ∈W of

abstract vector spaces V,W , which takes values in the algebraic tensor product

V ⊗W . By abuse of notation, we identify these two notions of tensor product.

If T1 : V1 → W1, T2 : V2 → W2 are linear maps, we define the tensor

product T1 ⊗ T2 : V1 ⊗ V2 →W1 ⊗W2 as the unique linear map such that

(2.9) T1 ⊗ T2(f1 ⊗ f2) = (T1f1)⊗ (T2f2)

whenever f1∈V1, f2∈V2. Similarly, if B1 : U1× V1→W1 and B2 : U2×V2→W2

are bilinear maps, we define B1⊗B2 : (U1⊗U2)× (V1⊗ V2)→W1⊗W2 to be

the unique bilinear map such that

(2.10) B1 ⊗B2(f1 ⊗ f2, g1 ⊗ g2) = B1(f1, g1)⊗B2(f2, g2)
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whenever f1 ∈ U1, g1 ∈ V1, f2 ∈ U2, g2 ∈ V2. This algebraic tensor product can

often be extended to analytic settings. For instance, if T1 : Lp(X1) → Lq(Y1)

and T2 : Lp(X2)→ Lq(Y2) are integral operators of the form

T1f1(y1) =

∫
X1

K1(x1, y1)f1(x1) dµX1(x1)

and

T2f2(y2) =

∫
X2

K2(x2, y2)f2(x2) dµX2(x2)

then one can define T1⊗T2 : Lp(X1×X2)→Lq(Y1×Y2) (formally, at least) by

(T1 ⊗ T2)f(y1, y2) =

∫
X1×X2

K1(x1, y1)K2(x2, y2)f(x1, x2) dµX1(x1)dµX2(x2).

We claim the multiplicativity property

(2.11) ‖T1 ⊗ T2‖Lp(X1×X2)→Lq(Y1×Y2) = ‖T1‖Lp(X1)→Lq(Y1)‖T2‖Lp(X2)→Lq(Y2),

in the case4 where one of the kernels (say K1) is non-negative, and assuming

X1, X2, Y1, Y2 are σ-finite with positive measure to avoid degeneracies, by the

following argument. The lower bound is clear by testing T1 ⊗ T2 on tensor

products f1 ⊗ f2, so we focus on the upper bound (which is what is needed in

our applications). If f ∈ Lp(X1 ×X2), we have

(T1 ⊗ T2)f(y1, y2) =

∫
X1

K1(x1, y1)T2(fx1)(y2) dµX1(x1),

where fx1 : x2 7→ f(x1, x2) denotes the slice of f , hence for any y1 ∈ Y1 and by

the non-negativity of K1, we have

‖(T1 ⊗ T2)f(y1, ·)‖Lq(Y2)

≤ ‖T2‖Lp(X2)→Lq(Y2)

∫
X1

K1(x1, y1)‖fy1‖Lp(X1) dµX1(x1).

Taking Lq(Y1) norms of both sides and using the Fubini–Tonelli theorem, we

conclude that

‖(T1 ⊗ T2)f‖Lq(Y1×Y2) ≤ ‖T1‖Lp(X1)→Lq(Y1)‖T2‖Lp(X2)→Lq(Y2)‖f‖Lp(X1×X2),

4There is another case where (2.11) holds, namely when q ≥ p and no non-negativity

hypothesis is assumed, by factoring T1 ⊗ T2 = (T1 ⊗ id) ◦ id ◦ (id⊗ T2) and establishing the

inequalities

‖id⊗ T2‖Lp(X1×X2)→Lp(X1;Lq(Y2)) ≤ ‖T2‖Lp(X2)→Lq(Y2),

‖id‖Lp(X1;Lq(Y2))→Lq(Y2;Lp(X1)) ≤ 1,

and

‖T1 ⊗ id‖Lq(Y2;Lp(X1))→Lq(Y1×Y2) ≤ ‖T1‖Lp(X1)→Lq(Y1).

However, this argument does not easily extend to the bilinear case, which is the case of most

interest to us.
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giving the claim. An analogous argument gives the identity

(2.12) ‖B1 ⊗B2‖Lp(X1×X2)×Lq(Y1×Y2)→Lr(Z1×Z2)

= ‖B1‖Lp(X1)×Lq(Y1)→Lr(Z1)‖B2‖Lp(X2)×Lq(Y2)→Lr(Z2)

for tensor products of bilinear operators, with (say) B1 arising from a non-

negative kernel, again assuming all spaces σ-finite with positive measure to

avoid degeneracies.

3. Transferring to the integer shift

In this section we perform three standard and general reductions for our

problem:

(i) By standard limiting arguments, we show that long variational estimates,

such as the one in Theorem 1.17(iv), are sufficient to establish maximal

inequalities, norm convergence, and pointwise almost everywhere con-

vergence. Thus we can focus exclusively on variational estimates in the

sequel.

(ii) We apply the Calderón transference principle (see, e.g., [23, App. A]) to

transfer the long variational estimates to the integer shift system Z =

(Z, µZ, TZ). As mentioned in the introduction, this allows us to exploit

the Fourier-analytic structure of Z (and eventually, AZ as well).

(iii) We use a telescoping argument to replace the averaging operator

AP1,...,Pk
N (f1, . . . , fk)(x) = En∈[N ]f1(TP1(n)x) · · · fk(TPk(n)x)

with the upper half5

(3.1) ÃP1,...,Pk
N (f1, . . . , fk)(x) = En∈[N ]f1(TP1(n)x) · · · fk(TPk(n)x)1n>N/2.

This technical reduction is convenient as it allows one to avoid the sta-

tionary points of the polynomials P1, . . . , Pk. (In particular, we get good

lower bounds on the first derivatives of these polynomials.)

These reductions are available for arbitrary non-conventional averages,

not just for the bilinear averages A
n,P (n)
N treated in this paper, so we give these

reductions in the general setting.

Proposition 3.2 (General reductions). Let (X,µ, T ) be a measure-pre-

serving system, let P1(n), . . . , Pk(n) ∈ Z[n], let 0 < p1, . . . , pk, p < ∞, and let

1 ≤ r <∞.

5One could also work with the normalized upper half bNc
bN/2c ÃN here if desired, though it

makes little difference to the subsequent arguments other than adjusting a few constants by

a factor of two.
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(i) (Reduction to variational estimate). Suppose one has the variational

estimate

‖(AP1,...,Pk
N (f1, . . . , fk))N∈D‖Lp(X;V r)

.p1,...,pk,p,P1,...,Pk,r,λ ‖f1‖Lp1 (X) · · · ‖fk‖Lpk (X)

(3.3)

for all λ > 1 and fi ∈ Lpi(X), i = 1, . . . , k, and all finite λ-lacunary

subsets D of [1,+∞). Then one has the maximal inequality

‖(AP1,...,Pk
N (f1, . . . , fk))N∈Z+‖Lp(X;`∞)

.p1,...,pk,p,P1,...,Pk,r ‖f1‖Lp1 (X) · · · ‖fk‖Lpk (X)

,(3.4)

and for any fi ∈ Lpi(X), i = 1, . . . , k, the averages AP1,...,Pk
N (f1, . . . , fk)

converge pointwise almost everywhere and in Lp(X) norm.

(ii) (Calderón transference principle). Suppose that we are in the Hölder

exponent case 1
p1

+ · · · + 1
pk

= 1
p . Then in order to establish (3.3) for

arbitrary measure-preserving systems X = (X,µ, T ), it suffices to show

(3.3) for the integer shift model Z = (Z, µZ, TZ).

(iii) (Telescoping argument). In order to establish (3.3) under the assumptions

of (i), it suffices to establish the bound

‖(ÃP1,...,Pk
N (f1, . . . , fk))N∈D‖Lp(X;V r)

.p1,...,pk,p,P1,...,Pk,r,λ ‖f1‖Lp1 (X) · · · ‖fk‖Lpk (X)

(3.5)

under the same assumptions, where ÃP1,...,Pk
n is defined in (3.1).

Note that all of the reductions in this proposition apply in both the Banach

exponent case p ≥ 1 and the non-Banach exponent case 0 < p < 1. However,

we emphasize that the Calderón transference principle (ii) is only available in

the Hölder exponent case 1
p1

+ · · ·+ 1
pk

= 1
p .

Proof. To simplify the notation we allow all implied constants to depend

on p1, . . . , pk, P1, . . . , Pk, r.

We begin with (i). Fix f1, . . . , fk, and abbreviate AP1,...,Pk
N (f1, . . . , fk)(x)

as aN (x) for any N ≥ 1. For any s ∈ Z+, introduce the 21/s-lacunary set

2N/s := {2n/s : n ∈ N}.

(Note that here we exploit the freedom to choose scales N that are real-valued

rather than integer-valued). From (3.3) and monotone convergence, we have

(3.6) ‖(aN )N∈2N/s‖Lp(X;V r) .s ‖f1‖Lp1 (X) · · · ‖fk‖Lpk (X).

To prove (3.4), we may assume without loss of generality that f1, . . . , fk
are non-negative, thanks to the pointwise triangle inequality

|AP1,...,Pk
N (f1, . . . , fk)| ≤ AP1,...,Pk

N (|f1|, . . . , |fk|).



1022 BEN KRAUSE, MARIUSZ MIREK, and TERENCE TAO

In the non-negative case we have the additional pointwise bound

sup
N∈Z+

aN (x) ≤ 2 sup
N∈2N

aN (x),

and the claim (3.4) now follows from (3.6).

Now we establish pointwise convergence. By linearity we may assume that

the f1, . . . , fk are all non-negative. From (3.6) and (3.4), we see that for almost

all x ∈ X, the quantity

M(x) := sup
N∈Z+

aN (x)

is finite, as are the variational norms ‖(aN )N∈2N/s‖V r for every s ∈ Z+. From

the latter we conclude that the limits limN→∞;N∈2N/s aN (x) exist almost ev-

erywhere for all s ≥ 1; since 2N ⊂ 2N/s, this limit is independent of s, thus

lim
N→∞;N∈2N/s

aN (x) = a∞(x)

for some a∞(x). For any sufficiently large N , if we let N ′ be the first element

of 2N/s greater than or equal to N , we see from the triangle inequality that

aN (x) = aN ′(x) +O(M(x)/s).

Hence on taking limits

lim inf
N→∞

aN (x), lim sup
N→∞

aN (x) = a∞(x) +O(M(x)/s),

sending s → ∞, we conclude that aN (x) converges to a∞(x) as N → ∞ as

claimed. Finally, norm convergence follows from pointwise convergence, the

maximal inequality, and the dominated convergence theorem. This proves (i).

Now we prove (ii). This follows from the general Calderón transference

principle [18], but for the convenience of the reader we supply a proof here. We

first observe from the Fubini–Tonelli theorem and Hölder’s inequality (and the

Hölder exponent hypothesis 1
p1

+ · · · + 1
pk

= 1
p) that if (3.3) is established for

the integer shift model (Z, µZ, TZ), then it automatically holds for any product

system (X × Z, µ× µZ, id× TZ), where (X,µ) is an arbitrary σ-finite measure

space and id× TZ is the shift (x, n) 7→ (x, n− 1), since there is no interaction

between the individual fibers {x} × Z, x ∈ X of this system.

Now let (X,µ, T ) be an arbitrary measure-preserving system. To prove

(3.3), it suffices by multilinearity to do so when the fi are non-negative. We

may assume that each of the fi are bounded and supported on a set of finite

measure. We may normalize ‖fi‖Lpi (X) = 1 for i = 1, . . . , k, thus our task is

now to show that

‖(AP1,...,Pk
N,X (f1, . . . , fk))N∈D‖Lp(X;V r) .λ 1.

Now let M be a large natural number, let D := maxi∈[k] degPi, and let C > 0

be a quantity to be specified later that can depend on D, P1, . . . , Pk but is
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independent of M . On the product system X × Z = (X × Z, µ× µZ, id× TZ),

define the functions

fi,M (x, n) := 1[3CMD](n)fi(T
−nx)

for i = 1, . . . , k. From the Fubini–Tonelli theorem and the measure-preserving

nature of T , one has

‖fi,M‖Lpi (X×Z) = (3CM)D/pi .

Also, we observe the identity

‖(AP1,...,Pk
N,X×Z (f1,M , . . . , fk,M )(x, n))N∈D∩[M ]‖V r

= ‖(AP1,...,Pk
N,X (f1, . . . , fk)(T

−nx))N∈D∩[M ]‖V r

whenever CMD ≤ n ≤ 2CMD. From the Fubini–Tonelli theorem again, we

conclude that

‖(AP1,...,Pk
N,X×Z (f1,M , . . . , fk,M ))N∈D‖Lp(X×Z;V r)

≥ (CMD + 1)1/p‖(AP1,...,Pk
N,X (f1, . . . , fk))N∈D∩[M ]‖Lp(X;V r).

Applying (3.3) to the product system X × Z, we conclude that

‖(AP1,...,Pk
N,X (f1, . . . , fk))N∈D∩[M ]‖Lp(X;V r) .λ M

−D/pMD/p1 . . .MD/pk ;

using the Hölder exponent hypothesis 1/p1 + · · · + 1/pk = 1/p and sending

M →∞, we obtain the claim.

Finally, we prove (iii). By linearity we may take f1, . . . , fk to be nonneg-

ative. Fix λ > 1, and set

ãN (x) := ÃP1,...,Pk
N (f1, . . . , fk)(x).

We observe the telescoping identity

aN =

∞∑
k=0

bN/2kc
bNc

ãN/2k12k≤N .

We have bN/2
kc

bNc = 2−k +O(1/N), and hence by the triangle inequality we have

the pointwise estimate

‖(aN )N∈D‖V r ≤
∞∑
k=0

2−k‖(ãN/2k12k≤N )N∈D‖V r +O
( ∞∑
k=0

∑
N∈D

1

N
12k≤N |ãN/2k |

)
for all x ∈ X. Since the rescaling {N/2k : N ∈ D, 2k ≤ N} of a λ-lacunary set

D is still λ-lacunary, we have from (3.5) that

‖(ãN/2k12k≤N )N∈D‖Lp(X;V r) .λ ‖f1‖Lp1 (X) · · · ‖fr‖Lpr (X).

From (3.5) applied to singleton λ-lacunary sets, we have

‖ãN/2k‖Lp(X) .λ ‖f1‖Lp1 (X) · · · ‖fr‖Lpr (X).
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Summing in N, k, using the triangle inequality ‖
∑

i fi‖Lp(X) ≤
∑

i ‖fi‖Lp(X)

(when p ≥ 1) or the quasi-triangle inequality

(3.7)
∥∥∥∑

i

fi

∥∥∥p
Lp(X)

≤
∑
i

‖fi‖pLp(X)

(when 0 < p < 1), we obtain the claim. �

Remark 3.8. A modification of the Calderón transference principle also

allows us to handle measure-preserving systems in which the shift map T is not

assumed to be invertible, as long as we also require the polynomials P1, . . . , Pk
to be non-negative on Z+ so that the averaging operators AP1,...,Pk

N remain well

defined. We leave the details to the interested reader.

In view of this general proposition, Theorem 1.17 will now follow from

Theorem 3.9 (Variational ergodic theorem on the integers). Let P (n) ∈
Z[n] have degree d ≥ 2, let 1 ≤ p1, p2, p <∞ be such that 1

p1
+ 1

p2
= 1

p , and let

f ∈ `p1(Z), g ∈ `p2(Z). If r > 2 and λ > 1, then

(3.10) ‖(Ãn,P (n)
N (f, g))N∈D‖`p(Z;V r) .p1,p2,r,P,λ ‖f‖`p1 (Z)‖g‖`p2 (Z)

for all finite λ-lacunary subsets D of [1,+∞).

It remains to establish Theorem 3.9. This is the objective of much of the

remainder of the paper.

Remark 3.11. It is essential in Theorem 3.9 for ergodic theory applications

that one has the Hölder condition 1
p1

+ 1
p2

= 1
p . In the super-Hölder regime

1
p1

+ 1
p2

> 1
p it is easy to establish (3.10); for instance, when (p1, p2, p) =

(2, 2,∞), it follows from Cauchy-Schwarz that

(3.12) ‖Ãn,P (n)
N (f, g)‖`∞(Z) .P N

−1‖f‖`2(Z)‖g‖`2(Z),

and by interpolating this with (1.6) it is not difficult to establish (3.10) for any

1 < p1, p2, p ≤ ∞ with 1
p1

+ 1
p2
> 1

p . However, in this regime the Calderón

transference principle no longer applies, and so no consequences to general

measure preserving systems (in particular, those of finite measure) can be con-

cluded. Indeed, the decay in N exhibited by (3.12) is not possible in the finite

measure setting since An,P (n)(1, 1) = 1. In the opposite sub-Hölder regime
1
p1

+ 1
p2
< 1

p , even single-scale boundedness ‖Ãn,P (n)
N ‖`p1 (Z)×`p2 (Z)→`p(Z) < ∞

fails on the integer shift model, as can be seen by testing the operator on in-

dicator functions of large intervals. (However, on finite measure systems one

can of course deduce sub-Hölder exponent estimates from Hölder exponent

estimates by applying Hölder’s inequality.)
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4. Abstract harmonic analysis:

relating the integers to the adelic integers

We will be performing Fourier analysis on many different groups in this

paper and, in particular, exploiting the close relationship between major arc

Fourier analysis on the integers Z on the one hand, and low frequency Fourier

analysis on the adelic integers AZ on the other hand (see Figure 6). It will

be convenient to set out some abstract harmonic analysis notation to perform

this analysis in a unified fashion. We let T := R/Z denote the unit circle, and

e : T→ C denote the standard character e(θ) := e2πiθ.

Definition 4.1 (Pontryagin duality). An LCA group is a locally compact

abelian group G = (G,+) equipped with a Haar measure µG. A Pontryagin

dual of an LCA group G is an LCA group G∗ = (G∗,+) with a Haar measure

µG∗ and a continuous bihomomorphism (x, ξ) 7→ x · ξ (which we call a pairing)

from G × G∗ to the unit circle T = R/Z, such that the Fourier transform

FG : L1(G)→ C(G∗) defined by

FGf(ξ) :=

∫
G
f(x)e(x · ξ) dµG(x)

extends to a unitary map from L2(G) to L2(G∗); in particular, we have the

Plancherel identity∫
G
|f(x)|2 dµG(x) =

∫
G∗
|FGf(ξ)|2 dµG∗(ξ)

for all f ∈ L2(G).

If Ω ⊂ G∗ is measurable, we say that f ∈ L2(G) is Fourier supported in Ω

if FGf vanishes outside of Ω (modulo null sets). The space of such functions

will be denoted L2(G)Ω.

As is well known (see, e.g., [78]), every LCA group G has a Pontryagin

dual G∗, and the inverse Fourier transform F−1
G : L2(G∗) → L2(G) is then

given for F ∈ L1(G∗) ∩ L2(G∗) by the formula

F−1
G F (x) =

∫
G∗
F (ξ)e(−x · ξ) dµG∗(ξ).

We will work with the following concrete pairs (G,G∗) of Pontryagin dual

LCA groups:

(i) If G = R with Lebesgue measure µR = dx, then G∗ = R∗ = R with

Lebesgue measure µR∗ = dξ is a Pontryagin dual, with pairing x · ξ :=

xξ mod 1.

(ii) If G = Z with counting measure µZ, then G∗ = T with Lebesgue measure

µT = dξ is a Pontryagin dual, with pairing x · ξ := xξ.



1026 BEN KRAUSE, MARIUSZ MIREK, and TERENCE TAO

(iii) If G = Z/QZ is a cyclic group for some Q ∈ Z+ with normalized count-

ing measure
∫
Z/QZ f(x) dµZ/QZ(x) := Ex∈Z/QZf(x), then the dual cyclic

group G∗ = 1
QZ/Z with counting measure µ 1

Q
Z/Z is a Pontryagin dual,

with pairing x · ξ := xξ.

(iv) If G = Zp := lim←−j Z/p
jZ is the compact group of p-adic integers with

Haar probability measure µZp (the inverse limit of normalized counting

measures on Z/pjZ) for some prime p ∈ P, then the discrete group G∗ =

Z∗p = lim−→j
1
pj
Z/Z = Z[1

p ]/Z with counting measure µZ∗p is a Pontragin

dual, with pairing x · ( a
pj

mod 1) := xa mod pj

pj
.

(v) If G = Ẑ :=
∏
p∈P Zp is the compact group of profinite integers with Haar

probability measure, then the discrete group G∗ = Ẑ∗ =
∐
p∈P Z∗p = Q/Z

of “arithmetic frequencies” with counting measure µQ/Z is a Pontragin

dual, with pairing x · (aq mod 1) := xa mod q
q .

(vi) If G1,G2 are LCA groups with Pontryagin duals G∗1,G∗2, then the product

G1 ×G2 (with product Haar measure) is an LCA group with Pontryagin

dual G∗1×G∗2 and pairing (x1, x2) · (ξ1, ξ2) := x1 ·ξ1 +x2 ·ξ2. In particular,

if G = AZ := R×Ẑ is the adelic integers6 (with the product Haar measure

µAZ := µR × µẐ), then adelic frequency space G∗ = A∗Z = R × Q/Z is a

Pontryagin dual (with product measure µR×Q/Z := µR × µQ/Z and the

indicated pairing). Similarly, for any Q ∈ Z+, R× Z/QZ has R× 1
QZ/Z

as its Pontryagin dual.

Remark 4.2. Heuristically, one can think of analysis on the adelic integers

AZ (resp. the profinite integers Ẑ, or the p-adic integers Zp) as an abstraction

of analysis on the product groups R × Z/QZ (resp. the cyclic groups Z/QZ,

Z/pjZ) in which all estimates are required to be uniform in the parameter Q

or pj . These abstractions are convenient to use in settings in which one does

not wish to fix an ambient modulus Q or pj in advance.

Observe that we have quotient homomorphisms x 7→ x mod Q from Z to

Z/QZ or from Ẑ to Z/QZ, x 7→ x mod pj from Zp to Z/pjZ, and x 7→ x mod 1

from R to T. The adelic integers AZ capture two important limiting behaviors

of the integers Z: the continuous behavior (as described by the R factor),

and the arithmetic behavior (as described by the Ẑ factor). We also have the

inclusion homomorphism ι : Z→ AZ defined by

ι(x) :=
(
x, ((x mod pj)j∈N)p∈P

)
6The adelic integers AZ should not be confused with the larger ring AQ = AZ ⊗Z Q of

adelic numbers, which we will not use in this paper.
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and the addition homomorphism π : R×Q/Z→ T defined by

π(θ, α) := α+ θ;

these two maps are Fourier adjoint to each other in the sense that

(4.3) ι(x) · ξ = x · π(ξ)

for all x ∈ Z and ξ ∈ R×Q/Z. In “major arc” regimes we will be able to use

these homomorphisms to “approximate” Z by AZ, which in principle decouples

the discrete harmonic analysis of Z from the continuous harmonic analysis of

R and the arithmetic harmonic analysis of Ẑ. We summarized the relations

between the various LCA groups in Figures 1 and 2.

Remark 4.4. As is well known, the embedding ι identifies Z with a co-

compact lattice ι(Z) in AZ. (Thus ι(Z) is a discrete subgroup of AZ and the

quotient AZ/ι(Z) is compact.) Thus AZ is in some sense only “slightly” larger

than Z itself, but has the advantage of splitting completely into a continuous

component R and an arithmetic component Ẑ, whereas Z does not directly

have such a splitting. However, the point is that after restricting attention to

major arcs, one can partially move back and forth between the integers and

adelic integers, and thus have some chance of exploiting the product structure

of AZ = R×Ẑ to decouple the continuous and arithmetic aspects of the analysis.

Z

R AZ Ẑ Zp

R R× Z/QZ Z/QZ Z/pjZ

ι

mod Q mod pj

mod pj

Figure 1. A commutative diagram of the various physical space

LCA groups used in this paper, with the arrows indicating con-

tinuous homomorphisms. Here Q is a positive integer, and pj is

a prime power dividing Q. Double-headed arrows are surjective;

arrows with hooks are injective. The left column contains “con-

tinuous” groups, the right two columns contain “arithmetic”

groups (and are compact), and the second column from the left

contain groups exhibiting both continuous and arithmetic as-

pects. The second row is the inverse limit of the third. Note

the central role played by the adelic integers AZ.
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T

R R×Q/Z Q/Z Z[1
p ]/Z

R R× 1
QZ/Z

1
QZ/Z

1
pj
Z/Z

mod 1 π

Figure 2. A commutative diagram of the various frequency

space LCA groups used in this paper. The groups in the right

two columns are discrete. The second row is the direct limit of

the third. Note the duality with Figure 1. (This can be made

precise using Fourier adjoint relationships such as (4.3).)

I ∩ (a+QZ)

I I × (a+QẐ) a+QẐ a+QZp

I I × {a mod Q} {a mod Q} {a mod pj}

ι

mod Q mod pj

mod pj

Figure 3. A restriction of the physical space diagram in Figure 1

to an arithmetic progression I∩(a+QZ) formed by intersecting

an interval I ⊂ R with an infinite arithmetic progression a +

QZ. The sets here are no longer groups in general (except in

an “approximate” sense), and so the arrows no longer denote

homomorphisms. As in the previous figures, pj is understood to

be a prime power dividing Q. Note how this diagram separates

an arithmetic progression into its continuous and arithmetic

components.

For various LCA groups G, we shall work with a space S(G) ⊂ L1(G) ∩
L∞(G) of Schwartz–Bruhat functions f : G → C, generalizing the classical

class of Schwartz functions on R that serve as a useful class of “nice” functions

that are dense in Lp(G) for every 1 ≤ p < ∞ and behave well with respect

to Fourier-analytic operations. A definition of this space for arbitrary LCA

groups can be found, for instance, in [16], [71], but for the purpose of this

paper we shall only need the following special cases:

(i) S(R) is the space of Schwartz functions on R.

(ii) S(Z) is the space of rapidly decreasing functions on Z, and S(T) is the

space of smooth functions on T.
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(iii) S(Z/QZ) is the space of arbitrary functions on Z/QZ, and similarly for

S( 1
QZ/Z).

(iv) S(Zp) is the space of locally constant functions f on Zp, or equivalently

those functions of the form f(x) = fj(x mod pj) for some j ∈ N and

some function fj : Z/pjZ → C. S(Z∗p) is the space of finitely supported

functions on Z∗p.
(v) S(Ẑ) is the space of locally constant functions f on Ẑ, or equivalently

those functions of the form f(x) = fQ(x mod Q) for some Q ∈ Z+ and

fQ : Z/QZ→ C. S(Ẑ∗) is the space of finitely supported functions on Ẑ∗.
(vi) S(R×Z/QZ) is the space of functions that is Schwartz in the R variable,

and similarly for S(R× 1
QZ/Z).

(vii) S(AZ) is the space of functions of the form f(x, y) = fQ(x, y mod Q) for

some Q ∈ Z+ and fQ : R×Z/QZ→ C that is Schwartz in the R variable.

S(R×Q/Z) is the space of functions supported on R×Σ for some finite

set Σ ⊂ Q/Z and Schwartz in the R variable.

(viii) If G1,G2 are any two of the groups listed above, we define the Schwartz–

Bruhat space S(G1 × G2) on the product LCA group G1 × G2 in the

obvious fashion. We note that if f1 ∈ S(G1) and f2 ∈ S(G2), then

f1 ⊗ f2 can be identified with an element of S(G1 ×G2).

One could place a topology on the Schwartz–Bruhat spaces S(G), but we

will not need to do so here. As is well known, the Fourier transform FG is a

bijection from S(G) to S(G∗) for any of the groups G in Figure 1. The Fourier

transform can also be extended to vector-valued functions taking values in a

finite-dimensional vector space V in the obvious fashion.

If Ω ⊂ G∗, we let S(G)Ω denote the subspace of S(G) consisting of func-

tions that are Fourier supported on Ω, and we let S(Ω) denote the subspace

of S(G∗) consisting of functions that are supported on Ω. Thus FG is also a

bijection between S(G)Ω and S(Ω).

The inclusion homomorphism ι : Z → AZ gives rise to a sampling map

S : S(AZ)→ S(Z) defined by

Sf(x) := f(ι(x))

for x ∈ Z and f ∈ S(AZ). Dually, the addition homomorphism π : R×Q/Z→ T
gives rise to a projection map P : S(R×Q/Z)→ S(T), defined by the formula

PF (ξ) :=
∑

(θ,α)∈π−1(ξ)

F (θ, α)

for θ ∈ R, α ∈ Q/Z, and F ∈ S(R × Q/Z). (Note that the definition of

S(R×Q/Z) ensures that this sum contains at most countably many non-zero

terms.) From (4.3), one has the identity

F−1
Z ◦ P = S ◦ F−1

AZ
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or equivalently the adelic Poisson summation formula

FZ ◦ S = P ◦ FAZ ,

and so we have the commutative diagram

S(Z) S(AZ)

S(T) S(R×Q/Z);

FZ

S
FAZ

P

see also Figures 4 and 5.

A key difficulty here is that of aliasing : the non-injectivity of π : R ×
Q/Z → R/Z causes the sampling map S : S(AZ) → S(Z) to also be non-

injective. Indeed, if (ξ1, α1), (ξ2, α2) are distinct elements of R×Q/Z and are

such that π(ξ1, α1) = π(ξ2, α2), then for any non-zero F ∈ S(AZ), the functions

F1(x, y) := e(xξ1+y·α1)F (x, y) and F2(x, y) := e(xξ2+y·α2)F (x, y) are distinct

elements of S(AZ) that are “aliased” in the sense that SF1 = SF2. However,

we can avoid this problem by restricting attention to a compact subset Ω of

adelic frequency space R × Q/Z that is non-aliasing in the sense that the

addition homomorphism π is injective on Ω, so that P becomes an algebra

homomorphism from S(Ω) to S(π(Ω)). Thus

(4.5) P(FG) = P(F )P(G)

S(Z)

S(R) S(AZ) S(Ẑ) S(Zp)

S(R) S(R× Z/QZ) S(Z/QZ) S(Z/pjZ)

S

Figure 4. Schwartz–Bruhat spaces on physical space LCA

groups. Solid arrows indicate canonical linear maps of a “sam-

pling” or “pullback” nature; dotted arrows from two spaces

V1, V2 to a third V indicate the existence of a tensor product

operation ⊗ : V1×V2 → V . The second row is the direct limit of

the third. Compare with Figure 1. (Some arrows in that figure

do not have an analogue here, basically because S(R) does not

contain a multiplicative unit 1, and the inclusions of Z into Ẑ
and Zp are not proper.)
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S(T)

S(R) S(R×Q/Z) S(Q/Z) S(Z[1
p ]/Z)

S(R) S(R× 1
QZ/Z) S( 1

QZ/Z) S( 1
pj
Z/Z)

P

Figure 5. Schwartz–Bruhat spaces on frequency space LCA

groups. Solid arrows indicate canonical linear maps of a “projec-

tion” or “pushforward” nature; dotted arrows indicate a tensor

product as in Figure 4. The second row is the direct limit of the

third. This figure and the preceding one are intertwined by the

Fourier transform via various forms of the Poisson summation

formula. Compare also with Figure 2. (Some arrows in that

figure do not have an analogue here, basically because S(R)

does not contain a convolution unit δ, and the embeddings of

Q/Z and Z[1
p ]/Z into T are not open.)

for all F,G ∈ S(Ω), and one has the commutative diagram

(4.6)

S(Z)π(Ω) S(AZ)Ω

S(π(Ω)) S(Ω)

FZ

S
FAZ

P

.

In this case one verifies that the lower three maps FZ,P,FAZ are invert-

ible, hence the upper map S is also. In particular, to any non-aliasing com-

pact set of adelic frequencies Ω, we can associate an interpolation operator

S−1
Ω : S(Z)π(Ω) → S(AZ)Ω that extends any Schwartz–Bruhat function on the

integers with Fourier support in π(Ω) to the unique Schwartz–Bruhat exten-

sion on the adelic integers with Fourier support in Ω. Note from (4.6) and

Plancherel’s theorem that the sampling operator S and the interpolation oper-

ator S−1
Ω extend to unitary maps between `2(Z)π(Ω) and L2(AZ)Ω that invert

each other.

The diagram (4.6) allows us to equate certain portions of Fourier analysis

on the integers Z with corresponding portions of Fourier analysis of the adelic

integers AZ; this will be useful for clarifying Fourier analysis on major arcs

M≤l,≤k, which in this perspective are interpreted as projections of a certain

non-aliasing Cartesian product R≤l × (Q/Z)≤k of adelic frequency space; see

Figure 6 and Section 5 for definitions.
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Example 4.7. If Q ∈ Z+ and r > 0, then [−r, r]× 1
QZ/Z is non-aliasing if

and only if r < 1
2Q . The injectivity of S in this case is a variant of the classical

Shannon sampling theorem. See also Theorem 4.18 below.

Now we define Fourier multiplier operators. A continuous function ϕ : G∗
→ C is said to be smooth tempered if ϕF ∈ S(G∗) whenever F ∈ S(G∗). For

instance, ϕ : R→ C is smooth tempered if and only if all derivatives exist and

are of at most polynomial growth.

Definition 4.8 (Fourier multiplier operators). Let G be one of the LCA

groups in Figure 1.

(i) If ϕ : G∗ → C is a smooth tempered function, we define the Fourier

multiplier operator Tϕ : S(G)→ S(G) by the formula

FGTϕ = ϕFG

or equivalently

Tϕf(x) =

∫
G∗
ϕ(ξ)FGf(ξ)e(−x · ξ) dµG∗(ξ)

for f ∈ S(G) and x ∈ G. We refer to ϕ as the symbol of Tϕ.

(ii) If m : G∗×G∗ → C is a smooth tempered function, we define the bilinear

Fourier multiplier operator Bm : S(G)× S(G)→ S(G) by the formula

Bm(f, g)(x)

=

∫
G∗

∫
G∗
m(ξ1, ξ2)FGf(ξ1)FGg(ξ2)e(−x · (ξ1 + ξ2)) dµG∗(ξ1)dµG∗(ξ2).

We refer to m as the symbol of Bm.

Clearly Tϕ depends linearly on ϕ, and Bm depends linearly on m. We

also observe the functional calculus identities

T1f = f,

B1(f, g) = fg,

Tϕ1ϕ2f = Tϕ1Tϕ2f,

Bm(ϕ1⊗ϕ2)(f, g) = Bm(Tϕ1f,Tϕ2g)

(4.9)

whenever f, g ∈ S(G) and ϕ1, ϕ2,m are smooth tempered functions on G∗,
G∗, G∗ ×G∗ respectively. Finally we observe that Tϕ is self-adjoint on L2(G)

when ϕ is real-valued. We can also extend the linear Fourier multipliers Tϕ

to Schwartz–Bruhat functions S(G;V ) taking values in a finite-dimensional

vector space V in the obvious fashion.

Example 4.10 (Averaging operators as Fourier multipliers). We work on

the integer shift system. If P ∈ Z[n], the averaging operator A
P (n)
N is a linear
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Fourier multiplier operator on S(Z) with symbol

ϕN,Z(ξ) := En∈[N ]e(P (n)ξ)

for ξ ∈ T. Similarly, if P1, P2 ∈ Z[n], then the averaging operator A
P1(n),P2(n)
N

is a bilinear Fourier multiplier operator on S(Z) with symbol

mN,Z(ξ1, ξ2) := En∈[N ]e(P1(n)ξ1 + P2(n)ξ2)

and Ã
P1(n),P2(n)
N similarly has symbol

m̃N,Z(ξ1, ξ2) := En∈[N ]e(P1(n)ξ1 + P2(n)ξ2)1n>N/2

for ξ1, ξ2 ∈ T. If G is one of the compact rings Z/pjZ, Z/QZ, Zp, or Ẑ, then

P1, P2 can be thought of as continuous maps from G to itself, and we can

define the averaging operator AG = A
P1(n),P2(n)
G : S(G)×S(G)→ S(G) by the

formula

AG(f, g)(x) :=

∫
G
f(x− P1(y))g(x− P2(y)) dµG(y).

From the Fourier inversion formula and the Fubini–Tonelli theorem, we see

that AG is a bilinear Fourier multiplier operator with symbol

mG(ξ1, ξ2) :=

∫
G
e(P1(y)ξ1 + P2(y)ξ2) dµG(y)

for ξ1, ξ2 ∈ G∗.

Example 4.11 (Tensor products of multipliers). Let G1,G2 be LCA groups

from Figure 1. If Tϕ1 is a linear Fourier multiplier operator on S(G1) and Tϕ2

is a linear Fourier multiplier operator on S(G2), then Tϕ1⊗ϕ2 is a linear Fourier

multiplier operator on S(G1×G2) that is the tensor product of Tϕ1 and Tϕ2 in

the sense that (2.9) holds for all f1 ∈ S(G1), f2 ∈ S(G2). Similarly, if Bm1 ,Bm2

are bilinear Fourier multiplier operators on S(G1),S(G2) respectively, then the

bilinear Fourier multiplier operator Bm1⊗m2 is the tensor product of Bm1 and

Bm2 in the sense that (2.10) holds for all f1, g1 ∈ S(G1), f2, g2 ∈ S(G2).

As previously mentioned, if Ω is a non-aliasing subset of R × Q/Z, then

the sampling operator S restricts to a unitary map from L2(AZ)Ω to `2(Z)π(Ω),

or equivalently the interpolation operator S−1
Ω is a unitary map from `2(Z)π(Ω)

to L2(AZ)Ω. This suggests that Fourier multiplier operators on L2(AZ)Ω can

be identified with Fourier multiplier operators on `2(Z)π(Ω). This is indeed

the case:

Lemma 4.12 (Adelic and integer Fourier multipliers). Let Ω ⊂ R × Q/Z
be a non-aliasing compact subset of adelic frequency space. Then for any

ϕ ∈ S(Ω), the following diagram commutes, where ϕ denotes the operation

of pointwise multiplication by ϕ, and similarly for Pϕ:
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S(Z)π(Ω) S(AZ)Ω

S(Z)π(Ω) S(AZ)Ω

S(π(Ω)) S(Ω)

S(π(Ω)) S(Ω)

FZ

S

FAZ

TPϕ

FZ

S
FAZ

Tϕ

Pϕ
P

ϕ

P

In particular, one has

(4.13) TPϕSf = STϕf

for all f ∈ S(AZ)Ω.

Proof. This is immediate from (4.6), (4.5), Definition 4.8, and a routine

diagram chase using the invertibility of the Fourier transform. �

Another way of writing (4.13) is as

(4.14) TPϕf = STϕS−1
Ω f

for all f ∈ S(Z)π(Ω).

There is a bilinear version of the formula (4.13). Define the tensor square

P⊗2 : S((R×Q/Z)2)→ S(T2) of the projection operator P by the formula

P⊗2m(ξ1, ξ2) :=
∑

(θ1,α1)∈π−1(ξ1)

∑
(θ2,α2)∈π−1(ξ2)

m((θ1, α1), (θ2, α2))

for all m ∈ S((R × Q/Z)2). If Ω1,Ω2 ⊂ R × Q/Z are non-aliasing compact

subsets of adelic frequency space, then P⊗2 is an algebra homomorphism from

S(Ω1 × Ω2) to S(π(Ω1) × π(Ω2)), and is the tensor product of the algebra

homomorphisms P : S(Ω1) → S(π(Ω1)) and P : S(Ω2) → S(π(Ω2)) in the

sense of (2.9). A routine calculation (or a chase of a more complicated version

of the commutative diagram in Lemma 4.12) then gives the bilinear variant

(4.15) BP⊗2m(Sf,Sg) = SBm(f, g)

of (4.13) whenever f ∈S(AZ)Ω1 , g∈S(AZ)Ω2 , and m∈S(Ω1×Ω2); equivalently,

one has

(4.16) BP⊗2m(f, g) = SBm(S−1
Ω1
f,S−1

Ω2
g)

whenever f ∈ S(Z)π(Ω1), g ∈ S(Z)π(Ω2). From (4.9) we also observe the pro-

jected functional calculus

(4.17) BP⊗2m(TPϕ1f,TPϕ2g) = BP⊗2(m(ϕ1⊗ϕ2))(f, g)



POINTWISE ERGODIC THEOREMS FOR BILINEAR POLYNOMIAL AVERAGES 1035

whenever f ∈ S(Z)π(Ω1), g ∈ S(Z)π(Ω2), ϕ1 ∈ S(Ω1), ϕ2 ∈ S(Ω2), and m ∈
S(Ω1 × Ω2).

The point of the identities (4.14) and (4.16) is that complicated linear

and bilinear Fourier multiplier operators TPϕ,BP⊗2m on the integers Z can

be expressed (in non-aliasing regions of adelic frequency space) by simpler

linear and bilinear Fourier multiplier operators Tϕ,Bm on the adelic integers

AZ. For the multiplier operators of interest in this paper, the adelic symbols

ϕ,m often have a tensor product structure (or at least can be decomposed or

approximated by symbols with such a structure), allowing us to decouple the

Fourier analysis into the continuous Fourier analysis of R and the arithmetic

Fourier analysis of Ẑ. In many cases the arithmetic symbol factors further,

allowing one to work on smaller factor groups such as Z/QZ, Zp, or Z/pjZ.

As already observed, whenever Ω is a non-aliasing compact subset of

R × Q/Z, the sampling operator S : S(AZ)Ω → S(Z)π(Ω) and the interpo-

lation operator S−1
Ω : S(Z)π(Ω) → S(AZ)Ω both preserve the L2 norm. The

situation for other function space norms is less clear. However, the situation

is particularly favorable in the case of Example 4.7, in that the sampling and

interpolation operators essentially preserve all Lp norms, even for non-Banach

exponents 0 < p < 1 or for vector-valued functions (or both):

Theorem 4.18 (Quantitative Shannon sampling theorem). Let 0<p≤∞,

and let B be a finite-dimensional normed vector space. If F ∈ S(AZ;B) has

Fourier support in [− c0
Q ,

c0
Q ]× 1

QZ/Z for some Q∈Z+ and some 0<c0<
1
2 , then

‖SF‖`p(Z;B) ∼c0,p ‖F‖Lp(AZ;B),

where we extend the sampling operator S to vector-valued functions in the ob-

vious fashion.

See also the sampling principle of Magyar–Stein–Wainger [64, Cor. 2.1,

pp. 196] as well as [69, Prop. 4.4, pp. 816] for closely related statements.

Theorem 4.18 implies that if Ω is a compact subset of [− c0
Q ,

c0
Q ]× 1

QZ/Z, then

S : S(AZ)Ω → S(Z)π(Ω) and S−1
Ω : S(Z)π(Ω) → S(AZ)Ω are both bounded on

Lp with norm Oc0(1).

Proof. As F has Fourier support on the Pontryagin dual R × 1
QZ/Z of

R×Z/QZ, we can descend to the quotient group R×Z/QZ and establish the

bound

‖SQF‖`p(Z;B) ∼c0 ‖F‖Lp(R×Z/QZ;B)

whenever F ∈ S(R× Z/QZ;B) has Fourier support in [− c0
Q ,

c0
Q ]× 1

QZ/Z and

SQF (x) := F (x, x mod Q).

By splitting Z into residue classes a + QZ for a ∈ [Q], and similarly splitting

R × Z/QZ into copies R × {a mod Q} of Q, it suffices by the Fubini–Tonelli
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theorem to establish the bound

‖f‖`p(a+QZ;B) ∼c0,p Q−1/p‖f‖Lp(R;B)

whenever a ∈ [Q] and whenever f ∈ S(R;B) has Fourier support in [− c0
Q ,

c0
Q ].

After applying translation and rescaling, it suffices to show that

‖f‖`p(Z;B) ∼c0,p ‖f‖Lp(R;B)

whenever f ∈ S(R;B) has Fourier support in [−c0, c0]. It will suffice to estab-

lish the bound

‖f‖`p(Z+θ;B) ∼c0,p ‖f‖`p(Z;B)

uniformly for all 0 ≤ θ ≤ 1, as the claim then follows by taking Lp norms

in θ and applying the Fubini–Tonelli theorem. By translation and reflection

symmetry it suffices to establish the upper bound

(4.19) ‖f‖`p(Z+θ;B) .c0,p ‖f‖Lp(Z;B).

Let ψ = ψc0 ∈ S(R) be a function chosen so that FRψ is supported on

[−1/2, 1/2] and equals one on [−c0, c0], so that the upper bound now follows

from Schur’s test. From the Poisson summation formula we have

f(y) =
∑
x∈Z

ψ(y − x)f(x)

for all y ∈ R, hence by the triangle inequality

‖f(y)‖B ≤
∑
x∈Z
|ψ(y − x)|‖f(x)‖B.

For p ≥ 1, this gives (4.19) from Schur’s test and the rapid decrease of ψ. For

p < 1, we use the previous inequality to obtain

‖f(y)‖pB ≤
∑
x∈Z
|ψ(y − x)|p‖f(x)‖pB.

The claim follows from the triangle inequality and the rapid decrease of ψ. �

Because of this theorem and (4.13) and (4.15), the Lp multiplier the-

ory for both linear and bilinear Fourier multiplier operators TPϕ, BP⊗2m on

S(Z)π(Ω) can be easily transferred to the corresponding Lp multiplier theory of

Tϕ,Bm on S(AZ)Ω when Ω is of the form in Example 4.7 (or a compact subset

of that example). Unfortunately, this situation only occurs for us in certain

“large-scale” settings, in which the widths of the major arcs are extremely

narrow compared to the height. In the opposite “small-scale” regime we will

be able to use the Ionescu–Wainger multiplier theorem (see Lemma 5.2(iv)

and Remark 5.11 below) as a partial replacement7 of this transference, at least

7Another partial replacement of Theorem 4.18 in this setting was recently established in

[80, Th. 1.6].
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at the level of linear Fourier multiplier operators. The Ionescu–Wainger the-

ory does not directly treat the “twisted” bilinear multipliers B
l1,l2,mẐ
m that we

will eventually need to handle (see (7.10)), so we will need to first apply a

two-parameter Rademacher–Menshov argument in order to reduce the bilinear

analysis to linear estimates that can be treated by that theory; see Section 8.

We close this section with some crude multiplier estimates on Z and on R.

Lemma 4.20 (Crude multiplier bound). Let G = Z or G = R.

(i) Let ϕ ∈ S(G∗) and r > 0. When G = Z, we also require r ≤ 1. Then for

any 1 ≤ p ≤ ∞, Tϕ extends continuously to a linear map from Lp(G) to

Lp(G) with

‖Tϕ‖Lp(G)→Lp(G) . sup
0≤j≤2

∫
G∗
rj−1

∣∣∣∣ djdξj ϕ(ξ)

∣∣∣∣ dξ.
(ii) Let m ∈ S(G∗ ×G∗), r1, r2 > 0, and 1 ≤ p, p1, p2 ≤ ∞ with 1

p1
+ 1

p2
= 1

p .

When G = Z we also require r1, r2 ≤ 1. Then Bm extends continuously

to a bilinear map from Lp1(G)× Lp2(G) to Lp(G) with

‖Bm‖Lp1 (G)×Lp2 (G)→Lp(G)

. sup
0≤j1,j2≤2

∫
G∗

∫
G∗
rj1−1

1 rj2−1
2

∣∣∣∣∣ ∂j1∂ξj11

∂j2

∂ξj21

m(ξ1, ξ2)

∣∣∣∣∣ dξ1dξ2.
(4.21)

The same bound also holds when the hypothesis 1 ≤ p, p1, p2 ≤ ∞ is

replaced by 1 < p1, p2 ≤ ∞, except now the implied constant in (4.21) is

permitted to depend on p1, p2.

Proof. We just prove (ii) in the case G = Z, as all the other cases are

similar. It suffices to prove the claim for Schwartz functions. We may normalize

the right-hand side of (4.21) to be 1. We can express Bm in physical space as

Bm(f, g)(x) =
∑

y1,y2∈Z
K(y1, y2)f(x− y1)g(x− y2),

where

K(y1, y2) :=

∫
T2

m(ξ1, ξ2)e(−y1ξ1 − y2ξ2) dξ1ξ2.

Suppose first that we are in the case 1 ≤ p, p1, p2 ≤ ∞. By Minkowski’s

inequality, we have

‖Bm‖`p1 (Z)×`p2 (Z)→`p(Z) ≤ ‖K‖`1(Z2).

On the other hand, from the normalization of (4.21) and integration by parts,

we have

K(y1, y2) . r1−j1
1 r1−j2

2 |y1|−j1 |y2|−j2
for any y1, y2 ∈ Z and 0 ≤ j1, j2 ≤ 2 (with the claim being vacuously true if

the right-hand side is infinite), thus

(4.22) K(y1, y2) . r1〈r1y1〉−2r2〈r2y2〉−2,
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and the claim follows. In the case 1 < p1, p2 ≤ ∞, we can instead use (4.22) to

bound Bm(f, g) pointwise by the product of the Hardy–Littlewood maximal

functions of f, g, and the claim now follows from Hölder’s inequality and the

Hardy–Littlewood maximal inequality. �

5. Ionescu–Wainger decomposition: reducing to major arcs

We now begin the proof of Theorem 3.9. Henceforth the parameters

P, d, p1, p2, p, r, λ are fixed to obey the hypotheses of this theorem, and all im-

plied constants in the asymptotic notation are allowed to depend on these pa-

rameters. We also fix the finite λ-lacunary subset D of Z+, although we require

all our estimates to be uniform in the choice of D. We abbreviate Ã
n,P (n)
N as ÃN .

We will also need four large constants:

(i) We choose a constant C0 ∈ Z+ that is sufficiently large depending on

the fixed parameters P, d, p1, p2, p, r, λ. (This constant is used to define

a maximum height scale l(N) associated to each physical scale N ; see

(5.22).)

(ii) We choose a constant C1 ∈ Z+ that is sufficiently large depending on the

fixed parameters P, d, p1, p2, p, r, λ and on C0. (This constant is used to

define the Ionescu–Wainger parameter ρ; see (5.1).)

(iii) We choose a constant C2 ∈ Z+ that is sufficiently large depending on

the fixed parameters P, d, p1, p2, p, r, λ and on C0, C1. (This quantity is

used to define an auxiliary scale u associated to a given height scale l; see

(5.26).)

(iv) We choose a constant C3 ∈ Z+ that is sufficiently large depending on the

fixed parameters P, d, p1, p2, p, r, λ and on C0, C1, C2. (This quantity will

be used to lower bound the physical scale N , as well as to bound implied

constants in estimates.)

We also use c > 0 to denote various small exponents that depend only

on d, p1, p2, p, r, and which will vary from line to line. Occasionally we will

also need c to depend on some other parameters, and we will indicate this by

additional subscripts; for instance, cq will be a positive constant depending on

d, p1, p2, p, r, q. Importantly, these constants c will not depend on the large

constants C0, C1, C2, C3 just introduced. Specifically, c will be independent on

the Ionescu–Wainger parameter ρ; see (5.1).

Define the naive height hnaive(α) ∈ 2N of an arithmetic frequency α =
a
q mod 1 ∈ Q/Z by the formula

hnaive

Å
a

q
mod 1

ã
:= inf{2l : l ∈ N, q ≤ 2l} = 2dlog qe ∼ q
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whenever q ∈ Z+ and a ∈ [q]×. For any l ∈ N, k ∈ Z, we can then define the

naive arithmetic frequency sets

(Q/Z)≤l,naive := h−1
naive([2

l]) = {α ∈ Q/Z : hnaive(α) ≤ 2l}
and the continuous frequency sets

R≤k := [−2k, 2k]

and then define the naive major arcs

M≤l,≤k,naive := π(R≤k × (Q/Z)≤l,naive).

Thus M≤l,≤k,naive consists of all elements of T of the form a
q + θ mod 1 for

some q ∈ [2l], a ∈ [q]×, and θ ∈ [−2−k, 2k]. These would be the obvious choice

of major arcs to restrict attention to in our Fourier-analytic manipulations.

Unfortunately, the Lp multiplier theory on such arcs is unfavorable. To obtain

a better theory, we follow Ionescu and Wainger [47] and replace the naive

height hnaive(α) of an arithmetic frequency by a smaller quantity, which we

call the Ionescu–Wainger height h(α) = hρ(α) ∈ 2N. This height depends on

an additional small parameter 0 < ρ < 1, which we now fix in our hierarchy of

constants as

(5.1) ρ := 1/C1.

The precise definition of this height is technical and is postponed to Appen-

dix A. However, for our purposes we can summarize the main properties of this

height as follows. Using this height, we define the Ionescu–Wainger arithmetic

frequency sets

(Q/Z)≤l := h−1([2l]) = {α ∈ Q/Z : h(α) ≤ 2l}

and the Ionescu–Wainger major arcs or simply major arcs

M≤l,≤k := π(R≤k × (Q/Z)≤l);

see Figure 6. These arcs will be somewhat larger than their naive counterparts,

but this is more than compensated for by their superior Fourier multiplier

theory. We also use the variants

(Q/Z)l := (Q/Z)≤l\(Q/Z)≤l−1 = h−1(2l) = {α ∈ Q/Z : h(α) = 2l}

and

Ml,≤k := π(R≤k × (Q/Z)l)

with the convention that (Q/Z)≤−1 is empty.

Lemma 5.2 (Properties of height).

(i) (Naive height controls height). For any α ∈ Q/Z, one has

(5.3) h(α) ≤ hnaive(α).

In particular, (Q/Z)≤l,naive ⊂ (Q/Z)≤l and M≤l,≤k,naive ⊂ M≤l,≤k for

any (l, k) ∈ N×Z. If α ∈ 1
pZ/Z for a prime p, then equality holds in (5.3).



1040 BEN KRAUSE, MARIUSZ MIREK, and TERENCE TAO

M≤l,≤k

R≤k R≤k × (Q/Z)≤l (Q/Z)≤l (Z[1
p ]/Z)≤l

R≤k R≤k × 1
Q≤l

Z/Z 1
Q≤l

Z/Z 1
pj
Z/Z

π

Figure 6. The commutative diagram in Figure 2, restricted to

major arcs, where pj is the largest power of p dividing Q≤l
and (Z[1

p ]/Z)≤l := (Q/Z)≤l ∩ Z[1
p ]/Z. When (l, k) has good

major arcs, the product set R≤k× (Q/Z)≤l is non-aliasing, and

the indicated map π can be upgraded from a surjection to a

bijection. Most of the spaces in this diagram are no longer

groups and so the arrows are now downgraded from continuous

homomorphisms to continuous maps. Note the approximate

duality with Figure 3.

(ii) (Cyclic structure). For any l ∈ N, (Q/Z)≤l is the union of finitely many

dual cyclic groups 1
qZ/Z with

q .ρ 22ρl

and is contained in a single dual cyclic group 1
Q≤l

Z/Z with

Q≤l . 2Oρ(2l).

In fact, the integer Q≤l ∈ Z+ can be defined explicitly as in (A.4).

(iii) (Cardinality bound). For any l ∈ N, one has

#(Q/Z)≤l .ρ 22ρl .

Proof. See Appendix A. �

The linear Fourier multiplier operators T≤lϕ and Tl
ϕ defined by

T≤lϕ := TP(ϕ⊗1(Q/Z)≤l )
,(5.4)

Tl
ϕ := TP(ϕ⊗1(Q/Z)l )

,(5.5)

will play a key role in our analysis. They can be written more explicitly as

T≤lϕ f(x) =
∑

α∈(Q/Z)≤l

∫
R
ϕ(θ)FZf(α+ θ)e(−x(α+ θ)) dθ,

Tl
ϕf(x) =

∑
α∈(Q/Z)l

∫
R
ϕ(θ)FZf(α+ θ)e(−x(α+ θ)) dθ.
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`2(Z)M≤l,≤k

L2(R)R≤k L2(AZ)R≤k×(Q/Z)≤l

L2(R)R≤k L2(R× Z/Q≤lZ)
R≤k× 1

Q≤l
Z/Z

L2(AZ)R≤k×(Q/Z)≤l

L2(Z/Q≤lZ) L2(Ẑ)(Q/Z)≤l

L2(Z/pjZ) L2(Zp)(Z[ 1
p

]/Z)≤l

S−1
R≤k×(Q/Z)≤lS

Figure 7. The L2 version of Figure 6, under the hypothesis of

good major arcs. Solid (hooked) arrows are Hilbert space isome-

tries, double-headed arrows are unitary maps, and dotted ar-

rows indicate a (Hilbert space) tensor product. We thus see that

the major arc component `2(Z)M≤l,≤k of `2(Z) can be identified

with the tensor product of the low (continuous) frequency com-

ponent L2(R)R≤k of L2(R) and the low (arithmetic) frequency

component L2(Ẑ)(Q/Z)≤l of L2(Ẑ), with the latter component

identifiable in turn with a subspace of L2(Z/Q≤lZ). As with

Figure 4, some arrows are missing due to the failure of L2(R)R≤k

to contain a unit 1.

From (4.5) and (4.9), one has the functional calculus

(5.6) T≤lϕ1ϕ2
= T≤lϕ1

◦ T≤lϕ2

whenever (l, k) has good major arcs and ϕ1, ϕ2 ∈ S(R≤k) — and similarly with

≤ l replaced by l in (5.6). The principal tool in bounding operators (5.4) and

(5.5) is the Ionescu–Wainger multiplier theorem [47], which for our purposes

can be formulated as follows:

Theorem 5.7 (Vector-valued Ionescu–Wainger multiplier theorem). If

(l, k) ∈ N× Z has good major arcs in the sense that

(5.8) k ≤ −Cρ2ρl

for a sufficiently large constant Cρ depending only on ρ, then the compact set

R≤k × (Q/Z)≤l ⊂ R×Q/Z is non-aliasing. Furthermore, if q ∈ 2N ∪ (2N)′ is

either an even integer or the dual of an even integer, then the linear Fourier
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multiplier operator T≤lϕ from (5.4) obeys the multiplier bound

(5.9) ‖T≤lϕ ‖`q(Z;H)→`q(Z;H) .ρ,q 〈l〉‖Tϕ‖Lq(R)→Lq(R)

for any ϕ ∈ S(R≤k), and any finite-dimensional Hilbert space H , and similarly

for the multiplier operator Tl
ϕ from (5.5).

Proof. See Appendix A. �

Remark 5.10. Some remarks about Theorem 5.7 are in order.

(i) Theorem 5.7 in the scalar-valued setting was first established by Ionescu

and Wainger [47] with the factor 〈l〉b2/ρc+1 in place of 〈l〉 in (5.9). Their

proof is based on an intricate inductive argument that exploits super-

orthogonality phenomena. A slightly different proof (giving the factor 〈l〉
in (5.9)) using certain recursive arguments, which clarified the role of the

underlying square functions and orthogonalities, was presented in [65]. A

vector-valued Ionescu–Wainger multiplier theorem (in the spirit of [65])

can be found in [68, §2]. A uniform vector-valued Ionescu–Wainger mul-

tiplier theorem, where the factor 〈l〉 is removed from (5.9), was recently

proved by the third author [80]. The latter proof also provides explicit

constants in (5.9) and allows us to handle adelic Fourier multipliers. The

super-orthogonality phenomena are discussed in the survey of Pierce [76]

in a much broader context.

(ii) The fact that the losses in (5.9) are only polynomial in the logarithmic

height scale l instead of exponential will be essential to our arguments,

and form the main reason why we cannot work with the naive notion

of heights, as the analogous multiplier theorem is not available for such

heights.

(iii) As we are focused on variational estimates, even the factors like 2O(ρl)

will have to be handled; see the constants produced by the Rademacher–

Menshov inequality in Section 8. From this point of view, even though

the uniform vector-valued Ionescu–Wainger multiplier theorem [80] is now

available, and the factor 〈l〉 can be deleted, this does not significantly

improve the main result or simplify the proof. Hence, we will use the

vector-valued Ionescu–Wainger multiplier theorem from [68, §2].

(iv) The restriction in Theorem 5.7 to the case when q is an even integer

or the dual of an even integer can be ignored in practice because in all

the applications of Theorem 5.7 we will have good Lq(R) operator norm

bounds on Tϕ for all 1 < q <∞. Then by applying (5.9) for q ∈ 2N∪(2N)′

and then interpolating, we can recover good bounds for all 1 < q < ∞.

See also the discussion after [68, Th. 2.1].
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Remark 5.11. When (l, k) has good major arcs, the corresponding sam-

pling operator S : L2(AZ)R≤k×(Q/Z)≤l → `2(Z)M≤l,≤k is unitary thanks to (4.6),

and it is inverted by the interpolation operator S−1
R≤k×(Q/Z)≤l

; see Figure 7. For

Lp norms, one no longer expects to have the isometry property even at an ap-

proximate level (except in the large scale case when Theorem 4.18 applies), but

(5.9) shows that at least the linear Fourier multiplier theory on `q(Z)M≤l,≤k is

basically controlled (up to small losses) by that of Lq(AZ)R≤k×(Q/Z)≤l (at least

when q ∈ (2N) ∪ (2N)′), which serves as a partial substitute for an isometry

property for the sampling operator.

A crucial component of our arguments is the assertion that the bilinear

averaging operator Ã
n,P (n)
N (f, g) is negligible when the Fourier transform of f or

g vanishes on major arcs. More precisely, we have the following improvement

of (1.6) in this case:

Theorem 5.12 (Single scale minor arc estimate). Let N ≥ 1, let l ∈ N,

and suppose that f, g ∈ `2(Z) obeys one of the following assumptions :

(i) FZf vanishes on M≤l,≤−LogN+l;

(ii) FZg vanishes on M≤l,≤−dLogN+dl,

where the logarithmic scale LogN of N was defined in (2.1). Then one has

(5.13) ‖ÃN (f, g)‖`1(Z) .C1 (2−cl + 〈LogN〉−cC1)‖f‖`2(Z)‖g‖`2(Z).

This theorem will be used repeatedly in our arguments. The parameter

c > 0 from (5.13) will be independent on the Ionescu–Wainger parameter ρ;

see (5.1). The secondary term 〈LogN〉−cC1 is negligible in practice; the key

point is the primary term 2−cl that exhibits exponential decay on the height

scale l. It is important to note that only one of the hypotheses (i), (ii), as

opposed to both, are required to hold in order to obtain this decay. The

asymmetry between (i) and (ii) is entirely caused by the different degrees in the

two polynomials n, P (n) used to form the averaging operator ÃN . This theorem

only gives exponential decay directly for `2(Z)×`2(Z)→ `1(Z) operator norms,

but in practice one can use interpolation to then obtain similar decay for other

`p1(Z) × `p2(Z) → `p(Z) operator norms. We remark that it is essential in

Theorem 5.12 that we are in the nonlinear regime d ≥ 2, as there are easy

counterexamples to this theorem in the linear case d = 1 (as can be seen by

testing (5.13) against plane waves multiplied by suitable cutoff functions).

The proof of Theorem 5.12 will be somewhat lengthy, and it relies on

several deep results in the literature, including the inverse theory of Peluse

and Prendiville [74] and Peluse [73] (see also [75] and the survey of Prendiville

[77]) and Lp-improving estimates of Han–Kovač–Lacey–Madrid–Yang [41] (see

also Dasu–Demeter–Langowski [20]); we also use the properties of the Ionescu–

Wainger projections that we shall define later in this section. A key difficulty in
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the proof of Theorem 5.12 will be that the functions f, g are only controlled in

`2(Z) rather than `∞(Z). We will establish this bound in Section 6. We remark

that a continuous analogue of Theorem 5.12, with the domain Z replaced by

R, and with the major arc set replaced by an interval centered at the frequency

origin, was established in [10, Lemma 5] for monomial P and in [28, Lemma

1.4] in the general case.

Example 5.14. Let l ∈ N, and let N be a sufficiently large integer depend-

ing on l, P . Let q be a prime number with 2l < q ≤ 2l+1 (which implies, in

particular, that 1
q mod 1 has height 2l+1). Consider the functions

f(n) := e(−n/q)
∑

j∈[Nd−1]

εj(F−1
R η)

Å
n− jN
N

ã
,

g(n) := e(−n/q)(F−1
R η)

( n

Nd

)
,

where ε1, . . . , εNd−1 ∈ {−1,+1} are arbitrary signs and η is defined in Sec-

tion 2.3. Then FZf and FZg vanish on M≤l,≤−LogN+l and M≤l,≤−dLogN+dl

respectively, and routine calculations show that

‖FZf‖`2(Z), ‖FZg‖`2(Z) . N
d/2

and also

‖ÃN (f, g)‖`1(Z) . N
d

Å∣∣∣∣En∈Z/qZeÅn+ P (n)

q

ã∣∣∣∣+N−c
ã
.

Standard exponential sum estimates (see, e.g., [48]) reveal that

En∈Z/qZe
Å
n+ P (n)

q

ã
. q−c . 2−cl

(indeed, the Weil bounds allow one to take c = 1/2 here), and so this example

is consistent with Theorem 5.12. Variations of this example can also be used to

explain the appearance of the scales −LogN and −dLogN in Theorem 5.12(i),

(ii), which are the frequency dual scales to the spatial scales LogN , LogNd

associated to the shifts n, P (n) for n ∈ [N ] arising in the definition of A
n,P (n)
N ;

we leave the details to the interested reader.

For the remainder of this section, let us assume Theorem 5.12 and see

how we can use it to attack Theorem 3.9. We will need an adelic version of

Littlewood–Paley projection operators. Let η≤k be the cutoff functions from

Section 2.3. The Fourier multipliers Tη≤k are then standard Littlewood–Paley

Fourier projections on S(R) to the frequency interval R≤k. Motivated by this,

we define the Ionescu–Wainger Fourier projection operator Π≤l,≤k for any

(l, k) ∈ N× Z using the construction (5.4) by the formula

(5.15) Π≤l,≤k := T≤lη≤k .
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More explicitly, one has

Π≤l,≤kf(x) =
∑

α∈(Q/Z)≤l

∫
R
η(θ/2k)FZf(α+ θ)e(−x(α+ θ)) dθ.

Note that Π≤l,≤k is self-adjoint on `2(Z), and its symbol is supported on

M≤l,≤k. We similarly define

(5.16) Πl,≤k := Tl
η≤k

= Π≤l,≤k −Π≤l−1,≤k

with the convention Π≤−1,k = 0.

When (l, k) have good major arcs, these operators have good properties:

Lemma 5.17 (Properties of Ionescu–Wainger projections). Let (l, k) ∈
N× Z be such that (l, k) has good major arcs.

(i) (Boundedness). The operator Π≤l,≤k is a contraction on `2(Z). Further-

more, for any 1 < q <∞, one has

(5.18) ‖Π≤l,≤kf‖`q(Z) .C1,q 〈l〉‖f‖`q(Z).

In particular, Π≤l,≤k extends to a bounded linear operator on `q(Z). If f

is furthermore supported on an interval I , we have the off-diagonal decay

bound

(5.19) ‖Π≤l,≤kf‖`q(J) .C1,q,M 〈l〉〈2kdist(I, J)〉−M‖f‖`q(I)

for any interval J , and any M ∈ N.

(ii) (Fourier support). If f ∈ `2(Z), then Π≤l,≤kf is Fourier supported in

M≤l,≤k, and Π≤l,≤kf = f when FZf is Fourier supported in M≤l,≤k−1.

All these claims also hold when all occurrences of ≤ l are replaced by l.

Proof. See Appendix A. �

Remark 5.20 (Physical space interpretation of major arcs). By uncertainty

principle heuristics, functions f ∈ S(Z) that have Fourier support in M≤l,≤k,
where (l, k) ∈ N×Z satisfy (5.8), can be viewed as behaving like linear combi-

nations of indicator functions 1P of arithmetic progressions P of spacing O(2l)

and diameter O(2−k), and they behave like constants on arithmetic progres-

sions of spacing Q≤l and diameter O(2−k); the latter is only non-vacuous in

the “large-scale” regime in which 2−k is larger than Q≤l. Dually, functions

f ∈ S(Z) whose Fourier transform vanishes onM≤l,≤k morally have negligible

mean on the two types of arithmetic progressions just mentioned. The reader is

invited to compare Figure 3 with Figure 6 through the lens of this uncertainty

principle.
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Now we can use Theorem 5.12 and Lemma 5.17 to achieve some reductions

to prove Theorem 3.9. It will suffice to establish the estimate

(5.21) ‖(ÃN (f, g))N∈D‖`p(Z;V r) .C3 ‖f‖`p1 (Z)‖g‖`p2 (Z).

For each individual N < C3, this claim is immediate from (1.6), so we

may assume without loss of generality that N ≥ C3 for all N ∈ D. If N ≥ C3,

define the quantities

(5.22) l(N) := C0 Log LogN.

Then by (5.8), the pairs (l(N),−LogN + l(N)), (l(N),−dLogN + dl(N)) have

good major arcs, and hence by Lemma 5.17(i), (ii) and Theorem 5.12, if C1 ≥
C0, one has the estimate

‖ÃN ((1−Π≤l(N),−LogN+l(N)
)f, g)‖`1(Z) .C1 (LogN)−cC0‖f‖`2(Z)‖g‖`2(Z).

On the other hand, from Lemma 5.17(i) and (1.6) one also has

‖ÃN ((1−Π≤l(N),−LogN+l(N)
)f, g)‖`q(Z)

.C1,q,q1,q2 (Log LogN)‖f‖`q1 (Z)‖g‖`q2 (Z)

for any 1 < q1, q2 <∞ with 1/q1 + 1/q2 = 1/q ≤ 1. Interpolating, we conclude

that

‖ÃN ((1−Π≤l(N),−LogN+l(N)
)f, g)‖`p(Z)

.C1 (Log LogN)O(1)(LogN)−cC0‖f‖`p1 (Z)‖g‖`p2 (Z).

(Recall that c varies from line to line and is allowed to depend on p1, p2, p.) In

particular, for C0 large enough, one has (say)

‖ÃN ((1−Π≤l(N),−LogN+l(N)
)f, g)‖`p(Z) .C1 (LogN)−10‖f‖`p1 (Z)‖g‖`p2 (Z).

A similar argument gives

‖ÃN (Π≤l(N),−LogN+l(N)
f, (1−Π≤l(N),≤−dLogN+dl(N)

)g)‖`p(Z)

.C1 (LogN)−10‖f‖`p1 (Z)‖g‖`p2 (Z);

by the triangle inequality and bilinearity of ÃN , we conclude that

‖ÃN (f, g)− ÃN (Π≤l(N),≤−LogN+l(N)
f,Π≤l(N),≤−dLogN+dl(N)

g)‖`p(Z)

.C1 (LogN)−10‖f‖`p1 (Z)‖g‖`p2 (Z).

From the λ-lacunary nature of D, we have∑
N∈D:N≥C3

(LogN)−10 . 1
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and hence by (2.7), we have that

‖(ÃN (f, g)− ÃN (Π≤l(N),≤−LogN+l(N)
f,Π≤l(N),≤−dLogN+dl(N)

g))N∈D‖`p(Z;V r)

.C1 ‖f‖`p1 (Z)‖g‖`p2 (Z).

By a further application of the triangle inequality, we conclude that to establish

(5.21), it suffices to prove the major arc bound

‖(ÃN (Π≤l(N),≤−LogN+l(N)
f,Π≤l(N),≤−dLogN+dl(N)

g))N∈D‖`p(Z;V r)

.C3 ‖f‖`p1 (Z)‖g‖`p2 (Z).

We now perform an “arithmetic” dyadic decomposition

Π≤l,≤m =
∑

0≤l′≤l
Πl′,≤m.

By the triangle inequality, it now suffices to show the bound

(5.23) ‖(ÃN (Πl1,≤−LogN+l(N)
f,Πl2,≤−dLogN+dl(N)

g)1l1,l2≤l(N)
)N∈D‖`p(Z;V r)

.C3 2−ρl‖f‖`p1 (Z)‖g‖`p2 (Z)

for all l1, l2 ∈ N, where

(5.24) l := max(l1, l2).

Note that the constraint l1, l2 ≤ l(N) serves as an additional lower bound on

N (and, in particular, the left-hand side of (5.23) vanishes for all but finitely

many l1, l2, thanks to the finite nature of D), so we may also write this bound

as

(5.25) ‖(ÃN (Πl1,≤−LogN+l(N)
f,Πl2,≤−dLogN+dl(N)

g))N∈D;l1,l2≤l(N)
‖`p(Z;V r)

.C3 2−ρl‖f‖`p1 (Z)‖g‖`p2 (Z).

Fix l1, l2 (and hence l), and then introduce the quantity

(5.26) u := bC222ρlc.

We now combine the previous “arithmetic” dyadic decomposition with a “con-

tinuous” dyadic decomposition

Πl1,≤−LogN+l(N)
f =

∑
−u≤s1≤l(N)

F u,l1,s1N ,

Πl2,≤−dLogN+dl(N)
g =

∑
−u≤s2≤l(N)

Gu,l2,s2N ,

where

(5.27) F u,l1,s1N :=

{
Πl1,≤−LogN+s1f −Πl1,≤−LogN+s1−1f s1 > −u,
Πl1,≤−LogN−uf s1 = −u
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and

(5.28) Gu,l2,s2N :=

{
Πl2,≤d(−LogN+s2)g −Πl2,≤d(−LogN+s2−1)g s2 > −u,
Πl2,≤d(−LogN−u)g s2 = −u.

Informally, F u,l1,−uN , Gu,l2,−uN represent the “low (continuous) frequency” com-

ponents of f, g respectively, whereas F u,l1,s1N , s1 > −u and Gu,l2,s2N , s2 > −u
represent the “high (continuous) frequency” components.

By the triangle inequality, we can bound the left-hand side of (5.25) by∑
s1,s2≥−u

‖(ÃN (F u,l1,s1N , Gu,l2,s2N ))N∈Il,s1,s2‖`p(Z;V r),

where Il,s1,s2 denotes the index set

(5.29) Il,s1,s2 := {N ∈ D : l, s1, s2 ≤ l(N)}.

The expression ÃN (F u,l1,s1N , Gu,l2,s2N ) can be viewed as (the scale N component

of) a paraproduct of F and G, but centered around a finite number of (arith-

metic) frequencies, in contrast to the classical paraproducts that are centered

at the frequency origin; also, the paraproduct symbol exhibits some additional

oscillation compared to classical paraproducts when s1, s2 become large. We

shall sometimes distinguish between the “high-high” case s1, s2 > −u, the

“low-high” case s2 > s1 = −u, the “high-low” case s1 > s2 = −u, and the

“low-low” case s1 = s2 = −u of these paraproducts. But for now we can treat

all choices of s1, s2 in a unified fashion.

By several applications of the triangle inequality, the bound (5.25), and

hence Theorem 3.9, now follows from the following variational paraproduct

estimates, in which we request an exponential gain in the p1 = p2 = 2 case and

relatively small losses in all other cases:

Theorem 5.30 (Variational paraproduct estimates). Let the hypotheses

be as in Theorem 3.9, and let the notational conventions be as in this section.

Let l1, l2 ∈ N, and define l, u by (5.24) and (5.26) respectively. Let s1, s2 ≥ −u,

and then let FN := F u,l1,s1N , GN := Gu,l2,s2N , I := Il,s1,s2 be defined respectively

by (5.27), (5.28), and (5.29). Then

(5.31) ‖(ÃN (FN , GN ))N∈I‖`p(Z;V r)

.C3 〈max(l, s1, s2)〉O(1)2O(ρl)−cmax(l,s1,s2)1p1=p2=2‖f‖`p1 (Z)‖g‖`p2 (Z).

Here the constant c does not depend on ρ; see the discussion below Theo-

rem 5.12.

Indeed, by interpolating (5.31) between the case (p1, p2, p) = (2, 2, 1) and

the case where (p1, p2, p) are close to (1,∞, 1), (∞, 1, 1), or (∞,∞,∞), we see
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that (say)

‖(ÃN (FN , GN ))N∈I‖`p(Z;V r)

.C3 〈max(l, s1, s2)〉O(1)2−10ρmax(l,s1,s2)‖f‖`p1 (Z)‖g‖`p2 (Z).
(5.32)

Then using 〈a〉O(1)2−10ρa .C3 2−8ρa for a ≥ 0 and summing the bound in (5.32)

over s1, s2, we see that to obtain the (5.25) from Theorem 5.30, it suffices to

establish the bound ∑
s1,s2≥−u

2−8ρmax(l,s1,s2) .C3 2−ρl;

bounding

2−8ρmax(l,s1,s2) ≤ 2−4ρmax(l,s1)2−4ρmax(l,s2)

it suffices to show that ∑
s0≥−u

2−4ρmax(l,s0) .C3 2−ρl/2.

But this is clear from the geometric series formula since there are only OC2(22ρl)

scales s0 with −u ≤ s0 ≤ l.
It remains to establish Theorems 5.12 and 5.30. Theorem 5.12 will be

established in the next section; the rest of the paper is then devoted to the

proof of Theorem 5.30. For now, we use Theorem 5.12 to deal with one case

of Theorem 5.30:

Proposition 5.33 (High-high `2(Z) case). Theorem 5.30 holds when s1, s2

> −u and p1 = p2 = 2.

In view of this proposition, for the purposes of proving Theorem 5.30 we

may assume that at least one of s1 = −u, s2 = −u, or (p1, p2) 6= (2, 2) holds.

Proof. From (2.7), we have

‖(ÃN (FN , GN ))N∈I‖`1(Z;V r) .
∑
N∈I
‖ÃN (FN , GN )‖`1(Z).

Observe (using Lemma 5.2 and (5.27)) that for N ∈ I, FZFN vanishes on the

major arcsM≤max(l1,s1)−1,≤−LogN+max(l1,s1)−1, and hence by Theorem 5.12 we

have

‖ÃN (FN , GN )‖`1(Z) .C1 (2−cmax(l1,s1) + 〈LogN〉−cC1)‖FN‖`2(Z)‖GN‖`2(Z).

A similar argument gives

‖ÃN (FN , GN )‖`1(Z) .C1 (2−cmax(l2,s2) + 〈LogN〉−cC1)‖FN‖`2(Z)‖GN‖`2(Z),

and hence on taking geometric means,

‖ÃN (FN , GN )‖`1(Z) .C1 (2−cmax(l,s1,s2) + 〈LogN〉−cC1)‖FN‖`2(Z)‖GN‖`2(Z).
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From (5.29) we have 〈LogN〉−cC1 .C3 2−cmax(l,s1,s2), hence

‖ÃN (FN , GN )‖`1(Z) .C3 2−cmax(l,s1,s2)‖FN‖`2(Z)‖GN‖`2(Z).

By the Cauchy–Schwarz inequality, it thus suffices to establish the Bessel-type

inequalities ∑
N∈I
‖FN‖2`2(Z) . ‖f‖

2
`2(Z)

and ∑
N∈I
‖GN‖2`2(Z) . ‖g‖

2
`2(Z).

But this follows from the easily verified pointwise bounds∑
N∈I
|FZFN (ξ)|2 . |FZf(ξ)|2,

∑
N∈I
|FZGN (ξ)|2 . |FZg(ξ)|2

and Plancherel’s theorem. �

6. Minor arc single scale estimate:

applying Peluse–Prendiville theory

In this section we establish Theorem 5.12. The arguments here will be

lengthy, but they are not needed elsewhere in this paper.

It will be convenient to exploit duality and work with trilinear forms

〈ÃN (f, g), h〉 instead of bilinear operators ÃN (f, g). We use the inner product

〈f, g〉 :=
∑
x∈Z

f(x)g(x)

on S(Z). (There will be no advantage for us in this bilinear analysis in inserting

a complex conjugation into the inner product.) We observe the identities

(6.1) 〈ÃN (f, g), h〉 = 〈Ã∗N (h, g), f〉 = 〈Ã∗∗N (f, h), g〉

for f, g, h ∈ S(Z), where the transpose operators Ã∗N , Ã
∗∗
N are the averaging

operators

(6.2)

Ã∗N (h, g)(x) := Ã
−n,P (n)−n
N (h, g)(x) = En∈[N ]h(x+ n)g(x+ n− P (n))1n>N/2

and

Ã∗∗N (f, h)(x) := Ã
n−P (n),−P (n)
N (f, h)(x)

= En∈[N ]f(x+ P (n)− n)h(x+ P (n))1n>N/2.

In the language of additive combinatorics, the functions Ã∗N (h, g), Ã∗∗N (f, h) are

referred to as dual functions.
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6.1. Proof of Theorem 5.12(i). Our starting point is the following deep

inverse theorem of Peluse–Prendiville [74] in the quadratic case P (n) = n2

(see also [75] and [77]), and Peluse [73] for general polynomials P (n) of degree

d ≥ 2.

Theorem 6.3 (Peluse inverse theorem). Let N ≥ 1 and 0 < δ ≤ 1, and let

N0 be a quantity with N0 ∼ Nd. Let f, g, h ∈ S(Z) be supported on [−N0, N0]

with ‖f‖`∞(Z),‖g‖`∞(Z), ‖h‖`∞(Z) ≤ 1, obeying the lower bound

(6.4) |〈ÃN (f, g), h〉| ≥ δNd.

Then one of the following holds :

(i) (N not too large). One has N . δ−O(1).

(ii) (f has major arc structure at scale N ). There exist a positive integer

q . δ−O(1) and a positive integer δO(1)N . N ′ ≤ N such that

1

Nd

∣∣∣∑
x∈Z

Em∈[N ′]f(x+ qm)
∣∣∣ & δO(1).

Note from the uncertainty principle (cf. Remark 5.20) that conclusion (ii)

of Theorem 6.3 is morally equivalent to asserting that the Fourier transform

FZf has a large presence on a major arc setM≤l,≤k,naive with 2l . δ−O(1) and

2−k . δ−O(1)/N . This intuition will be formalized in Proposition 6.6 below.

Proof. We expand out (6.4) as

1

Nd+1

∣∣∣ ∑
n∈[N ]

∑
x∈Z

h(x)f(x− n)g(x− P (n))1n>N/2

∣∣∣ ≥ δ.
By the triangle inequality, we thus have

1

(N ′)d+1

∣∣∣ ∑
n∈[N ′]

∑
x∈Z

h(x)f(x− n)g(x− P (n))
∣∣∣ & δ

for either N ′ = N or N ′ = bN/2c. The claim now follows from [73, Th. 3.3]

(after some minor changes of notation) with parameters (m, q,N,M,P1, P2) =

(2, 1, N0, N
′,n, P (n)). In that theorem, the functions f, g, h were assumed to

be supported on [1, (N ′)d] rather than [−N0, N0], but it is a routine matter to

see that the arguments continue to hold with this slightly more general support

hypothesis. �

We will now gradually manipulate Theorem 6.3 in a sequence of steps to

make it more closely resemble (the contrapositive of) Theorem 5.12(i), until

we are able to actually establish that part of the theorem; we will then adapt

the argument (focusing on g instead of f) to also establish Theorem 5.12(ii).

The first step is to make the conclusion of Theorem 6.3 more Fourier-

analytic in nature. We need a technical calculation:
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Lemma 6.5 (Smooth approximation to 1[a,b]). Let ψ∈S(R) with
∫
R ψ(x) dx

= 1. Then for any interval [a, b] ⊂ R and any 0 < ε ≤ 1, one has the pointwise

bound∑
y∈[a,b]∩Z

εψ(ε(x− y))− 1[a,b](x) .ψ ε
10 + 〈ε(x− a)〉−10 + 〈ε(x− b)〉−10

for all x ∈ Z.

Proof. By the triangle inequality, it suffices to show that∑
y∈Z:y≥a

εψ(ε(x− y))− 1x≥a .ψ ε10 + 〈ε(x− a)〉−10

since the claim then follows by subtracting this estimate from the analogous

estimate for b (adjusting b by an infinitesimal amount if necessary). By trans-

lation invariance, we may set a = 0. From the Poisson summation formula and

the rapid decrease of Fψ, one has∑
y∈Z

εψ(ε(x− y)) = 1 +Oψ(ε10),

so by reflection symmetry and the triangle inequality, it suffices to show that∑
y∈Z:y≥0

εψ(ε(x− y)) .ψ 〈εx〉−10

when x < 0. But this follows from the rapid decrease of ψ. �

Proposition 6.6 (Alternate inverse theorem for f). Under the hypotheses

and notation of Theorem 6.3, there exists a function F ∈ `2(Z) with

(6.7) ‖F‖`∞(Z) . 1; ‖F‖`1(Z) . N
d

and with FZF supported in the O(δ−O(1)/N)-neighborhood of some α ∈ Q/Z
of naive height O(δ−O(1)) such that

(6.8) |〈f, F 〉| & δO(1)Nd.

Proof. If N . δ−O(1), then we can simply take F = Ã∗N (h, g) and a/q =

1/1 and use (6.1) and (1.6) to conclude. Thus we may assume thatN ≥ C∗δ−C∗
for a sufficiently large C∗. In particular, by Theorem 6.3, we can findN ′, q ∈ Z+

with q . δ−O(1) and δO(1)N . N ′ ≤ N such that∑
x∈Z
|Em∈[N ′]f(x+ qm)| & δO(1)Nd.

Observe that the summand vanishes unless |x| ≤ N0 +O(qN ′) . Nd, thus∑
x=O(Nd)

|Em∈[N ′]f(x+ qm)| & δO(1)Nd.
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Now we smooth out the inner average Em∈[N ′]. Let 0 < ε ≤ 1 be a

parameter to be chosen later. From Lemma 6.5, one has

1[N ′](m) = ε
∑

m′∈[N ′]

F−1
R η(ε(m−m′)) +O(ε10 + 〈εm〉−10 + 〈ε(m−N ′)〉−10)

for any m ∈ Z, where η is the cutoff from Section 2.3. Hence from the bound-

edness of f ,

Em∈[N ′]f(x+qm) = ε
∑
m∈Z

Em′∈[N ′]F−1
R η(ε(m−m′))f(x+qm)+O

Å
ε10 +

1

εN ′

ã
.

If we choose ε := Cδ−C/N for some large C (depending only on η, P ) and take

C∗ large enough depending on C, we conclude that∑
x=O(Nd)

∣∣∣ε∑
m∈Z

Em′∈[N ′]F−1
R η(ε(m−m′))f(x+ qm)

∣∣∣ & δO(1)Nd.

In the latter case, there exists G ∈ `∞(Z) supported on [−O(Nd), O(Nd)] with

‖G‖`∞(Z) ≤ 1, with∣∣∣∑
x∈Z

G(x)ε
∑
m∈Z

Em′∈[N ′]F−1
R η(ε(m−m′))f(x+ qm)

∣∣∣ & δO(1)Nd.

We thus have the claim (6.8) with

F (x) := ε
∑
m∈Z

Em′∈[N ′]F−1
R η(ε(m−m′))G(x− qm).

From the hypotheses on η,G, we easily verify the bounds (6.7). A routine

calculation using the Poisson summation formula reveals the identity

FZF (ξ mod 1) = FZG(ξ mod 1)Em′∈[N ′]e(qm
′ξ)
∑
n∈Z
FRF−1

R η

Å
qξ − n
ε

ã
for any ξ ∈ R, which, in particular, implies from the support of η that FZF is

supported in the set

π

Åï
−ε
q
,
ε

q

ò
×
Å

1

q
Z/Z
ãã

.

By applying suitable Fourier multiplier operators, one can then decompose

F =
∑

a∈[q] Fa, where each Fa obeys essentially the same bounds (6.7) as F

and is supported in the ε
q -neighborhood of a

q mod 1. The claim now follows

from the pigeonhole principle and the bounds on ε, q. �

We now dualize the above proposition using the Hahn–Banach theorem

to obtain control on dual functions Ã∗(h, g). Specifically, we shall use the

following lemma.
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Lemma 6.9 (Application of Hahn–Banach). Let A,B > 0, and let G be

an element of `2(Z). Let Φ be a family of vectors in `2(Z), and assume the

following inverse theorem : whenever f ∈ `2(Z) is such that ‖f‖`∞(Z) ≤ 1 and

|〈f,G〉| > A, then |〈f, φ〉| > B for some φ ∈ Φ. Then G lies in the closed

convex hull of

V = {λφ ∈ `2(Z) : φ ∈ Φ, |λ| ≤ A/B} ∪ {h ∈ `2(Z) : ‖h‖`1(Z) ≤ A}.

Proof. Observe that the set convV
‖·‖`2(Z) is balanced. Therefore, if the

claim of Lemma 6.9 failed, then from the Hahn–Banach theorem and the Riesz

representation theorem, there exists f ∈ `2(Z) such that Re〈f,G〉 > A, but

Re〈f, h〉 ≤ A for all h ∈ V . In particular, this gives |〈f, h〉| ≤ A for all h ∈ V ,

which implies that

|〈f, φ〉| ≤ B
for all φ ∈ Φ, and that

‖f‖`∞(Z) = sup
‖h‖`1(Z)≤1

|〈f, h〉| ≤ 1,

contradicting the hypothesis. This completes the proof of the lemma. �

Corollary 6.10 (Structure of dual function, I). Let N≥1 and N0∼Nd.

Let g, h ∈ S(Z) be supported on [−N0, N0] with ‖g‖`∞(Z), ‖h‖`∞(Z) ≤ 1, and let

0 < δ ≤ 1. Then there exists a decomposition

(6.11) Ã∗N (h, g) =
∑

α∈Q/Z:hnaive(α).δ−O(1)

Fα + E1 + E2,

where each Fα ∈ `2(Z) has Fourier transform supported in the O(δ−O(1)/N)-

neighborhood of α and obeys the bounds

(6.12) ‖Fα‖`∞(Z) . δ
−O(1) and ‖Fα‖`1(Z) . δ

−O(1)Nd,

and the error terms E1 ∈ `1(Z) and E2 ∈ `2(Z) obey the bounds

(6.13) ‖E1‖`1(Z) ≤ δNd and ‖E2‖`2(Z) ≤ δ.

For similar applications of the Hahn–Banach theorem to analyze the struc-

ture of dual functions in additive combinatorics, see [45, pp. 221], [38, Th. 3.8].

Proof. There exists f ∈ `∞(Z) with ‖f‖`∞(Z) ≤ 1 such that

|〈f, Ã∗N (h, g)〉| > δNd.

Applying Proposition 6.6, we obtain

|〈f, F 〉| & δO(1)Nd

for some function F ∈ `2(Z) obeying the properties of Proposition 6.6. Invoking

Lemma 6.9 with A = δNd/2 and B ∼ δO(1)Nd and the set

Φ = {φα ∈ `2(Z) : α ∈ Q/Z; hnaive(α) . δ−O(1)},



POINTWISE ERGODIC THEOREMS FOR BILINEAR POLYNOMIAL AVERAGES 1055

we obtain a decomposition

(6.14) Ã∗N (h, g) =
∞∑
j=1

cjφj + E1 + E2,

with the following properties:

(i) for each j ∈ Z+, we have that φj = λjφαj for some φαj ∈ Φ and λj ∈ C
such that |λj | . δ−O(1);

(ii) the coefficients cj are non-negative with
∑∞

j=1 cj ≤ 1, and all but finitely

cj vanish;

(iii) the error term E1 ∈ `1(Z) satisfies ‖E1‖`1(Z) ≤ δNd;

(iv) the error term E2 ∈ `2(Z) satisfies ‖E2‖`2(Z) ≤ δ.
The latter error term arises as a consequence of the fact that one is working

with the closed convex hull instead of the convex hull. In fact, its `2(Z) norm

can be made arbitrarily small, but δ will suffice for our purposes. Grouping

together terms associated to each arithmetic frequency α in (6.14) and using

the triangle inequality, we obtain the desired decomposition from (6.11) that

satisfies (6.12) and (6.13). �

Corollary 6.10 is not directly suitable for our applications for three reasons:

firstly, E1 is controlled in `1(Z) rather than in `2(Z); secondly, g is required to

be controlled in `∞(Z) rather than in `2(Z); and thirdly the support of g is re-

stricted to an interval. Using the Ionescu–Wainger projections, we now address

the first issue, at the cost of worsening the control of the structured component

of the decomposition (6.11), and also requiring δ to not be too small.

Proposition 6.15 (Structure of dual function, II). If N,N0 ∈ Z+ with

N0 ∼ Nd and l ∈ N, with

(6.16) LogN ≥ Cρ2ρl

for a sufficiently large constant Cρ depending on ρ, one has the estimate

‖(1−Π≤l,≤−LogN+l)Ã
∗
N (h, g)‖`2(Z) .C1 2−clNd/2‖h‖`∞(Z)‖g‖`∞(Z),

whenever g, h ∈ S(Z) are supported on [−N0, N0].

Proof. We can assume N is sufficiently large depending on C1, as the claim

follows from (1.6) otherwise. We may also normalize ‖g‖`∞(Z) = ‖h‖`∞(Z) = 1,

so our task is now to show that

‖(1−Π≤l,≤−LogN+l)Ã
∗
N (h, g)‖`2(Z) .C1 2−clNd/2

for some c > 0 depending on P .

We apply Corollary 6.10 with δ = 2−c
′l for a sufficiently small c′ > 0

depending only on P . Because of (6.16) and the hypothesis that N is large,
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we see from (5.8) that (l,−LogN + l) has good major arcs. By choice of δ

and the Fourier support of Fα, we have from Lemma 5.17 that

(1−Π≤l,≤−LogN+l)Fα = 0

for all Fα in the decomposition (6.11), and hence

(1−Π≤l,≤−LogN+l)Ã
∗
N (h, g) = (1−Π≤l,≤−LogN+l)E1

+ (1−Π≤l,≤−LogN+l)E2.
(6.17)

Since

‖(1−Π≤l,≤−LogN+l)E2‖`2(Z) . δ,

it suffices to show that

‖(1−Π≤l,≤−LogN+l)E1‖`2(Z) . 〈l〉δ1/4Nd/2,(6.18)

which will give the claim by the choice of δ. We now establish (6.18).

The function Ã∗N (h, g) is bounded in `∞(Z) norm by O(1). From (6.11)

and the triangle inequality, we thus have

‖E1‖`∞(Z) . δ
−O(1),

since E2 ∈ `q(Z) for any 2 ≤ q ≤ ∞ and ‖E2‖`q(Z) ≤ ‖E2‖`2(Z) ≤ δ, so by

interpolation with (6.13), we have

‖E1‖`p(Z) . δ
1/2Nd/p

for some absolute constant 1 < p < 2 that is sufficiently close to 1. By the

latter bound and Lemma 5.17, we conclude that

‖(1−Π≤l,≤−LogN+l)E1‖`p(Z) .p 〈l〉δ1/2Nd/p.(6.19)

Furthermore, as Ã∗N (h, g) is bounded by O(1) and supported on [−N0, N0] with

N0 ' Nd, we have

‖A∗N (h, g)‖`p′ (Z) .p N
d/p′ .

Thus by Lemma 5.17 again,

‖(1−Π≤l,≤−LogN+l)Ã
∗
N (h, g)‖`p′ (Z) .p,C1 〈l〉Nd/p′ ,

and since ‖E2‖`p′ (Z) . δ, we also have

‖(1−Π≤l,≤−LogN+l)E2‖`p′ (Z) .p,C1 〈l〉δ.

Using these two bounds, the triangle inequality and (6.17), we may write

‖(1−Π≤l,≤−LogN+l)E1‖`p′ (Z) .p,C1 〈l〉Nd/p′ .(6.20)

Interpolating (6.19) and (6.20), we obtain (6.18), and the proof is completed.

�
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We now address the second issue, namely that of relaxing the `∞(Z) con-

trol on g to `2(Z) control. The main tool for this is the following recent `p(Z)

improving estimate for linear polynomial averages.

Proposition 6.21 (`p(Z)-improving). Let Q(n) ∈ Z[n] be of degree d ≥ 2.

Then for every

2 ≥ p >

{
2− 4

d2+d+3
if d ≥ 3,

2− 2
3 if d = 2,

one has the bound

‖AQ(n)
N f‖`2(Z) .p,Q N

d( 1
2
− 1
p

)‖f‖`p(Z)

for all N ≥ 1 and f ∈ `p(Z).

Proof. This follows from the work of Han–Kovač–Lacey–Madrid–Yang [41].

Indeed, the d = 2 case is contained8 in [41, Th. 1.6], and the d ≥ 3 case is

contained in [41, Th. 1.9], after specializing these theorems to the p = 2 case

and performing some routine algebra. Note that [41, Conj. 1.5] predicts that

the range of p can be lowered to p > 2 − 2
d+1 for any value of d, but this is

currently only known for d = 2. For our purposes, any exponent p less than 2

would be sufficient for applications. �

We can now relax the `∞(Z) control on g to `2(Z) control:

Corollary 6.22 (Structure of dual function, III). Under the notation

and hypotheses of Proposition 6.15, one has

(6.23) ‖(1−Π≤l,≤−LogN+l)Ã
∗
N (h, g)‖`2(Z) .C1 2−cl‖h‖`∞(Z)‖g‖`2(Z),

whenever g, h ∈ S(Z) are supported on [−N0, N0].

Proof. From Proposition 6.15, we already have the bound

‖(1−Π≤l,≤−LogN+l)Ã
∗
N (h, g)‖`2(Z) .C1 N

d/22−cl‖h‖`∞(Z)‖g‖`∞(Z).

On the other hand, from (6.2) and the triangle inequality, we have the pointwise

bound

Ã∗N (h, g)(x) . ‖h‖`∞(Z)A
n−P (n)
N |g|(x).

8Strictly speaking, this theorem requires all the coefficients of the quadratic polynomial Q

to be non-negative. However, by applying a reflection x 7→ −x one can assume without loss

of generality that the quadratic coefficient of Q is positive, and then applying a translation

n 7→ n+c for some large positive integer c (noting the pointwise bound A
Q(n)
N f .c A

Q(n+c)
N |f |)

one can then deduce the case of general Q from the non-negative coefficient case (perhaps at

the risk of worsening the dependence of constants on Q). See also [20] for another treatment

of the (monomial) quadratic case and an extension to higher dimensions.
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Hence by Lemma 5.17(i) and Proposition 6.21 applied with Q(n) = n− P (n),

we have

‖(1−Π≤l,≤−LogN+l)Ã
∗
N (h, g)‖`2(Z) .C1,p N

d( 1
2
− 1
p

)‖h‖`∞(Z)‖g‖`p(Z)

for any 2− 4
d2+d+3

< p ≤ 2. The claim now follows from interpolation. �

Now we use the off-diagonal decay estimate (5.19) to remove the support

condition:

Corollary 6.24 (Structure of dual function, IV). Under the notation

and hypotheses of Proposition 6.15, one has (6.23) whenever g ∈ `2(Z) and

h ∈ `∞(Z).

Proof. If g is supported on an interval I of length Nd, then we may restrict

h to an O(Nd)-neighborhood of I without affecting the average Ã∗N (h, g). From

Corollary 6.22 and translation invariance, we then conclude that (6.23) holds

in this case.

Now we handle the case when g is not supported in such an interval. We

may normalize ‖h‖`∞(Z) = 1. We can split g =
∑

I∈I g1I where I ranges

over a partition I of R into intervals I of length Nd. Then by the preceding

discussion, the local dual function DI := Ã∗N (h, g1I) obeys the bound

(6.25) ‖(1−Π≤l,≤−LogN+l)DI‖`2(Z) .C1 2−cl‖g‖`2(I)

for each interval I, and we wish to establish∥∥∥∑
I∈I

(1−Π≤l,≤−LogN+l)DI

∥∥∥
`2(Z)

.C1 2−cl‖g‖`2(Z).

(Recall c is allowed to vary from line to line.) By squaring and applying Schur’s

test, it suffices to obtain the decay bound

〈(1−Π≤l,≤−LogN+l)DI , (1−Π≤l,≤−LogN+l)DJ〉

.C1 2−cl
≠

dist(I, J)

Nd

∑−2

‖g‖`2(I)‖g‖`2(J)

for all intervals I, J of lengthNd. From Cauchy–Schwarz and (6.25), we already

have

〈(1−Π≤l,≤−LogN+l)DI , (1−Π≤l,≤−LogN+l)DJ〉 .C1 2−cl‖g‖`2(I)‖g‖`2(J).

On the other hand, Ã∗N (h, g1I) is supported in a O(Nd)-neighborhood of I,

and similarly for Ã∗N (h, g1J); also, 2LogN−l . Nd. From Lemma 5.17(i) and
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Cauchy–Schwarz followed by (1.6), we thus have

〈(1−Π≤l,≤−LogN+l)DI , (1−Π≤l,≤−LogN+l)DJ〉

.C1 〈l〉O(1)

≠
dist(I, J)

Nd

∑−10

‖DI‖`2(Z)‖DJ‖`2(Z)

.C1 〈l〉O(1)

≠
dist(I, J)

Nd

∑−10

‖g‖`2(I)‖g‖`2(J).

Taking geometric means of the two estimates, we obtain the claim. �

We may now prove Theorem 5.12(i). We may assume that l, N are suf-

ficiently large depending on C1, since the claim follows from (1.6) otherwise.

It suffices to prove this claim under the additional hypothesis (6.16) (which

one can view as an upper bound on l in terms of N), since for larger values

of l, the hypothesis (i) becomes stronger and the conclusion (5.13) is essentially

unchanged. By duality, it now suffices to establish the bound

〈ÃN (f, g), h〉 .C1 2−cl‖f‖`2(Z)‖g‖`2(Z)‖h‖`∞(Z)

for any f ∈ `2(Z), g ∈ `2(Z), h ∈ `∞(Z) obeying the hypothesis in Theo-

rem 5.12(i). From (6.1) and Lemma 5.17, we can write the left-hand side

as

〈(1−Π≤l,≤−LogN+l)Ã
∗
N (h, g), f〉.

The claim now follows from Corollary 6.24 and Cauchy–Schwarz.

6.2. Proof of Theorem 5.12(ii). Now we prove Theorem 5.12(ii). This will

follow from a similar argument used to prove Theorem 5.12(i), once we establish

an analogue of Proposition 6.6 for the function g (with the denominator N in

the intervals replaced with Nd). Such a result was obtained very recently in the

quadratic case P = n2 by Peluse and Prendiville [75, Cor. 1.4]. The arguments

there likely extend to cover all nonlinear polynomials P . We give a derivation

here that is self-contained (except for Theorem 6.3, which is used as a “black

box”), inspired by some earlier unpublished notes in this direction by Peluse

and Prendiville (private communication).

Proposition 6.26 (Alternate inverse theorem for g). Under the hypothe-

ses and notation of Theorem 6.3, there exists a function G ∈ `2(Z) with

‖G‖`∞(Z) . 1; ‖G‖`1(Z) . N
d

and with FZG supported in the O(δ−O(1)/Nd)-neighborhood of some α ∈ Q/Z
of naive height O(δ−O(1)) such that

(6.27) |〈g,G〉| & δO(1)Nd.
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Proof. As in the proof of Proposition 6.6 we may assume that N ≥ Cδ−C
for some large constant C, as the claim is trivial otherwise. From (6.4) and

(6.1), we have

|〈f, Ã∗N (h, g)〉| ≥ δNd.

Since ‖f‖`2(Z) . N
d/2, we conclude using the Cauchy–Schwarz inequality that

|〈Ã∗N (h, g), Ã∗N (h, g)〉| & δ2Nd.

We apply Corollary 6.10 to the second factor Ã∗N (h, g), with δ replaced by c0δ
2

for some small constant c0 > 0, to obtain a decomposition

Ã∗N (h, g) =
∑

α∈Q/Z:hnaive(α).c0δ
−O(1)

Fα + E1 + E2,

where each Fα ∈ `2(Z) has Fourier support in the 1/M -neighborhood of α with

M ∼c0 δO(1)N and obeys the bounds

‖Fα‖`∞(Z) .c0 δ
−O(1) and ‖Fα‖`1(Z) .c0 δ

−O(1)Nd,(6.28)

and the error terms E1 ∈ `1(Z) and E2 ∈ `2(Z) obey the bounds

‖E1‖`1(Z) ≤ c0δ
2Nd and ‖E2‖`2(Z) ≤ c0δ

2.

From (1.6) and Hölder’s inequality one has

|〈Ã∗N (h, g), E1〉|+ |〈Ã∗N (h, g), E2〉| . c0δ
2Nd.

Hence if c0 is small enough, we conclude from the triangle inequality and

pigeonhole principle that

|〈Ã∗N (h, g), Fα〉| & δO(1)Nd

for some α ∈ Q/Z of naive height Oc0(δ−O(1)). Henceforth we suppress the

dependence of constants on c0. By (6.1) again, we conclude that∣∣∣∑
x∈Z

En∈[N ]h(x)Fα(x− n)g(x− P (n))
∣∣∣ & δO(1)Nd.

From the Fourier support of Fα, we have the reproducing formula

Fα(x) =
2

M

∑
m∈Z

Fα(x−m)e(−αm)F−1
R η(2m/M),

where η was defined in Section 2.3. Thus∣∣∣∑
x∈Z

En∈[N ]

∑
m∈Z

h(x)Fα(x−m− n)e(−αm)g(x− P (n))F−1
R η(2m/M)

∣∣∣
& δO(1)Nd+1.
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Making the change of variables s = m+ n, the left-hand side can be rewritten

as∣∣∣∑
x∈Z

∑
s∈Z

h(x)Fα(x− s)e(−αs)En∈[N ]e(αn)g(x− P (n))F−1
R η(2(s− n)/M)

∣∣∣.
By the rapid decay of F−1

R η, the inner sum can be restricted to s = O(N).

Thus by the pigeonhole principle, there exists s = O(N) such that∣∣∣∑
x∈Z

h(x)Fα(x− s)e(−αs)En∈[N ]e(αn)g(x− P (n))F−1
R η(2(s− n)/M)

∣∣∣
& δO(1)Nd.

From (6.28) and the boundedness of h, one has∑
x∈Z
|h(x)Fα(x− s)e(−αs)|2 . δ−O(1)Nd.

Hence by the Cauchy–Schwarz inequality,∑
x∈Z

∣∣En∈[N ]e(αn)g(x− P (n))F−1
R η(2(s− n)/M)

∣∣2 & δO(1)Nd.

By Plancherel’s theorem, we can write the left-hand side as∫
T
|FZg(ξ)|2|SN (ξ)|2dξ,

where SN is the normalized exponential sum

SN (ξ) := En∈[N ]e(αn)e(ξP (n))F−1
R η(2(s− n)/M).

By another appeal to Plancherel’s theorem, one has∫
T
|FZg(ξ)|2dξ = ‖g‖2`2(Z) . N

d,

thus one must have ∫
Ω
|FZg(ξ)|2|SN (ξ)|2dξ & δO(1)Nd

for a set Ω ⊆ T of the form

Ω := {ξ ∈ T : |SN (ξ)| & δO(1)}.

By the inverse form of Weyl’s exponential sum estimate (see the argument

as in [40, Lemma A.11, pp. 1922]), we obtain

Ω ⊆ π([−1/M ′, 1/M ′]× {α′ ∈ Q/Z : hnaive(α
′) . δ−O(1)})

for some M ′ ∼ δO(1)Nd. By the pigeonhole principle, we may therefore find

α′ ∈ Q/Z of naive height O(δ−O(1)) such that∫ α′+1/M ′

α′−1/M ′
|FZg(ξ mod 1)|2dξ & δO(1)Nd.
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By Plancherel’s theorem, this implies that∑
x∈Z

∣∣∣∣ 1

M ′

∑
m∈Z

g(x−m)e(−α′m)F−1
R η

Å
2m

M ′

ã ∣∣∣∣2 & δO(1)Nd

so that (6.27) holds with

G(x) :=
1

(M ′)2

∑
m∈Z

∑
m′∈Z

g(x−m+m′)e(−α′(m−m′))F−1
R η

Å
2m

M ′

ã
F−1
R η

Å
2m′

M ′

ã
.

A routine calculation reveals that G has Fourier support in the 2/M ′-neighbor-

hood of α′ and obeys the bounds

‖G‖`∞(Z) . 1 and ‖G‖`1(Z) . N
d;

the claim follows. �

We can now repeat all of the previous arguments with the role of f now

played by g, and with the spatial scale N replaced by Nd. For the conve-

nience of the reader, we state the analogous key propositions. Repeating the

Hahn–Banach proof of Corollary 6.10, but using Proposition 6.26 in place of

Proposition 6.6, we conclude that

Corollary 6.29 (Structure of second dual function, I). Let the notation

and hypotheses be as in Corollary 6.10. Then there exists a decomposition

Ã∗∗N (f, h) =
∑

α∈Q/Z:hnaive(α).δ−O(1)

Fα + E1 + E2,

where each Fα ∈ `2(Z) has Fourier transform supported in the O(δ−O(1)/Nd)-

neighborhood of α and obeys the bounds from (6.12), and the error terms E1 ∈
`1(Z) and E2 ∈ `2(Z) obey the bounds from (6.13).

Repeating the proof of Proposition 6.15, we conclude that

Proposition 6.30 (Structure of second dual function, II). Let the nota-

tion and hypotheses be as in Proposition 6.15. Then

‖(1−Π≤l,≤−dLogN+dl)Ã
∗∗
N (f, h)‖`2(Z) .C1 2−clNd/2‖f‖`∞(Z)‖h‖`∞(Z),

whenever f, h ∈ S(Z) are supported on [−N0, N0].

Repeating the Lp-improving argument used to prove Corollary 6.22, we

conclude that

Corollary 6.31 (Structure of second dual function, III). Under the no-

tation and hypotheses of Proposition 6.15, one has

(6.32) ‖(1−Π≤l,≤−dLogN+dl)Ã
∗∗
N (f, h)‖`2(Z) .C1 2−cl‖f‖`2(Z)‖h‖`∞(Z),

whenever f, h ∈ S(Z) are supported on [−N0, N0].
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Finally, we repeat the off-diagonal estimate argument used to prove Corol-

lary 6.24 to conclude that

Corollary 6.33 (Structure of second dual function, IV). Under the no-

tation and hypotheses of Proposition 6.15, one has (6.32) whenever f ∈ `2(Z)

and h ∈ `∞(Z).

Theorem 5.12(ii) now follows by repeating the proof of Theorem 5.12(i).

7. Approximation by model operators

To conclude the proof of Theorem 1.17, we need to establish Theorem 5.30.

Let l1, l2 ∈ N, and define l, u by (5.24) and (5.26) respectively. Fix s1, s2 ≥ −u.

In view of Proposition 5.33 we may assume that at least one of s1 = −u,

s2 = −u, (p1, p2) 6= (2, 2) holds. It will be convenient to adopt the following

definition. If G = Z or G = AZ, we declare a tuple (HN )N∈I′ of functions

HN ∈ Lp(G) to be acceptable if one has the estimate

‖(HN )N∈I′‖Lp(G;V r)

.C3 〈max(l, s1, s2)〉O(1)2O(ρl)−cmax(l,s1,s2)1p1=p2=2‖f‖`p1 (Z)‖g‖`p2 (Z).

Our task is thus to show that the tuple

(ÃN (FN , GN ))N∈I

is acceptable.

The main difficulty here is that the scale parameter N affects the aver-

age ÃN (FN , GN ) in three different ways, as the functions FN , GN both sepa-

rately depend on N , and the averaging operator ÃN also depends on N . The

strategy will be to perform Fourier-analytic manipulations (on the adelic fre-

quency space R×Q/Z) to approximate this expression ÃN (FN , GN ) by linear

combinations of simpler “model expressions” A(F̃N , G̃N ), where the functions

F̃N , G̃N still depend on N , but the bilinear averaging operator A is indepen-

dent of N . In such a setting we will be able to use general arguments (e.g.,

Rademacher–Menshov type inequalities) to control the variational norms of the

bilinear expressions A(F̃N , G̃N ) by variational norms of the two linear expres-

sions F̃N , G̃N separately. These in turn can be controlled by a number of tools,

such as the vector-valued Ionescu–Wainger multiplier theorem, Theorem 5.7.

We return to the rigorous arguments. For any N ∈ I, we have

(7.1) N ≥ max(22max(l,s1,s2)/C0
, C3),

which implies, in particular, that

(7.2) N ≥ 210du.
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In contrast, by Lemma 5.2(ii), (Q/Z)≤l is the union of dual cyclic groups
1
qZ/Z with

(7.3) q ≤ 2u/10.

Thus N is going to be far larger than any single denominator q arising in the

major arcs. If one wishes to contain (Q/Z)≤l in a single dual cyclic group
1
QZ/Z, Lemma 5.2(ii) permits one to do this with

(7.4) Q = Q≤l ≤ 22u/10 .

Thus N may or may not be significantly larger than this Q. We will later

separate N into large and small scales in order to exploit this containment in

the large scale case.

From (7.2) we also have

−LogN + l(N) < −10u.

From (5.8) we see that the pair (l,−u) has good major arcs. This lets us factor

the expressions FN , GN using the symbol calculus (5.6). Indeed, if we set

F := Πl1,≤−uf and G := Πl2,≤−ug,

then from (5.15), (5.27), and (5.28) we have the identities

FN = Tl1
ϕN
F ; GN = Tl2

ϕ̃N
G,

where ϕN , ϕ̃N ∈ S(R) are the bump functions

ϕN (ξ) :=

{
η(2LogN−s1ξ)− η(2LogN−s1+1ξ) s1 > −u,
η(2LogN+uξ) s1 = −u

and

(7.5) ϕ̃N (ξ) :=

{
η(2d(LogN−s2)ξ)− η(2d(LogN−s2+1)ξ) s2 > −u,
η(2d(LogN+u)ξ) s2 = −u.

From Lemma 5.17 we have

(7.6) ‖F‖`p(Z) . 〈l〉‖f‖`p(Z); ‖G‖`p′ (Z) . 〈l〉‖g‖`p′ (Z),

hence we may replace f, g by F,G respectively in the definition of acceptability.

It will now suffice to show that the tuple

(7.7) (ÃN (Tl1
ϕN
F,Tl2

ϕ̃N
G))N∈I

is acceptable.

The dependence on N has not yet materially improved, as the quantity

ÃN (Tl1
ϕN
F,Tl2

ϕ̃N
G) still depends on N in three different ways. However, we can
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clarify the dependence on N by (adelic) Fourier analysis. From Example 4.10

and (4.9), we see that

ÃN (Tl1
ϕN
F,Tl2

ϕ̃N
G) = BP⊗2m

l1,l2
N

(F,G),

where the symbol ml1,l2
N : (R×Q/Z)2 → C is defined by the formula

ml1,l2
N ((ξ1, α1), (ξ2, α2))

:= 1h(α1)=2l11h(α2)=2l2ϕN (ξ1)ϕ̃N (ξ2)En∈[N ]e((α1+ξ1)n+(α2+ξ2)P (n))1n>N/2.

From (7.2) and (7.3), we see that N is large compared to the naive heights of

α1, α2, while ξ′1, ξ
′
2 = O(2−u) are small on the support of ml1,l2

N . This suggests

that in the regimes of interest the symbol

En∈[N ]e((α1 + ξ1)n+ (α2 + ξ2)P (n))1n>N/2

has an approximate factorization

(7.8) mẐ(α1, α2)m̃N,R(ξ1, ξ2),

where mẐ : (Q/Z)2 → C is the normalized exponential sum

mẐ(α1, α2) :=

∫
Ẑ
e(α1x+ α2P (x)) dµẐ(x),

where µẐ is the probability Haar measure on the profinite integers Ẑ, or equiv-

alently

mẐ

Å
a1

q
mod 1,

a2

q
mod 1

ã
= En∈Z/qZe

Å
a1n+ a2P (n)

q

ã
for any q ∈ Z+ and a1, a2 ∈ Z, and m̃N,R : R2 → C is the oscillatory integral

(7.9) m̃N,R(ξ1, ξ2) :=
1

N

∫ N

N/2
e(ξ1t+ ξ2P (t)) dt =

∫ 1

1/2
e(ξ1Nt+ ξ2P (Nt)) dt.

Note how the use of the upper averaging operators ÃN instead of AN allows us

to keep t bounded away from zero, which will be technically convenient later in

the argument when we integrate by parts in t (as we now avoid the stationary

points of P ). The approximation (7.8) can be compared with (1.13).

The heuristic (7.8) then suggests the adelic bilinear symbolml1,l2
N ∈ S((R×

Q/Z)2) approximately factors into the tensor product of a continuous bilinear

symbol

(ϕN ⊗ ϕ̃N )m̃N,R ∈ S(R2)

and the arithmetic bilinear symbol

ml1,l2,Ẑ := (1(Q/Z)l1
⊗ 1(Q/Z)l2

)mẐ ∈ S((Q/Z)2).
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At the level of bilinear Fourier multipliers, this factorization suggests the ap-

proximation

ÃN (Tl1
ϕN
F,Tl2

ϕ̃N
G) ≈ B

l1,l2,mẐ
(ϕN⊗ϕ̃N )m̃N,R

(F,G),

where we introduce the twisted bilinear Fourier multiplier operators

(7.10) B
l1,l2,mẐ
m := BP⊗2(m⊗ml1,l2,Ẑ)

for any m ∈ S(R2). More explicitly, one has

B
l1,l2,mẐ
m (f, g)(x) =

∑
α1∈(Q/Z)l1 ,α2∈(Q/Z)l2

mẐ(α1, α2)

×
∫
R2

m(ξ1, ξ2)FZf(α1 + ξ1)FZg(α2 + ξ2)e(−x(α1 +α2 + ξ1 + ξ2)) dξ1dξ2.

Remark 7.11. Another way to think about the approximation (7.8) is that

it is approximating the discrete averaging operator ÃN : S(Z)×S(Z)→ S(Z)

by the adelic averaging operator ÃN,AZ : S(AZ)× S(AZ)→ S(AZ) defined by

(7.12) ÃN,AZ(f, g)(x) :=
1

N

∫
[N/2,N ]×Ẑ

f(x− y)g(x− P (y)) dµAZ(y),

which is in turn the tensor product of the continuous averaging operator

ÃN,R : S(R)× S(R)→ S(R) defined by

ÃN,R(f, g)(x) :=
1

N

∫ N

N/2
f(x− t)g(x− P (t)) dt,

and the arithmetic averaging operator AẐ : S(Ẑ) × S(Ẑ) → S(Ẑ) defined in

Example 4.10. As we shall see, this approximation is particularly accurate in

the large-scale regime when N is large compared to the quantity Q≤l; see (A.4).

In fact, the main estimate (3.10) on the integers Z has a natural analogue

on the adelic integers AZ that can be proven by the same methods (with

several simplifications). Our proof of the integer estimate was discovered by

first working with the adelic operator (or more precisely, a projection of this

operator to R×Z/QZ) as a model case. This suggests that a natural route to

prove other harmonic analysis estimates on the integers Z is to first study the

analogous estimates on AZ or R × Z/QZ as model cases, in order to exploit

the tensor product structure.

We now make the above heuristic precise. For future applications, we

make the approximation slightly more general than what is needed in the

current step.
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Proposition 7.13 (Major arc approximation of ÃN ). For any N ≥ 1

and s ∈ N with −LogN + s ≤ −u, we have∥∥∥ÃN ÄΠl1,≤−LogN+sF̃ ,Πl2,≤−dLogN+dsG̃
ä

−B
l1,l2,mẐ
(η≤−LogN+s⊗η≤−dLogN+ds)m̃N,R

(F̃ , G̃)
∥∥∥
`p(Z)

.C3 2O(max(2ρl,s))N−1‖F̃‖`p1 (Z)‖G̃‖`p2 (Z)

(7.14)

for all F̃ ∈ `p1(Z), G̃ ∈ `p2(Z).

The key point here is the gain of N−1 on the right-hand side, which in

practice will make any expression estimated using this proposition acceptable

(with room to spare).

Proof. From the same sort of calculations used in the preceding heuristic

discussion, we can expand the expression inside the norm of the left-hand side

(7.14) as

BP⊗2M (F̃ , G̃),

where the symbol M ∈ S((R×Q/Z)2) is defined by

M((α1, ξ1), (α2, ξ2))

:= 1h(α1)=2l11h(α2)=2l2η≤−LogN+s(ξ1)η≤−dLogN+ds(ξ2)M0((α1, ξ1), (α2, ξ2))

with

M0((α1, ξ1), (α2, ξ2))

:= En∈[N ]e(α1n+α2P (n))e(ξ1n+ ξ2P (n))1n>N/2−mẐ(α1, α2)m̃N,R(ξ1, ξ2).

Applying Lemma 4.20 with r1 := N−1 and r2 := N−d, Lemma 5.2(iii), and the

triangle inequality, as well as the Leibniz rule, it now suffices to establish the

bounds

∂j1

∂ξj11

∂j2

∂ξj22

M0((α1, ξ1), (α2, ξ2)) .C3 2O(max(2ρl,s))N j1+dj2−1

for 0 ≤ j1, j2 ≤ 2, α1 ∈ (Q/Z)l1 , α2 ∈ (Q/Z)l2 , and ξ1 = O(2s/N), ξ2 =

O(2ds/Nd).

By Lemma 5.2(ii), the sequence n 7→ e(α1n + α2P (n)) is periodic with

some period q = Oρ(2
O(2ρl)). Splitting into residue classes modulo q, and

evaluating the derivatives, it suffices by the triangle inequality to show that∑
n∈[N ]\[N/2]

w(n)1n=a mod q −
1

q

∫ N

N/2
w(t) dt .C3 2O(max(2ρl,s))N j1+dj2

for all a ∈ [q], where

w(t) := e(ξ1t+ ξ2P (t))tj1P (t)j2 .
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It suffices to show that

w(n)− 1

q

∫ n+q

n
w(t) dt .C3 2O(max(2ρl,s))N j1+dj2−1

for all n ∈ [N ]\[N/2], since the claim then follows by summing over all n ∈
[N ]\[N/2] with n = a mod q and using the triangle inequality to estimate

the remainder. By the fundamental theorem of calculus, it then suffices to

establish the bound

d

dt
w(t) .C3 2O(max(2ρl,s))N j1+dj2−1

for t ∼ N ; but this follows from the hypotheses ξ1 = O(2s/N), ξ2 = O(2ds/Nd),

and direct calculation. �

Applying this proposition with F̃ := Tl1
ϕN
F , G̃ := Tl2

ϕ̃N
G, and s :=

max(0, s1, s2) + 1, and using the functional calculus and Lemma 5.17, we con-

clude that

‖ÃN (Tl1
ϕN
F,Tl2

ϕ̃N
G)− B

l1,l2,mẐ
(ϕN⊗ϕ̃N )m̃N,R

(F,G)‖`p(Z)

.C3 2O(max(2ρl,s1,s2))N−1‖F‖`p1 (Z)‖G‖`p2 (Z).

From (7.1) we certainly have

2O(max(2ρl,s1,s2))
∑
N∈I

N−1 .C3 〈max(l, s1, s2)〉O(1)2O(ρl)−cmax(l,s1,s2)1p1=p2=2 ,

and thus by (2.7) and (7.6), we see that the tuple

(ÃN (Tl1
ϕN
F,Tl2

ϕ̃N
G)− B

l1,l2,mẐ
(ϕN⊗ϕ̃N )m̃N,R

(F,G))N∈I

is acceptable. Thus by the triangle inequality, the acceptability of (7.7) is

equivalent to the acceptability of

(B
l1,l2,mẐ
(ϕN⊗ϕ̃N )m̃N,R

(F,G))N∈I.

From (2.6), it suffices to prove the acceptability of the two subtuples

(B
l1,l2,mẐ
(ϕN⊗ϕ̃N )m̃N,R

(F,G))N∈I≤ , (B
l1,l2,mẐ
(ϕN⊗ϕ̃N )m̃N,R

(F,G))N∈I> ,

where

(7.15) I≤ := {N ∈ I : N ≤ 22u}

is the set of “small scales,” and

I> := {N ∈ I : N > 22u}

is the set of “large scales.” As we shall see, for the small scales one will be able

to tolerate the (doubly) logarithmic losses arising from Rademacher–Menshov

arguments, and for the large scales, one will be able to exploit (7.4) to replace

the integers Z by the adelic integers AZ.
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At this stage the bilinear operator B
l1,l2,mẐ
(ϕN⊗ϕ̃N )m̃N,R

still has a symbol that de-

pends on N , although at least the dependence is now confined to the continuous

frequency variables and not the arithmetic ones. To simplify the dependence

further, we observe from (4.17) that we have the functional calculus

B
l1,l2,mẐ
(ϕ1⊗ϕ2)m(f, g) = B

l1,l2,mẐ
m (Tl1

ϕ1
f,Tl2

ϕ2
g)

whenever ϕ1, ϕ2 ∈ S(R≤−u) and m ∈ S(R2
≤−u). From this calculus and the

definition (7.9) of m̃N,R, we can factor B
l1,l2,mẐ
(ϕN⊗ϕ̃N )m̃N,R

(F,G) as

(7.16) B
l1,l2,mẐ
(ϕN⊗ϕ̃N )m̃N,R

(F,G) =

∫ 1

1/2
B
l1,l2,mẐ
m∗ (Tl1

ϕN,t
F,Tl2

ϕ̃N,t
G) dt,

where ϕN,t, ϕ̃N,t ∈ S(R) are modulated variants of ϕN , ϕ̃N defined by the

formulae

ϕN,t(ξ) := ϕN (ξ)e(Ntξ),

ϕ̃N,t(ξ) := ϕ̃N (ξ)e(P (Nt)ξ)(7.17)

and m∗ ∈ S(R2) is the symbol

m∗ := η≤−2u ⊗ η≤−2du.

The advantage of the formulation (7.16) is that the bilinear operator B
l1,l2,mẐ
m∗ is

independent of N . This is particularly useful in the small-scale case N ∈ I≤, as

it will let us control variational norms of bilinear expressions in terms of linear

quantities via a two-parameter version of the Rademacher–Menshov inequality.

In the large-scale case N ∈ I>, we can express (7.16) in another useful

way. Introduce the adelic model functions FA ∈ Lp1(AZ), GA ∈ Lp2(AZ) by

the formulae

(7.18)

FA(x, y) :=
∑

α1∈(Q/Z)l1

∫
R
η≤−2u−1(ξ1)FZF (α1 + ξ1)e(−(ξ1, α1) · (x, y)) dξ1

and

(7.19)

GA(x, y) :=
∑

α2∈(Q/Z)l2

∫
R
η≤−2u−1(ξ2)FZG(α2 + ξ2)e(−(ξ2, α2) · (x, y)) dξ2

for x ∈ R, y ∈ Ẑ, or equivalently on the Fourier side

FAZFA(ξ1, α1) = 1h(α1)=2l1η≤−2u−1(ξ1)FZF (α1 + ξ1),

FAZGA(ξ2, α2) = 1h(α2)=2l2η≤−2u−1(ξ2)FZG(α2 + ξ2)
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for ξ1, ξ2 ∈ R and α1, α2 ∈ Q/Z. (One can use Lemma 4.20 to verify that

FA does indeed lie in Lp(AZ), and similarly for GA.) One can also interpret

FA, GA as the interpolated functions

FA = S−1
R≤−2u−1×(Q/Z)l1

Πl1,≤−2u−1F, GA = S−1
R≤−2u−1×(Q/Z)l2

Πl2,≤−2u−1G.

In the large-scale case, η≤−2u−1 equals 1 on the support of ϕN,t, ϕ̃N,t,

and m∗ equals 1 on the support of η≤−2u−1 ⊗ η≤−2u−1 . One can then describe

various combinations of F,G as applications of the sampling operator S to

various combinations of FA, GA. More precisely, one observes the identities

Πl1,≤−2u−1F = SFA,(7.20)

Πl2,≤−2u−1G = SGA,(7.21)

Tl1
ϕN,t

F = STϕN,t⊗1FA,

Tl2
ϕ̃N,t

G = STϕ̃N,t⊗1GA,

B
l1,l2,mẐ
m∗ (Tl1

ϕN,t
F,Tl2

ϕ̃N,t
G) = SB1⊗ml1,l2,Ẑ

(TϕN,t⊗1FA,Tϕ̃N,t⊗1GA)

so that (7.16) can now be written as

S
∫ 1

1/2
B(ϕN,t⊗ϕ̃N,t)⊗ml1,l2,Ẑ

(FA, GA) dt.

All functions on AZ here have Fourier support in the region

(R≤−2u−1 × (Q/Z)l1)× (R≤−2u−1 × (Q/Z)l2),

which by Lemma 5.2(ii) is contained in(
R≤−2u−1 ×

( 1

Q≤l
Z/Z

))
×
(
R≤−2u−1 ×

( 1

Q≤l
Z/Z

))
.

In this large-scale regime, this is a regime in which Theorem 4.18 applies,

thanks to (7.4). In particular, from Theorem 4.18 (using the normed vector

space V r), we have

‖(Bl1,l2,mẐ
(ϕN⊗ϕ̃N )m̃N,R

(F,G))N∈I>‖`p(Z;V r)

∼
∥∥∥(∫ 1

1/2
B1⊗mẐ

(TϕN,t⊗1FA,Tϕ̃N,t⊗1GA) dt
)
N∈I>

∥∥∥
Lp(AZ;V r))

;

similarly, from (7.20), (7.21), (7.6), Theorem 4.18, and Lemma 5.17 one has

(7.22) ‖FA‖Lp1 (AZ) . 〈l〉O(1)‖f‖`p1 (Z); ‖GA‖Lp2 (AZ) . 〈l〉O(1)‖g‖`p2 (Z).

In view of the above discussion (and Proposition 5.33), Theorem 5.30 (and

hence Theorem 1.17) now reduces to establishing the following estimates.
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Theorem 7.23 (Model operator estimates, I). Suppose that at least one

of s1 = −u, s2 = −u, or p 6= 2 holds. Then the small-scale model tuple

(7.24)
(∫ 1

1/2
B
l1,l2,mẐ
m∗ (Tl1

ϕN,t
F,Tl2

ϕ̃N,t
G) dt

)
N∈I≤

and the large-scale model tuple

(7.25)
(∫ 1

1/2
B1⊗mẐ

(TϕN,t⊗1FA,Tϕ̃N,t⊗1GA)
)
N∈I>

are both acceptable.

It remains to establish Theorem 7.23. One difficulty in this theorem is the

need to obtain some decay in s1, s2 when they are large. Our main tool for do-

ing this will be the following integration by parts identity. For j1, j2 = −1, 0,+1

with (s1, j1), (s2, j2) 6= (−u,−1), we define the modified bump functions

ϕN,t,j1(ξ1) := (2−s1Nξ1)j1ϕN,t(ξ1) = (2−s1Nξ1)j1e(Ntξ1)ϕN (ξ1)

and

ϕ̃N,t,j2(ξ2) := (2−ds2Ndξ2)j2ϕ̃N,t(ξ2) = (2−ds2Ndξ2)j2e(P (Nt)ξ2)ϕ̃N (ξ2).

Note that it is necessary to exclude the cases (s1, j1), (s2, j2) = (−u,−1) to

prevent these functions from developing a singularity at the frequency origin.

Lemma 7.26 (Integration by parts identity).

(i) If s1 > −u, then we have∫ 1

1/2
ϕN,t ⊗ ϕ̃N,t dt

=
2−s1

2πi
ϕN,t,−1 ⊗ ϕ̃N,t

∣∣∣t=1

t=1/2
− 2ds2−s1

∫ 1

1/2
ϕN,t,−1 ⊗ ϕ̃N,t,1

P ′(Nt)

Nd−1
dt.

(ii) If s2 > −u, then we have∫ 1

1/2
ϕN,t ⊗ ϕ̃N,t dt =

2−ds2

2πi
ϕN,t ⊗ ϕ̃N,t,−1

Nd−1

P ′(Nt)

∣∣∣t=1

t=1/2

− 2s1−ds2
∫ 1

1/2
ϕN,t,1 ⊗ ϕ̃N,t,−1

Nd−1

P ′(Nt)
dt

+
2−ds2

2πi

∫ 1

1/2
ϕN,t ⊗ ϕ̃N,t,−1

NdP ′′(Nt)

P ′(Nt)2
dt.

Note that the quantity P ′(Nt) that appears in some of the denominators

here is non-vanishing thanks to the lower bounds N ≥ C3 and t ≥ 1/2; indeed



1072 BEN KRAUSE, MARIUSZ MIREK, and TERENCE TAO

the tuples

(7.27)

Å
P ′(Nt)

Nd−1

ã
N∈I

,

Ç
Nd−1

P ′(Nt)

å
N∈I

,

Ç
NdP ′′(Nt)

P ′(Nt)2

å
N∈I

can all be easily verified to have a V r norm of O(1) for all 1/2 ≤ t ≤ 1. This

is the main reason why we work with ÃN instead of AN in most of this paper.

Proof. To prove (i) it suffices to show that∫ 1

1/2
e(ξ1Nt+ ξ2P (Nt)) dt =

e(ξ1Nt+ ξ2P (Nt))

2πiNξ1

∣∣∣t=1

t=1/2

−
∫ 1

1/2
e(ξ1Nt+ ξ2P (Nt))

P ′(Nt)ξ2

ξ1
dt

whenever ξ1 6= 0 and N ≥ C3, but this follows by writing

e(ξ1Nt) =
1

2πiNξ1

d

dt
e(ξ1Nt)

and integrating by parts. Similarly, to prove (ii) it suffices to show that∫ 1

1/2
e(ξ1Nt+ ξ2P (Nt)) dt =

e(ξ1Nt+ ξ2P (Nt))

2πiNξ2P ′(Nt)

∣∣∣t=1

t=1/2

−
∫ 1

1/2
e(ξ1Nt+ ξ2P (Nt))

ξ1

P ′(Nt)ξ2
dt

+
1

2πi

∫ 1

1/2
e(ξ1Nt+ ξ2P (Nt))

P ′′(Nt)

ξ2P ′(Nt)2
dt

whenever ξ2 6= 0 and N ≥ C3, but this follows by writing e(ξ2P (Nt)) =
1

2πiNξ2P ′(Nt)
d
dte(ξ2P (Nt)) and integrating by parts. �

We will now show how Theorem 7.23 is a consequence of Lemma 7.26 and

the following variant, which works with a fixed choice of t but does not require

any decay in the s1, s2 parameters.

Theorem 7.28 (Model operator estimates, II). Let j1, j2 ∈ {−1, 0,+1}
be such that

(7.29) (s1, j1), (s2, j2) 6= (−u,−1).

Then for every 1/2 ≤ t ≤ 1, one has the small-scale model estimate∥∥∥∥(B
l1,l2,mẐ
m∗ (Tl1

ϕN,t,j1
F,Tl2

ϕ̃N,t,j2
G)
)
N∈I≤

∥∥∥∥
`p(Z;V r)

.C3 〈max(l, s1, s2)〉O(1)2O(ρl)−cl1p1=p2=2‖F‖`p1 (Z)‖G‖`p2 (Z)

(7.30)
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and the large-scale model estimate∥∥∥ÄB1⊗mẐ
(TϕN,t,j1⊗1FA,Tϕ̃N,t,j2⊗1GA)

ä
N∈I>

∥∥∥
Lp(AZ;V r)

.C3 〈max(l, s1, s2)〉O(1)2O(ρl)−cl1p1=p2=2‖FA‖Lp1 (AZ)‖GA‖Lp2 (AZ).

(7.31)

We assume Theorem 7.28 for now and show how it implies Theorem 7.23.

We give the argument for the large-scale tuple (7.25), as the treatment of the

small-scale tuple (7.24) is completely analogous. From Theorem 7.28 (with

j1 = j2 = 0), (7.6), (7.22) and Minkowski’s integral inequality, we already ob-

tain the acceptability bound for (7.25) but with the factor 2−cmax(l,s1,s2)1p1=p2=2

replaced by 2−cl1p1=p2=2 . This gives the claim unless p1 =p2 =2 and max(s1, s2)

> l so, in particular, p = 1. Since the high-high case s1, s2 > −u, p1 = p2 = 2

has already been excluded, this only leaves us with the high-low case s1 > l,

s2 = −u, p1 = p2 = 2 and the low-high case s2 > l, s1 = −u, p1 = p2 = 2. In

the low-high case, one applies Lemma 7.26(ii), (7.27), (2.8), and Minkowski’s

integral inequality to bound the left-hand side of (7.25) (where the integrand

can be viewed as a linear functional applied to ϕN,t ⊗ ϕ̃N,t) by

. 2−ds2 sup
j1,j2=0,±1

sup
1/2≤t≤1

‖(B1⊗mẐ
(TϕN,t,j1⊗1FA,Tϕ̃N,t,j2⊗1GA))N∈I>‖L1(AZ;V r).

The acceptability of (7.25) in this case now follows from Theorem 7.28, (7.6)

and (7.22) (noting that the hypothesis (7.29) is verified). In the high-low case

one argues similarly using Lemma 7.26(i) instead of Lemma 7.26(ii).

It remains to establish Theorem 7.28. This will be the purpose of the next

three sections of this paper.

8. The small-scale estimate:

applying the Rademacher–Menshov inequality

In this section we establish (7.30). A key tool in the small-scale case will be

the following two-dimensional version of the Rademacher–Menshov inequality.

Lemma 8.1 (Two-dimensional Rademacher–Menshov). Let K ∈ Z+, and

for any k1, k2 ∈ [K], let ak1,k2 be a complex number, with the convention that

ak1,k2 = 0 if k1 = 0 or k2 = 0. Then for any 1 < r <∞, one has

‖(ak,k)k∈[K]‖V r .r
∑

M1,M2∈2N∩[K]

∥∥(∆aM1j1,M2j2)(j1,j2)∈[K/M1]×[K/M2]

∥∥
`r
,

where

∆aM1j1,M2j2 := aM1j1,M2j2−aM1(j1−1),M2j2−aM1j1,M2(j2−1)+aM1(j1−1),M2(j2−1).

The one-dimensional analogue of this inequality is well known; see, e.g.,

[67, Lemma 2.5, pp. 534].
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Proof. By definition (2.5) of the V r norm, one has

‖(ak,k)k∈[K]‖V r .r ‖(akj ,kj − akj−1,kj−1
)j∈[J ]‖`r

for some sequence 1 ≤ k1 < · · · < kJ ≤ K, with the convention k0 = 0.

Let µ be the discrete complex measure on [K]2 with masses

µ({(l1, l2)}) := al1,l2 − al1−1,l2 − al1,l2−1 + al1−1,l2−1.

By the telescoping series we may write

akj ,kj − akj−1,kj−1
= µ([kj ]

2\[kj−1]2).

Observe that the L-shaped region [kj ]
2\[kj−1]2 can be partitioned into the

union of two rectangles:

[kj ]
2\[kj−1]2 = [kj ]× ([kj ]\[kj−1]) ] ([kj ]\[kj−1])× [kj−1].

We partition these rectangles further into dyadic subrectangles as follows. For

each M ∈ 2N ∩ [K], let IM be the collection of all discrete dyadic intervals I

in [K] of length M , thus I = [M ] + (j − 1)M = {jM −M + 1, . . . ,M} for

some j ∈ [K/M ]. Every interval J in [K] can then be written as the union

of disjoint dyadic intervals I ∈
⋃
M∈2N∩[K] IM , in such a manner that at most

two intervals are used from each collection IM . Indeed, one can take the I to

be the maximal dyadic intervals contained in J : for each scale M , the intervals

in IM that lie in J are consecutive, and all but the two extreme intervals in

this sequence will fail to be maximal. Taking Cartesian products, we conclude

that the region [kj ]
2\[kj−1]2 can be written as the union of dyadic rectangles

I1×I2 with I1 ∈ IM1 , I2 ∈ IM2 for some M1,M2 ∈ 2N∩ [K], in such a way that

each pair (M1,M2) is associated to O(1) rectangles I1 × I2. From the triangle

inequality, we thus have

µ([kj ]
2\[kj−1]2) .

∑
M1,M2∈2N∩[K]

sup
I1∈IM1

,I2∈IM2
:I1×I2⊂[kj ]2\[kj−1]2

|µ(I1 × I2)|

and hence on taking `r norms

‖(ak,k)k∈[K]‖V r

.r
∑

M1,M2∈2N∩[K]

∥∥∥∥( sup
I1∈IM1

,I2∈IM2
:I1×I2⊂[kj ]2\[kj−1]2

|µ(I1 × I2)|
)
j∈[J ]

∥∥∥∥
`r

;

since the rectangles I1×I2 associated to a given region [kj ]
2\[kj−1]2 are disjoint,

we conclude that

‖(ak,k)k∈[K]‖V r .r
∑

M1,M2∈2N∩[K]

∥∥∥(µ(I1 × I2))I1∈IM1
,I2∈IM2

∥∥∥
`r
.
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If I1 = [M1] + (j1 − 1)M1 and I2 = [M2] + (j2 − 1)M2, then

µ(I1 × I2) = aM1j1,M2j2 − aM1(j1−1),M2j2 − aM1j1,M2(j2−1) + aM1(j1−1),M2(j2−1)

and the claim follows. �

We can combine this with Khintchine’s inequality to conclude

Corollary 8.2 (Rademacher–Menshov for bilinear forms). Let K ∈ Z+,

and for any k ∈ [K], let fk ∈ V, gk ∈ W be elements of some vector spaces

V,W . Let 0 < q <∞, and let B : V ×W → Lq(X) be a bilinear map for some

measure space X . Then

‖(B(fk, gk))k∈[K]‖Lq(X;V 2) .q 〈logK〉max(2, 2
q

)

× sup
ε1,ε′1,...,εK ,ε

′
K ,∈{−1,+1}

∥∥∥∥B( ∑
k∈[K]

εk(fk − fk−1),
∑
k∈[K]

ε′k(gk − gk−1)
)∥∥∥∥

Lq(X)

(8.3)

with the conventions f0 = g0 = 0.

In our applications, the set [K] will index a lacunary set of scales, so the

logK type losses are in fact doubly logarithmic in the scale parameters. This

will allow us to profitably use this corollary for scales as large as 22u . Note in

this corollary that the bilinear operator B is not permitted to depend on k,

but fortunately the Fourier-analytic manipulations of the preceding section

have achieved such an independence of k for the bilinear operator appearing

in (7.30).

Proof. We may normalize

(8.4)

sup
ε1,ε′1,...,εK ,ε

′
K ,∈{−1,+1}

∥∥∥∥B( ∑
k∈[K]

εk(fk − fk−1),
∑
k∈[K]

ε′k(gk − gk−1)
)∥∥∥∥

Lq(X)

= 1.

For each x ∈ X, we apply Lemma 8.1 with ak1,k2 = B(fk1 , gk2)(x) and r = 2

to bound the left-hand side of (8.3) by

.

∥∥∥∥ ∑
M1,M2∈2N∩[K]

∥∥(B(f̃M1j1 , g̃M2j2))(j1,j2)∈[K/M1]×[K/M2]

∥∥
`2

∥∥∥∥
Lq(X)

,

where f̃M1j1 := fM1j1 − fM1(j1−1) and g̃M2j2 := gM2j2 − gM2(j2−1). The last

norm by the triangle or quasi–triangle inequality (3.7) is bounded by

.q 〈K〉max(2, 2
q

)
sup

M1,M2∈2N∩[K]

∥∥∥(B(f̃M1j1 , g̃M2j2))(j1,j2)∈[K/M1]×[K/M2]

∥∥∥
Lq(X;`2)

.

Thus it suffices to show for each M1,M2 ∈ 2N ∩ [K] that∥∥∥(B(f̃M1j1 , g̃M2j2))(j1,j2)∈[K/M1]×[K/M2]

∥∥∥q
Lq(X;`2)

.q 1.
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But by two applications of Khintchine’s inequality, one can bound the left-hand

side by the expected value of∥∥∥∥ ∑
j1∈[K/M1]

∑
j2∈[K/M2]

εj1ε
′
j2B(f̃M1j1 , g̃M2j2)

∥∥∥∥q
Lq(X)

,

where εj1 , ε
′
j2

are independent random Bernoulli signs. But every instance of

this random expression can be factored (after relabeling the signs) in the form

of one of the norms in (8.4), raised to the power q, and the claim follows. �

We now apply this estimate to (7.30). We enumerate the elements of I≤
in order as N1 < · · · < NK ; we may assume that K ≥ 1 since otherwise there

is nothing to prove. From (7.15) we have K = O(2u). Thus by Lemma 8.2 we

may bound the left-hand side of (7.30) by

uO(1)‖Bl1,l2,mẐ
m∗ (Tl1

ϕ∗F,T
l2
ϕ̃∗
G)‖`p(Z)

for some cutoffs ϕ∗, ϕ̃∗ of the form

ϕ∗ =
∑
k∈[K]

εk(ϕNk,t,j1 − ϕNk−1,t,j1),

ϕ̃∗ =
∑
k∈[K]

ε̃k(ϕ̃Nk,t,j2 − ϕ̃Nk−1,t,j2)
(8.5)

for some signs εk, ε̃k ∈ {−1,+1}, where we adopt the convention ϕN0,t,j1 =

ϕ̃N0,t,j2 = 0. Note from (5.26) that uO(1) .C3 2O(ρl), so the loss of uO(1) will

be acceptable for us. It now suffices to show that

‖Bl1,l2,mẐ
m∗ (Tl1

ϕ∗F,T
l2
ϕ̃∗
G)‖`p(Z)

.C3 〈max(l, s1, s2)〉O(1)2−cl1p1=p2=2‖F‖`p1 (Z)‖G‖`p2 (Z).

We now use

Lemma 8.6 (Single-scale estimate). If F̃ ∈`p1(Z), G̃∈`p2(Z) have Fourier

support on Ml1,≤−3u and Ml2,≤−3du respectively, then

‖Bl1,l2,mẐ
m∗ (F̃ , G̃)‖`p(Z) .C3 2−cl1p1=p2=2‖F̃‖`p1 (Z)‖G̃‖`p2 (Z).

Proof. The strategy is to apply Proposition 7.13 in reverse, so that Theo-

rem 5.12 may be applied. We may normalize ‖F̃‖`p1 (Z) = ‖G̃‖`p2 (Z) = 1. From

Proposition 7.13 with N = 2u and s = 0, we see that

‖Ã2u(F̃ , G̃)− B
l1,l2,mẐ
m̃2u,Rm∗

(F̃ , G̃)‖`p(Z) .C3 2O(2ρl)−u .C3 2−cl1p1=p2=2 ,

noting that on the Fourier support of F̃ , G̃ the multipliers m∗ and η≤−u⊗η≤−du
are both equal to 1. Since FZF̃ vanishes on M≤l1−1,≤−LogN+l1−1 and FZG̃
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vanishes on the major arcsM≤l2−1,≤−dLogN+dl2−d, we see from Theorem 5.12

(and (1.6)) that

‖Ã2u(F̃ , G̃)‖`p(Z) .C3 2−cl1p1=p2=2 .

By the triangle inequality, it thus suffices to show that

‖Bl1,l2,mẐ
(1−2m̃2u,R)m∗

(F̃ , G̃)‖`p(Z) .C3 2O(2ρl)−u.

Applying Lemma 4.20(ii) (and Lemma 5.2(iii)) with r1 = 2−2u and r2 = 2−2du,

it suffices to show that

∂j1

∂ξj11

∂j2

∂ξj21

((1− 2m̃2u,R)m∗)(ξ1, ξ2) . 2(2j1+2dj2−1)u

for all ξ1, ξ2 ∈ R and 0 ≤ j1, j2 ≤ 2. By the product rule and definition of m∗,

it suffices to show that

∂j1

∂ξj11

∂j2

∂ξj21

(1− 2m̃2u,R)(ξ1, ξ2) . 2(2j1+2dj2−1)u

when ξ1 = O(2−2u), ξ2 = O(2−2du), and 0 ≤ j1, j2 ≤ 2. But from (7.9) one has

1−2m̃2u,R(ξ1, ξ2) = 2

∫ 1

1/2
1− e(2utξ1+P (2ut)ξ2) dt

=−4πi

∫ 1

0

∫ 1

1/2
(2uξ1+2uP ′(2utt′)ξ2)e(2utξ1+P (2ut)ξ2) dtdt′,

so by differentiation under the integral sign and the triangle inequality it suf-

fices to show that

∂j1

∂ξj11

∂j2

∂ξj21

(2uξ1 + 2uP ′(2utt′)ξ2)e(2utξ1 + P (2ut)ξ2) . 2(2j1+2dj2−1)u

uniformly for t ∈ [0, 1], t′ ∈ [1/2, 1]. But this follows from direct calculation.

(In fact, one obtains a slightly stronger bound of O(2(j1+dj2−1)u) when j1 =

j2 = 0 and O(2(j1+dj2)u) when j1 + j2 > 0.) �

In view of this lemma, it now suffices to establish the bounds

‖Tl1
ϕ∗‖`q(Z)→`q(Z), ‖Tl2

ϕ̃∗
‖`q(Z)→`q(Z) .C3,q 〈max(l, s1, s2)〉O(1)

for any 1 < q < ∞. By interpolation, it suffices to achieve this when q is an

even integer or the dual of an even integer. Using Theorem 5.7, it suffices to

show that

‖Tϕ∗‖Lq(R)→Lq(R), ‖Tϕ̃∗‖Lq(R)→Lq(R) .C3,q max(1, s1, s2)O(1)

for all 1 < q <∞.

By expanding out (8.5), (7.17), and (7.5) (and treating the s2>−u, s2 =−u
cases separately), we see that ϕ̃∗ is a shifted Calderón–Zygmund multiplier of

the form treated in Theorem B.1, with A = 2−ds2 , λN = 2ds2P (Nt)/Nd,
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K = O(max(1, s2)), and C = O(1). (Note that the hypothesis (7.29) is needed

to avoid a divergence at the frequency origin.) The claim for Tϕ̃∗ then follows

from that theorem. The treatment of Tϕ∗ is similar (with s2 replaced by s1,

P (Nt) replaced by Nt, and d replaced by 1). This concludes the proof of (7.30).

9. The large-scale estimate: exploiting tensor product structure

In this section we establish (7.31). Note from Examples 4.10 and 4.11

that one can factor the bilinear operator B1⊗mẐ
as the tensor product of the

identity and the arithmetic averaging operator AẐ. Thus on the one hand, we

can write

B1⊗mẐ
(TϕN,t,j1⊗1FA,Tϕ̃N,t,j2⊗1GA)

as

(9.1)

∫
Ẑ
(TϕN,t,j1⊗1τ(0,y)FA)(Tϕ̃N,t,j2⊗1τ(0,P (y))GA) dµẐ(y),

where we define the translation operators τhF (x) := F (x − h) for any F ∈
L0(G) and h ∈ G. On the other hand, if we use Fx : y 7→ F (x, y) to denote the

slice Fx : Ẑ → C of a function F : AZ → C at a real number x, we can write

the slice

B1⊗mẐ
(TϕN,t,j1⊗1FA,Tϕ̃N,t,j2⊗1GA)x

as

(9.2) AẐ((TϕN,t,j1⊗1FA)x, (Tϕ̃N,t,j2⊗1GA)x).

We now establish the easier case (p1, p2) 6= (2, 2), in which we do not need

to obtain a gain of the form 2−cl; we will also not need to lose factors of 2O(ρl).

As such we will not need to exploit any cancellation in the averaging operator

AẐ, and we can use the formulation (9.1). By the triangle inequality, it thus

suffices to show that

‖((TϕN,t,j1⊗1F̃A)(Tϕ̃N,t,j2⊗1G̃A))N∈I>‖Lp(AZ;V r)

.C3 〈max(l, s1, s2)〉O(1)‖F̃A‖Lp1 (AZ)‖G̃A‖Lp2 (AZ)

for all F̃A ∈ Lp1(AZ) and G̃A ∈ Lp2(AZ). There are now no interactions between

the different fibers R×{y}, y ∈ Ẑ of AZ, and so by Hölder’s inequality and the

Fubini–Tonelli theorem (or (2.12)), it suffices to prove the continuous bilinear

estimate

‖((TϕN,t,j1
F̃ )(Tϕ̃N,t,j2

G̃))N∈I>‖Lp(R;V r)

.C3 〈max(l, s1, s2)〉O(1)‖F̃‖Lp1 (R)‖G̃‖Lp2 (R)
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for any F̃ ∈ Lp1(R), G̃ ∈ Lp2(R). By (2.8) and Hölder’s inequality it suffices

to establish the linear bounds

(9.3) ‖(TϕN,t,j1
F̃ )N∈I>‖Lp1 (R;V r) .C3 max(1, s1)O(1)‖F̃‖Lp1 (R)

and

(9.4) ‖(Tϕ̃N,t,j2
G̃)N∈I>‖Lp2 (R;V r) .C3 max(1, s2)O(1)‖G̃‖Lp2 (R).

We just establish the latter estimate, as the former is similar. First sup-

pose that we are in the high-frequency case s2 > −u. In this case we use (2.7)

to replace the V r norm by an `2 norm, thus we now wish to show

‖(Tϕ̃N,t,j2
G̃)N∈I>‖Lp2 (R;`2) .C3 max(1, s2)O(1)‖G̃‖Lp2 (R).

But as with the arguments at the end of Section 8, the ϕ̃N,t,j2 form a family

of the type considered in Theorem B.1, with A = 2−ds2 , λN = 2ds2P (Nt)/Nd,

K = O(max(1, s2)), and C = O(1). The claim now follows from the shifted

square function estimate proven in that theorem.

Now suppose we are in the low-frequency case s2 = −u, which means that

j2 = 0, 1 by the hypothesis (7.29). If j2 = 1, then ϕ̃N,t,j2 vanishes at the origin

and we can repeat the arguments from the high-frequency case. If j2 = 0, then

ϕ̃N,t,j2 = ϕ̃N,t no longer vanishes at the origin, but the difference ϕ̃N,t − ϕ̃N
does, and we can again use the high-frequency arguments to conclude. By the

triangle inequality, it now suffices to show that

‖(Tϕ̃N G̃)N∈I>‖Lp2 (R;V r) .C3 ‖G̃‖Lp2 (R).

But this follows from Lépingle’s inequality and a standard square function

argument. (See [50, Th. 1.1], with the square function argument contained in

[50, Lemma 3.2].)

This completes the proof of the (p1, p2) 6= (2, 2) case of (7.31). Now we

turn to the (p1, p2) = (2, 2) case, so that p = 1. We begin with a general

variational inequality:

Lemma 9.5 (Interchanging variational and Lebesgue norms). Let X be a

measure space, and let 1 ≤ R < r ≤ ∞. Then for any f1, . . . , fK ∈ Lr(X),

one has

‖(fk)k∈[K]‖Lr(X;V r) .r,R ‖(fk)k∈[K]‖V R([K];Lr(X)).

Proof. We allow implied constants to depend on r,R. Since

‖(fk)k∈[K]‖Lr(X;V r) . ‖(fk)k∈[K]‖Lr(X;V r) + ‖f1‖Lr(X),

it suffices to establish the seminorm version

‖(fk)k∈[K]‖Lr(X;V r) .r,R ‖(fk)k∈[K]‖V R([K];Lr(X))

of the inequality.
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We can assume that fk is not almost everywhere equal to fk−1 for any

1 < k ≤ K, since otherwise we could concatenate the two indices k, k − 1

together. We normalize

‖(fk)k∈[K]‖RV R([K];Lr(X)) = 1.

Then we can define a non-decreasing function a : [K]→ [0, 1] by the formula

a(K ′) := ‖(fk)k∈[K′]‖RV R([K′];Lr(X))

for any K ′ ∈ [K]. From (2.4), we have the Hölder type bound

(9.6) ‖fK1 − fK2‖Lr(X) ≤ (a(K1)− a(K2))1/R

whenever 1 ≤ K2 ≤ K1 ≤ K. In particular, because we assumed fk not equal

almost everywhere to fk−1, we see that a is strictly increasing.

For any x ∈ X, let µx be the absolutely continuous complex measure on

[0, 1] defined by

µx(E) :=
∑

2≤k≤K:a(k)∈E

|E ∩ [a(k − 1), a(k)]|
|[a(k − 1), a(k)]|

(fk(x)− fk−1(x)).

Then we have

fK1(x)− fK2(x) = µx([a(K2), a(K1)])

whenever 1 ≤ K2 ≤ K1 ≤ K. Also from (9.6) and telescoping series (and the

hypothesis R ≥ 1), we observe the Hölder bound

(9.7) ‖µx([s, t])‖Lr(X) . (t− s)1/R

for any 0 ≤ s ≤ t ≤ 1.

Using dyadic decomposition as in the proof of Lemma 8.1 (or [67, Lemma

2.5, pp. 534]), we have

‖(fk(x))k∈[K]‖V r .
∞∑
m=0

∥∥(µx([(j − 1)2−m, j2−m))j∈[2m]

∥∥
`r

and hence by the Fubini–Tonelli theorem and the triangle inequality,

‖(fk)k∈[K]‖Lr(X;V r) .
∞∑
m=0

∥∥∥(‖µx([(j − 1)2−m, j2−m))‖Lr(X))j∈[2m]

∥∥∥
`r
.

Applying (9.7), the right-hand side is

.
∞∑
m=0

2m/r2−m/R;

since R < r, this quantity is O(1), and the claim follows. �

We can apply this lemma to bilinear operators:
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Corollary 9.8 (Interchanging variational and Lebesgue norms, II). Let

V,W be normed vector spaces, let K ∈ Z+, and for each k ∈ [K], let fk ∈
V, gk ∈W . Let 1 ≤ R < r ≤ ∞, and let B : V ×W → Lr(X) be a bilinear map

to Lr(X) for some measure space X . Then

‖(B(fk, gk))k∈[K]‖Lr(X;V r)

.r,R ‖B‖V×W→Lr(X)‖(fk)k∈[K]‖V R([K];V )‖(gk)k∈[K]‖V R([K];W ).

Proof. We allow all implied constants to depend on r,R. We may normalize

‖B‖V×W→Lr(X) = ‖(fk)k∈[K]‖V R([K];V ) = ‖(gk)k∈[K]‖V R([K];W ) = 1.

In particular, the product sequence (fk, gk) ∈ V × W , k ∈ [K] obeys the

variational norm bound

‖(fk, gk)k∈[K]‖V R([K];V×W ) . 1.

By Lemma 9.5, it suffices to show that

‖B(fk, gk))k∈[K]‖V R([K];Lr(X)) . 1.

On the ball of radius O(1) in V ×W , the (nonlinear) map (f, g) 7→ B(f, g) is

Lipschitz continuous into Lr(X) with Lipschitz constant O(1), and the claim

follows from (2.5). �

We apply this lemma to the problem of establishing (7.31) in the p1 =

p2 = 2 case. In the next section we establish the following arithmetic variant

of Theorem 5.12:

Theorem 9.9 (Arithmetic bilinear estimate). Let l ∈ N, and let f, g ∈
L2(Ẑ) obey one of the following hypotheses :

(i) FẐf vanishes on (Q/Z)≤l;

(ii) FẐg vanishes on (Q/Z)≤l.

Then for any 1 ≤ r < 2d
d−1 , one has

‖AẐ(f, g)‖Lr(Ẑ) .C3,r 2−crl‖f‖L2(Ẑ)‖g‖L2(Ẑ).

(Recall our conventions that cr > 0 denotes a constant that can depend on

d, r.)

The key point here is that the exponent r in Theorem 9.9 is allowed to be

slightly larger than 2.

To prove (7.31) for r > 2, we use the slice formulation (9.2). It suffices

by monotonicity of V r norms to work in the range 2 < r < 2d
d−1 . From

(7.18) and (7.19), we see that every slice (FA)x, (GA)x of FA, GA take values in

the finite-dimensional vector spaces L2(Ẑ)(Q/Z)l1 ,L2(Ẑ)(Q/Z)l2 respectively, and

hence so do TϕN,t,j1⊗1
~F ,Tϕ̃N,t,j2⊗1

~G for any N . By Theorem 9.9, the operator

norm of AẐ : L2(Ẑ)(Q/Z)l1 × L2(Ẑ)(Q/Z)l2 → Lr(Z/QZ) is OC3(2−cl). Applying
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Hölder’s inequality to bound the L1(AZ) norm by the Lr(AZ) norm, followed

Corollary 9.8 for some 2 < R < r, then Cauchy–Schwarz, we conclude9 that

‖(AẐ(TϕN,t,j1⊗1(FA)x,Tϕ̃N,t,j2⊗1(GA)x))N∈I>‖L1(R;L1(Ẑ;V r))

.C3 2−cl‖(TϕN,t,j1⊗1(FA)x)N∈I>‖L2(R;V R(I>;L2(Ẑ)))

× ‖(Tϕ̃N,t,j2⊗1(GA)x)N∈I>‖L2(R;V R(I>;L2(Ẑ))),

where we view x as a variable of integration in R. It thus suffices to establish

the bounds

‖(TϕN,t,j1⊗1
~F )N∈I>‖L2(R;V R(I>;L2(Ẑ))) .C3 max(1, s1)O(1)‖~F‖L2(R;L2(Ẑ))

and

‖(Tϕ̃N,t,j2⊗1
~G)N∈I>‖L2(R;V R(I>;L2(Ẑ))) .C3 max(1, s2)O(1)‖~G‖L2(R;L2(Ẑ))

for any vector-valued functions ~F , ~G ∈ L2(R;L2(Ẑ)). But these are simply

vector-valued versions of (9.3) and (9.4), and they are proven in exactly the

same fashion (since all of the tools used in the proof extend to the vector-valued

setting); in particular, the vector-valued version of Lépingle’s inequality was

established in [69, Th. 3.1, pp. 810], and all linear Lp estimates extend to

the vector-valued setting by the Marcinkiewicz–Zygmund inequality. One may

first wish to approximate L2(Ẑ) by a finite dimensional Hilbert space to avoid

technicalities. This will conclude the proof of (7.25) (and thus Theorem 1.17),

once we establish Theorem 9.9. This is the purpose of the next section.

10. Arithmetic bilinear estimates

We now prove Theorem 9.9. It may be worth mentioning that the adelic

viewpoint is not strictly necessary here and one could replace the profinite in-

tegers Ẑ here with Z/QZ. But then one needs to check that none of the bounds

lose any factor of Q (or even logQ) as this would be fatal to the argument.

From this point of view, the adelic formalism is cleaner and automatically han-

dles uniformity in the Q parameter. We begin with the r = 1 case, which is a

limiting case of Theorem 5.12 in which the continuous aspect of that theorem

degenerates completely, leaving only the arithmetic aspect:

Proposition 10.1. Theorem 9.9 holds when r = 1.

9Strictly speaking, our definitions and arguments are not justified here because the vector

spaces L2(Ẑ), L1(Ẑ;V r) are infinite-dimensional. However, one can approximate Ẑ by finite

cyclic groups Z/QZ to make these spaces finite-dimensional and then take limits to avoid

this difficulty; indeed, given the definitions of FA, GA, we can just work with a single large

but fixed Q. Alternatively one can extend many of the previous vector-valued definitions to

separable Banach spaces. We leave the details to the interested reader.



POINTWISE ERGODIC THEOREMS FOR BILINEAR POLYNOMIAL AVERAGES 1083

We remark that when q is a prime this result is essentially contained in

[15] (when P (n) = n2) and [72] (in the general case); see [27] for the strongest

current values for the constant c.

Proof. For the sake of exposition, we assume that hypothesis (i) of The-

orem 9.9 holds; for the case when hypothesis (ii) is assumed, one proceeds

similarly. By a limiting argument we may assume that the functions F,G on Ẑ
factor through a finite quotient Z/QZ, in which case the task is to show that

‖AZ/QZ(f, g)‖L1(Z/QZ) .C3 2−cl‖f‖L2(Z/QZ)‖g‖L2(Z/QZ)

assuming that FZ/QZf vanishes on (Q/Z)≤l ∩ ( 1
QZ/Z).

Let N be a large natural number (which we will eventually send to infin-

ity), and let R be an extremely large real number (which we will also send to

infinity, before sending N to infinity). In particular, one should think of N,R

as being large compared to l, Q. We define the functions fR, gR ∈ S(Z) by the

formulae

fR(n) :=
1√
R
ψ(n/R)f(n mod Q),

gR(n) :=
1√
R
ψ(n/R)g(n mod Q),

where ψ ∈ S(R) is a real even function with ‖ψ‖L2(R) = 1 whose Fourier

transform is supported on [−1, 1]. Clearly fR ∈ L2(Z) has Fourier transform

supported on the set π([−1/R, 1/R] × {α ∈ 1
QZ/Z : f̂(α) 6= 0}). From the

hypothesis (i), we see that if N,R is sufficiently large (depending on Q, l), this

union of arcs is disjoint from all of the arcs in M≤l,≤−LogN+l (because the

frequencies α with f̂(α) 6= 0 have a non-zero separation from the frequencies

(Q/Z)≤l). By Theorem 5.12, we conclude for N,R sufficiently large that

‖AN,Z(fR, gR)‖L1(Z) .C1 (2−cl + LogN−cC1)‖fR‖L2(Z)‖gR‖L2(Z).

From the Riemann integrability of |ψ|2, it is easy to see that

lim
R→∞

‖fR‖L2(Z) = ‖f‖L2(Z/QZ)

and similarly

lim
R→∞

‖gR‖L2(Z) = ‖g‖L2(Z/QZ);

hence

lim sup
N→∞

lim sup
R→∞

‖AN,Z(fR, gR)‖L1(Z) . 2−cl‖f‖L2(Z/QZ)‖g‖L2(Z/QZ).

For any N,R, the Schwartz function nature of ψ readily gives the asymptotic

AN,Z(fR, gR)(n) =
1

R
|ψ(n/R)|2AZ/QZ(f, g)(n mod Q) +ON,Q

(
R−2〈n/R〉−10

)
.



1084 BEN KRAUSE, MARIUSZ MIREK, and TERENCE TAO

Thus by the Riemann integrability of |ψ|2, we obtain

lim sup
R→∞

‖AN,Z(fR, gR)‖L1(Z) = ‖AZ/QZ(f, g)‖L1(Z/QZ).

Taking limits as N →∞, we then have

lim sup
N→∞

lim sup
R→∞

‖AN,Z(fR, gR)‖L1(Z) = ‖AZ/QZ(f, g)‖L1(Z/QZ)

and the claim follows. �

By interpolation with Proposition 10.1, we see that to establish the re-

maining cases of Theorem 9.9, it will suffice to establish the bound

(10.2) ‖AẐ‖L2(Ẑ)×L2(Ẑ)→Lq(Ẑ) .q 1

for all 1 ≤ q < 2d
d−1 . Approximating Ẑ by the product of finitely many of the

p-adic groups Zp, it suffices by limiting arguments to show that

‖A∏
p∈S Zp‖L2(

∏
p∈S Zp)×L2(

∏
p∈S Zp)→Lq(

∏
p∈S Zp) .q 1

whenever S is a finite set of primes. From Examples 4.10 and 4.11, we see that

the bilinear operator A∏
p∈S Zp is the tensor product of the individual operators

AZp , so by (2.12) we may factor the operator norm as

‖A∏
p∈S Zp‖L2(

∏
p∈S Zp)×L2(

∏
p∈S Zp)→Lq(

∏
p∈S Zp)

=
∏
p∈S
‖AZp‖L2(Zp)×L2(Zp)→Lq(Zp).

Thus it will suffice to establish the bound

(10.3) ‖AZp‖L2(Zp)×L2(Zp)→Lq(Zp) .q 1

for all primes p, together with the improvement

(10.4) ‖AZp‖L2(Zp)×L2(Zp)→Lq(Zp) ≤ 1

whenever p is sufficiently large depending on q.

We begin with (10.3). By bilinear interpolation, it suffices to establish the

bounds

(10.5) ‖AZp‖L1(Zp)×L∞(Zp)→L∞(Zp) ≤ 1

and

(10.6) ‖AZp‖L∞(Zp)×L1(Zp)→Ls(Zp) .s 1

for all 1 ≤ s < d
d−1 . The estimate (10.5) is immediate from the pointwise

inequality

|AZp(f, g)| ≤ An
Zp(|f |)‖g‖L∞(Zp).

To prove (10.6), we similarly use the pointwise inequality

|AZp(f, g)| ≤ AP (n)
Zp (|g|)‖f‖L∞(Zp),
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so it suffices to show the linear Lp improving bound

‖AP (n)
Zp ‖L1(Zp)→Ls(Zp) .s 1

for 1 ≤ s < d
d−1 . By a limiting argument, it suffices to show that

‖AP (n)

Z/pjZ‖L1(Z/pjZ)→Ls(Z/pjZ) .s 1

for all j ∈ N. By Minkowski’s inequality, it suffices to show that the counting

function h : Z/pjZ→ N defined by

h(m) := #{n ∈ Z/pjZ : P (n) = m}

has an Ls(Z/pjZ) norm of Os(1). But this follows from Corollary C.2 in the

appendix. This concludes the proof of (10.3). We remark that this argument

in fact yields a weak-type endpoint for (10.3), but it is not clear to us how to

use this to obtain a corresponding weak-type endpoint for (10.2) as the weak

Lp spaces do not interact well with tensor products. In any event, for our

application, any exponent q greater than 2 would suffice, so endpoint estimates

are not needed.

Now we prove (10.4). By Hölder’s inequality, we may take 2 < q < 2d
d−1 .

We let l be a large number (depending on q, P ) to be chosen later, and then

assume that p ∈ P is a prime that is sufficiently large depending on l, q, P .

From Proposition 10.1, we then see that

‖AZp(f, g0)‖L1(Zp) .C3 2−cl‖f‖L2(Zp)‖g0‖L2(Zp),

whenever f, g0 ∈ L2(Zp) with g0 of mean zero, since for p large enough, the

only element of Z∗p of height at most 2l is the origin.

Interpolating this bound with (10.3) (for a slightly larger choice of q), we

conclude that

(10.7) ‖AZp(f, g0)‖Lq(Zp) .q,C3 2−cql‖f‖L2(Zp)‖g0‖L2(Zp).

(Recall our conventions that cq > 0 denotes a constant that can depend on d, q

and varies from line to line.)

Let f, g ∈ L2(Zp) with ‖f‖L2(Zp) = ‖g‖L2(Zp) = 1. It will suffice to show

that

En∈Zp |AZp(f, g)(n)|q ≤ 1.

Since |AZp(f, g)| ≤ AZp(|f |, |g|), we may assume without loss of generality that

f, g are non-negative. We split f = a+ f0 and g = b+ g0, where

a := En∈Zpf(n) and b := En∈Zpg(n)

are the means of f, g, and f0 := f−a, g0 := g−b are the mean zero components.

If we define the “energies”

Ef := ‖f0‖2L2(Zp) and Eg := ‖g0‖2L2(Zp),



1086 BEN KRAUSE, MARIUSZ MIREK, and TERENCE TAO

then from Pythagoras’ theorem we have 0 ≤ Ef , Eg ≤ 1 and

(10.8) |a| = (1− Ef )1/2 and |b| = (1− Eg)1/2.

A short calculation shows that

AZp(a, b) = ab and AZp(f0, b) = 0

and hence

AZp(f, g) = ab+AZp(f, g0).

Since the function x 7→ |x|q is continuously twice differentiable, Taylor expan-

sion yields the pointwise bound

|AZp(f, g)|q = |ab|q + q|ab|q−1AZp(f, g0) +Oq(|AZp(f, g0)|2 + |AZp(f, g0)|q).

Since AZp(a, g0) has mean zero, we have

En∈ZpAZp(f, g0)(n) = En∈ZpAZp(f0, g0)(n)

≤ ‖AZp(f0, g0)‖L1(Zp)

and thus (since |a|, |b| ≤ 1 and q ≥ 2)

‖AZp(f, g)‖qLq(Zp) ≤ |ab|
2 +Oq(‖AZp(f0, g0)‖L1(Zp)

+ ‖AZp(f, g0)‖2L2(Zp) + ‖AZp(f, g0)‖qLq(Zp)).

From (10.8) and (10.7), the L2 boundedness of f, f0, g0, and Hölder’s inequality,

we conclude

‖AZp(f, g)‖qLq(Zp) ≤ (1− Ef )(1− Eg) +Oq,C3(2−cql(E
1/2
f E1/2

g + Eg)).

Since EfEg ≤ min(Ef , Eg) ≤
Ef+Eg

2 , one has

(1− Ef )(1− Eg) ≤ 1−
Ef + Eg

2
;

since E
1/2
f E

1/2
g = O(Ef + Eg), the claim follows by choosing l large enough

depending on q, C3. This proves (10.6), and thus Theorem 9.9.

The proof of Theorem 1.17 is (finally!) complete.

11. Breaking duality

In this section we extend Theorem 1.17 to certain cases in which p < 1.

Throughout this section P ∈ Z[n] is a polynomial of degree d ≥ 2.

We begin with the following expansion of the range of applicability of (1.6)

for these averages.
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Lemma 11.1 (Single scale estimate below `1). Let 1 < p1, p2 < ∞ obey

the constraints

(11.2)
1

p1
+

2

p2
,

2

p1
+

1

p2
< 2

when d = 2, or

d2 + d− 1

p1
+
d2 + d+ 1

p2
,

d2 + d+ 1

p1
+
d2 + d− 1

p2
< d2 + d+ 1

when d ≥ 3. Then for any measure-preserving system (X,µ, T ), one has

‖An,P (n)
N (f, g)‖Lp(X) .p1,p2,P ‖f‖Lp1 (X)‖g‖Lp2 (X)

for all N ≥ 1, f ∈ Lp1(X), g ∈ Lp2(X), where 1
p = 1

p1
+ 1

p2
; similarly with

A
n,P (n)
N replaced by Ã

n,P (n)
N .

We remark that if [41, Conj. 1.5] holds, the condition should be able to

be relaxed to
d− 1

p1
+

d

p2
,

d

p1
+
d− 1

p2
< d,

bringing it in line with (11.2).

Proof. From the pointwise bound |Ãn,P (n)
N (f, g)| ≤ A

n,P (n)
N (|f |, |g|), it suf-

fices to establish the claim for A
n,P (n)
N . We may assume that p < 1 since the

claim follows from (1.6) otherwise. By the Calderón transference principle,

it suffices to establish this bound for the case of the integer shift (Z, µZ, TZ).

Noting the pointwise bound

|An,P (n)
N (f, g)(x)| ≤

∑
I∈I

1I(x)A
n,P (n)
N (1I |f |,1I |g|)(x),

where I ranges over a collection I of intervals of length OP (Nd) and overlap

OP (1), it suffices to establish the claimed bound when f, g are supported in a

single one of these intervals I, that is to say,

‖An,P (n)
N (f, g)‖`p(Z) .p1,p2,P ‖f‖`p1 (I)‖g‖`p2 (I).

As A
n,P (n)
N (f, g) is supported in an interval of length OP (Nd), we have from

Hölder’s inequality and the hypothesis p < 1 that

‖An,P (n)
N (f, g)‖`p(Z) .p1,p2,P N

d( 1
p
−1)‖An,P (n)

N (f, g)‖`1(Z).

From the triangle inequality and the Fubini–Tonelli theorem, one has

‖An,P (n)
N (f, g)‖`1(Z) ≤

∑
x∈Z
|f |(x)AP (n)−n|g|(x)

(cf. (6.1)), so by Hölder’s inequality, it suffices to establish the bound

‖AP (n)−ng‖
`p
′
2 (Z)
.p1,p2,P N

d( 1
p′2
− 1
p1

)
‖g‖`p1 (Z)
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for any g ∈ `p1(Z). But this follows from the results of [41] (cf. Proposi-

tion 6.21). �

As remarked in the proof of Proposition 6.21, one expects the range of

p1, p2 to be improvable here, at least in the case d ≥ 3. We remark that the

same argument allows one to break duality in (1.6) (that is to say, obtain (1.6)

for at least some ranges of exponents p1, . . . , pk with 1
p1

+ · · · + 1
pk

> 1) for

any average A
P1(n),...,Pk(n)
N (or Ã

P1(n),...,Pk(n)
N ) in which all the Pi have degree at

most d, with at least one of the differences Pi−Pj having degree exactly d, for

some d ≥ 2; we leave the details to the interested reader.

Now we can obtain norm convergence results with an explicit range of

p1, p2.

Corollary 11.3 (Breaking duality for the mean ergodic theorem). Let

(X,µ, T ) be a measure-preserving system with X of finite measure, and let

P (n) ∈ Z[n] have degree d ≥ 2. If p1, p2, p obey the hypotheses in Lemma 11.1,

then the averages A
n,P (n)
N (f, g) converge in Lp(X) norm for all f ∈ Lp1(X),

g ∈ Lp2(X).

Proof. By Theorem 1.17(i) and Hölder’s inequality (using the finite mea-

sure hypothesis), the claim already holds for (say) f, g ∈ L∞(X). The claim

now follows from Lemma 11.1 and the usual limiting argument (which is still

valid in the quasinormed space Lp(X)). �

For the remaining components of Theorem 1.17, we can similarly break

duality, albeit with a much poorer range of exponents:

Proposition 11.4 (Breaking duality for all the ergodic theorems). Let

P (n) ∈ Z[n] have degree d ≥ 2, and let ε > 0. If ( 1
p1
, 1
p2

) is in a sufficiently

small neighborhood of (1
2 ,

1
2) (where the neighborhood depends only on d,ε), and

1
p

:= 1
p1

+ 1
p2

, then the conclusions (i)–(iv) of Theorem 1.17 hold for this choice

of p1, p2, p, where in (iv) we replace the requirement r > 2 with r > 2 + ε.

It may be possible to refine the range of p1, p2 here to match that in

Corollary 11.3 or Lemma 11.1 by a more careful argument, but we will not

attempt to do so here.

Proof (sketch). We repeat the proof of Theorem 1.17. By the arguments

in Section 3, it suffices to show that Theorem 3.9 holds for the indicated choice

of p1, p2, p. We then repeat the reductions in Section 5 that were used to reduce

Theorem 3.9 to Theorem 5.30. The only differences are that (1.6) is replaced

by the more general Lemma 11.1 (which, in particular, is applicable for ( 1
p1
, 1
p2

)

sufficiently close to (1
2 ,

1
2)) and uses the quasi–triangle inequality in place of

the triangle inequality when p < 1 (adjusting the exponent 10 appearing in the
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argument if necessary). It then suffices to establish Theorem (5.30) for ( 1
p1
, 1
p2

)

in a neighborhood of (1
2 ,

1
2). In fact, it suffice to establish the cruder estimate

‖(ÃN (FN , GN ))N∈I‖`p(Z;`∞) .C3 2O(max(l,s1,s2))‖f‖`p1 (Z)‖g‖`p2 (Z)

for ( 1
p1
, 1
p2

) in a neighbourhood of (1
2 ,

1
2), since the claim then follows by inter-

polation with the p1 = p2 = 2 case of Theorem 5.30 and reducing the size of

the neighborhood in an ε-dependent fashion. (Here we use the interpolation

theory10 of variational norms, as well as the equivalence V ∞ ≡ `∞.)

The contribution of the small scales I≤ can now be crudely handled by

Lemma 11.1 and the quasi-triangle inequality (3.7) (since we are now willing

to concede factors of 2O(l)). Hence we may work entirely with large scales I>.

It is not difficult to verify that Proposition 7.13 extends to the non-Banach

regime p < 1 (basically because Lemma 4.20 does, and because one can freely

lose powers of q in that proposition). Applying the arguments in Section 7

with suitable changes, we reduce to showing that the `p(Z; `∞) norm of (7.25)

is bounded by

.C3 2O(max(l,s1,s2))‖f‖`p1 (Z)‖g‖`p2 (Z)

for ( 1
p1
, 1
p2

) in a neighborhood of (1
2 ,

1
2).

In the non-Banach regime we are no longer able to remove the integration

in t; instead we crudely replace it by a supremum norm. In lieu of Theo-

rem 7.28, it will now suffice to show that

‖H‖Lp(AZ;V r) .C3 2O(max(l,s1,s2))‖FA‖Lp1 (AZ)‖GA‖Lp2 (AZ),

where H is the maximal operator

H := sup
t∈[1/2,1]

|B1⊗mẐ
(TϕN,t⊗1FA,Tϕ̃N,t⊗1GA)|.

(Here we implicitly use the fact that Theorem 4.18 continues to hold in the

range p < 1.) By a variant of (9.2), each slice Hx of H at some x ∈ R is given

by

Hx = sup
t∈[1/2,1]

|AẐ((TϕN,t⊗1FA)x, (Tϕ̃N,t⊗1GA)x)|.

We crudely bound

TϕN,t⊗1FA .C3 2max(0,s1)MHLFA,

Tϕ̃N,t⊗1GA .C3 2max(0,s2)MHLGA,

where MHL denotes the Hardy–Littlewood maximal operator in the R variable,

so that

Hx .C3 2O(max(l,s1,s2))AẐ((MHLFA)x, (MHLGA)x).

10See, for instance, [69] for an overview of this interpolation theory.
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From the Hardy–Littlewood inequality and the Fubini–Tonelli theorem, it now

suffices to establish the estimate

‖AẐ(F,G)‖Lp(AZ) . ‖F‖Lp1 (AZ)‖G‖Lp2 (AZ)

for any F ∈ Lp1(AZ), G ∈ Lp2(AZ). When p ≥ 1, this follows from Hölder’s

inequality and the triangle inequality. For p < 1, we can interpolate the p ≥ 1

estimate with (10.2) and conclude that

‖AẐ(F,G)‖L1(AZ) . ‖F‖Lp1 (AZ)‖G‖Lp2 (AZ)

for all ( 1
p1
, 1
p2

) sufficiently close to (1
2 ,

1
2). The claim now follows from Hölder’s

inequality. �

12. Unboundedness of quadratic variation

In this section we show that the quadratic variation of polynomial averages

is unbounded in any Lebesgue space norm. The counterexample already applies

in the linear setting:

Proposition 12.1 (Unboundedness of V 2). Let P (n) ∈ Z[n] be a non-

constant polynomial, and let 0 < p ≤ ∞. Let I ⊆ Z+ be an infinite set. Then

for every C > 0, there exists a measure-preserving system (X,µ, T ) of total

measure 1 and f ∈ L∞(X) with ‖f‖L∞(X) ≤ 1 such that

‖(AP (n)
N,X (f))N∈I‖Lp(X;V 2) > C.

We remark that the case p = 2 of this proposition (with f controlled in

L2 rather than L∞) was established by the first author in [54]. (The argument

there is given for P (n) = n2, but extends easily to more general polynomials.)

This result relied on a previous result of Lewko and Lewko [59], who in turn

invoked a result of Jones and Wang [51]. It turns out that by appealing to the

latter results directly, we can handle all values of p, answering [54, Conj. 1] in

the affirmative.

Proof. Suppose for contradiction that this were not the case. Then we

would have the variational inequality

(12.2) ‖(AP (n)
N,X (f))N∈I‖Lp(X;V 2) ≤ C‖f‖L∞(X)

for every measure-preserving system (X,µ, T ) and every f ∈ L∞(X).

We apply this inequality to the following multidimensional system in which

the different components of the shift have radically different mixing times (so

that the averages A
P (n)
N,X behave like martingale expectation operators). Set

X = TK for some K ∈ Z+ with Haar probability measure µ, and let f : X → C
be a smooth function. Fix a sequence α1, α2, . . . , αK of real numbers that are

linearly independent over Q; e.g., one could take αi := log pi where pi is the
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ith prime. Let N1 < · · · < NK be distinct elements of I, and consider the shift

map

T (x1, . . . , xK) :=

Ç
x1 +

α1

Nd+1
1

, . . . , xK +
αK

Nd+1
K

å
,

where d is the degree of P . Then for any k ∈ [K], we have

A
P (n)

Nk,TK
f(x1, . . . , xK) = En∈[Nk]f

Ç
x1 +

α1P (n)

Nd+1
1

, . . . , xK +
αKP (n)

Nd+1
K

å
.

Let ε > 0. If we assume for each k ∈ [K] that Nk is sufficiently large depending

on ε,N1, . . . , Nk−1, d, P, f , then we have

f

Ç
x1 +

α1P (n)

Nd+1
1

, . . . , xK +
αKP (n)

Nd+1
K

å
= f

Ç
x1 +

α1P (n)

Nd+1
1

, . . . , xk−1 +
αk−1P (n)

Nd+1
k−1

, xk, . . . , xK

å
+O(ε)

for all n ∈ [Nk] and (x1, . . . , xK) ∈ X, and thus

A
P (n)

Nk,TK
f(x1, . . . , xK)

= En∈[Nk]f

Ç
x1 +

α1P (n)

Nd+1
1

, . . . , xk−1 +
αk−1P (n)

Nd+1
k−1

, xk, . . . , xK

å
+O(ε).

Because α1, . . . , αk−1 are linearly independent, a standard application of the

Weyl equidistribution theorem shows that the sequenceÇ
α1P (n)

Nd+1
1

mod 1, . . . ,
αk−1P (n)

Nd+1
k−1

mod 1

å
is equidistributed over the torus Tk−1. Thus, if Nk is chosen large enough, we

have

A
P (n)

Nk,TK
f(x) = Ekf(x) +O(ε)

for all k ∈ [K] and x ∈ X, where Ekf is the conditional expectation

Ekf(x1, . . . , xK) :=

∫
Tk−1

f(y1, . . . , yk−1, xk, . . . , xK) dy1 . . . dyk−1.

Taking variations, we conclude that

‖(AP (n)

Nk,TK
− Ekf)k∈[K]‖Lp(TK ;V 2) .K ε,

which from (12.2) and the triangle inequality (or quasi–triangle inequality

(3.7)) gives

‖(Ekf)k∈[K]‖Lp(TK ;V 2) .C,p ‖f‖L∞(TK) +OK(ε).
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Sending ε→ 0 (noting that the left-hand side does not depend on ε-dependent

quantities such as N1, . . . , NK), we conclude that

‖(Ekf)k∈[K]‖Lp(TK ;V 2) .C,p ‖f‖L∞(TK)

for any smooth f ∈ L∞(TK). Taking limits, we see that we can drop the

hypothesis that f is smooth.

We now define a map π : TK → [0, 1) by the formula

π(x1 mod 1, . . . , xK mod 1) :=
∑
k∈[K]

b2xkc
2K−k+1

for x1, . . . , xK ∈ [0, 1). It is not difficult to see that π pushes forward Haar

measure on TK to Lebesgue measure on [0, 1). Furthermore, if f̃ ∈ L∞([0, 1)),

then

Ek(f̃ ◦ π) = (Ẽkf̃) ◦ π
almost everywhere on TK , where Ẽk are the martingale projections

Ẽkf̃(x) := 2k
∫ j/2k

(j−1)/2k
f(y) dy

whenever j ∈ [2k] and x ∈ [(j − 1)/2k, j/2k). From this we conclude that

‖(Ẽkf̃)k∈[K]‖Lp([0,1);V 2) .C,p ‖f̃‖L∞([0,1))

for all K ∈ N and f ∈ L∞([0, 1)). Taking K → ∞ and using monotone

convergence, we conclude that

‖(Ẽkf̃)k∈N‖Lp([0,1);V 2) .C,p ‖f̃‖L∞([0,1)).

But this contradicts [51, Prop. 8.1]. �

Remark 12.3. By considering a suitable product system, one can then

construct a single measure-preserving system (X,µ, T ) of total measure 1 such

that the vector-valued operator f 7→ (A
P (n)
N (f))N∈I is unbounded from L2(X)

to Lp(X;V 2). It is likely that one can sharpen the construction further to find

a single f ∈ L2(X) for which ‖(AP (n)
N (f))N∈I‖V 2 = +∞ almost everywhere,

but we will not do so here.

By setting all but one function equal to the constant function 1, and using

the monotonicity of variational norms and Lp norms, we obtain

Corollary 12.4 (Failure of variational estimate for r ≤ 2). Let P1, . . . , Pk
∈ Z[n] be polynomials, not all constant, and let 0 < p1, . . . , pk, p ≤ ∞ and

0 < r ≤ 2. Let I ⊆ Z+ be an infinite set. Then there does not exist any

constant C > 0 for which one has the estimate

‖(AP1(n),...,Pk(n)
N,X (f1, . . . , fk))N∈I‖Lp(X;V r) ≤ C‖f1‖Lp1 (X) · · · ‖fk‖Lpk (X)
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for all measure-preserving systems X = (X,µ, T ) of total mass one, and all

f1 ∈ Lp1(X), . . . , fk ∈ Lpk(X).

Applying Proposition 3.2 in the contrapositive, we see that we similarly

obtain a counterexample for the integer shift system in the Hölder exponent

case 1
p1

+ · · ·+ 1
pk

= 1
p , and we can replace AN by ÃN in the Banach exponent

case p1, . . . , pk ≥ 1.

Appendix A. Ionescu–Wainger theory

In this appendix we review some number-theoretic and Fourier-analytic

constructions of Ionescu and Wainger [47] that allow one to apply Fourier

projections to “major arcs” with good multiplier estimates. See also [65],

[68] for further development of the Ionescu–Wainger theory, and see [76] for

a recent discussion of the role of superorthogonality in that theory. We will

loosely follow the presentation in [68]. A new notational innovation is the

introduction of the notion of the height h(α) of a profinite frequency α ∈ Q/Z.

Throughout this appendix we fix a small quantity ρ > 0. (In the main

paper it is set by the formula (5.1).) Let C0
ρ be a sufficiently large quantity

depending on ρ. If l ≤ C0
ρ , we define

P≤l := [2l].

For l > C0
ρ , we define P≤l differently. We first define the natural number

D = Dρ := b2/ρc+ 1,

and for any natural number l ∈ N, we set

N0 = N
(l)
0 := b2ρl/2c+ 1 and Q0 = Q

(l)
0 := (N0!)D.

Then for l > C0
ρ , we define the set

P≤l :=
{
q = Qw : Q|Q0 and w ∈W≤l ∪ {1}

}
,

where

W≤l :=
⋃
k∈[D]

⋃
(γ1,...,γk)∈[D]k

{
pγ11 · · · p

γk
k : p1, . . . , pk ∈ (N

(l)
0 , 2l] ∩ P are distinct

}
.

In other words, W≤l is the set of all products of prime factors from (N
(l)
0 , 2l]∩P

of length at most D, with exponents between 1 and D.

We observe that (for C0
ρ large enough) one has

(A.1) [2l] ⊂ P≤l
for all l. This is trivial for l ≤ C0

ρ . Now suppose that l > C0
ρ and q ∈ [2l].

Observe that there are at most D primes larger than N0 that can divide q,

and each such prime can divide q at most D times, so the product of all these
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primes (with multiplicity) lies in W≤l ∪ {1}. By the fundamental theorem of

arithmetic, the claim will now follow if one can show that pj |Q0 whenever

p ≤ N0 and pj |q. Since j ≤ log q
log p ≤

l
log p (recall our convention that log is

to base 2), and p divides N0! at least bN0
p c times, it suffices to establish the

inequality
l

log p
≤ D

õ
N0

p

û
.

Since D > 2
ρ ≥

l
logN0

, it suffices to show that

logN0

log p
≤ (1 + ερ)

õ
N0

p

û
for 2 ≤ p ≤ N0, where ερ is the positive quantity ερ := ρD

2 − 1. If we set n :=

bN0
p c, then n ∈ [N0/2] and logN0

log p ≤
logN0

logN0−log(n+1) , so after some rearranging

we reduce to showing that

log(n+ 1) ≤
Å

1− 1

(1 + ερ)n

ã
logN0

for all n ∈ [N0/2]. But this can be easily checked if C0
ρ (and hence N0)

is sufficiently large depending on ρ. (One can, for instance, check the cases

1 ≤ n ≤ N1/2
0 and N

1/2
0 < n ≤ N0/2 separately.)

We now see that the P≤l are non-decreasing in l with
⋃
l∈N P≤l = Z+. We

can therefore define the Ionescu–Wainger height h(α) = hρ(α) of an arithmetic

frequency a
q mod 1, with q ∈ Z+ and a ∈ [q]×, by the formula

h

Å
a

q
mod 1

ã
:= inf{2l : l ∈ N, q ∈ P≤l}.

Now we prove Lemma 5.2. The claim (i) is immediate from (A.1), with

the final claim concerning 1
pZ/Z following from direct inspection of definitions.

For the first part of (ii), we observe that

(A.2) (Q/Z)≤l =
⋃

q∈P≤l

1

q
Z/Z,

so it suffices to show that q .ρ 22ρl for all q ∈ P≤l. For l > C0
ρ , we have from

definition that

q ≤ Q0(2l)D
2 ≤ NDN0

0 2D
2l .ρ 2ρ

−12ρl/2+ρ−2l

giving the claim; in fact, we obtain the slightly sharper bound

(A.3) q .ρ 2Oρ(2ρl/2).

For the second claim, we need to show that

Q≤l := lcm(q ∈ Z+ : q ∈ P≤l) .ρ 2O(2l).(A.4)
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The claim is trivial for l ≤ C0
ρ . For l > C0

ρ , we have

lcm(q ∈ Z+ : q ∈ P≤l) = Q0

∏
p∈(N

(l)
0 ,2l]∩P

pD.

From Mertens’ theorem we have∏
p∈(N

(l)
0 ,2l]∩P

p . 2O(2l)

and

Q0 ≤ NDN0
0 . 2Oρ(2ρl),

giving the claim. Claim (iii) follows from (A.2) and (A.3). This proves

Lemma 5.2.

To establish Theorem 5.7, we observe from Lemma 5.2(ii) and (A.3) that

the elements of (Q/Z)≤l are separated from each other by &ρ 2−Oρ(2ρl/2), giving

the non-aliasing claim. The claim (5.9) follows11 from [68, Th. 2.1] (specialized

to the one-dimensional case); various special cases of this theorem were previ-

ously established in [47]; see also Remark 5.10(i). Note that on the right-hand

side one can use the scalar norm rather than the vector-valued norm thanks to

the Marcinkiewicz–Zygmund inequality (or Khintchine’s inequality). Finally,

the claim for the multipliers (5.5) follows from (5.9) and the triangle inequality.

Now we prove Lemma 5.17. The Fourier support properties are clear from

inspection and the disjointness of the individual major arcs. The contraction

property on `2 follows from Plancherel’s theorem because the symbol Pη≤k is

bounded pointwise by 1. To obtain the bound (5.18), by interpolation we may

assume that q is either an even integer or the dual of an even integer. Then it

suffices from Theorem 5.7 to establish the bound

(A.5) ‖Tη≤k‖Lq(R)→Lq(R) .q 1.

But this follows from Lemma 4.20 (with r = 2k).

Finally we establish (5.19). It suffices to establish the bound

‖Π≤l,≤kf‖`q({n∈Z:dist(n,I)>2m−k}) .M 2−Mm‖f‖`q(I)
for any m ∈ Z+. By interpolation we may assume q is either an even integer

or the dual of an even integer. By adjusting constants in the definition (5.8)

of good major arcs if necessary, we may assume that

k ≤ −2v,

where

v := bCρ2ρlc.

11The factor 〈l〉 in this theorem was recently removed in [80].
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We split

η≤k := η
(1)
≤k + η

(2)
≤k + η

(3)
≤k,

where η
(1)
≤k, η

(2)
≤k, η

(3)
≤k ∈ S(R) are the functions

η
(1)
≤k := FR(η≤m−kF−1

R η≤k),

η
(2)
≤k := FR((1− η≤m−k)F−1

R η≤k)η≤−v,

η
(3)
≤k := FR((1− η≤m−k)F−1

R η≤k)(1− η≤−v),

= −FR(η≤m−kF−1
R η≤k)(1− η≤−v).

We can then decompose

Π≤l,≤kf = T≤lη≤kf = T≤l
η
(1)
≤k
f + T≤l

η
(2)
≤k
f + T≤l

η
(3)
≤k
f.

Note that the inverse Fourier transform of η
(1)
≤k is supported in [−2m−k, 2m−k],

and hence T≤l
η
(1)
≤k
f vanishes on the region {n ∈ Z : dist(n, I) > 2m−k}. For η

(2)
≤k,

we use Theorem 5.7 (and the fact that (k,−v) has good major arcs), (A.5),

Young’s inequality, and a rescaling to bound

‖T≤l
η
(2)
≤k
f‖`q(Z) .q 〈l〉‖Tη

(2)
≤k
‖Lq(R)→Lq(R)‖f‖`q(I)

.q 〈l〉‖TFR((1−η≤m−k)F−1
R η≤k)‖Lq(R)→Lq(R)‖f‖`q(I)

.q 〈l〉‖(1− η≤m−k)F−1
R η≤k‖L1(R)‖f‖`q(I)

.q 〈l〉‖F−1
R η‖L1(R\[−2m−1,2m−1])‖f‖`q(I).

Hence the contribution of this term is acceptable by the rapid decrease of

F−1
R η.

Finally, for η
(3)
≤k, we use Lemma 4.20(i) (with r = 2k) and Lemma 5.2(iii)

to bound∥∥∥T≤l
η
(3)
≤k
f
∥∥∥
`q(Z)

.C1,q 2O(2ρl)‖f‖`q(I) sup
0≤j≤2

∫
R

2k(1−j)
∣∣∣∣ djdξj η(3)

≤k(ξ)

∣∣∣∣ dξ.
Direct calculation using the rapid decay of FRη shows that∫

R
2k(1−j)

∣∣∣∣ djdξj η(3)
≤k(ξ)

∣∣∣∣ dξ .M 2M(k−m+v) . 2−Mm2−MCρ2ρl ,

and hence the contribution of this term is also acceptable (taking Cρ large

enough). This concludes the proof of Lemma 5.17.
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Appendix B. Shifted Calderón–Zygmund theory

In this appendix we review some standard shifted Calderón–Zygmund

estimates, of the sort that appear for instance in [63, Lemma 4.8, pp. 346]. For

our applications, we will need a vector-valued version of these estimates.

Theorem B.1 (Shifted Calderón–Zygmund estimates). Let D be a finite

λ-lacunary set for some λ > 1, and let A > 0, C > 0, d ≥ 1, and K ≥ 1. For

each N ∈ D, let ϕN ∈ S(R) be a function of the form

ϕN (ξ) := ψ(ANdξ)e(λNAN
dξ)

for some λN ∈ [−2K , 2K ], where ψ ∈ S(R) vanishes at the origin and is

supported on [−C,C] for some C > 0, obeying the derivative estimates∣∣∣∣ djdξj ψ(ξ)

∣∣∣∣ ≤ C
for all j = 0, 1, 2 and ξ ∈ R. Then for any 1 < p < ∞ and any separable

Hilbert space (H, ‖ · ‖H), one has

‖T∑
N∈D εNϕN

‖Lp(R;H)→Lp(R;H) .C,λ,d,p K

for any complex numbers εN , N ∈ D with |εN | ≤ 1; in particular, by Khint-

chine’s inequality,

‖(TϕN )N∈D‖Lp(R;H)→Lp(R;`2(D;H)) .C,λ,d,p K.

Proof (sketch). Let ϕ :=
∑

N∈D εNϕN . From the hypotheses on ψ, one

has the bound

|ψ(ξ)| .C |ξ|1|ξ|≤C ,
and hence from the triangle inequality, one has ‖ϕ‖L∞(R) .C,λ 1. The p = 2

case of the theorem then follows from Plancherel’s theorem. By duality it then

suffices to establish the 1 < p < 2 case, and by Marcinkiewicz interpolation, it

suffices to prove the weak-type (1, 1) bound

|{x ∈ R : ‖Tϕf(x)‖H ≥ α}| .C,λ,d
K

α
‖f‖L1(R;H)

for f ∈ L1(R;H) and α > 0. We perform a vector-valued Calderón–Zygmund

decomposition f = g +
∑

I∈D bI , where ‖g‖2L2(R;H) . ‖f‖L1(R;H)α, I ranges

over a collection of dyadic intervals D with∑
I∈D
|I| .C,λ

1

α
‖f‖L1(R;H),

and bI ∈ L1(R;H) is supported on I with mean zero and

(B.2) ‖bI‖L1(R;H) . |I|.
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By the previous inequality it suffices to prove∣∣∣∣∣∣
{
x ∈

( ⋃
I∈D

100I
)c

: ‖Tϕf(x)‖H ≥ α

}∣∣∣∣∣∣ .C,λ,d Kα ‖f‖L1(R;H),

where aI is the interval centered at I of a > 0 times the length. By the triangle

inequality and Markov’s inequality, it thus suffices to show that

(B.3)

∫
(100I)c

‖TϕbI(x)‖H dx .C,λ K|I|

for each I ∈ D. We may expand

TϕbI(x) =
∑
N∈D

εN

∫
R

(ANd)−1F−1
R ψ

Å
x− y − λNANd

ANd

ã
bI(y) dy.

We may assume that I ∈ D is centered at the origin, and exploiting the fact

that bI has mean zero, we may dominate the left-hand side of (B.3) by∑
N∈D

∫
(100I)c

∫
I

1

ANd

∣∣∣∣F−1
R ψ

Å
x− λNANd − y

ANd

ã
−F−1

R ψ

Å
x− λNANd

ANd

ã∣∣∣∣‖bI(y)‖H dydx.

So by (B.2) it suffices to show that∑
N∈D

∫
(100I)c

1

ANd

∣∣∣∣F−1
R ψ

Å
x− λNANd − y

ANd

ã
−F−1

R ψ

Å
x− λNANd

ANd

ã∣∣∣∣dx .C,λ K
for all y ∈ I.

Fix y, I. We perform a partition

D = Dlow ∪ Dmedium ∪ Dhigh,

where Dlow consists of those spatial scales N ∈ D that are “low frequency” (or

“coarse scale”) in the sense that |I| ≤ ANd, Dmedium consists of those spatial

scales N ∈ D that are “medium frequency” (or “medium scale”) in the sense

that λ−1
N |I| ≤ ANd < |I|, and Dhigh consists of those spatial scales N ∈ D that

are “high frequency” (or “fine scale”) in the sense that ANd < λ−1
N |I|.

The expression

F−1
R ψ

Å
x− λNANd − y

ANd

ã
−F−1

R ψ

Å
x− λNANd

ANd

ã
can be bounded by OC(〈 x

ANd 〉−2) in the high-frequency case N ∈ Dhigh from

the triangle inequality and the hypotheses y ∈ I, x ∈ (100I)c, by OC(〈 x
ANd −

λN 〉−2) in the medium-frequency case N ∈ Dmedium from the triangle inequality

alone, and by OC( |I|
ANd 〈 x

ANd − λN 〉−2) in the low-frequency case using the
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mean-value theorem. The claim then follows from direct computation and the

hypothesis |λN | ≤ 2K . �

Appendix C. Concentration estimates on polynomials

In this appendix we work in a p-adic field Qp =
⋃
n∈N p

−jZp for p ∈ P,

although much of the discussion here would also extend with minor changes to

the real numbers R or (after adjusting some exponents by factors of two) the

complex numbers C, and the reader may wish to work with the real case first

to build intuition. We have a norm on the p-adics defined by |x| := p−νp(x),

where νp is the usual p-valuation (with the usual convention |0| = 0), as well

as a Haar measure µQp on Qp with the following properties for any x, y ∈ Qp

and r ∈ pZ := {pn : n ∈ Z}:
(i) (ultratriangle inequality). |x+ y| ≤ max(|x|, |y|);
(ii) (multiplicativity). |xy| = |x||y|;
(iii) (nondegeneracy). |x| ≥ 0, with equality if and only if x = 0;

(iv) (dimension one). µQp(B(x, r))=r, where B(x, r) :={y ∈ Qp : |y−x| ≤ r}
is the usual ball.

Note that if P is a polynomial with coefficients in Qp, thus

P (x) = adx
d + · · ·+ a1x+ a0

for some ad, . . . , a0 ∈ Qp, then one can define the derivative P ′ algebraically

by the usual formula

P ′(x) := dadx
d−1 + · · ·+ 2a2x+ a1.

We then have the following basic estimates on the distribution of p-adic

polynomials.

Proposition C.1 (Distribution of p-adic polynomials). Let P (x) = adx
d

+ · · ·+ a0 be a polynomial of degree d ≥ 1 with coefficients in Qp. Let r ∈ pZ,

and let Ω be the level set

Ω := {x ∈ Qp : |P (x)| ≤ r}.

(i) (Bernstein inequality). One can cover Ω by Od(1) balls B, such that on

each ball B one has

sup
x∈B
|P ′(x)| .d

r

µQp(B)
.

(ii) (Van der Corput estimate). We have

µQp(Ω) .d

Å
r

|ad|

ã1/d

.

In fact Ω is covered by Od(1) balls of radius
(
r
|ad|
)1/d

.
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(iii) (Distributional estimate). If d ≥ 2, and if f : Qp → [0,+∞) is the func-

tion

f(y) :=
1

r
µQp({x ∈ Qp : |P (x)− y| ≤ r}),

then

µQp({y ∈ Qp : f(y) ≥ λ}) .d λ−
d
d−1 |ad|−

1
d−1 .

A model example to keep in mind here is when P (x) = adx
d is a mono-

mial, in which case Ω consists of a single ball of radius (r/|ad|)1/d, with P ′ =

Od(|ad|(r/|ad|)
d−1
d ) on this ball; also, one can verify f(y) = Od(|ad|−1/dr

1
d
−1)

when |y| ≤ r and f(y) = Od(|ad|−1/d|y|
1
d
−1) when |y| > r. (The reader may

wish to first verify these claims with Qp replaced by R in order to build geomet-

ric intuition.) Note that this example also shows why all the exponents in the

proposition are natural from a dimensional analysis (or scaling) perspective.

Taking limits in (ii) as r → 0, we also conclude that∥∥∥∥dP∗µQpdµQp

∥∥∥∥
L

d
d−1

,∞
(Qp)

.d |ad|−
1
d ,

where
dP∗µQp
dµQp

is the Radon–Nikodym derivative (relative to Haar measure µQp)

of the pushforward measure P∗µQp of µQp by P , and L
d
d−1

,∞ is the weak L
d
d−1

norm; in the monomial case P (x) = adx
d, one can compute that this Radon–

Nikodym derivative is proportional to the function y 7→ |ad|−
1
d |y|

1
d
−1.

The van der Corput estimate in Proposition C.1(ii) can be also deduced

from [52, Prop. 3.3. pp. 847], but for the convenience of the reader, we provide

a self-contained proof.

Proof. To prove (i), we first work in the special case that P completely

factorizes:

P (x) = c(x− α1) · · · (x− αd)

for some c, α1, . . . , αd ∈ Qp with c 6= 0. We can cover Ω by Ω1∪ . . .∪Ωd, where

Ωi := {x ∈ Ω : |x− αi| ≤ |x− αj | for all j ∈ [d]}.

It suffices to establish the claim (i) for a single Ωi. Note from the ultratriangle

inequality that for x ∈ Ωi and j ∈ [d], one has

|x− αj | = max{|x− αi|, |αi − αj |},

and hence

|P (x)| = |c|
d∏
j=1

max{|x− αi|, |αi − αj |}.
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Thus we see that Ωi ⊆ B(αi, R), where R ∈ pZ is the maximal quantity for

which

|c|
d∏
j=1

max{R, |αi − αj |} ≤ r.

On the other hand, we have from the product rule and triangle inequality for

x ∈ B(αi, R) that

|P ′(x)| .d |c| sup
j∈[d]

∏
k 6=j
|x− αk|

.d |c| sup
j∈[d]

∏
k 6=j

max{R, |αi − αk|}

.d R
−1|c|

d∏
k=1

max{R, |αi − αk|}

.d
r

R
,

giving Claim (i).

Now suppose that P only partially factorizes, thus

P (x) = (x− α1) · · · (x− αj)Q(x)

for some 0 ≤ j ≤ d and some polynomial Q of degree d − j. The case j = d

has already been handled; now suppose inductively that j < d and the claim

(i) has already been proven for j + 1. We may assume Ω is non-empty since

the claim (i) is trivial otherwise. Let αj+1 be an element of Ω that maximizes

the magnitude of the quantity δ := (αj+1−α1) · · · (αj+1−αj); such a quantity

exists since Ω is compact, and δ is non-zero by continuity. Then

r ≥ |P (αj+1)| = |δ||Q(αj+1)|,

so |Q(αj+1)| ≤ r/|δ|. By the factor theorem, we have

Q(x) = Q(αj+1) + (x− αj+1)R(x)

for some polynomial R of degree d− j − 1, thus

P (x) = (x− α1) · · · (x− αj)Q(αj+1) + (x− α1) · · · (x− αj+1)R(x).

By construction, for x ∈ Ω we have |P (x)| ≤ r, and

|(x− α1) · · · (x− αj)Q(αj+1)| ≤ |δ||Q(αj+1)| ≤ r,

hence by the ultratriangle inequality, we also have

|(x− α1) · · · (x− αj+1)R(x)| ≤ r.

By the induction hypothesis, we can cover Ω by Od(1) balls B on which the

derivative of (x − α1) · · · (x − αj+1)R(x) is Od(r/µQp(B)); by the j = d case,

we can also say the same about (x− α1) · · · (x− αj)Q(αj+1). Intersecting the
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balls together, we can say the same about P . This closes the induction and

establishes the claim for any 0 ≤ j ≤ d. Setting j = 0, we obtain (i).

Now we establish (ii). By iterating (i) d times and intersecting the balls

together, we can cover Ω by Od(1) balls B on which P (d)(x) .d r/µQp(B)d.

But since P (d)(x) = d!ad, we have µQp(B) .d (r/|ad|)1/d, giving the claim.

Now we prove (iii). Let λ > 0, and define the set

E := {y ∈ Qp : f(y) ≥ λ}.

Our task is to show that

µQp(E) .d λ
− d
d−1 |ad|−

1
d−1 .

If y ∈ E, then by definition

µQp({x ∈ Qp : |P (x)− y| ≤ r}) ≥ λr.

By (i), the set in the left-hand side can be covered by Od(1) balls B, on which

|P ′| .d r/µQp(B). By the pigeonhole principle, one of these balls B must

intersect the set in a set of measure &d λr, thus |P ′| .d r/(λr) = 1/λ on this

ball, and thus

µQp({x ∈ Qp : |P (x)− y| ≤ r and |P ′(x)| .d 1/λ}) &d λr.

By the Fubini–Tonelli theorem, we conclude that

µQp × µQp({(x, y) ∈ Q2
p : |P (x)− y| ≤ r and |P ′(x)| .d 1/λ}) &d λrµQp(E).

But by the Fubini–Tonelli theorem again, the left-hand side is equal to

rµQp({x ∈ Qp : |P ′(x)| .d 1/λ}),

and hence by (ii) we obtain

λrµQp(E) .d r
Å

1

λ|ad|

ã 1
d−1

,

giving the claim. �

We can descend from the p-adics to a cyclic group of prime power order:

Corollary C.2 (Distribution of polynomials on a cyclic group of prime

power order). Let Q = pj for some j ∈ Z+, and let P ∈ Z[n] be a polynomial of

degree d ≥ 2, which we also view as a map from Z/QZ to itself. Let h : Z/QZ
→ N be the counting function

h(y) := #{x ∈ Z/QZ : P (x) = y}.

Then for any λ > 0, we have the weak-type bound

#{y ∈ Z/QZ : h(y) ≥ λ} .P λ−
d
d−1Q.
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In particular, one has

‖h‖Ls(Z/QZ) .s,P 1(C.3)

for any 0 < s < d
d−1 .

As before, the example of a monomial P (x) = xd shows that the range of s

here is best possible. Interestingly, it seems difficult to establish this corollary

without some version of the p-adic formalism, even though the statement of the

corollary does not explicitly mention p-adics. Estimate (C.3) was previously

obtained for monomials P (x) = xd in an unpublished work of Jim Wright on

Lp-improving estimates for averaging operators on cyclic groups of the form

Z/pjZ (private communication).

Proof. We can write P (x) = adx
d + · · · + a0, where a0, . . . , ad ∈ Zp are

p-adic integers, thus they have norm at most 1. Note that

h(y) = QµQp({x ∈ Qp : |x| ≤ 1 and |P (x)− y′| ≤ Q−1})

for any y ∈ Z/QZ and y′ ∈ B(y, 1/Q), thus

#{y ∈ Z/QZ : h(y) ≥ λ}
≤ QµQp({y′ ∈ Qp : QµQp({x ∈ Qp : |P (x)− y′| ≤ Q−1}) ≥ λ}).

The claim now follows from Proposition C.1(iii). �
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Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256.

MR 0498471. Zbl 0347.28016. https://doi.org/10.1007/BF02813304.

http://www.ams.org/mathscinet-getitem?mr=2795725
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1218.37009
https://doi.org/10.1112/plms/pdq037
https://doi.org/10.1112/plms/pdq037
http://www.ams.org/mathscinet-getitem?mr=4199855
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1457.42013
https://doi.org/10.1007/s00041-020-09801-2
http://www.ams.org/mathscinet-getitem?mr=2417419
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1175.37013
https://doi.org/10.1215/ijm/1258138536
http://www.ams.org/mathscinet-getitem?mr=2420509
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1213.42064
https://doi.org/10.1215/00127094-2008-020
http://www.ams.org/mathscinet-getitem?mr=2403711
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1268.42034
https://doi.org/10.1090/S0002-9947-08-04474-7
http://www.ams.org/mathscinet-getitem?mr=1422310
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0868.60028
http://www.numdam.org/item/AIHPB_1996__32_6_765_0/
http://www.ams.org/mathscinet-getitem?mr=2949622
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1256.42018
https://doi.org/10.4171/RMI/694
http://www.ams.org/mathscinet-getitem?mr=3650379
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1365.42009
https://doi.org/10.1016/j.crma.2017.03.010
https://doi.org/10.1016/j.crma.2017.03.010
http://www.ams.org/mathscinet-getitem?mr=4179774
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1475.11022
https://doi.org/10.1007/s11854-020-0113-8
http://www.ams.org/mathscinet-getitem?mr=3939567
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1432.42005
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1432.42005
https://doi.org/10.1090/tran/7574
http://www.arxiv.org/abs/1908.02281
http://www.ams.org/mathscinet-getitem?mr=3613710
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1425.37004
http://www.arxiv.org/abs/11903,3808
http://www.ams.org/mathscinet-getitem?mr=2191231
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1155.37303
https://doi.org/10.1007/BF02775439
http://www.ams.org/mathscinet-getitem?mr=3574649
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1414.11018
https://doi.org/10.1007/s11854-016-0030-z
http://www.ams.org/mathscinet-getitem?mr=0498471
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0347.28016
https://doi.org/10.1007/BF02813304


1106 BEN KRAUSE, MARIUSZ MIREK, and TERENCE TAO

[34] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number

Theory, Princeton Univ. Press, Princeton, N.J., 1981, M. B. Porter Lectures.

MR 0603625. Zbl 0459.28023. https://doi.org/10.1515/9781400855162.

[35] H. Furstenberg, Nonconventional ergodic averages, in The Legacy of John

von Neumann (Hempstead, NY, 1988), Proc. Sympos. Pure Math. 50, Amer.

Math. Soc., Providence, RI, 1990, pp. 43–56. MR 1067751. Zbl 0711.28006.

https://doi.org/10.1090/pspum/050/1067751.

[36] H. Furstenberg and B. Weiss, A mean ergodic theorem for

(1/N)
∑N

n=1 f(Tnx)g(Tn2

x), in Convergence in Ergodic Theory and Prob-

ability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ.

5, de Gruyter, Berlin, 1996, pp. 193–227. MR 1412607. Zbl 0869.28010.

https://doi.org/10.1515/9783110889383.193.

[37] A. Gaitan and V. Lie, The boundedness of the (sub)bilinear maximal func-

tion along “non-flat” smooth curves, J. Fourier Anal. Appl. 26 no. 4 (2020),

Paper No. 69, 33. MR 4131966. Zbl 1447.42018. https://doi.org/10.1007/

s00041-020-09770-6.

[38] W. T. Gowers, Decompositions, approximate structure, transference, and

the Hahn-Banach theorem, Bull. Lond. Math. Soc. 42 no. 4 (2010), 573–606.

MR 2669681. Zbl 1233.05198. https://doi.org/10.1112/blms/bdq018.

[39] W. T. Gowers and J. Wolf, The true complexity of a system of linear equa-

tions, Proc. Lond. Math. Soc. (3) 100 no. 1 (2010), 155–176. MR 2578471.

Zbl 1243.11010. https://doi.org/10.1112/plms/pdp019.

[40] B. Green and T. Tao, Quadratic uniformity of the Möbius function, Ann. Inst.
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