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Pointwise ergodic theorems
for non-conventional
bilinear polynomial averages

By BEN KRAUSE, MARIUSZ MIREK, and TERENCE TAO

Dedicated to the memory of Jean Bourgain and Elias M. Stein

Abstract

We establish convergence in norm and pointwise almost everywhere for
the non-conventional (in the sense of Furstenberg) bilinear polynomial er-
godic averages

N
An(f,9)(@) = = S FT")g(T7 )

as N — oo, where T': X — X is a measure-preserving transformation of a
o-finite measure space (X, 1), P(n) € Z[n] is a polynomial of degree d > 2,
and f € LP*(X), g € LP?(X) for some p1,p2 > 1 with ﬁ + ﬁ <1 We
also establish an r-variational inequality for these averages (at lacunary
scales) in the optimal range r > 2. We are also able to “break duality” by
handling some ranges of exponents p1, p2 with ;Tll + i > 1, at the cost of
increasing r slightly.

This gives an affirmative answer to Problem 11 from Frantzikinakis’ open
problems survey for the Furstenberg-Weiss averages (with P(n) = n?),
which is a bilinear variant of Question 9 considered by Bergelson in his
survey on Ergodic Ramsey Theory from 1996. This also gives a contri-
bution to the Furstenberg-Bergelson-Leibman conjecture. Our methods
combine techniques from harmonic analysis with the recent inverse theo-
rems of Peluse and Prendiville in additive combinatorics. At large scales,
the harmonic analysis of the adelic integers Az also plays a role.
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1.1. Non-conventional polynomial ergodic averages. Define a measure-pre-
serving system to be a triple X = (X, u,T'), where X = (X, ) is a o-finite
measure space, and 1T: X — X is an invertible bimeasurable map that is

measure-preserving in the sense that u(7'(EF)) = u(F) for all measurable E. In

the literature it is common to also require X = (X, u) to have finite measure
(and often one normalizes (X, u) to be a probability space), but our main

theorem will not require this hypothesis.



POINTWISE ERGODIC THEOREMS FOR BILINEAR POLYNOMIAL AVERAGES 999

Let Z[n] denote the space of all formal polynomials P(n) in one indetermi-
nate n with integer coefficients. Such a polynomial P(n) € Z[n] can of course
be identified with a function P: Z — Z, thus, for instance, n is identified with
the identity function n — n and n? is identified with the quadratic function
n + n?. (Later on we will also identify P with maps P: R — R on other
commutative rings R, such as the reals R, the p-adic integers Z,, or the profi-
nite integers Z.) Given any polynomials Py(n), ..., Py(n) € Z[n], measurable
functions fi,..., fr € LY(X) (see Section 2 for a definition of this space), and
a real number N > 1 we can define the non-conventional polynomial ergodic
average Azl( e Pe(n (f 1.+, fx) € L°(X) by the formula

(1.1) Azl,()?)""’Pk(n)(fla o Jo)(@) = Epga fa (TP Mgy e f(TP M gy,

where E,, ¢y f(n) = ™ N ] ZLNJ (n). (See Section 2 for a more general defini-
tion of this averaging notation.) The terminology “non-conventional” for such
multilinear averages was introduced in [35] and is now standard in the ergodic

. . . Pi(n),...,Pr(n
theory literature (see, e.g., [36], [44]). We will usually abbreviate A Nl;(X) ()

Pi,..,P . .
s Ay77F or even Ay when this does not cause confusion. As Ay only

depends on the integer part |N| of N, one could have restricted N to the
positive integers Z, ; however it will be convenient to generalize to real-valued
N in order to use certain scaling arguments.

Ezample 1.2 (Integer shift system). The integer shift system Z=(Z, uz,Tz,)
is the set of integers Z equipped with counting measure uz and the shift
Ty(z) :== x — 1. For our purposes, this system will be “universal” for all other
measure-preserving systems, in a sense formalized by the Calderon transfer-
ence principle; see Proposition 3.2(ii). This will be a particularly convenient
system to work in due to the extensive Fourier-analytic structure available on
the additive group of integers Z, which can be connected, in particular, (in the
“major arc” regime) to the corresponding Fourier-analytic structures on other
locally compact abelian groups, such as the adelic integers Ay; see Figure 7.
In this system one has

AR (o ) (@) = Enen fi( — Pi(n)) - -+ fi(x — Pr(n)).
Our main results will concern the bilinear averages
[NV]

PO (£, 9)(x) = Epein f(T2)g(TT™ Z F(T"2)g(TP ™)

for a given polynomial P(n) € Z[n], but as motivation we shall also discuss the
classical ergodic average

Nf(2) = Enepn f(T"2) =
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and the linear polynomial average

V]
AR f(a) = By (TP ™) = ulw S (TP ™).
n=1

A central problem in ergodic theory is to understand convergence in norm
and pointwise almost everywhere for the non-conventional polynomial ergodic
averages (1.1) as N — oo. This line of investigations has been initiated in the
early 1930s by von Neumann’s mean ergodic theorem [70] and Birkhoff’s point-
wise ergodic theorem [7] (see Theorem 1.7) and led to profound generalizations
such as Bourgain’s polynomial pointwise ergodic theorem [11], [12], [13] (see
Theorem 1.8) and Furstenberg’s ergodic proof [33] of Szemerédi’s theorem [79].
Furstenberg’s proof was also the starting point of the multiple/multilinear er-
godic theory (see Theorems 1.15 and 1.16) arising in ergodic Ramsey theory
that also motivates this paper. Pointwise convergence is the most natural as
well as the most difficult type of convergence to establish. It requires sophisti-
cated tools in analysis, ergodic theory and probability. Especially, the context
of pointwise convergence of (1.1) will require an understanding of quantitative
forms of pointwise convergence, which we briefly illustrate below.

Given some non-conventional average An(f1,...,fr) of some functions
fi,-.., fr, with each f; belonging to some Lebesgue space LPi(X), one can
pose the following questions:

(i) (Norm convergence). Does An(fi,..., frx) converge in LP(X) norm as
N — oo for some exponent p > 07

(ii) (Almost everywhere convergence). Does An(fi,..., fr) converge point-
wise almost everywhere (with respect to u, of course) as N — oco?

(iii) (Maximal inequality). Can one bound the LP(X) norm of the maximal
function supyez, [An(f1,. .., fr)]; (or equivalently, the LP(X;£°°) norm
of the sequence of averages (An(f1,...,fr))Nez,) for some p > 0 in
terms of the norms || fi|| z»:(x)? More precisely, one is concerned with the
following bound:

(1.3) | sup [AN(frs-- 5 f)lllr(x) Sprvepen 1f1llzen ) = I felloe (x)-
N€Z+

(See Section 2 for the asymptotic notation used in this paper.)

(iv) (Variational inequality). Can one bound the LP(X) norm of the r-varia-
tional norm [|(An(f1,--., fk))Nez,|lvr, (or equivalently, the LP(X; V")
norm of the sequence of averages (An(f1,..., fx))nez,) for some p > 0
and some 1 < r < 0o in terms of the norms | fi[|»:(x)? More precisely,
one is concerned with the following bound:

(1.4)

(AN (fr, - fr))vezy v

o(x) Sprwewr [f1llen oo - [kl ee x)-



POINTWISE ERGODIC THEOREMS FOR BILINEAR POLYNOMIAL AVERAGES 1001

The r-variational norm is defined by

[(AN(f15- -, f&))Nez, lve

‘= Ssup ’AN(flw . afk)| + H(AN(fl) .- '7fk))NEZ+||VT7
NeZ,

where |[(An(f1,-.., fx))Nez, |lvr is given by the following expression

J—1
1/r
(15) s sup (D An o fi) = A e )
JELy No<<Ny N5
NjEZ+ J=
here the supremum is taken over all finite increasing sequences in Z.
(See Section 2 for a more general definition of the variational norm V"

and its properties.)

These questions are all related to each other. For instance, if variational
inequality (1.4) holds, then one automatically has a maximal inequality (1.3).
Moreover, (1.4) immediately ensures that the quantity in (1.5) is finite almost
everywhere, which in turn implies almost everywhere convergence of the se-
quence (An(fi,..., fx))Nez, as N — co. Norm convergence then also follows
(for p < o0) by (1.3) and the dominated convergence theorem. This variational
norm approach to ergodic theorems was advocated, in particular, by Bourgain
[12], and it is very useful in pointwise convergence problems with arithmetic
features.

We say that a tuple (p1, ..., pk, p) of exponents is Hélder if% = p%+' . -+i
and Banach if py,...,pg,p > 1. If a tuple (p1,...,pk,p) is both Holder and
Banach, then from Holder’s inequality and the triangle inequality in the Banach
space LP(X) one has

(1.6) IAN(f1s -5 fille )y < fallzen ) - 1 fellee ()

regardless of the choice of polynomials P;(n),..., P;(n). Thus it is natural to
restrict attention to the case of exponents that are both Holder and Banach.
The Holder hypothesis is particularly essential for ergodic theory applications
as it is needed in order to apply the Calderdn transference principle; see Propo-
sition 3.2(ii). However, we will be able to “break duality” in our main result
by allowing certain non-Banach exponents p < 1 while still maintaining the
Holder property; see Section 11. On the integer shift model Z, the estimates
become trivial (and of little use) in the super-Holder regime % < p% +-- é,
and false in the opposite sub-Hoélder regime % > p% +- 4 é; see Remark 3.11.

It is technically convenient to sparsify the set of scales N that one is
ranging over to define a maximal or variational function. For instance, one
could replace the positive integers Z by the dyadic integers

N = {2k . k e N}
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More generally, we can work with sets D = {Nj, No,...} of positive reals
1 < Ny < Ny < --- that are A-lacunary for some A > 1, in the sense that

Nj+1/Nj > A

for all j € Z,; one defines A-lacunarity for finite sequences {Ny,..., Ny} of
positive reals 1 < Ny < --- < N in a similar fashion. Variational estimates on
such lacunary sets are sometimes referred to as “long variation estimates” in
the literature; they are somewhat weaker than full variation estimates but are
often still sufficient for applications such as demonstrating almost everywhere
convergence.

We will only concern ourselves in this paper with the existence of a limit
of an ergodic average, and not attempt to compute what the limiting average
actually is. The nature of this limiting average is now fairly well understood (at
least when f1,..., fr € L°°(X) and X has finite measure) thanks to the theory
of characteristic factors and the equidistribution theory of nilmanifolds; see, for
instance, [3], [4], [30] for further discussion. In particular, for a description of
the limit in the case when the polynomials all have distinct degrees, which is of
course the case of primary interest here, we refer to [19]. We also remark that
the limit in this case is determined entirely by the projection of the functions
to the rational factor (the factor spanned by periodic functions), which is the
ergodic theory analogue of the “major arc” component of the functions. These
results are also related to recurrence and Roth and Szemerédi type theorems
(see, e.g., [33], [35], [34], [5], [79]), which also motivate this paper, but we will
not discuss these topics further here.

1.2. Linear averages. We now recall the standard ergodic theorems for
the classical ergodic averages A}

THEOREM 1.7 (Classical ergodic averages). Let X = (X, 1, T') be a measure-
preserving system, and let f € LP(X) for some 1 < p < co.
(i) (Mean ergodic theorem). If1 < p < oo, then AR f converges in LP(X)
norm.
(ii) (Pointwise ergodic theorem). If 1 < p < oo, then A} f converges point-
wise almost everywhere.
(iii) (Maximal ergodic theorem). If 1 < p < oo, then one has

(AN f)Nezy e xseey Sp 1 e (x)-
(iv) (Variational ergodic theorem)). If 1 < p < oo and r > 2, then one has
(AN fInezy e xsvry Spor 1 e (x)-

Proof. Parts (i)—(iii) are standard, particularly in the case when X has
finite measure, and are due to von Neumann [70], Birkhoff [7], and Hopf [42];
the maximal inequality (for o-finite X) can also be established by transference
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to the integer shift case (Z, uz,T7) and then applying the Hardy—Littlewood
maximal inequality. (This also gives a weak-type endpoint for (iii).) The
variational estimate was established by Bourgain [12, Cor. 3.26] in the p = 2
case, and the general case was established in [49]; this estimate can then be
used to recover the mean and pointwise ergodic theorems in the o-finite case
as mentioned previously. O

We have (slightly weaker) analogues of these results for other linear poly-
nomial averages:

THEOREM 1.8 (Linear polynomial averages). Let X = (X,u,T) be a
measure-preserving system, let P(n) € Z[n|, and let f € LP(X) for some
1<p< oo

(i) (Mean ergodic theorem). If 1 < p < oo, then Af\),(n)f converges in LP(X)
norm.
(ii) (Pointwise ergodic theorem). If 1 < p < oo, then Aﬁ(n) f converges
pointwise almost everywhere.
(iii) (Maximal ergodic theorem). If 1 < p < oo, then one has

(1.9) AR F) ez | oixie) Spp (1 lleo)-

(iv) (Variational ergodic theorem). If 1 < p < co and r > 2, then one has

(1.10) AR Fynez N oxivry Spmp 1 Lo

Proof. Part (i) follows for p = 2 by a routine application of the spectral
theorem (or one can invoke Theorem 1.15 below), and the other values of p then
follow from a density argument. Parts (ii), (iii) were established by Bourgain
[12, Th. 1] (see also [11], [13]). Part (iv) was established in the p = 2 case by
the first author in [54, Prop. 1.5] by adapting the methods of Bourgain, and in
full generality by the second author and his collaborators in [66]; see also [68].
In [54, §8] it is also shown that (1.10) fails at the endpoint p = r = 2. Forp =1,
in contrast to Theorem 1.7(ii), pointwise convergence in Theorem 1.8(ii) fails
for any monomial P(n) = n? of degree d > 2, as was shown in [17], [56]. O

Theorem 1.8 is proven via the circle method. The implementation of this
method can be summarized in the following two sentences:

(i) Plancherel’s theorem and Weyl sum estimates are used to control the
contribution of minor arcs.

(ii) Multifrequency harmonic analysis is used to control the contribution of
major arcs.

We now briefly sketch some more details of Bourgain’s proof for maximal
inequality (1.9). The key estimate to establish is (1.9) when p = 2 and (X, 1, T")
is the integer shift system, where N is restricted to a finite lacunary set I, and
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with f assumed to be in the Schwartz—Bruhat space S(Z) C ¢}(Z) to avoid
technicalities; see Section 4 for a definition of this space. In this setting we
have the convenient Fourier representation

Fr AN £(€) = on (&) Fuf(€)

for any £ € T, where using the averaging notation (2.2) the symbol ¢y 7(€) is

given by
(1.11) onz(&) = Epene(P(n)f),
where e(f) := €2™ and the Fourier transform Fyf are defined in Section 4.

Standard Weyl sum estimates (see [48, Lemma 20.3, p. 462]) reveal that for
some small §,& > 0, one has

(1.12) lonz(€)| Sp N7°,

unless ¢ is in a major arc, which roughly speaking means that £ is close to
% mod 1 for some a € Z and some small positive integer 1 < g < N€¢. One
can then use (1.12) and Plancherel’s theorem to dispose of the minor arc case
when £ is not in a major arc, and then after a dyadic decomposition the main

task is to establish an estimate roughly of the shape

P(n —c
AR Fynetll ey Srnpa 2% e

for all I € N, A > 1 and some constant ¢ = ¢, p > 0, where I C [1,+00) is
an arbitrary finite A\-lacunary set and the Fourier transform of f is restricted
to the set of “I-major arc” frequencies £ of the form £ = % + 0(271%) mod 1

(say) for some ¢ ~ 2. (Informally, this is morally equivalent by the uncertainty
principle to f being a linear combination of functions that are approximately
constant on arithmetic progressions of spacing g for various ¢ ~ 2¢ and diameter
~ 210l see Remark 5.20.) In fact, at a given (large) scale N one can restrict
to even narrower major arcs, of width O(2%/N?) say. A finer analysis of the
symbol (1.11) reveals that for a major arc frequency & = % + 6 mod 1,

PNz <Z + 6 mod 1)

has an approximate factorization

(1.13) ©3, (Z mod 1) onr(0),

where the “arithmetic symbol” ¢, : Q/Z — C is defined by

(1.14) ©s (Z mod 1> = Enez/qze (an(n))
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and the “continuous symbol” oy r: R — C is defined by

N
oNR(0) = ]1[/0 e(0P(t)) dt.

The influence of the arithmetic symbol ¢, (which does not depend on ) can
be easily factored out in the p = 2 case by Plancherel’s theorem, and the
task then readily reduces to that of establishing a multifrequency maximal
inequality (see [13, Lemma 4.1]). This result in turn is ultimately derived
from a variational inequality for averages of vector-valued L? functions (see
[13, Lemma 3.30]), in the spirit of Lépingle’s inequality.

1.3. Bilinear averages. Now we turn to multilinear averages. For the norm
convergence problem in the case of finite measure and Banach exponents the
situation is well understood, thanks to the following result of Host—Kra and
Leibman:

THEOREM 1.15 (Multilinear mean ergodic theorem). Let (X, u,T) be a
measure-preserving system of finite measure, let Pi(n),..., Py(n) € Z[n], and
let fi € LPI(X) for alli = 1,...,k and some exponents 1 < p; < oo with
p% +o pik < 1. Then the averages A]]\D,l“'”P’“(fl, ooy frx) converge in LP(X)
norm for any 0 < p < oo withi+'--+é<%.

Proof. The case py = --- = p = 00, p = 2 is established in [43], [57] (see
also [82] and [1] for quite different proofs and generalizations); one can then
extend to other 0 < p < oo by Hélder’s inequality, and the case of general
P1, ..., Pk then follows by a standard limiting argument using (1.6). O

There is a long history of prior partial results (e.g., [44], [83], [2], [5],
[31], [36]) towards Theorem 1.15, as well as generalizations to actions of other
nilpotent groups than Z (i.e., averages involving multiple measure-preserving
transformations 71, . . ., T} that generate a nilpotent group); we refer the reader
to [3], [4], [30] for surveys. In several cases it is possible to “break duality” by
permitting p% + -+ i to exceed 1; see Section 11 below.

For pointwise convergence and for two linear polynomials, one also has
the following results:

THEOREM 1.16 (Two linear polynomials). Let (X, u,T) be a measure-
preserving system with finite measure, let P;(n), Py(n) € Z[n] have degree 1 with
distinct leading coefficients, and let 1 < p1,p2 < oo be such that p% + p% < %
Then for f € LP(X),g € LP2(X), the averages A?’PQ (f,g) converge pointwise
almost everywhere.

Proof. For the case p; = pa = oo, see Bourgain [14]; an alternate proof
was also given by Demeter [21]. To extend to the remaining cases of pi, po
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one applies a bilinear maximal inequality of Lacey [55] and a standard limiting
argument. ([l

We now at last come to the main result of our paper, which concerns an
opposing case to Theorem 1.16 in which one has one linear polynomial and one
strictly nonlinear polynomial.

THEOREM 1.17 (Main theorem). Let (X, u,T) be a measure-preserving
system, let P(n) € Z[n] have degree d > 2, and let f € LP*(X),g € LP2(X) for

somel<p1,p2<oowithp%—|—i—l<1.

p2 p—
(i) (Mean ergodic theorem) The averages A?\}P(n)(f,g) converge in LP(X)
norm.
(ii) (Pointwise ergodic theorem) The averages Aljl\}P(n)(f, g) converge point-
wise almost everywhere.
(iii) (Mazimal ergodic theorem) One has

n,P(n
A" (£, 90 wez, o)y Spronp 1F]1zon o) 9l e x)-

(iv) (Long variational ergodic theorem) If r > 2 and X\ > 1, one has

n,P(n
(1.18) (A ™(f, 9))nepllrex;vry Sprper A 1 Lo x) 19l L2 (x)

whenever I C [1,400) is A-lacunary.

We now give some remarks about this theorem.

(i) Theorem 1.17(i) already follows from Theorem 1.15 when (X, 1) has finite
measure; in fact for this particular average, the results are essentially
already contained in [36]. However, it appears to be new in the o-finite
setting, and the proof method is completely different from methods used
to establish Theorem 1.15.

(ii) Theorem 1.17(ii) is completely new for general measure-preserving sys-
tems,! even when f,g € L°°(X) and X has finite measure. In particular,
Theorem 1.17(ii) when specialized to the case P(n) = n? answers the
second part of [30, Prob. 11] for the Furstenberg—Weiss averages [36]
(see also [35]), which is a bilinear variant of the problem considered

!This result (and also part (iii)) was claimed in [29]. However, there appear to be several
gaps in the arguments. Firstly, in [29, pp. 23] it is claimed without giving details that
the Caldéron transference principle can be applied for the super-Hélder exponent triplet
02 x> =02, but if one carefully works through the arguments provided in [29, pp. 10-11] for
these exponents, one loses a factor of N'/2 in the estimates (as h now needs to be controlled
in ¢2 norm rather than £°° norm) and thus cannot pass to the limit N — oco. Secondly, in
[29, pp. 26], bilinear maximal estimates are obtained for the super-Holder exponent triplets
0 x 0" — ¢" and 7 x £* — (", but the assertion in that paper that bilinear interpolation
then gives Holder exponent estimates such as £* x £°° — ¢* or £ x ' = ' s false.
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by Bergelson [3, Question 9, pp. 52]; see also [4, §6, pp. 838]. The-
orem 1.17 is also a contribution towards establishing the Furstenberg—
Bergelson—Leibman conjecture [6, §5.5, p. 468], which asserts the follow-
ing. Given integers d,k,m, N € Z,, let T1,...,Ty : X — X be a family
of invertible measure-preserving transformations of a probability measure
space (X, pu) that generates a nilpotent group of step m. Assume that
P1,17 ceey Pi,ja .. 7Pd,k < Z[n] Then for any fl, SN fk S LOO(X), the
non-conventional multiple polynomial averages

k
Py i(n Py i(n
Epe[n] H (1 () Ty 4a )95)
i=1

converge pointwise for p-almost every x € X as N — oo. This con-
jecture is a widely open problem in ergodic theory that was promoted
in person by Furstenberg (see [1, p. 6662] and [53]) before being pub-
lished in [6]. Bergelson-Leibman [6] showed that convergence may fail if
the transformations 11, ..., Ty generate a solvable group. Our main the-
orem solves this conjecture in the case d = 1, k = 2 with P;;(n) = n
and Pj2(n) = P(n) € Z[n] with deg P > 2. Pointwise convergence for
non-conventional polynomial averages has previously been established for
some special measure-preserving systems, such as exact endomorphisms
and K-automorphisms [24] and nilsystems [58].

(iii) Our methods of proofs break down in the linear case d = 1 (as the minor
arc contributions are no longer negligible), and so we are unable to give
an alternate proof of Theorem 1.16.

(iv) For p > 1 (i.e., above the line of duality), Theorem 1.17(iii) follows easily
from past results. Indeed, from several applications of Holder’s inequality
one has

n,P(n
1A (f, ) vez, e

< DAV DNz N e IR Qo D vz 75
for any 1 < pg < co. In the p > 1 case one can select pg so that py < p1
and pj, < p2, and the claim now follows from Theorem 1.8(iii). However,
the p = 1 case (i.e., on the line of duality) is new, even when p; = py = 2.
Also, the simple argument given above does not seem to easily adapt to
give the p > 1 cases of the other components (i), (ii), (iv) of the theorem,
although it does permit one to reduce those cases of (i), (ii) to the case
in which f,g € L*®(X) by the usual limiting argument. A continuous
analogue of Theorem 1.17(iii) was previously established in [61] (see also
[60], [37]).
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(v) Theorem 1.17(iv) is the key result in the theorem, and it easily implies the
other parts of the theorem, as we shall show in Section 3. The condition
r > 2 is necessary, as no variational estimate is possible for r < 2; see
Corollary 12.4. The situation can be contrasted with that in [25], in which
a certain bilinear paraproduct was shown to enjoy r-variation estimates
for some values of r < 2.

(vi) A modification of our arguments (taking particular advantage of linear
LP improving estimates) is able to “break duality” and establish some
cases of Theorem 1.17 in the non-Banach regime p < 1, with the range
of exponents being particularly strong in the case of norm convergence
on spaces of finite measure; see Section 11. A similar “breaking duality”
phenomenon occurred in [22]; also, in [61, Th. 2] a continuous analogue of
part (iii) of the theorem was established that “broke duality” by allowing
p to lie in the range p > d%dl, which is best possible up to the endpoint;
see [61, §3].

(vii) The requirement that X be o-finite can be dropped by observing that
f € LP(X),g € LP2(X) have o-finite supports (since p1,p2 < 00), and
hence the invariant set |J,,c, 7" (supp(f) Usupp(g)) is also o-finite. Since

the averages A%P(n)( f,g) are all supported on this invariant o-finite set,
one can restrict to the o-finite case without loss of generality.

1.4. Overview of proof. We now give an overview of the proof of Theo-
rem 1.17. The arguments follow the basic framework of the arguments used
to establish the linear results in Theorem 1.8, but with several new difficulties
arising that require substantial new ideas to overcome. Most notably,

(a) Plancherel’s theorem and Weyl sum estimates ([48, Lemma 20.3, p. 462])
are no longer sufficient by themselves to control the contribution of the
minor arcs, thus defeating a “naive” implementation of the circle method.

(b) The bilinear analogue

P
(1.19) ms <0;1 mod 1, % mod 1) = Epez/qz€ (W)

of the arithmetic symbol ¢, defined in (1.14) cannot be factorized as a
tensor product of a function of %1 mod 1 and a function of %2 mod 1. As
a consequence, symbol (1.19), despite being independent of N, cannot be
disposed of purely by linear tools such as Plancherel’s theorem (even in
the model case p; = p2 = 2) due to a bilinear nature of the problem and
must be treated in tandem with the continuous features.

Our resolution to these problems can be summarized by the following two
sentences:
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(i) Additive combinatorics (and, more specifically, Peluse-Prendiville the-
ory), as well as Hahn—Banach separation theorem, Ionescu—Wainger mul-
tiplier theory, and the ¢P(Z) improving theory of Han-Kova¢-Lacey—
Madrid—Yang on the integers Z, are used to control the contribution of
minor arcs. This is a bilinear theory of the minor arcs.

(ii) Adelic harmonic analysis (which combines the continuous harmonic anal-
ysis of the reals R with the arithmetic harmonic analysis of the profinite
integers Z), as well as Ionescu—Wainger multiplier theory, two-parameter
Rademacher—Menschov argument, shifted square function estimates, and
the LP (Z) improving theory on the profinite integers Z, are used to control
the contribution of major arcs.

We now discuss the strategy in more detail.

1.4.1. Standard reductions. Following Bourgain [11], it suffices to establish
the variational estimate (3.3) on a finite A-dyadic set D of scales, and by using
the Calderon transference principle we can work with the integer shift system Z.
For technical reasons, it is also convenient to remove the lower half n < N/2
of the averaging operator (1.1) and only retain the upper half n > N/2, but
we ignore this step for the sake of discussion. These standard reductions are
reviewed in Section 3. We will need to establish the variational estimate for all
choices of (p1,p2), but the most important case is when p; = ps = 2 (and hence
p = 1), where it is easiest to establish a certain exponential decay that can then
be propagated to all other choices of exponents (p1,p2) by interpolation. For
the sake of discussion, we therefore restrict attention to the p; = ps = 2 case.

1.4.2. Minor arcs estimates. Again following Bourgain, we would now like
to restrict the functions f,¢g to major arcs in Fourier space. In the linear
setting this could be accomplished relatively easily using Plancherel’s theorem
and decay estimates (1.12) for the symbol (1.11) on minor arcs. However, in
the bilinear setting Plancherel’s theorem and the classical Weyl estimate [48,
Lemma 20.3, p. 462] are insufficient to obtain satisfactory control on the minor
arc contribution. Instead we use a deep recent inverse theorem of Peluse and
Prendiville [74] and Peluse [73] from the additive combinatorics literature (see
Theorem 6.3), which asserts that for every 0 < 6 < 1 and bounded functions
£ [FO(N9),0(N)] = C with | flle=, gl < 1, if [An(f,g)le > 6N,
then f must weakly correlate with the indicator function of a progression P =
{gqm € Zy : m € [N']} with ¢ < 6 °M and 6°WN < N’ < N, in the sense
that ||f * 1_p||p = D NN provided that N > 6~ In other words, it
says that the function f has a major arc structure at scale IV, which is precisely
stated using Fourier-transform language in Proposition 6.6. However, for our
application, we need to replace the /> control with (suitably normalized) ¢2
control. To do this we shall use the Hahn—Banach theorem to interpret this
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inverse theorem as a structural description of certain dual functions associated
to the averaging operator Ay; see Corollary 6.10. We also need to utilize the
multiplier theory of Ionescu and Wainger [47] to maintain the separation of
major and minor arcs during this process; see Proposition 6.15.

Then combine the latter with recent linear LP-improving estimates on Z
by Han-Kova¢-Lacey-Madrid—Yang [41] (see also Dasu-Demeter—Langowski
[20]) to relax the hypotheses to ¢%; see Corollary 6.22. The final conclusion
of this analysis is the single-scale minor arc estimate in Theorem 5.12, which
roughly speaking (with the notation from (2.1)) asserts that

(1.20) AN (£, )l S 27°0 + (Log N)" D) || fllz gl 2

unless the Fourier transform of f and g are supported on major arcs of width
respectively O(2'N~1) and O(24N~9). (The disparity is due to the different
degrees in the polynomials n, P(n).) Inequality (1.20) can be thought of as a
bilinear variant of inequality (1.12), which was derived from classical Weyl’s
inequality [48, Lemma 20.3, p. 462]. This bilinear inequality (1.20) is a very
useful result that we will apply repeatedly in our arguments.

1.4.3. Major arcs estimates: a first glimpse. One can now restrict atten-
tion to major arcs, in which f has Fourier support supported at combinations
a+0 mod 1 of “arithmetic frequencies” o €Q/Z and “continuous frequencies”
0 € R. The “height” of the arithmetic frequency « will be bounded by some
threshold 2", and the magnitude || of the continuous frequency will similarly
be bounded by some threshold 2*' for some large negative k1. With some
additional effort, g can similarly be restricted to major arc frequencies that
are the combination of an arithmetic frequency of height at most 22 and a
continuous frequency of magnitude at most 2¥2. Naively, the height of an
arithmetic frequency o = % mod 1 with (a,q) = 1 might be defined to equal ¢
(or inf{2! : ¢ <2'}, if one wishes to view height as a dyadic integer). However,
for technical reasons, it is often more convenient to replace this naive notion
of height with a more complicated variant of height implicitly introduced by
Ionescu and Wainger [47] that enjoys better multiplier theory (the losses in-
curred here are only polynomial in [ rather than exponential); see Appendix A.
In order to decouple the continuous aspects of the analysis from the arithmetic
aspects, it turns out to be convenient to embed the integers Z into the adelic
integers®? Az = R x 7 =R x Hp Zypy; this embedding ¢: Z — Az is the Fourier

20One could also work with various projections R x Z/QZ of the adelic integers, which
amounts to requiring a common denominator ) to the arithmetic frequencies being used;
but the adelic formalism is cleaner in that it automatically handles uniformity in the @
parameter. Also we believe it lends some conceptual clarity to the strategy of separating the
continuous and arithmetic aspects of the analysis.
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adjoint of the addition map 7: R x Q/Z — T defined by 7(0,a) == a + 0
that was implicitly used to define major arcs. The advantage of working in
the adelic framework is that several key linear and bilinear Fourier symbols
on the integers, when transferred to the adelic integers, can be treated in a
fairly unified way and can be cleanly decomposed or approximated into simpler
symbols that exhibit a useful tensor product structure, so that the continu-
ous and arithmetic aspects of the symbols involved become almost completely
decoupled; see also Figures 1 and 2.

1.4.4. Major arcs estimates: paraproduct-type decomposition. The objec-
tive is now to obtain, for a given choice of height scales [y, [, variational bounds
on the average An(f,g) under the assumption that f, g have Fourier supports
associated to major arcs of heights 211, 2/2 respectively, with the bounds enjoy-
ing exponential decay in the parameter [ := max(ly,l2). At a given scale N, one
can use the Tonescu—Wainger multiplier theory to restrict the Fourier trans-
form of f to major arcs of width about 2!N~!, and similarly restrict the Fourier
transform of g to major arcs of width about 2% N=¢. (As before the disparity is
due to the different degrees in the polynomials n, P(n).) For any given scale N,
Theorem 5.12 gives the desired exponential gain in [; the problem is how to
sum in N. To overcome this difficulty we perform a certain paraproduct de-
composition (5.27) and (5.28) centered around a finite number of (arithmetic)
frequencies. This contrasts sharply with the classical theory of paraproducts
that are centered at the frequency origin. Here, again an indispensable role is
played by the Ionescu—Wainger projections (5.15) and (5.16), which will allow
us to control “low-low,” “low-high,” “high-low,” and “high-high” paraproducts
by employing the methods from continuous harmonic analysis.

1.4.5. Major arcs estimates: “low-low” case and “small scales”. For the
sake of exposition, let us initially focus on the “low-low” case when one can
restrict the width of the major arcs further to 2~*N~! and 2= N~¢ where u
is moderately large (about 27 for some small constant p). The argument then
splits into the treatment of “small scales” 2% < N < 22" and “large scales” N >
22", (The contribution of extremely small scales N <2 can be easily discarded,
thanks to the exponential decay factors present in the single scale estimates).
For small scales, in the linear theory we used the Rademacher—Menshov type
inequality [66], which was quite efficient. Here, due to the bilinear nature of the
problem the situation is much more complicated. We begin with performing
some Fourier-analytic approximations at the adelic integer level, analogous to
(1.13), to replace averages such as An(f,g) with an expressions of the form
B(fn,gn), where the bilinear operator B is now independent of N. This is the
key idea of the major arcs analysis, which is encapsulated in the model estimate
(7.24) of Theorem 7.23. The same idea is also exploited in the “large scales” to
establish estimate (7.25) of Theorem 7.23. After these approximations, we use
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a two-parameter Rademacher—-Menshov argument and Khinchine’s inequality
to reduce the variational estimates to a single scale estimates; such arguments
lose factors that are essentially logarithmic in the number of scales, which in
the small scale regime gives a loss of ©u©(), but this is acceptable thanks to the
exponential gains in [, which again can be derived from (1.20).

1.4.6. Major arcs estimates: “low-low” case and “large scales”. At large
scales, the major arcs become extremely narrow, so much so that the arithmetic
frequencies at the center of these arcs can be given a common denominator
with % much larger than the width of these arcs. In this regime it becomes
possible to use a quantitative version of the Shannon sampling theorem (The-
orem 4.18) to transfer from the integers Z to the adelic integers Ay = R X 7
while essentially preserving all function space norms of interest. The behavior
in the continuous variable R is relatively tractable due to the Ionescu—Wainger
multiplier theory and [66]. The main difficulty is to understand the nature of
the associated “arithmetic” average A, on the profinite integers Z, which is a
compact commutative ring. By some use of p-adic methods (see Appendix C),
we will obtain a non-trivial LP-improving estimate for this average, while from
yet another invocation of Theorem 5.12 we will also obtain exponential decay
in [ for these averages (for the L? theory at least, and the remaining cases
can then be treated by interpolation). By combining these estimates with
some general manipulation of variational norms, and also relying primarily on
a vector-valued version of Lépingle’s inequality from [69] to handle the varia-
tional behavior in the continuous variable R, we can obtain acceptable control
on the contribution of the large scales.

1.4.7. Major arcs estimates: remaining cases. The other cases (“high-
high,” “low-high,” “high-low”) can be treated by modifications of the method;
the main new difficulties are to obtain some additional decay when one is
relatively far from the arithmetic frequencies at the center of the major arcs
(that is to say, when the continuous component of the frequency is large).
By interpolation one only needs to obtain this decay for the ¢? theory. In
the “high-high” case one can obtain such a decay using Theorem 5.12 once
again, exploiting almost orthogonality in order to sum over scales N. In the
remaining “low-high” and “high-low” cases we will obtain the required decay
by applying an elementary integration by parts to a certain bilinear symbol
associated to the averaging operation Ay (see Lemma 7.26). On the other
hand, this decay is at risk of being overwhelmed by the increased oscillations
present in the symbol. To avoid this we use shifted Calderén—Zygmund theory
(see Appendix B), of the type used for instance in [63], that allows one to
handle certain types of oscillating Fourier multipliers losing only acceptable
logarithmic factors in the estimates. The idea of shifted maximal estimates
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was also recently exploited in [46] in the context of establishing pointwise
ergodic theorems for the polynomial averages on nilpotent groups; it seems to
be decisive in problems when the operators in question cannot be interpreted
as convolution operators corresponding to an abelian convolution.

1.4.8. Final remarks. Finally, we emphasize that the proof of Theorem 1.17
can also be adapted (and simplified) to give an alternate proof of Theorem 1.8
(but in which one only controls the long variation rather than the full varia-
tion). We sketch the changes needed to the argument as follows. The exponent
p1 is now fixed to equal oo (so that p = ps), and the first function f is fixed
to equal 1 (which allows for several simplifications, for instance the parameter
l1 can be taken to be 0, and s; can be taken to be —u). All appearances of
1,,—p,—2 are now replaced by 1, —o p,—2. Various linear estimates, such as
Tonescu—Wainger multiplier estimates, shifted Calderon—Zygmund estimates,
and Lepingle’s inequality, do not hold in general at the £°° endpoint, but are
trivially true when applied to the specific function f = 1 in £°°, so this does
not cause difficulty. Theorem 5.12 needs to be modified to an £ x (2 — (2
estimate with f = 1, but in this case the required gain of 27 4 (Log N)~¢“1
is immediate from Plancherel’s theorem and Weyl sum estimates [48, Lemma
20.3, p. 462], thus avoiding the need to invoke the Peluse-Prendiville theory.

1.5. Open questions. While our main interest is in averaging operators
on the integers Z, in the course of our arguments it became natural to also
consider the analogous averaging operators on other locally compact abelian
domains such as R, Z/QZ,R x Z/Q7Z,7]pZ, ZP,Z, and Az, with the adelic
integers Ay playing a particularly central role, at least on a conceptual level;
see Figure 1. The connection can be summarized by the slogan

Major arc analysis on Z ~ Low frequency analysis on Ay,

where “low frequency” has to be interpreted in both a continuous and arith-
metic sense; see Figure 7. In particular, the adelic averaging operators Ay 4,
defined in (7.12) emerge as a simplified model for the integer averaging opera-
tors Ay z, and further investigations into similar problems in discrete harmonic
analysis may wish to begin by first understanding adelic models of such prob-
lems, particularly in “true complexity zero” situations in which one suspects
that the major arc contributions are dominant or equivalently that the minor
arc contribution is negligible. In fact, the method of proof of Theorem 1.17
relies in an essential way on the negligibility of the minor arc contribution; in
the language of additive combinatorics, this reflects the fact that the pattern
(x,x — n,z — P(n)) has “true complexity zero” in the sense of Gowers and
Wolf [39]. In the language of ergodic theory, the corresponding assertion is

(n)

Kronecker (or profinite) factor K., generated by the periodic functions.

that the minimal characteristic factor of the averages AR}P is the rational
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We close our introduction with some questions relating to Theorem 1.17

that remain open.

(1)

Does Theorem 1.17 continue to hold if one of py, ps is allowed to be infinite?
Certainly from Theorem 1.8 the maximal inequality (Theorem 1.17(iii))
will still hold if one or both of p1, po are infinite, but the situation for the
other parts of the theorem are less clear (except in the special case where
p1 = oo and f is constant, or ps = 0o and ¢ is constant). Given the ability
to break duality, the endpoints p1 = 1, po = 1 could also be investigated.

Is the analogue of Theorem 1.17(iv) true for the full variation, in which
the lacunarity hypothesis on D) is omitted? Equivalently, can the implied
constant in (1.18) be made uniform in A? The problem is likely to be
significantly simpler if the sharp truncation 1,<x implicit in the definition

(n)

linear analogue of this question was already resolved in Theorem 1.8(iv).

of the averages AR}P is replaced by a smoother weight. Note that the

To what extent can the results in Theorem 1.17 extend to other bilinear av-

erages Af,l (1), P2 (n)

, or more ambitiously to general multilinear polynomial
ergodic averages Aﬁl P2 e refer to Bergelson’s surveys [3, Ques-
tion 9, pp. 52], [4, §6, pp. 838]. It is not difficult to adapt Theorem 1.17

Af,l(n)’Pz(n) in which one of the Py, P is linear (i.e., of

to cover averages
degree 1) and the other is non-linear, however when both P;, P, are non-
linear a refinement of the Peluse—Prendiville theory may be required. We
hope to investigate these averages in future work.

Is there some analogue of these methods that can cover patterns of higher
complexity? A natural first step would be to recover some portion of
Theorem 1.16 (which has “true complexity one” in the Gowers—Wolf [39]
sense) by these methods.

What are explicit ranges of exponents pi,ps for which one can “break
duality” with in Theorem 1.17? In the model case p; = pa (so that p =
p1/2 = p2/2), Lemma 11.1 suggests that one should be able to take p in
the range p > 1 — m, oreven p > 1 — 2%1 in the d = 2 case, with the
latter range also expected if [41, Conj. 1.5] holds. It should also be possible
to recover the optimal range r > 2 of the variational exponent r below the
line of duality. (Our current arguments incur a loss in this parameter that
depends on how close (1/p1,1/p2) is to (1/2,1/2).)

Theorem 1.17(iv) gives variational estimates in V" norms for » > 2, and
in Section 12 the r = 2 endpoint is shown to be false. However, there still
remains the question of whether a jump inequality (analogous to Doob’s
inequality for martingales) is true at the r = 2 endpoint. Such endpoint
jump inequalities were established in [68] for linear polynomial averages
on ZF.
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(7) Theorem 1.17 was focused on unweighted averages

ANV (£,9)(@) = Bnepn T F@)TF g (@),

but one can pose similar questions® for the truncated singular integral
analogue ZO<|n|<N %T"f(x)Tp(”)g(x); currently only single-scale super-
Holder estimates are known [26]. In the linear setting (resp. the bilinear
setting for two linear polynomials), the theory for the averages and the
truncated singular integrals are similar; see [68] (resp. [55]). Bounds on
the (untruncated) bilinear continuous singular integrals were obtained in
[60], [62], [61], [63].

(8) To what extent do the implied constants in Theorem 1.17 depend on the
coefficients of P? The estimate in [41, Th. 1.6] suggests that the depen-
dence of constants is at worst polynomial; on the other hand, [68, Cor. 1.15]
suggests that one may be able to obtain bounds uniform in the coefficients,
by lifting the problem to Z¢ and establishing an analogue of Theorem 1.17
in that setting. (However, this latter strategy would require a multidi-
mensional version of the theory of Peluse and Prendiville, which may be
highly nontrivial.) We also hope to investigate the latter multidimensional
strategy in future work.

(9) Can the results here on the (rational) integers Z be extended to rings of
integers in more general number fields, such as the ring Z[i] of Gauss-
ian integers? Certainly the adelic formalism is exceptionally well adapted
to this setting [81], but other components of the argument may require
significantly more effort to generalize appropriately.

(10) Assuming that P € R[n], it also makes sense to ask whether Theorem 1.17
holds with the averages AELP(H)J (f,g) in place of A]n\}P(n)( f+g). This kind
of question for linear polynomial averages was considered by Bourgain
in [13]. One could also replace the polynomial P with elements of other
Hardy fields, in the spirit of [8], [9], or by random functions of polynomial
growth, in the spirit of [32]. In fact these variants may be simpler than the
polynomial case, as the only major arc that is expected to be significant is
the one centered at the origin.

(11) As mentioned previously, there is a well-developed theory of characteris-

tic factors for the limiting values of non-conventional polynomial averages
An(f1,..., i) when the functions fi, ..., fx liein L®°(X) and X has finite

30ne could also consider fractional integral type expressions
—amn P(n
Enein)(n/N)T" f(2)T"" g(x)
for 0 < a < 1, but these can be easily expressed as linear combinations of the unweighted

averages via summation by parts and so would be expected to obey nearly identical estimates
to those averages.
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measure; see [3], [4], [30]. To what extent does this theory extend to other
LP spaces and to the case when X is merely o-finite, for instance for the
average A?\}P(n)( f,g) studied in Theorem 1.177
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2. Notation

In this section we set out some basic notation used throughout the paper.

2.1. Elementary number theory. We use Z; = {1,2,...} to denote the
positive integers and N := {0, 1,2, ... } to denote the natural numbers. For any
N > 0, [N] denotes the discrete interval [N] := {n € Z; : n < N}. The set
{2,3,5,...} of all prime numbers will be denoted by P. If g1, g2 € Z, we write
q1|q2 if 1 divides go. If a,q € Z, we let (a,q) denote the greatest common
divisor of a and q. We let [¢]* := {a € [¢] : (a,q) = 1} denote the elements of
[q] that are coprime to g.

2.2. Magnitudes and asymptotic notation. We use the Japanese bracket
notation

(i) 1= (1+ [af2)/2

for any real or complex z. We use |z] to denote the greatest integer less than
or equal to . All logarithms in this paper will be to base 2, and for any N > 1,
we define the logarithmic scale Log N of N by the formula

(2.1) Log N := [log N|,

thus Log N is the unique natural number such that 208N < N < gLog N+1,

For any two quantities A, B, we will write A < B, B 2 A, or A = O(B)
to denote the bound |A| < C'B for some absolute constant C. If we need the
implied constant C' to depend on additional parameters, we will denote this
by subscripts; thus, for instance, A <, B denotes the bound |A| < C,B for
some C, depending on p. We write A ~ B for A S B S A. To abbreviate the
notation we will sometimes explicitly permit the implied constant to depend
on certain fixed parameters (such as the polynomial P) when the issue of
uniformity with respect to such parameters is not of relevance.
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2.3. Averages, indicators, and cutoffs. We use the averaging notation

(22) Encaf(n) = 5 3 ()
#A
neA

for any finite non-empty set A, where #A denotes the cardinality of A; in other
words, E,c4 f(n) is the integral of f against normalized counting measure on A.
Note, in particular, that E,cn)f(n) = % 25:1 f(n) when N € Z;. We use
1z to denote the indicator function of a set E. Similarly, if S is a statement,
we use 1g to denote its indicator, equal to 1 if S is true and 0 if S is false.
Thus, for instance, 1g(z) = 1,ek.

Throughout this paper we fix a cutoff function n: R — [0,1] that is a
smooth even function supported on [—1,1] that equals one on [—1/2,1/2]. All
constants are permitted to depend on 7). For any k € Z, we let n<j: R — [0, 1]
denote the rescaled version of 7:

n<k(€) = n(&/2%).

2.4. Function spaces. All vector spaces in this paper will be over the com-
plex numbers C.

If T: V — W is a continuous linear map between normed vector spaces
V,W, we use ||T||v—w to denote its operator norm. If B: V; x Vo — W is a
continuous bilinear map between normed vector spaces Vi, Vo, W, we similarly
use || B|lv; xv,—w to denote its operator norm.

If (X, 11) is a measure space, we let L?(X) be the space of all u-measurable
complex-valued functions defined on X, with the usual convention of identi-
fying functions that agree p-almost everywhere. The space of all functions in
L°(X) whose modulus is integrable with p-th power is denoted by LP(X) for
p € (0,00), whereas L>°(X) denotes the space of all essentially bounded func-
tions in LY(X). If 1 < p < oo is an exponent, the dual exponent 1 < p’ < oo
is defined by the usual relation 1/p + 1/p’ = 1. When X is endowed with
counting measure, we will abbreviate LP(X) to ¢P(X) or even (P.

We can extend these notions to functions taking values in a finite dimen-
sional normed vector space V = (V, || - ||y/), for instance LY(X;V) is the space
of measurable functions from X to V' (up to almost everywhere equivalence),
and

(23) LP(X:V) = {F € LX;V) 2 1F gy = NIF Il oy < 00} -

One can extend these notions to infinite-dimensional V', at least if V is sepa-
rable, but we will almost always be able to work in finite-dimensional settings
(or we can quickly reduce to such a setting by a standard approximation ar-
gument).

For any finite dimensional normed vector space (B, ||-|| ) and any sequence
(az)ter of elements of B indexed by a totally ordered set I, and any exponent
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1 < r < o0, the r-variation seminorm is defined by the formula

J=1 , 1/r

Ca) Nerelves = s s (3 ot — o)1)
JEZ_‘_tOS"'%tJ j=0

tj€

where the supremum is taken over all finite increasing sequences in I, and it is
set by convention to equal zero if I is empty. Taking limits as r — oo we also
adopt the convention

[(at)setllveep) = sup |la(t’) —a(t)||5-
t<t’'el
The r-variation norm for 1 < r < oo is defined by

(2.5) l@e)iellv-@.s) = sup llaslls + l{ae)erllvrz:m)-
€

This clearly defines a norm on the space of functions from I to B. If B = C,
then we will abbreviate V" (I; X) to V"(I) or V", and V" (I; X) to V"(I) or V.
If (X, ) is a measure space, then using (2.5) and (2.3), one can explicitly write

LP(X;V7) = {F € 19X V) < | F oy = IIFllve g < o0
Note that the V" norm is non-decreasing in r and comparable to the £*°
norm when r = co. We also observe the simple triangle inequality

(2.6) [(ar)eetllvrax) S ll(ae)ien v x) + [1(ae)e, [vrm:x)
whenever 1=1I; W, is an ordered partition of I, thus ¢t <t for all t; €11, s E1s.
In a similar spirit we have the bound

(2.7) [(a)terllvrax) S [1(ae)terller@x) < [1(ae)terlle @x)-
From Holder’s inequality one easily establishes the algebra property
(2.8) [(acbe)eerllve S ll(ar)eetllvr | (be)erllvr

for any scalar sequences (a;)er, (by)er-

2.5. Tensor products. Given two functions f: X — C, g: Y — C, we
define their tensor product f ® g: X — Y — C by the formula

f®@g(z,y) = f(x)g(y).

One can also define the formal tensor product f®g of elements f € V., g € W of
abstract vector spaces V, W, which takes values in the algebraic tensor product
V @ W. By abuse of notation, we identify these two notions of tensor product.
If Tv: Vi — Wh, Ty: Vo — Wy are linear maps, we define the tensor
product 77 ® To: Vi ® Vo — W7 ® Ws as the unique linear map such that
(2.9) Ty @ To(f1 @ f2) = (T1fr) ® (T2f2)
whenever f1 €V, fo € V. Similarly, if By: Uy x Vi — W1 and By: Usx Vo — Wy
are bilinear maps, we define B1 ® By: (U ® Ua) X (V1 @ Va) — W1 ® Wy to be
the unique bilinear map such that

(2.10) B1 ® Ba(f1 ® f2,91 ® g2) = B1(f1,91) ® Ba(f2, g2)
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whenever f1 € Uy, g1 € Vi, fo € Us, go € V. This algebraic tensor product can
often be extended to analytic settings. For instance, if Th: LP(X;) — L(Y))
and Ty: LP(X35) — L9(Y3) are integral operators of the form

T fi(yr) = /X Ki(z1,y1) fi(z1) dux, (1)
and 1
Ty fa(y2) = . Ko(22,12) fa(w2) dpx,(x2)
>
then one can define T} ®Ts: LP(X1 x Xo) — L4(Y] xY3) (formally, at least) by

(Th @ T2) f(y1,y2) = /X N Ki(z1,y1)Ka(x2, y2) f (21, 22) dpx, (x1)dpx, (x2).

We claim the multiplicativity property

(2.11) |71 @ Toll 2o (x; x x0) > La(vixve) = 1 Till e (x)—pav) 112l o (x2)— La(va) s
in the case® where one of the kernels (say K1) is non-negative, and assuming
X1, Xs,Y1,Ys are o-finite with positive measure to avoid degeneracies, by the
following argument. The lower bound is clear by testing 77 ® 7% on tensor
products f; ® fa, so we focus on the upper bound (which is what is needed in
our applications). If f € LP(X; x X3), we have

(Tl ® TZ)f(yl, y2) = /X K1($1,y1)T2(fx1)(y2) d:uX1 (1:1)7

where f,: x2 — f(z1,22) denotes the slice of f, hence for any y; € Y7 and by
the non-negativity of K7, we have

(T @ T2) f(y1, )| La(va)
< Tl (st v /X Ky (en, )| fon Loy diie (1),
1

Taking L9(Y7) norms of both sides and using the Fubini-Tonelli theorem, we
conclude that

(T ® T2) fll La(vi xva) < N1l 2o x)— o) 1 T2l Lo (x2)— La(va) 1L | Lo (X1 x X0

“There is another case where (2.11) holds, namely when ¢ > p and no non-negativity
hypothesis is assumed, by factoring 71 ® To = (71 ® id) o id o (id ® T2) and establishing the
inequalities

id ® TallLe (xy % x2)—Lr(X1:L9(v2)) < [ T2llLr(X2)—La(v2)s
idl[r (x1529(va))»La(vaiLr(x1)) < 1,
and
1Ty @id|La(vaszr(x1)—»La(vixve) < Tl (xi)—ra)-

However, this argument does not easily extend to the bilinear case, which is the case of most
interest to us.
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giving the claim. An analogous argument gives the identity

(2.12)  [[B1 @ Ba|l1r(x, % X2) x L9(Y1 x Y2 )= L7 (Z1 x Zs)
= | B1l| Lo (x1)x Lavi) = L7 (z0) |1 B2l Lo (x2) x La () L7 (22)

for tensor products of bilinear operators, with (say) B; arising from a non-
negative kernel, again assuming all spaces o-finite with positive measure to
avoid degeneracies.

3. Transferring to the integer shift

In this section we perform three standard and general reductions for our
problem:

(i) By standard limiting arguments, we show that long variational estimates,
such as the one in Theorem 1.17(iv), are sufficient to establish maximal
inequalities, norm convergence, and pointwise almost everywhere con-
vergence. Thus we can focus exclusively on variational estimates in the
sequel.

(ii) We apply the Calderén transference principle (see, e.g., [23, App. A]) to
transfer the long variational estimates to the integer shift system Z =
(Z, pz,Ty). As mentioned in the introduction, this allows us to exploit
the Fourier-analytic structure of Z (and eventually, Az as well).

(iii) We use a telescoping argument to replace the averaging operator

AT (fr o fo) (@) = Bngpn (TP M) - fio(TT )
with the upper half®
(3.1) AN TE(fr o fi) (@) = e AT M) - (TP 2) L, o

This technical reduction is convenient as it allows one to avoid the sta-
tionary points of the polynomials P,..., P,. (In particular, we get good
lower bounds on the first derivatives of these polynomials.)

These reductions are available for arbitrary non-conventional averages,

P(

not just for the bilinear averages A% ) treated in this paper, so we give these

reductions in the general setting.

PROPOSITION 3.2 (General reductions). Let (X, u,T) be a measure-pre-
serving system, let Pi(n),..., Py(n) € Z[n], let 0 < p1,...,pg,p < 00, and let
1 <r<oo.

50One could also work with the normalized upper half ULVJ\AJ Ay here if desired, though it

makes little difference to the subsequent arguments other than adjusting a few constants by
a factor of two.
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(i) (Reduction to variational estimate). Suppose one has the variational
estimate

AR (fry o fr)) vepl oo (xavm)

Sptvpied Pryes P 11l on x) - [ fiell 2ok (x)

for all X > 1 and f; € LPi(X), i = 1,...,k, and all finite A-lacunary
subsets D of [1,400). Then one has the mazimal inequality

AR 1y fo)) vezy |l oexe

Splw"vpk:puplz'"vpkvr Hf1||Lp1 (X) T ka”ka?(X)

and for any f; € LPi(X), i = 1,...,k, the averages AJJ\D}""’Pk(fl, s fr)
converge pointwise almost everywhere and in LP(X) norm.

(ii) (Calderén transference principle). Suppose that we are in the Holder
exponent case p% + -+ pik = 1%' Then in order to establish (3.3) for
arbitrary measure-preserving systems X = (X, u,T), it suffices to show
(3.3) for the integer shift model Z = (Z, uz, Tz).

(iii) (Telescoping argument). In order to establish (3.3) under the assumptions

of (1), it suffices to establish the bound

AR (1o fi)) Nepll ocxvn

Spl,---7pk,p7P1,---7Pk7r,>\ ||f1HLpl (x) ||fk||ka (X)

(3.3)

(3.4)

)

(3.5)

under the same assumptions, where AL "% is defined in (3.1).

Note that all of the reductions in this proposition apply in both the Banach
exponent case p > 1 and the non-Banach exponent case 0 < p < 1. However,
we emphasize that the Calderdn transference principle (ii) is only available in

5 1441
the Holder exponent case Tt =

Proof. To simplify the notation we allow all implied constants to depend
Onpl,...,pk,P]_,...,Pk,T.

We begin with (i). Fix f1,..., fx, and abbreviate AZI""’P’“ (f1,--s fr)(@)
as ay(z) for any N > 1. For any s € Z,, introduce the 2'/-lacunary set

oN/s .= {9n/5. n e N}

(Note that here we exploit the freedom to choose scales N that are real-valued
rather than integer-valued). From (3.3) and monotone convergence, we have
(3.6) [(an) nyeavss lr(xivry Ss 1 filloe ) - I fell Lew () -

To prove (3.4), we may assume without loss of generality that fi,..., fx
are non-negative, thanks to the pointwise triangle inequality

JAND T (s, f) ] < AN PR (AL - LD
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In the non-negative case we have the additional pointwise bound

sup an(x) <2 sup an(x),
NeZ4 Ne2N
and the claim (3.4) now follows from (3.6).

Now we establish pointwise convergence. By linearity we may assume that
the f1,..., fr are all non-negative. From (3.6) and (3.4), we see that for almost
all z € X, the quantity

M(x) == sup an(z)

NeZ,

is finite, as are the variational norms [|(an)yconys||vr for every s € Z,. From
the latter we conclude that the limits limy_, . yeon/s an(z) exist almost ev-
erywhere for all s > 1; since 2 ¢ 2V/¢_ this limit is independent of s, thus

lim an(x) = aeo()

N—oo;Ne2N/s

for some an(z). For any sufficiently large N, if we let N’ be the first element
of 2Y/5 greater than or equal to N, we see from the triangle inequality that

an(z) = an/(x) + O(M(x)/s).
Hence on taking limits

liminf ay(x),limsup ay(x) = aco(z) + O(M(x)/s),
N—o0 N—oo

sending s — 0o, we conclude that ay(x) converges to ax(z) as N — oo as

claimed. Finally, norm convergence follows from pointwise convergence, the

maximal inequality, and the dominated convergence theorem. This proves (i).

Now we prove (ii). This follows from the general Calderén transference
principle [18], but for the convenience of the reader we supply a proof here. We
first observe from the Fubini-Tonelli theorem and Holder’s inequality (and the
Holder exponent hypothesis p% +---+ i = %) that if (3.3) is established for
the integer shift model (Z, uz, Tz), then it automatically holds for any product
system (X X Z,pu x pgz,id x Ty), where (X, p) is an arbitrary o-finite measure
space and id x T is the shift (z,n) — (z,n — 1), since there is no interaction
between the individual fibers {x} x Z,z € X of this system.

Now let (X, u,T) be an arbitrary measure-preserving system. To prove
(3.3), it suffices by multilinearity to do so when the f; are non-negative. We
may assume that each of the f; are bounded and supported on a set of finite
measure. We may normalize | fil[zri(x) = 1 for i = 1,...,k, thus our task is
now to show that

||(A11;1,5<'"Pk(f1, s fr))vepll e (xvry Sa L

Now let M be a large natural number, let D := max;c[y) deg P, and let €' >0
be a quantity to be specified later that can depend on D, P;,..., P, but is
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independent of M. On the product system X X Z = (X X Z, pu X ug,id x Ty),
define the functions

fia(z,n) = Ligopo)(n) fi(T ")
fori=1,..., k. From the Fubini—Tonelli theorem and the measure-preserving
nature of T', one has

| finall i (x xzy = (BCM)P/Pi,
Also, we observe the identity
P
(AR %37 (Fuads - foan) (@) wepap v
Py,...,P, _
= [[(An " " (froe oo f)(T7"2)) Neprpa lvr
whenever CMP < n < 2CMP. From the Fubini-Tonelli theorem again, we
conclude that
AN (Pt Fran))veplle(xszzvn)
Py,....P,
2 (CMD + 1)1/p||(AN171X k(fla SRR fk))NE]D)ﬁ[M]”LP(X;VT)'

Applying (3.3) to the product system X x Z, we conclude that

using the Holder exponent hypothesis 1/p; 4+ -+ + 1/py = 1/p and sending
M — oo, we obtain the claim.

Finally, we prove (iii). By linearity we may take fi,..., fx to be nonneg-
ative. Fix A > 1, and set

iy () = Ay (o ) (@),
We observe the telescoping identity

| V/2F]
aN = E L L]/VJ JaN/Qk]IQkSN.
k=0

We have U\(]/\?ka =271+ O(1/N), and hence by the triangle inequality we have

the pointwise estimate

oo [e.@]
ke 1 -
[(an)Nepllvr < 22 k||(aN/2k]12k§N)NeD”V’“ +O(Z Z N]l2k§N|aN/2k’>
k=0 k=0 NeD

for all # € X. Since the rescaling {N/2¥ : N € D,2* < N} of a A\-lacunary set
D is still A-lacunary, we have from (3.5) that

[(@n/or Lor<n)Nepllzo vy Sa L fillen ) - (1l zer ()

From (3.5) applied to singleton A-lacunary sets, we have

lan ok lexy Sx 1fulloex)y - Lfellor () -
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Summing in N, k, using the triangle inequality || >; fille(x) < 225 I fill e (x)
(when p > 1) or the quasi-triangle inequality

(3.7) | > o S AN

(when 0 < p < 1), we obtain the claim. O

Remark 3.8. A modification of the Calderén transference principle also
allows us to handle measure-preserving systems in which the shift map 7" is not
assumed to be invertible, as long as we also require the polynomials P, ..., P
to be non-negative on Z, so that the averaging operators A?""’P’“ remain well
defined. We leave the details to the interested reader.

In view of this general proposition, Theorem 1.17 will now follow from

THEOREM 3.9 (Variational ergodic theorem on the integers). Let P(n) €
Z[n] have degree d > 2, let 1 < p1,pa,p < 00 be such that p% + p% = ]l), and let
fer(Z),geP2(Z). If r >2 and X > 1, then

(810) AR, 9)wenlo@yve Sppsrra 1l @ lgllms @)
for all finite A\-lacunary subsets D of [1,+00).

It remains to establish Theorem 3.9. This is the objective of much of the
remainder of the paper.

Remark 3.11. 1t is essential in Theorem 3.9 for ergodic theory applications

that one has the Holder condition p% + p% = %. In the super-Holder regime
p% + p% > % it is easy to establish (3.10); for instance, when (pi1,p2,p) =

(2,2,00), it follows from Cauchy-Schwarz that

“n,P(n —
(3.12) 1A (f, )@y Sp N @ llgllem,

and by interpolating this with (1.6) it is not difficult to establish (3.10) for any
1 < p1,p2,p < oo with p% + p% > ]%. However, in this regime the Calderon
transference principle no longer applies, and so no consequences to general
measure preserving systems (in particular, those of finite measure) can be con-
cluded. Indeed, the decay in N exhibited by (3.12) is not possible in the finite
measure setting since AP (1,1) = 1. In the opposite sub-Holder regime
p% + p% < ;1), even single-scale boundedness Hflr]l\}P(n)ngl (Z)x P2 (2)—tp(7) < OO
fails on the integer shift model, as can be seen by testing the operator on in-
dicator functions of large intervals. (However, on finite measure systems one
can of course deduce sub-Holder exponent estimates from Holder exponent

estimates by applying Holder’s inequality.)
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4. Abstract harmonic analysis:
relating the integers to the adelic integers

We will be performing Fourier analysis on many different groups in this
paper and, in particular, exploiting the close relationship between major arc
Fourier analysis on the integers Z on the one hand, and low frequency Fourier
analysis on the adelic integers Az on the other hand (see Figure 6). It will
be convenient to set out some abstract harmonic analysis notation to perform
this analysis in a unified fashion. We let T := R/Z denote the unit circle, and
e: T — C denote the standard character e() = 2™,

Definition 4.1 (Pontryagin duality). An LCA group is a locally compact
abelian group G = (G, +) equipped with a Haar measure ug. A Pontryagin
dual of an LCA group G is an LCA group G* = (G*,+) with a Haar measure
ug+ and a continuous bihomomorphism (z, &) — x - £ (which we call a pairing)
from G x G* to the unit circle T = R/Z, such that the Fourier transform
Fi: LY(G) — C(G*) defined by

Fef(€) = /G f(@)e(z - €) dug(x)

extends to a unitary map from L?(G) to L?(G*); in particular, we have the
Plancherel identity

/ F(@)? dpg () = / Fef©F dug-(€)
G G*

for all f € L*(G).

If Q C G* is measurable, we say that f € L?(G) is Fourier supported in
if g f vanishes outside of  (modulo null sets). The space of such functions
will be denoted L?(G)%.

As is well known (see, e.g., [78]), every LCA group G has a Pontryagin
dual G*, and the inverse Fourier transform Fg': L?(G*) — L2(G) is then
given for F' € L'(G*) N L?(G*) by the formula

Fe'F@) = [ F@el-2-6) duc- (€).
We will work with the following concrete pairs (G, G*) of Pontryagin dual
LCA groups:
(i) If G = R with Lebesgue measure pur = dz, then G* = R* = R with
Lebesgue measure ur- = d€ is a Pontryagin dual, with pairing x - ¢ =
x& mod 1.
(ii) If G = Z with counting measure uz, then G* = T with Lebesgue measure
pr = d is a Pontryagin dual, with pairing x - £ = x€£.
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(iii) If G = Z/QZ is a cyclic group for some @) € Z, with normalized count-
ing measure fZ/QZ f(@) duz)qz(z) = Eyez)0zf(x), then the dual cyclic
group G* = %Z/Z with counting measure pu iz/z is a Pontryagin dual,
with pairing = - £ :== z€.

(iv) If G = Z, = @j 7./P'Z is the compact group of p-adic integers with
Haar probability measure jiz, (the inverse limit of normalized counting
measures on Z/P’Z) for some prime p € P, then the discrete group G* =

g 17]7 = Z[ |/Z with counting measure pz: is a Pontragin

a

dual, with pairing x - (/ﬁ mod 1) =
(V) UG =2Z=]],cp t
probability measure, then the discrete group G* = Z* = HpeIP Zy=QJZ

of “arithmetic frequencies” with counting measure pq /7 is a Pontragin
ra mod q

za mod pJ
I
Zy is the compact group of profinite integers with Haar

dual, with pairing z - ({ mod 1) :=

(vi) If Gy, G are LCA groups with Pontryagin duals G}, G, then the product
G1 x Go (with product Haar measure) is an LCA group with Pontryagin
dual G} x G5 and palrmg (x1,22)- (&1, fg) = x1-& +x3-&. In particular,
ifG=Az =Rx 7 is the adelic integers® (with the product Haar measure
Pay = PR X fs), then adelic frequency space G* = Aj, = R x Q/Z is a
Pontryagin dual (with product measure jpyq/z = pr X fig/z and the
indicated pairing). Similarly, for any @ € Zy, R x Z/QZ has R x %Z/ Z
as its Pontryagin dual.

Remark 4.2. Heuristically, one can think of analysis on the adelic integers
Az (resp. the profinite integers Z, or the p-adic integers Zp) as an abstraction
of analysis on the product groups R x Z/QZ (resp. the cyclic groups Z/QZ,
7Z/p’Z) in which all estimates are required to be uniform in the parameter @Q
or p’. These abstractions are convenient to use in settings in which one does
not wish to fix an ambient modulus @ or p’ in advance.

Observe that we have quotient homomorphisms z — x mod @Q from Z to
Z./QZ or from 7 to Z)QZ, x — x mod p’ from Z, to Z/p’Z, and x + z mod 1
from R to T. The adelic integers Ay capture two important limiting behaviors
of the integers Z: the continuous behavior (as described by the R factor),
and the arithmetic behavior (as described by the Z factor). We also have the
inclusion homomorphism ¢: Z — Ay defined by

u(x) = (z, ((z mod p’)jen)pep)

5The adelic integers Az should not be confused with the larger ring Ag = Az ®z Q of
adelic numbers, which we will not use in this paper.
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and the addition homomorphism 7: R x Q/Z — T defined by
(0, a) = a+6;
these two maps are Fourier adjoint to each other in the sense that

(4.3) z)-§ =z 7(§)

for all x € Z and £ € R x Q/Z. In “major arc” regimes we will be able to use
these homomorphisms to “approximate” Z by Az, which in principle decouples
the discrete harmonic analysis of Z from the continuous harmonic analysis of
R and the arithmetic harmonic analysis of 7. We summarized the relations
between the various LCA groups in Figures 1 and 2.

Remark 4.4. As is well known, the embedding ¢ identifies Z with a co-
compact lattice ¢(Z) in Az. (Thus ¢(Z) is a discrete subgroup of Az and the
quotient Az/u(Z) is compact.) Thus Az is in some sense only “slightly” larger
than Z itself, but has the advantage of splitting completely into a continuous
component R and an arithmetic component Z, whereas Z does not directly
have such a splitting. However, the point is that after restricting attention to
major arcs, one can partially move back and forth between the integers and
adelic integers, and thus have some chance of exploiting the product structure
of Az = RxZ to decouple the continuous and arithmetic aspects of the analysis.

Sy

p 37 Z
W 77 w

P
l l mod @ i mod p’

R «— RXZ/QZ — 7/QZ 7»,Z/MZ
mod p’

Figure 1. A commutative diagram of the various physical space
LCA groups used in this paper, with the arrows indicating con-
tinuous homomorphisms. Here @ is a positive integer, and p/ is
a prime power dividing (). Double-headed arrows are surjective;
arrows with hooks are injective. The left column contains “con-
tinuous” groups, the right two columns contain “arithmetic”
groups (and are compact), and the second column from the left
contain groups exhibiting both continuous and arithmetic as-
pects. The second row is the inverse limit of the third. Note
the central role played by the adelic integers Ay.
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mod 1 T\

R<—>RXQ/Z<—)Q/Z<—)Z

| ] T

R —— R X §Z/Z 52/2 — ]%Z/Z

Figure 2. A commutative diagram of the wvarious frequency
space LCA groups used in this paper. The groups in the right
two columns are discrete. The second row is the direct limit of
the third. Note the duality with Figure 1. (This can be made
precise using Fourier adjoint relationships such as (4.3).)

INn(a+ QZ)

/j\\

I Ix(a+QL) — a+QZ — a+QZ,

T v Jeer

I«—Ix{amon}*»{amon}m{amodpj}

Figure 3. A restriction of the physical space diagram in Figure 1
to an arithmetic progression I N(a+QZ) formed by intersecting
an interval I C R with an infinite arithmetic progression a +
QZ. The sets here are no longer groups in general (except in
an “approximate” sense), and so the arrows no longer denote
homomorphisms. As in the previous figures, p’ is understood to
be a prime power dividing ). Note how this diagram separates
an arithmetic progression into its continuous and arithmetic
components.

For various LCA groups G, we shall work with a space S(G) C L'(G) N
L>(G) of Schwartz—Bruhat functions f: G — C, generalizing the classical
class of Schwartz functions on R that serve as a useful class of “nice” functions
that are dense in LP(G) for every 1 < p < oo and behave well with respect
to Fourier-analytic operations. A definition of this space for arbitrary LCA
groups can be found, for instance, in [16], [71], but for the purpose of this
paper we shall only need the following special cases:

(i) S(R) is the space of Schwartz functions on R.

(ii) S(Z) is the space of rapidly decreasing functions on Z, and S(T) is the
space of smooth functions on T.
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(iii) S(Z/QZ) is the space of arbitrary functions on Z/QZ, and similarly for
S (%Z/ 7).

(iv) S(Z,) is the space of locally constant functions f on Z,, or equivalently
those functions of the form f(z) = f;(z mod p’) for some j € N and
some function f;: Z/p’Z — C. S(Zy) is the space of finitely supported
functions on Zj.

(v) S(Z) is the space of locally constant functions f on Z, or equivalently
those functions of the form f(z) = fgo(x mod @) for some @ € Z and
fo:Z/QZ — C. S(Z*) is the space of finitely supported functions on Z*.

(vi) S(RxZ/QZ) is the space of functions that is Schwartz in the R variable,
and similarly for S(R x éZ/Z).

(vii) S(Agz) is the space of functions of the form f(x,y) = fo(x,y mod Q) for
some QQ € Z and fo: RxZ/QZ — C that is Schwartz in the R variable.
S(R x Q/Z) is the space of functions supported on R x ¥ for some finite
set ¥ C Q/Z and Schwartz in the R variable.

(viii) If G1, Gy are any two of the groups listed above, we define the Schwartz—
Bruhat space S(G; X G3) on the product LCA group G; x Gg in the
obvious fashion. We note that if f; € S(G;) and fo € S(Gz), then
f1 ® fa can be identified with an element of S(G; x G3).

One could place a topology on the Schwartz-Bruhat spaces S(G), but we
will not need to do so here. As is well known, the Fourier transform Fg is a
bijection from S(G) to S(G*) for any of the groups G in Figure 1. The Fourier
transform can also be extended to vector-valued functions taking values in a
finite-dimensional vector space V in the obvious fashion.

If Q C G*, we let S(G)® denote the subspace of S(G) consisting of func-
tions that are Fourier supported on 2, and we let S(€2) denote the subspace
of S(G*) consisting of functions that are supported on Q. Thus Fg is also a
bijection between S(G)% and S(9).

The inclusion homomorphism ¢: Z — Ay gives rise to a sampling map
S: S(Az) — S(Z) defined by

Sf(x) = f(ux))

forz € Z and f € S(Az). Dually, the addition homomorphism 7: RxQ/Z — T
gives rise to a projection map P: S(R x Q/Z) — S(T), defined by the formula

PR(E) = >  F(b,a)
(0,)em=1(§)
for 0 € R, @« € Q/Z, and F € S(R x Q/Z). (Note that the definition of

S(R x Q/Z) ensures that this sum contains at most countably many non-zero
terms.) From (4.3), one has the identity

FrloP=8oF,!
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or equivalently the adelic Poisson summation formula
fz ©) S = P o .7: Az

and so we have the commutative diagram

S(Z) «——5— S(Az)

l]—'z J’]-'Az

S(T) <5 S(R x Q/Z);

see also Figures 4 and 5.

A key difficulty here is that of aliasing: the non-injectivity of 7: R x
Q/Z — R/Z causes the sampling map S: S(Az) — S(Z) to also be non-
injective. Indeed, if (&1, 1), ({2, a2) are distinct elements of R x Q/Z and are
such that 7(&1, 1) = 7(€2, a2), then for any non-zero F' € S(Az), the functions
Fi(z,y) = e(z&1+y-aq)F(x,y) and Fy(x,y) = e(zéa+y-a2) F(x,y) are distinct
elements of S(Az) that are “aliased” in the sense that SF; = SF,. However,
we can avoid this problem by restricting attention to a compact subset €2 of
adelic frequency space R x Q/Z that is non-aliasing in the sense that the
addition homomorphism 7 is injective on 2, so that P becomes an algebra

homomorphism from S(£2) to S(7(€2)). Thus

(4.5) P(FG) =P(F)P(G)

S(z)
7
S(R) » S(Ag) < S(Z) «—— S(Z,)

| I | I

S(R) » SR x Z)QZ) < S(ZJQZ) +—— S(Z/p'Z)

Figure 4. Schwartz—Bruhat spaces on physical space LCA
groups. Solid arrows indicate canonical linear maps of a “sam-
pling” or “pullback” nature; dotted arrows from two spaces
V1, V5 to a third V indicate the existence of a tensor product
operation ®: Vi x Vo — V. The second row is the direct limit of
the third. Compare with Figure 1. (Some arrows in that figure
do not have an analogue here, basically because S(R) does not
contain a multiplicative unit 1, and the inclusions of Z into Z
and Z, are not proper.)
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/ T

» S(R x Q/Z) « S(Q/z) «—— S(Z[;]/Z)
S(R) » SR x $Z/Z) < S(GZ/Z) +—— S( 7.]7,)

Figure 5. Schwartz—Bruhat spaces on frequency space LCA
groups. Solid arrows indicate canonical linear maps of a “projec-
tion” or “pushforward” nature; dotted arrows indicate a tensor
product as in Figure 4. The second row is the direct limit of the
third. This figure and the preceding one are intertwined by the
Fourier transform via various forms of the Poisson summation
formula. Compare also with Figure 2. (Some arrows in that
figure do not have an analogue here, basically because S(R)
does not contain a convolution unit §, and the embeddings of
Q/Z and Z[ |/Z into T are not open.)

for all F,G € S(Q2), and one has the commutative diagram
(4.6) l]-'z lﬂz :

In this case one verifies that the lower three maps Fz,P,Fy, are invert-
ible, hence the upper map S is also. In particular, to any non-aliasing com-
pact set of adelic frequencies {2, we can associate an interpolation operator
Sot: S(Z)™®) — S(Az) that extends any Schwartz-Bruhat function on the
integers with Fourier support in 7(€2) to the unique Schwartz—Bruhat exten-
sion on the adelic integers with Fourier support in . Note from (4.6) and
Plancherel’s theorem that the sampling operator S and the interpolation oper-
ator Sg' extend to unitary maps between ¢2(Z)™Y) and L?(Az)® that invert
each other.

The diagram (4.6) allows us to equate certain portions of Fourier analysis
on the integers Z with corresponding portions of Fourier analysis of the adelic
integers Ay; this will be useful for clarifying Fourier analysis on major arcs
M« <k, which in this perspective are interpreted as projections of a certain
non-aliasing Cartesian product R<; x (Q/Z)<j, of adelic frequency space; see
Figure 6 and Section 5 for definitions.
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Ezample 4.7. If Q € Z4 and r > 0, then [—r, 7] X %Z/Z is non-aliasing if
and only if r < % The injectivity of S in this case is a variant of the classical
Shannon sampling theorem. See also Theorem 4.18 below.

Now we define Fourier multiplier operators. A continuous function ¢: G*
— C is said to be smooth tempered if oF € S(G*) whenever F' € S(G*). For
instance, ¢: R — C is smooth tempered if and only if all derivatives exist and
are of at most polynomial growth.

Definition 4.8 (Fourier multiplier operators). Let G be one of the LCA
groups in Figure 1.
(i) If ¢: G* — C is a smooth tempered function, we define the Fourier
multiplier operator T, : S(G) — S(G) by the formula
F GTga = pfc

or equivalently
Tof(@) = [ POFar ez duc-(©)

for f € S(G) and x € G. We refer to ¢ as the symbol of T,.
(ii) If m: G* x G* — C is a smooth tempered function, we define the bilinear
Fourier multiplier operator B,,: S(G) x S(G) — S(G) by the formula

B (f,9)(z)
= / . m(€1, &) Faf(€1) Fog(&)e(—x - (€1 + &) dug- (&1)dpg-(£2).

We refer to m as the symbol of B,,.

Clearly T, depends linearly on ¢, and B;, depends linearly on m. We
also observe the functional calculus identities

Tf =1,
Bi(f,9) = fy,
Torpof =T Tio f,
Bm(gm@g@)(fa 9) = BTy, f, Ty,9)

whenever f,g € S(G) and ¢1, 2, m are smooth tempered functions on G*,
G*, G* x G* respectively. Finally we observe that T, is self-adjoint on L*(G)
when ¢ is real-valued. We can also extend the linear Fourier multipliers T,
to Schwartz—Bruhat functions S(G;V') taking values in a finite-dimensional
vector space V in the obvious fashion.

(4.9)

Ezample 4.10 (Averaging operators as Fourier multipliers). We work on
the integer shift system. If P € Z[n], the averaging operator Ai(n) is a linear
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Fourier multiplier operator on S(Z) with symbol
onz(§) = Epene(P(n)§)

for ¢ € T. Similarly, if Py, P, € Z[n], then the averaging operator Aﬁl
is a bilinear Fourier multiplier operator on S(Z) with symbol

myz(€1,€2) = Epenje(PL(n)é1 + Pa(n)é2)
and flﬁl ()P (n) similarly has symbol
mn,z(€1,&2) = Enepnje(Pr(n)é1 + Po(n)é2) Lo N2

for &1,& € T. If G is one of the compact rings Z/p’Z, Z/QZ, Z,, or 7, then
Py, P, can be thought of as continuous maps from G to itself, and we can
define the averaging operator Ag = Agl(n)’PQ(n) : S(G) x S(G) — S(G) by the
formula

(n),P2(n)

Ag(f,9)(x) = /G f(x — Puy)g(a — Pa(y)) duc(y).

From the Fourier inversion formula and the Fubini-Tonelli theorem, we see
that Ag is a bilinear Fourier multiplier operator with symbol

me(61,62) = /G e(Pu(y)ér + Po(y)Ea) dpuc(y)

for £1,& € G,

Ezample 4.11 (Tensor products of multipliers). Let G1, G be LCA groups
from Figure 1. If T, is a linear Fourier multiplier operator on §(G1) and T,
is a linear Fourier multiplier operator on S(Gz), then T, gy, is a linear Fourier
multiplier operator on S(G; x G2) that is the tensor product of Ty, and T, in
the sense that (2.9) holds for all f; € S(G1), fa € S(Gg). Similarly, if B, , By,
are bilinear Fourier multiplier operators on S(G1), S(G2) respectively, then the

bilinear Fourier multiplier operator B,,,gm, is the tensor product of B,,, and
By, in the sense that (2.10) holds for all f1,g1 € S(G1), f2, g2 € S(G2).

As previously mentioned, if €2 is a non-aliasing subset of R x Q/Z, then
the sampling operator S restricts to a unitary map from L?(Az)* to £2(Z)™Y,
or equivalently the interpolation operator S, lisa unitary map from 62(Z)”(Q)
to L?>(Az)®. This suggests that Fourier multiplier operators on L?(Az)% can
be identified with Fourier multiplier operators on ¢2(Z)™®). This is indeed

the case:

LEMMA 4.12 (Adelic and integer Fourier multipliers). Let Q@ C R x Q/Z
be a mom-aliasing compact subset of adelic frequency space. Then for any
p € S(Q), the following diagram commutes, where ¢ denotes the operation
of pointwise multiplication by v, and similarly for Pp:
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Fz, l}‘z ’ l]'—AZ Fag,
/S(W(Q)) —— S(Q) \
Py @
S(m(Q)) < > 5(92)

In particular, one has
(4.13) Tp,Sf=8T,f
for all f € S(Az)*®.
Proof. This is immediate from (4.6), (4.5), Definition 4.8, and a routine

diagram chase using the invertibility of the Fourier transform. O

Another way of writing (4.13) is as
(4.14) Tpof = ST,Sq' f

for all f € S(Z)™(.
There is a bilinear version of the formula (4.13). Define the tensor square
P2 S((R x Q/Z)?) — S(T?) of the projection operator P by the formula

P2m(&1,&) = > >, ml(Br,) (B2,02))

(01,00)em—1(&1) (B2,02)€m—1(E2)

for all m € S((R x Q/Z)?). If Q1,95 C R x Q/Z are non-aliasing compact
subsets of adelic frequency space, then P®? is an algebra homomorphism from
S(Q1 x Q2) to S(w(21) x 7(2)), and is the tensor product of the algebra
homomorphisms P: S(2;1) — S(7(Q1)) and P: S(Q2) — S(7(Q2)) in the
sense of (2.9). A routine calculation (or a chase of a more complicated version
of the commutative diagram in Lemma 4.12) then gives the bilinear variant

(4.15) Bpe2, (Sf,89) = SBm(f,9)

of (4.13) whenever f € S(Az)™, g€ S(Az)?2, and m € S(2; xQy); equivalently,
one has

(4.16) Bpez,,(f,9) = SBum(Sg. .80, 9)

whenever f € S(Z)™), g S(Z)™(?2). From (4.9) we also observe the pro-
jected functional calculus

(4‘17) BP®2m(T79§01 [ TPchQ) = B79®2(m(ap1®g02)) (f7 g)
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whenever f € S(Z)™) g € S(Z)™ %) o € S(Q), p2 € S(Q), and m €
S (Ql X Qg).

The point of the identities (4.14) and (4.16) is that complicated linear
and bilinear Fourier multiplier operators Tp,, Bpez2,, on the integers Z can
be expressed (in non-aliasing regions of adelic frequency space) by simpler
linear and bilinear Fourier multiplier operators T, B, on the adelic integers
Ayz. For the multiplier operators of interest in this paper, the adelic symbols
©, m often have a tensor product structure (or at least can be decomposed or
approximated by symbols with such a structure), allowing us to decouple the
Fourier analysis into the continuous Fourier analysis of R and the arithmetic
Fourier analysis of Z. In many cases the arithmetic symbol factors further,
allowing one to work on smaller factor groups such as Z/QZ, Z,, or Z/p'Z.

As already observed, whenever () is a non-aliasing compact subset of
R x Q/Z, the sampling operator S: S(Az)? — S(Z)™ and the interpo-
lation operator Sg*: S(Z)™Y) — S(Az)® both preserve the L? norm. The
situation for other function space norms is less clear. However, the situation
is particularly favorable in the case of Example 4.7, in that the sampling and
interpolation operators essentially preserve all LP norms, even for non-Banach
exponents 0 < p < 1 or for vector-valued functions (or both):

THEOREM 4.18 (Quantitative Shannon sampling theorem). Let 0 <p < oo,
and let B be a finite-dimensional normed vector space. If F € S(Az; B) has
Fourier support in [—%, %)] X %Z/Z for some Q€Z4 and some 0 <cy< %, then

ISEller(z;8) ~eop 1| Lo (ag;5),
where we extend the sampling operator S to vector-valued functions in the ob-
vious fashion.

See also the sampling principle of Magyar—Stein—Wainger [64, Cor. 2.1,
pp. 196] as well as [69, Prop. 4.4, pp. 816] for closely related statements.
Theorem 4.18 implies that if £ is a compact subset of [, &] x %Z/ Z, then
S: S(Az) — S(Z)™ and Sq': S(Z)™) — S(Az)? are both bounded on
LP with norm O, (1).

Proof. As F has Fourier support on the Pontryagin dual R x %Z/Z of

R x Z/QZ, we can descend to the quotient group R x Z/QZ and establish the
bound

IS F \lev(z:8) ~eo |1 FllLr(rxZ/07;:B)

whenever F' € S(R x Z/QZ; B) has Fourier support in |

SoF(x) == F(z,z mod Q).

—%, 8] x §Z/Z and

By splitting Z into residue classes a + QZ for a € [Q], and similarly splitting
R x Z/QZ into copies R x {a mod Q} of @, it suffices by the Fubini-Tonelli
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theorem to establish the bound

£ lev(ar0z:8) ~eop @ V2N fllLr(@:3)

whenever a € [Q] and whenever f € S(R; B) has Fourier support in [-, 3.
After applying translation and rescaling, it suffices to show that

[fller(z:B) ~eop I1f 1| Lo (m; m)
whenever f € S(R; B) has Fourier support in [—cg, ¢o]. It will suffice to estab-
lish the bound

I fllerz+0:8) ~cop Il fller(z:B)
uniformly for all 0 < 6 < 1, as the claim then follows by taking LP norms
in 6 and applying the Fubini—Tonelli theorem. By translation and reflection
symmetry it suffices to establish the upper bound

(4.19) I fllep(z+6:8) Seop 1 fllrz;B)-

Let ¢ = 9., € S(R) be a function chosen so that Frt is supported on
[—1/2,1/2] and equals one on [—cy, o], so that the upper bound now follows
from Schur’s test. From the Poisson summation formula we have

) =Y vy —2)f(z)
TE€EZ
for all y € R, hence by the triangle inequality

@) <3 16 — )l @) 5.
€L
For p > 1, this gives (4.19) from Schur’s test and the rapid decrease of 1. For
p < 1, we use the previous inequality to obtain

IF @I < D 1oy — @) PILF ().

€L
The claim follows from the triangle inequality and the rapid decrease of vb. [

Because of this theorem and (4.13) and (4.15), the LP multiplier the-
ory for both linear and bilinear Fourier multiplier operators Tp,, Bpez2,, on
S (Z)’T(Q) can be easily transferred to the corresponding LP multiplier theory of
Ty, By, on S(Az) when € is of the form in Example 4.7 (or a compact subset
of that example). Unfortunately, this situation only occurs for us in certain
“large-scale” settings, in which the widths of the major arcs are extremely
narrow compared to the height. In the opposite “small-scale” regime we will
be able to use the Ionescu—Wainger multiplier theorem (see Lemma 5.2(iv)
and Remark 5.11 below) as a partial replacement” of this transference, at least

" Another partial replacement of Theorem 4.18 in this setting was recently established in
[80, Th. 1.6].
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at the level of linear Fourier multiplier operators. The IonescufWainger the-
ory does not directly treat the “twisted” bilinear multipliers By, Lbm2 that we
will eventually need to handle (see (7.10)), so we will need to first apply a
two-parameter Rademacher—-Menshov argument in order to reduce the bilinear
analysis to linear estimates that can be treated by that theory; see Section 8.

We close this section with some crude multiplier estimates on Z and on R.

LEMMA 4.20 (Crude multiplier bound). Let G =Z or G = R.

(i) Let o € S(G*) and r > 0. When G = Z, we also require r < 1. Then for
any 1 < p < oo, Ty, extends continuously to a linear map from LP(G) to
LP(G) with

ITollzr@)s o) S SUp /
0<j<2 *

di d

d&j(p(g)’ g

(ii) Let m € S(G* x G*), 71,79 > 0, and 1 < p,p1,pa < 00 with = o+ p—2 = %.
When G = Z we also require r1,79 < 1. Then B,, extends continuously

to a bilinear map from LP! (G) x LP2(G) to LP(G) with

”BmHLPl G)xLP2(G)—Lr(G
oit 9z

(421) 1 1 jQ 1
S sup T J1 g¢d2
0<]17]2<2 * * 851 6&1

The same bound also holds when the hypothesis 1 < p,p1,p2 < 00 is
replaced by 1 < p1,p2 < 00, except now the implied constant in (4.21) is

m(&1,&2)| déidés.

permitted to depend on p1,ps.

Proof. We just prove (ii) in the case G = Z, as all the other cases are
similar. It suffices to prove the claim for Schwartz functions. We may normalize
the right-hand side of (4.21) to be 1. We can express B,,, in physical space as

Bum(f.9)(@) = > Kyi.y)f(@—y)g(z —12),

Y1,Y2€Z
where

K(y1,y2) = /1r2 m(&1, &2)e(—y1&1 — y282) déis.

Suppose first that we are in the case 1 < p,p1,p2 < oo. By Minkowski’s
inequality, we have

IBunllers (z)xer2 (z)— 0 (z) < 1K |01 (22)-

On the other hand, from the normalization of (4.21) and integration by parts,
we have

K(yy,y2) S0y 2 lya| 7 yal
for any y1,y2 € Z and 0 < ji,j2 < 2 (with the claim being vacuously true if
the right-hand side is infinite), thus

(4.22) K (y1,y2) S ri(riy) 2ralrays) 2,
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and the claim follows. In the case 1 < p;,p2 < 0o, we can instead use (4.22) to
bound B,,(f, g) pointwise by the product of the Hardy-Littlewood maximal
functions of f, g, and the claim now follows from Holder’s inequality and the
Hardy-Littlewood maximal inequality. O

5. lonescu—Wainger decomposition: reducing to major arcs

We now begin the proof of Theorem 3.9. Henceforth the parameters
P,d,p1,p2,p,r, A are fixed to obey the hypotheses of this theorem, and all im-
plied constants in the asymptotic notation are allowed to depend on these pa-
rameters. We also fix the finite A-lacunary subset D of Z , although we require

(n)

all our estimates to be uniform in the choice of . We abbreviate fljn\}P as A N-

We will also need four large constants:

(i) We choose a constant Cy € Zy that is sufficiently large depending on
the fixed parameters P,d,p1,p2,p,r, A. (This constant is used to define
a maximum height scale [(y) associated to each physical scale N; see
(5.22).)

(ii) We choose a constant C € Z, that is sufficiently large depending on the
fixed parameters P,d,p1,p2,p,r, A and on Cy. (This constant is used to
define the Ionescu-Wainger parameter p; see (5.1).)

(iii) We choose a constant Co € Z; that is sufficiently large depending on
the fixed parameters P, d,p1,p2,p,r, A and on Cp,C;. (This quantity is
used to define an auxiliary scale u associated to a given height scale [; see
(5.26).)

(iv) We choose a constant C'3 € Z that is sufficiently large depending on the
fixed parameters P,d, p1,p2,p,r, A and on Cy, Cq, Co. (This quantity will
be used to lower bound the physical scale N, as well as to bound implied
constants in estimates.)

We also use ¢ > 0 to denote various small exponents that depend only
on d,p1,p2,p,r, and which will vary from line to line. Occasionally we will
also need ¢ to depend on some other parameters, and we will indicate this by
additional subscripts; for instance, ¢, will be a positive constant depending on
d,p1,p2,p,7,q. Importantly, these constants ¢ will not depend on the large
constants Cy, C1, Co, C3 just introduced. Specifically, ¢ will be independent on
the Ionescu-Wainger parameter p; see (5.1).

Define the naive height hpaive(a) € 2N of an arithmetic frequency o =

¢ mod 1 € Q/Z by the formula

hpaive (a mod 1> = inf{?l :leNjg < 21} = 2“0gq'\ ~q
q
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whenever ¢ € Z; and a € [¢]*. For any | € N, k € Z, we can then define the
naive arithmetic frequency sets

(Q/Z)Sl,naive = hrjalive(pl]) = {a € Q/Z: hpaive(a) < 21}
and the continuous frequency sets
Rey == [—2", 2]
and then define the naive major arcs
Mgl,gk,naive = W(ng X (Q/Z)gl,naive)'

Thus M<j <k naive consists of all elements of T of the form % + 6 mod 1 for
some ¢ € [2], a € [¢]*, and 6 € [-27%,2F]. These would be the obvious choice
of major arcs to restrict attention to in our Fourier-analytic manipulations.
Unfortunately, the LP multiplier theory on such arcs is unfavorable. To obtain
a better theory, we follow Ionescu and Wainger [47] and replace the naive
height hpaive() of an arithmetic frequency by a smaller quantity, which we
call the Tonescu—Wainger height h(a) = h,(a) € 2. This height depends on

an additional small parameter 0 < p < 1, which we now fix in our hierarchy of
constants as

(5.1) p=1/Cy.

The precise definition of this height is technical and is postponed to Appen-
dix A. However, for our purposes we can summarize the main properties of this
height as follows. Using this height, we define the lonescu—Wainger arithmetic
frequency sets

(Q/Z)<i =h""(12']) = {a € Q/Z: h(a) <2}
and the Ionescu—Wainger major arcs or simply major arcs
Mai<r = 7(R<r x (Q/Z)<1);

see Figure 6. These arcs will be somewhat larger than their naive counterparts,
but this is more than compensated for by their superior Fourier multiplier
theory. We also use the variants

(Q/Z): = (Q/Z)<I\(Q/Z)<1-1 = h™'(2) = {a € Q/Z: h(a) =2}
and
My <k = 7Ry X (Q/Z)1)
with the convention that (Q/Z)<_; is empty.

LEMMA 5.2 (Properties of height).
(i) (Naive height controls height). For any o € Q/Z, one has
(5.3) h(a) < hpaive(@).

In particular, (Q/Z>§l,naive C (Q/Z)Sl and Mgl,gk,naive C Mgl,gk f07"
any (I,k) e NxZ. Ifa € %Z/Z for a prime p, then equality holds in (5.3).
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Rey, — Ry x (Q/Z) <t +—— (Q/Z)<1 +—— (Z[;]/L) <

! | l

ng — ng X QLSZZ/Z — QLSZZ/Z > p]Z/Z

Figure 6. The commutative diagram in Figure 2, restricted to
major arcs, where p’ is the largest power of p dividing Q<
and (Z [ 1/Z)<; = (Q/Z)<; N Z[ |/Z. When (l,k) has good
major arcs, the product set R<j x (Q /Z)<; is non-aliasing, and
the indicated map 7 can be upgraded from a surjection to a
bijection. Most of the spaces in this diagram are no longer
groups and so the arrows are now downgraded from continuous
homomorphisms to continuous maps. Note the approximate
duality with Figure 3.

(ii) (Cyeclic structure). For anyl € N, (Q/Z)<; is the union of finitely many
dual cyclic groups fZ/Z with

q Sp 22N
and is contained in a single dual cyclic group &Z/Z with
Q<1 5 20:2,

In fact, the integer Q<; € Zy can be defined explicitly as in (A.4).
(iii) (Cardinality bound). For anyl € N, one has

#(Q/Z)< <p 2%

Proof. See Appendix A. O
The linear Fourier multiplier operators T%l and Ti, defined by

(5.4) Tgl = prm(@/z)g),

(5.5) T}, = Tp(pet g m,):

will play a key role in our analysis. They can be written more explicitly as

TS @) = S / 6)Fuf(a + 0)e(—a(a + 0)) do,
a€c(Q/Z)<,

Z/ 0)Fuf(a + 0)e(—a(a + 0)) do.

ac(Q/z),
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2(Z)Ms<t<k

-1
/ STlSRSkX<@/Z)§Z

L2(R)RS’“ N LQ(AZ)ngX(Q/Z)Sl

| f

L2(R)R§k > L2(]R X Z/QSZZ)RSkX@Z/Z - L2(A2)RSkX(Q/Z)SZ
LX(Z/Q«Z) | [2(2) D)<
L*(Z/pZ) « | L2(Z,) /D=

Figure 7. The L? version of Figure 6, under the hypothesis of
good major arcs. Solid (hooked) arrows are Hilbert space isome-
tries, double-headed arrows are unitary maps, and dotted ar-
rows indicate a (Hilbert space) tensor product. We thus see that
the major arc component ¢2(Z)Mst.<k of £2(Z) can be identified
with the tensor product of the low (continuous) frequency com-
ponent L?(R)®<r of L2(R) and the low (arithmetic) frequency
component L2(Z)@/Z)<t of L2(Z), with the latter component
identifiable in turn with a subspace of L?(Z/Q<Z). As with
Figure 4, some arrows are missing due to the failure of L?(R)R<x
to contain a unit 1.

From (4.5) and (4.9), one has the functional calculus

<l <l <l
(56) TSZUPQ = Tszl (¢] T@

whenever (I, k) has good major arcs and ¢1, g2 € S(R<j) — and similarly with
< [ replaced by [ in (5.6). The principal tool in bounding operators (5.4) and
(5.5) is the Ionescu—Wainger multiplier theorem [47], which for our purposes
can be formulated as follows:

THEOREM 5.7 (Vector-valued Ionescu—Wainger multiplier theorem). If
(I,k) € N X Z has good major arcs in the sense that

(5.8) k< —C,2¢"

for a sufficiently large constant C, depending only on p, then the compact set
R<; X (Q/Z)<; C R x Q/Z is non-aliasing. Furthermore, if ¢ € 2N U (2N)’ is
either an even integer or the dual of an even integer, then the linear Fourier
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multiplier operator Tgl from (5.4) obeys the multiplier bound

(5.9)

TS a2y~ eazimy Spaa DN Tl Lay—Laqw)

for any p € S(R<y), and any finite-dimensional Hilbert space H, and similarly

for the multiplier operator Tfp from (5.5).

(i)

(i)

(iii)

Proof. See Appendix A. O
Remark 5.10. Some remarks about Theorem 5.7 are in order.

Theorem 5.7 in the scalar-valued setting was first established by Ionescu
and Wainger [47] with the factor (I)l2/2J+1 in place of (1) in (5.9). Their
proof is based on an intricate inductive argument that exploits super-
orthogonality phenomena. A slightly different proof (giving the factor (1)
in (5.9)) using certain recursive arguments, which clarified the role of the
underlying square functions and orthogonalities, was presented in [65]. A
vector-valued Ionescu-Wainger multiplier theorem (in the spirit of [65])
can be found in [68, §2]. A uniform vector-valued Ionescu—Wainger mul-
tiplier theorem, where the factor (I) is removed from (5.9), was recently
proved by the third author [80]. The latter proof also provides explicit
constants in (5.9) and allows us to handle adelic Fourier multipliers. The
super-orthogonality phenomena are discussed in the survey of Pierce [76]
in a much broader context.

The fact that the losses in (5.9) are only polynomial in the logarithmic
height scale [ instead of exponential will be essential to our arguments,
and form the main reason why we cannot work with the naive notion
of heights, as the analogous multiplier theorem is not available for such
heights.

As we are focused on variational estimates, even the factors like 20(P))
will have to be handled; see the constants produced by the Rademacher—
Menshov inequality in Section 8. From this point of view, even though
the uniform vector-valued Ionescu—Wainger multiplier theorem [80] is now
available, and the factor (I) can be deleted, this does not significantly
improve the main result or simplify the proof. Hence, we will use the
vector-valued Tonescu—Wainger multiplier theorem from [68, §2].

The restriction in Theorem 5.7 to the case when ¢ is an even integer
or the dual of an even integer can be ignored in practice because in all
the applications of Theorem 5.7 we will have good L?(R) operator norm
bounds on T, for all 1 < ¢ < co. Then by applying (5.9) for ¢ € 2NU(2N)’
and then interpolating, we can recover good bounds for all 1 < ¢ < oo.
See also the discussion after [68, Th. 2.1].
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Remark 5.11. When (I, k) has good major arcs, the corresponding sam-
pling operator S: L?(Az)R<k*(@Z) <t _ ¢2(7)M<i.<k is unitary thanks to (4.6),
and it is inverted by the interpolation operator Sﬂgglkx((@ /Z)<) S€€ Figure 7. For
LP norms, one no longer expects to have the isometry property even at an ap-
proximate level (except in the large scale case when Theorem 4.18 applies), but
(5.9) shows that at least the linear Fourier multiplier theory on £9(Z)M<t.<k is
basically controlled (up to small losses) by that of LI(Az)R<k*(@/2)<i (at least
when ¢ € (2N) U (2N)’), which serves as a partial substitute for an isometry
property for the sampling operator.

A crucial component of our arguments is the assertion that the bilinear
averaging operator AR}P(H) (f,g) is negligible when the Fourier transform of f or
g vanishes on major arcs. More precisely, we have the following improvement
of (1.6) in this case:

THEOREM 5.12 (Single scale minor arc estimate). Let N > 1, let | € N,
and suppose that f, g € (*(Z) obeys one of the following assumptions:

(i) Fzf vanishes on M<j<_ Log N+i;
(i) Fzg vanishes on M<j <_dLog N+dls
where the logarithmic scale Log N of N was defined in (2.1). Then one has

(5.13) IAN(F, Dl z) Seu 27+ (Log NY D[ flle2zyllgllezz) -

This theorem will be used repeatedly in our arguments. The parameter
¢ > 0 from (5.13) will be independent on the Ionescu—Wainger parameter p;
see (5.1). The secondary term (Log N)~°C1 is negligible in practice; the key
point is the primary term 27 that exhibits exponential decay on the height
scale [. It is important to note that only one of the hypotheses (i), (ii), as
opposed to both, are required to hold in order to obtain this decay. The
asymmetry between (i) and (ii) is entirely caused by the different degrees in the
two polynomials n, P(n) used to form the averaging operator Ay. This theorem
only gives exponential decay directly for £2(Z) x ¢?(Z) — ¢*(Z) operator norms,
but in practice one can use interpolation to then obtain similar decay for other
PL(Z) x (P2(Z) — (P(Z) operator norms. We remark that it is essential in
Theorem 5.12 that we are in the nonlinear regime d > 2, as there are easy
counterexamples to this theorem in the linear case d = 1 (as can be seen by
testing (5.13) against plane waves multiplied by suitable cutoff functions).

The proof of Theorem 5.12 will be somewhat lengthy, and it relies on
several deep results in the literature, including the inverse theory of Peluse
and Prendiville [74] and Peluse [73] (see also [75] and the survey of Prendiville
[77]) and LP-improving estimates of Han-Kova¢-Lacey—Madrid—Yang [41] (see
also Dasu-Demeter—Langowski [20]); we also use the properties of the Ionescu—
Wainger projections that we shall define later in this section. A key difficulty in
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the proof of Theorem 5.12 will be that the functions f, g are only controlled in
(%(Z) rather than ¢£°°(Z). We will establish this bound in Section 6. We remark
that a continuous analogue of Theorem 5.12, with the domain Z replaced by
R, and with the major arc set replaced by an interval centered at the frequency
origin, was established in [10, Lemma 5] for monomial P and in [28, Lemma
1.4] in the general case.

Example 5.14. Let [ € N, and let N be a sufficiently large integer depend-
ing on [, P. Let ¢ be a prime number with 2! < ¢ < 2!*! (which implies, in
particular, that % mod 1 has height 2l+1). Consider the functions

o =1 ”—jN)
fy=enfe) Y eF (Y.,
JEIN
_ n
g(n) = e(—n/0)(Fz'n) (177 )
where €1,...,exya-1 € {—1,+1} are arbitrary signs and 7 is defined in Sec-

tion 2.3. Then Fzf and Fzg vanish on M<j <10 N4 and M<j <_dT.0g N+di
respectively, and routine calculations show that

1Fzf 22y | Fzglle2 2y S N

t n+ P(n B
A7 ey § N ([Bnesze (“E2 )4 5).
Standard exponential sum estimates (see, e.g., [48]) reveal that

P
]EnEZ/qu <n+q(n)) Sj q*C S 2fcl

(indeed, the Weil bounds allow one to take ¢ = 1/2 here), and so this example
is consistent with Theorem 5.12. Variations of this example can also be used to
explain the appearance of the scales — Log N and —d Log N in Theorem 5.12(i),
(ii), which are the frequency dual scales to the spatial scales Log N, Log N¢
associated to the shifts n, P(n) for n € [N] arising in the definition of AI;\}P(H);
we leave the details to the interested reader.

and also

For the remainder of this section, let us assume Theorem 5.12 and see
how we can use it to attack Theorem 3.9. We will need an adelic version of
Littlewood-Paley projection operators. Let 7<j be the cutoff functions from

Section 2.3. The Fourier multipliers T,_, are then standard Littlewood—Paley

n<k
Fourier projections on S(R) to the frequency interval R<j. Motivated by this,
we define the Ionescu-Wainger Fourier projection operator Il<; <; for any

(I,k) € N x Z using the construction (5.4) by the formula
(5.15) Mo < = T3

n<k®
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More explicitly, one has

e < f(x) = Z / (0/2") Fzf(a+ 0)e(—z(a + 60)) do.
€(Q/2)<

Note that I<; <y is self-adjoint on ¢*(Z), and its symbol is supported on
M<i <. We similarly define

(5.16) W<y, =Ty, = My cp — M1,k

with the convention II<_; j, = 0.
When (I, k) have good major arcs, these operators have good properties:

LEMMA 5.17 (Properties of Ionescu-Wainger projections). Let (I,k) €
N x Z be such that (I, k) has good major arcs.

(i) (Boundedness). The operator ll<; <y is a contraction on ¢*(Z). Further-
more, for any 1 < q < oo, one has

(5.18) <t <k flleaz) Scrg DS lleaz)

In particular, <) <i, extends to a bounded linear operator on ¢4(Z). If f
s furthermore supported on an interval I, we have the off-diagonal decay
bound

(5.19) IT<t, <k flleacry Scugnr OFdist(2, 1))~ flleacr)

for any interval J, and any M € N.
(ii) (Fourier support). If f € (*(Z), then Il<; <xf is Fourier supported in
M <k, and Il<; <. f = f when Fz f is Fourier supported in M<j <p—1.

All these claims also hold when all occurrences of <1 are replaced by I.
Proof. See Appendix A. O

Remark 5.20 (Physical space interpretation of major arcs). By uncertainty
principle heuristics, functions f € S(Z) that have Fourier support in M<; <y,
where (1, k) € N x Z satisfy (5.8), can be viewed as behaving like linear combi-
nations of indicator functions 1 p of arithmetic progressions P of spacing O(2!)
and diameter O(27%), and they behave like constants on arithmetic progres-
sions of spacing )<; and diameter O(27%); the latter is only non-vacuous in
the “large-scale” regime in which 2% is larger than Q<;. Dually, functions
f € S(Z) whose Fourier transform vanishes on M<; <} morally have negligible
mean on the two types of arithmetic progressions just mentioned. The reader is
invited to compare Figure 3 with Figure 6 through the lens of this uncertainty
principle.
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Now we can use Theorem 5.12 and Lemma 5.17 to achieve some reductions
to prove Theorem 3.9. It will suffice to establish the estimate

(5.21) (AN (S, 9))nepller@zvry Scs 1f llen @ llglers z)-

For each individual N < Cj, this claim is immediate from (1.6), so we
may assume without loss of generality that N > C5 for all N e D. If N > (s,
define the quantities

(5.22) l(ny = Cp Log Log N.

Then by (5.8), the pairs (I(y), —Log N +{(n)), ({(n), —dLog N + dl(y) have
good major arcs, and hence by Lemma 5.17(i), (ii) and Theorem 5.12, if Cy >
Cy, one has the estimate

AN ((1 = Tl<y )~ Log N1 ) D)l (z) Ser (Log N) ™| fllezzy lgll 2z -
On the other hand, from Lemma 5.17(i) and (1.6) one also has
AN ((1 = Tl<y )~ Log N ) > D)lleaz)
SC1.aa1,0 (Log Log N)|| f | ¢ax (Z) 191l ¢a2 (Z)

for any 1 < q1,¢2 < oo with 1/g1 +1/g2 = 1/q < 1. Interpolating, we conclude
that

IAN((1 = Tl<y )~ Log N1y ) > 9 ler(z)
<c, (LogLog N)?W (Log N) =[£I 1 () |9l 2 (2.

(Recall that ¢ varies from line to line and is allowed to depend on py, ps,p.) In
particular, for Cy large enough, one has (say)

IAN((1 = Tl<y )~ Log N+ ) o Dllerzy Scr (Log N) TN fllewn 2y 1 gllera (2)-
A similar argument gives
HAN(HSZ(N),* LOgN+l(N) f? (1 - HSZ(N),SdeOgNﬁ’dl(N))g)”fp(Z)
Ser (Log N) " fllevs )19l ev2 2
by the triangle inequality and bilinearity of Ay, we conclude that
IAN(f,9) = ANty < Log N+, o Tty < dLog Nvdi o, 9)ler (2)
Ser (Log N) " fllews )19l ev2 (2 -

From the A-lacunary nature of I, we have

> (LogN) <1
NeD:N>C3
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and hence by (2.7), we have that

(AN (£, 9) = AN (Tt ) < Log N+ Jo Tt ) <—dLog Ntdi v, 9)) Neb | ev zivry
Sar 1 fllers 2yl gl w2z -

By a further application of the triangle inequality, we conclude that to establish
(5.21), it suffices to prove the major arc bound

(AN (Tt ) < Log N1 fo <ty < —d Log N+di ) 9) ) Neb | e (z;vr)
Sos 1 fllers 2yl 9l w2z -

We now perform an “arithmetic” dyadic decomposition

Oecn= Y Mrcm.
0<i'<i

By the triangle inequality, it now suffices to show the bound

(5:23)  [[(AN(TTty, < Tog N+, /o iz < dTog N-tdig 9) Ly ta <ty ) NeD v z:v7)
Ses 27| Fllees @) ll9llev2 (2

for all ly,ly € N, where

(5.24) [ == max(ly,l2).

Note that the constraint Iq,ls < l( N) serves as an additional lower bound on
N (and, in particular, the left-hand side of (5.23) vanishes for all but finitely
many 1, l2, thanks to the finite nature of D), so we may also write this bound
as

(5.25)  [|(AN(TT1y <~ Log N+, fo Tl < —d Log Nt 9)) Nest da <t ller(z:vr)
Scs 277N fllews @)l 9l eve (z) -

Fix 11,12 (and hence ), and then introduce the quantity

(5.26) u = [C2%].

We now combine the previous “arithmetic” dyadic decomposition with a “con-
tinuous” dyadic decomposition

u711751

) < Log N+l ny [ = § Fy o,
—u<s1<l(n)

u,l2,82

iy <—dLog N+di )9 = E Gy,
—u<s2<l(n)

where

(5.27) s _ I, <—tog N+si f — I <—Tog N4si—1f 51> —u,
) N =
Hl1,§—LogN—uf S1 = —U
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and

(5.28) G%ZQ,SQ :: I, <d(— Log N+s2)9 — Hip <d(— Log N+so—1)9  S2 > —u,
10, <d(— Log N—u)9 S = —u.

i

Informally, F;\‘,’ll’_u, Gqf\;lQ’_u represent the “low (continuous) frequency” com-
ponents of f, g respectively, whereas F;\L,’ll’sl,sl > —u and G?\}l2’82,52 > —u
represent the “high (continuous) frequency” components.

By the triangle inequality, we can bound the left-hand side of (5.25) by

A 7l b ’l 9
D IANER"™, G yetto el @),

51,822 —u
where T-51:52 denotes the index set
(5.29) ]Il’sl’sz = {N eD:l,s1,80 < Z(N)}

The expression Ay (Fu'"*' G%>*2) can be viewed as (the scale N component
of) a paraproduct of F' and G, but centered around a finite number of (arith-
metic) frequencies, in contrast to the classical paraproducts that are centered
at the frequency origin; also, the paraproduct symbol exhibits some additional
oscillation compared to classical paraproducts when si, so become large. We
shall sometimes distinguish between the “high-high” case s1,s2 > —u, the
“low-high” case so > s; = —u, the “high-low” case s; > so = —u, and the
“low-low” case s; = s9 = —u of these paraproducts. But for now we can treat
all choices of s1, s9 in a unified fashion.

By several applications of the triangle inequality, the bound (5.25), and
hence Theorem 3.9, now follows from the following variational paraproduct
estimates, in which we request an exponential gain in the p; = po = 2 case and
relatively small losses in all other cases:

THEOREM 5.30 (Variational paraproduct estimates). Let the hypotheses
be as in Theorem 3.9, and let the notational conventions be as in this section.
Let 11,1l € N, and define l,u by (5.24) and (5.26) respectively. Let s1,s2 > —u,
and then let Fy = F;\L,’ll’sl, Gy = G%ZQ’SQ, I := 15152 be defined respectively
by (5.27), (5.28), and (5.29). Then

(5.31) [[(An(Fn,GN))netllow@zvr

<c, (max(l, s1, 82)>O(1)QO(pl)—cmax(l,sl,sz)ILm:pg:Q £ llers @ 1]l gpe @)

~

Here the constant ¢ does not depend on p; see the discussion below Theo-
rem 5.12.

Indeed, by interpolating (5.31) between the case (p1,p2,p) = (2,2,1) and
the case where (p1, p2,p) are close to (1,00,1), (00,1, 1), or (00, 00, 0), we see
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that (say)
(AN (Fn, Gn))netllenzvn
<oy (max(l, sy, s2))O W t0pmaxavsa) | £l o0 ]| oo (2.

Then using (a)?(M2710ra < 27802 for g > 0 and summing the bound in (5.32)
over si, Sz, we see that to obtain the (5.25) from Theorem 5.30, it suffices to
establish the bound

(5.32)

Z 2—8pmax(l,s1,52) SCB 2—pl;
51,522—u
bounding
278pmax(l,sl,52) < 274pmax(l,51)274pmax(l,32)

it suffices to show that
Z 274pmax(l,so) gcs 27,0[/2.
So>—u

But this is clear from the geometric series formula since there are only O, (22/')
scales sg with —u < s¢ <.

It remains to establish Theorems 5.12 and 5.30. Theorem 5.12 will be
established in the next section; the rest of the paper is then devoted to the
proof of Theorem 5.30. For now, we use Theorem 5.12 to deal with one case
of Theorem 5.30:

PROPOSITION 5.33 (High-high ¢2(Z) case). Theorem 5.30 holds when s1, 52
> —u and p; = p2 = 2.

In view of this proposition, for the purposes of proving Theorem 5.30 we
may assume that at least one of s; = —u, s9 = —u, or (p1,p2) # (2,2) holds.

Proof. From (2.7), we have
I(Ax (Fv, Gv))netllezvry S D AN (Fr, Gy o).
Nel

Observe (using Lemma 5.2 and (5.27)) that for N € I, FzFn vanishes on the
major arcs M<ax(iy,s1)—1,<— Log N+max(l1,s1)—1, and hence by Theorem 5.12 we
have

IAN (PN, Gw)llerzy Sy (270D 4 (Log N)Y =) ||F e z) |Gl ez
A similar argument gives

IAN(Fn, GN)lle 2y Sey (27°02%2) 4 (Log N) ™M) || Fn[l 2y 1O 2 2
and hence on taking geometric means,

1AN (Fx, Gl zy Sy (27X E5052) 4 (Log N)=N)|| vl 2 |G [l 2 -



1050 BEN KRAUSE, MARIUSZ MIREK, and TERENCE TAO

From (5.29) we have (Log N)~°C1 <, 2-¢max(bs1,52) hence
14N (FN, GN)llerz) Ses 27D | Fy o) IGN e @)-
By the Cauchy—Schwarz inequality, it thus suffices to establish the Bessel-type

inequalities

Y IENIZg S 112w,
Nel

and

Z ”GN||%2(Z) S HQH?Q(Z)'
Nel
But this follows from the easily verified pointwise bounds

S IFEN (1P S 1 Ff(©)P,

Nel
Y | FGN P S | Fag(©)
Nel

and Plancherel’s theorem. O

6. Minor arc single scale estimate:
applying Peluse—Prendiville theory

In this section we establish Theorem 5.12. The arguments here will be
lengthy, but they are not needed elsewhere in this paper.

It will be convenient to exploit duality and work with trilinear forms
(An(f,g),h) instead of bilinear operators Ax(f,g). We use the inner product

(fo0) = fla)g(a)
TEZ

on S(Z). (There will be no advantage for us in this bilinear analysis in inserting
a complex conjugation into the inner product.) We observe the identities

(6.1) (AN(f.9),h) = (AN(h,9), f) = (AN (f, ), g)

for f,g,h € S(Z), where the transpose operators A%, A% are the averaging
operators
(6.2)
Ax(h.g)(@) = AN (R, g) (@) = Enenhla + n)g(x +n — P(n) sy

and

Tk n—P(n),—P(n

AR (. h)(@) = Ay "0 (g ) ()

= Ene[N}f(x + P(n) — n)h(x + P(n))1n>N/2-

In the language of additive combinatorics, the functions fl}*\,(h, 9)s fl}k\}k( fyh) are
referred to as dual functions.
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6.1. Proof of Theorem 5.12(i). Our starting point is the following deep
inverse theorem of Peluse-Prendiville [74] in the quadratic case P(n) = n?
(see also [75] and [77]), and Peluse [73] for general polynomials P(n) of degree
d>2.

THEOREM 6.3 (Peluse inverse theorem). Let N > 1 and0 < § < 1, and let
Ny be a quantity with Ng ~ N%. Let f,g,h € S(Z) be supported on [—Ngy, No|
with || f |l see 25119/l e (2> |1Plleo(zy < 1, obeying the lower bound

(6.4) [(An(f,9),B)| = 6N
Then one of the following holds:
(i) (N not too large). One has N < §-9W),

(ii) (f has major arc structure at scale N). There exist a positive integer
q < 67°W and a positive integer S°VN < N’ < N such that

1
W‘ X:Erne[Nf]f(m +qm)| 2 690
TEZL

Note from the uncertainty principle (cf. Remark 5.20) that conclusion (ii)
of Theorem 6.3 is morally equivalent to asserting that the Fourier transform
Fzf has a large presence on a major arc set M« <k naive With 2! < 601 and
27F < =9 /N. This intuition will be formalized in Proposition 6.6 below.

Proof. We expand out (6.4) as

Nd+1’ Z Zh fla—n) (x_P(n))]le/z‘ > 0.

n€[N]) z€Z

By the triangle inequality, we thus have

0 d+1’ SN h@)f(z—n) (x—P(n))( >4
ne[N’] €Z
for either N’ = N or N’ = |N/2]. The claim now follows from [73, Th. 3.3]
(after some minor changes of notation) with parameters (m,q, N, M, P, P») =
(2,1, Ny, N’,n, P(n)). In that theorem, the functions f, g, h were assumed to
be supported on [1, (N’)9] rather than [—Ng, Np], but it is a routine matter to
see that the arguments continue to hold with this slightly more general support
hypothesis. (]

We will now gradually manipulate Theorem 6.3 in a sequence of steps to
make it more closely resemble (the contrapositive of) Theorem 5.12(i), until
we are able to actually establish that part of the theorem; we will then adapt
the argument (focusing on g instead of f) to also establish Theorem 5.12(ii).

The first step is to make the conclusion of Theorem 6.3 more Fourier-
analytic in nature. We need a technical calculation:
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LEMMA 6.5 (Smooth approximation to 1, ). Let ¢ € S(R) with [ 1 (x) da
= 1. Then for any interval [a,b] C R and any 0 < € < 1, one has the pointwise
bound

Yo evlel@—y) ~ Ly(e) Sy '+ (el —a) ™0+ (el —b) 7"
yEla,b|NZ

for all x € Z.

Proof. By the triangle inequality, it suffices to show that
Y elel@—y) ~ Loza Sy '+ (el —a)) "0
yEZ:y>a

since the claim then follows by subtracting this estimate from the analogous
estimate for b (adjusting b by an infinitesimal amount if necessary). By trans-
lation invariance, we may set a = 0. From the Poisson summation formula and
the rapid decrease of F1), one has

D ev(e( —y)) = 14 0y("),
YEZ
so by reflection symmetry and the triangle inequality, it suffices to show that
> ev(e(@—y)) Sy (ex)
YyEZ:y>0
when x < 0. But this follows from the rapid decrease of 1. O

PROPOSITION 6.6 (Alternate inverse theorem for f). Under the hypotheses
and notation of Theorem 6.3, there exists a function F € (%(Z) with

(6.7) [Fllee@zy S 15 1Fllagzy S N
and with FzF supported in the O(6=°M) /N)-neighborhood of some o € Q/Z
of naive height O(6-°M) such that
(6.8) [(f. )| 2 690N,

Proof. If N < 6=°M) then we can simply take F = fl}k\,(h,g) and a/q =
1/1 and use (6.1) and (1.6) to conclude. Thus we may assume that N > C,6~ ¢

for a sufficiently large C,. In particular, by Theorem 6.3, we can find N, q € Z
with ¢ <6791 and DN < N’ < N such that

Y [Emeinf (@ +gm)| 2 67N
TEL
Observe that the summand vanishes unless |z| < No + O(¢N’) < N9, thus

Z E v f(z + gm)| 2 69N
z=0(N?)
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Now we smooth out the inner average E, cnq. Let 0 < & < 1 be a
parameter to be chosen later. From Lemma 6.5, one has

Lyg(m) =e > Fg'nle(m —m))+ O + (em) ™ + (e(m — N'))7"7)
m/€[N’]

for any m € Z, where 7 is the cutoff from Section 2.3. Hence from the bound-
edness of f,

1
Epeinyf(@+qm) =€ > EpuennFg n(e(m—m')) f(z+qm)+O (510 + W) .
meZ

If we choose ¢ :== C(S*C/N for some large C' (depending only on 7, P) and take
C, large enough depending on C, we conclude that

Z ‘5 Z Em/G[N/]fﬂgln(g(m — m/))f(.%' + qm)‘ Z (50(1)Nd.
x=0(N%) meZ

In the latter case, there exists G € £°°(Z) supported on [-O(N?), O(N%)] with
|Gllge(zy < 1, with

|3 Ce Y Buvey F nlelm —m) f(a+ qm)| 2 OO
TEL meZ
We thus have the claim (6.8) with
F(z)=¢ Z Em/G[N/]fﬂgln(s(m —m'))G(x — qm).
meZ

From the hypotheses on 7, G, we easily verify the bounds (6.7). A routine
calculation using the Poisson summation formula reveals the identity

F2F (€ mod 1) = F2G(€ mod 1)E,cpve(am'e) S FeFg'n (qu— n)

neL

for any ¢ € R, which, in particular, implies from the support of n that FzF' is

supported in the set
1
(=55l (Ge).
q q q

By applying suitable Fourier multiplier operators, one can then decompose
F' =} qejq Fa, where each F, obeys essentially the same bounds (6.7) as F
and is supported in the £-neighborhood of ¢ mod 1. The claim now follows
from the pigeonhole principle and the bounds on ¢, q. U

We now dualize the above proposition using the Hahn—Banach theorem
to obtain control on dual functions A*(h,g). Specifically, we shall use the
following lemma.
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LEMMA 6.9 (Application of Hahn—Banach). Let A, B > 0, and let G be
an element of (*(Z). Let ® be a family of vectors in (*(Z), and assume the
following inverse theorem: whenever f € (*(Z) is such that || f|s=z) < 1 and
[{f,G)| > A, then |(f,¢)| > B for some ¢ € ®. Then G lies in the closed
convex hull of

V={\pelZ):¢ecd, |\ <A/BYU{heP(Z): |h]ng < A).

Proof. Observe that the set coanH'”éQ(Z) is balanced. Therefore, if the
claim of Lemma 6.9 failed, then from the Hahn—Banach theorem and the Riesz
representation theorem, there exists f € ¢?(Z) such that Re(f,G) > A, but
Re(f,h) < A for all h € V. In particular, this gives |(f, h)| < A for all h € V,
which implies that

[(f,0) < B
for all ¢ € ®, and that

[flle@z) = sup [(f,l)| <1,
”h”gl(z)fl

contradicting the hypothesis. This completes the proof of the lemma. O
COROLLARY 6.10 (Structure of dual function, I). Let N >1 and No~ N¢.

Let g, h € S(Z) be supported on [—No, No| with ||gl[¢=(z), |hlle=(z) < 1, and let
0 < < 1. Then there exists a decomposition

(6.11) Ay (h,g) = 3 Fo 4B+ By,
Oée(@/zzhnaive (Q)S670(1)

where each F, € (*(Z) has Fourier transform supported in the O(6-9W /N)-
neighborhood of o and obeys the bounds

(6.12) 1Falloe @) S 570 and | Fallozy S 67 WN,
and the error terms E1 € (Y(Z) and By € (?(Z) obey the bounds
(6.13) IEllpzy < SN and || Ballpez) < 6.

For similar applications of the Hahn—Banach theorem to analyze the struc-
ture of dual functions in additive combinatorics, see [45, pp. 221], [38, Th. 3.8].

Proof. There exists f € £°°(Z) with || f[|s=(z) < 1 such that

[(f, Ax(h, g))| > 6N
Applying Proposition 6.6, we obtain
[(f, F)| 2 69N

for some function F' € ¢?(Z) obeying the properties of Proposition 6.6. Invoking
Lemma 6.9 with A = §N?/2 and B ~ 6P N9 and the set

® = {¢o € (Z) : a € Q/Z; hyaive(r) < 67 OW},
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we obtain a decomposition

(6.14) A (h,g) = ch¢j + E1 + Eo,
=1

with the following properties:

(i) for each j € Z,, we have that ¢; = A\;jp,, for some ¢,, € ® and \; € C
such that |\;] < 6-0W;
(ii) the coefficients c; are non-negative with >>22, ¢; < 1, and all but finitely
c¢;j vanish;
(iii) the error term Ey € (*(Z) satisfies ||E1[|p(z) < ON?
(iv) the error term Ey € (*(Z) satisfies || Ea||p2(z) < 0.

The latter error term arises as a consequence of the fact that one is working
with the closed convex hull instead of the convex hull. In fact, its £2(Z) norm
can be made arbitrarily small, but § will suffice for our purposes. Grouping
together terms associated to each arithmetic frequency « in (6.14) and using
the triangle inequality, we obtain the desired decomposition from (6.11) that
satisfies (6.12) and (6.13). O

Corollary 6.10 is not directly suitable for our applications for three reasons:
firstly, E is controlled in £!(Z) rather than in £2(Z); secondly, g is required to
be controlled in £°°(Z) rather than in £2(Z); and thirdly the support of g is re-
stricted to an interval. Using the Ionescu—Wainger projections, we now address
the first issue, at the cost of worsening the control of the structured component
of the decomposition (6.11), and also requiring ¢ to not be too small.

PROPOSITION 6.15 (Structure of dual function, II). If N, Ny € Z with
Ny ~ N?% and | € N, with

(6.16) Log N > C,2°

for a sufficiently large constant C, depending on p, one has the estimate
I(1 =T < Log v +1) AN (B, D)2y Scv 27 N2 hll e 2y |9l (2),

whenever g,h € S(Z) are supported on [—Noy, Ny).

Proof. We can assume N is sufficiently large depending on C', as the claim
follows from (1.6) otherwise. We may also normalize ||gl|(z) = [|hl[¢(z) = 1,
so our task is now to show that

(1 = << Log N+1) AN (B, 9) 22y Sy 27 NY?

for some ¢ > 0 depending on P.
We apply Corollary 6.10 with § = 27¢! for a sufficiently small ¢ > 0
depending only on P. Because of (6.16) and the hypothesis that N is large,
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we see from (5.8) that (I,—Log N + [) has good major arcs. By choice of ¢
and the Fourier support of F,, we have from Lemma 5.17 that
(1 - Hgl,gfLogNJrl)Fa =0
for all F,, in the decomposition (6.11), and hence
(6.17) (1 =M<t < rogn+) AN (R, 9) = (1 =Ty < Logn41) Er
+ (1 =Tt < Log N41) Eo.

Since
(1 =M<, <—rog N+1) E2lle2(z) S 9,
it suffices to show that
(6.18) 10~ Tetc tog xs0) Bl egzy S VAN,

which will give the claim by the choice of . We now establish (6.18).
The function A% (h, g) is bounded in ¢*°(Z) norm by O(1). From (6.11)
and the triangle inequality, we thus have

| E1 g (z) S 670,

since Fy € (4(Z) for any 2 < ¢ < oo and | Ezllpa(z) < [|E2lleez) < 6, so by
interpolation with (6.13), we have

IE1|lgp(zy S 5Y2NYP

for some absolute constant 1 < p < 2 that is sufficiently close to 1. By the
latter bound and Lemma 5.17, we conclude that

(6.19) (1 =Tt < Log v +1) Erllenz) Sp ()02 NP

Furthermore, as fl}"v(h, g) is bounded by O(1) and supported on [— Ny, Np| with
Ny ~ N¢, we have
1A% (B )l ) Sp NP
Thus by Lemma 5.17 again,
(1 =Ty < Log N4 AN (B )| ) Sy NV,
and since || Ez|| (z) S 0, we also have
11— HSI,S—LogN+l)E2||gp/(Z) S (1)6.
Using these two bounds, the triangle inequality and (6.17), we may write
(6.20) 11— HSZ,S—LOgN-H)Engp’(Z) Sp.C1 <Z>Nd/p/-

Interpolating (6.19) and (6.20), we obtain (6.18), and the proof is completed.
U
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We now address the second issue, namely that of relaxing the ¢>°(Z) con-
trol on g to ¢?(Z) control. The main tool for this is the following recent £P(Z)
improving estimate for linear polynomial averages.

PROPOSITION 6.21 (¢P(Z)-improving). Let Q(n) € Z[n] be of degree d > 2.
Then for every

4 .
2>p>{2_ﬁww ifd 23,

22 if d = 2,

one has the bound

n 1_1
1AR™ fle@ Spe N1 flo
for all N > 1 and f € (P(Z).

Proof. This follows from the work of Han-Kova¢-Lacey-Madrid—Yang [41].
Indeed, the d = 2 case is contained® in [41, Th. 1.6], and the d > 3 case is
contained in [41, Th. 1.9], after specializing these theorems to the p = 2 case
and performing some routine algebra. Note that [41, Conj. 1.5] predicts that
the range of p can be lowered to p > 2 — % for any value of d, but this is
currently only known for d = 2. For our purposes, any exponent p less than 2

would be sufficient for applications. O

We can now relax the £°°(Z) control on g to ¢?(Z) control:

COROLLARY 6.22 (Structure of dual function, III). Under the notation
and hypotheses of Proposition 6.15, one has

(623) |1 ~ My <—rogn+) AN (1, 9)llez) Sev 27Nl ) ll9ll 2z
whenever g,h € S(Z) are supported on [—Ny, Ny).

Proof. From Proposition 6.15, we already have the bound

(1 = Tt < vog v AN (B 9) 22y Sov N227 Bl ooy llg e 2 -

On the other hand, from (6.2) and the triangle inequality, we have the pointwise
bound

* n—P(n
Ay (hyg)(@) S [Pl A "™ gl ().

8Strictly speaking, this theorem requires all the coefficients of the quadratic polynomial Q
to be non-negative. However, by applying a reflection x — —x one can assume without loss
of generality that the quadratic coefficient of @ is positive, and then applying a translation
n +— n+c for some large positive integer ¢ (noting the pointwise bound A%m)f <. A%(n“) If)
one can then deduce the case of general @ from the non-negative coefficient case (perhaps at
the risk of worsening the dependence of constants on Q). See also [20] for another treatment
of the (monomial) quadratic case and an extension to higher dimensions.
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Hence by Lemma 5.17(i) and Proposition 6.21 applied with Q(n) =n — P(n),
we have

~ 1 1
11— Her < rog v+ AN (B )l 2@) Scvw N2 |hllie )9 llev )

< p < 2. The claim now follows from interpolation. U

4
fOI' any 2 — m

Now we use the off-diagonal decay estimate (5.19) to remove the support
condition:

COROLLARY 6.24 (Structure of dual function, IV). Under the notation
and hypotheses of Proposition 6.15, one has (6.23) whenever g € (*(Z) and
h e (>=(Z).

Proof. If g is supported on an interval I of length N?, then we may restrict
h to an O(N%)-neighborhood of I without affecting the average A% (h, g). From
Corollary 6.22 and translation invariance, we then conclude that (6.23) holds
in this case.

Now we handle the case when g is not supported in such an interval. We
may normalize ||hgpe(z) = 1. We can split g = > ;7 gl; where I ranges
over a partition Z of R into intervals I of length N¢. Then by the preceding

discussion, the local dual function Dy := A} (h, gls) obeys the bound

(6.25) I(1 =M<t <~ Log N40) Dille2(zy Sev 27Nl

for each interval I, and we wish to establish

H Z(l — Hgl’g—LogN—f—l)DI 501 2_Cl||g||€2(Z)'

1€l

()

(Recall ¢ is allowed to vary from line to line.) By squaring and applying Schur’s
test, it suffices to obtain the decay bound

(1 =H<j<—rognN+1)Dr, (1 = <y < rogN41) D)

g /dist(I, )\ 72
So 2 1<T> HQHZZ(I)HQHZQ(J)

for all intervals I, .J of length N, From Cauchy-Schwarz and (6.25), we already
have

(1 =M< vog N)Dr, (1 = <y < Log n40) D) Scv 27 Ylglleenllglle -

On the other hand, Ajv(h,gﬂj) is supported in a O(N%)-neighborhood of I,
and similarly for A% (h, g1;); also, 226V < N9 From Lemma 5.17(i) and
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Cauchy-Schwarz followed by (1.6), we thus have

(1 =T < rogn+1)Dr, (1 =<y < LogN11) D)

dist(1,J)\
<o ()W <J57d)> I Drlle2z)l1 D lle2 (2

dist(I, J)\ 1
e <l>o(1) <]Efd)> HQHEQ(I)HQHZQ(J)'

Taking geometric means of the two estimates, we obtain the claim. [l

We may now prove Theorem 5.12(i). We may assume that [, N are suf-
ficiently large depending on C1, since the claim follows from (1.6) otherwise.
It suffices to prove this claim under the additional hypothesis (6.16) (which
one can view as an upper bound on [ in terms of N), since for larger values
of [, the hypothesis (i) becomes stronger and the conclusion (5.13) is essentially
unchanged. By duality, it now suffices to establish the bound

(An(1,9).0) Scr 27N f ez l9llez 2y 1Pl ez

for any f € (%2(Z),g € (*(Z),h € (*°(Z) obeying the hypothesis in Theo-
rem 5.12(i). From (6.1) and Lemma 5.17, we can write the left-hand side
as

(1 =T < 1rogn+1) AN (R, 9), ).

The claim now follows from Corollary 6.24 and Cauchy—Schwarz.

6.2. Proof of Theorem 5.12(ii). Now we prove Theorem 5.12(ii). This will
follow from a similar argument used to prove Theorem 5.12(i), once we establish
an analogue of Proposition 6.6 for the function g (with the denominator N in
the intervals replaced with N%). Such a result was obtained very recently in the
quadratic case P = n? by Peluse and Prendiville [75, Cor. 1.4]. The arguments
there likely extend to cover all nonlinear polynomials P. We give a derivation
here that is self-contained (except for Theorem 6.3, which is used as a “black
box”), inspired by some earlier unpublished notes in this direction by Peluse
and Prendiville (private communication).

PROPOSITION 6.26 (Alternate inverse theorem for g). Under the hypothe-
ses and notation of Theorem 6.3, there exists a function G € (*(Z) with

1Gllewzy S 13 I1Glln(zy) S N?

and with FzG supported in the O(5~°W) /N -neighborhood of some a € Q/Z
of naive height O(6~°W) such that

(6.27) (g, G)| 2 69N,
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Proof. As in the proof of Proposition 6.6 we may assume that N > C§~¢
for some large constant C, as the claim is trivial otherwise. From (6.4) and
(6.1), we have

|(f, Ak (h, 9))| > SN
Since [|flezz) < N?2 we conclude using the Cauchy-Schwarz inequality that
(AN (h, 9), A (h, 9))] 2 °N°.

We apply Corollary 6.10 to the second factor flj‘v(h, g), with & replaced by cod?
for some small constant ¢y > 0, to obtain a decomposition

A(h.g) = Z Fo+ E1 + Es,
aeQ/Z”hnaive(O‘)sco §—0M)

where each F, € 2(Z) has Fourier support in the 1/M-neighborhood of o with
M ~¢, 6°DN and obeys the bounds

(6.28) |Falleez) Seo 6% and  [|Falln(z) Seo 6 YN,
and the error terms By € ¢*(Z) and Es € (?(Z) obey the bounds
1Bt z) < co8°N?  and || Balle(z) < cod®.
From (1.6) and Hélder’s inequality one has
(AN (h,9), B1)| + (AN (h, 9), B2)| S cod N,

Hence if ¢y is small enough, we conclude from the triangle inequality and
pigeonhole principle that

(AN (R, g), Fo)| 2 67D N4

for some o € Q/Z of naive height O, (6-°(M). Henceforth we suppress the
dependence of constants on ¢y. By (6.1) again, we conclude that

‘ ZEne[N]h(x)Fa(x —n)g(z — P(n))| = VN,
TEL

From the Fourier support of F,, we have the reproducing formula
2 _
F,(z) = i Z Fo(x — m)e(—am)Fg 'n(2m/M),

where 1 was defined in Section 2.3. Thus

( > Eneyy Y (@) Falz — m — n)e(—am)g(z — P(n))Fg 'n(2m/M)
TEZL meZ
Z 50(I)Nd+1
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Making the change of variables s = m + n, the left-hand side can be rewritten
as

323 hl@) Fala = s)e(—as)Enepelan)g(z — P(m)Fg n(2(s — n)/M)|.
TEZ SEL

By the rapid decay of Fy 1, the inner sum can be restricted to s = O(N).
Thus by the pigeonhole principle, there exists s = O(NV) such that

| > h(@)Fal@ = s)e(—as)Bueielan)g(e — P(n)Fg 'n(2(s = n) /M)
hi<y/
> 500 N,
From (6.28) and the boundedness of h, one has
> (@) Folz — s)e(—as)|* S 6 N
TEL

Hence by the Cauchy—Schwarz inequality,

> [Encivelan)g(e — P(n)Fg n(2(s - n)/M)[* 2 620N,
TEZL

By Plancherel’s theorem, we can write the left-hand side as

JEZGIENGIS
where Sy is the normalized exponential sum

SN (€) = Epevje(an)e(EP(n) Fg 'n(2(s — n)/M).

By another appeal to Plancherel’s theorem, one has

[\ Faa(€) R = gl 5 N
thus one must have
[ 1Zza@ PSP 2 500N
for a set Q C T of the form
Q= {€ e T: [Sn(&) 2 6°W}.

By the inverse form of Weyl’s exponential sum estimate (see the argument
as in [40, Lemma A.11, pp. 1922]), we obtain

e Tr([_l/M/’ 1/M/] X {O/ € Q/Z : hnaive(O/) < (S_O(l)})

for some M’ ~ §O N4, By the pigeonhole principle, we may therefore find
o € Q/Z of naive height O(6~-°M) such that

o' +1/M’
/ | Fzg(€ mod 1)|?d¢ > 69 N4
’—I/M’
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By Plancherel’s theorem, this implies that
1 _1 (2m
> |3 X ot = miet—emze (57
€L meZ
so that (6.27) holds with

G(z)= Wlx)2 Z Z g(:L‘—m+m')e(—a'(m—m'))}'ﬂg1n(?\Zt)fﬂg177<2]\/[m//>.

meZm/'el

2
z 60(1)Nd

A routine calculation reveals that G has Fourier support in the 2/M’-neighbor-
hood of o and obeys the bounds

d

1Glleezy S1 and  [|Gllpz) S N
the claim follows. O
We can now repeat all of the previous arguments with the role of f now
played by ¢, and with the spatial scale N replaced by N¢. For the conve-
nience of the reader, we state the analogous key propositions. Repeating the

Hahn-Banach proof of Corollary 6.10, but using Proposition 6.26 in place of
Proposition 6.6, we conclude that

COROLLARY 6.29 (Structure of second dual function, I). Let the notation
and hypotheses be as in Corollary 6.10. Then there exists a decomposition

AR (£.h) = Z Fo + Ey + Ea,
QEQ/Z:hnaive(a)sts_o(l)

where each F, € (*(Z) has Fourier transform supported in the O(6-°M) /N9)-
neighborhood of o and obeys the bounds from (6.12), and the error terms E; €
(Y(Z) and Ey € (%(Z) obey the bounds from (6.13).

Repeating the proof of Proposition 6.15, we conclude that

PROPOSITION 6.30 (Structure of second dual function, II). Let the nota-
tion and hypotheses be as in Proposition 6.15. Then

(1 — Tt <—avog n+at) AN (F, Bl 2@y Scv 27 NY2| flleso 2y | hllee )
whenever f,h € S(Z) are supported on [—Ny, Ny].

Repeating the LP-improving argument used to prove Corollary 6.22, we
conclude that

COROLLARY 6.31 (Structure of second dual function, III). Under the no-
tation and hypotheses of Proposition 6.15, one has

(6.32)  [|(1 =M<y <—avogn+a) AN (W) l2z) Sov 27N Flle@llles )
whenever f,h € S(Z) are supported on [—Ny, Ny).



POINTWISE ERGODIC THEOREMS FOR BILINEAR POLYNOMIAL AVERAGES 1063

Finally, we repeat the off-diagonal estimate argument used to prove Corol-
lary 6.24 to conclude that

COROLLARY 6.33 (Structure of second dual function, IV). Under the no-
tation and hypotheses of Proposition 6.15, one has (6.32) whenever f € (*(Z)
and h € (>(Z).

Theorem 5.12(ii) now follows by repeating the proof of Theorem 5.12(i).

7. Approximation by model operators

To conclude the proof of Theorem 1.17, we need to establish Theorem 5.30.
Let l1,1l3 € N, and define [, u by (5.24) and (5.26) respectively. Fix s1,s9 > —u.
In view of Proposition 5.33 we may assume that at least one of 51 = —u,
s9 = —u, (p1,p2) # (2,2) holds. It will be convenient to adopt the following
definition. If G = Z or G = Ay, we declare a tuple (Hy)yer of functions
Hy € LP(G) to be acceptable if one has the estimate

|(HN)Ner ||l c;vr)

<y (max(l, s, s9)) O 20 —emax(bsrs)lo=po=2 || £]| 1 || gl pr2 () -

~

Our task is thus to show that the tuple

(An(Fn,GN))Nel

is acceptable.

The main difficulty here is that the scale parameter N affects the aver-
age le(F N, GN) in three different ways, as the functions Fy, Gy both sepa-
rately depend on N, and the averaging operator Ay also depends on N. The
strategy will be to perform Fourier-analytic manipulations (on the adelic fre-
quency space R x Q/Z) to approximate this expression Ay (Fn,GnN) by linear
combinations of simpler “model expressions” A(Fy,Gy), where the functions
Fx, Gy still depend on N, but the bilinear averaging operator A is indepen-
dent of N. In such a setting we will be able to use general arguments (e.g.,
Rademacher—Menshov type inequalities) to control the variational norms of the
bilinear expressions A(F N, G ~) by variational norms of the two linear expres-
sions Fy, G separately. These in turn can be controlled by a number of tools,
such as the vector-valued Ionescu—Wainger multiplier theorem, Theorem 5.7.

We return to the rigorous arguments. For any N € I, we have

max(l,s1,s2)/C,
(7.1) N > max(2? LRI Cy),
which implies, in particular, that

(7.2) N > 210du,
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In contrast, by Lemma 5.2(ii), (Q/Z)<; is the union of dual cyclic groups
%Z/ Z with
(7.3) q <210,

Thus N is going to be far larger than any single denominator ¢ arising in the
major arcs. If one wishes to contain (Q/Z)<; in a single dual cyclic group
éZ/Z, Lemma 5.2(ii) permits one to do this with

(7.4) Q=Qq<2".

Thus N may or may not be significantly larger than this ). We will later
separate N into large and small scales in order to exploit this containment in
the large scale case.

From (7.2) we also have

—Log N + l(N) < —10u.

From (5.8) we see that the pair (I, —u) has good major arcs. This lets us factor
the expressions Fi, Gy using the symbol calculus (5.6). Indeed, if we set

F = Hll,g—uf and G = ng,g—uga
then from (5.15), (5.27), and (5.28) we have the identities
Fy=TL,F; Gy=T2G,
where pn, oy € S(R) are the bump functions

Log N—s1 _ Log N—s1+1 _
n(2 §) —n(2 §) s1>-u
7’](2L0gN+u§') §1 = —u

on(§) =

and

n(2d(Log N=s2)¢) _ p(gd(Log N=so+ )¢} gy >y,
n<2d(L0gN+u)§) S92 = —U.

(7.5) on (&) = {

From Lemma 5.17 we have

(7.6) 1Pl S O flo@: 1C1w e S Ollgle

hence we may replace f, g by F, G respectively in the definition of acceptability.
It will now suffice to show that the tuple

(7.7) (An(TL F, T2 G))ver

is acceptable.
The dependence on N has not yet materially improved, as the quantity
An (TfplN F, ngN G) still depends on N in three different ways. However, we can
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clarify the dependence on N by (adelic) Fourier analysis. From Example 4.10
and (4.9), we see that

1 l
An(TUF, T2 G)=B btz (F,Q),

PO2m

where the symbol ml]\l,’l2 : (R x Q/Z)* — C is defined by the formula

l1,l2
my (€1, 1), (§2, a2))
= ]lh(a1):211]lh(a2):212 SON(gl)@N(gQ)]ETLE[N}e((al+£1)n+(0(2+52)P(n))]ln>N/2‘

From (7.2) and (7.3), we see that N is large compared to the naive heights of

aq, g, while &, &, = O(27%) are small on the support of ml]\l,’b. This suggests

that in the regimes of interest the symbol

E.cvie((en +&)n + (a2 + &) P(n)) Ly 2

has an approximate factorization

(7.8) my (a1, a2)myr(E1,§2),

where m: (Q/Z)* — C is the normalized exponential sum
ma(an,a0) = [ elars + asP(@)) dug(a),
z

where p is the probability Haar measure on the profinite integers 7, or equiv-
alently

an + a2P(n)>

ms, (al mod 1, 2 mod 1) = Enez/qze<
q

q q

for any ¢ € Z4 and ay,a2 € Z, and myRr: R? — C is the oscillatory integral
1 N 1

(19) e = [ et +&aP0) di= [ Nt &P() dr
N/2 1/2

Note how the use of the upper averaging operators Ay instead of Ay allows us
to keep t bounded away from zero, which will be technically convenient later in
the argument when we integrate by parts in ¢ (as we now avoid the stationary
points of P). The approximation (7.8) can be compared with (1.13).

The heuristic (7.8) then suggests the adelic bilinear symbol mé\l,’lz € S((Rx
Q/7Z)*) approximately factors into the tensor product of a continuous bilinear
symbol

(oN @ pN)NR € S(R?)

and the arithmetic bilinear symbol

My 00,2 "= (H(Q/Z)ll ® ]I(Q/Z)z2 )mz = S((Q/Z)Z)
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At the level of bilinear Fourier multipliers, this factorization suggests the ap-
proximation

l1,l2,my
(pN®PN)MNR

An(TU, F,T? G)~B (F,Q),

where we introduce the twisted bilinear Fourier multiplier operators

li,la,my

(7.10) B " = Bpez(mem, , )

for any m € S(R?). More explicitly, one has

l1,l2,my

B (f, 9) (@) = > my(ar, az)

ale(Q/Z)ll,aze(@/Z)l2
X /R2 m(&1, &) Fzf(on + &) Fzg(as + &o)e(—x(ar + ag + & + &2)) didés.

Remark 7.11. Another way to think about the approximation (7.8) is that
it is approximating the discrete averaging operator Ax: S(Z) x S(Z) — S(Z)
by the adelic averaging operator Ay a,: S(Az) x S(Az) — S(Az) defined by

1

(7.12) A, (f.9)(z) = N )
[N/2,N]xZ

f(x —y)g(z — P(y)) dua,(y),

which is in turn the tensor product of the continuous averaging operator

Ang: S(R) x S(R) — S(R) defined by

1 N

Ang(f,9)(@) [z —t)g(x — P(t)) dt,

N npe

and the arithmetic averaging operator A,: S(Z) x S(Z) — S(Z) defined in
Example 4.10. As we shall see, this approximation is particularly accurate in
the large-scale regime when N is large compared to the quantity Q<;; see (A.4).
In fact, the main estimate (3.10) on the integers Z has a natural analogue
on the adelic integers Az that can be proven by the same methods (with
several simplifications). Our proof of the integer estimate was discovered by
first working with the adelic operator (or more precisely, a projection of this
operator to R x Z/QZ) as a model case. This suggests that a natural route to
prove other harmonic analysis estimates on the integers Z is to first study the
analogous estimates on Ay or R x Z/QZ as model cases, in order to exploit
the tensor product structure.

We now make the above heuristic precise. For future applications, we
make the approximation slightly more general than what is needed in the
current step.
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PROPOSITION 7.13 (Major arc approximation of Ay). For any N > 1
and s € N with —Log N + s < —u, we have

HAN (Hzl,g— Log N+s ', 1y < —dLog N+dsG)

(7.14) BV (F,G)

(M<— Log N+s®N<—d Log N+ds)MN,R

r(Z)
503 2O(max(20175))N—1 HFHZW ) ||éH€p2 @)

for all F € ("\(Z)),G € (P2 (7).

The key point here is the gain of N~! on the right-hand side, which in
practice will make any expression estimated using this proposition acceptable
(with room to spare).

Proof. From the same sort of calculations used in the preceding heuristic
discussion, we can expand the expression inside the norm of the left-hand side
(7.14) as

Bpezy (F,G),
where the symbol M € S((R x Q/Z)?) is defined by

M((01,&1), (02, 62))
= Ty (ay)=21t T(an)=2'271<— Log N+s(§1)71<—d Log N+ds (§2) Mo( (a1, §1), (a2, £2))
with

M()((Oél, 51)7 ((127 52))
= Epcvje(arn +azP(n))e(&in + & P(n)) 1,5 njo — my (a1, a2)mnr(E1, €2)-
Applying Lemma 4.20 with r; :== N~ and 7y := N~¢ Lemma 5.2(iii), and the
triangle inequality, as well as the Leibniz rule, it now suffices to establish the
bounds

oir Hiz

85{1 8552

for 0 S jl;jZ S 27 a1 € (Q/Z)lla Qg € (Q/Z)lzv and gl = O(2S/N)7 62 -
O(2% /N9).

By Lemma 5.2(ii), the sequence n +— e(ain + asP(n)) is periodic with

MO((Olh 51), (042, §2)) rgog QO(max@pl,S))leerh,l

some period ¢ = Op(20(2pl)). Splitting into residue classes modulo ¢, and
evaluating the derivatives, it suffices by the triangle inequality to show that

N
Z w(n)]lnza mod ¢ — 1/ w(t) dt SC;; QO(maX(zpl:S))leerjz
ne[N\[N/2] 4 JN/2

for all a € [g], where
w(t) = e(&1t + &P(1)) P(t)”.
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It suffices to show that
1 [mta j .
w(n) — p / w(t) dt <o, 20max(27.8) Nitdia—1
n
for all n € [N]\[N/2], since the claim then follows by summing over all n €
[N\[N/2] with n = a mod ¢ and using the triangle inequality to estimate
the remainder. By the fundamental theorem of calculus, it then suffices to

establish the bound

D 1o(t) S, 2000 e
for t ~ N; but this follows from the hypotheses & = O(2°/N), & = O(2% /N?),
and direct calculation. O

Applying this proposition with F := TfplNF, G = ngNG, and s =
max (0, s1, s2) + 1, and using the functional calculus and Lemma 5.17, we con-
clude that

A l
|An (T, F, T2 G)-B

l1,l2,m;
(on@an )i Ol

max l —
503 20( ax(2° 781752))]\[ 1||F”ZPI(Z)||G||€PQ(Z)-
From (7.1) we certainly have
9O(max(2¢!,51,52)) Z N~ <¢, (max(l, s1, s9)) 020D —emax(lsy,s2)lp, =py=2
Nel

and thus by (2.7) and (7.6), we see that the tuple

ll ,lQ ,mZ
(PN®PN)MN R

1 ! l
(An(Th F, T2 G)-B (F,G))nel

is acceptable. Thus by the triangle inequality, the acceptability of (7.7) is
equivalent to the acceptability of

l1,l2,m5
(B(¢N®¢ZN)7%N,R(F’ G))Ner-

From (2.6), it suffices to prove the acceptability of the two subtuples

l1,la,m;
(B(;Jj@()azN)mN’R(F? G)>N€H§7 (B (Fﬂ G))NE]I>7

l1,l2,my
(pN®ON)MNR

where
(7.15) I ={Nel:N<2*}
is the set of “small scales,” and

I. ={Nel:N>2"}

is the set of “large scales.” As we shall see, for the small scales one will be able
to tolerate the (doubly) logarithmic losses arising from Rademacher—Menshov
arguments, and for the large scales, one will be able to exploit (7.4) to replace
the integers Z by the adelic integers Ay.
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. .. l1,la,m; .

At this stage the bilinear operator B, "2 . gtillhasa symbol that de-

(PN®PN)MN R

pends on N, although at least the dependence is now confined to the continuous

frequency variables and not the arithmetic ones. To simplify the dependence
further, we observe from (4.17) that we have the functional calculus

I lg,mZ

l1 Ja,me 1 I
(p1®p2)m (f.g)= Z(Tél s nggg)

whenever 1,92 € S(R<_,) and m € S(R%_). From this calculus and the

l1,l2 My

definition (7.9) of my g, we can factor B(@N®¢N)mN7R (F,G) as
1
l1,l2,m; o l1,l2,m5 [ l
(7.16) B (RG) = / BRI BT, G) di

where ¢y, Ont € S(R) are modulated variants of ¢n, oy defined by the
formulae

ent(§) = pn(§)e(NtE),
(7.17) on (€)= PN (E)e(P(NT)E)

and m., € S(R?) is the symbol

My = N<—2uy @ N<_2dy-

1l2m .
7Zl

The advantage of the formulation (7.16) is that the bilinear operator By,
independent of N. This is particularly useful in the small-scale case N e I<, as
it will let us control variational norms of bilinear expressions in terms of linear
quantities via a two-parameter version of the Rademacher—-Menshov inequality.

In the large-scale case N € I, we can express (7.16) in another useful
way. Introduce the adelic model functions Fy € LP1(Agz), Gy € LP2(Az) by
the formulae

(7.18)
Fues)= Y [ ne s (@)FaF(or+ &)e(—(60n) - (@) de
a1€(Q/Z),
and
(7.19)
Galwy) = Y / Mgt (62) F2Gaz + E2)e( (€2, 09) - (2,) dbs
a2€(Q/Z)i,

forz e R,y € Z, or equivalently on the Fourier side

FugFa(€r,00) = Ty )—on N<—2u-1 (&) FzF (a1 + &1),
FarGa(&2, a2) = 1y (,) 02 <—2u-1(§2) F2G(a2 + &2)
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for £1,&2 € R and aj,as € Q/Z. (One can use Lemma 4.20 to verify that
Fj does indeed lie in LP(Agz), and similarly for G4.) One can also interpret
Fj, Gy as the interpolated functions

FA—S_

< ou— 1><(Q/Z)l Hll< 2u— 1F GA—S_

< u— 1X(Q/Z)l2ﬂl2’§_2u_1G‘

In the large-scale case, 1<_su—1 equals 1 on the support of vn¢, Oy,
and m equals 1 on the support of n<_gu-1 ® 7<_gu-1. One can then describe
various combinations of F,G as applications of the sampling operator & to
various combinations of Fj,Gx. More precisely, one observes the identities

(7.20) I, < gu1F = SFy,

(7.21) IT, < 9u1G = SGa,
T}, F=8Tyy o1,
TijtG = STsy 1G4,

Bl1 12,mz(Tl1 F, Tl2 G) = 8B1®m

$N,t PNt

(TAON,t®1FAv T@N,t®1GA)

ly,l9,Z
so that (7.16) can now be written as
1
8/1/2 B(‘PN,t®¢N,t)®mll,12j,(FA’GA) dt.

All functions on Az here have Fourier support in the region

(Re_gu-1 X (Q/Z)1,) X (Re_gu-1 x (Q/Z)s,),

which by Lemma 5.2(ii) is contained in

(Reoumr x (ngZ/Z)) x (Re_gmn (Q;Z/Z».

In this large-scale regime, this is a regime in which Theorem 4.18 applies,
thanks to (7.4). In particular, from Theorem 4.18 (using the normed vector
space V"), we have

ll 712 7m2
(pn®PN)MN R

~ H (/ B1®mz T@N,t@lFA7T¢N7t®1GA) dt)

(B (F, G))netlerz;vr)

Nel Iz (Az; V7))

similarly, from (7.20), (7.21), (7.6), Theorem 4.18, and Lemma 5.17 one has
(7.22) N Falloman S O°DNf @y 1Gallzraz) S O°Dllgllersz)-

In view of the above discussion (and Proposition 5.33), Theorem 5.30 (and
hence Theorem 1.17) now reduces to establishing the following estimates.
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THEOREM 7.23 (Model operator estimates, I). Suppose that at least one
of s1 = —u, S = —u, or p # 2 holds. Then the small-scale model tuple

1
li,la,my 1l l
(7.24) ( /1 B B, (T F. TS, G) dt) Nel
and the large-scale model tuple
1
(7.25) ( /1 /2B1®mZ(T¢N¢®1FAaT¢N,t®1GA)) NeL.

are both acceptable.

It remains to establish Theorem 7.23. One difficulty in this theorem is the
need to obtain some decay in s, so when they are large. Our main tool for do-
ing this will be the following integration by parts identity. For j;,jo = —1,0, +1
with (s1,71), (s2,J2) # (—u,—1), we define the modified bump functions

N (&) = (27 N&G ) on (&) = (27 NE ) e(Nté ) on (1)
and
PNt (E2) = (27P2N) 2 4 (€2) = (272 No)2e(P(N1)Ea) o (&2).

Note that it is necessary to exclude the cases (s1,71), (s2,72) = (—u,—1) to
prevent these functions from developing a singularity at the frequency origin.

LEMMA 7.26 (Integration by parts identity).
(i) If s1 > —u, then we have

1
/ ONt @ QN dt
1/2

2751 t=1 ! P'(Nt)
= 1®¢ — sz 1 QPN At
95 PNt—1 @ PNt 1=1/2 /1 p PNE—-1 @ PNt N1

(ii) If s2 > —u, then we have

1 —ds2 Nd—l t=1
it = 2 o0 e
/1/2 PNt @ PN o PNt ® PN, 1P’(Nt) =12

1 d—1
_ 281—(182 / OGNt X @N,t,fli dt
1

2—d52 /1 - NdP”(Nt) "
i /2 PNt </7N,1t,—171t,,(]\]t)2 .

Note that the quantity P’'(Nt) that appears in some of the denominators
here is non-vanishing thanks to the lower bounds N > C3 and t > 1/2; indeed
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the tuples

P'(Nt) N1 NP"(Nt)
(7.27) (Nd‘1>1va[’ (p'(Nt))N€H7 (P’(Nt)2> Nel

can all be easily verified to have a V" norm of O(1) for all 1/2 < ¢ < 1. This
is the main reason why we work with Ay instead of Ay in most of this paper.

Proof. To prove (i) it suffices to show that
/1 e(§iNt + &P(Nt)) 1=

Nt P(Nt)) dt =
1/2 e(QNE+ & P(NE)) db 2miN§&; t=1/2

1 /
- / €(£1Nt~|—€2P(Nt))P(J§Vt)§2 ot

1/2 1

whenever & # 0 and N > (3, but this follows by writing

d
e(&1Nt) = 2miNE di e(§&1N)
and integrating by parts. Similarly, to prove (ii) it suffices to show that
1 e(& Nt + &P(N))
N P(N
/1/2 (GINt+ &P(N)) di = 2miN& P (Nt) ‘t_1/2
1
&
— e(EyNt + & P(Nt)) ———— dt
/1/2 ENEF&PIND) Bvge,
! P"(Nt)
5 1/2e(§1Nt+§2P(Nt))W dt

Whenever §2 # 0 and N > (3, but this follows by writing e(§&aP(Nt)) =
Wdt (§2P(Nt)) and integrating by parts. O

We will now show how Theorem 7.23 is a consequence of Lemma 7.26 and
the following variant, which works with a fixed choice of £ but does not require
any decay in the s1, so parameters.

THEOREM 7.28 (Model operator estimates, II). Let ji,7j2 € {—1,0,+1}
be such that

(7.29) (51,51), (82, 52) # (—u, —1).
Then for every 1/2 <t <1, one has the small-scale model estimate

ll l27mZ Tl1 lg
PNtj17 " T PNt Nelo

(7.30) (V)

Soy (max(l, sy, 52)) 0200 Ari=r2=2 | B0y ) | Gl o )
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and the large-scale model estimate

H (B1®m2 (TSON,t,jl ®1Fa, T@N,z,jz ®1GA))

<cs (max(l, s1, 82))O(l)QO(pl)—cl]lp1=p2=2HFAHLm (AZ)HGAHL%(AZ).

~

(7.31) NE-llLr(Az;vr)

We assume Theorem 7.28 for now and show how it implies Theorem 7.23.
We give the argument for the large-scale tuple (7.25), as the treatment of the
small-scale tuple (7.24) is completely analogous. From Theorem 7.28 (with
j1 =72 =0), (7.6), (7.22) and Minkowski’s integral inequality, we already ob-
tain the acceptability bound for (7.25) but with the factor 2-¢max(bs1,52)1p; =py=2
replaced by 27 r1=r2=2 This gives the claim unless p; =ps =2 and max(sy, s2)
> [ so, in particular, p = 1. Since the high-high case s1, 59 > —u, p1 = p2 =2
has already been excluded, this only leaves us with the high-low case s; > I,
So = —u, p1 = p2 = 2 and the low-high case sg > [, s1 = —u, p1 =p2 = 2. In
the low-high case, one applies Lemma 7.26(ii), (7.27), (2.8), and Minkowski’s
integral inequality to bound the left-hand side of (7.25) (where the integrand
can be viewed as a linear functional applied to oy ® @n+) by
S 2% _ sup sup | <B1®mz (T<PN,t,h®1FA’ T¢N,t,j2®1GA))N€H> HLl(AZ;VT)-

J1,52=0,411/2<t<1

The acceptability of (7.25) in this case now follows from Theorem 7.28, (7.6)
and (7.22) (noting that the hypothesis (7.29) is verified). In the high-low case
one argues similarly using Lemma 7.26(i) instead of Lemma 7.26(ii).

It remains to establish Theorem 7.28. This will be the purpose of the next
three sections of this paper.

8. The small-scale estimate:
applying the Rademacher—Menshov inequality

In this section we establish (7.30). A key tool in the small-scale case will be
the following two-dimensional version of the Rademacher—Menshov inequality.

LEMMA 8.1 (Two-dimensional Rademacher-Menshov). Let K € Z,, and
for any ki, ke € [K], let ag, k, be a complex number, with the convention that
gy ky = 0 if k1 = 0 or kg = 0. Then for any 1 < r < 0o, one has

||(ak,k)ke[K]||VT Se Z H(AaMleszz)(jhjz)E[K/MﬂX[K/Mﬂ
M1,M2e2NN[K]

oo

where

AaMu'l,szz =AMy j1,Maja = QM (j1—1),Majs — OM; j1,Ma(j2—1) T AM, (j1—1),Ma (jo—1)-

The one-dimensional analogue of this inequality is well known; see, e.g.,
[67, Lemma 2.5, pp. 534].
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Proof. By definition (2.5) of the V" norm, one has

[(ari)rexillve Sr ll(an; by — ak; k1) jeller

for some sequence 1 < k1 < --- < ky < K, with the convention kg = 0.
Let p be the discrete complex measure on [K|]? with masses

p({l1,l2)}) = a1, — @ —10y — Q1 lo—1 + Q1 —1 151

By the telescoping series we may write

gy ey — sy oy = P[P\ k1))

Observe that the L-shaped region [k;j]*\[k;j_1]> can be partitioned into the
union of two rectangles:

[ )*\[kj1]? = [kj] ([R5 1\ k1)) @ (k] \[Kj 1)) x [kja].

We partition these rectangles further into dyadic subrectangles as follows. For
each M € 2V N [K], let Zy; be the collection of all discrete dyadic intervals T
in [K] of length M, thus I = [M]+ (j —1)M = {jM — M +1,...,M} for
some j € [K/M]. Every interval J in [K] can then be written as the union
of disjoint dyadic intervals I € |J Me2V[K] Iw, in such a manner that at most
two intervals are used from each collection Zy;. Indeed, one can take the I to
be the maximal dyadic intervals contained in J: for each scale M, the intervals
in Zps that lie in J are consecutive, and all but the two extreme intervals in
this sequence will fail to be maximal. Taking Cartesian products, we conclude
that the region [k;j]?\[k;—1]? can be written as the union of dyadic rectangles
I x I with I} € Ty, Io € Ty, for some My, My € 2NN [K], in such a way that
each pair (Mj, M) is associated to O(1) rectangles I1 x I. From the triangle
inequality, we thus have

pkP\ ki) S > sup [l X 1)
Ml,MQEQNﬂ[K] 11€IM1,IQGI]WZ:IlXIQC[ij\[k’j_l]z

and hence on taking ¢ norms

| (ark)keiryllve

s >

My, M2€2NN[K]

)

£

sup n(h % 1))
[1€I]ul ,IQGI]uQ:Il XIQC[]{?]‘}Q\[]C]'7112

JEJ]

since the rectangles I; x I associated to a given region [k;]%\[k;_1]? are disjoint,
we conclude that

laesemlve S >0 |0l x B ey, ne,

o
My ,M2e2NN[K]
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IfnL = [Mﬂ + (j1 — 1)M1 and [o = [MQ] + (]2 — 1)M2, then
(I X Ip) = anyjy, Maga = OMy (j1—1),Majo — EMyji, Mo (ja—1) T M,y (jy—1), M (jo—1)
and the claim follows. O

We can combine this with Khintchine’s inequality to conclude

COROLLARY 8.2 (Rademacher—Menshov for bilinear forms). Let K € Z,
and for any k € [K], let fi, € V,gr, € W be elements of some vector spaces
V,W. Let 0 < g < 0o, and let B: V. x W — Li(X) be a bilinear map for some
measure space X. Then

(8.3)
max 2
(B(fer 91)) kel naxovey Sq (log K)™)

‘B( el =fro1) Y elo —gk—l))

ke[K] ke[K]

X sup
€1,€1 €€, €{—1,+1}

La(X)
with the conventions fo = go = 0.

In our applications, the set [K] will index a lacunary set of scales, so the
log K type losses are in fact doubly logarithmic in the scale parameters. This
will allow us to profitably use this corollary for scales as large as 22“. Note in
this corollary that the bilinear operator B is not permitted to depend on k,
but fortunately the Fourier-analytic manipulations of the preceding section
have achieved such an independence of k£ for the bilinear operator appearing
in (7.30).

Proof. We may normalize
(8.4)

=1.
La(X)

sup
5175,1a~~~)5K7€,Ku€{_1ﬁ+1}

‘B( > el = fim)s Y ehlor —ge-1))

ke[K] ke[K]

For each « € X, we apply Lemma 8.1 with ag, 4, = B(f,,gk,)(x) and r = 2
to bound the left-hand side of (8.3) by

)

La(X)

S H > |(B(fatjns G00ja)) (o o) el /v x [ /s | 2
Ml,MQGZNm[K]

where fM1j1 = [ — fMl(jl—l) and ganjy = GMajo — IM;(jo—1)- The last
norm by the triangle or quasi-triangle inequality (3.7) is bounded by

max(2,2 r ~
< (K™D g » H(B(fMljung))(jl,ja)e[K/Ml]x[K/Mz] )

Ml,MQEQNﬁ

Thus it suffices to show for each My, My € 2V N [K] that

q
<

~q -

H (B(fMj1s GMa2ja)) (r o) €[ /My X [K /M) s
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But by two applications of Khintchine’s inequality, one can bound the left-hand
side by the expected value of

Z Z 6j16‘/]'QB(fMlj1’§M2j2)

J1E[K/M] j2€[K/Mb>]

q

)

La(X)

where ¢;,, 6;-2 are independent random Bernoulli signs. But every instance of
this random expression can be factored (after relabeling the signs) in the form
of one of the norms in (8.4), raised to the power ¢, and the claim follows. [

We now apply this estimate to (7.30). We enumerate the elements of I<
in order as N1 < -+ < Ng; we may assume that K > 1 since otherwise there
is nothing to prove. From (7.15) we have K = O(2%). Thus by Lemma 8.2 we
may bound the left-hand side of (7.30) by

11,12,
WO B "1l F, ng*G)ng(Z)
for some cutoffs ., @, of the form

SO* = Z Ek(SONk»tvjl - SONk*livjl)’

(8.5) ke[K]

S Z gk@Nk,t,jz - 95Nk717tvj2)
ke[K]

for some signs €, €, € {—1,+1}, where we adopt the convention pn,¢j =
@Notj» = 0. Note from (5.26) that u®1) <p, 200D 50 the loss of u9(1) will
be acceptable for us. It now suffices to show that

Il
||B 1 sz(Tg*F, TE*G)HKP(Z)

<, (max(l, s1,52)) D2 Mn1=02=2 | Bl 1oy |G | o2 2

~

We now use

LEMMA 8.6 (Single-scale estimate). If F'e(P1(Z), G e (P2(Z) have Fourier
support on My, <_3,, and My, <_34, respectively, then

I s, - L= -
1B, " (E, G leo(z) Scy 27017272 || | o1 (2) | Gl r2 (2

Proof. The strategy is to apply Proposition 7.13 in reverse, so that Theo-
rem 5.12 may be applied. We may normalize || F || (z) = [|G|lp2(z) = 1. From
Proposition 7.13 with N = 2% and s = 0, we see that

l1,l2,my

HA?“(F’ é) - (Fv é)||€P(Z) 503 20(2Pl)—u SCS 2_Cl1p1:p2:27

Thgu Rm*

noting that on the Fourier support of F G the multipliers my and n<_, ®n<_ du
are both equal to 1. Since FzF vanishes on M —1,<—Log N+1,—1 and F1G
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vanishes on the major arcs M<j,_1 <_dLog N+dl,—d, We see from Theorem 5.12
(and (1.6)) that
| Agu(F, G)lev(z) Scp 27 rr=ra=2.
By the triangle inequality, it thus suffices to show that
B (F, G)llw(z) Sy 2077070

li,l2,my
(1—27’712717]1@)7)’1,*

Applying Lemma 4.20(ii) (and Lemma 5.2(iii)) with r; = 272% and ry = 2724,
it suffices to show that
o §i2
oelt a¢P
for all £1,& € R and 0 < j1, jo < 2. By the product rule and definition of m,
it suffices to show that

o Hiz
o€l ¢l
when & = O(2724), & = O(272%) and 0 < ji,j2 < 2. But from (7.9) one has

((1 = 2rgu g )mi) (€1, &) < 2+2di2—1u

(1 — 2igu ) (&1, &) S 29+

1
1= 2ritg (€1, 69) = 2 /1 LR PR ) d

1 r1
= —4mi / / (2U&1+24 P (2"t &o)e(244&1 + P(24) &) dtdt
0 J1/2

so by differentiation under the integral sign and the triangle inequality it suf-
fices to show that

o o
55{1 85{2
uniformly for ¢ € [0,1], ' € [1/2,1]. But this follows from direct calculation.

(In fact, one obtains a slightly stronger bound of O(2U1+%2-Du) when j, =
j2 = 0 and O(201+42)%) when j; + j > 0.) O

(261 + 2P (2"tt)E2)e(2"6) + P(2"t)&p) S 230 F2diz—Du

In view of this lemma, it now suffices to establish the bounds

TS Nleaz)—sea(zy: IT2, oo (z)—ea(z) Scs.q (max(l, 51, 52))°0)

for any 1 < ¢ < oco. By interpolation, it suffices to achieve this when ¢ is an
even integer or the dual of an even integer. Using Theorem 5.7, it suffices to
show that

T 2oy La(rys | T |l a(r) s La(r) SCs,q max(1, s1, s2)°W

for all 1 < g < oo.

By expanding out (8.5), (7.17), and (7.5) (and treating the sy > —u, so=—u
cases separately), we see that ¢, is a shifted Calderén—Zygmund multiplier of
the form treated in Theorem B.1, with A = 2792 \y = 2%2P(Nt)/N?,
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K = O(max(1,s2)), and C' = O(1). (Note that the hypothesis (7.29) is needed
to avoid a divergence at the frequency origin.) The claim for Ty, then follows
from that theorem. The treatment of T, is similar (with sy replaced by s,
P(Nt) replaced by Nt, and d replaced by 1). This concludes the proof of (7.30).

9. The large-scale estimate: exploiting tensor product structure

In this section we establish (7.31). Note from Examples 4.10 and 4.11
that one can factor the bilinear operator Big,, as the tensor product of the
identity and the arithmetic averaging operator A;. Thus on the one hand, we
can write

Bigm, (TSON,t,jl 2188, Ton, 5, ©1Ga)

as
(9.1) /Z(TcpN,t,h@lT(o,y)FA)(T¢N,t,j2®1T(o,P(y))GA) dpz(y),

where we define the translation operators 7, F(z) = F(x — h) for any F €
L%(G) and h € G. On the other hand, if we use F,.: y — F(z,y) to denote the
slice Fi,: Z — C of a function F': Ay — C at a real number T, we can write
the slice

Bl@mz (T‘PN,t,jl ®1FA7 TiﬁN,t,jQ@lGA)-’E

as

(9.2) Ay (Ton, 5 01F8)z, (Ton, ;,01Ga))-

We now establish the easier case (p1,p2) # (2,2), in which we do not need
to obtain a gain of the form 27 we will also not need to lose factors of 200
As such we will not need to exploit any cancellation in the averaging operator
As,
suffices to show that

and we can use the formulation (9.1). By the triangle inequality, it thus

H ((T<PN,t,j1 ®1FA) (TsZ?N,t,jQ ®1éA))N€H> HLP(AZ;VT)

Sy (max(l, s1,52)) "V Fal|or (a5) |Gall e a)

for all Fj € LP'(Az) and G € LP?(Az). There are now no interactions between
the different fibers R x {y}, y € 7 of Az, and so by Holder’s inequality and the
Fubini—Tonelli theorem (or (2.12)), it suffices to prove the continuous bilinear
estimate

I((Toni s, N T g, GIvers Ml o@vry

e, (max(l, 51>32)>O(1)”FHLP1 (R)HGHLPQ(R)
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for any F € LP*(R),G € LP*(R). By (2.8) and Holder’s inequality it suffices
to establish the linear bounds

(9.3) (T, F)ver |l zm vy Sow max(1,s1) W F| oy w)
and
(9.4) (T, GInets | o2 ®ivry So; max(1, s7) OWNG| L2 () -

We just establish the latter estimate, as the former is similar. First sup-
pose that we are in the high-frequency case so > —u. In this case we use (2.7)
to replace the V" norm by an £? norm, thus we now wish to show

(T g5, G et | oo i) Scp max(L, s2) |G| oz ).

But as with the arguments at the end of Section 8, the @y j, form a family
of the type considered in Theorem B.1, with A = 2792 \y = 2952 P(Nt) /N,
K = O(max(1,s2)), and C = O(1). The claim now follows from the shifted
square function estimate proven in that theorem.

Now suppose we are in the low-frequency case ss = —u, which means that
J2 = 0,1 by the hypothesis (7.29). If jo = 1, then @y j, vanishes at the origin
and we can repeat the arguments from the high-frequency case. If jo = 0, then
@Ntj» = PN, Do longer vanishes at the origin, but the difference pn; — @
does, and we can again use the high-frequency arguments to conclude. By the
triangle inequality, it now suffices to show that

1(TenG) et | zr2 @ vy Scs |Gllpe w)-

But this follows from Lépingle’s inequality and a standard square function
argument. (See [50, Th. 1.1], with the square function argument contained in
[50, Lemma 3.2].)

This completes the proof of the (p1,p2) # (2,2) case of (7.31). Now we
turn to the (p1,p2) = (2,2) case, so that p = 1. We begin with a general
variational inequality:

LEMMA 9.5 (Interchanging variational and Lebesgue norms). Let X be a
measure space, and let 1 < R < r < oo. Then for any fi,...,fx € L"(X),
one has

(ke lr vy Ser 1 (Fe)reiry v r(g)or(x)-

Proof. We allow implied constants to depend on r, R. Since

|(f)eeir)lorxvry S e re e vy + 1fallor(xo)s
it suffices to establish the seminorm version
ICfererilor ey Ser 1(f)kemllv e i) orx))

of the inequality.
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We can assume that fi is not almost everywhere equal to fr_; for any
1 < k < K, since otherwise we could concatenate the two indices k,k — 1
together. We normalize
R
||(fk)l~ce[K}||VR([K];U(X)) =1

Then we can define a non-decreasing function a: [K] — [0, 1] by the formula

a(K') = || (fk)kG[K’] H\};R([K’];LT(X))

for any K’ € [K]. From (2.4), we have the Holder type bound
(9.6) 11 = frcallrx) < (alkr) — a(K2))V™

whenever 1 < K9 < K7 < K. In particular, because we assumed f; not equal
almost everywhere to fr_1, we see that a is strictly increasing.

For any « € X, let u, be the absolutely continuous complex measure on
[0, 1] defined by

|E N [a(k — 1), a(k)]| e
Z la(k — 1), a(k)]| (fr(@) = fr1(2)).

pa(E) =
2<k<K:a(k)€E

Then we have
fra (@) = fr, () = pz([a(K2), a(K7)])
whenever 1 < Ky < K7 < K. Also from (9.6) and telescoping series (and the
hypothesis R > 1), we observe the Hélder bound
(9.7) 1t ([s, D £ x) S (8 — )/

forany 0 < s <t < 1.
Using dyadic decomposition as in the proof of Lemma 8.1 (or [67, Lemma
2.5, pp. 534]), we have

Ir@Dkermllve £ D (G = 127, 527™)) jejamy

m=0

or

and hence by the Fubini—Tonelli theorem and the triangle inequality,

Isermallzroern S D0 ||UialG = 127, 527 Dllar o) jegom |

m=0 ¢

Applying (9.7), the right-hand side is
< Z 2m/r2—m/R;
m=0

since R < r, this quantity is O(1), and the claim follows. O

We can apply this lemma to bilinear operators:
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COROLLARY 9.8 (Interchanging variational and Lebesgue norms, II). Let
V,W be normed vector spaces, let K € Zy, and for each k € [K], let fi €
Vigr e W. Let 1 < R<r <00, andlet B: VxW — L"(X) be a bilinear map
to L"™(X) for some measure space X. Then

(B (fxs 96kl Lr(x:vr)
Srr | Bllvxw e o)l (Fe)keir v r gy | (90 ke x lv r ggm) -

Proof. We allow all implied constants to depend on r, R. We may normalize

I Bllvxw—rrx) = [(fe)repr v ey = 196 repmllverrywy = 1.

In particular, the product sequence (fi,gr) € V x W, k € [K] obeys the
variational norm bound

I (fes g6 ke v rryvsowy S 1-

By Lemma 9.5, it suffices to show that

| B(fks 9k)keixillv ey x)y) < 1
On the ball of radius O(1) in V' x W, the (nonlinear) map (f, g) — B(f,g) is

Lipschitz continuous into L"(X) with Lipschitz constant O(1), and the claim
follows from (2.5). O

We apply this lemma to the problem of establishing (7.31) in the p; =
p2 = 2 case. In the next section we establish the following arithmetic variant
of Theorem 5.12:

ATHEOREM 9.9 (Arithmetic bilinear estimate). Let | € N, and let f,g €
L2(Z) obey one of the following hypotheses:
(i) F5f vanishes on (Q/Z)<;
(ii) Fzg vanishes on (Q/Z)<.
Then for any 1 <r < f—fll, one has

||Az(f>g)HLr(z) Scsyr Z_CTZ||f||L2(Z)HQHL2(2)-

(Recall our conventions that ¢, > 0 denotes a constant that can depend on

d,r.)

The key point here is that the exponent r in Theorem 9.9 is allowed to be
slightly larger than 2.

To prove (7.31) for r > 2, we use the slice formulation (9.2). It suffices

by monotonicity of V" norms to work in the range 2 < r < dQTdr From

(7.18) and (7.19), we see that every slice (Fa )z, (Ga)z of Fa, Gy take values in
the finite-dimensional vector spaces LQ(Z)(Q/ Ly 12 (Z)(Q/ Z)iz respectively, and

hence so do T 1®1ﬁ, Ts 2®1C_j for any N. By Theorem 9.9, the operator

PN,t,j PN,t,j

norm of A, : L2(2) WP 5 L2(7) @2 — [7(Z)QZ) is Oy (27%). Applying
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Hélder’s inequality to bound the L'(Az) norm by the L"(Az) norm, followed
Corollary 9.8 for some 2 < R < r, then Cauchy-Schwarz, we conclude’ that

||(AZ(T¢N¢,J-1®1(FA)I’ T@N,t,j2®l(GA)x)>NGH> HLl(R;Ll(Z;VT))
fng 270[”(T90N,t,j1®1(FA)x)NG]I> HLz(R;VR(h;m(Z)))
X ||(T¢N,t,j2®1(GA)w)NEH> ||L2(R;VR(]I>;L2(Z)))7

where we view x as a variable of integration in R. It thus suffices to establish
the bounds

‘|(T¢N,t,j1®1ﬁ)N€H> |’L2(R;VR(H>;L2(Z))) SC’3 max(l, 81)0(1) “ﬁ"LQ(R;LQ(Z))
and

0(1)‘

H (T¢N,t,j2®1é)N€H> ||L2(R;VR(]I>;L2(Z))) 503 maX(L 32) |é”L2(R;L2(Z))

for any vector-valued functions F,G € L2(R; L2(Z)). But these are simply
vector-valued versions of (9.3) and (9.4), and they are proven in exactly the
same fashion (since all of the tools used in the proof extend to the vector-valued
setting); in particular, the vector-valued version of Lépingle’s inequality was
established in [69, Th. 3.1, pp. 810], and all linear L estimates extend to
the vector-valued setting by the Marcinkiewicz—Zygmund inequality. One may
first wish to approximate LQ(Z) by a finite dimensional Hilbert space to avoid
technicalities. This will conclude the proof of (7.25) (and thus Theorem 1.17),
once we establish Theorem 9.9. This is the purpose of the next section.

10. Arithmetic bilinear estimates

We now prove Theorem 9.9. It may be worth mentioning that the adelic
viewpoint is not strictly necessary here and one could replace the profinite in-
tegers Z here with Z /QZ. But then one needs to check that none of the bounds
lose any factor of @ (or even log @) as this would be fatal to the argument.
From this point of view, the adelic formalism is cleaner and automatically han-
dles uniformity in the () parameter. We begin with the r = 1 case, which is a
limiting case of Theorem 5.12 in which the continuous aspect of that theorem
degenerates completely, leaving only the arithmetic aspect:

ProPOSITION 10.1. Theorem 9.9 holds when r = 1.

9Strictly speaking, our definitions and arguments are not justified here because the vector
spaces L2 (Z), Lt (Z, V") are infinite-dimensional. However, one can approximate 7 by finite
cyclic groups Z/QZ to make these spaces finite-dimensional and then take limits to avoid
this difficulty; indeed, given the definitions of Fa,Ga, we can just work with a single large
but fixed (). Alternatively one can extend many of the previous vector-valued definitions to
separable Banach spaces. We leave the details to the interested reader.
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We remark that when ¢ is a prime this result is essentially contained in
[15] (when P(n) =n?) and [72] (in the general case); see [27] for the strongest
current values for the constant c.

Proof. For the sake of exposition, we assume that hypothesis (i) of The-
orem 9.9 holds; for the case when hypothesis (ii) is assumed, one proceeds
similarly. By a limiting argument we may assume that the functions F, G on Z
factor through a finite quotient Z/QZ, in which case the task is to show that

1Az,0z(f, Dllrr /02y Sos 27N Fllrzzion 9l 2@y0z)

assuming that Fz,oz f vanishes on (Q/Z)<; N (éZ/Z)

Let N be a large natural number (which we will eventually send to infin-
ity), and let R be an extremely large real number (which we will also send to
infinity, before sending N to infinity). In particular, one should think of N, R
as being large compared to [, ). We define the functions fgr, gr € S(Z) by the
formulae

1
fr(n) = ﬁw(n/R)f(n mod @),

gr(n) = jﬁwm/mg(n mod Q),

where 1 € S(R) is a real even function with [[1[| ) = 1 whose Fourier
transform is supported on [—1,1]. Clearly fr € L?*(Z) has Fourier transform
supported on the set m([-1/R,1/R] x {a € éZ/Z: f(a) # 0}). From the
hypothesis (i), we see that if N, R is sufficiently large (depending on @, 1), this
union of arcs is disjoint from all of the arcs in M<; < 10 N4 (because the
frequencies a with f (a) # 0 have a non-zero separation from the frequencies
(Q/Z)<;). By Theorem 5.12, we conclude for N, R sufficiently large that
IANZ(fr: 9r) 11 (z) Scu (27 + Log N™)|| frllz2z)llgrll22z)-

From the Riemann integrability of |+|?, it is easy to see that
dim | frllz2z) = 1122z 0z)
and similarly
Jimlgrllzzz) = l9llz2z/qz);
hence
lim sup lim sup HAN,Z(fRng)HLl(Z) S 2_CleHL2(Z/QZ)HgHLQ(Z/QZ).

N—oo R—oo

For any IV, R, the Schwartz function nature of 1 readily gives the asymptotic

Anz(fr,9R)(n) = %W(n/R)‘QAZ/QZ(frg)(n mod Q) + On,q (R *(n/R)~"7).
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Thus by the Riemann integrability of ||?, we obtain
limsup || Anz(fr, 9rR)|I 21 (z) = 1 Az/Qz(f; 9)|l L1 (z/Qz)-
R—o0
Taking limits as N — oo, we then have

limsup limsup [|Anz(fr, 9r) 1 (z) = 1Az/z(f )l L1 (z/02)

N—oo R—oo

and the claim follows. ([l

By interpolation with Proposition 10.1, we see that to establish the re-
maining cases of Theorem 9.9, it will suffice to establish the bound
(10.2) HAZ”L?(Z)xL?(Z)—m(Z) Sq 1

forall 1 < g < %. Approximating 7 by the product of finitely many of the
p-adic groups Z,, it suffices by limiting arguments to show that

1AL s 2o 22T, e Z0) % 22T e Zo) LT 20) Sa 1
whenever S is a finite set of primes. From Examples 4.10 and 4.11, we see that
the bilinear operator Anpes z,, 1s the tensor product of the individual operators
Az, so by (2.12) we may factor the operator norm as

AT s 2o L2011 e Zp) < L2(TT e Zp) > L9 (T, 5 Z0)

=[] 142, llz2@,) % 122,) = L9(2,)-
peES

Thus it will suffice to establish the bound

(10.3) 1Az, | L2(z,)x L2 (Z) > La(z,) Sa 1
for all primes p, together with the improvement

(10.4) 1Az, | L2(z,)x £2(2,)—La(z,) < 1

whenever p is sufficiently large depending on gq.
We begin with (10.3). By bilinear interpolation, it suffices to establish the
bounds

(10.5) 1Az, |21 (z,)x Lo (z,)— L= (z,) < 1
and
(10.6) 1Az, | Lo (2,)x L1 (Z) > L (2,) Ss 1

forall 1 < s < %. The estimate (10.5) is immediate from the pointwise
inequality
1Az, (f,9)| < Az, ([FDllgll Lo z,)-

To prove (10.6), we similarly use the pointwise inequality

|4z, (£,9)] < Az (gDl Fl2=z,)-
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so it suffices to show the linear LP improving bound
P(n)
HAZ}fn 21z —>Ls(z,) Ss 1

d . oy .
_— -1 9
for 1 < s < 7%. By a limiting argument, it suffices to show that

P(n
HAZ;pJ)'ZHLl(Z/ij)—)LS(Z/ij) Ss 1

for all 7 € N. By Minkowski’s inequality, it suffices to show that the counting
function h: Z/p’Z — N defined by

h(m) == #{n € Z/P’Z : P(n) =m}

has an L*(Z/p’Z) norm of O4(1). But this follows from Corollary C.2 in the
appendix. This concludes the proof of (10.3). We remark that this argument
in fact yields a weak-type endpoint for (10.3), but it is not clear to us how to
use this to obtain a corresponding weak-type endpoint for (10.2) as the weak
LP spaces do not interact well with tensor products. In any event, for our
application, any exponent ¢ greater than 2 would suffice, so endpoint estimates
are not needed.

Now we prove (10.4). By Holder’s inequality, we may take 2 < ¢ < dQTdr
We let [ be a large number (depending on ¢, P) to be chosen later, and then
assume that p € P is a prime that is sufficiently large depending on I, g, P.
From Proposition 10.1, we then see that

1Az, (f, 901212,y Ses 27N f 2z, l9oll 2z,

whenever f, gy € L?(Z,) with gy of mean zero, since for p large enough, the
only element of Z;, of height at most 2! is the origin.

Interpolating this bound with (10.3) (for a slightly larger choice of q), we
conclude that

(10.7) 14z, (£, 90) | az,) Sa.cs 27 f 2, l0ll 2z,
(Recall our conventions that ¢, > 0 denotes a constant that can depend on d, ¢
and varies from line to line.)

Let f,g € L?(Z,) with 1fllz2z,) = llgllz2(z,) = 1. It will suffice to show
that

Enez, | Az, (f,9)(n)|? < 1.
Since Az, (f,9)] < Az,(f], |g]), we may assume without loss of generality that
f, g are non-negative. We split f = a + fy and g = b+ go, where
a:=Eucz,f(n) and b:=Eyez,9(n)

are the means of f, g, and fy := f—a, go := g—0b are the mean zero components.

If we define the “energies”

Epi=|folliaz,  and By = loolia,),
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then from Pythagoras’ theorem we have 0 < Ey, B, <1 and
(10.8) la| = (1—Ep)Y? and  |b] = (1 - E,)'2
A short calculation shows that

Az, (a,b) =ab and Az, (fo,b) =0
and hence

AZp(f? g) =ab+ AZp(f7 gO)

Since the function = +— |z|? is continuously twice differentiable, Taylor expan-
sion yields the pointwise bound

| Az, (f,9)|" = |ab|” + qlabl"™" Az, (f. go) + Oq(|Az, (£, 90)|* + |4z, (f. 90)|7).
Since Az, (a, go) has mean zero, we have
Enez, Az, (f,90)(n) = Enez, Az, (fo, 90)(n)
< [|Az,(fo, 90)ll L1 (z,)

and thus (since |al,[b] <1 and g > 2)
1Az, (£ 9) 0z, < labl? + Oyl Az, (o, 00) 120
+ 1Az, (F90) sy + 14z, (F 90) s )

From (10.8) and (10.7), the L? boundedness of £, fo, go, and Hélder’s inequality,
we conclude

142, (£,9)|%(z,) < (1= Bp)(1 = Ey) + Og.0 (2~ (B} *EY/? + Ey)).

Since EfEq < min(Ey, Ey) < Ef;rEg, one has

E E
(1-Bp)(1-Ey) <1- =122,
since E}/ 2E;/ 2 = O(Ef + Ey), the claim follows by choosing [ large enough
depending on ¢, C3. This proves (10.6), and thus Theorem 9.9.

The proof of Theorem 1.17 is (finally!) complete.

11. Breaking duality

In this section we extend Theorem 1.17 to certain cases in which p < 1.
Throughout this section P € Z[n] is a polynomial of degree d > 2.

We begin with the following expansion of the range of applicability of (1.6)
for these averages.
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LEMMA 11.1 (Single scale estimate below ¢1). Let 1 < p1,ps < 0o obey
the constraints

(11.2) i—i-z, 3—i—i<2
P11 P2 b1 P2
when d = 2, or
d2+d—1+d2+d+1 d2+d+1+d2+d—1
p1 p2 p1 P2
when d > 3. Then for any measure-preserving system (X, u,T), one has

<d?+d+1

n,P(n
MN”mmmmsmwwmmmmmmm

forall N > 1, f € LP(X), g € LP*>(X), where 1% =5+ —; stmilarly with
A%P(n) replaced by AI;\}P(H).

We remark that if [41, Conj. 1.5] holds, the condition should be able to

be relaxed to
d—1 d d d-1
+—, —+
b1 b2 b1 b2
bringing it in line with (11.2).

< d,

Proof. From the pointwise bound |Ay; P (f,9) < AHP (1£1,1g]), it suf-

fices to establish the claim for A’ N PO We may assume that p < 1 since the
claim follows from (1.6) otherwise. By the Calderén transference principle,
it suffices to establish this bound for the case of the integer shift (Z, uz,1%).
Noting the pointwise bound

n,P(n
| A )| < 3 11(@) AN (Wl £, 14lg)) (@),
IeT

where I ranges over a collection Z of intervals of length Op(N%) and overlap
Op(1), it suffices to establish the claimed bound when f, g are supported in a
single one of these intervals I, that is to say,

n,P(n
1A (F, D)ler ) Sorpo 1 leos ()19l

As A ( f.g) is supported in an interval of length Op(N9), we have from
Holder s inequality and the hypothesis p < 1 that

nP - nP
1A% O (f, w2y Sprporr NGVANE (£, 9) )

From the triangle inequality and the Fubini—Tonelli theorem, one has
n,P(n —n
A" (£ 9l < Y 1F1@) AT g ()
TEZ
(cf. (6.1)), so by Holder’s inequality, it suffices to establish the bound

11
P(n)— (Gr—o-
ATl g Sprpep N7 7 [gllen 2
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for any g € ¢P*(Z). But this follows from the results of [41] (cf. Proposi-
tion 6.21). O

As remarked in the proof of Proposition 6.21, one expects the range of
p1, P2 to be improvable here, at least in the case d > 3. We remark that the
same argument allows one to break duality in (1.6) (that is to say, obtain (1.6)

for at least some ranges of exponents pi,...,pr with p% + 4 é > 1) for
any average AJZ\D,I(H)””P’“(H) (or fl? (n)""’P’“(n)) in which all the P; have degree at

most d, with at least one of the differences P; — P; having degree exactly d, for
some d > 2; we leave the details to the interested reader.
Now we can obtain norm convergence results with an explicit range of

b1, p2-

COROLLARY 11.3 (Breaking duality for the mean ergodic theorem). Let
(X, 1, T) be a measure-preserving system with X of finite measure, and let
P(n) € Z[n] have degree d > 2. If p1, pa2,p obey the hypotheses in Lemma 11.1,
then the averages A?\}P(n)(f, g) converge in LP(X) norm for all f € LP*(X),
g € LP2(X).

Proof. By Theorem 1.17(i) and Holder’s inequality (using the finite mea-
sure hypothesis), the claim already holds for (say) f,g € L>(X). The claim
now follows from Lemma 11.1 and the usual limiting argument (which is still
valid in the quasinormed space LP(X)). O

For the remaining components of Theorem 1.17, we can similarly break
duality, albeit with a much poorer range of exponents:

PROPOSITION 11.4 (Breaking duality for all the ergodic theorems). Let

P(n) € Z[n] have degree d > 2, and let € > 0. If (p%, p%)) s in a sufficiently
11

small neighborhood of (5, 5) (where the neighborhood depends only on d,e), and
% = p% + p%, then the conclusions (1)—(iv) of Theorem 1.17 hold for this choice
of p1,p2,p, where in (iv) we replace the requirement r > 2 with r > 2 + ¢.

It may be possible to refine the range of pi,ps here to match that in
Corollary 11.3 or Lemma 11.1 by a more careful argument, but we will not
attempt to do so here.

Proof (sketch). We repeat the proof of Theorem 1.17. By the arguments
in Section 3, it suffices to show that Theorem 3.9 holds for the indicated choice
of p1, p2, p. We then repeat the reductions in Section 5 that were used to reduce
Theorem 3.9 to Theorem 5.30. The only differences are that (1.6) is replaced
by the more general Lemma 11.1 (which, in particular, is applicable for (p%’ piz)
%, %)) and uses the quasi-triangle inequality in place of

the triangle inequality when p < 1 (adjusting the exponent 10 appearing in the

sufficiently close to (
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argument if necessary). It then suffices to establish Theorem (5.30) for (p1 plZ)

in a neighborhood of (%, %) In fact, it suffice to establish the cruder estimate

(AN (Fn, Gn))netller(zemy Sci 200052 £l s )| gl ove (2

for ( pl , pl ) in a neighbourhood of (3, 3), since the claim then follows by inter-
polation with the p; = po = 2 case of Theorem 5.30 and reducing the size of
the neighborhood in an e-dependent fashion. (Here we use the interpolation
theory!'" of variational norms, as well as the equivalence V> = .)

The contribution of the small scales I< can now be crudely handled by
Lemma 11.1 and the quasi-triangle inequality (3.7) (since we are now willing
to concede factors of 20(1)). Hence we may work entirely with large scales I~.
It is not difficult to verify that Proposition 7.13 extends to the non-Banach
regime p < 1 (basically because Lemma 4.20 does, and because one can freely
lose powers of ¢ in that proposition). Applying the arguments in Section 7
with suitable changes, we reduce to showing that the ¢P(Z; ¢>°) norm of (7.25)

is bounded by

503 20(max (1,51,82)

for (pi pi) in a neighborhood of (3, 3).
In the non-Banach regime we are no longer able to remove the integration
in t; instead we crudely replace it by a supremum norm. In lieu of Theo-

rem 7.28, it will now suffice to show that

f Newr @) 19l ev2 2

20(max(l 81,

1H | Lo agevry Scs 52D || Fa || 1o (ag) |Gl o2 ()

where H is the maximal operator

H:= sup [Bigm,(Toy,e1Fa, Toy,01Ga)l.
te[1/2,1]

(Here we implicitly use the fact that Theorem 4.18 continues to hold in the
range p < 1.) By a variant of (9.2), each slice H,, of H at some x € R is given
by

Hy = sup [Ay((Toy,01Fn)z, Toy,01Ga)z)l-
te[1/2,1]

We crudely bound
Ty o1 Fa Scy 27O My Fy,

Tsx,21Ga Scy 270520y Gy,

where My, denotes the Hardy-Littlewood maximal operator in the R variable,
so that
H, Sy 200maxbo02)) Ao (Mpg,Fa) o, (MuLGA)2)-

10Gee, for instance, [69] for an overview of this interpolation theory.
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From the Hardy—Littlewood inequality and the Fubini—Tonelli theorem, it now
suffices to establish the estimate

A7 (F, G rag) S IE o1 (ag) |Gl ez (ay)

for any F' € LP'(Ay), G € LP?>(Az). When p > 1, this follows from Holder’s
inequality and the triangle inequality. For p < 1, we can interpolate the p > 1
estimate with (10.2) and conclude that

A7 (F, G L1 ag) S IE e an) 1Gll 2r2 (ay)

for all (pil, p%) sufficiently close to (3, 3
inequality. ([

). The claim now follows from Hélder’s

12. Unboundedness of quadratic variation

In this section we show that the quadratic variation of polynomial averages
is unbounded in any Lebesgue space norm. The counterexample already applies
in the linear setting:

PROPOSITION 12.1 (Unboundedness of V). Let P(n) € Z[n] be a non-
constant polynomial, and let 0 < p < co. Let I C Zy be an infinite set. Then
for every C' > 0, there exists a measure-preserving system (X, u,T) of total
measure 1 and f € L>(X) with || f||p(x) < 1 such that

IARR () wetl e > C.

We remark that the case p = 2 of this proposition (with f controlled in
L? rather than L°°) was established by the first author in [54]. (The argument
there is given for P(n) = n?, but extends easily to more general polynomials.)
This result relied on a previous result of Lewko and Lewko [59], who in turn
invoked a result of Jones and Wang [51]. It turns out that by appealing to the
latter results directly, we can handle all values of p, answering [54, Conj. 1] in
the affirmative.

Proof. Suppose for contradiction that this were not the case. Then we
would have the variational inequality

(12.2) AN (D) vetll ez < ClA e

for every measure-preserving system (X, u,T) and every f € L*°(X).

We apply this inequality to the following multidimensional system in which
the different components of the shift have radically different mixing times (so
that the averages Aﬁg? behave like martingale expectation operators). Set
X = TX for some K € Z, with Haar probability measure p, and let f: X — C
be a smooth function. Fix a sequence aq, ao,...,ax of real numbers that are

linearly independent over Q; e.g., one could take a; = logp; where p; is the
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ith prime. Let N < --- < Nk be distinct elements of I, and consider the shift
map

L aq aK
T(l’l,...,:ﬁK) = (ml_‘_]\f{i—ﬂ"”’mK—i_]\];l{H)’

where d is the degree of P. Then for any k € [K], we have

n a1 P(n agP(n
Agiyj)rKf(xlw'wa) :EnE[Nk]f (Il +]1Vd4(,1)77xK+][iﬁd+(l))
1 K

Let € > 0. If we assume for each k € [K]| that Ny is sufficiently large depending
on e, Ny,...,Ng_1,d, P, f, then we have

P P
f(x1+wa---,$K+aK (n)>
1

d+1
NK

a1 P(n) ai_1P(n)
:f(l’l—‘-]\qi_‘_l,...,l'k_l—F]\]ﬁ,xk,...,ajK +O(€)
for all n € [Ng] and (z1,...,2x) € X, and thus
P
AN](:)Kf($1""7xK)
a1 P(n ap_1P(n
= EnE[Nk]f ($1 + lTj,l)y ey T—1 + %a Lhoyoo o 7£UK) + O(E)

Ny N5

Because ajy,...,a_1 are linearly independent, a standard application of the

Weyl equidistribution theorem shows that the sequence

a1P(n) ai—1P(n)
(Nld'H mod 1,...,W mod 1

k-1

is equidistributed over the torus T*~1. Thus, if N, is chosen large enough, we
have

P(n
AV F (@) = B f(2) + O(e)
for all k € [K] and = € X, where E f is the conditional expectation

Exf(x1,...,2K5) = - FWiy e Y1, Ty - T ) dyp - . dYg—1.
Th—

Taking variations, we conclude that

P(n
(AN = ExDkeprlocrve) Sk e

which from (12.2) and the triangle inequality (or quasi—triangle inequality
(3.7)) gives

1(Exfreirllzerrvzy Sop 1l e rxy + Ok ().
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Sending € — 0 (noting that the left-hand side does not depend on e-dependent
quantities such as Ni,..., Ng), we conclude that

| (Ex frerryll ey Sop 1l peerxy

for any smooth f € L>°(TX). Taking limits, we see that we can drop the
hypothesis that f is smooth.
We now define a map 7: T — [0,1) by the formula

2
m(xy mod 1,...,2x mod 1) == Z 21&(—:4{1
ke[K]
for x1,...,xx € [0,1). It is not difficult to see that 7 pushes forward Haar

measure on TX to Lebesgue measure on [0,1). Furthermore, if f € L°([0,1)),
then

Ep(for) = (Exf) o
almost everywhere on TX, where Ej, are the martingale projections

o /2"
By f(z) = 2" /( f(y) dy

j=1)/2*

whenever j € [2¥] and = € [(j — 1)/2%,7/2%). From this we conclude that

I Exfreplleqonvey Sop 1o

for all K € N and f € L*([0,1)). Taking K — oo and using monotone
convergence, we conclude that

1B renllzoo.1):v2) Sep I1Flzse(o,1)-
But this contradicts [51, Prop. 8.1]. O

Remark 12.3. By considering a suitable product system, one can then
construct a single measure-preserving system (X, uu, T') of total measure 1 such
that the vector-valued operator f — (Ag(n)( f))ner is unbounded from L?(X)
to LP(X;V?). Tt is likely that one can sharpen the construction further to find
a single f € L?(X) for which ||(A§(n)(f))Ne]1||V2 = +oo almost everywhere,
but we will not do so here.

By setting all but one function equal to the constant function 1, and using
the monotonicity of variational norms and LP norms, we obtain

COROLLARY 12.4 (Failure of variational estimate for r < 2). Let P, ..., Py
€ Z[n] be polynomials, not all constant, and let 0 < p1,...,pg,p < 00 and
0 <r <2 Letl CZy be an infinite set. Then there does not exist any
constant C > 0 for which one has the estimate

AR P (f i) verlloery < Cllflle oo - I ell i )
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for all measure-preserving systems X = (X, u,T) of total mass one, and all
fie LP(X),..., fr € LP*(X).

Applying Proposition 3.2 in the contrapositive, we see that we similarly
obtain a counterexample for the integer shift system in the Hélder exponent
case p% +- ﬁ = %, and we can replace Ay by Ay in the Banach exponent
case pi,...,pr > 1.

Appendix A. Ionescu—Wainger theory

In this appendix we review some number-theoretic and Fourier-analytic
constructions of Ionescu and Wainger [47] that allow one to apply Fourier
projections to “major arcs” with good multiplier estimates. See also [65],
[68] for further development of the Ionescu—Wainger theory, and see [76] for
a recent discussion of the role of superorthogonality in that theory. We will
loosely follow the presentation in [68]. A new notational innovation is the
introduction of the notion of the height h(«a) of a profinite frequency a € Q/Z.

Throughout this appendix we fix a small quantity p > 0. (In the main
paper it is set by the formula (5.1).) Let Cg be a sufficiently large quantity
depending on p. If [ < Cg, we define

Py = [2'].
For | > Cg, we define P differently. We first define the natural number
D =D,=2/p] +1,
and for any natural number [ € N, we set
No=N" =272 +1 and Qo =Q = (No)P.
Then for [ > Cg, we define the set
P = {q =Quw : Q|Qo and w € W, U {1}},

where

Wy = U U {p"--pFip1,. ..ok € (Nél),Ql] NP are distinct }.
ke[D] (v1,...,yx)€[D]*

In other words, W< is the set of all products of prime factors from (N(gl)7 2NP
of length at most D, with exponents between 1 and D.
We observe that (for Cg large enough) one has

(A1) 2 ¢ Py

for all [. This is trivial for [ < C’S. Now suppose that [ > C’g and ¢ € [24].
Observe that there are at most D primes larger than Ny that can divide g,
and each such prime can divide ¢ at most D times, so the product of all these
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primes (with multiplicity) lies in W<; U {1}. By the fundamental theorem of
arithmetic, the claim will now follow if one can show that p/|Qo whenever

p < Ny and p/|g. Since j < %ggg < loép (recall our convention that log is
to base 2), and p divides Ny! at least L%J times, it suffices to establish the
inequality
L . p L&J _
log p p
Since D > % > bg#No’ it suffices to show that
log N, N,
°0 <(1+¢) LJJ
log p p
for 2 < p < Ny, where ¢, is the positive quantity e, = % — 1. If we set n =
{%J, then n € [Np/2] and l‘l)fg]\;o < g Néo_glé\éo(n +1)> S0 after some rearranging
we reduce to showing that
1
log(n +1) < <1—>lo N
g(n+1) < v o,)n) el

for all n € [Np/2]. But this can be easily checked if Cg (and hence Np)
is sufficiently large depending on p. (One can, for instance, check the cases
1<n< Né/Q and Né/Q < n < Ny/2 separately.)

We now see that the P<; are non-decreasing in [ with UleN Pq=7,. We
can therefore define the Ionescu—Wainger height h(a) = h,(«) of an arithmetic
frequency ¢ mod 1, with ¢ € Z4 and a € [q]*, by the formula

h (Z mod 1> =inf{2': 1 € N,q € Pg}.

Now we prove Lemma 5.2. The claim (i) is immediate from (A.1), with
the final claim concerning %Z /Z following from direct inspection of definitions.
For the first part of (ii), we observe that

(A.2) Q2= | L2/
qeP<;

so it suffices to show that ¢ <, 22" for all qg € P<. Forl > Cg, we have from
definition that

q S QO(2l)D2 S N0DN02D21 Sp 2p—12pl/2+p_gl
giving the claim; in fact, we obtain the slightly sharper bound
(A3> q Sp 2Op(2pl/2)'

For the second claim, we need to show that

(A.4) Q< =lem(geZy:qe Pq) S, 20(2")
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The claim is trivial for [ < C’g. For [ > C’g, we have

lem(g€Zy:qePy)=Q0 ] "
pe(N{V 21nP

From Mertens’ theorem we have

[T »ps2o®
pe(N" 2P

and
Qo < NP < 920,(2")

giving the claim. Claim (iii) follows from (A.2) and (A.3). This proves
Lemma 5.2.

To establish Theorem 5.7, we observe from Lemma 5.2(ii) and (A.3) that
the elements of (Q/Z)<; are separated from each other by 2, 2-0,(2"/%)
the non-aliasing claim. The claim (5.9) follows'! from [68, Th. 2.1] (specialized
to the one-dimensional case); various special cases of this theorem were previ-
ously established in [47]; see also Remark 5.10(i). Note that on the right-hand

side one can use the scalar norm rather than the vector-valued norm thanks to

, giving

the Marcinkiewicz—Zygmund inequality (or Khintchine’s inequality). Finally,
the claim for the multipliers (5.5) follows from (5.9) and the triangle inequality.

Now we prove Lemma 5.17. The Fourier support properties are clear from
inspection and the disjointness of the individual major arcs. The contraction
property on ¢2 follows from Plancherel’s theorem because the symbol Pr<y is
bounded pointwise by 1. To obtain the bound (5.18), by interpolation we may
assume that ¢ is either an even integer or the dual of an even integer. Then it
suffices from Theorem 5.7 to establish the bound

(A.5) I Ty llLa®)—ram) Sq 1-
But this follows from Lemma 4.20 (with r = 2%).
Finally we establish (5.19). It suffices to establish the bound
M <t <k fllea({nezedistinnys2m—ryy v 27| flleacry

for any m € Z,. By interpolation we may assume ¢ is either an even integer
or the dual of an even integer. By adjusting constants in the definition (5.8)
of good major arcs if necessary, we may assume that

k< —2v,

where

vi=[C,2"].

"The factor (I) in this theorem was recently removed in [80].
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We split

1 2 3
ner =)+ 02+ 0,

where 77(;,3, 772,2, ng € S(R) are the functions

N< = FR(n<m k-FR 77<lc)

S = Fal(l = Nem—i) F k)<,
1S = Fa((l = <m—1)Fz i) (1 — n<—v),
—]:R(ﬁ<m k]:R <) (1 — n<y).

We can then decompose

H<l <kf Tn<kf T (1)f+T f+T (S)f

(1)

Note that the inverse Fourier transform of 1 is supported in [—2m—k gm—k]

and hence Ti(ll)f vanishes on the region {n € Z : dist(n, I) > 2™ *}. For 17(;,2,
<k

we use Theorem 5.7 (and the fact that (k, —v) has good major arcs), (A.5),

Young’s inequality, and a rescaling to bound

T (2)f||eq @) Sq (DIT (Z)HL‘J(]R)—>L‘1 ®) I flea(ry

)
T r (=nem) P nem Is@—Lo@ | Fllean)
DI = n<m—1) Fg n<rll @l flleacry

¢ MNFR 0l 1 wyfogm-1,2m-1)) | flleacny

Nq <
Sq
Sa
Hence the contribution of this term is acceptable by the rapid decrease of
Fr 177.

Finally, for 77(<3]3, we use Lemma 4.20(i) (with » = 2¥) and Lemma 5.2(iii)
to bound -

dJ
o)

3%

N<k

<. 900 “u / ok(1-)
‘ a(z) ~C1,q ||f||zvz(1) 0§j22 e

Direct calculation using the rapid decay of Frn shows that

/ k(1)
R

and hence the contribution of this term is also acceptable (taking C, large

@ 3)
dgi e <k

(«s)' dg Sag M) < 9= Mmg=MC2!,

enough). This concludes the proof of Lemma 5.17.



POINTWISE ERGODIC THEOREMS FOR BILINEAR POLYNOMIAL AVERAGES 1097

Appendix B. Shifted Calderéon—Zygmund theory

In this appendix we review some standard shifted Calderén—Zygmund
estimates, of the sort that appear for instance in [63, Lemma 4.8, pp. 346]. For
our applications, we will need a vector-valued version of these estimates.

THEOREM B.1 (Shifted Calderén—Zygmund estimates). Let D be a finite
A-lacunary set for some A > 1, and let A >0, C >0,d>1, and K > 1. For
each N € D, let o € S(R) be a function of the form

PN (€) = Y(ANDE)e(ANAN)
for some Ay € [-2K 2K], where ¢p € S(R) wanishes at the origin and is
supported on [—C, C] for some C > 0, obeying the derivative estimates
dJ
i
for all 3 = 0,1,2 and £ € R. Then for any 1 < p < oo and any separable
Hilbert space (H,|| - ||i), one has

w@\ <c

1Ty ep enveon Lo @) Lo ;) ScAdp K
for any complex numbers e, N € D with |ey| < 1; in particular, by Khint-
chine’s inequality,

(Ton ) Nebll Lo (®y ) — Lo (R:2 (i) SCAdp K-

Proof (sketch). Let ¢ := Y ycpenen. From the hypotheses on ¢, one
has the bound

[W(&)] Sco €l g<ces

and hence from the triangle inequality, one has ||¢[|z®r) Sca 1. The p = 2
case of the theorem then follows from Plancherel’s theorem. By duality it then
suffices to establish the 1 < p < 2 case, and by Marcinkiewicz interpolation, it
suffices to prove the weak-type (1,1) bound

K
Hz e R: | Typf(x)la > a}| Scad EHf”Ll(]R;H)

for f € LY(R; H) and a > 0. We perform a vector-valued Calderén-Zygmund
decomposition f = g + > ;cpbr, where HgH%Q(R;H) S Il wsmye, I ranges
over a collection of dyadic intervals D with

1
> | Sea o A FATCOOF
=)

and by € L'(R; H) is supported on I with mean zero and
(B.2) 1brll L1 (rsmry < 11
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By the previous inequality it suffices to prove

c K
{me (U 1001)"+ | Ty f () | >a} Soad —IIf o e,

1€D

where al is the interval centered at I of a > 0 times the length. By the triangle
inequality and Markov’s inequality, it thus suffices to show that

(B.3) [Tl do Soa K
(1001)e
for each I € D. We may expand
—y— ANAN?
Tybr(x ZGN/ (ANY) l]:R ( yAN;]lv )bI(y) dy.
NeD

We may assume that I € D is centered at the origin, and exploiting the fact
that b; has mean zero, we may dominate the left-hand side of (B.3) by

[ flrs (2
_ A ANd
—%W(ﬁ ‘|b1 Wz dydz.

So by (B.2) it suffices to show that

1 . ( —ANANd—y> . (x—)\NANd)
Z/ CANdJT ¥ ANd Fe ¥ ANd
Nep / (1001)

for all y € 1.
Fix y,I. We perform a partition

dx Sc’)\ K

D = Diow U Dedium U H])higha

where Dy, consists of those spatial scales N € D that are “low frequency” (or
“coarse scale”) in the sense that |I| < AN ¢ Dmedium consists of those spatial
scales N € D that are “medium frequency” (or “medium scale”) in the sense
that Ay'|T] < AN < |I|, and Dygp consists of those spatial scales N € D that
are “high frequency” (or “fine scale”) in the sense that AN? < )\]_\,1\[ |.

The expression

4 (T = ANANT —y 4 (T —ANAN?
x ‘Z’( ANd ~R YT AN
can be bounded by Oc¢({+%z)?) in the high-frequency case N € Dypigy from

the triangle inequality and the hypotheses y € I, x € (1001)¢, by Oc({4xa —
An)~2) in the medium-frequency case N € Dyedium from the triangle inequality

alone, and by OC(%<ﬁ — An)72) in the low-frequency case using the
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mean-value theorem. The claim then follows from direct computation and the
hypothesis [Ay| < 25. O

Appendix C. Concentration estimates on polynomials

In this appendix we work in a p-adic field Q, = J,,cx pIZ, for p € P,
although much of the discussion here would also extend with minor changes to
the real numbers R or (after adjusting some exponents by factors of two) the
complex numbers C, and the reader may wish to work with the real case first
to build intuition. We have a norm on the p-adics defined by |z| = p~*(*),
where v, is the usual p-valuation (with the usual convention |0| = 0), as well
as a Haar measure pg, on @, with the following properties for any z,y € Q,
and r € p% = {p" :n € Z}:

(i) (ultratriangle inequality). |z + y| < max(|z|,|y|);

(ii) (multiplicativity). |zy| = |z||yl;

(iii) (nondegeneracy). |x| > 0, with equality if and only if x = 0;

(iv) (dimension one). ug,(B(z,r))=r, where B(z,r):={y € Q,: ly—z| <1}
is the usual ball.

Note that if P is a polynomial with coefficients in Q,, thus
P(z) = agz® + -+ + a1z + ag
for some agq,...,ap € Qp, then one can define the derivative P algebraically
by the usual formula
P'(z) = dagz?™! + - - 4 2a92 + a;.
We then have the following basic estimates on the distribution of p-adic
polynomials.

ProprosITION C.1 (Distribution of p-adic polynomials). Let P(z) = aqx?

+ -+ ag be a polynomial of degree d > 1 with coefficients in Q. Let r € p?,
and let  be the level set

Q={reQ,:|Px)| <r}

(i) (Bernstein inequality). One can cover £ by Oq4(1) balls B, such that on
each ball B one has
r

sup | P'(2)] <4 .
Ol S, @)

(ii) (Van der Corput estimate). We have
1/d

< r
/"LQp(Q) ~d <|ad’) .

In fact Q is covered by O4(1) balls of radius (L)l/d.

laal
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(iii) (Distributional estimate). If d > 2, and if f: Q, — [0,4+00) is the func-
tion

then
no, ((y € Qp: fly) > A}) Sa A 7T [ag] 7T,

A model example to keep in mind here is when P(z) = agz?

is a mono-
mial, in which case Q consists of a single ball of radius (r/|ag|)/¢, with P/ =
Od(]ad](r/]ad\)%) on this ball; also, one can verify f(y) = Od(\ad\*l/dr%_l)
when |y| < r and f(y) = Od(\ad\*l/d]yﬁ_l) when |y| > r. (The reader may
wish to first verify these claims with @, replaced by R in order to build geomet-
ric intuition.) Note that this example also shows why all the exponents in the
proposition are natural from a dimensional analysis (or scaling) perspective.
Taking limits in (ii) as 7 — 0, we also conclude that

ks

_1
7 Sa laq|™ 4,
/"LQp

_d_
La=1"7(Qp)

dP . . . . .
where dug(@p is the Radon-Nikodym derivative (relative to Haar measure g, )
D

of the pushforward measure Piuq, of ug, by P, and Ld%ll’oo is the weak Lﬁ
norm; in the monomial case P(x) = aqz®, one can compute that this Radon—
Nikodym derivative is proportional to the function y \ad\_é \y[é_l.

The van der Corput estimate in Proposition C.1(ii) can be also deduced
from [52, Prop. 3.3. pp. 847], but for the convenience of the reader, we provide
a self-contained proof.

Proof. To prove (i), we first work in the special case that P completely
factorizes:

P(z)=clx —ai) - (x — aq)
for some ¢, a1,...,aq € Q, with ¢ # 0. We can cover Q2 by Q;U...UQ,, where
Q={reQ:|z—o <l|z—qj forall j € [d]}.

It suffices to establish the claim (i) for a single ;. Note from the ultratriangle
inequality that for x € Q; and j € [d], one has

|z = aj] = max{|z — aif, |a; — ey},

and hence

d
|P(x)] = |e| [ ] max{|z — ail, |a; — a1}
j=1
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Thus we see that Q; C B(as, R), where R € p? is the maximal quantity for
which

d
|c] H max{R, |o; — aj|} <.
j=1
On the other hand, we have from the product rule and triangle inequality for
x € B(wa, R) that

[P (@)] Sa lel sup [] o — aul

jeld] pz;
<4 |c| sup H max{R, |a; — ax|}
JEld] k#j
d
Sa R7Me| [ max{R, o — axl}
k=1
r
gd E'}

giving Claim (i).

Now suppose that P only partially factorizes, thus

Plz)=(x—ai) - (x — a;)Q(x)
for some 0 < j < d and some polynomial ) of degree d — j. The case j = d
has already been handled; now suppose inductively that j < d and the claim
(i) has already been proven for j + 1. We may assume ) is non-empty since
the claim (i) is trivial otherwise. Let a1 be an element of Q that maximizes
the magnitude of the quantity 6 := (oj41 —aq) - - - (oyj41 — @5); such a quantity
exists since () is compact, and § is non-zero by continuity. Then
r = [P(aj1)] = 16]]Q(g41)],

so |Q(aj41)| < r/|d]. By the factor theorem, we have
Q(z) = Q(aj+1) + (z — 1) R()
for some polynomial R of degree d — j — 1, thus
Plz)=(z —a1) - (z — )Qj1) + (. — o) -+ (& — 1) R(x).
By construction, for z € 2 we have |P(z)| < r, and
(@ —an) - (2 — ) Qe 41)| < [6]|Q(aja) <,
hence by the ultratriangle inequality, we also have
[z =) (= ajpr) R(x)[ < 7.
By the induction hypothesis, we can cover 2 by O4(1) balls B on which the

derivative of (z —a1)--- (z — aji1)R(z) is O4(r/pg,(B)); by the j = d case,
we can also say the same about (z — o)+ (z — oj)Q(j41). Intersecting the
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balls together, we can say the same about P. This closes the induction and
establishes the claim for any 0 < j < d. Setting j = 0, we obtain (i).

Now we establish (ii). By iterating (i) d times and intersecting the balls
together, we can cover Q by Og4(1) balls B on which P@(z) <4 r/pg,(B)%.
But since P¥(z) = dlay, we have po,(B) Sd (r/]ag|)*/?, giving the claim.

Now we prove (iii). Let A > 0, and define the set

E={ycQ: f(y) = A}
Our task is to show that
g, (B) Sa A~ ag| 7.
If y € F, then by definition
po,({z € Qp: [P(x) —y| <7}) = Ar.

By (i), the set in the left-hand side can be covered by O,4(1) balls B, on which
|P'| <q r/pg,(B). By the pigeonhole principle, one of these balls B must
intersect the set in a set of measure >4 Ar, thus |P’'| <4 r/(Ar) = 1/X on this
ball, and thus

pg,({z € Qp: |P(x) —y| <rand |P'(z)] Sq 1/A}) Za Ar
By the Fubini—Tonelli theorem, we conclude that
pa, * po,({(z,y) € Q) : [P(x) —y| <7 and |[P'(2)] S 1/A}) Za Arpg, (E).
But by the Fubini—Tonelli theorem again, the left-hand side is equal to
rug,({z € Qp : [P'(2)] Sa 1/A}),

and hence by (ii) we obtain

1
A E<( ) ,
T, (E) Sar Nad]

giving the claim. O
We can descend from the p-adics to a cyclic group of prime power order:

COROLLARY C.2 (Distribution of polynomials on a cyclic group of prime
power order). Let Q = p’ for some j € Z., and let P € Z[n] be a polynomial of
degree d > 2, which we also view as a map from Z/QZ to itself. Let h: Z/QZ
— N be the counting function

hy) = #{x € Z/QZL: P(x) = y}.
Then for any A > 0, we have the weak-type bound

#{y € Z)QZL : hy) > A} Sp A T1Q.
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In particular, one has

(C.3) Al s z/qz) Ss,p 1
forany0<s<d%'ll.

As before, the example of a monomial P(x) = 2¢ shows that the range of s
here is best possible. Interestingly, it seems difficult to establish this corollary
without some version of the p-adic formalism, even though the statement of the
corollary does not explicitly mention p-adics. Estimate (C.3) was previously
@ in an unpublished work of Jim Wright on
LP-improving estimates for averaging operators on cyclic groups of the form
Z/p’Z (private communication).

obtained for monomials P(z) = x

Proof. We can write P(z) = agz® + --- 4 ag, where ag,...,aq € Z,, are
p-adic integers, thus they have norm at most 1. Note that

h(y) = Qug,{r € Qy: |z| < 1and |[P(z) —¢/| <Q7'})
for any y € Z/QZ and y' € B(y,1/Q), thus

#{y € Z/QZ : h(y) > \}
< Quo,({y' € Qp: Qug,({z € Qp 1 [P(z) — /| < Q7'}) = A}).

The claim now follows from Proposition C.1(iii). O
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