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EIGENVECTORS FROM EIGENVALUES:

A SURVEY OF A BASIC IDENTITY IN LINEAR ALGEBRA

PETER B. DENTON, STEPHEN J. PARKE, TERENCE TAO, AND XINING ZHANG

Abstract. If A is an n × n Hermitian matrix with eigenvalues λ1(A), . . . ,
λn(A) and i, j = 1, . . . , n, then the jth component vi,j of a unit eigenvector vi
associated to the eigenvalue λi(A) is related to the eigenvalues λ1(Mj), . . . ,

λn−1(Mj) of the minor Mj of A formed by removing the jth row and column
by the formula

|vi,j |
2

n∏

k=1;k �=i

(λi(A)− λk(A)) =

n−1∏

k=1

(λi(A)− λk(Mj)) .

We refer to this identity as the eigenvector-eigenvalue identity and show how
this identity can also be used to extract the relative phases between the com-
ponents of any given eigenvector. Despite the simple nature of this identity
and the extremely mature state of development of linear algebra, this identity
was not widely known until very recently. In this survey we describe the many

times that this identity, or variants thereof, have been discovered and redis-
covered in the literature (with the earliest precursor we know of appearing in
1834). We also provide a number of proofs and generalizations of the identity.

1. Introduction

If A is an n×n Hermitian matrix, we denote its n real eigenvalues by λ1(A), . . . ,
λn(A). The ordering of the eigenvalues will not be of importance in this survey, but
for sake of concreteness let us adopt the convention of nondecreasing eigenvalues:

λ1(A) ≤ · · · ≤ λn(A).

If 1 ≤ j ≤ n, let Mj denote the n−1×n−1 minor formed from A by deleting the jth
row and column from A. This is again a Hermitian matrix, and thus has n− 1 real
eigenvalues λ1(Mj), . . . , λn−1(Mj), which for sake of concreteness we again arrange
in nondecreasing order. In particular we have the well known Cauchy interlacing

inequalities (see, e.g., [Wil1963, pp. 103–104])

(1) λi(A) ≤ λi(Mj) ≤ λi+1(A)

for i = 1, . . . , n− 1.
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By the spectral theorem, we can ûnd an orthonormal basis of eigenvectors
v1, . . . , vn, where the vi are in Cn of A associated to the eigenvalues λ1(A), . . . , λn(A)
respectively. For any i, j = 1, . . . , n, let vi,j denote the jth component of vi. This
survey paper is devoted to the following elegant relation, which we will call the
eigenvector-eigenvalue identity, relating this eigenvector component to the eigen-
values of A and Mj :

Theorem 1 (Eigenvector-eigenvalue identity). With the notation as above, we have

(2) |vi,j |2
n
∏

k=1;k �=i

(λi(A)− λk(A)) =

n−1
∏

k=1

(λi(A)− λk(Mj)) .

If one lets pA : C → C denote the characteristic polynomial of A,

(3) pA(λ) := det(λIn −A) =
n
∏

k=1

(λ− λk(A)),

where In denotes the n× n identity matrix, and similarly let pMj
: C → C denote

the characteristic polynomial of Mj ,

pMj
(λ) := det(λIn−1 −Mj) =

n−1
∏

k=1

(λ− λk(Mj)),

then the derivative p′A(λi(A)) of pA at λ = λi(A) is equal to

p′A(λi(A)) =

n
∏

k=1;k �=i

(λi(A)− λk(A)) ,

and so (2) can be equivalently written in the characteristic polynomial form

(4) |vi,j |2p′A(λi(A)) = pMj
(λi(A)).

Example 2. If we set n = 3 and

A =

⎛

¿

1 1 −1
1 3 1
−1 1 3

À

⎠ ,

then the eigenvectors and eigenvalues are

v1 =
1√
6

⎛

¿

2
−1
1

À

⎠ ; λ1(A) = 0

v2 =
1√
3

⎛

¿

1
1
−1

À

⎠ ; λ2(A) = 3

v3 =
1√
2

⎛

¿

0
1
1

À

⎠ ; λ3(A) = 4
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with minors Mj and eigenvalues λi(Mj) given by

M1 =

(

3 1
1 3

)

; λ1,2(M1) = 2, 4

M2 =

(

1 −1
−1 3

)

; λ1,2(M2) = 2∓
√
2 ≈ 0.59, 3.4

M3 =

(

1 1
1 3

)

; λ1,2(M3) = 2∓
√
2 ≈ 0.59, 3.4;

one can observe the interlacing inequalities (1). One can then verify (2) for all
i, j = 1, 2, 3:

2

3
= |v1,1|2 =

(0− 2)(0− 4)

(0− 3)(0− 4)
,

1

6
= |v1,2|2 =

(0− 2−
√
2)(0− 2 +

√
2)

(0− 3)(0− 4)
,

1

6
= |v1,3|2 =

(0− 2−
√
2)(0− 2 +

√
2)

(0− 3)(0− 4)
,

1

3
= |v2,1|2 =

(3− 2)(3− 4)

(3− 0)(3− 4)
,

1

3
= |v2,2|2 =

(3− 2−
√
2)(3− 2 +

√
2)

(3− 0)(3− 4)
,

1

3
= |v2,3|2 =

(3− 2−
√
2)(3− 2 +

√
2)

(3− 0)(3− 4)
,

0 = |v3,1|2 =
(4− 2)(4− 4)

(4− 0)(4− 3)
,

1

2
= |v3,2|2 =

(4− 2−
√
2)(4− 2 +

√
2)

(4− 0)(4− 3)
,

1

2
= |v3,3|2 =

(4− 2−
√
2)(4− 2 +

√
2)

(4− 0)(4− 3)
.

One can also verify (4) for this example after computing

p′A(λ) = 3λ2 − 14λ+ 12,

pM1
(λ) = λ2 − 6λ+ 8,

pM2
(λ) = λ2 − 4λ+ 2,

pM3
(λ) = λ2 − 4λ+ 2.

Note, that p′A(λ) = pM1
(λ) + pM2

(λ) + pM3
(λ), which is needed for the column

normalization, see (x) in the consistency checks below.

Numerical code to verify the identity can be found at [Den2019].

Consistency Checks. Theorem 1 passes a number of basic consistency checks.

(i) Dilation symmetry. If one multiplies the matrix A by a real scalar c, then
the eigenvalues of A and Mj also get multiplied by c, while the coefficients
vi,j remain unchanged, which does not affect the truth of (2). To put it
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another way, if one assigns units to the entries of A, then the eigenvalues
of A,Mj acquire the same units, while vi,j remains dimensionless, and the
identity (2) is dimensionally consistent.

(ii) Translation symmetry. If one adds a scalar multiple of the identity λIn to
A, then the eigenvalues of A and Mj are shifted by λ, while the coefficient
vi,j remains unchanged. Thus both sides of (2) remain unaffected by such
a transformation.

(iii) Permutation symmetry. Permuting the eigenvalues of A or Mj does not
affect either side of (2) (provided one also permutes the index i accordingly).
Permuting the ordering of the rows (and colums), as well as the index j,
similarly has no effect on (2).

(iv) First degenerate case. If vi,j vanishes, then the eigenvector vi for A also
becomes an eigenvector forMj with the same eigenvalue λi(A) after deleting
the jth coefficient. In this case, both sides of (2) vanish.

(v) Second degenerate case. If the eigenvalue λi(A) ofA occurs with multiplicity
greater than one, then by the interlacing inequalities (1) it also occurs as
an eigenvalue of Mj . Again in this case, both sides of (2) vanish.

(vi) Compatibility with interlacing. More generally, the identity (2) is consistent
with the interlacing (1) because the component vi,j of the unit eigenvector
vi has magnitude at most 1.

(vii) Phase symmetry. One has the freedom to multiply each eigenvector vi by

an arbitrary complex phase e
√
−1θi without affecting the matrix A or its

minors Mj . But both sides of (2) remain unchanged when one does so.
(viii) Diagonal case. If A is a diagonal matrix with diagonal entries λ1(A), . . . ,

λn(A), then |vi,j | equals 1 when i = j and zero otherwise, while the eigen-
values of Mj are formed from those of A by deleting one copy of λi(A). In
this case one can easily verify (2) by hand.

(ix) Row normalization. As the eigenvectors v1, . . . , vn form the columns of
an orthogonal matrix, one must have the identity

∑n
i=1 |vi,j |2 = 1 for all

j = 1, . . . , n. Assuming for simplicity that the eigenvalues λi(A) are dis-

tinct, this follows easily from the algebraic identity
∑n

i=1
λm
i∏

n
k=1;k �=i

(λi−λk)
=

δm,n−1 for m = 0, . . . , n− 1 and any distinct complex numbers λ1, . . . , λn,

which can be seen by integrating the rational function zm
∏

n
k=1

(z−λk)
along a

large circle {|z| = R} and applying the residue theorem. See also Remark
9 below.

(x) Column normalization. As the eigenvectors v1, . . . , vn are unit vectors,
one must have

∑n
j=1 |vi,j |2 = 1 for all i = 1, . . . , n. To verify this, use

the translation symmetry (ii) to normalize λi(A) = 0, and then observe
(e.g., from (7)) that (−1)n

∑n
j=1 pMj

(0) =
∑n

j=1 det(Mj) = tr adj(A) is

the (n − 1)-th elementary symmetric function of the eigenvalues and thus
equal (since λi(A) vanishes) to

∏n
k=1;k �=i λk(A) = (−1)np′A(0). Comparing

this with (4), we obtain
∑n

j=1 |vi,j |2 = 1 as desired. Alternatively, one can

see from Jacobi’s formula d
dt

det(A(t)) = tr(adj(A(t))dA(t)
dt

) that p′A(λ) =
tr(adj(λIn−A)) =

∑

j pMj
(λ) which when combined with (4) also recovers

the identity
∑n

j=1 |vi,j |2 = 1. Jacobi’s formula give us the need relationships
between the eigenvalues of A and the eigenvalues of the Mj ’s. They are
(n− k)Sk(A) =

∑n
j=1 Sk(Mj) for k = 1, . . . , n− 1, where Sk(A) is the kth
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elementary symmetric polynomial of the eigenvalues of A, e.g., S1(A) =
tr(A), . . . , Sn(A) = det(A).

(xi) Relative phase information. As mentioned in (vii) above, the phase of any
individual eigenvector vi is arbitrary, therefore the relative phase between
vi,k and vj,k, i �= j, is arbitrary. However, the relative phases between the
components of any vi, say between vi,j and vi,k for j �= k, is not arbitrary.
Identity (2) can be used to extract these relative phases as follows: consider
a unitary transformation on the matrix A and its eigenvectors such that
vi,j → 1√

2
(vi,j + ω vi,k) and vi,k → 1√

2
(vi,k − ω∗ vi,j) with ω = 1 or

√
−1

where ω∗ is the complex conjugate of ω. Applying (2) to the original A
and to the two unitary transformed A’s, gives us the information need to
extract arg(vi,jv

∗
i,k). Note pMj

(λ) and pMk
(λ) are not invariant under this

particular unitary transformation, but p′A(λ) and other pMl
(λ), l �= j or k,

are invariant. Furthermore, the unitarity condition that the
∑n

i=1 vi,jv
∗
i,k =

0 for j �= k, can also be derived in this fashion. For further discussion on
the relative phases, see the beginning of Section 4.

We also note that, since (2) is a continuous function of the matrix A, it is possible
to treat all eigenvalues as simple via the usual limiting argument.

The eigenvector-eigenvalue identity has a surprisingly complicated history in
the literature, having appeared in some form or another (albeit often in a lightly
disguised form) in over two dozen references, and being independently rediscovered
a half-dozen times, in ûelds as diverse as numerical linear algebra, random matrix
theory, inverse eigenvalue problems, graph theory (including chemical graph theory,
graph reconstruction, and walks on graphs), and neutrino physics; see Figure 1.
While the identity applies to all Hermitian matrices, and extends in fact to normal
matrices and more generally to diagonalizable matrices, it has found particular
application in the special case of symmetric tridiagonal matrices (such as Jacobi
matrices), which are of particular importance in several fundamental algorithms in
numerical linear algebra.

While the eigenvector-eigenvalue identity is moderately familiar to some mathe-
matical communities, it is not as broadly well known as other standard identities in
linear algebra, such as Cramer’s rule [Cra1750] or the Cauchy determinant formula
[Cau1841] (though, as we shall shortly see, it can be readily derived from either of
these identities). While several of the papers in which some form of the identity
was discovered went on to be cited several times by subsequent work, the citation
graph is only very weakly connected; in particular, Figure 1 reveals that many of
the citations coming from the earliest work on the identity did not propagate to
later works, which instead were based on independent rediscoveries of the identity
(or one of its variants). In many cases, the identity was not highlighted as a rela-
tion between eigenvectors and eigenvalues, but was instead introduced in passing
as a tool to establish some other application; also, the form of the identity and the
notation used varied widely from appearance to appearance, making it difficult to
search for occurrences of the identity by standard search engines. The situation
changed after a popular science article by Wolchover [Wol2019] reported on the
most recent rediscovery [DPZ2020,DPTZ2019] of the identity by ourselves. In the
wake of the publicity generated by that article, we received many notiûcations (see
Section 5) of the disparate places in the literature where the eigenvector-eigenvalue
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Figure 1. The citation graph of all the references in the literature
we are aware of (predating the current survey) that mention some
variant of the eigenvector-eigenvalue identity. To reduce clutter,
transitive references (e.g., a citation of a paper already cited by an-
other paper in the bibliography) are omitted. Note the very weakly
connected nature of the graph, with many early initial references
not being (transitively) cited by many of the more recent refer-
ences. Blue references are preprints, green references are books,
the brown reference is a thesis, and the red reference is a popular
science article. This graph was mostly crowdsourced from feed-
back received by the authors after the publication of [Wol2019].
The reference [Jac1834] predates all others found by a century!

identity, or an identity closely related to it, was discovered. Effectively, this <crowd-
sourced= the task of collating all these references together. In this paper, we survey
all the appearances of the eigenvector-eigenvalue identity that we are aware of as a
consequence of these efforts, as well as provide several proofs, generalizations, and
applications of the identity. Finally, we speculate on some reasons for the limited
nature of the dissemination of this identity in prior literature.

2. Proofs of the identity

The identity (2) can be readily established from existing standard identities in
the linear algebra literature. We now give several such proofs.

2.1. The adjugate proof. We ûrst give a proof using adjugate matrices, which is a
purely <polynomial= proof that avoids any invertibility, division, or nondegeneracy
hypotheses in the argument. In particular, as we remark below, it has an extension
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to (diagonalizable) matrices that take values in arbitrary commutative rings. This
argument appears for instance in [Par1980, Section 7.9].

Recall that if A is an n × n matrix, the adjugate matrix adj(A) is given by the
formula

(5) adj(A) :=
(

(−1)i+jdet(Mji)
)

1≤i,j≤n
,

where Mji is the n−1×n−1 matrix formed by deleting the jth row and ith column
from A. From Cramer’s rule we have the identity

adj(A)A = A adj(A) = det(A)In.

If A is a diagonal matrix with (complex) entries λ1(A), . . . , λn(A), then adj(A) is
also a diagonal matrix with ii entry

∏n
k=1;k �=i λk(A). More generally, if A is a

normal matrix with diagonalization

(6) A =

n
∑

i=1

λi(A)viv
∗
i ,

where v1, . . . , vn are an orthonormal basis of eigenvectors of A and v∗i is the conju-
gate transpose of vi, then adj(A) has the same basis of eigenvectors with diagonal-
ization

(7) adj(A) =
n
∑

i=1

( n
∏

k=1;k �=i

λk(A)

)

viv
∗
i .

If one replaces A by λIn −A for any complex number λ, we therefore have1

adj(λIn − A) =

n
∑

i=1

( n
∏

k=1;k �=i

(λ− λk(A))

)

viv
∗
i .

If one specializes to the case λ = λi(A) for some i = 1, . . . , n, then all but one of
the summands on the right-hand side vanish, and the adjugate matrix becomes a
scalar multiple of the rank one projection viv

∗
i ,

(8) adj(λi(A)In −A) =

( n
∏

k=1;k �=i

(λi(A)− λk(A))

)

viv
∗
i .

Extracting out the jj component of this identity using (5), we conclude that

(9) det(λi(A)In−1 −Mj) =

( n
∏

k=1;k �=i

(λi(A)− λk(A))

)

|vi,j |2,

which is equivalent to (2). In fact this shows that the eigenvector-eigenvalue identity
holds for normal matrices A as well as Hermitian matrices (despite the fact that
the minor Mj need not be Hermitian or normal in this case). Of course in this case
the eigenvalues are not necessarily real and thus cannot be arranged in increasing
order, but the order of the eigenvalues plays no role in the identity (2).

Remark 3. The same argument also yields an off-diagonal variant

(10) (−1)j+j′det(λi(A)(In)j′j −Mj′j) =

( n
∏

k=1;k �=i

(λi(A)− λk(A))

)

vi,jvi,j′

1To our knowledge, this identity first appears in [Hal1942, p. 157].
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for any 1 ≤ j, j′ ≤ n, where (In)j′j is the n− 1×n− 1 minor of the identity matrix
In. When j = j′, this minor (In)j′j is simply equal to In−1 and the determinant
can be expressed in terms of the eigenvalues of the minor Mj ; however when j �= j′

there is no obvious way to express the left-hand side of (10) in terms of eigenvalues
of Mj′j (though one can still of course write the determinant as the product of the
eigenvalues of λi(A)(In)j′j −Mj′j). Another way of viewing (10) is that for every
1 ≤ j′ ≤ n, the vector with jth entry

(−1)jdet(λi(A)(In)j′j −Mj′j)

is a nonnormalized eigenvector associated to the eigenvalue λi(A); this observa-
tion appears for instance in [Gan1959, pp. 85–86]. See [Van2014] for some further
identities relating the components vi,j of the eigenvector vi to various determinants.

Remark 4. This remark is due to Vassilis Papanicolaou.2 The above argument
also applies to nonnormal matrices A, so long as they are diagonalizable with some
eigenvalues λ1(A), . . . , λn(A) (not necessarily real or distinct). Indeed, if we let
v1, . . . , vn be a basis of right eigenvectors of A (so that Avi = λi(A)vi for all
i = 1, . . . , n), and let w1, . . . , wn be the corresponding dual basis3 of left eigenvectors
(so wT

i A = wT
i λi(A), and wT

i vj is equal to 1 when i = j and 0 otherwise), then we
have the diagonalization

A =

n
∑

i=1

λi(A)viw
T
i ,

and one can generalize (8) to

(11) adj(λi(A)In −A) =

( n
∏

k=1;k �=i

(λi(A)− λk(A))

)

viw
T
i

leading to an extension

(12) det(λi(A)In−1 −Mj) =

( n
∏

k=1;k �=i

(λi(A)− λk(A))

)

vi,jwi,j

of (9) to arbitrary diagonalizable matrices. We remark that this argument shows
that the identity (12) is in fact valid for any diagonalizable matrix taking values in
any commutative ring (not just the complex numbers). The identity (10) may be
generalized in a similar fashion; we leave the details to the interested reader.

Remark 5. As pointed out to us by Darij Grinberg,4 the identity (4) may be gen-
eralized to the nondiagonalizable setting. Namely, one can prove that

vjwjp
′
A(λ) = (wT v)pMj

(λ)

for an arbitrary n×n matrix A (with entries in an arbitrary commutative ring), any
j = 1, . . . , n (withMj the n−1×n−1 minor formed from A by removing the jth row
and column, and any right-eigenvector Av = λv and left-eigenvector wTA = wTλ
with a common eigenvalue λ. After reducing to the case λ = 0, the main step in
the proof is to establish two variants of (8), namely that wj(adjA)i,k = wk(adjA)i,j

2terrytao.wordpress.com/2019/08/13/eigenvectors-from-eigenvalues/#comment-519905
3In the case when A is a normal matrix and the vi are unit eigenvectors, the dual eigenvector

wi would be the complex conjugate of vi.
4terrytao.wordpress.com/2019/12/03
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and (adjA)k,ivj = (adjA)j,ivk for all i, j, k = 1, . . . , n. We refer the reader to the
comment of Grinberg for further details.

Remark 6. As observed in [Van2014, Appendix A], one can obtain an equivalent
identity to (2) by working with the powers Am,m = 0, . . . , n− 1 in place of adj(A).
Indeed, from (6) we have

Am =

n
∑

i=1

λi(A)mviv
∗
i ,

and hence on extracting the jj component

(Am)jj =
n
∑

i=1

λi(A)m|vi,j |2

for all j = 1, . . . , n and m = 0, . . . , n − 1. Using Vandermonde determinants (and
assuming for sake of argument that the eigenvalues λi(A) are distinct), one can
then solve for the |vi,j |2 in terms of the (Am)jj , eventually reaching an identity
[Van2014, Theorem 2] equivalent to (2) (or (10)), which in the case when A is
the adjacency matrix of a graph can also be expressed in terms of counts of walks
of various lengths between pairs of vertices. We refer the reader to [Van2014] for
further details.

2.2. The Cramer’s rule proof. Returning now to the case of Hermitian matrices,
we give a variant of the above proof of (2) that still relies primarily on Cramer’s
rule, but makes no explicit mention of the adjugate matrix. As discussed in the next
section, variants of this argument have appeared multiple times in the literature.
We ûrst observe that to prove (2) for Hermitian matrices A, it suffices to do so
under the additional hypothesis that A has simple spectrum (all eigenvalues occur
with multiplicity one), or equivalently that

λ1(A) < λ2(A) < · · · < λn(A).

This is because any Hermitian matrix with repeated eigenvalues can be approx-
imated to arbitrary accuracy by a Hermitian matrix with simple spectrum, and
both sides of (2) vary continuously with A (at least if we avoid the case when λi(A)
occurs with multiplicity greater than one, which is easy to handle anyway by the
second degenerate case (iv) noted in the introduction).

As before, we diagonalize A in the form (6). For any complex parameter λ not
equal to one of the eigenvalues λi(A), the resolvent (λIn − A)−1 can then also be
diagonalized as

(13) (λIn −A)−1 =
n
∑

i=1

viv
∗
i

λ− λi(A)
.

Extracting out the jj component of this matrix identity using Cramer’s rule
[Cra1750], we conclude that

det(λIn−1 −Mj)

det(λIn −A)
=

n
∑

i=1

|vi,j |2
λ− λi(A)

,

which we can express in terms of eigenvalues as

(14)

∏n−1
k=1(λ− λk(Mj))

∏n
k=1(λ− λk(A))

=

n
∑

i=1

|vi,j |2
λ− λi(A)

.
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Both sides of this identity are rational functions in λ, and have a pole at λ = λi(A)
for any given i = 1, . . . , n. Extracting the residue at this pole, we conclude that

∏n−1
k=1(λi(A)− λk(Mj))

∏n
k=1:k �=i(λi(A)− λk(A))

= |vi,j |2,

which rearranges to give (2).

Remark 7. One can view the above derivation of (2) from (14) as a special case of
the partial fractions decomposition

P (t)

Q(t)
=

∑

Q(α)=0

P (α)

Q′(α)

1

t− α
,

whenever Q is a polynomial with distinct roots α1, . . . , αn and P is a polynomial of
degree less than that of Q. Equivalently, this derivation can be viewed as a special
case of the Lagrange interpolation formula (see, e.g., [AS1964, §25.2])

P (t) =

n
∑

i=1

P (αi)

n
∏

j=1;j �=i

t− αj

αi − αj

,

whenever α1, . . . , αn are distinct and P is a polynomial of degree less than n.

Remark 8. A slight variant of this proof was observed by Aram Harrow,5 inspired
by the inverse power method for approximately computing eigenvectors numeri-
cally. We again assume simple spectrum. Using the translation invariance noted
in consistency check (ii) of the introduction, we may assume without loss of gener-
ality that λi(A) = 0. Applying the resolvent identity (13) with λ equal to a small
nonzero quantity ε, we conclude that

(15) (εIn −A)−1 =
viv

∗
i

ε
+O(1).

On the other hand, by Cramer’s rule, the jj component of the left-hand side is

det(εIn−1 −Mj)

det(εIn −A)
=

pMj
(ε)

pA(ε)
=

pMj
(0) +O(ε)

εp′A(ε) +O(ε2)
.

Extracting out the top order terms in ε, one obtains (4) and hence (2). A variant
of this argument also gives the more general identity

(16)
∑

i:λi(A)=λ∗

|vi,j |2 = lim
λ→λ∗

pMj
(λ)(λ− λ∗)

pA(λ)
,

whenever λ∗ is an eigenvalue of A of some multiplicity m ≥ 1. Note when m = 1
we can recover (4) thanks to L’Hôpital’s rule. The right-hand side of (16) can also
be interpreted as the residue of the rational function pMj

/pA at λ∗.

An alternate way to arrive at (2) from (14) is as follows. Assume for the sake of
this argument that the eigenvalues of Mj are all distinct from the eigenvalues of A.
Then we can substitute λ = λk(Mj) in (14) and conclude that

(17)
n
∑

i=1

|vi,j |2
λk(Mj)− λi(A)

= 0

5twitter.com/quantum aram/status/1195185551667847170
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for k = 1, . . . , n − 1. Also, since the vi form an orthonormal basis, we have from
expressing the unit vector ej in this basis that

(18)

n
∑

i=1

|vi,j |2 = 1.

This is a system of n linear equations in n unknowns |vi,j |2. For sake of notation let
us use permutation symmetry to set i = n. From a further application of Cramer’s
rule, one can then write

|vn,j |2 =
det(S′)

det(S)
,

where S is the n×nmatrix with ki entry equal to 1
λk(Mj)−λi(A) when k = 1, . . . , n−1,

and equal to 1 when k = n, and S′ is the minor of S formed by removing the nth
row and column. Using the well-known Cauchy determinant identity [Cau1841]

(19) det

(

1

xi − yj

)

1≤i,j≤n

=

∏

1≤j<i≤n(xi − xj)(yi − yj)
∏n

i=1

∏n
j=1(xi − yj)

and inspecting the asymptotics as xn → ∞, we soon arrive at the identities

det(S) =

∏

1≤l<k≤n−1(λk(Mj)− λl(Mj))
∏

1≤l<k≤n(λk(A)− λl(A))
∏n−1

l=1

∏n
k=1(λl(Mj)− λk(A))

and

det(S′) =

∏

1≤l<k≤n−1(λk(Mj)− λl(Mj))(λk(A)− λl(A))
∏n−1

l=1

∏n−1
k=1(λl(Mj)− λk(A))

,

and the identity (2) then follows after a brief calculation.

Remark 9. The derivation of the eigenvector-eigenvalue identity (2) from (17), as
well as the obvious normalization (18), is reversible. Indeed, the identity (2) implies
that the rational functions on both sides of (14) have the same residues at each of
their (simple) poles, and these functions decay to zero at inûnity, hence they must
agree by Liouville’s theorem. Specializing (14) to λ = λk(Mj) then recovers (17),
while comparing the leading asymptotics of both sides of (14) as λ → ∞ recovers
(18) (note this also establishes the consistency check (ix) from the introduction).
As the identity (17) involves the same quantities vi,j , λk(Mj), λi(A) as (2), one can
thus view (17) as an equivalent formulation of the eigenvector-eigenvalue identity,
at least in the case when all the eigenvalues of A are distinct. The identity (14)
(viewing λ as a free parameter) can also be interpreted in this fashion.

Remark 10. The above resolvent-based arguments have a good chance of being
extended to certain classes of inûnite matrices (e.g., Jacobi matrices), or other Her-
mitian operators, particularly if they have good spectral properties (e.g., they are
trace class). Certainly it is well known that spectral projections of an operator
to a single eigenvalue λ can often be viewed as residues of the resolvent at that
eigenvalue, in the spirit of (15), under various spectral hypotheses of the operator
in question. The main difficulty is to ûnd a suitable extension of Cramer’s rule to
inûnite-dimensional settings, which would presumably require some sort of regu-
larized determinant such as the Fredholm determinant. We will not explore this
question further here, however, as pointed out to us by Carlos Tomei (personal
communication), for reasonable Hermitian inûnite matrices A such as Jacobi ma-
trices, one can formulate an identity similar to (14) for the upper left coefficient
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〈e1, (λ−A)e1〉 of the resolvent for λ in the upper half-plane, which can for instance
be used (in conjunction with the Herglotz representation theorem) to recover the
spectral theorem for such matrices.

2.3. Coordinate-free proof. We now give a proof that largely avoids the use
of coordinates or matrices, essentially due to Bo Berndtsson.6 For this proof we
assume familiarity with exterior algebra (see, e.g., [BM1941, Chapter XVI]). The
key identity is the following statement.

Lemma 11 (Coordinate-free eigenvector-eigenvalue identity). Let T : Cn → Cn be

a self-adjoint linear map that annihilates a unit vector v. For each unit vector f ∈
C

n, let ΔT (f) be the determinant of the quadratic form w 
→ (Tw,w)Cn restricted

to the orthogonal complement f⊥ := {w ∈ Cn : (f, w)Cn = 0}, where (, )Cn denotes

the Hermitian inner product on Cn. Then one has

(20) |(v, f)Cn |2ΔT (v) = ΔT (f)

for all unit vectors f ∈ C
n.

Proof. The determinant of a quadratic form w 
→ (Tw,w)Cn on a k-dimensional
subspace V of Cn can be expressed as (Tα, α)∧k

Cn/(α, α)∧k
Cn for any nondegen-

erate element α of the kth exterior power
∧k V ⊂ ∧k

Cn (equipped with the usual

Hermitian inner product (, )∧k
Cn), where the operator T is extended to

∧k
Cn in

the usual fashion. If f ∈ Cn is a unit vector, then the Hodge dual ∗f ∈ ∧n−1
Cn is

a unit vector in
∧n−1

(f⊥), so that we have the identity

(21) ΔT (f) = (T (∗f), ∗f)∧n−1
Cn .

To prove (20), it thus suffices to establish the more general identity

(22) (f, v)CnΔT (v)(v, g)Cn = (T (∗f), (∗g))∧n−1
Cn

for all f, g ∈ C
n. If f is orthogonal to v, then ∗f can be expressed as a wedge

product of v with an element of
∧n−2

Cn, and hence T (∗f) vanishes, so that (22)
holds in this case. If g is orthogonal to v, then we again obtain (22) thanks to the
self-adjoint nature of T . Finally, when f = g = v, the claim follows from (21).
Since the identity (22) is sesquilinear in f, g, the claim follows. �

Now we can prove (2). Using translation symmetry we may normalize λi(A) = 0.
We apply Lemma 11 to the self-adjoint map T : w 
→ Aw, setting v to be the null
vector v = vi and f to be the standard basis vector ej . Working in the orthonor-
mal eigenvector basis v1, . . . , vn, we have Δ(v) =

∏n
k=1;k �=i λk(A); working in the

standard basis e1, . . . , en, we have ΔT (f) = det(Mj) =
∏n−1

k=1 λk(Mj). Finally we
have (v, f)Cn = vi,j . The claim follows.

Remark 12. In coordinates, identity (21) may be rewritten as ΔT (f) = f∗adj(A)f .
Thus we see that Lemma 11 is basically (8) in disguise. It seems likely that the
variant identity in Remark 5 can also be established in a similar coordinate-free
fashion.

6terrytao.wordpress.com/2019/08/13/eigenvectors-from-eigenvalues/#comment-519914
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2.4. Proof using perturbative analysis. Now we give a proof using perturba-
tion theory, which to our knowledge ûrst appears in [MD1989]. By the usual limiting
argument we may assume that A has simple eigenvalues. Let ε be a small param-
eter, and consider the rank one perturbation A + εeje

∗
j of A, where e1, . . . , en is

the standard basis. From (3) and cofactor expansion, the characteristic polynomial
pA+εeje

∗
j
(λ) of this perturbation may be expanded as

pA+εeje
∗
j
(λ) = pA(λ)− εpMj

(λ) +O(ε2).

On the other hand, from perturbation theory the eigenvalue λi(A+ εeje
∗
j ) may be

expanded as
λi(A+ εeje

∗
j ) = λi(A) + ε|vi,j |2 +O(ε2).

If we then Taylor-expand the identity

pA+εeje
∗
j
(λi(A+ εeje

∗
j )) = 0

and extract the terms that are linear in ε, we conclude that

ε|vi,j |2p′A(λi(A))− εpMj
(λi(A)) = 0,

which gives (4) and hence (2).

2.5. Proof using a Cauchy–Binet type formula. Now we give a proof based on
a Cauchy–Binet type formula, which is also related to Lemma 11. This argument
ûrst appeared in [DPTZ2019].

Lemma 13 (Cauchy–Binet type formula). Let A be an n × n Hermitian matrix

with a zero eigenvalue λi(A) = 0. Then for any n× n− 1 matrix B, one has

det(B∗AB) = (−1)n−1p′A(0)
∣

∣det
(

B vi
)∣

∣

2
,

where
(

B vi
)

denotes the n × n matrix with right column vi and all remaining

columns given by B.

Proof. We use a perturbative argument related to that in Section 2.4. Since Avi =
0, v∗i A = 0, and v∗i vi = 1, we easily conûrm the identity

(

B∗

v∗i

)

(εIn −A)
(

B vi
)

=

(

−B∗AB +O(ε) O(ε)
O(ε) ε

)

for any parameter ε, where the matrix on the right-hand side is given in block form,
with the top left block being an n − 1 × n − 1 matrix and the bottom right entry
being a scalar. Taking determinants of both sides, we conclude that

pA(ε)
∣

∣det
(

B vi
)∣

∣

2
= (−1)n−1det(B∗AB∗)ε+O(ε2).

Extracting out the ε coefficient of both sides, we obtain the claim. �

Remark 14. In the case when vi is the basis vector en, we may write A in block

form as A =

(

Mn 0n−1×1

01×n−1 0

)

, where 0i×j denotes the i × j zero matrix, and

write B =

(

B′

x∗

)

for some n− 1× n− 1 matrix B′ and (n− 1)-dimensional vector

x, in which case one can calculate

det(B∗AB) = det((B′)∗MnB
′) = det(Mn)|det(B′)|2

and
det

(

B vi
)

= det(B′).
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Since p′A(0) = (−1)n−1det(Mn) in this case, this establishes (13) in the case vi = en.
The general case can then be established from this by replacing A by UAU∗ and
B by UB, where U is any unitary matrix that maps vi to en.

We now prove (4) and hence (2). Using the permutation and translation sym-
metries, we may normalize λi(A) = 0 and j = 1. We then apply Lemma 13 with

B =

(

01×n−1

In−1

)

, in which case

det(B∗AB) = det(M1) = (−1)n−1pM1
(0)

and

det
(

B vi
)

= vi,1.

Applying Lemma 13, we obtain (4).

2.6. Proof using an alternate expression for eigenvector component mag-

nitudes. There is an alternate formula for the square |vi,j |2 of the eigenvector com-
ponent vi,j that was introduced in the paper [ESY2009, (5.8)] of Erdős, Schlein,
and Yau in the context of random matrix theory, and then highlighted further
in a paper [TV2011, Lemma 41] of the third author and Vu; it differs from the
eigenvector-eigenvalue formula in that it involves the actual coefficients of A and
M1, rather than just their eigenvalues. It was also previously discovered by Gaveau
and Schulman [GS1995, (2.6)]. For sake of notation we just give the formula in the
j = 1 case.

Lemma 15 (Alternate expression for vi,1). Let A be an n × n Hermitian matrix

written in block matrix form as

A =

(

a11 X∗

X M1

)

,

where X is an (n − 1)-dimensional column vector and a11 is a scalar. Let i =
1, . . . , n, and suppose that λi(A) is not an eigenvalue of M1. Let u1, . . . , un−1

denote an orthonormal basis of eigenvectors of M1, associated to the eigenvalues

λ1(M1), . . . , λn−1(M1). Then

(23) |vi,1|2 =
1

1 +
∑n−1

j=1 X∗(λi(A)In−1 −M1)−2X
.

This lemma is useful in random matrix theory for proving delocalization of eigen-
vectors of random matrices, which roughly speaking amounts to proving upper
bounds on the quantity sup1≤j≤n |vi,j |.

Proof. One can verify that this result enjoys the same translation symmetry as
Theorem 1 (see consistency check (ii) from the introduction), so without loss of

generality we may normalize λi(A) = 0. If we write vi =

(

vi,1
wi

)

for an (n − 1)-

dimensional column vector wi, then the eigenvector equation Avi = λi(A)vi = 0
can be written as the system

a11vi,1 +X∗wi = 0,

Xvi,1 +M1wi = 0.
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By hypothesis, 0 is not an eigenvalue of M1, so we may invert M1 and conclude
that

wi = −M−1
1 Xvi,1.

Since vi is a unit vector, we have |wi|2 + |vi,1|2 = 1. Combining these two formulae
and using some algebra, we obtain the claim. �

Now we can give an alternate proof of (4) and hence (2). By permutation sym-
metry (iii) it suffices to establish the j = 1 case. Using limiting arguments as before,
we may assume that A has distinct eigenvalues; by further limiting arguments we
may also assume that the eigenvalues of M1 are distinct from those of A. By trans-
lation symmetry (ii) we may normalize λi(A) = 0. Comparing (4) with (23), our
task reduces to establishing the identity

p′A(0) = pM1
(0)(1 +X∗M−2

1 X).

However, for any complex number λ not equal to an eigenvalue of M1, we may
apply Schur complementation [Cot1974] to the matrix

λIn −A =

(

λ− a11 −X∗

−X λIn−1 −M1

)

to obtain the formula

det(λIn −A) = det(λIn−1 −M1)(λ− a11 −X∗(λIn−1 −M1)
−1X),

or equivalently

pA(λ) = pM1
(λ)(λ− a11 −X∗(λIn−1 −M1)

−1X),

which on Taylor expansion around λ = 0 using pA(0) = 0 gives

p′A(0)λ+O(λ2) = (pM1
(0) +O(λ))(λ− a11 +X∗M−1

1 X + λX∗M−2
1 X +O(λ2)).

Setting λ = 0 and using pM1
(0) �= 0, we conclude that a11 +X∗M−1

1 X vanishes. If
we then extract the λ coefficient, we obtain the claim.

Remark 16. The same calculations also give the well-known fact that the minor
eigenvalues λ1(M1), . . . , λn−1(M1) are precisely the roots for the equation

λ− a11 −X∗(λIn−1 −M1)
−1X = 0.

Among other things, this can be used to establish the interlacing inequalities (1).

2.7. A generalization. The following generalization of the eigenvector-eigenvalue
identity was recently observed7 by Yu Qing Tang (private communication), relying
primarily on the Cauchy–Binet formula and a duality relationship (24) between the
various minors of a unitary matrix. If A is an n× n matrix and I, J are subsets of
{1, . . . , n} of the same cardinality m, let MI,J (A) denote the n−m× n−m minor
formed by removing the m rows indexed by I and the m columns indexed by J .

Proposition 17 (Generalized eigenvector-eigenvalue identity). Let A be a normal

n × n matrix diagonalized as A = UDU∗ for some unitary U and diagonal D =
diag(λ1, . . . , λn), let 1 ≤ m < n, and let I, J,K ⊂ {1, . . . , n} have cardinality m.

Then

detMJc,Ic(U)(detMKc,Ic(U))
∏

i∈I,j∈Ic

(λj − λi) = detMJ,K

(

∏

i∈I

(A− λiIn)

)

,

7Variants of this identity have also been recently observed in [Che2019], [Sta2019].
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where Ic denotes the complement of I in {1, . . . , n}, and similarly for Jc,Kc.

Note that if we set m = 1, I = {i}, and J = K = {j}, we recover (2). The
identity (10) can be interpreted as the remaining m = 1 cases of this proposition.

Proof. We have
∏

i∈I

(A− λiIn) = U
∏

i∈I

(D − λiIn)U
∗,

and hence by the Cauchy–Binet formula

detMJ,K

(

∏

i∈I

(A− λiIn)

)

=
∑

L,L′

(detMJ,L(U))

(

detML,L′

(

∏

i∈I

(D − λiIn)

))

(detML′,K(U∗)),

where L,L′ range over subsets of {1, . . . , n} of cardinalitym. A computation reveals
that the quantity detML,L′(

∏

i∈I(D − λiIn)) vanishes unless L = L′ = I, in which
case the quantity equals

∏

i∈I,j∈Ic(λj − λi). Thus it remains to show that

detMJc,Ic(U)(detMKc,Ic(U)) = detMJ,I(U)detMI,K(U∗).

Since detMI,K(U∗) = detMK,I(U), it will suffice to show that8

(24) detMJ,I(U) = detMJc,Ic(U)detU

for any J, I ⊂ {1, . . . , n} of cardinality m. By permuting rows and columns, we
may assume that J = I = {1, . . . ,m}. If we split the identity matrix In into the

left m columns I1n :=

(

Im
0n−m×m

)

and the right n −m columns I2n :=

(

0m×n−m

In−m

)

and take determinants of both sides of the identity

U
(

U∗I1n I2n
)

=
(

I1n UI2n
)

,

we conclude that

det(U)detMIc,Jc(U∗) = detMJ,I(U),

giving the claim. �

3. History of the identity

In this section we present, roughly in chronological order, all the references to
the eigenvector-eigenvalue identity (2) (or closely related results) that we are aware
of in the literature. For the primary references, we shall present the identity in
the notation of that reference in order to highlight the diversity of contexts and
notational conventions in which this identity has appeared.

The earliest appearance of identities equivalent to (2) that we know of is due to
Jacobi [Jac1834, §8, (33)]. In modern notation, Jacobi diagonalizes a symmetric

quadratic form
∑n

χ=1

∑n
λ=1 aχ,λxχxλ as

∑n
m=1 Gm(

∑n
i=1 α

(m)
i xi)

2 for an orthogo-

nal matrix (α
(m)
i )1≤i,m≤n, and then the for each m the cofactors B

(m)
χλ of the form

∑n
χ=1

∑n
λ=1 aχ,λxχxλ−Gm

∑n
χ=1 x

2
χ are extracted. Noting that the columns of this

8This identity is also a special case of the more general identity detMI,J (adj(A)) =

(detA)m−1detMJc,Ic(A) of Jacobi [Jac1834], which is valid for arbitrary n×n matrices A, as can

be seen after noting that adj(U) = det(U)−1U∗.



EIGENVECTORS FROM EIGENVALUES 47

cofactor matrix are proportional to the eigenvector (α
(m)
i )1≤i≤n, Jacobi concluded

that

(25) (G1 −Gm) · · · (Gn −Gm)α(m)
χ α

(m)
λ = B

(m)
χλ

with the factor Gm −Gm omitted from the left-hand side; this is essentially (8) for
real symmetric matrices. In [Jac1834, §8, (36)] an identity essentially equivalent to
(4) for real symmetric matrices is also given.

An identity that implies (2) as a limiting case appears a century after Jacobi in
a paper of Löwner [Löw1934, (7)]. In this paper, a diagonal quadratic form

An(x, x) =
n
∑

i=1

λix
2
i

is considered, as well as a rank one perturbation

Bn(x, x) = An(x, x) +

(

n
∑

i=1

αixi

)2

for some real numbers λ1, . . . , λn, α1, . . . , αn. The eigenvalues of the quadratic form
Bn are denoted µ1, . . . , µn. If the eigenvalues are arranged in nondecreasing order,
one has the interlacing inequalities

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ λn ≤ µn

(compare with (1)). Under the nondegeneracy hypothesis

λ1 < µ1 < λ2 < · · · < λn < µn,

the identity

(26) α2
k =

(µ1 − λk)(µ2 − λk) · · · (µn − λk)

(λ1 − λk)(λ2 − λk) · · · (λk−1 − λk)(λk+1 − λk) · · · (λn − λk)

is established for k = 1, . . . , n, which closely resembles (2); a similar formula also
appears in [Jac1834, §12]. The identity (26) is obtained via <Eine einfache Rech-
nung= (an easy calculation) from the standard relations

n
∑

k=1

α2
k

µi − λk

= 1

for i = 1, . . . , n (compare with (17)), after applying Cramer’s rule and the Cauchy
determinant identity (19). As such, it is very similar to the proof of (2) in Section 2.2
that is also based on (19). The identity (26) was used in [Löw1934] to help classify
monotone functions of matrices and has also been applied to inverse eigenvector
problems and stable computation of eigenvectors [GE1994], [Dem1997, pp. 224–
226]. It can be related to (2) as follows. For sake of notation let us just consider
the j = n case of (2). Let ε be a small parameter, and consider the perturbation
ene

∗
n + εA of the rank one matrix ene

∗
n. Standard perturbative analysis reveals

that the eigenvalues of this perturbation consist of n − 1 eigenvalues of the form
ελi(Mn)+O(ε2) for i = 1, . . . , n−1, plus an outlier eigenvalue at 1+O(ε). Rescaling,
we see that the rank one perturbation A+ 1

ε
ene

∗
n of A has eigenvalues of the form

λi(Mn) + O(ε) for i = 1, . . . , n − 1, plus an outlier eigenvalue at 1
ε
+ O(1). If we
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let An, Bn be the quadratic forms associated to A,A+ 1
ε
ene

∗
n expressed using the

eigenvector basis v1, . . . , vn, the identity (26) becomes

1

ε
|vk,n|2 =

∏n
i=1(λi(A+ 1

ε
ene

∗
n)− λk(A))

∏n
i=1;i �=k(λi(A)− λk(A))

.

Extracting the 1/ε component of both sides of this identity using the aforementioned
perturbative analysis, we recover (2) after a brief calculation.

A more complicated variant of (26) involving various quantities related to the
Rayleigh–Ritz method of bounding the eigenvalues of a symmetric linear operator
was stated by Weinberger [Wei1960, (2.29)], where it was noted that it can be
proven using much the same method as in [Löw1934].

The ûrst appearance of the eigenvector-eigenvalue identity in essentially the form
presented here that we are aware of was by Thompson [Tho1966, (15)], which does
not reference the prior work of Löwner or Weinberger. In the notation of Thomp-
son’s paper, A is a normal n×n matrix, and µ1, . . . , µs are the distinct eigenvalues
of A, with each µi occurring with multiplicity ei. To avoid nondegeneracy it is
assumed that s ≥ 2. One then diagonalizes A = UDU−1 for a unitary U and
diagonal D = diag(λ1, . . . , λn), and then sets

θiβ =
∑

j:λj=µβ

|Uij |2

for i = 1, . . . , n and β = 1, . . . , n − 1, where Uij are the coefficients of U . The
minor formed by removing the ith row and column from A is denoted A(i|i); it has
<trivial= eigenvalues in which each µi with ei > 1 occurs with multiplicity ei−1, as
well as some <nontrivial= eigenvalues ξi1, . . . , ξi,s−1. The equation [Tho1966, (15)]
then reads

(27) θiα =

s−1
∏

j=1

(µα − ξij)

s
∏

j=1,j �=α

(µα − µj)
−1

for 1 ≤ α ≤ s and 1 ≤ i ≤ n. If one specializes to the case when A is Hermitian
with simple spectrum, so that all the multiplicities ei are equal to 1, and set s = n
and µi = λi, it is then not difficult to verify that this identity is equivalent to
the eigenvector-eigenvalue identity (2) in this simple spectrum case. In the case
of repeated eigenvalues, the eigenvector-eigenvalue identity (2) may degenerate (in
that the left and right-hand sides both vanish), but the identity (27) remains non-
trivial in this case. The proof of (27) given in [Tho1966] is written using a rather
complicated notation (in part because much of the paper was concerned with more
general k×k minors rather than the n−1×n−1 minors A(i|i)), but it is essentially
the adjugate proof from Section 2.1 (where the adjugate matrix is replaced by the
closely related (n−1)-th compound matrix). In [Tho1966], the identity (27) was not
highlighted as a result of primary interest in its own right, but was instead employed
to establish a large number of inequalities between the eigenvalues µ1, . . . , µs and
the minor eigenvalues ξi1, . . . , ξi,s−1 in the Hermitian case; see [Tho1966, Section
5].

In a followup paper [TM1968] by Thompson and McEnteggert, the analysis
from [Tho1966] was revisited, restricting attention speciûcally to the case of an
n × n Hermitian matrix H with simple eigenvalues λ1 < · · · < λn, and with
the minor H(i|i) formed by deleting the ith row and column having eigenvalues
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ξi1 ≤ · · · ≤ ξi,n−1. In this paper the inequalities

(28)

n
∑

i=1

λj − ξi,j−1

λj − λj−1

ξij − λj

λj+1 − λj

≥ 1

and

(29)

n
∑

i=1

λj − ξi,j−1

λj − λ1

ξij − λj

λn − λj

≤ 1

for 1 ≤ j ≤ n were proved (with most cases of these inequalities already established
in [Tho1966]), with a key input being the identity

(30) |uij |2 =

{

λj − ξi1
λj − λ1

}

· · ·
{

λj − ξi,j−1

λj − λj−1

}{

ξij − λj

λj+1 − λj

}

· · ·
{

ξi,n−1 − λj

λn − λj

}

,

where uij are the components of the unitary matrix U used in the diagonalization
H = UDU−1 of H. Note from the Cauchy interlacing inequalities that each of the
expressions in braces takes values between 0 and 1. It is not difficult to see that
this identity is equivalent to (2) (or (27)) in the case of Hermitian matrices with
simple eigenvalues, and the hypothesis of simple eigenvalues can then be removed
by the usual limiting argument. As in [Tho1966], the identity is established using
adjugate matrices, essentially by the argument given in the previous section. How-
ever, the identity (30) is only derived as an intermediate step towards establishing
the inequalities (28), (29), and is not highlighted as of interest in its own right.
The identity (27) was then reproduced in a further followup paper [Tho1969], in
which the identity (14) was also noted; this latter identity was also independently
observed in [DH1978].

In the text of Šilov [Š1969, Section 10.27], the identity (2) is established, essen-
tially by the Cramer rule method. Namely, if A(x, x) is a diagonal real quadratic
form on R

n with eigenvalues λ1 ≥ · · · ≥ λn, and Rn−1 is a hyperplane in Rn with
unit normal vector (α1, . . . , αn), and µ1 ≥ · · · ≥ µn−1 are the eigenvalues of A on
Rn−1, then it is observed that

(31) α2
k =

∏n−1
k=1(µk − λ)

(λk − λ1) · · · (λk − λk−1)(λk − λk+1) · · · (λk − λn)

for k = 1, . . . , n, which is (2) after changing to the eigenvector basis; identities
equivalent to (17) and (4) are also established. The text [Š1969] gives no references,
but given the similarity of notation with [Löw1934] (compare (31) with (26)), one
could speculate that Šilov was inüuenced by Löwner’s work.

In a section [Pai1971, Section 8.2] of the PhD thesis of Paige entitled <A Useful
Theorem on Cofactors=, the identity (30) is cited as <a fascinating theorem . . . that
relates the elements of the eigenvectors of a symmetric to its eigenvalues and the
eigenvalues of its principal submatrices=, with a version of the adjugate proof given.
In the notation of that thesis, one considers a k×k real symmetric tridiagonal matrix
C with distinct eigenvalues µ1 > · · · > µk with an orthonormal of eigenvectors
y1, . . . , yk. For any 0 ≤ r < j ≤ k, let Cr,j denote the j − r × j − r minor of
C deûned by taking the rows and columns indexed between r + 1 and j, and let
pi,j(µ) := det(µIj−r − Cr,j) denote the associated trigonometric polynomial. The
identity

(32) y2ri = p0,r−1(µi)pr,k(µi)/f(i)
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is then established for i = 1, . . . , n, where yri is the ith component of yr and

f(i) :=
∏k

r=1;r �=i(µi − µr). This is easily seen to be equivalent to (2) in the case of
real symmetric tridiagonal matrices with distinct eigenvalues. One can then use this
to derive (2) for more general real symmetric matrices by a version of the Lanczos
algorithm for tridiagonalizing an arbitrary real symmetric matrix, followed by the
usual limiting argument to remove the hypothesis of distinct eigenvalues; we leave
the details to the interested reader. Returning to the case of tridiagonal matrices,
Paige also notes that the method also gives the companion identity

(33) f(i)yriysi = δr+1 · · · δsp0,r−1(µi)ps,k(µi)

for 1 ≤ r < s ≤ k, where δ2, . . . , δk are the upper diagonal entries of the tridiagonal
matrix C; this can be viewed as a special case of (10). These identities were
then used in [Pai1971, Section 8] as a tool to bound the behavior of errors in the
symmetric Lanczos process.

Paige’s identities (32), (33) for tridiagonal matrices are reproduced in the text-
book of Parlett [Par1980, Theorem 7.9.2], with slightly different notation. Namely,
one starts with an n×n real symmetric tridiagonal matrix T , decomposed spectrally
as SΘS∗ where S = (s1, . . . , sn) is orthogonal and Θ = diag(θ1, . . . , θn). Then for
1 ≤ µ ≤ ν ≤ n and 1 ≤ j ≤ n, the jth component sµj of sµ is observed to obey the
formula

s2µj = χ1:µ−1(θj)χµ+1:n(θj)/χ
′
1:n(θj)

when θj is a simple eigenvalue, where χi:j is the characteristic polynomial of the
j − i+ 1× j − i+ 1 minor of T formed by taking the rows and columns between i
and j. This identity is essentially equivalent to (32). The identity (32) is similarly
reproduced in this notation; much as in [Pai1971], these identities are then used
to analyze various iterative methods for computing eigenvectors. The proof of the
theorem is left as an exercise in [Par1980], with the adjugate method given as a
hint. Essentially the same result is also stated in the text of Golub and van Loan
[GVL1983, pp. 432–433] (equation (8.4.12) on page 474 in the 2013 edition), proven
using a version of the Cramer rule arguments in Section 2.2. They cite as reference
the earlier paper [Gol1973, (3.6)], which also uses essentially the same proof (see also
[Gla2004, (4.3.17)], who cites [BG1978], who in turn cite [Gol1973]). A similar result
was stated without proof by Galais, Kneller, and Volpe [GKV2012, equations (6),
(7)]. They provided expressions for both |vi,j |2 and the off-diagonal eigenvectors as
a function of cofactors in place of adjugate matrices. Their work was in the context
of neutrino oscillations.

The identities of Parlett and of Golub and Van Loan are cited in the thesis of
Knyazev [Kny1986, (2.2.27)], again to analyze methods for computing eigenvalues
and eigenvectors; the identities of Golub and Van Loan and of Šilov are similarly
cited in the paper of Knyazev and Skorokhodov [KS1991] for similar purposes.
Parlett’s result is also reproduced in the text of Xu [Xu1995, (3.19)]. In the survey
[CG2002, (4.9)] of Chu and Golub on structured inverse eigenvalue problems, the
eigenvector-eigenvalue identity is derived via the adjugate method from the results
of [TM1968], and it is used to solve the inverse eigenvalue problem for Jacobi
matrices; the text [Par1980] is also cited.

In the paper [DLNT1986, p. 210] of Deift, Li, Nanda, and Tomei, the eigen-
vector-eigenvalue identity (2) is derived by the Cramer rule method, and is used to



EIGENVECTORS FROM EIGENVALUES 51

construct action-angle variables for the Toda üow. The paper cites [BG1978], which
also reproduces (2) as equation (1.5) of that paper, and in turn cites [Gol1973].

In the paper of Mukherjee and Datta [MD1989] the eigenvector-eigenvalue iden-
tity was rediscovered, in the context of computing eigenvectors of graphs that arise
in chemistry. If G is a graph on n vertices v1, . . . , vn, and G − vr is the graph on
n − 1 vertices formed by deleting a vertex vr, r = 1, . . . , n, then in [MD1989, (4)]
the identity

(34) P (G− vr;xj) = P ′(G;xj)C
2
rj

is established for j, r = 1, . . . , n, where P (G;x) denotes the characteristic polyno-
mial of the adjacency matrix of G evaluated at x, and Crj is the coefficient at the
rth vertex of the eigenvector corresponding to the jth eigenvalue, and one assumes
that all the eigenvalues of G are distinct. This is equivalent to (4) in the case that
A is an adjacency matrix of a graph. The identity is proven using the perturbative
method in Section 2.4, and it appears to have been discovered independently. A
similar identity was also noted in the earlier work of Li and Feng [LF1979], at least
in the case j = 1 of the largest eigenvalue. In a later paper of Hagos [Hag2002], it
is noted that the identity (34) <is probably not as well known as it should be=, and
it also carefully generalizes (34) to an identity (essentially the same as (16)) that
holds when some of the eigenvalues are repeated. An alternate proof of (34) was
given in the paper of Cvetkovic, Rowlinson, and Simic [CRS2007, Theorem 3.1],
essentially using the Cramer rule type methods in Section 2.2. The identity (14) is
also essentially noted at several other locations in the graph theory literature, such
as [God1993, Chapter 4], [GM1981, Lemma 2.1], [God2012, Lemma 7.1, Corollary
7.2], [GGKL2017, (2)] in relation to the generating functions for walks on a graph,
though in those references no direct link to the eigenvector-eigenvalue identity in
the form (2) is asserted.

In [NTU1993, Section 2] the identity (2) is derived for normal matrices by the
Cramer rule method, citing [Tho1969], [DH1978] as the source for the key identity
(14); the papers [Tho1966], [TM1968] also appear in the bibliography but were not
directly cited in this section. An extension to the case of eigenvalue multiplicity,
essentially corresponding to (16), is also given. This identity is then used to give a
complete description of the relations between the eigenvalues of A and of a given
minor Mj when A is assumed to be normal. In [BFdP2011] a generalization of these
results was given to the case of J-normal matrices for some diagonal sign matrix
J ; this corresponds to a special case of (12) in the case where each left eigenvector
wi is the complex conjugate of Jvi.

The paper of Baryshnikov [Bar2001] marks the ûrst appearance of this identity
in random matrix theory. Let H be a Hermitian form on CM with eigenvalues
λ1 ≥ · · · ≥ λM , and let L be a hyperplane of CM orthogonal to some unit vector
l. Let li be the component of l with respect to an eigenvector vi associated to λi,
set wi := |li|2, and let µ1 ≥ · · · ≥ µM−1 be the eigenvalues of the Hermitian form
arising from restricting H to L. Then after [Bar2001, (4.5.2)] (and correcting some
typos) the identity

wi =

∏

1≤j≤M−1(λi − µj)
∏

1≤j≤M ;j �=i(λi − λj)

is established, by an argument based on Cramer’s rule and the Cauchy determinant
formula (19), similar to the arguments at the end of Section 2.2, and it appears
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to have been discovered independently. If one specializes to the case when l is a
standard basis vector ej , then li is also the ej component of vi, and we recover
(2) after a brief calculation. This identity was employed in [Bar2001] to study the
situation in which the hyperplane normal l was chosen uniformly at random on the
unit sphere. This formula was rederived (using a version of the Cramer rule method
in Section 2.2) in the May 2019 paper of Forrester and Zhang [FZ2019, (2.7)], who
recover some of the other results in [Bar2001] as well, and study the spectrum of
the sum of a Hermitian matrix and a random rank one matrix.

In the paper [DE2002, Lemma 2.7] of Dumitriu and Edelman, the identity (32) of
Paige (as reproduced in [Par1980, Theorem 7.9.2]) is used to give a clean expression
for the Vandermonde determinant of the eigenvalues of a tridiagonal matrix, which
is used in turn to construct tridiagonal models for the widely studied β-ensembles

in random matrix theory.
In the unpublished preprint [Van2014] of Van Mieghem, the identity (4) is promi-

nently displayed as the main result, though in the notation of that preprint it is
expressed instead as

(xk)
2
j = − 1

c′A(λk)
det(A\{j} − λkIn)

for any j, k = 1, . . . , n, where A is a real symmetric matrix with distinct eigenvalues
λ1, . . . , λn and unit eigenvectors x1, . . . , xn, A\{j} is the minor formed by removing
the jth row and column from A, and c′A is the derivative of the (sign-reversed)
characteristic polynomial cA(λ) = det(A − λIn) = (−1)npA(λ). Two proofs of
this identity are given, one being essentially the Cramer’s rule proof from Section
2.2 and attributed to the previous reference [CRS2007]; the other proof is based
on Cramer’s rule and the Desnanot–Jacobi identity (Dodgson condensation); this
identity is used to quantify the effect of removing a node from a graph on the
spectral properties of that graph. The related identity (23) from [TV2011] is also
noted in this preprint. Some alternate formulae from [VM2011] for quantities such
as (xk)

2
j in terms of walks of graphs are also noted, with the earlier texts [God1993],

[GVL1983] also cited.
The identity (2) was independently rediscovered and then generalized by Kausel

[Kau2018] as a technique to extract information about components of a generalized
eigenmode without having to compute the entire eigenmode. Here the generalized
eigenvalue problem

Kψj = λjMψj

for j = 1, . . . , N is considered, where K is a positive semideûnite N × N real
symmetric matrix, M is a positive deûnite N ×N real symmetric matrix, and the
matrix Ψ = (ψ1 · · ·ψN ) of eigenfunctions is normalized so that ΨTMΨ = I. For
any 1 ≤ α ≤ N , one also solves the constrained system

Kαψ
(α)
j = λαjMαψ

(α)
j ,

where Kα,Mα are the N − 1 × N − 1 minors of K,M, respectively, formed by
removing the αth row and column. Then in [Kau2018, (18)] the Cramer rule
method is used to establish the identity

ψαj = ±
√

|Mα|
|M|

√

√

√

√

∏N−1
k=1 (λj − λαk)

∏N−1
k=1;k �=j(λj − λk)
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for the α component ψαj of ψj , where |M| is the notation in [Kau2018] for the
determinant of M. Specializing to the case when M is the identity matrix, we
recover (2).

The eigenvector-eigenvalue identity was discovered by three of us [DPZ2020]
in July 2019, initially in the case of 3 × 3 matrices, in the context of trying to
ûnd a simple and numerically stable formula for the eigenvectors of the neutrino
oscillation Hamiltonian, which form a separate matrix known as the PMNS lepton
mixing matrix. This identity was established in the 3×3 case by direct calculation.
Despite being aware of the related identity (23), the four of us were unable to
locate this identity in past literature and wrote a preprint [DPTZ2019] in August
2019 highlighting this identity and providing two proofs (the adjugate proof from
Section 2.1, and the Cauchy–Binet proof from Section 2.5). The release of this
preprint generated some online discussion,9 and we were notiûed by Jiyuan Zhang
(private communication) of the prior appearance of the identity earlier in the year
in [FZ2019]. However, the numerous other places in the literature in which some
form of this identity appeared did not become revealed until a popular science
article [Wol2019] by Wolchover was written in November 2019. This article spread
awareness of the eigenvector-eigenvalue identity to a vastly larger audience, and
generated a large number of reports of previous occurrences of the identity, as well
as other interesting related observations, which we have attempted to incorporate
into this survey.

4. Further discussion

The eigenvector-eigenvalue identity (2) only yields information about the mag-
nitude |vi,j | of the components of a given eigenvector vi, but it does not directly
reveal the phase of these components. On one hand, this is to be expected, since
(as already noted in the consistency check (vii) in the introduction) one has the
freedom to multiply vi by a phase; for instance, even if one restricts attention to
real symmetric matrices A and requires the eigenvectors to be real vi, one has the
freedom to replace vi by its negation −vi, so the sign of each component vi,j is am-
biguous. However, relative phases, such as the phase of vi,jvi,j′ are not subject to
this ambiguity. There are several ways to try to recover these relative phases. One
way is to employ the off-diagonal analogue (10) of (2), although the determinants
in that formula may be difficult to compute in general. For small matrices, it was
suggested in [MD1989] that the signs of the eigenvectors could often be recovered
by direct inspection of the components of the eigenvector equation Avi = λi(A)vi.
In the application in [DPZ2020], the additional phase could be recovered by a fur-
ther neutrino speciûc identity [Tos1991]. For more general matrices, one way to
retrieve such phase information is to apply (2) in multiple bases. For instance,
suppose A was real symmetric and the vi,j were all real. If one were to apply
the eigenvector-eigenvalue identity after changing to a basis that involved the unit
vector 1√

2
(ej + ej′), then one could use the identity to evaluate the magnitude of

1√
2
(vi,j + vi,j′). Two further applications of the identity in the original basis would

give the magnitude of vi,j , vi,j′ , and this is sufficient information to determine the
relative sign of vi,j and vi,j′ . We also remark that for real symmetric matrices

9terrytao.wordpress.com/2019/08/13, www.reddit.com/r/math/comments/cq3en0
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that are acyclic (such as weighted adjacency matrices of graphs that do not con-
tain loops), one can write down explicit formulae for the coefficients of eigenvectors
(and not just their magnitudes) in terms of characteristic polynomials of minors;
see [BK2016]. We do not know of any direct connection between such formulae and
the eigenvector-eigenvalue identity (2).

For large unstructured matrices, it does not seem at present that the identity
(2) provides a competitive algorithm to compute eigenvectors. Indeed, to use this
identity to compute all the eigenvector component magnitudes |vi,j |, one would
need to compute all n − 1 eigenvalues of each of the n minors M1, . . . ,Mn, which
would be a computationally intensive task in general; furthermore, an additional
method would then be needed to also calculate the signs or phases of these com-
ponents. However, if the matrix is of a special form (such as a tridiagonal form),
then the identity could be of more practical use, as witnessed by the uses of this
identity (together with variants such as (33)) in the literature to control the rate
of convergence for various algorithms to compute eigenvalues and eigenvectors of
tridiagonal matrices. Also, as noted recently in [Kau2018], if one has an application
that requires only the component magnitudes |v1,j |, . . . , |vn,j | at a single location
j, then one only needs to compute the characteristic polynomial of a single minor
Mj of A at a single value λi(A), and this may be more computationally feasible.

5. Sociology of science issues

As one sees from Section 3 and Figure 1, there was some partial dissemination
of the eigenvector-eigenvalue identity amongst some mathematical communities,
to the point where it was regarded as <folklore= by several of these communities.
However, this process was unable to raise broader awareness of this identity, result-
ing in the remarkable phenomenon of multiple trees of references sprouting from
independent roots, and only loosely interacting with each other. For instance,
as discussed in the previous section, for two months after the release of our own
preprint [DPTZ2019], we only received a single report of another reference [FZ2019]
containing a form of the identity, despite some substantial online discussion and the
dozens of extant papers on the identity. It was only in response to the popular sci-
ence article [Wol2019] that awareness of the identity ûnally <went viral=, leading
to what was effectively an ad hoc crowdsourced effort to gather all the prior refer-
ences to the identity in the literature. While we do not know for certain why this
particular identity was not sufficiently well known prior to these recent events, we
can propose the following possible explanations:

(1) The identity was mostly used as an auxiliary tool for other purposes. In al-
most all of the references discussed here, the eigenvector-eigenvalue identity
was established only in order to calculate or bound some other quantity;
it was rarely formalized as a theorem or even as a lemma. In particular,
with a few notable exceptions, such as the preprint [Van2014], this identity
would not be mentioned in the title, abstract, or even the introduction. In
a few cases, the identity was reproven by authors who did not seem to be
fully aware that it was already established in one of the references in their
own bibliography.

(2) The identity does not have a standard name, form, or notation, and does

not involve uncommon keywords. As one can see from Section 3, the identity
comes in many variants and can be rearranged in a large number of ways;
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furthermore, the notation used for the various mathematical objects ap-
pearing in the identity vary greatly depending on the intended application
or on the authors involved. Also, none of the previous references attempted
to give the identity a formal name, and the keywords used to describe the
identity (such as <eigenvector= or <eigenvalue=) are in extremely common
use in mathematics. As such, there are no obvious ways to use modern
search engines to locate other instances of this identity, other than by man-
ually exploring the citation graph around known references to that identity.
Perhaps a <ûngerprint database= for identities [BT2013] would be needed
before such automated searches could become possible.

(3) The field of linear algebra is too mature, and its domain of applicability is

too broad. The vast majority of consumers of linear algebra are not domain
experts in linear algebra itself, but instead use it as a tool for a very diverse
array of other applications. As such, the diffusion of linear algebra knowl-
edge is not guided primarily by a central core of living experts in the ûeld,
but instead relies on more mature sources of authority such as textbooks
and lectures. Unfortunately, only a small handful of linear algebra text-
books mention the eigenvector-eigenvalue identity, thus preventing wider
dissemination of this identity.

Online discussion forums for mathematics were only partially successful in dis-
seminating this identity. For instance, the 2012 MathOverüow question10 <Cramer’s
rule for eigenvectors=, which inquired as to the existence of an eigenvector iden-
tity such as (2), received nearly ten-thousand views, but only revealed the related
identity in Lemma 15. Nevertheless, this post was instrumental in bringing these
four authors together to produce the preprint [DPTZ2019], via a comment11 on a
Reddit post by one of us.

It is not fully clear to us how best to attribute authorship for the eigenvector-
eigenvalue identity (2). A variant of the identity was observed by Jacobi [Jac1834],
but not widely propagated. An identity that implies (2) was later given by Löwner
[Löw1934], but the implication is not immediate, and this reference had only a
modest impact on the subsequent literature. The paper of Thompson [Tho1966]
is the ûrst place we know of in which the identity explicitly appears, and it was
propagated through citations into several further papers in the literature. But this
did not prevent the identity from then being independently rediscovered several
further times, such as in the text [GVL1983] (with the latter restricting attention
to the case of tridiagonal matrices). Furthermore, we are not able to guarantee that
there is not an even earlier place in the literature where some form of this identity
has appeared. We propose the name <eigenvector-eigenvalue identity= for (2) on
the grounds that it is descriptive, and hopefully it is a term that can be detected
through search engines by researchers looking for identities of this form.

Although, in this survey we have included approximately 50 references that men-
tion some variant of the eigenvector-eigenvalue identity, in most cases the identity
does not explicitly appear in a form such as (2) that speciûcally links eigenvec-
tor component magnitudes of an arbitrary Hermitian matrix to eigenvalues of
the matrix and its minors. Exceptions include the papers [Tho1966], [TM1968],

10mathoverflow.net/questions/96190
11www.reddit.com/r/math/comments/ci665j/linear_algebra_question_from_a_physicist/

ev22xgp/
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[NTU1993], and (in the special case of tridiagonal matrices) [GVL1983], [Xu1995].
To convert the other forms of the identity appearing in the literature to a form
similar to (2) requires a small but nonzero amount of additional work (such as a
change of basis, passing to a limit, or expressing a characteristic polynomial or
determinant in terms of eigenvalues). This may well be an additional factor that
has prevented this identity from being more widely known until recently.
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page 154, 1841.
[CG2002] M. T. Chu and G. H. Golub, Structured inverse eigenvalue problems, Acta Numer.

11 (2002), 1–71, DOI 10.1017/S0962492902000016. MR2008966
[Che2019] X. Chen, Note on eigenvectors from eigenvalues, https://arxiv.org/abs/1911.

09081, 2019.
[Cot1974] R. W. Cottle, Manifestations of the Schur complement, Linear Algebra Appl. 8

(1974), 189–211, DOI 10.1016/0024-3795(74)90066-4. MR354727
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