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Wideband Radio Frequency Interference
Cancellation for High-sensitivity Phased Array

Receivers with True Time Delays and Truncated
Hadamard Projection

Jakob W. Kunzler, Member, IEEE, Karl F. Warnick, Fellow, IEEE

Abstract—Radio frequency interference (RFI) is a significant
challenge for high-sensitivity phased array instruments. RFI can
be suppressed using digital signal processing, but to improve
dynamic range for wideband RFI, it can be desirable to remove
interference in the analog domain before sampling. In previous
work, it has been shown that analog true time delay (TTD) stages
with a truncated Hadamard transform can place a wide-band
spatial null on RFI from a given direction of arrival. We show that
TTD and Hadamard projection is mathematically equivalent to a
bank of classical narrow-band subspace projection beamformers,
but with a structure that allows efficient implementation in
either analog circuitry or digital hardware. We analyze how loss
in the TTD blocks and time delay errors affect beamformer
performance and propose methods for calibrating time delays.
Simulation results show that ideal TTD and Hadamard projection
matches the bank of subspace projection beamformers and places
deep nulls over wideband RFI signals while achieving SNR
performance comparable to the maximum signal to interference
and noise ratio beamformer.

Index Terms—Phased arrays, Time-delay arrays, Hadamard
transforms, Interference suppression

I. INTRODUCTION

Radio frequency interference (RFI) is a serious problem
for passive spectrum users in remote sensing and radio as-
tronomy. Time and frequency blanking, beam pattern nulling
and spatial filtering, adaptive filters, and many other methods
have been used for RFI mitigation [1], [2]. Traditional digital
RFI mitigation schemes for phased arrays such as maximum
signal to interference and noise beamforming and subspace
projection [1] are inherently narrow band, and are imple-
mented for wideband signals using a fast Fourier transform
or polyphase filterbank after sampling. The interferer must be
identified and canceled separately in each subband, leading
to significant computational overhead for real time signal
processing receivers. Analog phase shift beamforming does
not require real time digital computation to cancel RFI, but
is also limited to narrow band signals and does easily allow
computing many beams in parallel. It would be desirable if
there were a compromise between the two architectures that
could implement a wideband RFI cancellation beamformer
in analog while preserving signals of interest for filtering by
downstream digital beamformers.
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Fig. 1. The TTD and Hadamard projection method remove RFI before
conventional beamforming. With placement in analog, it can protect the
dynamic range of high sensitivity receivers against RFI. This architecture
is the analog implementation of computing a bank of narrow band subspace
projection beamformers.

To cancel RFI from a single fixed position, line of sight,
wideband source, Ghaderi et al.[3] introduced a true time-
delay (TTD) and truncated Hadamard projection operator
method. Accompanying this method, they have produced a
TTD chip prototype that achieves 5 ps of resolution over 100
MHz at baseband [4]. Pending good implementation of TTD,
this algorithm is inherently broadband for canceling line-of-
sight interferers. The matrix transform preserves the ability for
downstream beamformers to perform second stage synthesis
imaging around the null pattern produced by time delayed
Hadamard projection. This algorithm is convenient to both
analog and digital implementations. The analog implemen-
tation can reduce the computational complexity of real time
RFI mitigation and protect the receiver’s dynamic range from
strong RFI incursions.

Hadamard matrices have been explored for many applica-
tions in numerical and statistical analysis [5]. Perhaps the most
familiar application is error correcting Hadamard codes [6].
Broadcasting Hadamard coded modulations have been used for
decreasing signal to interference ratio in phased array radars
[7] and improving SNR in phased array imaging [8]. The
common mode isolation property of the Hadamard transform
has been explored for use in simultaneous wireless information
and power transfer by extracting DC power embedded in
communication waveforms [9]. Others work has investigated
Hadamard antenna feeding networks for forming dual concur-
rent beams in a phased array [10]. This paper builds on [11] in
exploring the application of the Hadamard transform to phased
array antennas.

The goal here is to extend the TTD and truncated Hadamard
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TABLE I
COMPARISON OF INTERFERENCE CANCELLATION ALGORITHMS

Comparing Interference Cancellation Algorithms

Method Pros Cons

Analog
Phase

Shifters

· No computational cost
· RFI reduced before sampling

· Costly components
· Narrow band
· Cannot cascade

Bank of
Digital

Max SINR

· Optimal balance between
signal, noise, and interference

· Requires port
correlations for each
signal component
· Computationally
expensive
· Not zero forcing

Bank of
Digital

Subspace
Projection

· Zero forcing null for RFI

· Requires RFI
subspace estimation
· Computationally
expensive

Analog
TTD +

Hadamard
Projection

· Zero forcing null for RFI
· Native wideband
· Reduced computational cost
· RFI reduced before sampling
· Allows downstream beamformers

· Requires TTD
calibration.
· Analog stability
issues

projection method to high-sensitivity phased array applica-
tions like radio astronomy, where the SNR of weak signals
of interest can be −30 to −50 dB or lower. The target
application for this technology is in the analog front-ends
of high sensitivity arrays that are performance limited by
RFI. The time delayed Hadamard projection sacrifices one
array element degree of freedom to place a zero forcing
wideband null over the offending RFI. After projection, the
cleaned signal paths are fed downstream to a conventional
digital beamforming architecture. The analog projection can
protect downstream digitizers from being overdriven by strong
interference. Table I summarizes the strengths and weaknesses
of various interference cancellation techniques in comparison
to time-delayed Hadamard projection.

We develop a theoretical basis for time delayed Hadamard
projection by showing the analytical relationship to the bank
of narrow-band subspace projection beamformers. Numerical
simulations that confirm this analysis are presented. The sim-
ulations also indicate the expected beamformer performance.
A study of how TTD imperfections relate to beam quality
is offered. We propose two methods for calibrating the time
delays for a given interfering source angle of arrival. Lastly, a
brief discussion about the efficient all digital implementation
of the algorithm is included.

II. WIDEBAND BEAMFORMING MODEL

Figure 1 shows the combined analog and digital beamformer
architecture. The TTD stage is designed to create coherence for
signals arriving in the direction of RFI. After time aligning the
RFI, the RFI appears like a common mode bias to each port.
The truncated Hadamard transform implements a projection
matrix that removes the common mode bias among all ports
to cancel the RFI. The result of removing the common mode is
a zero-forcing condition imposed on all signals in the direction
of the RFI. This projection operator sacrifices an output port to
clean the RFI from the remaining data streams. The remaining

ports contain a mixture of all signals outside the null region of
projection. These can be filtered by a secondary beamforming
to select the signals of interest.

A. Analog Beamformer

The truncated Hadamard matrix is the traditional Hadamard
matrix H [5] sans the top row of ones. The notation Hp is used
to designate the rank deficiency that creates a projection step
by discarding the top row. The matrix Hp may be represented
in N − 1 by N truncated form or in square matrix form by
filling the top row with zeros. The square form of this matrix
is convenient for symbolic manipulation and is used in this
paper. The length 4 truncated Hadamard matrix is

Hp =


0 0 0 0
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (1)

The loss in rank represents a projection from a full rank
system to a system with a rank one null space. The null space
of Hp is the span of common mode signals shared by all the
ports. The balanced number of ±1 in the other rows means
that shared signals common to each port are removed by the
balanced additions and subtractions of the transform.

The square matrix definition of the projection operator can
be viewed as a modification to the Hadamard transformation
with its fast computational algorithm [5]. To model the square
projection operator with the fast Hadamard transform, simply
set the first element of the output vector to zero. This pro-
cedure is computationally efficient for simulating Hadamard
projection on vectors of time domain waveforms.

The top row common mode port is discarded for theoretical
derivation of the RFI cancellation beamformer, but it can have
practical value that warrants maintaining the port’s data. This
port may be sampled for further use in characterizing the RFI
in the digital signal processing assuming the coherent RFI does
not saturate the dynamic range. This feature can be useful for
calibrating the TTD weights (see Sec. IV-C). Another reason
for maintaining the port is RFI leakage. A practical TTD
device has discrete delay states that will not allow perfect zero-
forcing of the RFI and some leakage through the projection
will occur. The common mode port will have a strong estimate
of the RFI time domain waveform and can be used for RFI
subtraction later in the DSP.

A TTD circuit is one which implements the transformation
s(t) → s(t − τ) for some small time delay τ on some time
domain waveform s(t). When implemented with an analog
circuit at baseband, the local oscillator phase of the mixer
must also be compensated in the down-conversion to preserve
the correct phase relationship before the matrix summations.
When a unique TTD is applied to n ports, the convention is
the time lags are normalized such that the smallest time delay
is defined as zero. The time delays for port n are dependent
on array geometry, and are conventionally designed to align
signals coherently from a given direction of arrival.

When using phasor analysis, the TTD transformation pha-
sors can be stored in a column vector d[n] = exp(jωτ [n]).
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To apply the time delay to each port, define the matrix
operator D = diag (d) as a diagonal matrix to apply the
delay transformation to the array response vector v. The array
response vector v(f, p̂, θ, ϕ) is the column vector containing
the collection of phasors observed at each port of a receiving
antenna in an aperture array as a function of frequency
f , polarization p̂, and spherical incidence angles θ and ϕ.
In RFI zero-forcing mode, the conjugate-field-match (CFM)
constraint d = vRFI

∗ is applied across all frequencies of
support. The vector of ideal TTD weights τ [n] is then given
by the explicit formula

τ [n] =
− arg v[n]

ω
+ b (2)

b : τ [n] ≥ 0 ∀ n

where scalar b enforces causality in the delay weights.
With the notation established, it can be shown that time

delayed Hadamard projection is an isomorphism of the sub-
space projection beamformer at each frequency. The subspace
projection beamformer is defined by the matrix P

P = I − vvH

N
= PH (3)

with null space equal to the span of exactly one array response
vector v such that Pv = 0.

The Hadamard matrix is a full rank orthogonal matrix.
Removing a row of the matrix by setting the row to 0 creates
a new matrix with null space equal to the span of the removed
row. The removed row for Hp is 1, meaning the null space
is the span of 1. Since v is nonzero, there exists a diagonal
matrix D such that 1 = Dv. This is the conjugate-field-match
constraint for every phasor frequency.

Since D is diagonal (invertable), this implies the null space
of the cancellation beamformer can be transformed into the
exact array response vector v. Since both approaches yield
matrices with equivalent null spaces equal to the span of v,
they must be isomorphic projection operators related by some
full rank rotation matrix F. This implies the time delayed
and Hadamard projection method is an isomorphism of the
subspace projection beamformer through F namely

FPv = HpDv = 0 (4)

The beam response pattern under a subspace projection
operator P for the original weighting vector w0 designed
without P is approximately preserved for all array response
vectors outside a small neighborhood of the null space of P
via the transformation w = Pw0. Symbolically, this is

v = w0
Hv = w0

HPv = wHv (5)

B. Digital Beamformer

Since power from array response vectors outside of the
null is preserved, but rotated during the TTD, a secondary
reconstruction beamformer is required to align the ports before
a second coherent summation. That is, the reconstruction
beamformer is required to restore coherence for the SOI
direction after the projection step. The digital beamformer
component contains the transformation DHHp

H such that the

net result system is DHHp
HHpD ≈ N2I where the approxima-

tion indicates a zero projection of some array response vector
has occurred. The careful observer will recognize Hp

H could
also be performed in analog hardware as well as DH with a
second TTD stage, but this may be impractical.

Alternatively, many existing beamformer imaging technolo-
gies are implemented computationally across narrow fre-
quency channels on sampled data for many pixels simultane-
ously. The architecture allow implementing of DH across each
subchannel beamformer. This means that any beamforming
weight vector w designed for a system without the analog TTD
and Hadamard projection hardware can be converted to work
with the cancellation hardware by means of the transformation
wHDHHp

H. The resulting beam will be close to the original
beam with a null around the projected array response vector.

A large class of canonical beamformers are defined as
optimizing solutions of generalized Rayleigh quotients of
correlation matrices of array response vectors v summed by
beamformer weight vectors w. The complex relationships
between phasors are calculated with correlation matrices R =
vvH which are approximated as rank 1 structures. Array
response vectors are used to represent the phase response of
narrow-band channels due to incidence angle across the field
of view. This leads to definitions of signal correlations for
spatially localized signals-of-interest RS, interferers RI, and
noise signals RN in the receiver. With these components, the
maximum signal to interference and noise ratio beamformer is
defined to maximize the expected power ratio of the SOI power
to the combined interferer and noise powers. The definition is

wmaxSINR = argmax
w

wHRSw
wH (RN + RI)w

(6)

Quadratic form Rayleigh Quotient optimizations like this
are analytically solved with the largest eigenvalue solution to
the generalized eigenvalue problem wA = λwB where A and
B are the top and bottom matrices between the vector products.
This beamformer yields great success operating on digitally
sampled data for emphasizing the antenna array response in
the SOI direction and placing a spatial null over the interferer
location (but is not a zero-forcing projection technique).

The correlation statistics in R modified by linear transfor-
mation A are R′ = ARAH. The max SINR beamformer of (6)
following time delayed Hadamard projection method is

wmax SNR, TTD + Hadamard = argmax
w

wHHpDRSDHHp
Hw

wHHpDRNDHHp
Hw

(7)

The RI statistics are not included in the denominator because
its rank one basis is the null space of HpD. Equation (7) is
the classical max SNR beamformer adapted to the signal and
noise statistics after the zero-forcing RFI projection.

III. NUMERICAL RESULTS

The quality of the RFI cancellation and beam response can
be computed with a simple numerical simulation. This is done
by solving the beamformer weights w for a target SOI and RFI
direction, then evaluating the received power wHRw where
R contains the appropriate array response vector correlations



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

for the pixel of interest due to transformations in the system
model. Evaluating received power at pixels across the 3D field
of view, then integrating for power, allows the power scan to
be normalized for antenna directivity.

Modeling an isotropic noise field in an 8 x 8 receiver array
spaced 0.5λ without mutual coupling, the directivity response
of each beamformer can be evaluated in ideal conditions. The
analog TTD and Hadamard projection method is assumed to
have ideal TTD weights with perfect (double precision) res-
olution and all beamformers have perfect a priori knowledge
of the array response vectors. The analog to digital conversion
is modeled as perfect.

Figures 2 and 3 compare the beams from the various
beamformers at three metric frequencies across the 310 MHz
of analyzed bandwidth. The beams are tuned for a SOI at
boresight with RFI at 10 degrees and 25 degrees θ along the
ϕ axis at 45 degrees. For the red TTD + Hadamard curve,
this response is due to the wideband TTD and Hadamard
projection followed by a second stage digital max SINR
beamformer applied in a narrow channel as given by (7).
The other comparison digital beamformers, max SINR, max
directivity, and subspace projection beamformer, are applied
across narrow bands.

The maximum directivity beam indicates an optimized SNR
beam without the presence of RFI. The maximum SINR
beamformer is the optimization criteria of (6). The subspace
projection beamformer from (3) puts a zero-forcing null over
the RFI. As proven before, and demonstrated in these plots,
the time delayed Hadamard projection obtains identical per-
formance to the bank of narrow band subspace projection
beamformers (with curves underneath barely visible). The
zero-forcing constraint leads to slightly less control over
side lobe ripple near the null compared to the max SINR
beamformer, but still obtains good overall side-lobe control
and main-lobe shape.

The SINR figure of merit can be used to quantify the quality
of the RFI rejection across the field of view. The available
SINR under different beamformer algorithms across the field
of view is portrayed in Figure 4. This shows the obtained
SINR under beamformer weights trained to observe each
angular location in the presence of fixed RFI. The distance
from the max directivity curve represents restored observation
space from beamforming. The time delay Hadamard projection
restores almost the same amount of observation space as the
optimal max SINR beamformer.

IV. PRACTICAL CONSIDERATIONS

This paper has demonstrated that ideal TTD and a perfect
Hadamard matrix implementation are identical to a bank of
narrow band subspace projection beamformers. Real analog
components will have confounding factors such as loss, varia-
tions in physical TTD applied, drift in the calibration settings,
finite bandwidth in the TTD stages, unequal balancing in the
Hadamard ports, and overall uncertainty in the performance
of the analog chain. In general, all of these factors will reduce
the effectiveness of the proposed method. This section gives
a few studies to help quantify the loss in performance due
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Fig. 2. Comparing the wideband TTD + Hadamard beamformer to other
narrow band digital beamformers with RFI along the 45 degree plane. The
SOI is at boresight and the RFI location is marked with the arrow. The analog
TTD + Hadamard projection is applied wideband with secondary beamformer
implemented narrow band.
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Fig. 3. The analog TTD and Hadamard projection method beamformer of
(7) is practically identical to the digital subspace projection beamformer of
(3) and very close to the digital maximum SINR beamformer of (6). The
blue maximum directivity beamformer provides a reference by showing the
optimization criteria for SNR without RFI.
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Fig. 4. The SINR map over scan angles of the main beam. The scanned
SINR performance of the analog TTD and Hadamard projection method is
identical to the subspace projection beamformer and nearly identical to the
max SINR beamformer. The difference between the red and blue curves show
the recoverable synthesis imaging space around the null by utilizing the analog
TTD and Hadamard projection method. Only 1.550 GHz SINR scans are
shown because they are typical of the 1.395 and 1.705 GHz behavior.

to imperfect TTD technology. If the imperfections associated
with analog performance are found to be unacceptable for
a given application, the reader may consider an all digital
implementation of the algorithm discussed briefly in the last
section.

A. Effect of Loss
Losses introduced by the analog front-end impact the system

noise temperature and sensitivity of the array receiver. The
signal loss caused by time delayed Hadamard projection
occurs after amplification by first stage low noise amplifiers. If
the gain and noise budget of the front end analog signal chains
before the time delay circuit is properly designed, loss in the
TTD and Hadamard components will have a negligible effect
on the system noise temperature and sensitivity. The dynamic
range of the front end receiver must be adequate to handle
RFI before it is removed in the Hadamard block.
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Unbalanced loss between adjacent receiver chains is differ-
ent. It manifests as a distorting signal through the Hadamard
projection that requires filtering by the downstream beam-
former. To illustrate, consider an array response vector v
corresponding to an undesirable RFI source. Let unbalanced
losses be modeled by perturbation of the array response vector
by the vector g. After applying the TTD tuned to v and
the Hadamard projection operator there will be a remaining
signal HpD(v + g) = HpDg. This signal is only zero when
g is filled with the same value. The beamformer filters all
components of g that are common to each port and passes the
variations downstream. The variation signal is rank 1, and the
downstream beamformer will need to adjust to remove it. This
will impact the quality of obtainable beam patterns depended
the orthogonality of g with the SOI array response vector.

Unequal balancing inside the Hadamard projection operator
can manifest as a higher rank signal distortion. Consider the
case where each element of Hp were perturbed by a complex
random matrix G filled with independent terms taken from a
circularly symmetric Gaussian distribution with variance σ2.
An indicator of lost orthogonality between ports can be seen in
the off-diagonal terms of the matrix R = (H + G)

H
(H + G).

The proportional amount of power leaked from the common
mode port into the other ports can be estimated by the ratio
r of the average magnitude in the off diagonal terms of R to
the average magnitude along the diagonal of R. After studying
numerical sweeps of N and σ, this ratio is approximately given
by the empirical expression r = σ/

√
N . For example, let

σ = 0.1 (10% standard deviation), with N = 64 antennas, the
percent of common mode leakage is about r = 1.25%.

B. Limited Time Delay Resolution

The analog RFI cancellation can be proven to work exactly
with perfect resolution TTD stages and exact a priori array
response vectors. In practice, quantized TTD states introduce
rounding errors that tend to relax the zero-forcing null depth.
The TTD weight quantization effect was estimated with a
numerical simulation of the same 64 element array with a
null at 10 degrees θ.

Figure 5 shows how TTD resolution affects interference
rejection and SNR across bandwidth. These metrics are com-
puted on the same beam as Figure 2. The left scale shows the
interference rejection ratio (IRR) which is the interference to
noise ratio (INR) out of the Hadamard projection on all ports
divided by the INR of the strongest INR port on the input.
This quantity is related to null depth. The IRR is linear in
log scale with the precision of the TTD weights. This shows
how an increasingly perfect TTD approaches the zero forcing
condition that yields an infinitely deep null.

The right scale shows array gain for the signal of interest.
Array gain is defined to be the SNR at the output ports divided
by the SNR at one input port. RFI power is not included
in array gain. For 64 elements, the array gain is expected
to be 10 log10(64) = 18.06 dB. Achieving less array gain
than this curve indicates SNR loss across the bandwidth of
the beamformer. The TTD and Hadamard projection shows
less than 1 dB of SNR loss. This loss is identical to that
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Fig. 5. Array gain and interferance rejection ratio vs TTD resolution for the
beam in Figure

2. The resolution of TTD directly influences null depth
across bandwidth (left scale) while providing consistent array
gain (right scale) given sufficient TTD precision. The array

gain within 1 dB of the limit of 18.06 dB is typical of a
bank of subspace projection beamformers.

the loss of a bank of narrow band digital subspace projection
beamformers. The plot show how the array gain saturates as
once a sufficient amount of TTD resolution is applied.

Using the Hadamard projection, there will always be some
loss in the array gain because the common mode port is
discarded and N − 1 ports are left for beamforming. This
predicts that loss in array gain will always be at least
10 log10 [(N − 1)/N ] dB. For N = 64, this value is -0.068
dB. This bound is often exceeded by subspace projection
beamformers because degrees of freedom are allocated to zero
forcing then null depth and the expense of main lobe quality.

C. Time Delay Calibration

Physical circuits have many confounding factors that make
exact calculation of the array response vectors uncertain. Both
sources of error require a calibration procedure to estimate
optimal TTD weights to force the RFI as low as possible.
Two calibration algorithms for determining the TTD weight-
ing vectors are proposed here. Both algorithms rely on the
assumption that the RFI is significantly stronger than the signal
of interest. These approaches utilize all of the ports of a full
Hadamard transform including the common mode top row.
This gives a compelling reason to maintain the full Hadamard
transformation with the top common mode row in the analog
circuitry when the dynamic range of the analog to digital
conversion allows.

1) Power Ratio Heuristic Search: A feedback loop is
used with a heuristic problem solver to seek a solution
that minimizes the ratio of interferance power to signal of
interest power. If the RFI power is strong, the optimization
space should be highly convex and amenable to quasi-gradient
techniques.
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1) Sample data emerging from all the ports of the full rank
Hadamard transform.

2) Integrate the power observed from the top row common
mode port. Call this P1.

3) Integrate the power observed from all other rows. Call
this P2.

4) Apply a heuristic search such as simulated annealing or
a genetic algorithm to methodically seek TTD weights
that minimize the observed ratio P2/P1. Minimizing this
ratio forces the TTD stages to align with to the strong
RFI.

2) Steering Vector Estimation: This technique is based on
(4) and (2). It seeks weights that cancel the dominant array
response vector of the received signal.

1) Let the N × M matrix V represent M discrete time
voltage signals from N antennas.

2) Reset the TTD weights to bypass mode (common delay)
D = I.

3) Sample the ADC voltages and time filter the ADC codes
with a mixer and baseband filter operator Fω on each
time series for a narrow frequency channel ω of interest.
Call these baseband voltages the matrix Vω = Fω(IHV).

4) Compute the sample port correlation matrix of the
baseband voltages R = VωVω

H.
5) Select the largest eigenvector s from the eiganvector

decomposition of R.
6) Now the estimated TTD weights should be set τ [n] =

−ω−1 arg (s) + b following the definition in (2). These
weights should now cancel the dominant RFI array
response vector.

Figure 6 shows directivity patterns obtained on the same
array after using a numerical simulation of each calibration
strategy to estimate the TTD weights. The power ratio heuristic
search is less robust in convergence than the steering vector
estimator. The residual error from the estimation tends to
relax the null depth and raise the side lobe levels compared
to the ideal subspace projection (time delayed Hadamard)
beamformer.

D. Combined Analog and Digital Cancellation

The role of analog time delayed Hadamard projection
method is to place wideband response nulls before the dig-
ital signal processing. This frees up computational power in
the digital domain for other operations, such as suppressing
residual narrow band interference.

As analog to digital converter (ADC) technology continues
to improve in sample rate and resolution, wide-dynamic range
cancellation may become more practical in the digital domain.
With finite time delay resolution, some RFI will leak through
the Hadamard projection. If the RFI level is low enough that
the common mode signal in the full Hadamard transformation
can be sampled, further interference cancellation could be done
in digital processing after the Hadamard transformation using
the common mode port as an estimator for the RFI. In the case
of multiple interferers, the TTD and Hadamard projection can
be used to suppress one dominant interferer, and the remainder
cancelled in digital processing using (7) with the interferer
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Fig. 6. The residual estimation error obtained after a calibration procedure
tends to weaken the null depth and raise side lobe levels. This suggest the
effects of non-ideal TTD components will tend to weaken the array pattern.

statistics included in the denominator. In a practical system,
temperature drift and other sources of variation mean the TTD
calibration may drift. In this case it may be required to use the
common mode feedback to adjust the TTD stages and maintain
deep nulls on RFI sources.

E. All Digital Implementation

For some situations the native errors in the analog circuitry
are intolerable, and a full digital implementation is preferred.
With the ever increasing quality of analog converter technol-
ogy, and the growing capabilities of real time signal processing
using FPGAs and GPUs, a real time implementation of the
TTD and Hadamard projection can be accomplished compu-
tationally. As proved earlier, this method is an alternative im-
plementation of computational wideband subspace projection.
An example of a possible digital signal processing architecture
for 16 ports is shown in Figure 7.

The linear logarithmic efficiency of traditional channeliza-
tion stages using the Fast Fourrier Transform manifests in a
similar manner using the Fast Hadamard Transform across the
full bandwidth. Readers familiar with the Fast Fourier Trans-
form will recognize the similarity of the butterfly steps in the
Fast Hadamard Transform. The butterfly operations of the Fast
Hadamard Transform can be scheduled efficiently using radix
4 Hadamard kernels (Hadamard matrices of size 4 following
the Sylvester construction pattern). The ±1 structure can be
mapped to add/subtract circuits. Several layers of kernels can
be chained together to provide an efficient construction of
full Hadamard transform (in both analog and digital circuits).
Readers familiar with the popular digital circuits implementing
the Fast Fourier Transform will be able to see how similar
topologies can be used to implement the Fast Hadamard
Transform, but without multiplications. Methods of efficiently
combining both transforms have been explored in the literature
[12] and may prove effective for efficiently combining the first
and second stage beamformers.
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Fig. 7. Example digital architecture of a 16 port implementation of the time
delayed Hadamard beamformer and traditional beamforming bank.

Any time delay operation has whole sample delay part plus
a fractional delay part with respect to the sample period.
The whole part is easily computed via a buffer index shift.
The fractional part must be computed by some interpolation
scheme between observed sample points. There are many
kinds of interpolation algorithms with varying degrees of
accuracy and real time computational complexity depending
on the SOI bandwidth and noise level. The interested reader
may consult the digital signal processing literature for more
details on real time signal interpolation. Practical interpolation
schemes may require buffering up samples before providing
valid input after some latency. This can be modeled by
increasing the value of b in (2) to account for the latency.

V. CONCLUSION

This paper has shown that true time delays and Hadamard
matrix operators shown in Figure 1 are capable of nulling
broadband RFI in aperture arrays from a given spatial di-
rection. It was proven this technique is an isomorphism to
the subspace projection beamformer that can easily be imple-
mented in analog circuitry. Unlike other analog beamforming
schemes, this method preserves the information to allow
synthesis imaging over the full field of view with a secondary
digital reconstruction beamformer. The combination allows the
ability to recover dynamic range in high sensitivity receivers
degraded by RFI. The numerical simulations suggest good
performance can be achieved pending the quality of the TTD
implementation.

The next step in studying this beamformer is a hardware
demonstration based on the results in [3], [4]. This will
be reported in a future paper. Applications include protec-
tion against co-channel interferers in communication systems,
static clutter removal in radar, and reduction of blanked
observation due to RFI in passive sensing systems. In view
of its structural simplicity, it may be possible to implement
the time delayed Hadamard projection method in the digital
domain in a way that is more efficient than a bank of traditional
narrow band beamformers.
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