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Machine learning of independent conservation laws through neural deflation
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We introduce a methodology for seeking conservation laws within a Hamiltonian dynamical system, which
we term “neural deflation.” Inspired by deflation methods for steady states of dynamical systems, we propose
to iteratively train a number of neural networks to minimize a regularized loss function accounting for the
necessity of conserved quantities to be in involution and enforcing functional independence thereof consistently
in the infinite-sample limit. The method is applied to a series of integrable and nonintegrable lattice differential-
difference equations. In the former, the predicted number of conservation laws extensively grows with the number
of degrees of freedom, while for the latter, it generically stops at a threshold related to the number of conserved
quantities in the system. This data-driven tool could prove valuable in assessing a model’s conserved quantities
and its potential integrability.
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Introduction. The topic of identification of conservation
laws and of the potential integrability of a Hamiltonian
dynamical system has been central to both classical [1,2],
and quantum systems. In particular, it is expected for a d-
dimensional dynamical system that there will generically exist
some d/2 Poisson-commuting (i.e., in involution) conserved
quantities to ensure integrability in the Liouville sense. Since
the relevant settings arise in a wide variety of physical appli-
cations including, but not limited to, optical, atomic, material,
fluid, and plasma models [3–7], such features remain a central
and widely studied topic.

This theme has a time-honored history and there have
been numerous methods, including ones based on the Painlevé
property [8], as well as ones based on Lyapunov exponents
(see, e.g., Refs. [9–11] for an associated recent discussion).
Nevertheless, over the past few years, there has been an exten-
sive effort in this direction based on the premise of data-driven
methods, enabling the identification of conservation laws via
a variety of machine-learning techniques. Relevant method-
ologies have extended from employing specialized neural
architectures to designing customized loss functions aimed at
learning symmetries [12,13] and conservation laws [14–19]
within a given dynamical system. They also span the AI
Poincaré approach learning conservation laws from trajecto-
ries [20] and discovering hidden symmetries [21] to the most
recent and state-of-the-art approach of learning such conser-
vation laws from the system’s (differential) equations [22].
This wide range of efforts indicates the significance and po-
tential of such methods, despite possible limitations. Indeed,
we are not aware of methods proposed so far that are able
to detect the progressive increase of conservation laws, es-
pecially when the number of degrees of freedom increases.
We are not familiar with efforts to detect the integrability of
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the associated system for a large number of degrees of free-
dom. Indeed, when used for integrable systems, the methods
typically identify a few conservation laws [19,22], which are
argued to be relevant (e.g., physically).

Our aim in the present Letter is to present a method for
identifying the number of conservation laws of a system,
with a view to large(r) numbers of differential equations. We
are motivated by the notion of deflation for steady states of
partial differential equations [23], whereby once a stationary
state has been identified, subsequent iteration steps weigh
against proximity to such a state, thus discovering additional
ones. Here, we devise a data-driven methodology in which
the regularized loss function accounts for two central features
(in our effort to seek additional conservation laws). First,
these must be in involution with earlier ones, and furthermore,
while they are not required to ensure pointwise orthogonality

in the gradients (as in Ref. [22]), they do need to enforce
linear independence in the gradients from earlier ones to
achieve functional independence. Iteratively accounting for
these features, we showcase that not only can we capture
the appropriate number of conservation laws for systems
previously benchmarked such as isotropic and anisotropic
oscillators and the three-body problem, we are also able to
do so for fundamental differential-difference integrable and
nonintegrable systems, such as the (integrable) Toda lattice
[24] and (the associated nonintegrable, famous) Fermi-Pasta-
Ulam-Tsingou system [25] and similarly for the integrable
Calogero model [26,27], as well as the discrete sine-Gordon
equation [5] (of wide physical relevance to coupled torsion
pendula and superconducting Josephson junctions).

Method. Consider a d-dimensional Hamiltonian system,

dx/dt = f (x), f (x) = J (x)∇H (x), x ∈ D ⊂ R
d , (1)

where H : D → R is the Hamiltonian function, and J (x) ∈

R
d×d is an antisymmetric matrix. The Poisson bracket for two

smooth functions F and G on D takes the form

{F, G}(x) = ∇F (x)T J (x)∇G(x), x ∈ D. (2)
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FIG. 1. The validation losses {Lk (θ∗
k ;V )}d

k=1 of the conserved quantities {Ik (·; θ∗
k )}d

k=1 trained using Algorithm 1 (solid lines) for three
integrable Hamiltonian systems. A significant jump in loss occurs at k = d/2 + 1 in each case, indicating accurate prediction of integrability.
This trend holds across different choices of deflation strength (α = 1.0 or α = 0.5), with a more pronounced increase in validation loss
observed for a larger deflation strength. In comparison, the dashed lines show the validation losses of the conservation laws learned using
Eq. (4) as proposed in Ref. [22]. These losses exhibit a similar magnitude across the d learned conservation laws, indicating the failure of
the method in learning independent and Poisson-commuting conserved quantities. (a) Isotropic harmonic oscillator. (b) Anisotropic harmonic
oscillator. (c) 2D Three-body problem.

A conservation law of system (1) is characterized by the
vanishing of the Poisson bracket with H . More precisely, a
function I : D → R is a conservation law if

{I, H}(x) = f (x) · ∇I (x) = 0, ∀x ∈ D, (3)

where f (x) is given by Eq. (1). A collection of K conservation
laws {Ik}k∈[K], where [K] := {1, . . . , K}, is said to be function-

ally independent if their gradients {∇Ik (x)}k∈[K] are linearly

independent as vectors in R
d for all x ∈ D. Furthermore, they

are said to be Poisson commuting, or in involution, if their pair-
wise Poisson bracket vanishes, i.e., for all j �= k, {I j, Ik} = 0.

Our goal is to use machine learning to obtain a maximal

set of functionally independent, Poisson-commuting conser-
vation laws {Ik (x)}d0

k=1. If d0 = d/2, then the Hamiltonian
system is said to be integrable (in the Liouville sense.) It is
worth noting that the number d0 � d/2 is generally unknown
a priori, and the difficulty is to determine d0 in a principled
data-driven manner.

A recent attempt to achieve this was proposed by Liu
et al. [22], where they considered the canonical orthogonality
condition (3), with a symplectic matrix J . Specifically, they
randomly sample from D ⊂ R

d a training set T and a vali-
dation set V , and parametrize each conserved quantity Ik (x)
using a neural network Ik (x; θk ), where θk are the trainable
network parameters. Since d0 is generally unknown, they si-
multaneously train a total of d neural networks {Ik (x; θk )}d

k=1
to minimize the regularized loss function

L(θ1, . . . , θd ; T ) :=
1

d

d∑

k=1

1

|T |

∑

x∈T

�conserv[θk; x]

+ λ
2

d (d − 1)

∑

k �=l

1

|T |

∑

x∈T

R[θk, θl ; x].

(4)

The first term in (4) is the mean of the conservation loss for
each Ik based on the condition (3), i.e.,

�conserv[θk; x] := |̂f (x) · ∇̂Ik (x; θk )|2, (5)

where f̂ (x) and ∇̂Ik (x; θk ) are, respectively, the l2-normalized
vectors of f (x) and ∇Ik (x; θk ). The second term in (4) is a
regularization to encourage functional independence among
{Ik (·; θk )}d

k=1 by enforcing pointwise orthogonality among the
gradients {∇Ik (·; θk )}d

k=1,

R[θk, θl ; x] := |∇̂Ik (x; θk ) · ∇̂Il (x; θl )|
2. (6)

Once {Ik (x; θ∗
k )}d

k=1 are trained, they consider the following
Jacobian matrices on the validation set V ,

[∇I1(x; θ∗
1 ), . . . ,∇Id (x; θ∗

d )] ∈ R
d×d , x ∈ V, (7)

and a maximal functionally independent subset of the learned
{Ik (x; θ∗

k )}d
k=1 is obtained by identifying the largest set of

columns K ⊂ {1, . . . , d} from the above matrices that are
linearly independent for all x ∈ V . The cardinality |K| is then
declared as the number d0 of the independent conservation
laws of the system.

Although the above method offers a rough estimation
of the independent conservation laws {Ik}

d0
k=1 and their to-

tal number d0, it suffers from several limitations. First, the
regularization term in (4) encourages pointwise orthogonality

among the gradients {∇Ik (x; θk )}d
k=1. However, it is important

to note that functional independence of {Ik (·; θk )}d
k=1 merely

implies linearly independent gradients, which are generally
not orthogonal. Therefore, the loss function (4) is inconsis-

tent in the sense that it does not vanish even if we plug
into (4) the ground-truth set of d0 independent conservation
laws {Ik (x)}d0

k=1. As a result, one cannot declare with high
confidence that the trained networks are indeed independent
conservation laws simply by examining the magnitude of the
loss (4) on the validation set. Second, Eq. (4) does not require
{Ik (·; θk )}d

k=1 to be in involution. Consequently, the number
of independent conservation laws detected in Ref. [22] is
sometimes much larger than d/2, whereas there should be at

most d/2 in involution. Refer to Fig. 1 for illustration; details
can be found in the numerical experiments section.

Neural deflation method. In light of the above issues, we
propose a neural deflation method to iteratively learn each
Ik (·; θk ) in a principled and interpretable manner, for a general
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Hamiltonian system (1). The benefit of our method is that the
loss function for each Ik (·; θk ) is close to zero if and only if
there exist at least k independent conservation laws in invo-
lution. Therefore, the number of the conservation laws can
be determined by identifying the index k ∈ {1, . . . , d} after
which there is a significant jump in the validation loss.

Specifically, to learn the first conservation law I1(·; θ1), we
minimize the following loss function L1(θ1; T ) based solely
on the orthogonality condition (3),

L1(θ1; T ) :=
1

|T |

∑

x∈T

|̂f (x) · ∇̂I1(x; θ1)|2. (8)

In fact, since the Hamiltonian H is always a conserved quan-
tity for (1), we can in principle directly set I1(x) to be H (x)
without parametrizing it as a neural network. However, train-
ing I1(x; θ1) based on (8) can provide us a gauge on the
magnitude of the training/validation loss in order to learn and
identify the subsequent conserved quantities.

We then inductively learn a sequence of conservation laws
as follows. Assuming we have already obtained K − 1 con-
served quantities {Ik (x; θ∗

k )}K−1
k=1 , where K � 2, we train the

K th conservation law IK (x; θK ) using the following deflated

loss function LK (θK ; T ) while fixing the learned parameters
{θ∗

k}
K−1
k=1 of the previous networks,

LK (θK ; T ) :=
1

|T |

∑

x∈T

�conserv[θK ; x] +
∑K−1

k=1 �inv[θ∗
k , θK ; x]

K|�ind[θK |θ∗
1, . . . , θ

∗
K−1; x]|α

,

(9)

where

�inv[θ∗
k , θK ; x] := |{Ik (·; θ∗

k ), IK (·; θK )}(x)|2

ensures that IK (·; θK ) is in involution with all previously
learned {Ik (·; θ∗

k )}K−1
k=1 , and the loss is divided by a factor K due

to having K terms in total in the numerator. The denominator
is a deflation factor that enforces functional independence

between IK (·; θK ) and {Ik (·; θ∗
k )}K−1

k=1 ; more specifically,

�ind[θ∗
K |θ1, . . . , θK−1; x]

:=
∥∥∥Proj

span{∇̂Ik (x;θ∗
k )}

⊥

k∈[K−1]

∇̂IK (x; θK )
∥∥∥

2
, (10)

where Projspan{∇̂Ik (x;θ∗
k )}⊥

k∈[K−1]
∇̂IK (x; θK ) denotes the projec-

tion of ∇̂IK (x; θK ) onto the orthogonal complement of the
subspace in R

d spanned by {∇̂Ik (x; θ∗
k )}k∈[K−1]. This denom-

inator introduces a potential singularity in the loss function,
penalizing the lack of independence between ∇̂IK (x; θK )
and {∇̂Ik (x; θ∗

k )}k∈[K−1]. Finally, the deflation power α > 0
serves as a hyperparameter adjusting the level of the con-
straint on functional independence between IK (·; θK ) and
{Ik (·; θ∗

k )}k∈[K−1]. See Fig. 2 for a visual illustration of the
learning framework.

Compared to the model (4) in Ref. [22], our model (9)
has the clear advantage of being consistent in the infinite-
sample limit. More specifically, assuming that the previously
obtained {Ik (·; θ∗

k )}K−1
k=1 perfectly parametrize a ground-truth

set of independent conservation laws in involution and that
the empirical sums 1

|T |

∑
x∈T [· · · ] are replaced by the ex-

pectations Ex∼μ[· · · ] for some probability measure μ over
D ⊂ R

d , then IK (·; θ∗
K ) achieves a zero loss in the infinite

FIG. 2. Visual illustration of the learning framework. Previously
learned conservation laws {Ik (·; θ∗

k )}k∈[K−1] are fixed when training
the K th conserved quantity IK (·; θK ). The loss function LK (θK ;T )
[Eq. (9)] is obtained by combining each loss over the training set T .

limit if and only if {Ik (·; θ∗
k )}K

k=1 is a set of K independent
Poisson-commuting conservation laws. Interested readers are
referred to the Supplemental Material [28] for a rigorous proof
of this claim.

We repeat the process until we observe a significant in-
crease in the loss function LK (θ∗

K ;V ) on the validation set
V , and declare, at this point, {Ik (·; θ∗

k )}K−1
k=1 as a maximal

set of d0 = K − 1 independent Poisson-commuting conser-
vation laws of the system. Our method is summarized in
Algorithm 1.

Numerical experiments. We present the results of our al-
gorithm in learning independent conservation laws of the 2D
isotropic and anisotropic harmonic oscillators, the three-body
problem, the Toda and the Fermi-Pasta-Ulam (FPUT) lat-
tices, the discrete sine-Gordon system, and the Calogero’s
system. Mathematical and numerical details on these systems
are provided in the Supplemental Material [28] (see also
Refs. [29–31] therein). The code necessary to replicate our
results can be accessed online [32].

The 2D isotropic/anisotropic oscillators and the three-body

examples. All three systems are fully integrable in R
d , where

d = 4 and 12 for the harmonic oscillators and the three-body
systems, respectively [22]. However, we pretend to be agnos-
tic about their integrability, and use Algorithm 1 to obtain a
maximal set of functionally independent Poisson-commuting
conservation laws.

We use a four-layer feedforward neural network with sig-
moid linear unit (SiLU) activations and 400 neurons per layer

Algorithm 1: Neural deflation method.
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FIG. 3. The validation losses {Lk (θ∗
k ;V )}d

k=1 of the conserved quantities {Ik (·; θ∗
k )}d

k=1 trained by Algorithm 1 for the integrable Toda lattice
and the nonintegrable FPUT system with varying degrees of freedom d = 2N , where N is the number of lattice sites. For the Toda system,
the validation loss consistently exhibits a significant jump at k = d/2 + 1 for varying degrees of freedom d , whereas the jump occurs at k = 2
for the FPUT systems. See the section on numerical experiments for a detailed explanation of the results. (a) Number of lattice sites = 6.
(b) Number of lattice sites = 8. (c) Number of lattice sites = 10.

to parametrize each conserved quantity. To train each network,
we use the ADAM optimizer [33] for 10 000 iterations with a
batch size of 500. We randomly sample 200 000 phase points
from the cell [−1000, 1000]d and divide them equally be-
tween the training set T and the validation set V . We compare
the results of setting the deflation power α in (9) to either 1.0
or 0.5.

Figure 1 displays the validation losses {Lk (θ∗
k ;V )}d

k=1 of
the learned conserved quantities {Ik (·; θ∗

k )}d
k=1 trained using

Algorithm 1. For each system, a substantial increase (of
several orders of magnitude) in the validation loss occurs
precisely at k = d/2 + 1, which indicates that our algorithm
has accurately predicted the integrability of the systems (cf.
the last line of Algorithm 1), and successfully learned a maxi-
mal set of independent conservation laws in involution. The
numerical results are consistent across different choices of
deflation strength, although a larger α leads to a more signifi-
cant increase in validation loss at k = d/2 + 1. In comparison,
we additionally present the validation losses of the conserved
quantities learned using Eq. (4) as proposed in Ref. [22]. It is
evident that these losses exhibit a similar magnitude across
the d learned conservation laws. This observation suggests
that their approach is not capable of identifying the number of
independent and Poisson-commuting conservation laws within
the system.

It is important to note that our algorithm’s learned conser-
vation laws are not expected to demonstrate substantial linear

correlations with well-established conserved quantities, such
as the conservation of momentum. This is due to the fact that
these laws can encompass any nonlinear functions derived
from those quantities. Further discussion of this aspect can
be found in the Supplemental Material [28]. Nevertheless, we
do note that this is an important topic for further study.

The Toda lattice and the FPUT system. We consider
the integrable Toda lattice and the associated nonintegrable
FPUT system with different degrees of freedom d = 2N ,
where N is the number of the lattice sites ranging from
5 to 10. We use a similar experimental setup, but sample
the phase points from [−50, 50]d , and the network width

is increased from 400 to 800. Deflation strength was only
set to α = 1.0 based on the previous experiment, and the
results are shown in Fig. 3. For the Toda lattice, the val-
idation loss again significantly increases at k = d/2 + 1
[although the jump is not as “sharp”, e.g., for Fig. 3(b)
at k = d/2]. This implies once again that our method ac-
curately predicts the integrability of the Toda system and
learns all the independent conservation laws. Conversely,
for the FPUT system, the validation loss consistently jumps
at k = 2 for varying d . This means our algorithm accu-
rately predicts the nonintegrability of the system and that
the number of independent conservation laws remains con-
stant across different degrees of freedom d . However, we
note that the FPUT system actually has d0 = 2 independent
conservation laws (i.e., the momentum and H) instead of
the predicted (k − 1) = 1 learned by our algorithm. Nonethe-
less, the distinct behavior of the loss functions between
the two systems with varying degrees of freedom high-
lights the potential of our algorithm in evaluating a system’s
integrability.

The discrete sine-Gordon system and Calogero’s system.

Finally, we apply our algorithm to the nonintegrable discrete
sine-Gordon system and the integrable Calogero’s system
with varying degrees of freedom d . Even though these two
systems are not related, we plot the results in the same fig-
ures (Fig. 4) to highlight the distinct behavior of the validation
losses for an integrable versus a nonintegrable system. The
numerical setup and neural architectures are exactly the same
as the previous experiment. Similarly, for the (integrable)
Calogero’s system, the validation loss consistently exhibits a
substantial increase at k = d/2 + 1 with varying degrees of
freedom d . In contrast, for the (nonintegrable) sine-Gordon
system, the loss always jumps at k = 2, which is consis-
tent with the fact that the underlying system only has one

independent conservation law (H), regardless of the lattice
size.

Conclusions and future challenges. In the present Letter
we have revisited the extensively studied in recent years topic
of identifying conservation laws and, ultimately, gauging the
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(a) (b) (c)

FIG. 4. The validation losses {Lk (θ∗
k ;V )}d

k=1 of the conserved quantities {Ik (·; θ∗
k )}d

k=1 trained by Algorithm 1 for the nonintegrable discrete
sine-Gordon system and the integrable Calogero’s system with varying degrees of freedoms d = 2N , where N is the number of lattice sites. For
the Calogero’s system, the validation loss consistently exhibits a significant jump at k = d/2 + 1 for varying degrees of freedom d , whereas
the jump occurs at k = 2 for the sine-Gordon systems. See the section on numerical experiments for a detailed explanation of the results.
(a) Number of lattice sites = 6. (b) Number of lattice sites = 8. (c) Number of lattice sites = 10.

potential integrability of a Hamiltonian model. The main
contribution of the present Letter lies in the introduction of
the technique of neural deflation. Motivated by recent de-
velopments in numerical bifurcation analysis, we propose a
technique whose regularized loss function involves the involu-
tion required of the integrals of the motion and the imposition,
motivated by deflation, of their linear independence. We have
shown that the technique works in “standard,” previously used
examples such as the isotropic and anisotropic harmonic oscil-
lator and the three-body problem [22]. Importantly, though, it
successfully enables the consideration of higher-dimensional
lattice nonlinear dynamical systems of both integrable (Toda,
Calogero) and nonintegrable (FPUT, discrete sine-Gordon)
type. In all the systems examined, we saw a distinctive in-
crease (jump) of the loss function in the vicinity of the
expected number (d0 or just “a couple”) of independent con-
servation laws.

Admittedly, this direction of research warrants further ef-
forts. Examining numerous additional examples, including
continuum ones, will be informative towards features such
as the “sharpness” of the jump and the potential issues with
capturing all the associated conservation laws (cf. the FPUT
example). Another important direction is that of associating
the identified quantities (and the hypersurfaces they represent)
via symbolic regression to the actual conserved quantities
known physically, or identified via integrability techniques in
the systems of interest. Studies along this vein are currently in
progress and will be reported in future work.
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