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Abstract—Fuzzing applies input mutations iteratively with the
only goal of finding more bugs, resulting in synthetic tests that
tend to lack realism. Big data analytics are expected to ingest
real-world data as input. Therefore, when synthetic test data are
not easily comprehensible, they are less likely to facilitate the
downstream task of fixing errors. Our position is that fuzzing in
this domain must achieve both high naturalness and high code
coverage. We propose a new natural synthetic test generation
tool for big data analytics, called NATURALFUZZ. It generates
both semi-structured and structured data with corresponding
semantics such as ‘zipcode’ and ‘age.’ The key insights behind
NATURALFUZZ are two-fold. First, though existing test data may
be small and lack coverage, we can grow this data to increase
code coverage. Second, we can strategically mix constituent parts
across different rows and columns to construct new realistic
synthetic data by leveraging fine-grained data provenance.

On commercial big data application benchmarks, NATU-
RALFUZZ achieves an additional 19.9% coverage and detects
1.9x more faults than a machine learning-based synthetic data
generator (SDV) when generating comparably sized inputs. This
is because an ML-based synthetic data generator does not
consider which code branches are exercised by which input
rows from which tables, while NATURALFUZZ is able to select
input rows that have a high potential to increase code coverage
and mutate the selected data towards unseen, new program
behavior. NATURALFUZZ’s test data is more realistic than the
test data generated by two baseline fuzzers (BigFuzz and Jazzer),
while increasing code coverage and fault detection potential.
NATURALFUZZ is the first fuzzing methodology with three
benefits: (1) exclusively generate natural inputs, (2) fuzz multiple
input sources simultaneously, and (3) find deeper semantics faults.

I. INTRODUCTION

Data-Intensive Scalable Computing (DISC) applications are
becoming increasingly popular for processing large amounts
of data. Frameworks like Hadoop MapReduce [1] and Apache
Spark [2] provide APIs to the developers that allow them
to manipulate the data at scale. These frameworks distribute
the data and application on thousands of machines in a
cluster so each machine can work on an independent chunk
of data in parallel. Despite the widespread usage of such
applications, automated testing remains a major challenge due
to unstructured natural inputs coupled with the scale of the
data and the application’s distributed nature.

Fuzzing is a prevalent automated testing technique. It repet-
itively tests a program with randomly mutated data to expose
software faults [3], [4], [5], [6], [7], [8], [9], [10], [11]. Nearly
all fuzzing techniques have one objective: achieve high code
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coverage as fast as possible. Every fuzzing iteration meets
this objective by aggressively mutating the seed input. Due to
the emphasis on incremental input mutation, fuzzer-generated
inputs are often unrealistic. In DISC applications, developers
are naturally reluctant to adopt such tests, as they rarely
mimic real-world production data. Prior work on database
(DB) testing noted that unrealistic inputs often fail to satisfy
implicit integrity constraints [12]. Another drawback of fuzzer
generated inputs is that they implicitly prioritize syntactic
faults rather than semantic faults located in deep, hard-to-reach
regions. Albeit rarely, when fuzzing does manage to find a
semantic fault, the developer may find it difficult to fix its
root cause due to lack of readability.

ML-based synthetic data generators such as Synthetic Data
Vault (SDV) [13] could also produce synthetic test data given
a training dataset. However, these tools are not designed for
the purpose of exercising different program paths, suffering
from low coverage. They require an explicit schema or type
information, making it unsuitable for big data analytics that
ingest unstructured or semi-structured data, where each field
is identified on the fly without a predefined type. We quantify
the limitation of using a synthetic data generator for testing
purposes in our experiments (Section 4).

NATURALFUZZ aims to achieve high code coverage while
producing natural inputs. NATURALFUZZ is built on the
insight that existing datasets are themselves a rich resource for
producing natural synthetic inputs. NATURALFUZZ leverages
an interleaving mutation strategy that combines selection and
splicing to generate novel inputs. It first profiles individual
branches and identifies how different regions in existing input
dataset influence branching decisions within a target program.
It then splices out one constituent part from one input region
and injects it into another, creating a brand new input that is
sourced from different parts of the original input. For instance,
if an application analyzes sales in November of 2022, the input
dataset may contain over several years of sales data, making
most of it irrelevant for testing this particular application.

To this end, NATURALFUZZ dynamically profiles
individual rows. It collects the provenance of each
variable used in boolean expressions. For example, for
sales.filter (year == "2022" AND month ==
"Nov"), using fine-grained data provenance, it replaces year
with sales.col (10) and month with sales.col (11)



by tracing these variables to sales’s 10th column and 11th
column respectively. NATURALFUZZ uses this provenance to
identify whether each row in the dataset reflects a true or false
branch evaluation. This branch-level profile is encoded as a
bit vector. Finally, NATURALFUZZ leverages this information
to efficiently identify a subset of input rows that are likely
to explore new, unseen branch coverage. NATURALFUZZ
only needs to run the application with the full data once for
profiling, after which it performs fuzzing locally.

To evaluate NATURALFUZZ, we use a set of eight data-
intensive applications from the TPC-DS benchmark [14]. We
compare our technique against two available baseline tech-
niques: Jazzer [15], a coverage-guided greybox fuzzer for
Java bytecode based on LibFuzzer [16]; and BiGFuzz [4],
a greybox fuzzer for DISC applications. Our evaluation aims
to answer three questions about our fuzzer. Does NATU-
RALFUZZ achieve more coverage than the baselines? Does
NATURALFUZZ detect more faults? Are the inputs generated
by NATURALFUZZ more natural? In order to evaluate the fault
detection capability of the techniques, we use mutation testing.
We inject faults into the benchmark programs by flipping
binary operators to create mutant programs and compare
outputs against the reference program.

NATURALFUZZ achieves an average of 77.6% coverage,
across programs adapted from commercial benchmarks in data
analytics, which is 19.9% more than BiGFUzz and 46.5%
more than JAZZER. It also finds 11.3x more faults than
JAZZER and 1.7x more faults than BIGFUZZ. In addition to
outperforming baselines, NATURALFUZZ adheres to the strict
constraints of generating only inputs that are natural, which
we define to be inputs that are likely to be observed in the
original datasets. We use perplexity [17], a well-known metric
in the language modeling literature to quantify the naturalness
of inputs generated by all tools. We also compare our tool
against a state-of-the-art machine learning-based synthetic data
generator and compare the feasibility of such a tool for natural
test generation compared to NATURALFUZZ.

The contributions of our work are summarized below:

o We are the first to incorporate the notion of naturalness
and realism into fuzzer-generated data without sacrificing
coverage and fault detection potential.

o Borrowing insights from the machine learning commu-
nity, we use language modeling to quantify the natural-
ness of inputs generated by our technique and compare
it to SDV, a synthetic data generator.

o We develop novel interleaving mutations that can gener-
ate novel, yet natural inputs. We quantify the naturalness
of our inputs relative to baselines using a well-known
metric in the natural language processing literature.

e« We implement our technique in a tool called NATU-
RALFUZZ. NATURALFUZZ is developed in Scala for
Apache Spark and its key idea generalizes to other big
data analytics that ingest unstructured or semi-structured
data. We make our code and data available at https:
//github.com/SEED- VT/NaturalFuzz.git

dates.csv

store_sales.csv |}

date_sk,year,month,day,holiday
2415326,1999,11,23,Y
2415327,1989,11,24,N

ss_item_sk,ext_price,discount,sold_date_sk

pemsy  14386,387.31,5.03,2451181

14386,387.31,5.03,2451181

v

FILTER
month == 11

|

item.csv

i_item_sk,brand_id,brand,manufact_id
770,1002001, importoamalg #1,apple
771,1002001, scholarunivamalg #7,dell

JOIN
date_sk == sold_date_sk

!

JOIN

ss_item_sk == i_item_sk

!

FILTER
manufact_id == “apple”

¥

incorrect!

REDUCE BY KEY
SUM: {ext_price+discount}
KEY: year,brand_id,brand

1998,9013003, exportiunivamalg #3,2329.48 &
1998,4004001,edu packedu pack #1,1655.33 A
1998,4004001,edu packedu pack #1,1655.33 A
1998,4004001,edu packedu pack #1,1655.33 A

Fig. 1: Dataflow graph of a program that computes the total
sales price of items from a particular manufacturer for each
year. The + operator in the reduceByKey should be a —
and is incorrect, leading to incorrect values in the output.

II. MOTIVATING EXAMPLE

To motivate realistic input generation, we discuss Query
3 from the TPC-DS suite, a commercial benchmark used to
measure the performance of decision support queries.

TPC-DS Query 3 finds the total revenue generated in
November by all item brands of a particular manufacturer
for a given store. Figure 1 illustrates the dataflow graph
of this query with relevant operators. The query first reads
data from three CSV (comma-separated) datasets. Dataset
dates contains information on sales-related characteristics
about each day, e.g., which quarter the date belongs to, or
whether a day immediately follows a holiday or not. This
table has 28 columns, although most columns are omitted for
clarity. Dataset store_sales contains each item purchased
at the store. The columns ss_item_sk, ext_price, and
discount represent the serial key of the item sold, the
extended price of the item (i.e., the price after including all
taxes and fees), and the amount of discount applied to the
item. Dataset item contains available items in the store. The
columns brand_id, brand, and manufact_id represent
the brand identifier, the brand name, and the manufacturer
identifier respectively.

The query first applies a filter operation on dates to
select dates in November. Then it performs an inner join
with store_sales using data_sk and sold_date_sk
as the joining columns from dates and store_sales
respectively. This computes all the sales that happened in
November of every year. Next, the program filters item to
obtain only the items belonging to the specified manufacturer
identifier such as apple. The resulting data is then combined
with the result of the previous join via another inner join to
obtain sales of products from apple. The resulting data is
then reduced using reduceByKey that adds ext_price
and discount. The operator uses brand and year as the key.
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(c) Input generated by NaturalFuzz that exposes fault. Mutated columns are highlighted in yellow.

Fig. 2: Sample inputs generated by each tool.

The resulting data contains the total amount earned by the store
selling each item of manufacturer apple every November.
Program Fault. This application is developed with an as-
sumption that discount is a negative number i.e.,, if the
discount was $4, then the column has —4. That’s why the
column discount is added to the sales price instead of
being subtracted, as shown in Figure 1. When some input
rows have a discount column with a positive number, the
test predicate below would fail for some groups (year,
brand_id, brand), since the discounted price is greater
than the original price, as shown in the final output box and
the store_sales.csv box in Figure 1.

def test_oracle(output_row, original_price):

if (output_row.discounted_price > original_price)

false
else true

Limitations of Existing Fuzzers. We run a commercial
fuzzer, JAZZER, on Query 3. Even after 7000 iterations, it
fails to generate any input that reaches the faulty statement in
the user-defined function of reduceByKey. JAZZER gener-
ated tests achieve only 58.8% statement coverage because it
spends over 2000 iterations in failing to produce the required
number of columns across the three datasets. At iteration 2017,
it finally generates the correct number of comma-separated
values. Figure 2-(a) shows JAZZER generated tests. It struggles
to generate any sales data for November with the manufacturer
apple, thus not being able to go beyond the first filter
operation. Alternatively, we run BIGFUZZ, which is a domain-

specific fuzzer for Apache Spark applications. It uses schema-
aware mutations, yet it fails to generate data (shown in Figure
2-(b)) that satisfy the join and filtering constraints, generating
data.

Both JAZZER and BIGFUZzZ generate unintelligible inputs.
JAZZER mostly produces empty columns. Although BIG-
Fuzz’s schema-aware mutations generate correctly formatted
data, they are not natural nor comprehensible to a human.
Column 3 in item. csv should have entries in a date format.
However, this column is treated as a string value, BIGFUZZ
produces "b9S7aA)=2A", which has no resemblance to any
date formatting. Similarly, every column in BIGFUZz has
unintelligible values making the entire input very hard for a
human evaluator to analyze.

Benefits of NATURALFUZZ. NATURALFUZZ on Query 3
achieves 95.3% coverage in the first 13 iterations and ex-
ecutes the faulty statement in the reduceByKey operator.
It outperforms the state-of-the-art and generates real-looking,
meaningful data compared to meaningless inputs by baselines.
The inputs generated by NATURALFUZZ are shown in Figure
2-(c). NATURALFUZZ’s effectiveness as a testing tool is owing
to its ability to detect branches in the source code and associate
each row in the dataset with a set of exercised branches. In this
example, NATURALFUZZ locates explicit branch conditions
in two filter operations on dates and item datasets. It
also detects implicit branches in two join operators. Implicit
branches are dataflow branches that can affect the execution of
downstream code if certain dataflow conditions are not met.
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In the case of join, if neither dataset contains a matching
value in the key column, no data is produced as output, and
dataflow is thus terminated. NATURALFUZZ samples 10 rows
that satisfy each implicit and explicit branch individually.
It performs interleaving mutations using the sampled rows,
randomly slicing out columns from one row and inserting them
into different rows. By iteration 13, it generates the inputs
shown in Figure 1-(c), triggering the faulty code line. The
outcomes generated using these inputs indeed include rows
where test oracle is violated, i.e., , a discounted price is greater
than the original price.

III. APPROACH

There are several technical challenges in synthesizing natu-
ral inputs that also achieve high coverage and fault detection.
Multiple, large-scale inputs to big data analytics exponen-
tially increase the search space of potential targets to apply
mutations. Operators such as join also create co-dependence
constraints on the type and location of input mutations. Since
most mutations are low-level bit or byte-level mutations,
nearly all existing mutation strategies exclude natural inputs.

NATURALFUZZ is a white-box fuzzer that uses novel in-
terleaving input mutations instead of traditional bit/byte level
mutations to strategically create new test inputs that look
natural and achieve high code coverage. NATURALFUZZ first
performs a one-time dynamic path profiling to capture the
application’s implicit and explicit branch predicates using taint
analysis. It then uses these predicates to map every row in
input datasets to a path vector for each row. This information
is then used to minimize the data, keeping only a small
sample of rows against each program branch. In the final steps,
NATURALFUZZ uses its interleaving mutation to generate
inputs that look natural and directly influence some branching
decisions in the application.

A. Interleaving Input Mutation

NATURALFUZZ’s interleaving mutation mutates input
datasets by substituting a piece of input row (recipient) with
a corresponding piece from a different location in the input
(donor). Such substitution of constituent input parts is highly
effective in creating a natural input row that achieves better
code coverage than the two input rows alone. This is because
the recipient and donor input rows may not individually
trigger new program paths. Their constituent parts may not
be effective in changing branch predicate evaluations needed
to exercise new paths. However, substituting constituent parts

in the two rows may create a combination of constituent parts
needed to flip branch predicates and trigger a new path. Figure
3 shows a simple example where a branch not covered by the
original data can be explored if the data is interleaved.

Finding useful interleavings of existing data is technically
challenging. First, most interleavings of the data are redundant
and do not improve code coverage. Second, the complex
interaction of input datasets with the programs creates
implicit dependencies between inputs that add another layer
of constraints toward finding coverage-enhancing input
interleaving. These dependencies are often formed due to
dataflow operators like join or reduce. For instance, in
join, an entry in one column of a dataset must contain in
a column of another dataset, leading to an implicit branch:
if (datal.col[1l] .contains (data2.col[1])).
Lastly, an exhaustive search over all interleaving is not
computationally feasible. To apply interleaving mutations
effectively, we must locate the precise constituent parts
in each input and then measure the impact of each row’s
constituent part on every branch predicate, implicit or explicit,
in the program. This is the key information needed for the
substitution of constituent parts across input rows that will
explore new program paths.

B. Fine-grained Branch Profiling

To enable effective interleaving mutations, NATURALFUZZ
identifies which constituent parts (rows and columns) in input
datasets influence the branching decision of a given implicit or
explicit branch in the program. This is the minimal information
needed to model how certain input rows can satisfy a path’s
constraints and exercise the corresponding path. To capture this
information, NATURALFUZZ statically analyzes the program
and locates the boolean expressions inside branch predicates
in the program.

Our key idea is that since branches are primary hurdles in
achieving high coverage, we can use fine-grained knowledge
of branch predicates to select only as many rows as necessary
to satisfy constraints imposed by these branches. In addition
to capturing the predicate expressions in every branch, we
associate each variable in the expression with its source in the
dataset, finding the constituent parts in input rows that directly
influence the branch predicate. For example, in the expression
a > Db, a may be sourced from column 22 of dataset-1 and
b may be column 3 of dataset-2. NATURALFUZZ is able to
identify this and translates this expression to ds1.col[22]
> ds2.col[3].

We use fine-grained taint analysis to associate variables
in the branch predicate with constituent parts in inputs. We
extend the taint analysis engine of FlowDebug [18] to support
column-level tainting and expression propagation. FlowDe-
bug overloads data types and their constituent operations to
propagate taints. We augment its taint object with a third
field, resulting in a 3-tuple of the form (Value, Taint,
Expression). The Expression is a binary tree structure
that tracks how the variable was constructed. For example,
the Expression of a variable x = a + b would be stored
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Fig. 4: Branch predicate expressions, bit vectors, and augmented datasets constructed by NATURALFUZZ.

case class TaintedInt (value: Int, t: Taints, expr:
Expression) {
// overloaded + operator
def +(rhs: Int): TaintedInt =
return new TaintedInt (value + lhs,
t,
expr.add("+", rhs))
def +(rhs: TaintedInt): TaintedInt =
return new TaintedInt (
value + rhs.value,
union (t, rhs.t)
rhs.add ("+", rhs.expr)

) // more overloaded operators

Fig. 5: Taint analysis enabled Int type in Scala

as Tree (Node (a), Node("+"), Node (b)). Figure 5
shows an example of how the primitive Integer type is
modified to support taint propagation and construct branch
predicate expression. With each variable, we maintain a list
of offsets from where the variable value originates and the
branch predicate expression that the variable influences in the
form of an Abstract Syntax Tree (AST). This expression tree
is a binary tree of operators and values that are populated
as operations are applied to the variable. Each variable’s tree
provides information on how to compute its value from the
original dataset, owing to taint analysis. Figure 4 shows how
the tree is developed as operations are performed. Similar to
FlowDebug, NATURALFUZZ applies an automatic rewrite to
use taint-enabled data types in Apache Spark.

After enabling taint analysis, NATURALFUZZ captures
branch predicates by statically traversing the application’s
AST. It injects a monitor function around branch predicates
as shown in Figure 4. Monitor functions take the branch
predicates as inputs and return their evaluation at runtime.
In addition to that, since Apache Spark applications run in
a distributed environment on physically separate machines,
monitors make use of Apache Spark Accumulators [19],

which are Spark’s mechanism to send small amounts of
information from a worker node to the master node. We use
Accumulators to send the information captured by monitors
to NATURALFUZzZ. After finishing the initial application run,
NATURALFUZZ successfully retrieves the predicates from all
implicit and explicit branches in the application and the
constituent parts in the original input that for each variable
involved in the predicates. Figure 4 shows the output of this
first step.

C. Computing Path Vectors

After taint analysis, NATURALFUZZ executes the appli-
cation on the original input datasets to measure each input
row’s satisfiability against every branch predicate and encode
this information in a bit vector, called path vector. A path
vector is a binary number string that encodes the result of
each branch evaluation for a particular row in the dataset.
Figure 4 shows how these vectors are computed. The fine-
grained knowledge of how constituent input parts affect branch
predicate evaluation can help synthesize new inputs by mixing
constituent parts from different rows, resulting in an unseen
path vector.

In Figure 4, for each branch predicate, we obtain a cor-
responding Boolean expression. There are a total of four
branches in the program: two filters with explicit predicates;
and two joins with implicit predicates. We model the implicit
predicate of join as a contains function. This is because
when an inner join is performed between two datasets, in order
for the data to flow past the join, dates must contain at least
one row where the value of the key column matches the value
of the key column of at least one row in store_sales.

In order to compute the path vector for each row, we
scan the dataset linearly and evaluate each branch expression
on each row, encoding the true or false evaluation as a
binary value. This creates an augmented dataset as shown in
Figure 4. We use two bits to encode the results of a single



Algorithm 1: Seed Input Selection Algorithm

Input: A set of datasets D
Output: A set of minimized datasets D, in
Dgyg + computePathVectors (D)
Doin < {}
Vo0
for d € Dgyuygy do
drn'in — {}
for row € d do
V <~ getPathVector (row)
if V # (V| v) then
if dj € Dyin such that dj.join({row}) # 0 then
d'm'in <~ dm,in @] {YOW}
V«V]v
end
end
end
Drin < Dmin U dmin

end
return D, ;n

predicate. While it is possible to encode the result of each
branch as a single bit, we need two bits because certain rows
may not affect the outcome of a predicate. For example, in
dsl.join(ds2) .filter(ds2.col[1] < 2022), the
expression ds2.col[1] < 2022 does not depend on any
rows from ds1. The role of rows from ds1 is undefined for
the predicate and thus, the expression cannot be judged to be
either true or false for any row of dsl. Therefore, we need
three possible values: true (10), false (01), and undefined (00).
The value of 11 is unused. 2n size bit vector is needed for a
program with n branches.

D. Fuzzing with Interleaving Mutation

After gathering the branch profile of each row in the input
dataset, NATURALFUZZ initiates its fuzzing campaign that
exclusively uses interleaving mutations. As with any fuzz
testing approach, a good quality seed input is required for
effective testing.

a) Seed Input selection: Using the branch profile of input
datasets, NATURALFUZzZ filters the original dataset to obtain
selected rows that assist it in achieving high coverage. The goal
is to obtain a set of rows that can satisfy complex constraints
in the program while being small enough for local fuzzing
campaigns instead of fuzzing the entire input datasets on the
cloud, which is inefficient. Selecting a small seed input is also
crucial in reducing the potential locations to apply interleaving
mutations. Our key idea is that since branches are primary
hurdles in achieving high coverage, we can minimize such
locations by reducing the input data to a small set of rows
that satisfy constraints imposed by these branches.

Algorithm 1 shows how path vectors can be used for
obtaining a set of rows that achieve high coverage. It selects
only those input rows that increase the cumulative code
coverage. The computePathVectors function computes
the path vectors for all rows across all datasets to create the
augmented set of datasets, D,,4. Once these path vectors have
been assigned for each row in Dyg,4, we iterate over all rows
of all augmented datasets, selecting rows that exercise new
branch decisions, and adding those rows to the minimized
dataset, d,;,. Algorithmically, we include input when the

bitwise OR of (1) the path vector of the input row and (2)
the cumulative bitwise OR of the path vectors for all the rows
in dp,, (represented by V') is never seen before. Since the
path vector only tracks true or false decisions, conditions like
matching keys for a join operation must be explicitly checked.
In such cases, even if the path vector for the row contains true
against the implicit join condition, it may not have a matching
key in the d,,;,. Therefore, we check for join satisfaction with
relevant datasets in D,,;, before adding it to the minimized
dataset. The algorithm returns the minimized set of datasets
D,in, which will act as the seed input.

Despite reducing data to only a necessary subset, we must
ensure enough data for interleavings is available to produce
novel input rows triggering new paths. This entails amplifying
our donor input set by expanding on the seed input. We
perform stratified sampling of the input datasets, where each
stratum represents a set of rows that explore a specific branch
decision in the application. For each branch, we filter the rows
that are true for that branch by taking a bitwise OR with 10
at that position. We sample r rows per condition from each
dataset, where r is a configurable parameter. This means that if
we have b branches in the program, the donor set will contain
b *x r rows. Note that the donor set is different than the seed
input (although initiated from the seed). It is simply used as
a source for generating inputs.

b) Interleaving Mutation Application: At each fuzzing
iteration, NATURALFUZZ mutates the seed input by interleav-
ing random columns from the donor set. When applying inter-
leaving mutation, a random column from a random input row
from a donor set is selected and spliced into its corresponding
column position in the seed input. NATURALFUZZ performs
interleaving among input rows from the same stratum, which
is also selected randomly to add variability in new input. Since
the donor set and seed input is created with high sophistication,
random interleaving between the donor and seed input set is
enough to promote new coverage.

IV. EVALUATIONS

Our evaluation aims to answer the following research ques-

tions:

e RQ1: Does NATURALFUZZ perform better than baselines
in terms of coverage?

¢ RQ2: How successful is NATURALFUZZ in finding pro-
gram faults compared to state of the art?

o RQ3: How realistic are inputs generated by NATURAL-
Fuzz compared to baseline fuzzers?

o RQ4: How useful are state-of-the-art synthetic data gen-
erators for natural test input generation for DISC appli-
cations compared to NATURALFUZzZ?

a) Benchmarks: We use a commercial benchmark suite
called the TPC-DS benchmark [14], which contains SQL
queries simulating real-world workloads for decision support
systems. TPC benchmarks are considered a gold standard for
database benchmarks and have been regularly used in prior
work on database testing and debugging [20]. We present
the results from eight out of the 99 TPC-DS queries. Prior



[—— NATURALFUZZ "o BIGFUZZ - - - JAZZER |

. A B C D
 100F 100 F 100 100
% 80| 80| 80| 80 |
z 60| 60 [ Jrrreemiiinn 60 | 60|
T Aoz 10| | 0| 401 3}
% 20 :: 777777777 | 20 / ST 20 sty 20 f:,/ ””” -0
§ 0 /.\ Lol ol O J'/‘\HHH‘ Ll ”‘4/\\\\\\\\ | O '/\ T |
<100 10t 10 10 10t 107 10 10t 107 10 10t 10
. E F G H
E 100 100 [ 100 [ 100 [
% 80| 80| 80| 80 |
s TS s [ L R K A i
2 60 B B 10 60 | 60 | :
Z a0 401 F | 40} 401 N
£ 20 - 20 T 20 e 20 e
§ O '/\ Ll ] O '/\ Ll Ll 0 '/\ Ll Ll O /\ | Ll
<100 10t 102 10° 10t 107 10 10t 107 10° 10t 107

Time (s) Time (s) Time (s) Time (s)

Fig. 6: Statement coverage progress of NATURALFUZZ and baselines on eight benchmark programs.

D Description Datasets

A Find customers who have returned items more than 20% 4
more often than the average customer returns for a store in a
given state for a given year

B Report the total extended sales price per item brand of a 3
specific manufacturer for all sales in a specific month of the
year

C List all the states with at least 10 customers who during a 5

given month bought items with the price tag at least 20%
higher than the average price of items in the same category
D Compute the average quantity, list price, discount, and sales 5
price for promotional items sold in stores where the
promotion is not offered by mail or a special event. Restrict
the results to a specific gender, marital and educational status
E Compute the revenue ratios across item classes: For each 3
item in a list of given categories, during a 30-day time
period, sold through the web channel compute the ratio of
sales of that item to the sum of all of the sales in that item’s
class
F Report the total catalog sales for customers in selected 4
geographical regions or who made large purchases for a
given year and quarter

G Select the top revenue generating products bought by out of 6
zip code customers for a given year, month and manager

H Compute the total revenue and the ratio of total revenue to 3
revenue by item class for specified item categories and time
periods.

TABLE I: Benchmark programs and their descriptions as taken
from the TPC-DS Specification [14]

work DISC application testing has mostly used simple custom
applications, such as WordCount [4], for evaluations that
ingest single input datasets, which is not representative of real-
world analytics. Most production DISC workloads perform
analytics on data that typically spans several datasets [14].
We translate the eight TPC-DS queries to Scala-based Apache
Spark Applications, where every application ingests at least
three datasets. Table I shows the programs used in our bench-
mark, including the number of datasets they use and their

official description per the TPC-DS specification [14].

b) Baselines: We compare NATURALFUZZ against two
state-of-the-art fuzzers in their respective domains: (1)
JAZZER, a commercial fuzzer for Java Virtual Machine (JVM)
applications, and (2) BIGFUZz, the current state-of-the-art
for DISC application fuzzing. We provide BIGFuUzz with
randomly sampled rows from the datasets to act as a seed
input as done in the original work. JAZZER requires the
user to manually write targets for each application, which
is interfacing code that converts a byte stream into a format
relevant to the program. We manually provide targets for all
programs. None of the two baseline fuzzers are operational on
multi-datasets. To give a fighting chance, we augment the two
baseline fuzzers by supporting mutations on multiple input
datasets. We use a Scala compiler plugin, scoverage, to
compute statement coverage metrics.

In addition to fuzzers, we compare NATURALFUZZ against
SDV [13], a commercial state-of-the-art machine learning-
based synthetic data generator. We seek to evaluate how useful
SDV is for generating natural-looking inputs that are also
useful for debugging DISC applications in practice. For a
debugging use case, the size of the generated test case matters
i.e., . the more minimal the test case the better. To this end, we
create three different settings of SDV: (1) SDV-N, where 25K
rows are generated by SDV and it is NOT given any schema
information for the datasets; (2) SDV-S, where 25K rows are
generated and SDV is given schema information; and finally
(3) A variant of SDV-S, where only 50 rows are generated and
SDV is given schema information instead of 25K. In contrast,
NATURALFUZZ only generates 1.7 rows per dataset per test
case.



Program Application Execution Time (s) Faults Detected
Original Instrumented Overhead NATURALFUZZ BigFuzz Jazzer

A 15.1 58.4 39 4.6 0.0 0.0
B 13.2 76.6 5.8 2.6 2.0 1.0
C 45.7 603.9 13.2 4.2 0.0 0.0
D 20.9 317.3 15.2 34 5.0 0.0
E 16.2 97.9 6.1 2.3 3.0 0.8
F 26.6 364.6 13.7 1.0 0.0 0.0
G 93.3 1188.6 12.8 2.3 2.0 0.0
H 14.7 79.6 54 0.0 0.0 0.0

Total Faults Detected 20.4 12.0 1.8

TABLE II: Average overhead and average total errors detected
by each tool.

c) Fault Injection: We perform mutation testing [21] to
evaluate fault detection capability for semantic faults and re-
port the number of errors detected. In total, our fault injections
result in 64 mutant programs. We replace every binary operator
in the program with another randomly chosen binary operator.
We run each tool on each mutant for a total of five minutes,
which is more than the time spent on fuzzing by prior work [4].
We further eliminate any experimental variations by averaging
our results over five runs. In total, we run approximately 960
fuzzing jobs. We perform branch profiling steps on large-scale
data on a 13-node cluster computing environment with a total
of 112 cores and perform fuzzing locally on the master node,
which simulates how these tools would typically be used. We
run our experiments on Apache Spark 3.0 and HDFS 2.7.

A. Code Coverage

Figure 6 shows the progression of cumulative statement
coverage over the course of the fuzzing campaign using
NATURALFUZZ and two baselines. The Y-axis depicts the
percentage of statement coverage attained, while the X-axis
indicates the time that has elapsed in seconds. We observe
that NATURALFUZZ significantly outperforms the baselines
on average.

In benchmark A, NATURALFUZZ achieves 91.5% coverage
compared to 43.9% and 12.1% by JAZZER, respectively.
This is because A ingests four datasets that are all merged
together via a join operator. As described in Table I, the
program finds people who return items more often in a
particular state for a particular year. The constraints for the
year and state are imposed using filter operations such
as dates.filter (year == 2022). The program also
performs three inner joins to merge the four datasets, imposing
a complex constraint that spans across all four datasets requir-
ing matching keys in every column participating in the joins.
JAZZER struggles to meet the basic input requirement for the
four datasets, resulting in very low coverage due to failures
at the parsing stage. BIGFUZZ produces correctly formatted
inputs with the correct number of columns due to its schema
awareness. Still, it is unable to produce any input that satisfies
the filtering constraint on the dates dataset, let alone produce
any data that satisfies the constraints imposed by subsequent
joins. NATURALFUZZ detects these constraints and produces
a minimized set of datasets that contains all necessary rows
to satisfy the constraints, resulting in high coverage. The
best case performance for NATURALFUZZ out of five runs

2
3
4
5

import java.time.LocalDate
dates.filter {

row : Array[TaintedString] =>
val start = LocalDate("1999-01-01","YYYY-mm-dd")
val end = LocalDate("1999-02-01","YYYY-mm-dd")
try {
val date = row.col(2) : TaintedString
val conv = LocalDate(date, "YYYY-mm-dd")
conv.isBetween (start, end)
} catch { /* skip row */ }

Fig. 7: Tainted String on line 7 is casted to String on line 8§,
resulting in a loss of taint. This can cause NATURALFUZZ’s
expression capture to be incomplete.

is 99.1% statement coverage, whereas the best case observed
for BIGFUZZ and JAZZER is 43.9% and 12.1%, respectively.
NATURALFUZZ outperforms the baselines on B, C, F and G
for similar reasons.

There are cases where baselines perform equally well as
NATURALFUZZ. For example, in E, NATURALFUZZ achieves
approximately 1.0% less coverage than BIGFUZz. This pro-
gram checks if a particular sale falls within a given 30-
day time period. Figure 7 shows a code snippet of this
program that performs the date-time comparison. It uses Java’s
time.LocalDate library to parse the date string from
column 2 of the dataset and applies a range check for the
date using the library’s isBetween function.

The use of the library function is problematic for the
underlying taint analysis engine [18] that NATURALFUZZ
relies on. It loses the taint whenever a library function is
called. Even though the value row.col (2) is tainted, the
variable date is not. The function LocalDate expects an
argument of type St ring as its first parameter, and thus, type
TaintedString is implicitly cast to String, resulting in
loss of taint. Consequently, NATURALFUZZ’s coverage stays
1% below Bi1GFuzz’s. The reason BIGFUZz achieves 1%
more coverage is because it generates an incorrectly formatted
date resulting in an exception being caught at line 11. Since the
NATURALFUZZ does not perform random mutations, it does
not generate an ill-formatted date, avoiding a trivial parsing
exception. The results in D and H can be attributed to similar
reasons.

B. Error Detection

We also evaluate NATURALFUZZ and baselines in terms
of fault detection. Our goal is to evaluate the efficacy of the
tools in detecting semantic faults rather than trivial parsing
errors. To this end, we perform mutation testing and report
the number of mutants killed as detected errors. We create
program mutants by traversing the AST of each program and
replacing binary operators with randomly selected operators.
For example a == b is transformed to a > b. We replace
any boolean operators in the set {==, >, >=, <, <=,
!=} and any arithmetic operator in the set {+, —, =, /}
with some other operator in the same set. To avoid any planting
biases, we do this for every binary operator in all programs. In
total, across all programs, we create 64 mutants. Table II shows
the average number of faults detected by NATURALFUZZ and
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Program| SDV-N (25K rows/dataset) SDV-S (50 rows/dataset) SDV-S (25K rows/dataset) NATURALFUZZ (1.7 rows/dataset)
Coverage Faults Time Coverage Faults Time | Coverage Faults Time Coverage Faults Time
(min) (min) (min) (min)
A 77.2 0.0 5.8 50.1 0.0 1795 60.0 1.8 181.1 90.7 4.6 6.2
B 65.9 2.0 5.6 62.4 20 196.6 95.5 56 1982 83.8 2.6 6.6
C 18.6 0.0 9.4 17.5 0.0 2484 57.7 1.2 250.6 74.8 4.2 15.7
D 73.4 34 7.7 67.0 2.0 2002 70.1 40 2019 68.2 34 11.6
E 71.9 3.0 5.6 68.8 3.0 3034 71.9 3.0 3059 71.5 2.3 6.8
F 66.1 1.0 74 62.5 1.0 335.6 89.6 2.0 3383 71.7 1.0 11.3
G 71.3 4.0 9.6 67.5 3.0 2489 80.4 44 2510 84.1 2.3 25.8
H 66.4 0.0 5.4 66.4 0.0 316.6 73.8 0.0 319.1 70.5 0.0 6.5
Total Faults 134 11.0 22.0 204
Avg Coverage 63.8 57.7 74.9 77.6

TABLE III: Comparison of coverage, fault detection, generation time, and generation size between SDV and NATURALFUZZ

baselines. NATURALFUZZ significantly outperforms baselines,
detecting an average of 20.4 faults compared to 12.0 and 1.8
by BIGFUZZ and JAZZER, respectively.

For example, in A, NATURALFUZZ is able to detect an
average of 4.6 injected faults, whereas BIGFUZZz and JAZZER
are not able to detect any fault. A computes the average
number of customer returns for a particular state for a partic-
ular year. It then multiplies this value by 1.2 and filters cus-
tomers based on the criteria that customer_returns >
avg_returnsx1.2. During fault injection, this is changed
to customer_returns > avg_returns-1.2. Since
this bug appears in the code after all the data has been filtered
by year and all four datasets have been joined, only NATU-
RALFUZZ is able to produce data that satisfy the filters
and joins, leading to the code region. In contrast, BIGFUZz
and JAZZER fail to produce data that can satisfy the filter
and joins. Therefore, the filter predicate is never invoked,
and the fault is never exposed.

C. Synthetic Data Generators for Testing

Although our primary baselines are fuzzers, we seek to
understand the utility of state-of-the-art synthetic data gen-
erators towards the goal of generating realistic test inputs.
For this purpose, we use the SDV [13], a machine learning-
based synthetic data generator tool. We configure SDV to
use Conditional Tabular Generative Adversarial Network (CT-
GAN) [22] as the tabular data synthesizer. SDV allows users
to specify the data type of each column, such as numerical,
datetime, or categorical. However, it has limited support for
natural language text columns. Due to these strict column-type
constraints, SDV is unable to train (and eventually crashes)
on input rows that do not adhere to column type (e.g., null
values). Therefore, we label each column in input datasets as
categorical to prevent any potential crashes. Because CTGAN
encodes all categorical columns as one-hot vectors by default,
it can result in significant training overhead. To overcome this,
we sample 1000 rows from the real table as the training data
and train the model for the default 300 epochs.

DISC applications are often written for semi-structured and
unstructured datasets, where inferring correct input schema is
non-trivial, if even possible. Therefore, in order to perform a
comprehensive assessment, we evaluate SDV in three settings
(1) When the input schema is available (SDV-S) and (2) when
the input schema is unavailable (SDV-N). We run both SDV-S

and SDV-N in a one-shot setting by training it on the original
data and using it to generate 25K synthetic rows. This number
is roughly equivalent to the total number of rows in all test
inputs generated by NATURALFUZZ in the given time budget.
We then measure the statement coverage and fault detection
capability of these 25K rows. (3) Finally, in order to show how
SDV performs when tasked with generating small test cases
that are useful for debugging, we also use SDV to generate
50 rows per dataset instead of 25K.

Table III reports the results of these experiments. The
coverage and fault columns show the average final coverage
and faults detected by each tool respectively. The time column
shows the total test generation time in minutes. For NATURAL-
Fuzz, the test generation time is the sum of the time it takes to
profile the program and fuzz it. For SDV, the test generation
time is the sum of the total time needed to train the SDV
machine learning model and the time taken to generate 25K
rows for each table. All the experiments of SDV were run on
a Dell PowerEdge R630 Server with 224GB RAM and 2 Intel
Xeon E5-2640 v3 2.60GHz 8-core processor CPUs running
Ubuntu 22.04.

a) Coverage: In terms of coverage, NATURALFUZZ out-
performs all three baselines on average, achieving an average
final cumulative coverage of 77.6% compared to 74.9% and
63.8% by SDV-S and SDV-N, respectively. The high coverage
achieved by SDV-S is expected since it generates 25K rows
per dataset. We notice a significant drop in coverage (=~ 17%)
when only 50 rows are generated. Note that NATURALFUZZ
achieves high cumulative coverage while generating signif-
icantly less than 50 rows per dataset (typically two rows).
We observe a noticeable difference in coverage between SDV-
S and SDV-N. Without the schema, SDV-N is equivalent to
random sampling as it considers each unique input row as
a new category. During data generation, its generative model
uses the knowledge of categories to select one category, which
happens to be an input in the training data. SDV-S does not
generate completely novel input rows compared to the training
dataset. However, due to its training on columnar data, where
each unique entry in a column is considered a category, it
produces new rows by selecting random categories from each
column.

b) Fault Detection: We observe that SDV-S, manages to
detect 22.0 faults on average compared to 20.4 by NATU-
RALFUzz. Without the schema, it detects only 13.4 faults in



Original BIGFUzz JAzZER SDV-S  SDV-N NATURAL

Data Fuzz

DistilGPT2 1.6 164.0  3327.0 2.4 2.1 2.0
DistilBERT 12.5 388.2 NaN 18.8 11.9 12.1

TABLE IV: Average naturalness scores of inputs generated by
NATURALFUZZ and baselines.

total on average. However, it is important to note that SDV
is generating a single input containing 25K rows per dataset.
Table I shows that benchmark programs ingest three or more
datasets. Thus, SDV must generate at least 25K rows for each
dataset. For example, for A, the total data generated will be
100K rows. Although it is expected for an input of this size
to trigger all these errors and achieve high coverage, this is
not ideal for testing. In order to test if SDV can detect these
errors when generating smaller test cases, we generate only 50
rows using SDV-S, the best-performing variant. We see that the
average number of total faults detected drops to 11.0, which
is significantly lower than NATURALFUZZ, which generates
even smaller test cases.

¢) Limitations of SDV: Our experiments show that SDV-
S provides almost similar fault detection and code coverage
as NATURALFuUZzz. However, there are some key factors
that make NATURALFUZZ a more desirable test generation
tool than SDV: (1) SDV-S takes significantly longer (22.6 x
more time than NATURALFUZZ) to train a model on 1000
input rows, which is prohibitive at the scale of big data; (2)
NATURALFUZZ generates several minimal test cases over the
course of the fuzzing campaign, each spanning only a handful
of rows, typically 2 rows per dataset. In contrast, SDV must
generate 25K rows at once to achieve comparable coverage and
fault detection. This is infeasible for debugging since the 25K
rows are too large of an input to pinpoint the error-inducing
rows. (3) SDV requires a schema and configuration effort for
each new program, whereas NATURALFUZZ’s performance is
out-of-the-box, with no special configuration required for each
program.

D. Test Input Naturalness

Although it is evident from visual inspection that the inputs
generated by NATURALFUZZ are more natural than those
generated by baselines, we still quantify the naturalness of
the generated inputs w.r.t the original data. We borrow tools
that are well-established in the machine-learning community
to achieve this. In particular, we make use of the perplexity
score [17], which is used to measure the naturalness of text
generated by language models. Intuitively, a perplexity score
encapsulates the probability of observing a given piece of text
in a corpus. However, since perplexity is the inverse of proba-
bility, it can be thought of as how surprised or “perplexed” a
language model is when observing a row w.r.t the distribution
it has modeled. Therefore, in terms of identifying more natural
inputs, lower perplexity score reflects more natural input. This
metric is useful for us since a natural test input is one that is
likely to be observed in the original dataset and least surprising
for the language model that has modeled a given distribution
(i.e., , the original dataset). Perplexity is a relative metric,

so we formally define naturalness for generated inputs in the
following manner: given a dataset and two generated test
inputs a and b, a is more natural than b if P(a) < P(b),
where P is the perplexity function.

We sample 30 test input rows generated by each tool for
each dataset and report the average perplexity. We employ two
language models to evaluate the naturalness of the generated
data: DistilGPT2, a lightweight version of OpenAl’s well-
known GPT2 model [23] and DistilBERT, a lightweight ver-
sion of Google’s BERT model [24]. Although architecturally
similar, BERT is an encoder designed to learn the language
and create general-purpose representations that can be used
for any downstream task, such as text summarization. GPT2
is a decoder whose primary purpose is to generate new text.
We compute the BERT score for a row by exponentiating the
loss of the trained model on the row. Since BERT randomly
masks tokens from the row, the score is not stable. Therefore
we average the score over 10 repetitions for each dataset.

Table IV shows the average naturalness scores for each
tool along with the baseline score of the original dataset.
NATURALFUZZ achieves a low perplexity score of 2.0, which
is only slightly higher than the perplexity for the original
dataset, i.e., ., 1.6. In comparison, test inputs generated by
BIGFUZz and JAZZER achieve an average perplexity of 164.0
and 3327, showing that they are unlikely to be found in the
original dataset. SDV-N achieves the second-lowest perplexity
owing to random sampling from the dataset. The BERT score
for JAZZER resulted in NaNs, presumably because the loss
value was very high, resulting in a NaN when exponentiated.
Note that the BERT score for NATURALFUZZ and SDV-N is
even lower than the original data, which is possible since we
are working with samples, which may introduce variability.

E. Threats to Validity

We evaluate NATURALFUZZ on eight benchmark programs.
While prior work in big data application fuzzing uses a similar
number of benchmarks, it is possible that our results may
not fully generalize to all possible big data analytics. We
mitigate this issue by adapting programs solely from the TPC-
DS benchmark, which is the most widely-used benchmark
of real-world DISC workload. Furthermore, we perform a
quantitative assessment of data generated by NATURALFUZZ
and the baselines by finding the naturalness score on only a
sample of 30 rows, which may not represent the naturalness of
all generated data rows. We mitigate this issue by utilizing two
different classes of language models to validate the correctness
of our naturalness results.

V. RELATED WORK

Data Generation for DB Testing: The closest line of
work to ours is database testing [12], [25], [26]. Houkjer et
al. [26] propose a graph-based method to guide data gener-
ation. Bruno and Chaudhuri [25] propose a language-based
technique for general-purpose data generation. Other DB test
generation targets schema coverage [12]. These tools generate
synthetic data with the goal of testing database performance



and workloads, and none of these target DISC applications. In
contrast, NATURALFUZZ utilizes real-world data to generate
minimal and realistic test inputs with the goal of discovering
program faults.

We compared our work against ML-based fake data gen-
erator, SDV [13], similar albeit more primitive synthetic data
generators exist such as Faker [27] that have been used to
generate fake data in the literature before [28]. However, these
synthetic data generators require manual configuration and do
not take into account the complex constraints introduced by
dataflow operators in the program.

DISC Application Testing: Prior work has also explored
challenges in testing DISC applications. BIGFUzZ [4] is a
black box fuzzing technique that uses schema-aware mutations
to mitigate the problem of trivial parsing errors and increase
coverage. It also uses framework abstraction to allow local
fuzzing of the DISC application. BigTest [29] was the first to
explore framework abstraction for testing DISC applications
using symbolic execution. DepFuzz [30] aims to find co-
dependent regions within the input and apply mutations that
respect these co-dependent relationships. NATURALFUZZ’s
branch profiling technique is inspired by DepFuzz. All these
techniques aim to maximize code coverage and fail to generate
natural and intelligible inputs.

Semantic and Grammar-based Testing: Another related line
of work is automated testing to find semantic faults. Zest [31]
relies on program feedback to find semantic faults in the
program and avoid syntax errors. Other works rely on context-
free grammars of the input domain to generate inputs that
avoid syntax errors and better explore the semantic stages of
the program under test [32], [33], [34], [35], [36]. However,
these techniques require the presence of grammar rules that are
complex to write or infer. In contrast, NATURALFUZZ does not
rely on any grammar rules.

Taint-Based Fuzzing: Several works have attempted to use
taint analysis to identify regions of interest where mutations
can be applied with priority. For example, Bekrar er al.[5]
developed a fuzzing technique that uses taint analysis on
program binaries to focus mutations on specific regions of the
input. Similarly, PATA [8] performs path-aware taint analysis
to mitigate problems of over-tainting and under-tainting. Other
security-related works like BuzzFuzz [7] and TaintScope [6]
attempt to isolate regions of the input that are used inside sen-
sitive library calls to increase the chances of finding security
bugs. These fuzzers do not target realistic input generation and
employ tainting techniques that are not directly applicable to
DISC applications since there is no single binary of a DISC
application. Instead, the packaged binary is sent to thousands
of machines where each runs separately.

Profile-Based Fuzzing: Profiling datasets and workloads is
widely practiced across different streams of computer sci-
ence [37], [38], [6], [39]. TaintScope [6] uses branch profiling
to identify checksum fields and identify checksum integrity
checks to bypass them. MoWF [39] uses branch profiling to
determine if crucial branches have been explored. In contrast,
NATURALFUZZ uses branch profiling to identify boolean

expressions that guard code regions to facilitate realistic input
generation.

VI. CONCLUSION

In this paper, we presented NATURALFUZZ, a fuzzer that
achieves high code coverage as fast as possible using natu-
ral, synthetic inputs only. NATURALFUZZ achieves this goal
through its novel interleaving mutations that mix constituent
parts of different rows in the input dataset. When tested on
popular database benchmark queries, NATURALFUZZ reaches
77.6% statement coverage compared to 46.5% and 19.9% by
baseline fuzzers, JAZZER and BIGFuUZz, respectively. More
importantly, NATURALFUZZ generates only natural test inputs
when fuzzing, facilitating the downstream fault localization
and debugging process. NATURALFUZZ is the first work that
demonstrates that existing fuzzer do not need to sacrifice the
naturalness and readability of their test inputs to reach high
code coverage.
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