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Separable graph Hamiltonian network: A graph deep learning model for lattice systems
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Addressing the challenges posed by nonlinear lattice models, which are vital across diverse scientific dis-

ciplines, we present a new deep learning approach that harnesses the power of graph neural networks. By

representing the lattice system as a graph and leveraging the graph structures to identify complex nonlinear

relationships, we have developed a flexible solution that outperforms traditional techniques. Our model not only

offers precise trajectory predictions and energy conservation properties by incorporating separable Hamiltonians

but also proves superior to existing top-tier models when tested on classic nonlinear oscillator lattice problems:

a mixed Fermi-Pasta-Ulam Klein-Gordon, a Klein-Gordon system with long-range interactions, and a two-

dimensional Frenkel-Kontorova, highlighting its potential for wide-reaching applications.
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I. INTRODUCTION

Nonlinear lattice systems have garnered significant atten-

tion across a vast array of disciplines, from condensed matter

physics [1,2] and high-energy physics [3,4] to cosmology

[5,6], materials science [7–9], chemistry [10], and biology

[11–14]. Their importance stems from their ability to exhibit a

multitude of complex behaviors like chaotic dynamics, phase

transitions, and pattern formations. As such, they are invalu-

able in comprehending the behavior of complex systems and

engineering materials and equipment with specific attributes.

In this research, we mainly focus on the classical coupled

nonlinear lattice system, which is governed by

d

dt

(

q

p

)

= J

(

∂H
∂q
∂H
∂p

)

, J =

(

O I

−I O

)

, (1)

where q = (qα, α ∈ Z
d ) and p = (pα, α ∈ Z

d ) are the gen-

eralized position and momentum, respectively; d is the

dimension of the system. I ∈ R
d×d is the identity matrix. Here

H = T + V is the Hamiltonian function, with kinetic energy

T (p) =
∑

α∈Zd

|pα|2

2mα
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and potential energy

V (q) =
∑

α∈Zd

(V1(qNk (α)) + V2(qα )). (2)

The intersite potential V1 encapsulates particle interactions

within the kth order neighbor Nk (α), while the on-site po-

tential V2 accounts for potential interactions with an external

environment, such as a substrate. Moreover, mα denotes the

mass of the αth pointlike particle, and we set mα = 1 in this

research for simplicity. This model is applicable to a variety

of physical problems, including heat conductivity, atomic vi-

brations in crystals and molecules, and field modes in optics

or acoustics [15,16].

The exceptional capabilities of deep neural networks have

been increasingly leveraged in recent years to address scien-

tific challenges in physical system modeling [17–19]. These

cutting-edge neural network technologies have emerged as

some of the most promising tools for analyzing nonlinear lat-

tice systems. This includes solving nonlinear equations with

physics informed neural networks (PINNs) [20], identifying

phase transitions via multilayer perceptrons (MLPs) [21], and

uncovering governing equations through a synergistic use of

PINNs and symbolic regression [22]. Additionally, building

lattice models based on PINNs [23] and exploring Poisson lat-

tice systems through Poisson neural networks (PNNs) [24], a

technology derived from symplectic neural networks (Symp-

Nets) [25], are burgeoning areas of interest.

Despite their utility, the aforementioned methods depen-

dent on conventional neural networks present challenges.

Some require an understanding of system equations [20,23],

while some necessitate the creation of an overcomplete op-

erator library [22]. These techniques are primarily tailored

toward simpler lattice systems existing on one-dimensional
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FIG. 1. A one-dimensional lattice system with long-range

interactions.

lattice points, with a predominant focus on short-range in-

teractions. However, it’s well understood that lattice systems

typically encompass myriad degrees of freedom and com-

plex interactions, giving rise to diverse and intricate lattice

structures. These structures could exhibit irregularities [26] or

even demonstrate long-range interactions [27,28], as depicted

in Fig. 1(a). Some lattice systems might present even more

complex phenomena, further complicating the simulation of

trajectories. Therefore, the demand for more accurate and effi-

cient deep learning methodologies for lattice system modeling

is both immediate and vital.

To address these challenges, we have designed an in-

novative deep learning methodology, utilizing graph neural

networks for the exploration of lattice systems. Our primary

step entails constructing a graph structure, indicative of point-

like particle interactions. In this configuration, the nodes

of the graph correspond to the particles or field variables

within the system, while the edges mirror the interactions

between these pointlike particles, as visualized in Fig. 1(b).

Utilizing this graph-based approach not only provides us

with powerful tools to analyze irregularly structured lattices

and those presenting long-range interactions, but also offers

a significant advantage over traditional methods. Traditional

techniques often struggle with the complex topology and

multiscale nature of lattice systems, whereas our graph-based

method naturally integrates these aspects into the model. This

inherent flexibility and adaptability enable us to accurately

capture and learn the unique features of each lattice system,

regardless of its complexity.

Proceeding from this, we combine graph neural networks

(GNN) to achieve lattice system learning. Contrasting with

conventional neural networks constructed for vector data,

GNNs are purposefully designed to process graphical data.

Whereas conventional neural networks analyze each element

of the input data individually, GNNs exploit the global struc-

ture of the graph and interactions between nodes to capture

expansive features and patterns with higher efficacy. As a

result, GNNs outshine in recognizing complex nonlinear rela-

tionships and topological structures. Additionally, GNNs can

adeptly handle graphs of various sizes, thus obviating the

need for preprocessing or fixed dimensions, a necessity in

conventional network technologies. In addition to this, GNNs

utilize the graph structure and message-passing mechanisms

to incorporate global information, leading to notably accurate

predictions.

In the heart of our model lies the integration of GNNs.

This integration is accomplished by setting up neural network

parameterized update functions that operate on both node and

edge features. In doing so, we harness the rich information en-

capsulated in the graph formulated from the lattice system for

effective learning of system representation. The model, aptly

named the separable graph Hamiltonian network (SGHN), is

a method for learning the kinetic and potential energies of sys-

tems based on graph neural networks. It not only assimilates

generalized coordinates and momentum as part of its input

data but also incorporates the graph structure resulting from

the lattice system. The architecture of SGHN is illustrated in

Fig. 2.

To evaluate the performance of SGHN, we subjected it to

benchmark tests against three state-of-the-art baseline models

in the context of one-dimensional, two-dimensional, and long-

range interacting lattice systems. The results indicate that

SGHN displays an in-depth understanding of Hamiltonian

dynamics, showing significant superiority over the baseline

models in preserving system energy and accurately predict-

ing system trajectory. This superiority is particularly evident

in systems with multidimensional attributes or notable non-

linearity. Given its versatility and adaptability to any lattice

structure irrespective of its size or shape, our approach offers

a promising avenue for examining complex lattice physics

models that have yet to be fully explored.

Our contributions can be summarized as follows:

(i) We introduce an innovative method of graph-based

representation of nonlinear lattice systems with short and/or

long-range interactions. This paradigm shift conceptualizes

lattice pointlike particles as nodes and their interactions as

edges, paving the way for a fresh perspective in the study of

lattice systems.

(ii) We pioneer the integration of GNNs into nonlinear

Hamiltonian lattice system learning. This approach creates a

synergistic link between traditional neural networks and graph

theory techniques, proving to be markedly superior.

(iii) Our third major contribution is the extraordinary

versatility of our model, which demonstrates its ability to

effectively handle a variety of intricate lattice models. This in-

cludes, but is not restricted to, high-dimensional and irregular

systems, as well as those with long-range interactions. Such

adaptability positions our model at the forefront of new ex-

plorations in the complex and diverse realm of lattice physics.

II. REPRESENTING LATTICE SYSTEMS ON GRAPHS

Consider a given lattice system, defined by Eqs. (1) and (2),

with N pointlike particles. This system can be represented as a

directed (or an undirected) graph, symbolized by G = (V, E ),

consisting of N nodes. The node set V = {v1, · · · , vN } signi-

fies the particles inhabiting our lattice system. The presence

of interaction between particles is depicted through link-

ing corresponding nodes with directed edges E = {ei, j, i, j =

1, · · · , N}. Each ei, j embodies a directed edge originating

013176-2
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FIG. 2. The architecture of the separable graph Hamiltonian neural network (SGHN). For the definition about h
(k)
i , ĥ

(k)
i , and ai see the

“Neural Networks Models” section.

from node vi and ending at node v j . If such an edge is present,

we designate vi as the in-neighbor of v j and reciprocally, v j is

referred to as the out-neighbor of vi.

In this research, we consider three lattice systems. The first

one is the 1D Fermi-Pasta-Ulam Klein-Gordon (FPU-KG)

chain model. The system is assumed to be periodic, implying

that (q1+N , p1+N ) = (q1, p1). When constructing the graph,

we connect the first and last nodes to form a ring graph to

maintain the periodicity of the model.

The second one is the 1D Klein-Gordon lattice system with

long-range interactions (KG-LRI). The physical interaction

structure of the KG-LRI system is depicted in Fig. 2(a). We

again extend our investigation to the periodic boundary con-

ditions. Given the inclusion of long-range interactions, the

resulting graph is exhibited in Fig. 2(b).

We also consider the 2D Frenkel-Kontorova (FK) model.

We assume that the model is located in the quadrilateral lat-

tice. In accordance with the periodic boundary condition, we

link nodes located on the parallel edges of the quadrilateral

grid graph, so that the graph structure is a torus.

For a detailed introduction to these three lattice models,

please refer to the Appendix.

III. NEURAL NETWORK MODELS

Our neural network leverages two neural network compo-

nents, V net and T net, to model lattice systems with separable

Hamiltonian functions, as shown in Fig. 2.

The V net is the parametrization of the potential energy, Vθ ,

within the lattice system. This parametrization is built upon

a GNN that leverages the position, q, and graph structure as

inputs.

In the model, each node and edge is tied to a node feature

vector, h
(0)
i , and an edge feature vector, ei, j , respectively. To

kickstart the process, the position qi is utilized as the initial

feature of node vi within the lattice graph, thereby defining

h
(0)
i = qi. In an adaptive fashion, edge features are learned

through neural networks as follows:

e
(0)
i, j = Fe(qi − q j ). (3)

Here, Fe signifies functions parameterized by deep neural

networks.

Further, we prescribe K-layer node update and edge update

operations as such:

h
(k+1)
i =

∑

v j∈N(i)

F (k)
un

(

e
(k)
i, j

)

, (4)

e
(k+1)
i, j = 1/S

S
∑

s=1

(

e
(k)
i, j + F (k,s)

ue

(

h
(k)
i � h

(k)
j

))

. (5)

In these expressions, F (k)
un and F (k,s)

ue , with 0 � k � K − 1 are

functions parametrized by deep neural networks. N(i) indi-

cates the out-neighbor of vi, and � signifies the Hadamard

product used to assess node interactions.

Subsequently, we amalgamate the node and edge informa-

tion to depict the final node features:

ai = Fa

(

Fv1

(

h
(0)
i

)

‖ Fv2

(

h
(K )
i

)

‖
∑

v j∈N(i)

Fv3

(

e
(K )
i j

)

)

. (6)

In this context, F· is a function parametrized by deep neural

networks, and ‖ represents the concatenation operation.

As a final step, we employ the function parametrized by

deep neural networks to learn the definitive graph representa-

tion learning,

yv = Fv{ai|vi ∈ V}, (7)

where yv ∈ R is the approximate value of potential energy by

the neural network model Vθ .

The T net involves the parametrization of the kinetic en-

ergy, Tθ . We define the node feature vector as ĥ
(0)
i = pi. Then,

we use K-layer node update operations as follows:

ĥ
(k+1)
i = F

(k)
ut

(

ĥ
(k)
i

)

. (8)
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TABLE I. Specify the parameters of the baseline models. For the

LA-SympNet, the last column represents the number of sublayers.

Networks Hidden layers Hidden neurons

NODE 2 256

HNN 2 200

LA-SympNet 20 4 (sublayers)

G-SympNet 20 50

Finally, we obtain the kinetic energy of the system by aggre-

gation function as follows:

yt =
∑

vi∈V

ĥ
(K )
i . (9)

We learned the system Hamiltonian parametrization func-

tion Vθ + Tθ through neural networks, and defined the

following loss function to ensure the ability to learn precise

conserved quantities from the data:

L =

∥

∥

∥

∥

∂Tθ

∂p
−

dq

dt

∥

∥

∥

∥

2

+

∥

∥

∥

∥

−
∂Vθ

∂q
−

dp

dt

∥

∥

∥

∥

2

. (10)

IV. EMPIRICAL EVALUATION

To evaluate the efficacy of our SGHN, we made a compar-

ative analysis with three established models: neural ordinary

differential equations (NODEs) [29], Hamiltonian neural net-

works (HNNs) [30], and symplectic networks (SympNets)

[25]. The latter two models, HNNs and SympNets, are widely

recognized as the leading-edge gray-box modeling tools for

learning Hamiltonian systems.

For the SGHN model, Eq. (8) is the fully connected neural

network that has two hidden layers, each with ten hidden units.

Equation (7) is the fully connected neural network that has

two hidden layers, each with sixty hidden units. The neu-

ral network parametrization functions in Eqs. (3)–(6) are all

represented by the fully connected neural network, with two

hidden layers and five units per layer. In Eqs. (7) and (8), the

layers for node and edge updates are K = 1. S = 2 in Eq. (7).

The specific parameters of the NODE, HNN, LA-

SympNet, and G-SympNet are shown in Table I. The total

parameters of the network model for 1D lattice systems and

2D lattice systems are shown in Table II.

TABLE II. Network model parameters.

NODE HNN LA-SympNet G-SympNet SGHN

1D 98 816 53 400 83 808 34 000 6390

2D 213 504 98 200 1 667 376 146 000 13 110

For dataset creation, training details, and initial value set-

tings, as well as some supplementary experiments, please

refer to the Appendix.

V. RESULTS

To appraise the performance of our model, we relied on

the mean squared error (MSE) of the predicted energies (H),

and the MSE of the predicted state variables (qθ , pθ ). As

presented in Table III, the MSE of the predicted energies

for 20 test samples distinctly underlines the superiority of

the SGHN over other models, a point further reinforced by

the highest performing results highlighted in bold. Figure 3

provides a compelling visual comparison of the MSE of the

predicted state variables over time, which reveals the excep-

tional long-term predictive stability of the SGHN. In addition,

our dynamic demonstration (refer to README.md in [31]).

comparing predicted and ground truth positions given an arbi-

trary initial value further testifies to SGHN’s proficiency, with

the predicted trajectory mirroring the ground truth so closely

that discerning any deviation is beyond the capabilities of the

unaided eye.

Analysis of the two key metrics clearly shows that SGHN

significantly excels over the other models in all aspects. In

addition, compared to the baseline model, SGHN uses the

least number of parameters and has the best performance in

maintaining system energy over the long term and accurately

predicting system trajectories. To investigate the impact of

graph neural networks on our model’s performance, we sub-

stituted the V net and T net components with a three-layer

fully connected neural network. Each layer of this network

contains 200 hidden units. The energy prediction MSE for

this configuration is presented in Table IV. This comparison

reveals a significant decline in the network’s performance

when graph neural networks are not utilized, underscoring

their importance in our model. These outcomes underscore

the instrumental role of the graph neural network in learning

lattice systems.

TABLE III. The MSE of the predicted energies, which measures whether the network model conforms to the property of system energy

conservation when predicting over long timespans. The best results are emphasized by bold fonts.

FPU-KG KG-LRI 2D FK

NODE 5.36 × 10−1 ± 1.22 × 100 3.54 × 10−1 ± 3.73 × 10−1 9.85 × 104 ± 2.14 × 105

HNN 5.98 × 10−3 ± 6.21 × 10−3 4.48 × 10−3 ± 5.64 × 10−3 1.26 × 108 ± 5.22 × 107

LA-SympNet 5.01 × 10−2 ± 4.06 × 10−2 4.55 × 10−2 ± 4.11 × 10−2 3.89 × 10−1 ± 1.74 × 10−1

G-SympNet 4.63 × 10−2 ± 3.96 × 10−2 8.27 × 10−2 ± 5.90 × 10−2 2.13 × 10−1 ± 3.46 × 10−2

SGHN(ours) 3.18 × 10−7 ± 4.13 × 10−7 1.28 × 10−6 ± 1.95 × 10−6 2.72 × 10−6 ± 1.19 × 10−5
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FIG. 3. MSE of the predicted state variables, which measures the stability of the network model in predicting generalized momentum and

generalized position over long timespans. The color line represents the MSE of the predicted state over time, which is the average value of 20

test samples. See README.md in [31], for a dynamic demonstration of comparing the predicted position with the ground truth position given

a random initial value.

VI. CONCLUSION

In conclusion, our work presents a groundbreaking

methodology for deciphering and understanding lattice sys-

tems, substantially transforming our comprehension of these

structures. We effectively merge graph structures with the

intricate topology and varied interaction ranges of lattice par-

ticles, culminating in a robust model that excels in deciphering

complex lattice systems, particularly those exhibiting high

dimensionality or notable nonlinearity.

By leveraging the inherent structure of these systems, our

graph-centric approach effectively encapsulates the potential

energy generated from particle interactions or external in-

fluences, as well as the kinetic energy of the system. This

model proficiency is encapsulated in the adoption of GNNs

to house this potential energy and kinetic energy. Our model

continually outperforms base models in predictive accuracy

and generalization across all evaluated scenarios, notably in

systems with heightened dimensional properties or significant

nonlinearity. Furthermore, our simulation results highlight the

crucial role of GNNs in bolstering neural network perfor-

mance.

This study initiates a paradigm shift in the exploration

and understanding of lattice systems, paving the way for new

research directions within this field. We are confident that this

innovative approach will propel further inquiries, leading to

a plethora of potential applications and advancements in this

domain.
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APPENDIX: SUPPLEMENTAL MATERIAL

In this Appendix, we will introduce the lattice system used

for testing, the acquisition of datasets, training settings, and

some supplementary experiments.

1. Lattice systems

(i) Fermi-Pasta-Ulam Klein-Gordon (FPU-KG) model.

The FPU-KG model, a derivative of the extended discrete

nonlinear Schrödinger equation, provides profound insights

into mixed-type lattices. Especially achievable through ro-

tational wave type approximation, this model serves as a

touchstone for the exploration of breather-forming mecha-

nisms [32,33].

The potential energy of the model can be expressed as

follows:

V1(qi, qi+1) = a
(qi+1 − qi )

2

2
+ b

(qi+1 − qi )
4

4
, (A1)

V2(qi ) =
q2

i

2
+

q4
i

4
, (A2)

where i = 1, · · · , N , a > 0, and b � 0. In our experimental

setting, we assign the values a = 1, b = 0.25, and N = 32.

(ii) The Klein-Gordon (KG) Lattice System.

The KG lattice system stands as a paradigmatic model

within theoretical and applied physics, particularly instrumen-

tal in studying nonlinear phenomena like localized excitations

in ionic crystals [34], and thermal denaturation of DNA [13].

TABLE IV. The MSE of the predicted energies, where V net and T net are fully connected neural networks.

FPU-KGE KG-LRI 2D FK

Model parameters 94 000 94 000 138 800

MSE 1.02 × 10−4 ± 6.98 × 10−5 3.26 × 10−4 ± 5.17 × 10−4 3.36 × 10−3 ± 2.989 × 10−3
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FIG. 4. When t = 40s, the comparison between the predicted position and the ground truth position with a given random initial value. See

Ref. [31] for dynamic demonstrations.

The potential energy of the KG system with long-range

interactions (KG-LRI) is delineated as follows [35]:

V1(qi, qi+1, qi+2) = a
(qi+1 − qi )

2

2
+ b

(qi+2 − qi )
2

2
,

where a > 0, b � 0, and V2(qi ) is as defined in Eq. (A2), for

i = 1, . . ., N .

We extend our investigation to the periodic KG-LRI model,

presuming a = b = 1 and a total of N = 32 nodes.

(iii) The 2D Frenkel-Kontorova (FK) Model.

The FK model holds significant theoretical value within the

realms of solid-state physics and nonlinear dynamics [36]. It

encapsulates the intriguing interplay between local particle in-

teractions and a periodic potential enforcing long-range order
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TABLE V. Specify the parameters of the network structure.

For the LA-SympNet, the last column represents the number of

sublayers.

Networks Hidden layers Hidden neurons

NODE′ 5 200

NODE′′ 2 600

HNN′ 5 200

HNN′′ 2 600

LA-SympNet′ 50 8 (sublayers)

LA-SympNet′′ 10 2 (sublayers)

G-SympNet′ 10 100

G-SympNet′′ 20 100

[37–41]. This interaction results in an intriguing variety of dy-

namical behaviors, including the manifestation of topological

solitons, which are localized particle displacements moving

through the lattice without altering shape. In this work, we

focus on a two-dimensional variant of the FK model [42].

For i = 1, . . ., N and j = 1, . . ., M, the potential energy

V2(qi, j ) = − cos(qi, j ) and V1(qi, j, qi+1, j, qi, j+1) is given by

a
(qi+1, j − qi, j − ρ)2

2
+ b

(qi, j+1 − qi, j )
2

2
,

where a > 0, b > 0, and ρ denotes the average particle dis-

tance absent an external potential. Within our 2D FK model

framework, we set a = b = ρ = 1. Assuming M = N = 12,

this model portrays a quadrilateral grid with a total of 144

particles.

2. Dataset acquisition

For the FPU-KG model and KG-LRI model, we set N =

32, and for 2D FK, we set M = N = 12. We used the fourth-

order Runge-Kutta integrator by scipy.integrate.solve_ivp on

the time interval [0, 40] sec with time step 0.002 and error

tolerance 10−12 to find 100 trajectories. The initial conditions

(ICs) of FPU-KG and KG-LRI were

q0(i) = λi sin

(

(i − 1)π

N − 1

)

, (A3)

p0(i) = 0, i = 1, · · · , N, (A4)

where λi ∼ N (0, 1) and N represents the normal distribution.

Their boundary conditions (BCs) were qi+N = qi and pi+N =

pi. The ICs of 2D FK were

q0(i, j) = λi, j sin

(

(

M(i − 1) + ( j − 1)
)

π

MN − 1

)

, (A5)

p0(i, j) = 0, i = 1, · · · , N, j = 1, · · · , M. (A6)

The BCs were qi+N, j+M = qi, j and pi+N, j+M = pi, j .

We subsampled the trajectories at a fixed timestep

of 0.2 as a dataset and then performed a 50/30/20%

train/validation/test set split over trajectories.

3. Training settings

We adopt a learning rate piecewise constant decay strategy

[43]. The learning rate was initialized to 10−4, and after 3000

epochs, the learning rate was 10−5. We also applied an early

stop strategy [44] for the validation set’s loss, with the pa-

tience set to 100 epochs. The total epochs were set to 100 000.

The optimizer was Adam and the batch size was 256. The

activation functions of all models were taken tanh.

4. Trajectory prediction

The prediction of trajectory was accomplished by integrat-

ing neural network models as per the following equation:

(qθ,t , pθ,t ) = (q0, p0) +

∫ t

t0

Nθdt . (A7)

We utilized a fourth-order Runge-Kutta integrator for this

purpose, where (q0, p0) represents the initial values from the

test set. In our study, t0 = 0 and t = 40, with a time step

size of 0.002. Here, Nθ refers to the neural network models,

which include NODE, HNN, and SGHN. For the SympNet

model, the predicted state was obtained using the subsequent

equation:

(qθ,t+1, pθ,t+1) = NSympNet(qθ,t , pθ,t ). (A8)

In this context, the time step size was kept consistent with the

training step size at 0.2. NSympNet symbolizes LA type and G

TABLE VI. The MSE of the predicted energies, which measures whether the network model conforms to the property of system energy

conservation when predicting over long timespans. The best results are emphasized by bold fonts. The parameters required for the network

model are in parentheses, and the parameters used for the FPU-KG and KG-LRI network models are the same.

FPU-KG KG-LRI (parameters) 2D FK (parameters)

NODE′ 1.36 × 104 ± 7.12 × 103 1.07 × 103 ± 4.04 × 102 (174 000) 1.70 × 105 ± 3.32 × 104 (218 800)

NODE′′ 1.83 × 10−2 ± 1.34 × 10−2 1.09 × 10−2 ± 1.27 × 10−2 (438 000) 4.13 × 10−1 ± 6.89 × 10−1 (706 800)

HNN′ 7.18 × 10−4 ± 5.12 × 10−4 3.76 × 10−2 ± 2.68 × 10−2 (174 000) 2.33 × 108 ± 1.08 × 108 (218 800)

HNN′′ 1.47 × 10−4 ± 1.31 × 10−4 2.35 × 10−4 ± 1.82 × 10−4 (400 200) 1.61 × 10−2 ± 8.25 × 10−3 (534 600)

LA-SympNet′ 2.04 × 10−2 ± 1.78 × 10−2 4.87 × 10−2 ± 4.10 × 10−2 (663 008) 6.04 × 10−1 ± 1.79 × 10−1 (8 315 856)

LA-SympNet′′ 3.05 × 10−2 ± 2.86 × 10−2 5.50 × 10−2 ± 4.36 × 10−2 (21 408) 4.12 × 10−2 ± 1.20 × 10−2 (418 896)

G-SympNet′ 4.89 × 10−2 ± 3.99 × 10−2 8.78 × 10−2 ± 6.04 × 10−2 (34 000) 2.35×10−1 ± 3.39 × 10−2 (146 000)

G-SympNet′′ 4.75 × 10−2 ± 3.92 × 10−2 5.09 × 10−2 ± 4.40 × 10−2 (68 000) 4.76 × 10−1 ± 5.40 × 10−2 (292 000)

SGHN(ours) 3.18 × 10−7 ± 4.13 × 10−7 1.28 × 10−6 ± 1.95 × 10−6 (6390) 2.72 × 10−6 ± 1.19 × 10−5 (13 110)
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type SympNets [25]. The MSE of the predicted state variables

is defined as

MSEstate =
∑

α∈Zd

(

(qα,t − qθ,α,t )
2 + (pα,t − pθ,α,t )

2

)

.

5. Experimental supplement

Figure 4 shows a snapshot of the comparison between the

predicted position and ground position at t = 40s, where the

initial values are randomly given. The red circle represents

the predicted particle position, while the black circle repre-

sents the ground truth particle position. It can be seen that

there is almost no difference between the predicted posi-

tion and the ground truth position of the SGHN model. The

dynamic diagram can be seen in [31]. For the sake of rigor,

we have increased the depth and width of the baseline models,

and their network settings are shown in Table V. We recorded

the MSE of the predicted energy in Table VI, and it can be

seen that different network parameter settings did not improve

the performance of the baseline model.

Observing Table VI, we found that for the 2D FK sys-

tem, increasing the HNN width from 200 to 600 significantly

improved the results of MSE. We continue to explore the

impact of increasing the width of HNN on the results. We

take three layers of 1200, 2400, and 3600 hidden units,

and their predicted energy MSEs are 1.29 × 10−2 ± 7.82 ×

10−3, 9.31 × 10−3 ± 6.80 × 10−3, and 1.90 × 10−2 ± 1.15 ×

10−2, respectively. It can be seen that the HNN model has

reached its limit under certain parameters. Continuing to

increase the model width will not further improve the perfor-

mance of the model.
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