N
Check for
Updates

Artemis: Defanging Software Supply Chain Attacks in
Multi-repository Update Systems

Marina Moore
New York University
New York City, USA

marinamoore@nyu.edu

ABSTRACT

Modern software installation tools often use packages from more
than one repository, presenting a unique set of security challenges.
Such a configuration increases the risk of repository compromise
and introduces attacks like dependency confusion and repository
fallback. In this paper, we offer the first exploration of attacks that
specifically target multiple repository update systems, and propose
a unique defensive strategy we call articulated trust. Articulated
trust is a principle that allows software installation tools to specify
trusted developers and repositories for each package. To implement
articulated trust, we built Artemis, a framework that introduces
several new security techniques, such as per-package prioritization
of repositories, multi-role delegations, multiple-repository consen-
sus, and key pinning. These techniques allow for a greater diversity
of trust relationships while eliminating the security risk of single
points of failure.

To evaluate Artemis, we examine attacks on software update
systems from the Cloud Native Computing Foundation’s Catalog of
Supply Chain Compromises, and find that the most secure configu-
ration of Artemis can prevent all of them, compared to 14-59% for
the best existing system. We also cite real-world deployments of
Artemis that highlight its practicality. These include the JDF/Linux
Foundation Uptane Standard that secures over-the-air updates for
millions of automobiles, and TUF, which is used by many companies
for secure software distribution.

ACM Reference Format:

Marina Moore, Trishank Karthik Kuppusamy, and Justin Cappos. 2023.
Artemis: Defanging Software Supply Chain Attacks in Multi-repository
Update Systems. In Annual Computer Security Applications Conference (AC-
SAC ’23), December 04—08, 2023, Austin, TX, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3627106.3627129

1 INTRODUCTION

Software supply chain attacks are on the rise [34], with attacks
more than tripling in 2021 [7] to over 30 per day [94]. One key
link in the software supply chain is the software repository that
distributes packages containing software libraries or applications
to users. These repositories are often vulnerable to compromises,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC °23, December 04—08, 2023, Austin, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0886-2/23/12...$15.00
https://doi.org/10.1145/3627106.3627129

Trishank Karthik Kuppusamy
Datadog
New York City, USA
trishank.kuppusamy@datadoghq.com

83

Justin Cappos
New York University
New York City, USA

jcappos@nyu.edu

which can leave users vulnerable to attack [3, 4, 8, 25, 28, 32, 37—
39, 66, 68, 69, 75, 78, 91, 92, 98-100, 103].

Contributing to this problem is the reality that most software
installation tools download packages from multiple repositories.
The top 10 Linux distributions come with an average of 4.8 default
repositories from which users can install packages [5, 6, 72, 102].
Such multiple repository configurations introduce unique security
challenges. One such challenge is vulnerability to dependency con-
fusion attacks [88] in which attackers upload malicious packages
to a public repository such as npm, PyPI, or DockerHub [30, 70, 74].
A tool that downloads packages from both a private, internal repos-
itory and a public repository may install the attacker-uploaded
package from the public repository if it shares the same name as
one from the internal repository. This attack is possible because
software installation tools lack a mechanism to specify which repos-
itories are to be trusted for a given package. To date, dozens of
companies, including Apple, Microsoft, PayPal, Netflix, and Uber
have been vulnerable to dependency confusion attacks [88]. On
a broader level, the use of multiple repositories means that a key
compromise can make any developer a single point of failure on a
much larger scale. There have been numerous cases of developer
account compromise in which benign packages were replaced with
malicious ones [2, 71, 81, 87, 93, 95, 96].

Recognizing the magnitude of this threat, we present the first
systematic exploration into the security of multiple repository up-
date systems that goes beyond the trivial k of n threshold signa-
tures [35, 86, 89]. In response to what was learned, we introduce the
novel concept of articulated trust which enables installation tools
to selectively allocate trust in repositories, projects, or developers.
Articulated trust moves responsibility for indicating requirements
for package installation from the repository to the installation tool
by giving installation tools the control to specifically indicate which
repositories and developers are trusted to provide each package.

To implement articulated trust we create Artemis, a new security
framework that extends the functionality of existing Role-Based Ac-
cess control (RBAC) models to multi-repository systems by incorpo-
rating a new suite of tools. These tools, including per-package prior-
itization of repositories, multi-role delegation, multiple-repository
consensus, and key pinning, add user control and permit config-
uration of trusted packages. Though per-package prioritization
is inspired by prioritized trust delegations [55, 62, 65] that allow
a role to transfer its signing authority, Artemis permits users to
define prioritized and terminating trust relationships between all
entities in the update process. Multi-role delegations and multiple-
repository consensus expand the existing practice of threshold, or
multi-signature, signing. Instead of just requiring multiple signa-
tures on a signed object [12, 29], it adds thresholds for other stages

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3627106.3627129
https://doi.org/10.1145/3627106.3627129
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627106.3627129&domain=pdf&date_stamp=2023-12-04

ACSAC °23, December 04-08, 2023, Austin, TX, USA

of the verification process. Finally, key pinning gives users more
fine-grained control by specifying which individual developers on
a repository should be trusted. Collectively, Artemis allows users
to define a greater diversity of trust relationships between objects
and repositories, while removing single points of failure.

Artemis was created in response to, and in partnership with,
industry demand, and as a result, we were able to deploy Artemis
to resolve practical security challenges. In the automotive software
update system Uptane, Artemis requires consensus between repos-
itories that provide different security properties as a way to repel
efforts by nation state attackers. Among other adoptions, Uptane is
incorporated into Automotive Grade Linux, an open source code-
base used in millions of vehicles. Furthermore, we examined the
Cloud Native Computing Foundation (CNCF)’s Catalog of Supply
Chain Compromises (CSCC) and found that Artemis’s security
properties would protect against all historical software repository
attacks.

The contributions of this paper are:

(1) We conduct the first exploration that focuses specifically
on the security of multiple repository update systems and
identify the shortcomings of existing systems.

(2) We introduce a threat model that specifically addresses the
risks of using multiple repositories, particularly when repos-
itories allow unknown developers to upload packages.

(3) We propose a new approach for managing trust relationships
called “articulated trust” that builds on Role-Based Access
Control models including RBDM1 [11], and implement this
approach in Artemis, a secure software update framework.

(4) We back our claims by offering real-world examples of how
our framework has been deployed to solve security chal-
lenges in multiple domains. Notably, Artemis is standard-
ized as part of Uptane, and included in the CNCF graduated
project The Update Framework (TUF).

(5) We evaluate the effectiveness of Artemis using previous
attacks on software update systems and find that Artemis
could have prevented all of them.

2 BACKGROUND

To provide context for our work, we first describe the software
update ecosystem. We then describe RBAC and The Update Frame-
work, both of which serve as a baseline for our Artemis mechanisms.

2.1 Software repositories and package managers

A software repository is a server that hosts and distributes soft-
ware. When a specific version of a software application or library
is ready to be released, it is built into a package, and uploaded to
the repository. Three groups of people may interact with the repos-
itory. Repository administrators manage the software and hardware,
developers upload packages, and software installation tools down-
load, validate, and install packages with a package manager. The
software installation tool is configured by a tool administrator, who
may be a user, IT department, or package manager.

Software repositories vary in terms of their purpose and how
they function. These include:

o Language-specific repositories such as PyPI, RubyGems, and
npm.

84

Marina Moore, Trishank Karthik Kuppusamy, and Justin Cappos

o Operating system repositories, including those provided by
Linux distributions. For example Arch Linux has 4 official
repositories: core, extra, community, and multi-lib, each of
which has a different set of packages and developers.

o Curated repositories that contain packages for a particular
purpose, such as for a company’s internal use. They may be a
subset of other repositories, include packages from multiple
sources, or contain internal packages that are not public.

A package manager is responsible for solving three problems: (1)
downloading packages, (2) installing packages, and (3) performing
dependency resolution [16, 21]. The latter step ensures that all
required packages are downloaded, and that there are no conflicts
between them.

Previous work [14, 19] has shown that it is remarkably easy for
attackers to tamper with files downloaded by package managers.
As such, they are vulnerable to a wide variety of threats, including
arbitrary software and replay attacks. An arbitrary software attack
occurs when an attacker is able to convince a software installation
tool to install a malicious package instead of the intended one.
Similarly, a replay attack occurs when an attacker is able to convince
a tool to install an outdated, potentially vulnerable, version of a
package. Even when a secure transport mechanism like TLS is used,
a repository or developer key compromise can allow an attacker
to manipulate update contents. Thus, package managers require
protections specific to this domain. Ladisa et al. [54] describe known
attacks and safeguards.

2.2 Role-Based Access Control

RBAC is a technique for restricting system access to only autho-
rized users by associating permissions with different roles [79].
Users are assigned to roles, inheriting the associated set of permis-
sions. RBDMO [10] (role based delegation model) extends RBAC
by allowing roles to delegate their permissions to other roles for a
fixed period of time. Delegations may be revoked by the original
members, or may be designated as terminating, which would pre-
vent delegated users from further delegating this role. RBDM1 [11]
builds on RBDMO by setting up a hierarchy between roles and al-
lowing the delegating role to give a subset of permissions to each
delegated role.
The following is a list of the original RBAC96 components:

e U and R and P are sets of users, roles, and permissions, re-
spectively

e UA C U X R is a many to many user to role assignment
relation

e PA C PXRisamany to many permission to role assignment
relations

e Users: R — 2U is a function derived from UA mapping each
role r to a set of users where Users(r) = {U|(U,r) € UA}

e Permissions: R — 2P is a function derived from PA mapping
each role to a set of permissions where Permissions (r) =
{P|(P,r) € PA}

The RBDMO0 model adds the following components:

e UAO C U X R is a many to many original member to role
assignment relation

e UAD C U X R is a many to many delegate member to role
assignment relation

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems

e UA=UAOUUAD

e UAO NUAD = ¢ Original members and delegate members
in the same role are disjoint

e Users_O(r) ={U|(U,r) € UAO}

e Users_D(r) ={U|(U,r) e UAD}

e All members Users_O(r) U Users_D(r) in a role get all the
permissions assigned to that role

e Note that Users_O(r) N Users_D(r) = ¢ because UAO N

UAD = ¢

T is a set of durations

o Delegate roles: UAD — T is a function mapping each dele-
gation to a single duration

The RBDM1 model adds the following elements: RH € R X R
is a partially ordered role hierarchy (this can be written as > in
infix notation). Also, the less familiar symbol || is used to denote
non-comparability. We write x || y if x— < y and y— < x.

When using RBAC in software repositories, the users are the
developers, and the permissions are the set of package namespaces
associated with a particular role. In this way, a role is responsible
for a specific set of developers and package namespaces.

However, RBAC models are built on the assumption that this
permissions model will not be tampered with. Should an attacker
compromise the repository and alter the metadata that describes the
RBAC permissions, they would be able to bypass these restrictions.
To prevent this, researchers have created compromise-resilient
software update systems [50, 80].

2.3 The Update Framework (TUF)

A compromise-resilient software update system continues to pro-
vide the correct packages even when attackers control the reposi-
tory and one or more signing keys [50, 80]. The need to design such
update systems was first discussed in the literature by Bellissimo
et al. [14] and Cappos et al. [19]. Knockel et al. [47] observed that
attackers need not even compromise a repository: a simple man-in-
the-middle attack on third-party software updaters is sufficient to
replace packages with malware.

The Update Framework (TUF) was designed for compromise-
resilience [50, 80]. It uses different roles [82, 83] to sign different
types of metadata, with each role requiring a threshold of m out of n
signatures for acceptance. Thus, a single key compromise does not
impact the security of the whole system. However, thresholds as a
security measure only work for multiple users assigned to the same
role. Roles r € R are controlled by users u € U, such as repository
administrators, developers, or organizations that release software.

A security feature of TUF is that it requires some roles to use of-
fline keys. In doing so, TUF ensures that an attacker with repository
access cannot compromise the entire system. Offline keys are on
physical devices and inaccessible from the repository, safeguarding
them in the event of a repository compromise. We use a subscript
to indicate the key for each role. So Ay F denotes role A with an of-
fline key that is not kept on, or accessible from the repository, By
denotes role B with an online key accessible from the repository,
and Cy. indicates a key that may be either online or offline.

There are four top-level roles, each of which produces and signs
metadata that fulfills a specific purpose. Root provides a root of
trust that delegates to all other roles. Targets provides information

85

ACSAC °23, December 04-08, 2023, Austin, TX, USA

about images, or namespaced delegations to other targets roles.
Namespaced delegations give a delegatee authority for a subset
of the namespace, or set of package permissions p € P, for which
the delegating role is responsible. Finally, snapshot, introduced in
a TUF variant called Mercury [50], provides bandwidth efficient
consistency for the whole repository, and timestamp provides a
heartbeat to ensure that all metadata is up-to-date and not revoked.

Delegations ensure that multiple parties do not have to share
keys. To create a delegation Ry > Aj, metadata signed by k indicates
the public key I and role name of the delegatee A, as well as what
portion of R’s namespace n € P the delegatee is trusted to sign. |
can then sign metadata for targets in n. Diplomat [53], another TUF
variant that, along with Mercury, has been integrated into the TUF
specification, added prioritized and terminating delegations that
ensure deterministic resolution by evaluating delegations in the
order they are listed.

TUF is used in production by popular repositories, such as Docker
Hub [30], Datadog [49], IBM [48], and the Python Packaging In-
dex [51]. There are also multiple independent implementations of
TUF, including those developed by Amazon [15] and Google [33].

A variant of TUF, Uptane [76], was created for use in an auto-
motive context and has been standardized as a Joint Development
Foundation project of the Linux Foundation. It uses the same RBAC
principles as TUF, but the mechanisms differ in practice to account
for the particular requirements of the automotive industry. How-
ever, the RBAC systems are equivalent and so for the purposes of
this paper, the systems can be thought of as equivalent.

TUF addresses security concerns for users downloading software
from a single repository, but does not account for the additional
complexity of trust relationships between repositories. In this work,
we apply the principle of compromise resilience to systems that
use multiple software repositories, each with multiple developers.

3 MOTIVATION

Artemis was developed as a response to real-world concerns from
software repository maintainers. We use scenarios to show the
limitations of using existing software installation tools to install
packages from multiple software repositories. The design require-
ments for Artemis were tailored to these identified problems.
Two repositories disagree on a package. Researchers discov-
ered a vulnerability to dependency confusion attacks at PayPal
due to the list of dependencies in an internal PayPal package’s
‘package.json’ file. This list included both packages on npm and
internal to PayPal. Researchers uploaded packages with the same
name as the internal PayPal packages to npm, and these arbitrary
packages were automatically installed [88]. When a tool installs a
package foo, which is available on both an internal repository A and
a public repository B, with different contents, it needs to determine
which repository to download the package from. Many existing sys-
tems, like Pacman’s repository configuration and Ubuntu’s Personal
Package Archive (PPA) [5, 72], address this problem by prioritizing
repositories. For example by first searching in A, then B. As the
roles on each repository are independent, every repository has a
top-level role r € R, which has permission for all namespaces p € P.
Yet, the tool might not always want packages from the internal
repository. The company might have an unmaintained internal

ACSAC °23, December 04-08, 2023, Austin, TX, USA

copy of a package bar, so that this package is listed on both A and
B. When a vulnerability is discovered in bar and patched in the
upstream version on B, the version in A does not receive this patch.
In such cases, the update tool needs a mechanism to articulate that
foo, which is maintained by the company, should be downloaded
from A, but bar should be downloaded from B. The tool needs to
prioritize the repository for each package or namespace p € P.

Requirement 1: Per-package prioritization of reposito-
ries. The system must allow tools to assign each namespace
n C P to a prioritized list of repositories in order to have a
specific resolution for package downloads.

Installation tools only want some packages from a reposi-
tory. In 2021, an attacker hijacked the developer accounts for npm
packages coa and rc, leveraging these accounts to upload malicious
versions of the packages. With over 20 million weekly downloads
combined [2], these packages present a significant attack surface.
To counter this attack, a tool must be able to use certain packages
from a public repository B while avoiding exposure to packages
from untrusted or compromised developers [71, 87, 95]. Instead,
tools must articulate a trusted set of packages and developers from
repository B, ensuring that only these authorized packages are
downloaded. When defining a set of trusted packages, tool adminis-
trators must balance the need to define trusted developers with the
risk of ignoring revocation information from the repository. This
tradeoff is further discussed in Section 7.2.3.

Requirement 2: Defining a trusted subset. Installation
tools should be able to maintain a trusted set of roles R and
developers U on a repository to ensure the installation of only
trusted packages from trusted developers.

Fallback problem. If repository A is unavailable due to a net-
working issue or a denial of service attack, even with repository
priority the tool would fallback to B to download foo. Thus, the
tool needs a way to prevent falling back to other repositories. In
other cases, a company might maintain repository C as a backup
copy of repository A. In this case, the tool should look for foo on
repository A and C, but not B. This requires the tool to specify both
repository priority and when a search for a package should stop.

Requirement 3: Terminate search for a package. The in-
stallation tool can define when the per-package prioritization
of repositories should stop the search for a particular names-
pacen C P

Repository compromise. In 2018 PEAR, the PHP Extension
and Application Repository, was compromised and an installation
script was replaced with a malicious version, infecting all users for
6 months before the attack was discovered [73]. Such repository
compromises are common, even for prominent organizations such
as Microsoft, Debian, and Apache([3, 4, 27, 28, 68]. If a repository is
compromised, the attacker can replace any package or delegation
signed by online keys. To mitigate this a tool may want to require

86

Marina Moore, Trishank Karthik Kuppusamy, and Justin Cappos

that all packages from repository A match those packages on repos-
itory C. If so, the tool needs a way to specify the repositories that
must reach consensus before a package is installed.

Requirement 4: Mitigate repository compromise. The
installation tool should be able to require a threshold of repos-
itories to agree on the contents of a package.

Maintainer compromise. In 2022, the author of the popular
npm package node-ipc intentionally published malicious versions
as a form of protest [93]. In other cases, trusted maintainers have
inadvertently uploaded malicious software due to a compromise of
their accounts or signing keys [2, 71, 87, 95, 96]. TUF delegations
allow delegators to revoke keys for these maintainers, but only
after the attack is discovered. To prevent such attacks, tools need a
way to not only ensure that a package is from a trusted maintainer,
but also get third-party verification of the package contents from
another role, such as a security scanner. This necessitates requiring
a threshold of trusted roles agree on the contents of a package.

In current systems, if a role T creates delegations Tkoff > Aq,,
and Tkoff > By, and role A’s online key [is compromised, an
attacker can maliciously replace a package with A’s assigned names-
pace. Since the tool trusts T to sign this package, it will check if any
delegation from T contains the package. As T > A and A is assigned
the package’s namespace, the tool will install it. Instead, we want
the tool to only install the package if it is signed by both A AND B.

Requirement 5: Mitigate role compromise. The installa-
tion tool should be able to require a threshold of roles to agree
on the contents of a package.

Real-world use. Since Artemis is designed for real-world use,
we also added practical requirements for smooth industry adoption.

Practical requirement 1: Shareable configuration. The
end user may not be a security expert, and so should not make
decisions about prioritization and threshold requirements. To
address this, we ensure one expert within an organization
can make configurations, then securely distribute them to all
installation tools.

Practical requirement 2: Preserve backwards compatibil-
ity with existing systems. We were surprised by the extent
to which industry users valued backwards compatibility. Users
of existing systems do not want to install new systems, but
rather want to incorporate new security mechanisms into
their legacy update systems. Therefore, any proposed solution
must maintain backwards compatibility with existing systems
designed for a single-repository setting. Otherwise, billions
of downloads from these major repositories will face serious
disruptions in service. [30].

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems

Practical requirement 3: Mechanisms added must not
significantly effect performance. Any new features should
minimally impact performance so that tools can easily inte-
grate new security mechanisms. Specifically, the mechanisms
should not require significant storage, download size, or com-
putation time.

4 THREAT MODEL

As security was paramount in our design, we establish a realistic
threat model for software update systems in a multi-repository
setting. We assume the following actors in our system:

e Repositories contain software packages and online keys
used to sign metadata about these packages for timeliness
and consistency.

e Developers upload software to repositories.

e Repository Administrators control offline repository keys
and repository configuration.

e Software installation tools download software from repos-
itories.

e Tool administrators create configurations for software
installation tools.

o Users request packages through software installation tools.

We assume attackers can perform all of the following actions:

(1) Respond to user requests, either by acting as a man-in-the-

middle on the network, or by compromising a repository.

(2) Compromise one or more keys used to sign metadata, and

hence packages, for a repository. These keys may be online,
mg.,,, or offline, Mo

(3) Use a set of keys that has been compromised to perform

arbitrary software attacks by replacing packages whose keys
have been compromised with malicious versions.

(4) Upload an arbitrary package to an unused name on a public

repository.

An attack will be deemed successful if it convinces the installa-
tion tool to install a less-preferred or arbitrary package. Our goal
is to achieve compromise-resilience in this setting, meaning an
attacker may compromise some u C U, but not all, repositories or
signing keys. Each compromise is bounded by the amount of time
required for administrators to recover and restore the repository.

Although we focus on arbitrary software attacks, our system
leverages existing software update security systems that can also
address other attacks that occur on a single repository [17, 19-21].

The following problems are out of the scope of this paper, but
have been discussed in other work:

o Denial-of-service attacks. TUF detects, but does not prevent
denial-of-service attacks [80]. Other work has focused on
denial-of-service prevention [105].

e Dependency resolution, or the problem of finding a complete
set of packages that can be installed together without con-
flicts. Many mechanisms exist to address this issue [16, 21].

o Attacks on the software update supply chain before a pack-
age is uploaded to a repository, including source code se-
curity, continuous integration and delivery, and packaging.

87

ACSAC °23, December 04-08, 2023, Austin, TX, USA

in-toto, which has been used with this work, can provide
supply chain security [43, 49, 101].

e Remote exploits, or a compromise of users’ systems through
amechanism other than software updates. Such attacks could
subvert software installation tools.

e Attack detection. Artemis provides mechanisms to reduce
the impact of an attack, and securely recover. However attack
detection is out of scope, and can be performed by existing
static and dynamic analysis and monitoring tools.

5 ARTEMIS: DESIGN

In order to address the threat model and requirements from Sec-
tion 3, we extend the delegation model found in RBDM1 and TUF
to implement articulated trust by adding multi-role delegations and
user pinning of trusted roles. We apply this model to both roles on
a repository and to the relationship between multiple repositories.
An overview of the design is illustrated in fig. 1.

5.1 Multi-role delegations

First, we mitigate role compromise by introducing multi-role delega-
tions. Unlike RBDM1’s threshold signing that requires a threshold
of keys, multi-role delegations require a threshold of roles, granting
a subset of their permissions to multiple roles, but only if those
roles agree. Multi-role delegations extend RBDM1 as follows:

e UAM C U X R is a many to many multi-role group to role
assignment relationship.

e UAM = UAM; AUAMy A ...ANUAM,, for n > 1 UAM consists
of one or more sub-roles that must be in agreement on any
action.

e UAM C UAD Multi-role delegations are part of UAD and
contain the same properties described in RBDM0 and RBDM1.

In real-world applications, the RBAC model must be stored on
the repository and communicated to users who perform verification.
If an attacker compromises the repository or any online keys, they
would be able to tamper with the RBAC model definitions. To
address this, Artemis builds its role-based model on top of TUF’s
delegation model, which can prevent an attacker from undermining
access control through the use of offline keys and revocation.

Figure 2 conceptualizes a multi-role delegation targetsg .. =
Bobj,,, A testingm,,,. If Bob’s key 1 is compromised, the user will
see that the secure hash listed by Bob for the malicious package
does not match the non-malicious hash listed in testing and will
abort the installation. Further, as targets is associated with offline
keys k, either delegated role may be securely revoked. In order to
replace Ubuntu with malware, attackers would have to compromise
at least 4 keys across 2 roles.

Addresses Requirement 5: Mitigate role compromise.
Multi-role delegations allow the tool to require agreement
between multiple roles, preventing any role from being a single
point of failure.

ACSAC °23, December 04-08, 2023, Austin, TX, USA

Marina Moore, Trishank Karthik Kuppusamy, and Justin Cappos

Repository User: .
[Targets map file | map file configuration
S (foo-*
~
___________ -_— N - - -
~
S ~
v Ay
/ Y 3 Multi-ro!e
Signs hashes
targets and length
. Indicates trusted
targets role
Delegates
G packages to
flce [Bob] [testing] [Charlie] o> E;?;r:;'"g
__ o~ Multi-repository
\/ l '--» mapping
B a8 | 5|
foo.img bar.img bar.img foo.img
Repository A Repository B

Figure 1: The overall design of Artemis. In this example, the targets map file indicates that only Alice should be trusted
from repository A. The repository map file indicates that foo should be downloaded from repository B, while bar requires
multiple-repository consensus from both repository A and B. On repository B, the bar image is signed by both Bob and the
testing role. The roles highlighted in orange are the trusted roles indicated in the targets map file, while the images in purple
are the images assigned to each repository by the repository map file. The files with a blue background represent all of the files

that will be downloaded to verify bar.

——————— |

1
1
=== Multi-role 1
1
1

3 out of 5 keys

'--> delegation
Signs hashes
and length

Ubuntu-
16.10.img

—_—

Figure 2: A multi-role delegation requires that keys and/or
thresholds of keys must agree on package contents. In this
example, a multi-role delegation means that Bob and atleast 3
keys of the testing role must agree on the hashes and length
of Ubuntu packages.

5.2 Key pinning

Next, we introduce a mechanism through which software installa-
tion tools can articulate a trusted subset of packages on a repository.
We do so by pinning trusted roles, a process that can be defined as
follows for a repository with a set of roles R:

e Installation tools define Ry; C R, the set of roles they would
like to use from the repository.
e Any A such that (B € Ry) > A inherits membership in Ryy.

Defining Ry allows tools to locally define the roles on a repos-
itory they would like to trust, which overrides any delegations
listed on the repository. This protects against malicious repository
maintainers, but puts the onus on the tool to keep Ry up-to-date.
Ry is defined in the targets map file in Artemis. This file pins
the roles Ry; in a local directory alongside the installation tool. The
software installation tool will use its existing verification process,

88

Indicates
trusted targets
role

user-side repository-side

I timestamp I

[root] [snapshot]

Gere) ()

Figure 3: The targets map file pins keys for specific delegated
targets roles, using the pinned roles as the top-level targets
and preventing tampering by a malicious repository. In this
example, a targets map file pins keys for the Django targets
role, so that the top-level targets and root on the repository
are not used to determine keys used to verify this role. During
software installation, only the highlighted roles will be used,
limiting the repository to packages signed by the Django role.
The repository’s root is only used to determine keys for the
snapshot and timestamp roles.

signs metadata
for

delegates
packages to

Targets map file

"targets_rolename":
Django,
"threshold": 1,
"keys":{ ABCD }

but will select and use only metadata from roles Ry;, thus overriding
roles and keys listed by the repository. Targets metadata files for
roles in Ry must be present on the repository as they must be listed
in its snapshot metadata. Figure 3 presents a targets map file that
pins the delegated Django targets role.

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems

One downside to pinning keys is that the tool cannot take ad-
vantage of automated key revocation from the repository. The tool
defines Ry, and as a consequence these roles cannot be revoked by
delegating roles on the repository. For this reason, targets map file
users should ensure that they have up-to-date information about
their pinned keys from tool administrators so compromised keys
can be removed quickly. Tool administrators should ensure prompt
updates of targets map file configurations, such as by using TUF to
distribute the configuration. Tool administrators may also take ad-
vantage of delegations to update pinned keys by pinning a trusted
role Iy F that can further delegate to the roles used to sign pack-
ages. I, is signed with offline keys, and so is more protected
from a key compromise. Thus, Iie o can later be used to revoke or
replace the online package signing keys.

For example when a user knows the keys associated with a role
gaBc, they may wish to reject any package that is signed with a
different key EF 1, even if the repository re-defines this role as ggry.
Using Artemis, the user may create Ry to pin gagc € Ry so that a
malicious repository cannot replace its key.

Addresses requirement 2: Defining a trusted subset. By
allowing end users to define Ry, key pinning gives the instal-
lation tool control over the trusted roles and developers. This
ensures that the repository cannot alter delegations and gives
the tool granular control over key revocation. In addition, key
pinning prevents a tool from automatically trusting a new,
malicious developer.

5.3 Repository RBAC

Finally, articulated trust addresses per-package prioritization and
mitigates the impact of repository compromise through a secure
configuration of multiple repositories. We extend the application of
the multi-role delegation model to apply not only to roles within a
repository, but also to the relationship between repositories. We de-
fine Repository RBAC as an RBAC system in which the repositories
are the users UR, the namespaces are the permissions Pg and the
roles Ry are assigned a set of permissions and users. We apply the
multi-role delegation model to Repository RBAC to allow for the
same agreement between repositories as is achieved between roles.

The repository map file configures Repository RBAC in Artemis.
It allows tool administrators to unambiguously allocate packages to
repositories, preventing dependency confusion attacks and reduc-
ing the impact of a repository compromise. Each repository map
file specifies Ug, PR, and Rg.

First, the map file contains a list of the available repositories Ug.
Each repository is associated with: (1) a unique directory name
where its metadata files are cached, and (2) a list of one or more
URLSs, each of which points to a root directory where metadata and
packages are available.

Next, the map file specifies a list of repository mappings that
define the roles Rg by associating namespaces Pg with each u € Ug.
Similar to prioritized delegations [53], all repository mappings are
listed in a descending order of priority. Each mapping specifies:
(1) a list of one or more filename patterns, (2) a list of one or more
repositories, and (3) a flag indicating whether or not the mapping

89

ACSAC °23, December 04-08, 2023, Austin, TX, USA

*
o, medes o{A]
o- - —

map - - - Mysql-*

file N
T ubuntu-* O- — — —p | prioritized terminating
r= =1 mapping
- _' —-> prioritized multi-repository

- mapping

Figure 4: A repository map file provides a ordered, prioritized
mapping of repositories that restricts each repository to a
namespace. Mappings are prioritized in order of appearance
from top to bottom. In this example, all packages starting
with mysql-custom package are downloaded from A and all
other MySQL packages are downloaded from B. This is com-
bined with a multi-role delegation to repositories C and D
for ubuntu packages. A compromise of a repository will be
limited to the namespace assigned to that repository.

is terminating. Akin to terminating delegations [53], a terminating
mapping signals to a software update security system that it should
halt its backtracking search for a package (described in Section 6.1),
so the user should ignore any delegation A > B from a terminating
role A. Since repository mappings are strictly ordered, there will
always be one trusted conclusion for a package’s metadata, or none
at all if no set of trusted repositories has signed the package.

Finally, the repository map file contains a multi-role delegation
threshold that specifies the number of mappings that must agree on
the contents of a package. The tool will search the prioritized repos-
itory mappings until the designated threshold of mappings agrees
on the package contents. This threshold gives the user protection
from malicious maintainers or a repository compromise.

For repositories A € Ug and B € Ug assigned to roles R4 and Rp,
respectively, Artemis can specify that namespaces a € Pg should
be assigned to R4, b € PR should be assigned to Rp, and ¢ € PR
should be assigned to Ry4, then Rg. Thus, a package in namespace
a will only be downloaded from repository A, while a package in
namespace ¢ will be looked for first in A, then in B. Figure 4 provides
an example of a repository map file.

In this way the tool is able to provide per-package prioritization
of multiple repositories, preventing dependency confusion attacks.
Packages on trusted internal repositories cannot be replaced with
arbitrary packages from a public repository, as these repositories
are assigned different permissions. A tool is able to maintain a
collection of verified or proprietary packages, while safely taking
advantage of existing public repositories for other packages.

Addresses requirement 1: Per-package prioritization of
repositories. Artemis explicitly allocates trust for each pack-
age by using prioritized repository mappings that specify
which repository should be used for each namespace p € Pg.

ACSAC °23, December 04-08, 2023, Austin, TX, USA

Addresses requirement 3: Terminate search for a pack-
age. The repository map file allows any assignment to a repos-
itory to be terminating, so that the tool will stop the search
for a namespace n.

Further, the repository map file can create multiple repository
consensus. A tool may use a multi-role delegation in Repository
RBAC from the root role r € Ry for repositories A € Ug and B € Ug.
Sor > R4 A Rp. A tool will automatically reject a package if the
hash of the package downloaded from repository A does not match
that of the package downloaded from repository B.

Addresses requirement 4: Mitigate repository compro-
mise. The thresholds in the repository map file allow the tool
to ensure that multiple repositories agree on package contents,
and thus prevent any repository from being a single point of
failure.

6 IMPLEMENTATION

We integrated Artemis into TUF and Uptane, and our implementa-
tion! has been upstreamed into production use. There are different
implementations for each integration, using some or all of Artemis’s
features. These implementations include an integration in Scala for
Automotive Grade Linux, as well as libraries in go and Python.

In the python-tuf integration, adding all features of Artemis
only adds about 150 lines of code to the existing 3500 line code-
base. Processing the repository map file added about 100 additional
lines and the targets map file about 50 lines. This does not include
additions due to unit tests, integration tests, and documentation.

Our implementation adds the repository and targets map files,
which require no changes to the repository, and thus preserve
backwards compatibility as specified in Section 4. As these new file
types are not signed, they can be distributed by a tool administrator
to a user using TUF or another secure distribution mechanism. Map
file examples are shown in Appendix A.

Multi-role delegations are implemented on the repository by
adding a min_roles_in_agreement field to delegations and allowing
each delegation to list multiple roles. The user must ensure that at
least min_roles_in_agreement roles have signed the same file hashes
for a package.

6.1 Software update workflow

Artemis requires the following workflow for downloading and
verifying software. First, the software update security system loads
the repository map file and iterates over the list of mappings. Then
each is processed using the following steps:

(1) If the filename of the desired package matches one of the
paths in the list of filename patterns, then go to step 2. Oth-
erwise, go to step 5.

(2) Download and verify the metadata for the package. The
metadata will contain the hashes and length of the package.

!https://github.com/mnm678/artemis-artifacts

90

Marina Moore, Trishank Karthik Kuppusamy, and Justin Cappos

(3) If the package hashes and length match across a threshold
of repositories, then download the package, verify that it
matches this metadata, stop the search, and return it.

(4) If there is no metadata about the package from any of these
repositories, or if this is a terminating mapping and the pack-
age hashes and length do not match across these repositories
then stop the search, and report that the package is missing.

(5) Continue to the next mapping.

In step 2, the software update security system will use its es-
tablished workflow to download and verify metadata from each
repository, unless the targets map file is used. In the latter case,
the system will only use Ry and therefore the keys assigned to
Ry . These roles may then delegate to other roles on the repository.
The system will verify only packages signed by roles in Ry, or a
delegatee of Ry;. All other security checks are done using metadata
provided by the repository.

Once it has established which repositories and keys should be
used, Artemis uses a pre-order, depth-first search [53] to resolve
prioritized and / or terminating delegations, and find metadata
for the package. When multi-role delegations are used, Artemis
modifies this search only by ensuring that the package hashes and
length match across multiple, prioritized roles.

7 EVALUATION

We tested Artemis in two ways. First, we analyzed past attacks to see
how Artemis can prevent or minimize assaults on software update
systems. We also evaluated how the mechanisms of articulated trust
contribute to achieving our security and usability goals.

7.1 Analysis of past attacks

To evaluate Artemis, we examined attacks from the CNCF’s CSCC
[85]. This catalog offers a cross-section of the many types of attacks
on supply chains, with a particular focus on cloud applications. Of
the 59 attacks cataloged before October 2022, we analyzed only
those that targeted software update or distribution systems and
sorted them by type of compromise. These attack types are:

¢ Repository compromise: The attacker gained control of
the software repository.

e Compromised developer key: The attacker compromised
a developer’s signing key or account.

e Compromised key and repository: The attacker compro-
mised both a signing key and the repository.

e Compromised key of another trusted developer: The
attacker gained control of a trusted key for a developer other
than the one who usually signs the affected package.

o Redirect to attacker repository: The attacker convinced
users to download updates from a malicious repository

e Malicious new developer: A new developer joined the
team or took over the project, then performed the attack.

e Malicious existing developer: An existing developer per-
formed the attack.

Table 1 shows the relative effectiveness of TLS/GPG, Sigstore [90],
TUF, and Artemis in preventing these attacks. Even with the us-
ability gained from online keys, Artemis with a threshold of at
least 2 roles and repositories would have prevented all 29 attacks.
A configuration of Artemis without all features would still allow

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems

ACSAC °23, December 04-08, 2023, Austin, TX, USA

TUF Artemis w/online targets Artemis w/offline targets
Attack Type Count GPG/ Sigstore Online Offline Key Multi-role Repository Key Multi-role Repository
TLS targets targets pinning delegations RBAC pinning delegations RBAC
Repository compromise 13 x O (@] [} ® O L] o ° °
Compromised key and repository 3 X O @) © © O [] © [] []
Compromised key 6 x O D © © (] © © [] ©
Compromised key for other trusted developer 2 X X [] ° ([] [] ([] [[
Redirect to attacker repository 2 X [} [} [[[[] [] [J []
Malicious new developer 1 X X © © [o © [] [} ©
Malicious existing developer 2 X X © © X (] X X () X

Table 1: Evaluating attack protection of different software update security systems, including a breakdown of protections
provided by each of Artemis’s features. X means that the attack is not prevented and there is no way to securely recover after
an attack. O means that the system can recover from, but not prevent an attack. © means that the attack will be prevented if a
threshold t > 1 is configured. ® means that the attack is prevented.

users to recover from all classes of attacks analyzed by revoking
compromised keys.

Conversely, software update systems that rely solely on online
TLS/GPG signatures would not have prevented the analyzed attacks.
While TLS/GPG do provide some protection, they are so common
in real-world applications [44] that recent attacks have bypassed
this protection. The Sigstore project, which stores signatures on a
transparent log, provides recovery from 22 analyzed attacks, but
only prevents 2. Systems that use TUF with an online targets role
are able to prevent 4 attacks, with high thresholds preventing a
further 9. TUF is able to recover after any of the remaining 16
attacks, but could not avoid being compromised. Offline keys in
TUF prevent an additional 13 attacks.

Since Artemis is designed for modular implementation, we break-
down which security properties of Artemis defend against each
attack type. Key pinning, which prevented 18, allows users, rather
than repositories, to specify trusted keys. Thus, key pinning pre-
vents attacks that rely on changing trusted keys. In these attacks,
an attacker manipulates the trusted keys for a package by changing
a delegation. With key pinning, the user will ignore delegation
changes that come from the repository or untrusted keys. This
includes attacks performed by malicious new developers as key
pinning allows the tool administrator to vet new developers. Multi-
role delegations, which prevented 13 with online keys and 29 with
offline keys, requires a threshold of at least two roles or repositories
to agree on package contents, preventing a single role or repository
compromise from leading to a successful attack. If a single role is
compromised and provides metadata for a malicious package, the
uncompromised role will not agree with anthey malicious pack-
age contents, and so the user will not install it. Finally, repository
RBAC, which prevented 20, allows the user to specify which pack-
age should come from each trusted repository and developer, thus
limiting the impact of a compromised developer or repository to
the packages they control.

Not all systems that use Artemis choose the most restrictive con-
figuration, so in practice its level of protection will depend on the
chosen security properties and thresholds. For example, thresholds
will only provide security gains if they are larger than one. Based
on Table 1, a combination of multi-role delegations and repository
RBAC could have prevented all the considered attack categories.
However, this assumes that all roles and repositories have thresh-
olds greater than one, which is not practical in all deployments.

91

Adoption requirement Deployment Artemis features Configured by
Define updates for each Automotive ﬁ\ OEM
vehicle
Protection from repository ~ Automotive LF\ OEM
compromise
Gather updates from Automotive [@ OEM
multiple suppliers —
Using a third party Cloud Package manager
container registry ‘
Store sensitive data on a Cloud Company
private repository l
Use software from a public Cloud IE| l v Package manager
repository
Ensure updates are tested Cloud @ Package manager
Repository Per-package Terminate

Define a f_l'_
trusted l

thresholds s
subset

prioritization search for a

II v threshalds i
package

Table 2: Different Artemis deployments use different features,
often in combination to achieve specific requirements.

It should be noted that the property of per-package prioritization
provides protection against attacks that specifically target multiple
repository systems, including dependency confusion attacks, which
are categorized here under redirect to attacker repository.

Further, some of the properties in Artemis are designed to work
in combination. For example, multi-role delegations work best when
attackers cannot replace the delegating role A. To mitigate this, a
user may either pin developer keys by specifying Ry C R such that
A € Ry, or utilize offline keys for A for additional assurance.

7.2 Real-world deployment

Artemis has been adopted in the Uptane Standard [76], which is
used by automotive companies in Europe, the United States, and
Japan. There are also public deployments by HERE Technologies,
Airbiquity, Foundries.io, and Automotive Grade Linux [46]. Further,
TUF, which is used in production by Datadog, AWS, Google, Docker,
and others [18], uses Artemis to support container registries. The
properties archived in these deployments are summarized in Table 2.

7.2.1 Automobiles. Artemis’s multiple-repository consensus re-
solved Uptane’s requirement to protect against nation state attack-
ers while preserving customizability. With online keys, repositories
can instantly sign different updates for different vehicles. But, on-
line keys are much more vulnerable to compromise. Alternatively,

ACSAC °23, December 04-08, 2023, Austin, TX, USA

signing software updates using offline keys provides better protec-
tion in the event of a repository compromise, but makes it harder
to implement customized updates. Thus, use of offline keys can
interfere with effective and time sensitive updates.

To solve this issue, Uptane uses multi-repository consensus to
separate responsibility. The Image repository uses offline keys to
sign metadata about all images. The Director repository uses on-
line keys to provide instructions about which images should be
installed on each vehicle. Putting these together, Artemis delegates
from the root role r > Directorg,, AImagei,. As the two reposi-
tories are independent of each other, attackers are unable to install
malicious images unless they compromise both. This ensures that
attacks on online keys are insufficient to install arbitrary packages,
while allowing for on-demand customization.

Additionally, multi-role delegations allow automakers to collect
updates from a number of suppliers without sharing private keys.

Key Takeaway: By using both multi-repository delegations
and multi-role delegations it is now possible to ensure a software
update system can remain resilient even against an actor, like a
nation-state, that can compromise all repositories and online keys.

7.2.2 TUF. Artemis allows TUF to facilitate updating images from
multiple container registries. A container is a form of OS-level
virtualization that provides relatively isolated environments for
running software. Containers are often packaged as images, or
immutable snapshots of the container filesystem, hosted on repos-
itories known as container registries, such as Docker Hub [30]
and CoreOS Quay [26]. Using Artemis, users can define prioritized
and terminating mappings to each registry, and specify trusted
developers and packages when using an untrusted registry.

Enterprises such as eBay use Quay to distribute images to avoid
the cost of hosting and maintaining its own repository. However,
eBay may trust Quay for its own images, but not those of other
developers. Also, eBay does not want Quay to be able to create
delegations that could replace their trusted keys. Defining a trusted
subset with Artemis addresses this concern.

Per-package prioritization supports enterprise users. Enterprises
cannot risk uploading images to public repositories that may expose
sensitive or proprietary information. Even if access controls are
placed on the images themselves, it is likely sensitive information,
such as file names and public keys, will be revealed through meta-
data. Artemis’s repository mappings allow enterprise users to store
sensitive data on a private repository while taking advantage of
public repositories for less sensitive images.

Key Takeaway: Key pinning and per-package prioritization
allow users to trust some, but not all, packages on a registry and
download these packages without trusting registry maintainers.

7.2.3 Lessons from Deployment. The initial deployment of Artemis
required an investment of time from repository administrators. Sys-
tems that already store TUF metadata alongside packages require
fewer changes, and so Artemis could be deployed in these systems
more easily. The modular nature of Artemis allows administrators
to implement features incrementally, and decide which features
would provide the most security for their implementation. Uptane
implemented both multi-role delegations and repository RBAC
in order to support consensus between multiple roles and reposi-
tories. Conversely, users of community package repositories can

92

Marina Moore, Trishank Karthik Kuppusamy, and Justin Cappos

implement just repository RBAC and key pinning in order to sup-
port per-package prioritization and reduce trust in the community
repository.

Once Artemis is implemented, trust needs to be established in
roles and repositories. Artemis uses TUF to establish trust, with
the root role distributing keys for other trusted entities. This also
provides mechanisms to revoke and replace trusted parties [19, 50].
TUF can further be used to distribute map files required by Artemis.
A separate TUF repository with a trusted root could distribute the
map files to a software installation tool. If any trusted party is
later found to be malicious, TUF provides mechanisms to revoke
trust. Further, role and repository thresholds in Artemis reduce the
impact of any single compromised role.

Artemis requires a trusted administrator to set up and manage
the security and usability tradeoffs of thresholds and pinned targets.
Once these configurations are made, they can be shared among
users. In Uptane, these decisions were made primarily by automo-
tive OEMs, who determined the threshold of repositories in the
repository map file, and then pushed this configuration to vehi-
cles. In container implementations, the configuration was done by
the package manager, company, or individual user that could set
thresholds or pin targets based on their particular threat model.
The default configuration for a package manager is shipped along
with the software.

There are tradeoffs to consider when setting thresholds to bal-
ance the increased security of having more developers or reposi-
tories agree on a package’s contents, and the potential for a failed
update if a threshold is not met. In the case of an insufficient thresh-
old, the tool must decide whether it is more important to meet the
threshold or to install the package. For example, a tool could choose
to not install the package if a signature from the original developer
or a security team is missing. However, a missing signature from
the QA team may be configured to not block installation. This deci-
sion must be made by looking at the purpose of each required role
and the threat model of a particular application. If a threat model
contains nation-state attackers that can compromise a repository
or signing key, a high threshold that includes offline keys should be
used. For Uptane, a threshold of two repositories allowed automak-
ers to balance the need for real-time configuration with the need
for offline keys. For applications used for hobby projects, a thresh-
old of one may be sufficient. Community package repositories aim
to make packages easy to distribute, and so would only require a
single role to sign a package, removing barriers to adoption.

7.3 Usability and performance

Artemis also achieves the practical requirements from section 3.

Shareable configuration. The map files that Artemis intro-
duces can be easily configured by experts and distributed to end-
users. Map files should be distributed with TUF or a similar mecha-
nism to ensure that the tool’s copy is current and accurate. These
files are designed to remain accurate as new packages are uploaded
to a repository. They only need to be updated to change the trusted
set of developers or policies for a package.

Backwards compatibility. As Artemis does not change the
underlying techniques of TUF, it continues to prevent known at-
tacks on single repository update systems [50, 52, 80] including

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems

replay attacks on metadata and packages. This also ensures back-
wards compatibility with existing TUF users. Software installation
tools may add targets and repository map files as client-side con-
figuration with no changes to repositories. However, multi-role
delegations do require a change to existing metadata formats. To
ensure that software installation tools do not encounter unfamiliar
metadata, this change should be supported first by software instal-
lation tools, and then by developers uploading to repositories. This
may be done through API versioning on the repository.

Performance. Based on performance tests of the Python im-
plementation, Artemis adds minimal processing time to software
update systems. We compare runtime and metadata sizes with and
without repository and targets map files. For this test, the repository
map file requires that two repositories agree on package contents.
Our results are summarized in Table 3 and show only an increase
of 10 milliseconds for verification. If more repositories or roles are
verified, there would be more processing, but this increase is still
small for users considering that downloading and installing soft-
ware packages, which are often many megabytes in size, dominates
the overall processing time. For example PyPI packages, based on
publicly available data, average over 3MB [104].

The Python implementation of Artemis is built on top of a TUF
implementation, and so has similar performance as the size of repos-
itories grows. An analysis of the runtime and metadata overhead
of TUF was performed in Mercury [50].

Artemis can enhance security protections with a manageable
change to existing systems. Our implementation added only about
4% more code to the software update system. The simplicity of the
additional code required for verification makes it easy to implement.

Metric TUF Artemis Package Artemis
download | overhead
Processing time | 200 ms 210 ms 240 ms 38%
Storage 9.511 KB | 10.262 KB 3 MB 0.34%

Table 3: Artemis runtime and storage. The storage for TUF is
equivalent to the bandwidth. However, the additional meta-
data in Artemis is configured locally and not downloaded
from a repository. Package download time is based on the
average PyPI package at an 100 Mbps download speed.

8 RELATED WORK

We compare Artemis to the broader field of software supply chain
security, as well as other work built on in this paper.

Software supply chain security Artemis improves security
of software distribution and updating, a sub-problem of software
supply chain security. Other technologies in this field solve related
problems. in-toto [101] is an end-to-end framework that allows
users to define and validate steps in a supply chain. Software bills
of materials (SBOMs) [97] provide auditable information about
software dependencies including Software Identification (SWID)
tagging [23], Software Package Data Exchange (SPDX) [106], and
CycloneDX [31]. Coppens et. al. present binary code diversification
to prevent attackers from using binary diffs to reconstruct patched
attacks [24]. These technologies can work in tandem with Artemis,

93

ACSAC °23, December 04-08, 2023, Austin, TX, USA

with Artemis securely distributing both packages and metadata,
like SBOMs, from other supply chain security technologies. Han
et. al. introduce Sigl, a tool for detecting malicious software in-
staller programs [41]. Artemis focuses instead on ensuring that the
installer gets the intended artifact from a collection of software
repositories.

Multi-role delegations. Artemis applies ideas from previous
work in logic-based distributed authorization. D2LP is an autho-
rization language in delegation logic [40, 61, 63, 64] that extends
early works on trust management and authorization in distributed
systems [1, 56]. D2LP also uses both the AND and OR relations in
delegations, and could express the mechanisms in Artemis. How-
ever, Artemis is the first system for software updates that uses these
types of delegations.

Threshold and multi-signature signing Artemis expands on
the idea of signature thresholds by adding thresholds of roles or
repositories. Multi-signature signing [13, 45, 57, 67, 77] efficiently
allows multiple signatures on an artifact. Threshold signatures [35,
86, 89] allow multiple parties to sign an artifact by splitting the
private key among all entities. Artemis does not require that the
same metadata bytes are signed, but that the hashes and length of
a package match across multiple roles or repositories.

Multiple repositories. Like Artemis, other systems use the idea
of multiple repositories or servers, but there are some important
differences. Linux software updaters dnf and apt allow users to
install packages from multiple repositories as does Revere [60],
which uses a self-organizing, peer-to-peer (P2P) overlay network to
deliver updates. Essentially, every Revere node acts as a mirror, and
may push or pull updates to or from other nodes. However, these
systems do not solve the priority or fallback problems, or allow for
multiple-repository consensus.

Byzantine fault-tolerant systems (BFT) use many replicas instead
of a single server to execute operations [9, 22, 59, 84]. Yet, BFT
systems are aiming to solve a different problem, that of guaranteeing
linearizability [42] in a system made of distributed processors. In
contrast, Artemis uses multiple repositories as independent sources
of information that must agree with each other.

Reducing trust in a repository. Some software update systems
allow users to reduce trust in a repository. For example, apt and
dnf require user permission before revoking and replacing keys
used to verify metadata. However, Artemis is the first system that
removes the repository from the equation. Instead, Artemis allows
users to specify their own keys for packages and metadata. This
technique is powerful enough that it can solve other problems, such
as reducing trust in mirrors.

Secure Untrusted Data Repository (SUNDR) [58] uses a set of
trusted users that honestly report histories. SUNDR uses this infor-
mation to detect equivocation to protect against arbitrary software
attacks and forking attacks on a single repository. Artemis does not
rely on a trusted set of honest users reporting history data and also
supports articulated trust in multiple repositories.

Another approach to reducing trust is the use of binary trans-
parency through publicly auditable, immutable transparent logs.
Sigstore [90] provides a set of tools for signing packages and up-
loading these signatures to a transparent log for auditability and
protection against forking attacks. But, this approach relies on third-
party auditors of the log. Artemis is compatible with transparent

ACSAC °23, December 04-08, 2023, Austin, TX, USA

logs, and and there are integrations of Artemis and Sigstore[90]
that provide Artemis’s articulated trust and revocation mechanisms
in addition to the protections offered by transparent logs.

Ghosn et. al. [36] propose reducing the impact of malicious pack-
ages by using Enclosures to restrict the resources that library depen-
dencies can access. Unlike Artemis, Enclosures require changes to
programming languages. Artemis can work with existing developer
workflows, and would be compatible with Enclosures.

9 CONCLUSION

In this paper we conducted the first comprehensive examination of
the security of multiple repository update systems. We introduce
articulated trust to enable a software update system to use multiple
repositories while limiting the trust placed in them. Artemis, our
implementation of articulated trust, has been successfully deployed
in several large scale production environments. Artemis uses simple
yet effective mechanisms to provide secure configuration of trust in
challenging environments, such as automobiles and container reg-
istries. Through collaboration with industry practitioners, we show
that Artemis addresses real world problems. For example, Artemis
allows companies using popular cloud container sites to prevent de-
pendency confusion attacks. It also helps automakers enhance their
resilience against nation-state actors through multiple-repository
consensus.

The security properties of Artemis are very effective in prevent-
ing previous attacks on software update systems, and would prevent
all attacks that we analyzed, compared with 59% for TUF and 7% for
Sigstore. By employing key pinning, eliminating single points of
failure, and per-package prioritization, Artemis establishes a robust
defense against attacks on multiple repository update systems.

REFERENCES

[1] Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. 1993. A
Calculus for Access Control in Distributed Systems. ACM Trans. Program. Lang.
Syst. 15, 4 (Sept. 1993), 706-734. https://doi.org/10.1145/155183.155225

[2] Juan Aguirre. 2021. NPM Hijackers at It Again: Popular ‘coa’
and ‘rc’ Open Source Libraries Taken Over to Spread Malware.
https://blog.sonatype.com/npm-hijackers-at-it-again-popular-coa-and-
rc-open-source-libraries-taken-over-to-spread-malware. sonatype blog (2021).

[3] Apache Infrastructure Team. 2009. apache.org incident report for 8/28/2009.
https://blogs.apache.org/infra/entry/apache_org_downtime_report.

[4] Apache Infrastructure Team. 2010. apache.org incident report for 04/09/2010.
https://blogs.apache.org/infra/entry/apache_org_04_09_2010.

[5] apt 2021. add-apt-repository.

[6] ArchWiki. 2022. Official Repositories.
Official_repositories.

[7] Argon. [n.d.]. 2021 Software Supply Chain Security Report. Technical Report.
Argon: An Aqua Company. https://info.aquasec.com/argon-supply-chain-
attacks-study

[8] Brad Arkin. 2012. Adobe to Revoke Code Signing Certificate.

https://blogs.adobe.com/conversations/2012/09/adobe- to-revoke-code-

signing- certificate.html.

Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. 2013. RBFT: Redun-

dant Byzantine Fault Tolerance. In Proceedings of the 2013 IEEE 33rd International

Conference on Distributed Computing Systems (ICDCS ’13). IEEE Computer Soci-

ety, USA, 297-306. https://doi.org/10.1109/ICDCS.2013.53

Ezedin Barka and Ravi S. 2000. A Role-Based Delegation Model and Some

Extensions. Proceedings of the 23rd National Conference on Information Systems

Security (12 2000).

Ezedin Barka and Ravi Sandhu. 2005. Role-Based Delegation Model/Hierarchical

Roles (RBDM1). Proceedings - Annual Computer Security Applications Conference,

ACSAC, 396—- 404. https://doi.org/10.1109/CSAC.2004.31

Mihir Bellare and Gregory Neven. 2006. Multi-Signatures in the Plain Public-

Key Model and a General Forking Lemma. In Proceedings of the 13th ACM

Conference on Computer and Communications Security (Alexandria, Virginia,
USA) (CCS °06). Association for Computing Machinery, New York, NY, USA,

390-399. https://doi.org/10.1145/1180405.1180453

https://wiki.archlinux.org/title/

=

[12

94

[13]

[14

[15

[16

[17

[18]

[19

[20

[21

[22

[23

[24

[25]

[26
[27

[28

[29

[30
[31
[32

[33
[34

[35

[36

[37

[38]

[39

[40

Marina Moore, Trishank Karthik Kuppusamy, and Justin Cappos

Mihir Bellare and Gregory Neven. 2006. Multi-Signatures in the Plain Public-
Key Model and a General Forking Lemma. In Proceedings of the 13th ACM
Conference on Computer and Communications Security (Alexandria, Virginia,
USA) (CCS ’06). Association for Computing Machinery, New York, NY, USA,
390-399. https://doi.org/10.1145/1180405.1180453

Anthony Bellissimo, John Burgess, and Kevin Fu. 2006. Secure software updates:
disappointments and new challenges. Proceedings of USENIX Hot Topics in
Security (HotSec) (2006).

bottlerocket 2019. Bottlerocket update infrastructure. https://github.com/
bottlerocket-os/bottlerocket/tree/develop/sources/updater.

Daniel Burrows. 2005. Modelling and resolving software dependencies. https:
//people.debian.org/~dburrows/model.pdf.

Justin Cappos, Scott Baker, Jeremy Plichta, Duy Nyugen, Jason Hardies, Matt
Borgard, Jeffry Johnston, and John H Hartman. 2007. Stork: package manage-
ment for distributed VM environments. In The 21st Large Installation System
Administration Conference, LISA’07.

Justin Cappos, Trishank Karthik Kuppusamy, Joshua Lock, Marina Moore, and
Lukas Puhringer. 2022. The Update Framework Specification. Specification.
https://theupdateframework.github.io/specification/latest/

Justin Cappos, Justin Samuel, Scott Baker, and John H Hartman. 2008. A look
in the mirror: Attacks on package managers. In Proceedings of the 15th ACM
conference on Computer and communications security. ACM, 565-574.

Justin Cappos, Justin Samuel, Scott Baker, and John H Hartman. 2008. Package
management security. University of Arizona Technical Report (2008), 08-02.
Justin Capppos. 2008. Stork: Secure Package Management for VM Environments.
Dissertation. University of Arizona.

Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the Third Symposium on Operating Systems Design and Implemen-
tation (New Orleans, Louisiana, USA) (OSDI ’99). USENIX Association, Berkeley,
CA, USA, 173-186. http://dl.acm.org/citation.cfm?id=296806.296824
Information Technology Laboratory Computer Security Resource Center. 2021.
Software Identification (SWID)Tagging. Technical Report. National Institute of
Standards and Technology.

Coppens, Bart and De Sutter, Bjorn and De Bosschere, Koen. 2013. Protecting
your software updates. IEEE SECURITY & PRIVACY 11, 2 (2013), 47-54. http:
//dx.doi.org/10.1109/MSP.2012.113

Jonathan Corbet. 2011. The cracking of kernelorg. http:
//www linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-
kernelorg.

CoreOS, Inc. [n. d.]. Quay Container Registry. https://quay.io/.

Debian. 2003. Debian Investigation Report after Server Compromises. https:
//www.debian.org/News/2003/20031202.

Debian. 2012. Security breach on the Debian wiki 2012-07-25.
wiki.debian.org/DebianWiki/SecurityIncident2012.

Yvo Desmedt. 1987. Society and Group Oriented Cryptography: A New Concept.
In A Conference on the Theory and Applications of Cryptographic Techniques
on Advances in Cryptology (CRYPTO ’87). Springer-Verlag, Berlin, Heidelberg,
120-127.

Docker Inc. [n.d.]. Docker Hub. https://hub.docker.com/.

OWASP Foundation. 2021. CycloneDx. https://cyclonedx.org/.

Paul W. Frields. 2008. Infrastructure report, 2008-08-22 UTC
1200. https://www.redhat.com/archives/fedora-announce-1ist/2008-
August/msg00012.html.

Fuschia. 2021. Software Update System. Technical Report.

Dan Geer, Bentz Tozer, and John Speed Meyers. 2020. For Good Measure:
Counting Broken Links: A Quant’s View of Software Supply Chain Security.
login Usenix Mag. 45 (2020).

Rosario Gennaro and Steven Goldfeder. 2018. Fast Multiparty Threshold ECDSA
with Fast Trustless Setup. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 1179-1194. https://doi.org/
10.1145/3243734.3243859

Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and Edouard
Bugnion. 2021. Enclosure: Language-Based Restriction of Untrusted Libraries.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS °21).
Association for Computing Machinery, New York, NY, USA, 255-267. https:
//doi.org/10.1145/3445814.3446728

GitHub, Inc. 2012. Public Key Security Vulnerability and Mitigation. https:
//github.com/blog/1068-public-key-security-vulnerability- and-mitigation.
GNU Savannah. 2010. Compromise2010. https://savannah.gnu.org/
maintenance/Compromise2010/.

Dan Goodin. 2013. Attackers sign malware using crypto certificate stolen
from Opera Software. http://arstechnica.com/security/2013/06/attackers-sign-
malware-using-crypto-certificate-stolen-from-opera-software/.

Benjamin N Grosof. 1997. Prioritized Conflict Handling for Logic Programs.. In
ILPS, Vol. 97. 197-211.

https://

https://doi.org/10.1145/155183.155225
https://blog.sonatype.com/npm-hijackers-at-it-again-popular-coa-and-rc-open-source-libraries-taken-over-to-spread-malware
https://blog.sonatype.com/npm-hijackers-at-it-again-popular-coa-and-rc-open-source-libraries-taken-over-to-spread-malware
https://blogs.apache.org/infra/entry/apache_org_downtime_report
https://blogs.apache.org/infra/entry/apache_org_04_09_2010
https://wiki.archlinux.org/title/Official_repositories
https://wiki.archlinux.org/title/Official_repositories
https://info.aquasec.com/argon-supply-chain-attacks-study
https://info.aquasec.com/argon-supply-chain-attacks-study
https://blogs.adobe.com/conversations/2012/09/adobe-to-revoke-code-signing-certificate.html
https://blogs.adobe.com/conversations/2012/09/adobe-to-revoke-code-signing-certificate.html
https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.1109/CSAC.2004.31
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://github.com/bottlerocket-os/bottlerocket/tree/develop/sources/updater
https://github.com/bottlerocket-os/bottlerocket/tree/develop/sources/updater
https://people.debian.org/~dburrows/model.pdf
https://people.debian.org/~dburrows/model.pdf
https://theupdateframework.github.io/specification/latest/
http://dl.acm.org/citation.cfm?id=296806.296824
http://dx.doi.org/10.1109/MSP.2012.113
http://dx.doi.org/10.1109/MSP.2012.113
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
https://quay.io/
https://www.debian.org/News/2003/20031202
https://www.debian.org/News/2003/20031202
https://wiki.debian.org/DebianWiki/SecurityIncident2012
https://wiki.debian.org/DebianWiki/SecurityIncident2012
https://hub.docker.com/
https://cyclonedx.org/
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1145/3445814.3446728
https://doi.org/10.1145/3445814.3446728
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://savannah.gnu.org/maintenance/Compromise2010/
https://savannah.gnu.org/maintenance/Compromise2010/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-opera-software/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-opera-software/

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems

[41] Xueyuan Han, Xiao Yu, Thomas Pasquier, Ding Li, Junghwan Rhee, James

Mickens, Margo Seltzer, and Haifeng Chen. 2021. SIGL: Securing Software
Installations Through Deep Graph Learning. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2345-2362. https://www.usenix.org/
conference/usenixsecurity21/presentation/han-xueyuan

M. P. Herlihy and J. M. Wing. 1987. Axioms for Concurrent Objects. In Proceed-
ings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (Munich, West Germany) (POPL '87). ACM, New York, NY, USA,
13-26. https://doi.org/10.1145/41625.41627

in-toto 2022. in-toto - A framework to secure the integrity of software supply
chains. https://in-toto.io/.

Internet Security Research Group (ISRG). 2021. Let’s Encrypt Stats. https:
//letsencrypt.org/stats/.

KITAKURA, K; NAKAMURA. 1983. A public-key cryptosystem suitable for
digital multisignatures. NEC research & development (1983).

Joint Development Foundation Projects, LLC, Uptane Series. 2020. Adoptions.
https://uptane.github.io/adoptions.html.

Jeffrey Knockel and Jedidiah R Crandall. 2012. Protecting Free and Open Com-
munications on the Internet Against Man-in-the-Middle Attacks on Third-Party
Software: We’re FOCI'd. In Presented as part of the 2nd USENIX Workshop on
Free and Open Communications on the Internet (Bellevue, WA). USENIX, Berke-
ley, CA. https://www.usenix.org/conference/focil2/protecting-free-and-open-
communications-internet-against-man-middle-attacks- third

Kubernetes. 2018. Case Study: IBM Building an Image Trust Service on Ku-
bernetes with Notary and TUF. https://v1-18.docs.kubernetes.io/case-studies/
ibm/.

Trishank Karthik Kuppusamy. 2019. Secure Publication of Datadog Agent Inte-
grations with TUF and in-toto. https://www.datadoghq.com/blog/engineering/
secure-publication- of-datadog-agent-integrations- with- tuf-and-in- toto/.
Trishank Karthik Kuppusamy, Vladimir Diaz, and Justin Cappos. 2017. Mer-
cury: Bandwidth-Effective Prevention of Rollback Attacks against Community
Repositories. In USENIX ATC °17 (Santa Clara, CA, USA). USENIX Association,
USA, 673-688.

Trishank Karthik Kuppusamy, Vladimir Diaz, Donald Stufft, and Justin Cap-
pos. 2013. PEP 458 — Securing the Link from PyPI to the End User. https:
//www.python.org/dev/peps/pep-0458/.

Trishank Karthik Kuppusamy, Santiago Torres-Arias, Vladimir Diaz, and Justin
Cappos. [n.d.]. Diplomat: Using Delegations to Protect Community Repositories.
Technical Report TR-CSE-2016-01. Computer Science and Engineering, Tandon
School of Engineering, New York University. http://isis.poly.edu/~jcappos/
papers/TR-CSE-2016-01.pdf

Trishank Karthik Kuppusamy, Santiago Torres-Arias, Vladimir Diaz, and
Justin Cappos. 2016. Diplomat: Using Delegations to Protect Commu-
nity Repositories. In 13th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 16). USENIX Association, Santa Clara,
CA, 567-581. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/kuppusamy

P. Ladisa, H. Plate, M. Martinez, and O. Barais. 2023. SoK: Taxonomy of Attacks
on Open-Source Software Supply Chains. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 1509-1526.
https://doi.org/10.1109/SP46215.2023.00010

Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber. 1992. Au-
thentication in Distributed Systems: Theory and Practice. ACM Trans. Comput.
Syst. 10, 4 (Nov. 1992), 265-310. https://doi.org/10.1145/138873.138874

Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber. 1992. Au-
thentication in Distributed Systems: Theory and Practice. ACM Trans. Comput.
Syst. 10, 4 (Nov. 1992), 265-310. https://doi.org/10.1145/138873.138874

Duc Phong Le, Alexis Bonnecaze, and Alban Gabillon. 2009. Multisignatures as
Secure as the Diffie-Hellman Problem in the Plain Public-Key Model. Lecture
Notes in Computer Science 5671 (08 2009), 35-51. https://doi.org/10.1007/978-3-
642-03298-1_3

Jinyuan Li, Maxwell Krohn, David Maziéres, and Dennis Shasha. 2004. Secure
untrusted data repository (SUNDR). In Proceedings of the 6th conference on
Symposium on Operating Systems Design & Implementation - Volume 6 (San
Francisco, CA) (OSDI'04). USENIX Association, Berkeley, CA, USA, 9-9. http:
//dl.acm.org/citation.cfm?id=1251254.1251263

Jinyuan Li and David Maziéres. 2007. Beyond One-third Faulty Replicas in Byzan-
tine Fault Tolerant Systems. In Proceedings of the 4th USENIX Conference on Net-
worked Systems Design and Implementation (Cambridge, MA) (NSDI'07). USENIX
Association, Berkeley, CA, USA, 10-10. http://dl.acm.org/citation.cfm?id=
1973430.1973440

Jun Li, P.L. Reiher, and Gerald J. Popek. 2004. Resilient self-organizing overlay
networks for security update delivery. Selected Areas in Communications, IEEE
Journal on 22, 1 (2004), 189-202. https://doi.org/10.1109/JSAC.2003.818808
Ninghui Li. 2000. Delegation Logic: A Logic-based Approach to Distributed Au-
thorization. Ph.D. Dissertation. New York University.

Ninghui Li, Joan Feigenbaum, and Benjamin Grosof. 1999. A Logic-based
Knowledge Representation for Authorization with Delegation. PCSFW: Proc.

[63

[64

[65

[66

[67

[68

[69

[70
[71]

[72
[73

[74

[75

[76
[77

[78]

[79

[80]

[81]

[82

[83

[84]

[85

[86]

[87]

[88]

[89

[90

[o1

[92]

[93
[94
[95

ACSAC °23, December 04-08, 2023, Austin, TX, USA

12th Computer Security Foundations Workshop, 162 — 174.
10.1109/CSFW.1999.779771

Ninghui Li, Joan Feigenbaum, and Benjamin N Grosof. 1999. A logic-based
knowledge representation for authorization with delegation. In Computer Secu-
rity Foundations Workshop, 1999. Proceedings of the 12th IEEE. IEEE, 162-174.

https://doi.org/

Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. 2000. A Non-
monotonic Delegation Logic with Prioritized Conflict Handling. https://
www.cs.purdue.edu/homes/ninghui/papers/old/d2lp.pdf.

Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. 2000. A Non-
monotonic Delegation Logic with Prioritized Conflict Handling. https://

www.cs.purdue.edu/homes/ninghui/papers/old/d2lp.pdf.

Hannes Magnusson. 2010. The PHP project and Code Review. http://
bjori.blogspot.com/2010/12/php- project-and-code-review.html.

Silvio Micali, Kazuo Ohta, and Leonid Reyzin. 2001. Accountable-Subgroup
Multisignatures: Extended Abstract (CCS *01). Association for Computing Ma-
chinery, New York, NY, USA, 245-254. https://doi.org/10.1145/501983.502017
Microsoft, Inc. 2012. Flame malware collision attack explained.
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-
about-the- digital- certificates-used- to-sign-the-flame-malware.aspx.

Matt Mullenweg. 2011. Passwords Reset. https://wordpress.org/news/2011/06/
passwords-reset/.

npm, Inc. [n.d.]. npm. https://www.npmjs.com/.

Jarrod Overson. 2019. How Two Malicious NPM Packages Targeted & Sabotaged
Others. https://jsoverson.medium.com/how-two-malicious-npm-packages-
targeted- sabotaged- one-other-fed7199099c8.

pacman 2021. pacman.conf.

pear 2022. When PHP Went Pear Shaped- The PHP PEAR Compromise. https:
//blog.cpanel.com/when-php-went-pear-shaped-the-php-pear-compromise/.
Python Software Foundation. [n. d.]. PyPI - the Python Package Index: Python
Package Index. https://pypi.python.org/pypi.

Red Hat, Inc. 2008. Infrastructure report, 2008-08-22 UTC 1200.
//thn.redhat.com/errata/RHSA-2008-0855.html.

Redacted. [n. d.]. Redacted for anonymous submission.

Thomas Ristenpart and Scott Yilek. 2007. The Power of Proofs-of-Possession:
Securing Multiparty Signatures against Rogue-Key Attacks (EUROCRYPT ’07).
Springer-Verlag, Berlin, Heidelberg, 228-245. https://doi.org/10.1007/978-3-
540-72540-4_13

RubyGems.org. 2013. Data Verification. http://blog.rubygems.org/2013/01/31/
data-verification.html.

Ravi S, Edward J Sandhu, Hal L Feinstein Coyne, and Charles E. Youman. 1996.
Role Based Access Control Models. In Computer. 38-47.

Justin Samuel, Nick Mathewson, Justin Cappos, and Roger Dingledine. 2010.
Survivable key compromise in software update systems. In Proceedings of the
17th ACM conference on Computer and communications security. ACM, 61-72.
James Sanders. 2019. Malicious libraries in package repositories reveal a funda-
mental security flaw. https://www.techrepublic.com/article/malicious-libraries-
in-package-repositories-reveal-a- fundamental- security-flaw/.

Ravi S Sandhu. 1998. Role-based access control. Advances in computers 46 (1998),
237-286.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. 1996.
Role-based access control models. Computer 29, 2 (1996), 38—47.

Fred B. Schneider. 1990. Implementing Fault-tolerant Services Using the State
Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (Dec. 1990), 299-319.
https://doi.org/10.1145/98163.98167

CNCF TAG Security. 2021. Catalog of Supply Chain Compromises. https://
github.com/cncf/tag- security/tree/main/supply-chain-security/compromises.
Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (nov 1979),
612-613. https://doi.org/10.1145/359168.359176

Ax Sharma. 2021. Newly Found npm Malware Mines Cryptocurrency on Win-
dows, Linux, macOS Devices. https://blog.sonatype.com/newly-found-npm-
malware-mines-cryptocurrency-on-windows-linux-macos-devices. sonatype
blog (2021).

Ax Sharma. 2021. Researcher hacks over 35 tech firms in novel supply chain
attack. https://www.bleepingcomputer.com/news/security/researcher-hacks-
over-35-tech-firms-in-novel-supply-chain-attack/.

Victor Shoup. 2000. Practical Threshold Signatures. In Advances in Cryptology
— EUROCRYPT 2000, Bart Preneel (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 207-220.

Sigstore. 2021. A new standard for signing, verifying and protecting software.
https://www.sigstore.dev/.

Slashdot Media. 2012. phpMyAdmin corrupted copy on Korean mirror server.
https://sourceforge.net/blog/phpmyadmin-back-door/.

Jared K. Smith. 2011. Security incident on Fedora infrastructure on 23 Jan 2011.
https://lists.fedoraproject.org/pipermail/announce/2011- January/002911.html.
Snyk. 2022. CVE-2022-23812. https://nvd.nist.gov/vuln/detail/CVE-2022-23812.
socket 2022. Socket - Secure your JavaScript Supply Chain. https://socket.dev/.
SuperOleg39. 2021. Security issue: compromised npm packages of ua-parser-js
(0.7.29, 0.8.0, 1.0.0) - Questions about deprecated npm package ua-parser-js.

https:

https://www.usenix.org/conference/usenixsecurity21/presentation/han-xueyuan
https://www.usenix.org/conference/usenixsecurity21/presentation/han-xueyuan
https://doi.org/10.1145/41625.41627
https://in-toto.io/
https://letsencrypt.org/stats/
https://letsencrypt.org/stats/
https://uptane.github.io/adoptions.html
https://www.usenix.org/conference/foci12/protecting-free-and-open-communications-internet-against-man-middle-attacks-third
https://www.usenix.org/conference/foci12/protecting-free-and-open-communications-internet-against-man-middle-attacks-third
https://v1-18.docs.kubernetes.io/case-studies/ibm/
https://v1-18.docs.kubernetes.io/case-studies/ibm/
https://www.datadoghq.com/blog/engineering/secure-publication-of-datadog-agent-integrations-with-tuf-and-in-toto/
https://www.datadoghq.com/blog/engineering/secure-publication-of-datadog-agent-integrations-with-tuf-and-in-toto/
https://www.python.org/dev/peps/pep-0458/
https://www.python.org/dev/peps/pep-0458/
http://isis.poly.edu/~jcappos/papers/TR-CSE-2016-01.pdf
http://isis.poly.edu/~jcappos/papers/TR-CSE-2016-01.pdf
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/kuppusamy
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/kuppusamy
https://doi.org/10.1109/SP46215.2023.00010
https://doi.org/10.1145/138873.138874
https://doi.org/10.1145/138873.138874
https://doi.org/10.1007/978-3-642-03298-1_3
https://doi.org/10.1007/978-3-642-03298-1_3
http://dl.acm.org/citation.cfm?id=1251254.1251263
http://dl.acm.org/citation.cfm?id=1251254.1251263
http://dl.acm.org/citation.cfm?id=1973430.1973440
http://dl.acm.org/citation.cfm?id=1973430.1973440
https://doi.org/10.1109/JSAC.2003.818808
https://doi.org/10.1109/CSFW.1999.779771
https://doi.org/10.1109/CSFW.1999.779771
https://www.cs.purdue.edu/homes/ninghui/papers/old/d2lp.pdf
https://www.cs.purdue.edu/homes/ninghui/papers/old/d2lp.pdf
https://www.cs.purdue.edu/homes/ninghui/papers/old/d2lp.pdf
https://www.cs.purdue.edu/homes/ninghui/papers/old/d2lp.pdf
http://bjori.blogspot.com/2010/12/php-project-and-code-review.html
http://bjori.blogspot.com/2010/12/php-project-and-code-review.html
https://doi.org/10.1145/501983.502017
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
https://wordpress.org/news/2011/06/passwords-reset/
https://wordpress.org/news/2011/06/passwords-reset/
https://www.npmjs.com/
https://jsoverson.medium.com/how-two-malicious-npm-packages-targeted-sabotaged-one-other-fed7199099c8
https://jsoverson.medium.com/how-two-malicious-npm-packages-targeted-sabotaged-one-other-fed7199099c8
https://blog.cpanel.com/when-php-went-pear-shaped-the-php-pear-compromise/
https://blog.cpanel.com/when-php-went-pear-shaped-the-php-pear-compromise/
https://pypi.python.org/pypi
https://rhn.redhat.com/errata/RHSA-2008-0855.html
https://rhn.redhat.com/errata/RHSA-2008-0855.html
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
http://blog.rubygems.org/2013/01/31/data-verification.html
http://blog.rubygems.org/2013/01/31/data-verification.html
https://www.techrepublic.com/article/malicious-libraries-in-package-repositories-reveal-a-fundamental-security-flaw/
https://www.techrepublic.com/article/malicious-libraries-in-package-repositories-reveal-a-fundamental-security-flaw/
https://doi.org/10.1145/98163.98167
https://github.com/cncf/tag-security/tree/main/supply-chain-security/compromises
https://github.com/cncf/tag-security/tree/main/supply-chain-security/compromises
https://doi.org/10.1145/359168.359176
https://blog.sonatype.com/newly-found-npm-malware-mines-cryptocurrency-on-windows-linux-macos-devices
https://blog.sonatype.com/newly-found-npm-malware-mines-cryptocurrency-on-windows-linux-macos-devices
https://www.bleepingcomputer.com/news/security/researcher-hacks-over-35-tech-firms-in-novel-supply-chain-attack/
https://www.bleepingcomputer.com/news/security/researcher-hacks-over-35-tech-firms-in-novel-supply-chain-attack/
https://www.sigstore.dev/
https://sourceforge.net/blog/phpmyadmin-back-door/
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
https://nvd.nist.gov/vuln/detail/CVE-2022-23812
https://socket.dev/

ACSAC °23, December 04-08, 2023, Austin, TX, USA

[96

[97
[98
[99
[100

[101

https://github.com/faisalman/ua-parser-js/issues/536.

Liran Tal and Assaf Ben Josef. 2022. Open source maintainer pulls the plug on
npm packages colors and faker, now what? https://snyk.io/blog/open-source-
npm-packages-colors-faker/. snyk blog (2022).

National Telecommunications and Information Administration. 2021. Software
Bill of Materials. https://www.ntia.gov/SBOM.

The FreeBSD Project. 2012. FreeBSD.org intrusion announced November 17th
2012. http://www.freebsd.org/news/2012-compromise.html.

The PHP Group. 2011. php.net security notice. http://www.php.net/archive/
2011.php#id2011-03-19-1.

The PHP Group. 2013. A further update on php.net. http://php.net/archive/
2013.php#id2013-10-24-2.

S Torres-Arias, H Nanize, T Kuppusamy, R Curtmola, and J Cappos. 2019. in-toto:
providing farm-to-table security properties for bits and bytes. In 28th USENIX

96

[102
[103
[104

[105

[106

Marina Moore, Trishank Karthik Kuppusamy, and Justin Cappos

Security Symposium (USENIX Sec’19).

Ubuntu 2018. Ubuntu Sources List Generator. https://repogen.simplylinux.ch/
index.php.

Laurie Voss. 2014. Newly Paranoid Maintainers. http://blog.npmjs.org/post/
80277229932/newly-paranoid-maintainers.

Warehouse. 2022. BigQuery Datasets. https://warehouse.pypa.io/api-reference/
bigquery-datasets.html.

Paul Wood, Christopher Gutierrez, and Saurabh Bagchi. 2015. Denial of Service
Elusion (DoSE): Keeping Clients Connected for Less. In 2015 IEEE 34th Sympo-
sium on Reliable Distributed Systems (SRDS). 94-103. https://doi.org/10.1109/
SRDS.2015.31

SPDX Workgroup. 2021. The Software Package Data Exchange. Technical Report.
The Linux Foundation.

https://github.com/faisalman/ua-parser-js/issues/536
https://snyk.io/blog/open-source-npm-packages-colors-faker/
https://snyk.io/blog/open-source-npm-packages-colors-faker/
https://www.ntia.gov/SBOM
http://www.freebsd.org/news/2012-compromise.html
http://www.php.net/archive/2011.php#id2011-03-19-1
http://www.php.net/archive/2011.php#id2011-03-19-1
http://php.net/archive/2013.php#id2013-10-24-2
http://php.net/archive/2013.php#id2013-10-24-2
https://repogen.simplylinux.ch/index.php
https://repogen.simplylinux.ch/index.php
http://blog.npmjs.org/post/80277229932/newly-paranoid-maintainers
http://blog.npmjs.org/post/80277229932/newly-paranoid-maintainers
https://warehouse.pypa.io/api-reference/bigquery-datasets.html
https://warehouse.pypa.io/api-reference/bigquery-datasets.html
https://doi.org/10.1109/SRDS.2015.31
https://doi.org/10.1109/SRDS.2015.31

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems

A MAP FILE EXAMPLES

We include examples of targets and repository map files in Fig-
ure 5 and Figure 6. These files are written and updated by tool
administrators to set policy that will be applied to many update

cycles.

“targets_mappings": [
{
/! This mapping applies to all packages on PyPI.
// This field may be omitted for single repository setups.
"repositories”: ["PyPI"],
// The package manager will treat the targets metadata for Ebay from PyPI
// as the top-level targets, and will not install packages from any other
// developers.
"targets_rolename”: "Ebay",
// Only one key is required to sign the Ebay targets metadata
“"threshold": 1,
// This dictionary lists the keys associated with the Ebay role. These keys
// are pinned and can only be changed by updating this configuration.
"keys":{
@ : ABCD

123

Figure 5: An example of a targets map file.

97

ACSAC °23, December 04-08, 2023, Austin, TX, USA

// For each repository, its key name is the directory where files, are cached
// and its value is a list of URLs where files may be downloaded.
"repositories”: {

"Django”: ["https://djangoproject.com/"],

“PyPI":
A
// Specify a list of repositories where each set of targets may be downloaded.
"mapping": [

{

// The order of these entries indicates the priority of the delegation.

[“https://pypi.python.org/"]

// The entries listed first will be considered first.

/f Map the targets "/django/django-1.*.tgz" to both Django and PyPI.
"paths": ["/django/django-1.*.tgz"],

"repositories”: ["Django”, "PyPI"],

// At least one repository must sign for the same length and hashes
// of the "/django/django-1.*.tgz" targets.
"threshold": 1

[/ In this case, the "terminating" attribute is set to false.
"terminating": false,

// Therefore, if this mapping has not signed for "/django/django-1.*.tgz"
// targets, the following mapping will be consulted.

// Map all other targets only to PyPI.
"paths™: [0

"repositories”: ["PyPI"],
"threshold": 1,

"terminating”: true

H}

Figure 6: An example of a repository map file.

	Abstract
	1 Introduction
	2 Background
	2.1 Software repositories and package managers
	2.2 Role-Based Access Control
	2.3 The Update Framework (TUF)

	3 Motivation
	4 Threat model
	5 Artemis: Design
	5.1 Multi-role delegations
	5.2 Key pinning
	5.3 Repository RBAC

	6 Implementation
	6.1 Software update workflow

	7 Evaluation
	7.1 Analysis of past attacks
	7.2 Real-world deployment
	7.3 Usability and performance

	8 Related work
	9 Conclusion
	References
	A Map file examples

