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Signal processing is an important research topic. This paper aims to provide 
a general framework for signal processing on arbitrary dynamic graphs. We 
propose a new graph transformation by defining a temporal-attention product. 
This product transforms the sequence of graph time slices with arbitrary topology 
and number of nodes into a static graph, effectively capturing graph signals’ 
spatio-temporal dynamic evolution process. The temporal-attention product graph 
provides a solid mathematical foundation to model the time-dependent graph signal 
processes as martingales. The weighted adjacency matrix obtained by temporal-

attention products is a block tridiagonal matrix, which has been extensively studied. 
Therefore, it is general and convenient to perform graph signal processing on this 
new static graph. We apply two real datasets to illustrate the effectiveness of 
spectral graph wavelet transform based on temporal-attention product. For one of 
the datasets with no graph structure, we learn the graph weights through a neural 
network.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Graph signal processing (GSP) is an emerging field in data science, and it has received much attention 

in many fields, such as classifying cancer types, temporal brain data, theoretical chemistry, social network 

analysis, computer networks (such as the Internet) and distributed systems, etc. Analyzing graph signal 

data will help us understand the behavior patterns in the network, which is crucial in several application 
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Fig. 1. Graph products. The green line is the temporal edge. The dotted line circle is a manually added node. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

areas, including sensor network data, processing and analysis of biological data, and applications of image 

processing and machine learning [1], etc.

Many powerful tools have been proposed for studying graph signals, e.g., the graph Fourier transform 

(GFT) [2–5], and the windowed graph Fourier transform (WGFT) [6,7]. However, these methods can not 

capture local relationships of graph signals well and fail to identify abrupt signal changes. Due to its 

multiresolution advantages, the spectral graph wavelet transforms (SGWT) proposed by Hammond et al. 

[8] and Shuman et al. [6,9,10] is an improved tool to perform visualization analysis, detect and characterize 

the attributes of signals, and play an important role in node classifications. For instance, Mohan et al. 

[11] take the vehicle speed as signals and apply SGWT to detect the occurrence, propagation, and span 

of destructive events such as traffic congestion, to guide and plan traffic routes. Other applications include 

community mining [12], visual analysis [13], surface denoising [14], research on manifolds [15], etc.

The following entities are involved in the definitions of graphs: V (a set of nodes), E (a set of edges), 

f (signals defined on nodes), and w (weights defined on edges). A dynamic graph is obtained when any of 

these four entities change over time [16]. Graphs in many real-world applications are inherently dynamic, 

such as data-packet traffic on the Internet, disease spreading on social networks, temperature changes in an 

area, users in e-commerce platforms continuing to interact with new items and connections established in 

a communication network over time, etc. Because of the time-varying property of dynamic graphs, existing 

GSP methods are severely hampered, and tools such as GFT, WGFT, and SGWT cannot be directly applied 

to dynamic graphs.

One could use the graph product structure to obtain a static graph. The three well-known graph products 

are the Kronecker product, the Cartesian product, and the strong product. These methods are useful in 

studying discrete temporal graphs, where the graph time slices Gt have identical nodes and edges, see 

[8,13,17–20]. Fig. 1 (a), (b) and (c) depict the three graph products using the path graph1 of three nodes as 

an example. Another method is to perform GFT by expressing the Laplace of the dynamic graph as a tensor, 

and obtaining the transformed basis function by Tucker decomposition of the tensor [21]. Alternatively, the 

Laplace operator of the dynamic graph is represented as a discrete second-order derivative in time, and 

then GFT and SGWT are performed [22]. All these methods are designed to deal with graph signals on 

sequences of graph slices with the same nodes or topology. Recently, an important attempt was made in 

[23], where the authors manually added some additional isolated points on graph time slices, to ensure all 

1 A path graph is a graph whose nodes are adjacent to exactly two other nodes, with the exception of the two extreme ones that 
are connected to only one node.
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graph time slices have identical nodes, see Fig. 1 (d) (The dotted line circle is a manually added node). 

They then connected these graphs by Cartesian product and used SGWT for the visual analysis of signals. 

However, in real-world applications, this process can be rather expensive and unrealistic, as it not only adds 

time edges that carry no information (such as on those manually added, isolated nodes) but also needs to 

change the previous topology connection every time a new graph time slice is added. Another issue is that 

by adding the extra temporal edges of the same nodes in adjacent graph time slices, the underlying diffusion 

mechanism changes as if there are self-loops in each graph time slice.

To overcome these difficulties and effectively capture the temporal evolution of signals in dynamic graphs, 

inspired by the attention mechanism introduced by Bahdanau et al. [24] in machine learning for language 

processing, we propose to add time edges that capture the best information similarity carried by nodes in 

adjacent graph time slices. We call this way of adding temporal edges the temporal-attention product. As a 

result, a discrete dynamic graph with T graph time slices (snapshots) {Gt, t = 1, · · · , T} is transformed into 

a static graph GT , which is called a transformed graph. The nested transformed graphs {Gt, t = 1, · · · , T}

accurately capture both the spatial and temporal structure of the first T discrete dynamic graph snapshots 

{Gt, t = 1, · · · T}, and are also suited for studying the dynamic evolution process of the graph signals. We can 

define a filtration of σ-algebra {Ft, t ≥ 1} generated by graph signals on {Gt, t ≥ 1}. The transformed graph 

Gt also provides a general mathematical tool for modeling graph signal processes using advanced methods in 

probability theory (including diffusion and martingale processes, etc.). Furthermore, this new construction 

is inductive: to construct Gt+1 at each new time step, t +1, one only adds temporal edges for nodes between 

Gt and Gt+1 based on the graph structure of Gt. The detailed construction of the transformed graphs can 

be found in section 2.

The weighted adjacency matrix WT of the transformed graph is a generic symmetrical block tridi-

agonal matrix. The block tridiagonal matrix can be found in many applications in the finite difference 

method [25,26], discrete Sturm-Liouville operators [27], discrete transport problem simulation and elec-

tronic structure calculations [28–30], random walks and birth-and-death processes [31,32], scattering theory 

[33], computational fluid dynamics [34], signal processing [25,35,36] and so on. It is convenient to study the 

spectrum of the transformed graphs since the properties of block tridiagonal matrices have been extensively 

studied. A widely used direct method is to compute eigenvalues and eigenvectors based on divide-and-

conquer [37–42], or twisted block factorizations [43,44]. For some special cases, the relationship between 

tridiagonal matrices and orthogonal polynomials can be used to obtain eigenvalues and eigenvectors [45–49]. 

In this paper, we will give some spectral properties of the weighted adjacency matrix of the transformed 

graph and some recursive formulas for GSP on the transformed graph.

SGWT is powerful in our transformed graph Gt, enabling spatio-temporal anomaly detection and multi-

resolution visual signal analysis. Two real-world datasets are used to show that SGWT coefficients on the 

transformed graph accurately capture the spatio-temporal dynamic changes of the signals. In one of our 

applications, we only have multivariate time series. The underlying graph for these time series is unknown 

prior and can not be constructed preliminarily through the topology of nodes of the graph. In this paper, 

we explore a deep learning method to learn the graph link weights. More precisely, we apply the graph 

attention neural network (GAT), a powerful graph neural network that introduces the attention mechanism 

to refine the convolution process in a generic graph convolutional neural network [50].

This paper is organized as follows: In section 2, we introduce the temporal-attention product on dynamic 

graphs. In section 3, we give the spectral properties of undirected dynamic graphs. In section 4, we discuss 

GFT and SGWT on dynamic graphs. In section 5, we introduce the classification method based on SGWT 

coefficients. In section 6, we analyze two real-world datasets using spectral graph wavelet visualization. We 

close with a conclusion section.
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Table 1
Notations in Gt and Gt.

Gt Gt

Vt: Node set on graph Gt; Vt: Node set on graph Gt;

Nt: Cardinality of Vt, i.e., | Vt |= Nt; N#
t : Cardinality of Vt, i.e., | Vt |= N#

t ;
Et: Edge set on graph Gt; Et: Edge set on graph Gt;

Et,t+1 ∈ Et: Temporal-attention edge set between Gt and Gt+1;
(v, t) ∈ Vt: Node on the t-th time slice Gt; v: Node on Gt;
e(v,w,t) ∈ Et: Edge joining (v, t) and (w, t); e(v,w) ∈ Et: Edge joining v and w;

At = (a(v,w,t)) ∈ R
Nt×Nt : Adjacency matrix of Gt.

a(v,w,t) = 1 if there exists e(v,w,t) ∈ Et; otherwise, 
a(v,w,t) = 0;

At = (a(v,w)) ∈ R
N#

t
×N#

t : Adjacency matrix of Gt.
a(v,w) = 1 if there exists e(v,w) ∈ Et; otherwise, a(v,w) = 0;

Wt = (w(v,w,t)) ∈ R
Nt×Nt : Weighted adjacency matrix. 

w(v,v,t) ∈ R+ represents the link intensity between (v, t)
and (w, t);

Wt = (w(v,w)) ∈ R
N#

t
×N#

t : Weighted adjacency matrix. 
w(v,w) ∈ R+ represents the link intensity between v and w;

N1
(v,t) = {(w, t) ∈ Vt | e(v,w,t) ∈ Et}: One-hop neighbor of 

(v, t) on Gt.

N 1,t
v

= {w ∈ Vt | e(v,w) ∈ Et}: Spatio-temporal one-hop 
neighbor of v on Gt.

1.1. Notation

Table 1 lists the notations used in the graph time slice Gt and the transformed graph Gt.

2. The temporal-attention product on dynamic graphs

Signal processing on static graphs is an important research topic and has been applied in many tasks 

over the years. However, most networks are dynamic in real applications, and their structures or properties 

are constantly changing over time. Possible changes include the insertion and deletion of nodes (objects), 

insertion and deletion of edges (relationships), and modification of attributes (for example, the node’s signal 

or the weight of the edge). A discrete dynamic graph consists of T graph snapshots (time slices), which are 

observed along with the evolution of a dynamic graph. Specifically, the T graph snapshots can be denoted 

as {Gt, t = 1, · · · , T}, where Gt is the graph observed at time t. In these cases, one major question is to 

analyze the spatio-temporal behavior of graph signals {ft, t = 1, · · · , T} defined on the graph slice sequence 

{Gt, t = 1, · · · , T}. To capture the temporal evolution in the sequence of graphs, we introduce a new graph 

topology, by defining a temporal-attention product for studying dynamic graph networks.

2.1. Definition of temporal-attention product on dynamic graphs

We consider a discrete dynamic graph network, represented by a sequence of undirected graph time slices 

{Gt = (Vt, Et), t = 1, · · · , T}. The same node may appear in different time slices. We call the set of all 

different nodes in the T time slices the base node set BT . We denote (v, t) ∈ Vt, t ≤ T if there is a base 

node v ∈ BT on the graph time slice Gt. Et is an edge set with the element e(v,w,t) connecting (v, t) to 

(w, t). Let (v, t) ∈ Vt and (v, t + 1) ∈ Vt+1, which represent the same base node v on the adjacent time slice. 

We present a new method by introducing the temporal-attention product of graphs, which enables us to 

transform these graph time slices into a static graph Gt.

Definition 1. Let (v, t) ∈ Vt, (w, t + 1) ∈ Vt+1. We say e((v,t),(w,t+1)) is a temporal-attention edge connecting 

(v, t) to (w, t + 1), if there exists (w, t) ∈ Vt belonging to the one-hop neighbor of (v, t) in Vt. The temporal-

attention product Gt ×at Gt+1 is defined by adding all temporal-attention edges between Gt and Gt+1.

See Fig. 2 for an example, where green lines are temporal-attention edges. Graph time slices are the same 

as Fig. 1 (d).

Now we can introduce how to construct a static graph Gt inductively. Let Nt = |Vt| be the cardinality 

of Vt. We first define G1 = G1 and denote G1 = (V1, E1). The node elements in V1 inherit from V1 are 
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Fig. 2. A dynamic model of the transformed graph using temporal-attention product. Green lines are temporal-attention edges. 
At−1, At and At+1 are the adjacency matrices of Gt−1, Gt and Gt+1 respectively.

denoted again by (v, 1). Let the bold-type letter e((v,1),(w,1)) be the edge of E1 between (v, 1) and (w, 1), 

which inherits from e(v,w,1) ∈ E1. For the next time slice, let G2 = (V2, E2). We can define G2 = G1 ×at G2

with the node set V2 = V1 ∪ V2, |V2| = N1 + N2 and E2 = E1 ∪ E2 ∪ E1,2, where E1,2 is the collection of 

temporal-attention edges from G1 ×at G2. Assume inductively Gt = (Vt, Et) has been well defined.

Definition 2. We say Gt+1 = (Vt+1, Et+1) is a transformed graph if Gt+1 = Gt ×at Gt+1 satisfying Vt+1 =

Vt ∪ Vt+1, and Et+1 = Et ∪ Et+1 ∪ Et,t+1, where Et,t+1 is the collection of temporal-attention edges from 

Gt ×at Gt+1.

In graph theory, an adjacency matrix is a classical matrix representation for a graph, that allows us 

to establish certain graph properties using matrix-theoretic methods. Its rows and columns correspond to 

graph nodes and are both indexed by identical node orderings. Let At = (a(v, w, t)) be the adjacency matrix 

of Gt with a(v, w, t) = 1 if there exists e(v, w, t) ∈ Et; otherwise, a(v, w, t) = 0. To concisely represent nodes 

in the transformed graph GT , we can use bold-type letters to relabel the nodes. Let At = (a(vi,vj)) be the 

adjacency matrix of Gt with a(vi, vj) = 1 if there exists e(vi, vj) ∈ Et; otherwise, a(vi, vj) = 0.

Let N#
t be the cardinality of Vt in the transformed graph Gt. The order of the rows and columns of the 

adjacency matrix At is arranged in increasing order of graph time slices. This order relation allows for the 

flexible addition of new time slices to the transformed graph.

Obviously, the adjacency matrix At+1 ∈ R
N#

t+1×N#
t+1 satisfies:

At+1 =

(
At At,t+1

A′
t,t+1 At+1

)
, (1)

where At,t+1 ∈ R
N#

t ×Nt+1 infers whether there are edges between Gt and Gt+1, and A′
t,t+1 denotes the 

transpose of At,t+1.

Theorem 1. Let Gt+1 = (Vt+1, Et+1) be a transformed graph with an adjacency matrix At+1. Then At+1 is 

a block tridiagonal matrix and At,t+1 has the following expression:

At,t+1 =

(
0

At,t+1

)
, (2)

where 0 ∈ R
N#

t−1×Nt+1 denotes a matrix that contains all 0 elements and At,t+1 ∈ R
Nt×Nt+1 describes 

whether there are edges between Gt and Gt+1. Here At,t+1 is obtained based on At by:

(i). deleting the i-th column if (v, t) is the i-th node of Gt and (v, t + 1) does not belong to Gt+1;
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(ii). inserting a zero-filled column as the j-th column if (v, t) is the j-th node of Gt+1 and (v, t) does not 

belong to Gt.

Proof. By Definition 1, the temporal-attention edges are defined between two adjacent time slices, we have 

a(vi,vj) = 0 for any vi ∈ Vt−1 and vj ∈ Vt+1. Thus, the first N#
t−1 rows of At,t+1 must be zero which 

implies that At+1 is a block tridiagonal matrix. The last Nt rows of At,t+1 can be nonzero, which is just 

right At,t+1. Its row index corresponds to the nodes of Gt, and its column index corresponds to the nodes 

of Gt+1.

Define

Γ[(vi, t)] =

{
(vi, t) if the base node vi belongs to Gt,

NULL otherwise.

Let the node orderings of Gt be Γ[(v1, t)], · · · , Γ[(vNb
, t)], t ≥ 1, where Nb is the cardinality of the base set 

BT . Let (vi, t) ∈ Vt and (vi, t + 1) ∈ Vt+1, which represent the same base node vi on the adjacent time slice. 

Next, we can prove that At,t+1 is based on At.

Let (vl, t) ∈ Vt and (vr, t) ∈ Vt. If (vl, t + 1) ∈ Vt+1, we have a((vr,t),(vl,t+1) = a(vr,vl,t). Obviously, the 

column of At,t+1 corresponding to (vl, t + 1) is equal to the column of At corresponding to (vl, t). Let (v, t)

be the i-th node of Gt. If (v, t + 1) does not belong to Gt+1, At,t+1 doesn’t inherit the i-th column of At. 

Let (w, t + 1) be the j-th node of Gt+1. If (w, t) does not belong to Gt, there is no edge between (w, t + 1)

and any node of Gt. Because of the existence of the column of At+1 corresponding to node (w, t + 1), we 

should insert a zero-filled column as the j-th column of At,t+1. �

We next present an example to illustrate Theorem 1 using Fig. 2. Fig. 2 depicts three graph time slices 

Gt−1, Gt, and Gt+1 that are connected by the temporal-attention product. As a comparison, their Cartesian 

product connection has been shown in Fig. 1 (d). From the structure of graphs Gt−1, Gt, and Gt+1, we have

At−1 =

»
¼½

0 0 1

0 0 1

1 1 0

¾
¿À , At =

(
0 1

1 0

)
, At+1 =

»
¼½

0 1 1

1 0 1

1 1 0

¾
¿À .

Compared to Gt−1, Gt keeps the base nodes v1 and v2, so At−1,t is obtained by keeping the 1-st and 2-nd 

columns of At−1, i.e.,

At−1,t =

»
¼½

0 0 �1

0 0 �1
1 1 �0

¾
¿À =

»
¼½

0 0

0 0

1 1

¾
¿À .

By Theorem 1, we get

At =

»
¼½

At−2 At−2,t−1

A′
t−2,t−1 At−1 At−1,t

A′
t−1,t At

¾
¿À =

»
¼¼¼¼¼¼¼½

At−2 At−2,t−1

0 0 1 0 0

A′
t−2,t−1 0 0 1 0 0

1 1 0 1 1

0 0 1 0 1

0 0 1 1 0

¾
¿¿¿¿¿¿¿À

,

where the blank space represents the zero matrices. Similarly, Gt+1 has one more base node v3 than Gt, so 

At,t+1 is obtained by adding a zero-filled column in At’s 3-rd column, i.e.,
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At,t+1 = (At 0) =

(
0 1 0

1 0 0

)
.

Therefore,

At+1 =

»
¼¼¼½

At−2 At−2,t−1

A′
t−2,t−1 At−1 At−1,t

A′
t−1,t At At,t+1

A′
t,t+1 At+1

¾
¿¿¿À .

2.2. Martingale approximations of graph signals

Now we consider a graph signal function f : ∪T
t=1Vt → R defined on the sequence of graph time slices 

{Gt, t = 1, · · · , T}. Using the temporal-attention products, {Gt, t = 1, · · · , T} has now been transformed 

into a sequence of increasing graphs {Gt, t = 1, · · · , T}. Using the fact that VT = ∪T
t=1Vt, thus the graph 

signal f has a natural extension on the transformed graph GT , with f : VT → R. In real-world applications, 

even if T < ∞ represents the current time, we would also like to consider future time slices, with T +

1, T + 2, · · · . We denote V∞ = limt→∞ Vt. One important task for GSP is to perform forecasting, and one 

would like to guarantee the stability of the graph signals processing method with increasing graph time 

slices. This is impossible for classical GSP on the original dynamic graph network {Gt, t = 1, · · · , T}, as 

GT +1 is completely unknown. One advantage of our transformed graphs is that the analysis of graph signals 

on the transformed graphs becomes more stable as time slices increase. Let L2(VT ) be the collection of 

all real-valued square-summable functions defined on VT . The following result shows that the transformed 

graph guarantees a Martingale approximation {ft, t ≥ 0} of a possibly partially observed graph signal f by 

the time T .

Theorem 2. For any graph signal f ∈ L2(V∞), defined on the original dynamic graph network {Gt, t ≥ 1}, 

there is a martingale approximation sequence {ft, t ≥ 0}, such that

lim
t→∞

ft = f (3)

converges almost surely.

Proof. Let {Gt, t ≥ 1} be the sequence of transformed graphs for a dynamic graph network {Gt, t ≥ 1}. Let 

F = σ(L2(V∞)) be the σ-algebra on V∞ generated by the space of square-summable functions. Let µ be 

any probability measure defined on (V∞, F), which is absolutely continuous with respect to the Lebesgue 

measure.

Next, we define a sequence of σ-algebra Ft = σ(L2(Vt)), t ≥ 1, which is generated by all L2 functions 

(graph signals) on the transformed graph Gt. And F0 is the trivial σ-algebra. Since Vt ⊂ Vt+1 is an increasing 

sequence of subsets in V∞, one can check easily that the collection {Ft, t ≥ 0} is a filtration on the probability 

space (V∞, F , µ).

Given any graph signal f ∈ L2(V∞) defined on the original discrete dynamic graph network {Gt, t ≥ 1}, 

we define, for t = 1, 2 · · · ,

ft = E(f |Ft) (4)

to be the conditional expectation of f on the σ-algebra Ft. Moreover, f0 = E(f) to be the expectation of f

on V∞. We claim that {ft, t ≥ 0} is a Martingale with respect to the filtration {Ft, t ≥ 0}. Note that for 

any t ≥ 0, and s ≥ 1,
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E(ft+s|Ft) = E(E(f |Ft+s)|Ft) = E(f |Ft) = ft,

where we use the tower property for conditional expectations in the last step. Thus we have shown that 

{ft, t = 0, 1, 2, · · · } is a martingale. Note that ft ∈ L2(Vt) and supt E(|ft|
2) < ∞. Using Doob’s Martingale 

Convergence Theorem, we know that ft → f almost surely, as t → ∞. �

Going back to the forecasting task, even if we can obtain the best prediction fT on each time slice T , 

one may not know what a graph signal f : V∞ → R looks like, nor does not know it even exists. But our 

Theorem 3 guarantees that limT →∞ fT exists, almost surely.

Theorem 3. Let {Gt, t ≥ 1} be an increasing sequence of transformed graphs. Let ft ∈ L2(Vt) be the best-

forecasted graph signal at time t, i.e., {ft, t ≥ 0} is an L2 bounded Martingale with respect to the filtration 

{Ft = σ(L2(Vt)), t ≥ 0} on V∞. Then there exists a graph signal f ∈ L2(V∞), such that

lim
t→∞

ft = f (5)

converges almost surely and in L2(V∞).

Proof. Since f ∈ L2(Vt), we can directly apply Doob’s Martingale Convergence. �

Now we can see that the transformed graph has not only practical significance, but also lays a solid 

mathematical foundation for us to model the graph signal processes, using advanced tools in Martingale 

theorems.

3. Spectral properties for weighted dynamic graph network

We consider a discrete undirected dynamic graph network, which is represented by a sequence of graph 

time slices {Gt = (Vt, Et), t = 1, · · · , T} with a weighted adjacency matrix Wt = (w(v,w,t)). The element 

w(v,w,t) ∈ R+ is the weight relationship between (v, t) and (w, t). In particular, if a(v,w,t) = 0, we have 

w(v,w,t) = 0.

By the temporal-attention product, we have a transformed graph GT = (ET , VT ) with a weighted adja-

cency matrix WT = (w(vi,vj)). The element w(vi,vj) ∈ R+ encodes how strong the relationship between vi

and vj . Let w(vi,vj) = 0 if a(vi,vj) = 0 in the adjacency matrix. The weighted adjacency matrix of GT is

WT =

»
¼¼¼¼¼¼¼¼½

W1 W1,2

W′
1,2 W2 W2,3

W′
2,3 W3

. . .

. . .
. . . WT −1,T

W′
T −1,T WT

¾
¿¿¿¿¿¿¿¿À

, (6)

where WT ∈ R
(N#

T ×N#
T ), Wt ∈ R

Nt×Nt , Wt−1,t ∈ R
Nt−1×Nt describes the weights of edges between Gt−1

and Gt. W
′
t−1,t denotes the transpose of a matrix Wt−1,t. The blank position in the matrix represents that 

filled with 0. Since WT is symmetric, its eigenvalues and eigenvectors can be calculated using the divide-

and-conquer method [39] or the twisted block factorizations method [43]. Next, we discuss eigenvalues and 

eigenvectors of the transformed graph in some special cases.
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3.1. Case 1: Gt shares the same V1, E1, and Wt,t+1 = Wt = W1 for all t ≥ 1

We consider when the topological structure of the graphs on each time slice is identical. More precisely, 

there exists a fixed node set V1 with | V1 |= N (edge set E1), such that any Vt (Et) shares the same 

set of base nodes in V1 (base edges in E1). This is equivalent to assuming that the transformed graph 

GT = (VT , ET ) defined by the temporal-attention product satisfies the following:

Assumption (h). The transformed graph GT has the weighted adjacency matrix WT ∈ R
NT ×NT satisfying 

Wt,t+1 = Wt = W1 ∈ R
N×N .

W1 has a completed set of eigenvalues {λn, n = 1, · · · , N} and orthogonal eigenvectors {x1, · · · , xN }. 

Let H = (Hi,j) be the adjacency matrix of the path graph with T nodes, i.e.,

Hi,j =

{
1 if |i − j| = 1,

0 otherwise.
(7)

The eigenvalues and eigenvectors corresponding to H are {µ1, µ2 · · · µT } and {y1, y2 · · · yT }, respectively. 

Specifically, they are µi = 2 cos(iπ/(T + 1)), and yi(j) = sin((ijπ)/(T + 1)), see [51], where yi(j) denotes 

the j-th element of the eigenvector corresponding to the i-th eigenvalue.

Using the spectral information from H and W1, we can investigate the spectral properties of the trans-

formed graph GT . First, we introduce the definition of Kronecker product, see [52].

Definition 3. Given two matrices C = (cij)m1×m2
and B = (bij)n1×n2

, the Kronecker product of C and B

is defined by

C ⊗ B =

»
¼¼¼¼½

c11B c12B · · · c1m2
B

c21B c22B · · · c2m2
B

...
... · · ·

...

cm11B cm12B · · · cm1m2
B

¾
¿¿¿¿À

(m1n1)×(m2n2)

.

Some necessary properties of the Kronecker product are stated as the following lemma, see [52]:

Lemma 4. Let B1 ∈ R
m×n, B2 ∈ R

s×r, B3 ∈ R
n×p, B4 ∈ R

r×t, and k ∈ R. Then

(i). k(B1 ⊗ B2) = kB1 ⊗ B2 = B1 ⊗ kB2,

(ii). (B1 + B2) ⊗ B3 = B1 ⊗ B3 + B2 ⊗ B3,

(iii). (B1 ⊗ B2) ⊗ B3 = B1 ⊗ (B2 ⊗ B3),

(iv). (B1 ⊗ B2)(B3 ⊗ B4) = (B1B3) ⊗ (B2B4).

The absence of operators in (iv) corresponds to the usual matrix product. Next, we obtain a theorem 

describing the eigenvalues and eigenvectors of the transformed graph.

Theorem 5. Let GT be the transformed graph satisfying Assumption (h). Its weighted adjacency matrix can 

be expressed as WT = W1 ⊗ H + W1 ⊗ IT , where ⊗ is Kronecker product. H is the adjacency matrix of the 

path graph with T nodes, IT is the identity matrix of size T ×T . Moreover, the eigenvalues and eigenvectors 

of the transformed graph are λrµs + λr and xr ⊗ ys (r = 1, 2 · · · N ; s = 1, 2 · · · T ), respectively.
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Proof. Based on (6) and Assumption (h), the weighted adjacency matrix of the transformed graph GT is

WT =

»
¼¼¼¼¼¼¼½

W1 W1

W1 W1 W1

W1 W1
. . .

. . .
. . . W1

W1 W1

¾
¿¿¿¿¿¿¿À

(NT ×NT )

,

where

W1 =

»
¼¼¼¼½

w(v1,v1,1) w(v1,v2,1) · · · w(v1,vN ,1)

w(v2,v1,1) w(v2,v2,1) · · · w(v2,vN ,1)

...
... · · ·

...

w(vN ,v1,1) w(vN ,v2,1) · · · w(vN ,vN ,1)

¾
¿¿¿¿À

(N×N)

with w(vi,vj ,1) = w(vj ,vi,1). We reorder nodes according to the sequence of node time series. More precisely, 

we change the order of rows and columns in matrix WT from

(v1, 1), (v2, 1), · · · , (vN , 1), (v1, 2), (v2, 2), · · · , (vN , 2), (v1, T ), (v2, T ), · · · , (vN , T )

to

(v1, 1), (v1, 2), · · · , (v1, T ), (v2, 1), (v2, 2), · · · , (v2, T ), (vN , 1), (vN , 2), · · · , (vN , T ).

The resulting matrix is denoted again as WT with

»
¼¼¼¼¼¼½

W̃11 W̃12 W̃13 · · · W̃1N

W̃21 W̃22 W̃23 · · · W̃2N

W̃31 W̃32 W̃33 · · · W̃3N

...
...

... · · ·
...

W̃N1 W̃N2 W̃N3 · · · W̃NN

¾
¿¿¿¿¿¿À

(NT ×NT )

,

where

W̃ij =

»
¼¼¼¼¼¼¼¼½

w(vi,vj ,1) w(vi,vj ,1)

w(vi,vj ,1) w(vi,vj ,1) w(vi,vj ,1)

w(vi,vj ,1) w(vi,vj ,1)

. . .

. . .
. . . w(vi,vj ,1)

w(vi,vj ,1) w(vi,vj ,1),

¾
¿¿¿¿¿¿¿¿À

(T ×T )

, i, j ∈ {1, 2, · · · N}.

By Definition 3 and (7), we have WT = W1 ⊗ H + W1 ⊗ IT . Since W1xr = λrxr, Hys = µrys, IN ys = ys, 

according to Lemma 4, we get
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(W1 ⊗ H + W1 ⊗ IN )(xr ⊗ ys)

= (W1 ⊗ H)(xr ⊗ ys) + (W1 ⊗ IN )(xr ⊗ ys)

= (W1xr) ⊗ (Hys) + (W1xr) ⊗ (IN ys)

= (λrxr) ⊗ (µsys) + (λrxr) ⊗ (ys)

= (λrµs + λr)(xr ⊗ ys). �

3.2. Case 2: Gt shares the same V1, and Wt,t+1 is a full-rank matrix for t ≥ 1

We consider that all Vt are composed of the same base nodes with |Vt| = N . However, Et, Wt and 

Wt,t+1 may be different for graph time slices, and Wt,t+1, t ≥ 1 are full-rank matrices. Suppose that 

the transformed graph GT = (VT , ET ) defined by the temporal-attention product satisfies the following 

assumption:

Assumption (h′). The transformed graph GT is composed of Gt with the same base nodes. The weighted 

adjacency matrix WT ∈ R
NT ×NT satisfies det(Wt,t+1) 
= 0.

Under this assumption, Wt and Wt,t+1 are N ×N matrices. Define a family of N ×N matrix polynomials 

Pt(x). We call the zeros of Pt(x) the roots of the determinant of a matrix polynomial Pt(x), i.e., λ is a zero 

of Pt(x) if det(Pt(λ)) = 0. The following theorem is very useful to calculate the eigenvalues and eigenvectors 

of the weighted adjacency matrix:

Theorem 6. If the transformed graph GT satisfies Assumption (h′), let u be an eigenvector of the weighted 

adjacency matrix WT . The eigenvector u corresponds to an eigenvalue λ if and only if λ is a zero of the 

matrix polynomial PT +1(x), where PT +1(x) satisfies the three-term recurrence relation:

xPt(x) = W′
t−1,tPt−1(x) + WtPt(x) + Wt,t+1Pt+1(x), t = 1, 2, · · · , T (8)

with P0(x) = 0, P1(x) = IN and W0,1 = IN . The eigenvector u has the form

u =

»
¼¼¼¼½

P1(λ)y
...

PT −1(λ)y

PT (λ)y

¾
¿¿¿¿À

, (9)

where y ∈ C
N is a vector from the null space of the scalar matrix PT +1(λ), i.e., the vector y satisfies 

PT +1(λ)y = 0.

The proof of the theorem can be directly obtained from the proof of Lemma 2.1 in [48]. When T → ∞, 

the asymptotic behavior of eigenvalues has been shown in [27].

4. Signal processing on the dynamic graph

We consider a time-dependent graph signal f defined on a discrete dynamic graph network, which is 

represented by a sequence of time-varying graphs {Gt = (Vt, Et), t = 1, · · · , T}. The definition of the 

graph signal is f : ∪tVt → R. By applying the temporal-attention product, we get the transformed graph 

GT = (ET , VT ) with node set VT = {v1, · · · , vN#
T

}, and edge set ET . Furthermore, we assume that GT is 
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connected and undirected. Then, we generalize graph Fourier transforms (GFT) and spectral graph wavelet 

transforms (SGWT) on the transformed graph GT .

4.1. Graph Fourier transform on the transformed graph

Let L2(VT ) be the collection of all real-valued square-summable functions on VT . f ∈ L2(VT ) is a signal 

function defined on nodes of the transformed graph GT . Let WT = (w(vi,vj))N#
T ×N#

T
be the weighted 

adjacency matrix of GT . The graph Laplacian matrix is defined as L = D − WT . D = (dij) is a diagonal 

matrix with entries dii =
∑

k w(vi,vk). For any f ∈ L2(VT ), one can check that

Lf(vi) =
∑

vj∈N 1,T
vi

w(vi,vj)(f(vi) − f(vj)), i, j = 1, · · · , N#
T , (10)

where N 1,T
vi

denotes the spatio-temporal one-hop neighbor of vi on GT .

Denote the non-negative, real-valued eigenvalues of L as 0 = λ1 ≤ λ2 ≤ · · · ≤ λN#
T

, and the corresponding 

(normalized) eigenvectors are {ul, l = 1, · · · , N#
T }. Eigenvalues and eigenvectors of graph Laplacian are 

closely related to almost all major invariants of a graph, and play an important role in understanding 

graphs in spectral graph theory. For a small eigenvalue λl, if an edge connects two nodes with nontrivial 

weight, the values of the eigenvector at those locations are more likely to be similar. On the other hand, 

eigenvectors associated with larger eigenvalues, oscillate more rapidly and are more likely to have dissimilar 

values on nearby neighbors.

The graph Laplacian eigenvectors and eigenvalues are analogous to the Fourier basis and frequencies 

[9,8]. The GFT f̂ of any signal f ∈ L2(VT ) on the nodes of GT can be defined as:

f̂(λl) =

N#
T∑

i=1

ul(vi)f(vi), l = 1, · · · , N#
T . (11)

The high-frequency Fourier coefficients indicate that a signal varies abruptly in some regions of the graph, 

whereas low-frequency Fourier coefficients indicate smooth signal variation in some instances.

The computation of the Fourier coefficients from (11) requires a cost of O(N#
T

3
) operations. Based on 

the techniques in [49], we can give a theorem to reduce the computational complexity of the graph Fourier 

transform under Assumption (h′).

Theorem 7. Suppose that the transformed graph GT satisfies Assumption (h′). Let fT be the signal defined 

on VT . The diagonal matrix D can be expressed as a block diagonal matrix D = diag(D1, · · ·, DT) with each 

entry Dt ∈ R
N×N . A family of N × N matrix polynomials Pt(x) satisfies

xPt(x) = −W′
t−1,tPt−1(x) + (Dt − Wt)Pt(x) − Wt,t+1Pt+1(x), t = 1, 2, · · · , T (12)

with P0(x) = 0, P1(x) = IN and Wt−1,t = IN . Let Ym be an N × am matrix with columns given by basis 

vectors for the null space of PT +1(λm), where λm is a zero of PT +1(x) with multiplicity am. Then

(i). λm is the eigenvalue of Laplace matrix L. The columns of the matrix

»
¼¼½

P1(λm)Ym

...

PT (λm)Ym

¾
¿¿À (13)
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are linearly independent eigenvectors corresponding to the eigenvalue λm, 1 ≤ m ≤ m0, where m0 is the 

number of distinct eigenvalues.

(ii). The graph Fourier transform of fT is

f̂T = U′fT ,

where

U =

»
¼¼½

P1(λ1)Y1 · · · P1(λm0
)Ym0

...
...

PT (λ1)Y1 · · · PT (λm0
)Ym0

¾
¿¿À. (14)

Proof. (i). Since λm is a zero of PT +1(x) and PT +1(x) satisfies (12), according to Theorem 6, λm is the 

eigenvalue of Laplace matrix L. Let yk be the column in Ym, k = 1, · · · , am. By definition, yk is the basis 

vector for the null space of PT +1(λm). We have that yk with k = 1, · · · , am is linearly independent. Since 

P1(λm) = IN , the columns of (13) are linearly independent eigenvectors corresponding to the eigenvalue 

λm.

(ii). Since the graph Laplacian matrix L is a symmetric matrix, it can be diagonalized. According to (12),

L

»
¼¼½

P1(λm)Ym

...

PT (λm)Ym

¾
¿¿À =

»
¼¼½

λmP1(λm)Ym

...

λmPT (λm)Ym + WT,T +1PT +1(λm)Ym

¾
¿¿À =

»
¼¼½

P1(λm)Ym

...

PT (λm)Ym

¾
¿¿ÀλmIam

. (15)

Hence, for U in (14), we obtain

LU = U

»
¼¼½

λ1Ia1

. . .

λm0
Iam0

¾
¿¿À. (16)

This decomposition is equal to the eigendecomposition, which confirms that U is an eigenvector matrix for 

L. This proof borrows the idea of [49]. �

Direct computation of the eigenvectors requires the cost of O(N3T 3) under Assumption (h′). Instead, 

we can calculate the bases of the null spaces of PT +1(λm), which requires only O(N2m0) operations, and 

compute NT products of N × N matrices with vectors of length N , which requires O(N3T ) operations. 

The total operations required are O(N2m0) + O(N3T ) = O(N3T ). It can reduce the calculation cost for 

long-term dynamic research of graphs of appropriate size.

For larger graphs and more general cases, such as when the number of nodes on each graph time slice 

varies, we can calculate the approximate eigenvalues and eigenvectors in parallel using the divide-and-

conquer method [41,42,53], or apply the twisted block factorizations method [43,44].

4.2. Spectral graph wavelet transform on the transformed graph

The SGWT is proposed in [9,8] to analyze the local properties of the signal on the graph by first 

introducing a graph spectral filter dictionary. {ĝm|m = 1, 2, · · · , M} represents a collection of graph spectral 
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filters, and M denotes the number of graph spectral filters in the dictionary. Let δv be the one-hot vector 

at v for any v ∈ VT . The spectral graph wavelet indexed at (m, v) is then defined as

ψm,v := UDĝ,mU′δv,

with scale m ∈ R
+ and centered on node v. U is the unitary matrix, and the columns are given by the 

eigenvectors ul, l = 1, · · · , N#
T .

Dĝ,m = diag(ĝm(λ1), · · ·, ĝm(λN#
T

))

is a diagonal matrix.

The SGWT of f can be defined as the wavelet coefficient at index (m, v), which can be calculated by:

Wf (m, v) := 〈f, ψm,v〉 =

N#
T∑

l=1

ĝm(λl)f̂(λl)ul(v). (17)

This is, indeed, a generalized Fourier transform with kernel ĝm(λl). Spectral graph wavelets, like conventional 

wavelets, are localized in both frequency and time. The low-frequency wavelet coefficients (corresponding 

to small m values) in node v are greater than the high-frequency coefficients (corresponding to large m

values), indicating a smoother signal fluctuation. In contrast, larger coefficients appear in high frequencies 

in node v, indicating that the signal oscillates more abruptly on and around this node.

In this paper, we choose a wavelet dictionary proposed in [8] – the spectral graph wavelet (SGW) dic-

tionary. The dictionary is defined as ĝ1(λ) = ĥ(λ), and ĝm(λ) = ĝ(sM−m+2λ), for m = 2, · · · , M . In this 

paper, we set M = 8.

ĝ(λ) =

⎧
⎪«
⎪¬

λ2, 0 ≤ λ < 1

−5 + 11λ − 6λ2 + λ3, 1 ≤ λ ≤ 2

4λ−2, 2 < λ

(18)

is a bandpass filter defined on the Fourier domain. The stretching scales s2, s3, · · · , sM are sampled log-

arithmically between s2 = 1/λN#
T

and sM = 40/λN#
T

. To represent the low frequency component of the 

signal f , a scaling function acts as a low-pass filter:

ĥ(λ) = γ exp

(
−

(
(10λ)/(0.3λN#

T
)
)4

)
. (19)

The parameter γ is chosen such that ĥ(0) is equal to the maximum value of ĝ.

(17) requires eigendecomposition and has computational complexity of O(N#
T

3
). A fast spectral graph 

wavelet transform based on Chebyshev polynomials approximation was proposed in [8]. It is shown that 

(17) can be approximated by

Wf (m, v) ≈

(
cm,0f/2 +

Km∑

k=1

cm,kT k(L)f

)
(v), (20)

where

cm,k = (2/π)

π∫

0

cos(kθ)ĝm(λN#
T

(cos(θ) + 1)/2)dθ,
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and Km represents the number of truncating terms. In this paper, we set Km = 40. Let T k be the shifted 

Chebyshev polynomials with the domain of [0, λN#
T

]. T k(L) satisfies the recursive formula

T k(L)f = (4/λN#
T

)
(

L − (λN#
T

/2)IN#
T

)
T k−1(L)f − T k−2(L)f,

for 2 ≤ k ≤ Km, with initial conditions

T 0(L)f = f, T 1(L)f = (2/λN#
T

)
(

L − (λN#
T

/2)IN#
T

)
f,

where L is the graph Laplacian and f is the signal. Therefore, we only need to estimate the maximum 

eigenvalue when performing SGWT. The computational cost to approximate the wavelet coefficients is 

order O(Km|E| + KmN#
T ). If the transformed graph satisfies Assumption (h′) and the calculation cost 

permits, we can compute the wavelet coefficients specified in (17) based on Theorem 7. Additionally, using 

the recurrence formula, it is beneficial to study the evolution of its wavelet coefficients when the time slice 

is expanded. In particular, the weighted adjacency matrix of the transformed graph is recursive, we only 

need to calculate PT +1 for the new time slice GT +1.

Remark 1. Graph signal processing is usually considered under an undirected graph framework, since L

may not have a complete set of eigenvectors for a directed graph. For a directed graph, we can consider the 

extended Laplacian denoted by Lsym = (L + L′) /2. Then Lsym is a semi-positive symmetric matrix, and 

its eigenvectors form a set of orthonormal bases in L2(VT ).

5. Classification method based on SGWT coefficients

SGWT coefficients contain rich information about the graph signal; however, it remains a big challenge to 

interpret them properly for non-experts. In this section, we will introduce the classification and visualization 

methods based on SGWT coefficients, mainly based on the literature [23,54].

5.1. Node classification using SGWT coefficients

Through (17), we obtain the wavelet coefficients: [Wf (1, v), · · · , Wf (M, v)], where M denotes the number 

of graph spectral filters in the dictionary. Next, we use wavelet coefficients to classify nodes:

Firstly, a robust scaler transform introduced in RobustScaler of the scikit-learn library [55] is applied by

S(m, v) = |Wf (m, v)|/IQR(m), m = 1, · · · , M, (21)

where IQR(m) is the Inter-Quartile Range (between the first and the third quartile) of |Wf(m, v)|. This 

transform ensures that wavelet coefficients are on the same scale.

Secondly, to make it easier to compare the torque values between nodes, each coefficient is normalized 

using a logarithmic normalization [56]

W f (m, v) = ln (1 + S(m, v)) / ln
(

1 + max
v

S(m, v)
)

, m = 1, · · · , M, (22)

to the range [0, 1]. The normalized wavelet coefficients can be represented as a vector:

W f (v) = [W f (1, v), · · · , W f (M, v)].

Thirdly, the torque function ϕ : VT → R is defined as [23]:

ϕ(v) = W f (v) · Z, (23)
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Fig. 3. Node classification. Nodes in VT are divided into five classes V1
T , V2

T , V3
T , V4

T , and V5
T , representing the spatio-temporal 

changes of the signal (in terms of the SGWT coefficients) as low frequency, mid-low frequency, average, mid-high frequency, and 
high frequency, respectively.

Fig. 4. Node signals, node classification, and refined node classification based on SGWT. The refined classification method will be 
introduced in section 5.2 with the hyperparameters ζ1 = 1 and ζ2 = 1. The bottom shows the wavelet coefficients of some nodes 
in five classes.

where Z = [−M/2, · · · , −1, 1, · · · , M/2] is a (signed) weight vector and ‘·’ denotes inner product. Clearly, 

for any v ∈ VT , the torque value ϕ(v) is a weighted sum of the normalized SGWT coefficients. The higher 

the torque value, the more severe the signal change. The lower the torque value, the smoother the signal.

Finally, let ϕmin = min
v∈VT

ϕ(v), ϕmax = max
v∈VT

ϕ(v). Similar to [54], we define a classification score as 

σ : VT → {1, 2, 3, 4, 5}

σ(v) = [5(ϕ(v) − ϕmin)/ (ϕmax − ϕmin)], (24)

where [·] is the integer function. Thus VT can be divided into five classes, as shown in Fig. 3.

We give 11 × 12 square lattices to illustrate that this classification method identifies the change of 

signal well. The signal on it is defined as the combination of the low and high frequency eigenvectors: 

f(vi) = u1(vi), if 1 ≤ i ≤ 36; f(vi) = u132(vi), if 37 ≤ i ≤ 132. Fig. 4 (a) describes the signal value on the 

graph, where the color associated with the graph nodes encodes the graph signal. Fig. 4 (b) demonstrates 

the node classification. When the signal is significantly different from the neighbor node, it is classified as 

V5
T , and when the signal is similar to the neighbor node, it is classified as V1

T . The bottom shows the wavelet 

coefficients of some nodes in five classes.

5.2. A refined node classification for anomaly detection

Effective anomaly detection could give early indications of danger or find interesting phenomena. This is 

necessary for disease outbreak detection, genetic network analysis, activity monitoring in social networks, 
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Fig. 5. Refined anomaly detection on V4
T ∪ V5

T by a-scores.

environmental monitoring, malware detection, spam filtering, etc [57,58]. SGWT is a powerful tool to detect 

the spatio-temporal anomaly of the signal with the help of the transformed graph. We say the nodes in 

V4
T ∪ V5

T are anomaly nodes. However, as shown in Fig. 4, for example, there are completely different types 

of nodes in V5
T by examining the distribution of the signal in more detail. As we can see for node v90, the 

signal value is significantly lower than that of its neighbors; while for the one-hop neighbor of v90, the signal 

value is higher than the surrounding values.

A refined node classification method based on [54] is used to identify these two different types of anomalies 

for nodes in V4
T ∪ V5

T . Given a graph signal f ∈ L2(VT ), a new metric ϑ : Vt → R is defined as

ϑ[(v, t)] = max{f [(v, t)] − ζ1f̄ [(v, t)], 0} + min{f [(v, t)] − ζ2f̄ [(v, t)], 0}, (25)

where

f̄ [(v, t)] = (1/|N1
(v,t)|)

∑

(w,t)∈N1
(v,t)

f [(w, t)], (26)

N1
(v,t) is the one-hop neighbor of (v, t) ∈ Vt on the t-th time slice Gt. ζi is a hyperparameter, which is used 

to further subdivide the anomaly class.

Next, the anomaly score (a-score) function is χ : VT → {−2, −1, 0, 1, 2},

χ[(v, t)] =

{
0 (v, t) ∈ Vi

T , i = 1, 2, 3,

(i − 3) · sign(ϑ[(v, t)]) (v, t) ∈ Vi
T , i = 4, 5.

(27)

Thus V4
T and V5

T are further divided into two sub-classes. According to the value of the a-score, we thus have 

a new classification of the nodes into the level sets of the a-score function as V = C−2 ∪ C−1 ∪ C0 ∪ C1 ∪ C2, 

with Ci = {(v, t)|i = χ[(v, t)]}. This is also shown in Fig. 5, where we use different colors to represent these 

anomaly classes. The a-score depends on both the spatial and temporal relationship of graph signals. Using 

the a-score, we can obtain Fig. 4 (c), which shows the internal differences in V4
T ∪ V5

T in great detail.

5.3. Graph classification based on SGWT coefficients

A graph classification method is presented to classify each graph time slice {Gt, t = 1, · · · , T} on the 

transformed graph GT . The distribution of the i-th class Vi
T on time slice Gt is calculated by

ρi
t = (1/Nt)

∑

(v,t)∈Vt

IVi
T

(v, t), i = 1, 2, · · · , 5, (28)

where IVi
T

is the indicator function of the i-th class Vi
T . We use the method in [23] to classify the graph 

time slices {Gt, t = 1, · · · , T}. The graph classification function of Gt is defined as:

σt = arg max
i∈{1,2,3,4,5}

(ρi
t/ρi

max), (29)

where ρi
max = max{ρi

1, · · · , ρi
T }. We thus classify the t-th graph time slice as Vσt

T , which carries the most 

weight in time slice Gt. The graph time slice belonging to V4
T

⋃
V5

T is known as the anomaly graph time 

slice.
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6. Spectral graph wavelet visual analysis on dynamic graphs

In this section, we implement SGWT on two real datasets. By classifying nodes based on wavelet coef-

ficients, it is shown that implementing SGWT on the transformed graph can catch abnormal events based 

on signal changes and accurately find interesting key information. We use Matlab to perform fast SGWT 

and visualization. In the case study 1, we use two types of signals, and calculating the wavelet coefficients 

takes 0.762323 and 0.737458 seconds, respectively. In the case study 2, it costs 0.029278 seconds to compute 

wavelet coefficients. Also, we train the graph attention neural network using Pytorch packages on a single 

NVIDIA GeForce RTX 3090. It costs 5017.4465 seconds.

6.1. Case study 1: 2009 SFHH conference in Nice

We choose a dynamic network with a time-dependent graph topology to test the effectiveness of our 

proposed method for dynamic graph signal processing. We use the dataset provided in [59], which describes 

the face-to-face interactions of 405 participants at the 2009 SFHH conference in Nice, France (June 4-5, 

2009). The data collection time was from 9:00 am to 9:00 pm on the first day, and from 8:30 am to 4:30 

pm on the second day. The original data provided the pair-wise contact information among participants at 

every 20-second interval during the two-day periods.

6.1.1. Construction of the dynamic graph

We first construct the discrete graph time slices {Gt = (Vt, Et), t = 1, · · · , T} with T = 22, where the 

time interval is one hour. Because this dataset was recorded at a conference, the one-hour time period allows 

us to better identify the size of the sub-communities where people interacted with one another. Here we 

omitted the time slices at night when there is no communication. Note that someone may not communicate 

with others in some time slices, and | Vt | and Et change with time. The link weight w(v,w,t) is proportional 

to the length of the conversation and is the conversation count between (v, t) and (w, t) every 20 seconds 

within an hour. Thus we get symmetric, undirected graphs {Gt, t = 1, · · · , T}.

In this section, we take two types of graph signal functions to analyze the conference data. Let

f1[(v, t)] =
∑

(w,t)∈N1
(v,t)

w(v,w,t),

where f1[(v, t)]) represents the total conversation counts of participant v during the t-th time slice. Let

f2[(v, t)] =
∑

(w,t)∈Vt

IEt
(e(v,w,t)),

where f2[(v, t)] represents how many people v contacted at the t-th time slice. Next, we construct the 

transformed graph GT using the temporal-attention product. We also link the time slice 21:00-22:00, June 

4 to the time slice 8:30-9:30, June 5 by temporal-attention product. Suppose w((v,t),(w,t+1)) inherits from 

w(v,w,t) following the temporal evolution procedure, i.e., w((v,t),(w,t+1)) := w(v,w,t), w((v,t),(w,t)) := w(v,w,t). 

There are some small groups (containing only 2-3 nodes) in which the participants only discuss within the 

group and do not communicate with other groups. When we perform the analysis, we do not consider these 

groups. So the transformed graph we get is a connected graph with | VT |= 5008. Then, we compute the 

graph wavelet coefficients of the graph signal f1[(v, t)] and f2[(v, t)], respectively.

6.1.2. Overall visual analysis

We classify each graph time slice {Gt, t = 1, · · · , T} on the transformed graph GT by the graph classi-

fication method designed in section 5. Firstly, we assign each node (v, t) at t-th time slice to one of the 
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Fig. 6. The bar graph depicts the node classification distribution ρi
t in (28). The line chart (in blue) depicts the graph classification 

for each graph time slice and the sum of signals. The subfigures on top and bottom are based on the graph signal f1 and f2, 
respectively. The dotted line marks the start of the second-day meeting.

classes {Vi
T , i = 1, · · · , 5} by the node classification function σ[(v, t)] defined as in (24). Secondly, we show 

the corresponding probability distribution ρi
t defined in (28), see the bar graph of Fig. 6. The color for the 

probability distribution ρi
t matches that of Vi

T . Finally, using the graph classification function σt defined 

in (29), we can assign each graph time slice a class Vσt

T with σt ∈ {1, 2, 3, 4, 5}. This allows us to better 

understand how active the participants are in the meeting. The sum of f1 and the sum of f2 on each time 

slice, are plotted as time series in the line chart of Fig. 6, respectively. Graph time slices are denoted by 

different shapes and colors to indicate the class from {Vσt

T , t = 1, · · · , 5}, representing which spatio-temporal 

changes (low frequency, mid-low frequency, average, mid-high frequency, and high frequency) of node signals 

in the time slice account for the greater proportion.

On June 4, 11:00-12:00, it can be seen from bar graphs Fig. 6 that more than 250 participants had face-

to-face communication. Both graph signals reach their peaks, and the graph time slice G3 is classified as a 

high frequency class. This means high-frequency signals in this time slice accounted for the most significant 

proportion of the entire 22 hours-period. It can be inferred that there exists a lunch break and many people 

start a conversation. It was the first break of the meeting, and most people were very active, greeting each 

other out of politeness or making new friends. People with a large social circle will contact multiple people 

at this time. The sizes of the social circle of participants are also different. At the same time, the total time 

for one participant to communicate is also more than other time slices. These factors explain well that G3

belongs to V5
T in GT .

As an interesting phenomenon, we can see that on June 5, 12:30-13:30 (G17), nearly 330 people had 

face-to-face communication, which counts for another peak time of the signals. However, G17 is identified 

as a mid-low frequency class (in blue), contrary to G3, using the graph classification method. This should 



20 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

Fig. 7. Node classification on G3 (left) and G17 (right) using the graph signal f1. One can see clearly the graph signal on G17 is 
almost uniform and the low frequency accounts for more, thus should be classified as a normal subgraph; while G3 is definitely an 
anomaly one.

be the lunchtime of the second day, and we can read from the plot that, during this hour, most participants 

had the same social profile as their social objects. It can be speculated that people in the same social circle 

communicate with each other, and there are few brief greetings between different social circles. This is also in 

line with reality, because on the first-day lunch everyone will greet people they know or not out of courtesy, 

and there will be brief exchanges between different social circles. But before leaving, most participants prefer 

to have rather long conversations with friends. Therefore, it is not difficult to explain why the classification 

method identifies this hour as a mid-low frequency class, instead of a high frequency class, compared to the 

first lunchtime, using the graph signals.

To better assist in visualizations, we also plot graphs G3 and G17, see Fig. 7, together with the node 

classifications on both graph time slices. It is consistent with the graph classifications.

6.1.3. Ranking participants by popularity

According to the a-score defined in (27), we can find the most popular participants at the conference, using 

the two graph signal functions. Indeed, based on these two graph signals, we further define a comprehensive 

anomaly score to analyze participants’ popularity:

χ̄′(v) := (1/T )
T∑

t=1

χf1
[(v, t)] · χf2

[(v, t)], (30)

where χf1
[(v, t)] > 0 and χf2

[(v, t)] > 0 are the a-scores defined in (27) with the hyperparameter ζ1 = ζ2 = 1. 

We can easily rank the popularity of participants through the comprehensive anomaly score. The larger the 

value, the more popular it is.

Fig. 8 shows the top five most popular (active) participants ranked using a comprehensive anomaly score 

(30) based on graph signals f1 and f2. The first column of Fig. 8 is the score χ̄′(v) defined in (30). The 

view also displays the a-scores (27) of participants on different time slices. To distinguish the two signals, 

we use circles to represent the a-score based on signal f1, and triangles to represent the a-score based on 

signal f2. According to (30), a score is recorded when the two signal markers in Fig. 8 overlap, indicating 

that the participant’s talk time and the number of people he talks to are both greater than the average 

of his neighbors at this time slice. That is, the participant is more popular if more people are willing to 

spend more time communicating with him compared to others. As we can see that participants v84, v21

and v64 were identified as the most popular people during the first daytime; while v68 and v21 were mostly 

active during the dinnertime of the first day. Participant v76 was the most popular one during the entire 

conference, as he was very active for almost all the recorded time.
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Fig. 8. Node ranking. The circle corresponds to the signal f1, and the triangle corresponds to the signal f2. The dotted line marks 
the start of the second-day meeting. The first column is the score χ̄′(v) defined in (30). χfi

[(v, t)] is the a-score defined in (27).

Fig. 9. Top: node classifications for participant v76 on the transformed graph. Bottom: node classifications for participant v76 only 
using a temporal series graph. The signal is f2. The dotted line marks the start of the second-day meeting.

We further provide a detailed graph signal analysis of participant v76 in Fig. 9. We visualize the temporal 

activity of the participants in each time slice, using the node classifications by graph signal f2. Interestingly, 

the classification by only the time-series graph of participant v76 (bottom) is rather different from the 

classification on the transformed graph (top). This also explains that it is not sufficient to perform the node 

classifications and anomaly detections by only the time-series.

To demonstrate that the dynamic model connected by temporal-attention product can better enable 

SGWT to capture the changes of signal dynamic mode, we supplement the node rankings of dynamic 

models connected by Cartesian product and strong product, respectively, in the Appendix.

6.2. Case study 2: COVID-19 data analysis among the Group of Twenty

The World Health Organization (WHO) on March 11, 2020, declared the novel coronavirus (COVID-

19) outbreak a global pandemic. There are many papers studying the spread of COVID-19 from different 

perspectives, which include how national mitigation measures will affect the process of the COVID-19 

pandemic [60], the comparison of pandemic situations among different countries [61,62], and the impact on 

social life during the pandemic period [63–66].
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Fig. 10. Time series of the confirmed COVID-19 cases per 100,000 people every week. The inset is the zoom-in view of some country 
curves from Dec. 7, 2021 to Feb. 8, 2022, where the y-axis is log-scale.

To understand the roles of individual countries played in the pandemic spreading, we choose to analyze 

COVID-19 data among the Group of Twenty (G20): Argentina, Australia, Brazil, Canada, China, France, 

Germany, India, Indonesia, Italy, Japan, South Korea, Mexico, Russia, Saudi Arabia, South Africa, Turkey, 

the United Kingdom, the United States, and the European Union. The data is taken from the official website 

of the World Health Organization.2 The original data collected daily new cases in each country. Considering 

some countries that do not update their data daily, we summed the data every seven days to analyze the 

weekly new cases. The data collection period spans from May 5, 2021 to May 24, 2022. For simplicity, 

we used the last date of each week as the label for that particular week in the subsequent visualization 

analysis. The signals are the multivariate time series f [(vi, t)], i = 1, · · · , 20, confirmed cases of COVID-19 

per 100,000 people every week (referred to as confirmed cases) for each of the G20:

f [(vi, t)] = 100000 ∗ Ii(t)/Ci, t = 1, · · · , T, (31)

where Ii(t) is the number of confirmed cases every week in country vi at time t and Ci is the population of 

country vi. Let T = 55. The time evolution of f [(vi, t)], i = 1, · · · , 20, are plotted in Fig. 10 for G20.

For the multivariate time series of G20 confirmed cases, there is no graph structure at all. Since the 

correlation of COVID-19 data between each country is different and changes over time. It may be affected 

by complex factors such as trade or traffic flows among these countries. Therefore, we first construct a 

sequence of identical complete graphs {Gt, t = 1, · · · , T} without self-loops. At this time, there is no weight 

on the graph Gt. Then we obtain the transformed graph GT using the temporal-attention product. To 

better capture the spatio-temporal connection of nodes, i.e., the weight in the transformed graph, the graph 

attention neural network (GAT) [50] is used to learn the time-dependent attention weight of each pair 

of nodes. GAT is a powerful deep learning method [50,67–70], which has state-of-art performance on node 

classification, edge classification, and link predictions. The learned attention (weight) matrix is bidirectional 

on the transformed graph. It is worth noting that, according to the spread of the pandemic, time flows in 

one direction, from time t to time t + 1; only the weights of temporal-attention edges from Gt to Gt+1 need 

to be learned, while the weights of temporal-attention edges from Gt+1 to Gt are 0.

2 https://covid19 .who .int.
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6.2.1. Learning spatio-temporal transition matrix PT in the transformed graph

We introduce how to use GAT to learn the weights of transformed graphs based on the topological 

structure and COVID-19 data feature similarity. We take the GAT coefficient obtained from the last layer 

of the graph neural network as the weight of the transformed graph. This gives the spatio-temporal transition 

matrix PT = (p(vi,vj))N#
T ×N#

T
as the weighted matrix in our transformed graph GT = (VT , ET ).

Review the architecture of GAT.

We review the architecture of GAT. Let Xvi
∈ R

d be a d-dimensional feature of node vi in the transformed 

graph GT . Let H
(1)
vi

= Xvi
be the initial feature at node vi. To increase the accuracy, one can add several 

layers to the graph neural network. At the l-th layer, l ≥ 1, H
(l)
vi

denotes the input feature with dimension 

dl. H
(l+1)
vi

is the output feature with dimension dl+1. The relative importance of neighboring features to 

each other can be described by attention coefficients, which are calculated using an attentional function 

α
(l)
(vi,vj) : R

dl × R
dl → R:

α
(l)
(vi,vj) =

exp
(

LeakyReLU(â · (W (l)H
(l)
vi

‖W (l)H
(l)
vj

))
)

∑
vk∈N 1,T

vi

exp
(

LeakyReLU(â · (W (l)H
(l)
vi

‖W (l)H
(l)
vk

))
) , (32)

where ‖ is the concatenation operation, and W (l) ∈ R
dl+1×dl is a learned embedding matrix. â ∈ R

2dl+1

is a single-layer feed-forward neural network. LeakyReLU3 is the activation function. Moreover, we assign 

α
(l)
(vi,vi) = 0 to avoid self-loop.

H(l+1)
vi

= ELU

( ∑

vj∈N 1,T
vi

α
(l)
(vi,vj)W

(l)H(l)
vj

)
, (33)

where ELU is an exponential linear unit.4 To improve the stability of the learning process, we use a multi-

head attention mechanism, that is, run the above process several times in parallel. The output features of 

nodes’ neighbors are either concatenated or averaged to form their final output features.

Let S = S+ ∪ S− be the sample set of edges for the transformed graph, where S+ is a positive sample 

set composed of node pairs with connected edges, and S− is a negative sample set composed of node pairs 

without connected edges. The whole GAT framework is trained by minimizing the following cost function:

L = −(1/|S|)
∑

(vi,vj)∈S

(yi,j log rij + (1 − yi,j) log(1 − rij)) , (34)

where | · | represents the cardinality of the set. yi,j is the label information for the edge between vi and vj , 

with 0 for non-existence and 1 for existence.

ri,j = Sigmoid

(
θ · (H(l+1)

vi
� H(l+1)

vj
)

)
, (35)

represents the probability of whether there is an edge between node vi and node vj . Sigmoid5 is an activation 

function. � denotes Hadamard product. θ is the learned parameter vector with the dimension as same as 

H
(l+1)
vi

. This setting makes the feature outputs after GAT more relevant if there is an edge between two 

nodes.

3 LeakyReLU(x) = 0.15x(1 − sgn(x))/2 + x(1 + sgn(x))/2.
4 ELU(x) = (exp(x) − 1)(1 − sgn(x))/2 + x(1 + sgn(x))/2.
5 Sigmoid(x) = 1/(1 + exp(−x)).
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Fig. 11. The time evolution of the pandemic centrality score ci(t) in G20. The color represents the value of the centrality score.

Neural network training settings.

In our setup, the graph signal f [(v, t)] only takes one value at each node. This makes the learning 

of attention weight rather difficult. To overcome this difficulty, we design a new feature function on the 

transformed graph, which carries short-term temporal information. More precisely, for each node (v, t) ∈ Vt, 

we define a 4-dimension X(v,t) = (f [(v, t −3)], · · · , f [(v, t)]) as the new temporal feature at node (v, t) in the 

transformed graph GT . Therefore, in addition to the period we analyzed, we also use data for three weeks 

from April 20, 2021 to May 4, 2021.

We take all connected node pairs in the transformed graph (which is rather sparse) as positive samples, 

and downsample the same unconnected node pairs as negative samples. The ratio of the training set, 

validation set, and test set is 6:2:2. The number of positive samples and negative samples in the test set is 

the same. We use two layers of graph attention layers, the first layer has 7 attention heads, and the hidden 

layer has 84 units and the output is in the form of a concatenation of 7 attention heads. The second layer 

has a single attention head, and the hidden layer has 52 units. The transition probability p(vi,vj) is defined 

as the GAT coefficients of the last GAT layer, i.e., (32) with l = 2. During the training process, the learning 

rate is 1e − 5, the dropout rate is 0.1, and the optimizer is Adam. The early stopping strategy is applied to 

the validation set to avoid overfitting, with the patience sets to 50 epochs. The edge classification accuracy 

for the test set is 0.9534.

6.2.2. Capturing centrality of each country over time

The attention probability p(vi,vj) on GT has the advantage to capture the importance of the characteristics 

of vj to vi among all its neighbors on GT . This enables us to identify the centrality of the i-th country at 

time t using the following formula:

ci(t) =
∑

w∈N 1,T

(vi,t)

p(w,vi,t), i = 1, · · · , 20. (36)

It is the sum of the in-degree weights for each country and changes over time.

We demonstrate the time evolution of the centrality score ci(t) in G20 in Fig. 11. Since the time slices of 

the endpoints lack neighbors on one side, we omit the endpoint time slice in our subsequent visualization 

analysis. The centrality score changes over time. Take December 14, 2021 as an example, the number of 

confirmed cases increased sharply during this time, making the centrality score change more obvious. The 

countries with top five centrality scores were Brazil, Japan, Indonesia, Sandi Arabia, and Australia. It can 
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Fig. 12. Overall visual analysis using node classification and graph classification. The top figure depicts graph classification for each 
graph time slice by σt defined in (29). The bottom figure depicts the node classification distribution ρi

t given by (28).

be seen from the inset in Fig. 10 that the pandemic situation in these countries began to show an upward 

trend in the following month. Due to the delayed nature of pandemic transmission, the pandemic in some 

countries will begin to increase subsequently. The pandemic has shown a downward trend in countries with 

low centralities, such as Germany and Russia. For the United Kingdom and the United States, the pandemic 

was on the rise at the beginning of December 14 due to the previous high centrality effect. Still, after a 

while, their pandemic began to decline.

6.2.3. Overall visual analysis

We conduct an overall analysis of the spatio-temporal changes of the pandemic in G20 by the graph 

classification method after performing SGWT.

As shown in Fig. 12, most of the time during the pandemic, the change in severity in each country was 

uneven. The seriousness in some countries was significantly higher or lower than in others. This makes 

the detected signal change mainly belong to mid-high frequency (V4
T ) or high frequency (V5

T ). This is also 

consistent with Fig. 10. The time slice from December 14, 2021 to December 21, 2021 is classified as V2
T . 

Due to the spread of the Omicron variant, the pandemic in most countries was on the rise, and the spatial 

and temporal changes were low frequency. On January 18, 2022, the time slice is classified as V1
T . During 

this period, only the French pandemic was high-frequency, and most countries had similar temporal and 

spatial changes, so the proportion of countries classified as low-frequency is large, and the time slice was 

classified as low-frequency. It can be seen that the rapid spread of the Omicron variant makes the pandemic 

between countries more similar. Then, possibly due to different policies adopted by countries, the changes 

in severity began to differ. Therefore, a subsequent time slice is classified as V5
T .

6.2.4. Ranking of G20 using the anomaly scores

We first evaluate the pandemic severity in G20 using the refined classification method – a-scores χ(v, t)

with the hyperparameters ζ1 = 1.5 and ζ2 = 0.5. We define the average anomaly score:

χ̄(v) := (1/T )

T∑

t=1

χ[(v, t)]. (37)



26 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

Fig. 13. Ranking of pandemic severity using the average a-score in G20. The first column is the average anomaly score χ̄(v) defined 
in (37). χ[(v, t)] is the a-score defined in (27).

Then based on the average a-scores χ̄(v), we give overall ranking of these countries from May 18, 2021 

to May 17, 2022 as follows: the United Kingdom, France, Turkey, the United States, Brazil, Argentina, 

Russia, Germany, European Union, Italy, South Africa, Australia, South Korea, Canada, Mexico, Japan, 

India, Indonesia, Saudi Arabia and China, see Fig. 13. The ranking provides a clear understanding of the 

pandemic virus spread information among these countries. This is helpful to analyze the pandemic spread 

patterns and find countries with good pandemic protection policies (such as Indonesia), and provide a good 

reference for further pandemic prevention and control. Additionally, we can examine each country’s pandemic 

intensity throughout a specific period from Fig. 13. For example, the countries with severe pandemics from 

January 4, 2022 to May 17, 2022 are South Korea, Australia, Germany, France, and Italy. On the other 

hand, the countries with fewer pandemics are China, Saudi Arabia and Indonesia.

7. Conclusion

In this paper, we propose a new method for modeling spatio-temporal dynamic graphs, by introducing 

the temporal-attention product, which better reflects the evolution of the signal concerning the surrounding 

environment over time. Especially, for dynamic networks with topological changes, this connection method 

fully considers the spatial and temporal topological connections. The newly added temporal edges will not 

affect the previous spatial graph structures. This method is robust, scalable, and can be defined inductively. 

The transformed graph provides a solid mathematical foundation to model the time-dependent graph signal 

processes as martingales. Moreover, the transformed graph is highly sparse. The number of edges of GT is 

at most twice the total edges of the sequence of the dynamic graph network ∪T
t=1Gt. The large weighted 

adjacency matrix obtained by the temporal-attention product is a block tridiagonal matrix, which appears 

in many applications and has been extensively studied. Thus, it is very convenient to study its spectral 

properties.

Based on the transformed graph, we can extend GFT and SGWT to study dynamic graph signals, as 

well as multivariate time series. Compared with the previous dynamic graph signal processing methods, the 

changes in topology and nodes of the transformed graph can be incorporated inductively. It is conducive to 

the analysis of data flow. We apply two real datasets for spectral graph wavelet visualization analysis. For 

the COVID-19 confirmed data of the G20 without a graph structure, we use GAT and COVID-19 confirmed 

data to learn the weighted matrix of the transformed graph composed of complete graphs. We design 

different visualization diagrams and methods for selecting key nodes, and provide valuable information for 
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Fig. A.14. Node ranking by temporal-attention product. The circle corresponds to the signal f1, and the triangle corresponds to the 
signal f2. The dotted line marks the start of the second-day meeting. The first column is the score χ̄′(v) defined in (30). χfi

[(v, t)]
is the a-score defined in (27).

Fig. A.15. Node ranking by Cartesian product. The circle corresponds to the signal f1, and the triangle corresponds to the signal 
f2. The dotted line marks the start of the second-day meeting. The first column is the score χ̄′(v) defined in (30). χfi

[(v, t)] is the 
a-score defined in (27).

signal analysis. For example, it can identify the most popular participants in different social circles using 

the SFHH conference dataset. Another example, from the COVID-19 data sets of G20, we found countries 

with severe pandemic spread patterns, and identify countries with good pandemic prevention. These can be 

used as references for further analysis of pandemics and the formulation of pandemic prevention policies. It 

can be seen that SGWT on the transformed graph can successfully analyze the spatio-temporal dynamic 

properties of events and capture the key information of interest.

Data availability

This article uses two datasets: the 2009 SFHH conference in Nice and COVID-19 confirmed cases in G20. 

We have given the source link in the article.

Appendix A. Comparison of the temporal-attention product, Cartesian products, and strong product

To demonstrate that SGWT on the dynamic graph connected by temporal-attention product can better 

capture the spatio-temporal dynamic properties of the signal, we also employ SGWT on the dynamic graph 

connected by Cartesian product and strong product for case study 2 in section 6.1. Participants are ranked 

for popularity using the same method as subsection 6.1.3. Fig. A.14, Fig. A.15 and Fig. A.16 show the node 

ranking results on the dynamic graph connected by the temporal-attention product, Cartesian product and 
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Fig. A.16. Node ranking by strong product. The circle corresponds to the signal f1, and the triangle corresponds to the signal f2. 
The dotted line marks the start of the second-day meeting. The first column is the score χ̄′(v) defined in (30). χfi

[(v, t)] is the 
a-score defined in (27).

Fig. A.17. The node signal value f1 and the average signal value of its neighbors. A hollow circle represents a node whose signal 
value exceeds the average value of its neighbors, and a solid circle represents a node whose signal value exceeds 1.5 times the 
average signal value of its neighbors.

strong product, respectively. We choose three nodes v76, v21 and v68 to analyze which of the three rankings 

is more reasonable.

Because the idea behind our popularity ranking is to assign an a-score by comparing the signal value 

of the node with the average value of its one-hop neighbor nodes after the SGWT identifies that the node 

belongs to high frequency or mid-high frequency. The comprehensive a-score of a node is calculated by 

multiplying the a-scores of the node’s two signals and taking the average value over time. If a node has a 

higher comprehensive a-score, it means that not only the number of people talking to this node is more 

than the average number of interactions between its neighbors and other people, but also the conversation 

time is longer than the average value of interactions between its neighbors and other people. This indicates 

that more people tend to spend more time interacting with this node, thus showing that the node is more 

popular in the venue.

According to the idea of popularity ranking, we can test the most popular nodes by two criteria:

(i). The nodes with signal value fi[(v, t)] > f̄i[(v, t)], i = 1, 2,

(ii). The nodes with signal value fi[(v, t)] > 1.5 · f̄i[(v, t)], i = 1, 2,

where f̄i[(v, t)], defined in (26), is the average signal value of one-hop neighbors of the node (v, t) on Gt. 
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Fig. A.18. The node signal value f2 and the average signal value of its neighbors. A hollow circle represents a node whose signal 
value exceeds the average value of its neighbors, and a solid circle represents a node whose signal value exceeds 1.5 times the 
average signal value of its neighbors.

Fig. A.19. The number of time slices where both signals f1 > f̄1 and f2 > f̄2 is shown in blue bars, while the number of time slices 
where both signals f1 > 1.5 · f̄1 and f2 > 1.5 · f̄2 is shown in red bars.

Fig. A.17 and Fig. A.18 depict the signal fi of nodes v76, v21 and v68, and the corresponding f̄i, respectively. 

Fig. A.19 shows the number of time slices that f1 > f̄1 and f2 > f̄2 (blue bars), and the number of time 

slices that f1 > 1.5 · f̄1 and f2 > 1.5 · f̄2 (red bars). It can be seen that v76 should be ranked ahead of v21

in terms of popularity, and v21 should be ranked ahead of node v68. Therefore the ranking in Fig. 8 is more 

reasonable.

The comparison of SGWT of different connection methods in this section is rough, due to the signal 

criteria being self-defined. It would be interesting for future work to conduct a deeper analysis of this 

comparison. The weights of the majority of temporal edges in the strong product graph are defined as the 

same as the temporal-attention product method, i.e., w((v,t),(w,t+1)) := w(v,w,t), w((v,t),(w,t)) := w(v,w,t). 

But for the edge between the same base node on the adjacent time slice, similar to [23], the weight is 

assigned as 1 for the Cartesian product and strong product. Using different weights may yield different 

results. However, since there is no self-loop in the original time slice Gt, what weight is reasonable is a 

question that needs further discussion for the Cartesian product and strong product. It can be seen that the 

ability of the temporal-attention product to assist SGWT in finding important and interesting information 

in the applications we exemplify. Therefore, the temporal-attention product is reasonable compared to the 

other methods.
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