
Appl. Comput. Harmon. Anal. 67 (2023) 101579

Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

journal homepage: www.elsevier.com/locate/acha

Graph signal processing on dynamic graphs based on

temporal-attention product ✩

Ru Geng a, Yixian Gao a, Hong-Kun Zhang b, Jian Zu a,∗

a Center for Mathematics and Interdisciplinary Sciences, and School of Mathematics and Statistics,
Northeast Normal University, Changchun, 130024, China
b Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 August 2022
Received in revised form 19 July
2023
Accepted 23 July 2023
Available online 28 July 2023
Communicated by Naoki Saito

Keywords:
Time-varying data
Signal processing
Spectral graph wavelet transform
Visual analysis
Graph Fourier transform
Graph attention neural network
Dynamic networks

Signal processing is an important research topic. This paper aims to provide
a general framework for signal processing on arbitrary dynamic graphs. We
propose a new graph transformation by defining a temporal-attention product.
This product transforms the sequence of graph time slices with arbitrary topology
and number of nodes into a static graph, effectively capturing graph signals’
spatio-temporal dynamic evolution process. The temporal-attention product graph
provides a solid mathematical foundation to model the time-dependent graph signal
processes as martingales. The weighted adjacency matrix obtained by temporal-

attention products is a block tridiagonal matrix, which has been extensively studied.
Therefore, it is general and convenient to perform graph signal processing on this
new static graph. We apply two real datasets to illustrate the effectiveness of
spectral graph wavelet transform based on temporal-attention product. For one of
the datasets with no graph structure, we learn the graph weights through a neural
network.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Graph signal processing (GSP) is an emerging field in data science, and it has received much attention

in many fields, such as classifying cancer types, temporal brain data, theoretical chemistry, social network

analysis, computer networks (such as the Internet) and distributed systems, etc. Analyzing graph signal

data will help us understand the behavior patterns in the network, which is crucial in several application

✩ YX Gao is partially supported by NSFC grants (11871140, 12071065) and National Key R&D Program of China
(2020YFA0714102). HK Zhang is partially supported by Simons Foundation Collaboration Grants for Mathematicians (706383). J
Zu is partially supported by NSFC grants (11971096, 11971095).

* Corresponding author.

E-mail addresses: gengru93@163.com (R. Geng), gaoyx643@nenu.edu.cn (Y. Gao), hongkun@math.umass.edu (H.-K. Zhang),
zuj100@nenu.edu.cn (J. Zu).

https://doi.org/10.1016/j.acha.2023.101579
1063-5203/© 2023 Elsevier Inc. All rights reserved.

2 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

Fig. 1. Graph products. The green line is the temporal edge. The dotted line circle is a manually added node. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

areas, including sensor network data, processing and analysis of biological data, and applications of image

processing and machine learning [1], etc.

Many powerful tools have been proposed for studying graph signals, e.g., the graph Fourier transform

(GFT) [2–5], and the windowed graph Fourier transform (WGFT) [6,7]. However, these methods can not

capture local relationships of graph signals well and fail to identify abrupt signal changes. Due to its

multiresolution advantages, the spectral graph wavelet transforms (SGWT) proposed by Hammond et al.

[8] and Shuman et al. [6,9,10] is an improved tool to perform visualization analysis, detect and characterize

the attributes of signals, and play an important role in node classifications. For instance, Mohan et al.

[11] take the vehicle speed as signals and apply SGWT to detect the occurrence, propagation, and span

of destructive events such as traffic congestion, to guide and plan traffic routes. Other applications include

community mining [12], visual analysis [13], surface denoising [14], research on manifolds [15], etc.

The following entities are involved in the definitions of graphs: V (a set of nodes), E (a set of edges),

f (signals defined on nodes), and w (weights defined on edges). A dynamic graph is obtained when any of

these four entities change over time [16]. Graphs in many real-world applications are inherently dynamic,

such as data-packet traffic on the Internet, disease spreading on social networks, temperature changes in an

area, users in e-commerce platforms continuing to interact with new items and connections established in

a communication network over time, etc. Because of the time-varying property of dynamic graphs, existing

GSP methods are severely hampered, and tools such as GFT, WGFT, and SGWT cannot be directly applied

to dynamic graphs.

One could use the graph product structure to obtain a static graph. The three well-known graph products

are the Kronecker product, the Cartesian product, and the strong product. These methods are useful in

studying discrete temporal graphs, where the graph time slices Gt have identical nodes and edges, see

[8,13,17–20]. Fig. 1 (a), (b) and (c) depict the three graph products using the path graph1 of three nodes as

an example. Another method is to perform GFT by expressing the Laplace of the dynamic graph as a tensor,

and obtaining the transformed basis function by Tucker decomposition of the tensor [21]. Alternatively, the

Laplace operator of the dynamic graph is represented as a discrete second-order derivative in time, and

then GFT and SGWT are performed [22]. All these methods are designed to deal with graph signals on

sequences of graph slices with the same nodes or topology. Recently, an important attempt was made in

[23], where the authors manually added some additional isolated points on graph time slices, to ensure all

1 A path graph is a graph whose nodes are adjacent to exactly two other nodes, with the exception of the two extreme ones that
are connected to only one node.

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 3

graph time slices have identical nodes, see Fig. 1 (d) (The dotted line circle is a manually added node).

They then connected these graphs by Cartesian product and used SGWT for the visual analysis of signals.

However, in real-world applications, this process can be rather expensive and unrealistic, as it not only adds

time edges that carry no information (such as on those manually added, isolated nodes) but also needs to

change the previous topology connection every time a new graph time slice is added. Another issue is that

by adding the extra temporal edges of the same nodes in adjacent graph time slices, the underlying diffusion

mechanism changes as if there are self-loops in each graph time slice.

To overcome these difficulties and effectively capture the temporal evolution of signals in dynamic graphs,

inspired by the attention mechanism introduced by Bahdanau et al. [24] in machine learning for language

processing, we propose to add time edges that capture the best information similarity carried by nodes in

adjacent graph time slices. We call this way of adding temporal edges the temporal-attention product. As a

result, a discrete dynamic graph with T graph time slices (snapshots) {Gt, t = 1, · · · , T} is transformed into

a static graph GT , which is called a transformed graph. The nested transformed graphs {Gt, t = 1, · · · , T}

accurately capture both the spatial and temporal structure of the first T discrete dynamic graph snapshots

{Gt, t = 1, · · · T}, and are also suited for studying the dynamic evolution process of the graph signals. We can

define a filtration of σ-algebra {Ft, t ≥ 1} generated by graph signals on {Gt, t ≥ 1}. The transformed graph

Gt also provides a general mathematical tool for modeling graph signal processes using advanced methods in

probability theory (including diffusion and martingale processes, etc.). Furthermore, this new construction

is inductive: to construct Gt+1 at each new time step, t +1, one only adds temporal edges for nodes between

Gt and Gt+1 based on the graph structure of Gt. The detailed construction of the transformed graphs can

be found in section 2.

The weighted adjacency matrix WT of the transformed graph is a generic symmetrical block tridi-

agonal matrix. The block tridiagonal matrix can be found in many applications in the finite difference

method [25,26], discrete Sturm-Liouville operators [27], discrete transport problem simulation and elec-

tronic structure calculations [28–30], random walks and birth-and-death processes [31,32], scattering theory

[33], computational fluid dynamics [34], signal processing [25,35,36] and so on. It is convenient to study the

spectrum of the transformed graphs since the properties of block tridiagonal matrices have been extensively

studied. A widely used direct method is to compute eigenvalues and eigenvectors based on divide-and-

conquer [37–42], or twisted block factorizations [43,44]. For some special cases, the relationship between

tridiagonal matrices and orthogonal polynomials can be used to obtain eigenvalues and eigenvectors [45–49].

In this paper, we will give some spectral properties of the weighted adjacency matrix of the transformed

graph and some recursive formulas for GSP on the transformed graph.

SGWT is powerful in our transformed graph Gt, enabling spatio-temporal anomaly detection and multi-

resolution visual signal analysis. Two real-world datasets are used to show that SGWT coefficients on the

transformed graph accurately capture the spatio-temporal dynamic changes of the signals. In one of our

applications, we only have multivariate time series. The underlying graph for these time series is unknown

prior and can not be constructed preliminarily through the topology of nodes of the graph. In this paper,

we explore a deep learning method to learn the graph link weights. More precisely, we apply the graph

attention neural network (GAT), a powerful graph neural network that introduces the attention mechanism

to refine the convolution process in a generic graph convolutional neural network [50].

This paper is organized as follows: In section 2, we introduce the temporal-attention product on dynamic

graphs. In section 3, we give the spectral properties of undirected dynamic graphs. In section 4, we discuss

GFT and SGWT on dynamic graphs. In section 5, we introduce the classification method based on SGWT

coefficients. In section 6, we analyze two real-world datasets using spectral graph wavelet visualization. We

close with a conclusion section.

4 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

Table 1
Notations in Gt and Gt.

Gt Gt

Vt: Node set on graph Gt; Vt: Node set on graph Gt;

Nt: Cardinality of Vt, i.e., | Vt |= Nt; N#
t : Cardinality of Vt, i.e., | Vt |= N#

t ;
Et: Edge set on graph Gt; Et: Edge set on graph Gt;

Et,t+1 ∈ Et: Temporal-attention edge set between Gt and Gt+1;
(v, t) ∈ Vt: Node on the t-th time slice Gt; v: Node on Gt;
e(v,w,t) ∈ Et: Edge joining (v, t) and (w, t); e(v,w) ∈ Et: Edge joining v and w;

At = (a(v,w,t)) ∈ R
Nt×Nt : Adjacency matrix of Gt.

a(v,w,t) = 1 if there exists e(v,w,t) ∈ Et; otherwise,
a(v,w,t) = 0;

At = (a(v,w)) ∈ R
N#

t
×N#

t : Adjacency matrix of Gt.
a(v,w) = 1 if there exists e(v,w) ∈ Et; otherwise, a(v,w) = 0;

Wt = (w(v,w,t)) ∈ R
Nt×Nt : Weighted adjacency matrix.

w(v,v,t) ∈ R+ represents the link intensity between (v, t)
and (w, t);

Wt = (w(v,w)) ∈ R
N#

t
×N#

t : Weighted adjacency matrix.
w(v,w) ∈ R+ represents the link intensity between v and w;

N1
(v,t) = {(w, t) ∈ Vt | e(v,w,t) ∈ Et}: One-hop neighbor of

(v, t) on Gt.

N 1,t
v

= {w ∈ Vt | e(v,w) ∈ Et}: Spatio-temporal one-hop
neighbor of v on Gt.

1.1. Notation

Table 1 lists the notations used in the graph time slice Gt and the transformed graph Gt.

2. The temporal-attention product on dynamic graphs

Signal processing on static graphs is an important research topic and has been applied in many tasks

over the years. However, most networks are dynamic in real applications, and their structures or properties

are constantly changing over time. Possible changes include the insertion and deletion of nodes (objects),

insertion and deletion of edges (relationships), and modification of attributes (for example, the node’s signal

or the weight of the edge). A discrete dynamic graph consists of T graph snapshots (time slices), which are

observed along with the evolution of a dynamic graph. Specifically, the T graph snapshots can be denoted

as {Gt, t = 1, · · · , T}, where Gt is the graph observed at time t. In these cases, one major question is to

analyze the spatio-temporal behavior of graph signals {ft, t = 1, · · · , T} defined on the graph slice sequence

{Gt, t = 1, · · · , T}. To capture the temporal evolution in the sequence of graphs, we introduce a new graph

topology, by defining a temporal-attention product for studying dynamic graph networks.

2.1. Definition of temporal-attention product on dynamic graphs

We consider a discrete dynamic graph network, represented by a sequence of undirected graph time slices

{Gt = (Vt, Et), t = 1, · · · , T}. The same node may appear in different time slices. We call the set of all

different nodes in the T time slices the base node set BT . We denote (v, t) ∈ Vt, t ≤ T if there is a base

node v ∈ BT on the graph time slice Gt. Et is an edge set with the element e(v,w,t) connecting (v, t) to

(w, t). Let (v, t) ∈ Vt and (v, t + 1) ∈ Vt+1, which represent the same base node v on the adjacent time slice.

We present a new method by introducing the temporal-attention product of graphs, which enables us to

transform these graph time slices into a static graph Gt.

Definition 1. Let (v, t) ∈ Vt, (w, t + 1) ∈ Vt+1. We say e((v,t),(w,t+1)) is a temporal-attention edge connecting

(v, t) to (w, t + 1), if there exists (w, t) ∈ Vt belonging to the one-hop neighbor of (v, t) in Vt. The temporal-

attention product Gt ×at Gt+1 is defined by adding all temporal-attention edges between Gt and Gt+1.

See Fig. 2 for an example, where green lines are temporal-attention edges. Graph time slices are the same

as Fig. 1 (d).

Now we can introduce how to construct a static graph Gt inductively. Let Nt = |Vt| be the cardinality

of Vt. We first define G1 = G1 and denote G1 = (V1, E1). The node elements in V1 inherit from V1 are

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 5

Fig. 2. A dynamic model of the transformed graph using temporal-attention product. Green lines are temporal-attention edges.
At−1, At and At+1 are the adjacency matrices of Gt−1, Gt and Gt+1 respectively.

denoted again by (v, 1). Let the bold-type letter e((v,1),(w,1)) be the edge of E1 between (v, 1) and (w, 1),

which inherits from e(v,w,1) ∈ E1. For the next time slice, let G2 = (V2, E2). We can define G2 = G1 ×at G2

with the node set V2 = V1 ∪ V2, |V2| = N1 + N2 and E2 = E1 ∪ E2 ∪ E1,2, where E1,2 is the collection of

temporal-attention edges from G1 ×at G2. Assume inductively Gt = (Vt, Et) has been well defined.

Definition 2. We say Gt+1 = (Vt+1, Et+1) is a transformed graph if Gt+1 = Gt ×at Gt+1 satisfying Vt+1 =

Vt ∪ Vt+1, and Et+1 = Et ∪ Et+1 ∪ Et,t+1, where Et,t+1 is the collection of temporal-attention edges from

Gt ×at Gt+1.

In graph theory, an adjacency matrix is a classical matrix representation for a graph, that allows us

to establish certain graph properties using matrix-theoretic methods. Its rows and columns correspond to

graph nodes and are both indexed by identical node orderings. Let At = (a(v, w, t)) be the adjacency matrix

of Gt with a(v, w, t) = 1 if there exists e(v, w, t) ∈ Et; otherwise, a(v, w, t) = 0. To concisely represent nodes

in the transformed graph GT , we can use bold-type letters to relabel the nodes. Let At = (a(vi,vj)) be the

adjacency matrix of Gt with a(vi, vj) = 1 if there exists e(vi, vj) ∈ Et; otherwise, a(vi, vj) = 0.

Let N#
t be the cardinality of Vt in the transformed graph Gt. The order of the rows and columns of the

adjacency matrix At is arranged in increasing order of graph time slices. This order relation allows for the

flexible addition of new time slices to the transformed graph.

Obviously, the adjacency matrix At+1 ∈ R
N#

t+1×N#
t+1 satisfies:

At+1 =

(
At At,t+1

A′
t,t+1 At+1

)
, (1)

where At,t+1 ∈ R
N#

t ×Nt+1 infers whether there are edges between Gt and Gt+1, and A′
t,t+1 denotes the

transpose of At,t+1.

Theorem 1. Let Gt+1 = (Vt+1, Et+1) be a transformed graph with an adjacency matrix At+1. Then At+1 is

a block tridiagonal matrix and At,t+1 has the following expression:

At,t+1 =

(
0

At,t+1

)
, (2)

where 0 ∈ R
N#

t−1×Nt+1 denotes a matrix that contains all 0 elements and At,t+1 ∈ R
Nt×Nt+1 describes

whether there are edges between Gt and Gt+1. Here At,t+1 is obtained based on At by:

(i). deleting the i-th column if (v, t) is the i-th node of Gt and (v, t + 1) does not belong to Gt+1;

6 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

(ii). inserting a zero-filled column as the j-th column if (v, t) is the j-th node of Gt+1 and (v, t) does not

belong to Gt.

Proof. By Definition 1, the temporal-attention edges are defined between two adjacent time slices, we have

a(vi,vj) = 0 for any vi ∈ Vt−1 and vj ∈ Vt+1. Thus, the first N#
t−1 rows of At,t+1 must be zero which

implies that At+1 is a block tridiagonal matrix. The last Nt rows of At,t+1 can be nonzero, which is just

right At,t+1. Its row index corresponds to the nodes of Gt, and its column index corresponds to the nodes

of Gt+1.

Define

Γ[(vi, t)] =

{
(vi, t) if the base node vi belongs to Gt,

NULL otherwise.

Let the node orderings of Gt be Γ[(v1, t)], · · · , Γ[(vNb
, t)], t ≥ 1, where Nb is the cardinality of the base set

BT . Let (vi, t) ∈ Vt and (vi, t + 1) ∈ Vt+1, which represent the same base node vi on the adjacent time slice.

Next, we can prove that At,t+1 is based on At.

Let (vl, t) ∈ Vt and (vr, t) ∈ Vt. If (vl, t + 1) ∈ Vt+1, we have a((vr,t),(vl,t+1) = a(vr,vl,t). Obviously, the

column of At,t+1 corresponding to (vl, t + 1) is equal to the column of At corresponding to (vl, t). Let (v, t)

be the i-th node of Gt. If (v, t + 1) does not belong to Gt+1, At,t+1 doesn’t inherit the i-th column of At.

Let (w, t + 1) be the j-th node of Gt+1. If (w, t) does not belong to Gt, there is no edge between (w, t + 1)

and any node of Gt. Because of the existence of the column of At+1 corresponding to node (w, t + 1), we

should insert a zero-filled column as the j-th column of At,t+1. �

We next present an example to illustrate Theorem 1 using Fig. 2. Fig. 2 depicts three graph time slices

Gt−1, Gt, and Gt+1 that are connected by the temporal-attention product. As a comparison, their Cartesian

product connection has been shown in Fig. 1 (d). From the structure of graphs Gt−1, Gt, and Gt+1, we have

At−1 =

»
¼½

0 0 1

0 0 1

1 1 0

¾
¿À , At =

(
0 1

1 0

)
, At+1 =

»
¼½

0 1 1

1 0 1

1 1 0

¾
¿À .

Compared to Gt−1, Gt keeps the base nodes v1 and v2, so At−1,t is obtained by keeping the 1-st and 2-nd

columns of At−1, i.e.,

At−1,t =

»
¼½

0 0 �1

0 0 �1
1 1 �0

¾
¿À =

»
¼½

0 0

0 0

1 1

¾
¿À .

By Theorem 1, we get

At =

»
¼½

At−2 At−2,t−1

A′
t−2,t−1 At−1 At−1,t

A′
t−1,t At

¾
¿À =

»
¼¼¼¼¼¼¼½

At−2 At−2,t−1

0 0 1 0 0

A′
t−2,t−1 0 0 1 0 0

1 1 0 1 1

0 0 1 0 1

0 0 1 1 0

¾
¿¿¿¿¿¿¿À

,

where the blank space represents the zero matrices. Similarly, Gt+1 has one more base node v3 than Gt, so

At,t+1 is obtained by adding a zero-filled column in At’s 3-rd column, i.e.,

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 7

At,t+1 = (At 0) =

(
0 1 0

1 0 0

)
.

Therefore,

At+1 =

»
¼¼¼½

At−2 At−2,t−1

A′
t−2,t−1 At−1 At−1,t

A′
t−1,t At At,t+1

A′
t,t+1 At+1

¾
¿¿¿À .

2.2. Martingale approximations of graph signals

Now we consider a graph signal function f : ∪T
t=1Vt → R defined on the sequence of graph time slices

{Gt, t = 1, · · · , T}. Using the temporal-attention products, {Gt, t = 1, · · · , T} has now been transformed

into a sequence of increasing graphs {Gt, t = 1, · · · , T}. Using the fact that VT = ∪T
t=1Vt, thus the graph

signal f has a natural extension on the transformed graph GT , with f : VT → R. In real-world applications,

even if T < ∞ represents the current time, we would also like to consider future time slices, with T +

1, T + 2, · · · . We denote V∞ = limt→∞ Vt. One important task for GSP is to perform forecasting, and one

would like to guarantee the stability of the graph signals processing method with increasing graph time

slices. This is impossible for classical GSP on the original dynamic graph network {Gt, t = 1, · · · , T}, as

GT +1 is completely unknown. One advantage of our transformed graphs is that the analysis of graph signals

on the transformed graphs becomes more stable as time slices increase. Let L2(VT) be the collection of

all real-valued square-summable functions defined on VT . The following result shows that the transformed

graph guarantees a Martingale approximation {ft, t ≥ 0} of a possibly partially observed graph signal f by

the time T .

Theorem 2. For any graph signal f ∈ L2(V∞), defined on the original dynamic graph network {Gt, t ≥ 1},

there is a martingale approximation sequence {ft, t ≥ 0}, such that

lim
t→∞

ft = f (3)

converges almost surely.

Proof. Let {Gt, t ≥ 1} be the sequence of transformed graphs for a dynamic graph network {Gt, t ≥ 1}. Let

F = σ(L2(V∞)) be the σ-algebra on V∞ generated by the space of square-summable functions. Let µ be

any probability measure defined on (V∞, F), which is absolutely continuous with respect to the Lebesgue

measure.

Next, we define a sequence of σ-algebra Ft = σ(L2(Vt)), t ≥ 1, which is generated by all L2 functions

(graph signals) on the transformed graph Gt. And F0 is the trivial σ-algebra. Since Vt ⊂ Vt+1 is an increasing

sequence of subsets in V∞, one can check easily that the collection {Ft, t ≥ 0} is a filtration on the probability

space (V∞, F , µ).

Given any graph signal f ∈ L2(V∞) defined on the original discrete dynamic graph network {Gt, t ≥ 1},

we define, for t = 1, 2 · · · ,

ft = E(f |Ft) (4)

to be the conditional expectation of f on the σ-algebra Ft. Moreover, f0 = E(f) to be the expectation of f

on V∞. We claim that {ft, t ≥ 0} is a Martingale with respect to the filtration {Ft, t ≥ 0}. Note that for

any t ≥ 0, and s ≥ 1,

8 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

E(ft+s|Ft) = E(E(f |Ft+s)|Ft) = E(f |Ft) = ft,

where we use the tower property for conditional expectations in the last step. Thus we have shown that

{ft, t = 0, 1, 2, · · · } is a martingale. Note that ft ∈ L2(Vt) and supt E(|ft|
2) < ∞. Using Doob’s Martingale

Convergence Theorem, we know that ft → f almost surely, as t → ∞. �

Going back to the forecasting task, even if we can obtain the best prediction fT on each time slice T ,

one may not know what a graph signal f : V∞ → R looks like, nor does not know it even exists. But our

Theorem 3 guarantees that limT →∞ fT exists, almost surely.

Theorem 3. Let {Gt, t ≥ 1} be an increasing sequence of transformed graphs. Let ft ∈ L2(Vt) be the best-

forecasted graph signal at time t, i.e., {ft, t ≥ 0} is an L2 bounded Martingale with respect to the filtration

{Ft = σ(L2(Vt)), t ≥ 0} on V∞. Then there exists a graph signal f ∈ L2(V∞), such that

lim
t→∞

ft = f (5)

converges almost surely and in L2(V∞).

Proof. Since f ∈ L2(Vt), we can directly apply Doob’s Martingale Convergence. �

Now we can see that the transformed graph has not only practical significance, but also lays a solid

mathematical foundation for us to model the graph signal processes, using advanced tools in Martingale

theorems.

3. Spectral properties for weighted dynamic graph network

We consider a discrete undirected dynamic graph network, which is represented by a sequence of graph

time slices {Gt = (Vt, Et), t = 1, · · · , T} with a weighted adjacency matrix Wt = (w(v,w,t)). The element

w(v,w,t) ∈ R+ is the weight relationship between (v, t) and (w, t). In particular, if a(v,w,t) = 0, we have

w(v,w,t) = 0.

By the temporal-attention product, we have a transformed graph GT = (ET , VT) with a weighted adja-

cency matrix WT = (w(vi,vj)). The element w(vi,vj) ∈ R+ encodes how strong the relationship between vi

and vj . Let w(vi,vj) = 0 if a(vi,vj) = 0 in the adjacency matrix. The weighted adjacency matrix of GT is

WT =

»
¼¼¼¼¼¼¼¼½

W1 W1,2

W′
1,2 W2 W2,3

W′
2,3 W3

. . .

. . .
. . . WT −1,T

W′
T −1,T WT

¾
¿¿¿¿¿¿¿¿À

, (6)

where WT ∈ R
(N#

T ×N#
T), Wt ∈ R

Nt×Nt , Wt−1,t ∈ R
Nt−1×Nt describes the weights of edges between Gt−1

and Gt. W
′
t−1,t denotes the transpose of a matrix Wt−1,t. The blank position in the matrix represents that

filled with 0. Since WT is symmetric, its eigenvalues and eigenvectors can be calculated using the divide-

and-conquer method [39] or the twisted block factorizations method [43]. Next, we discuss eigenvalues and

eigenvectors of the transformed graph in some special cases.

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 9

3.1. Case 1: Gt shares the same V1, E1, and Wt,t+1 = Wt = W1 for all t ≥ 1

We consider when the topological structure of the graphs on each time slice is identical. More precisely,

there exists a fixed node set V1 with | V1 |= N (edge set E1), such that any Vt (Et) shares the same

set of base nodes in V1 (base edges in E1). This is equivalent to assuming that the transformed graph

GT = (VT , ET) defined by the temporal-attention product satisfies the following:

Assumption (h). The transformed graph GT has the weighted adjacency matrix WT ∈ R
NT ×NT satisfying

Wt,t+1 = Wt = W1 ∈ R
N×N .

W1 has a completed set of eigenvalues {λn, n = 1, · · · , N} and orthogonal eigenvectors {x1, · · · , xN }.

Let H = (Hi,j) be the adjacency matrix of the path graph with T nodes, i.e.,

Hi,j =

{
1 if |i − j| = 1,

0 otherwise.
(7)

The eigenvalues and eigenvectors corresponding to H are {µ1, µ2 · · · µT } and {y1, y2 · · · yT }, respectively.

Specifically, they are µi = 2 cos(iπ/(T + 1)), and yi(j) = sin((ijπ)/(T + 1)), see [51], where yi(j) denotes

the j-th element of the eigenvector corresponding to the i-th eigenvalue.

Using the spectral information from H and W1, we can investigate the spectral properties of the trans-

formed graph GT . First, we introduce the definition of Kronecker product, see [52].

Definition 3. Given two matrices C = (cij)m1×m2
and B = (bij)n1×n2

, the Kronecker product of C and B

is defined by

C ⊗ B =

»
¼¼¼¼½

c11B c12B · · · c1m2
B

c21B c22B · · · c2m2
B

...
... · · ·

...

cm11B cm12B · · · cm1m2
B

¾
¿¿¿¿À

(m1n1)×(m2n2)

.

Some necessary properties of the Kronecker product are stated as the following lemma, see [52]:

Lemma 4. Let B1 ∈ R
m×n, B2 ∈ R

s×r, B3 ∈ R
n×p, B4 ∈ R

r×t, and k ∈ R. Then

(i). k(B1 ⊗ B2) = kB1 ⊗ B2 = B1 ⊗ kB2,

(ii). (B1 + B2) ⊗ B3 = B1 ⊗ B3 + B2 ⊗ B3,

(iii). (B1 ⊗ B2) ⊗ B3 = B1 ⊗ (B2 ⊗ B3),

(iv). (B1 ⊗ B2)(B3 ⊗ B4) = (B1B3) ⊗ (B2B4).

The absence of operators in (iv) corresponds to the usual matrix product. Next, we obtain a theorem

describing the eigenvalues and eigenvectors of the transformed graph.

Theorem 5. Let GT be the transformed graph satisfying Assumption (h). Its weighted adjacency matrix can

be expressed as WT = W1 ⊗ H + W1 ⊗ IT , where ⊗ is Kronecker product. H is the adjacency matrix of the

path graph with T nodes, IT is the identity matrix of size T ×T . Moreover, the eigenvalues and eigenvectors

of the transformed graph are λrµs + λr and xr ⊗ ys (r = 1, 2 · · · N ; s = 1, 2 · · · T), respectively.

10 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

Proof. Based on (6) and Assumption (h), the weighted adjacency matrix of the transformed graph GT is

WT =

»
¼¼¼¼¼¼¼½

W1 W1

W1 W1 W1

W1 W1
. . .

. . .
. . . W1

W1 W1

¾
¿¿¿¿¿¿¿À

(NT ×NT)

,

where

W1 =

»
¼¼¼¼½

w(v1,v1,1) w(v1,v2,1) · · · w(v1,vN ,1)

w(v2,v1,1) w(v2,v2,1) · · · w(v2,vN ,1)

...
... · · ·

...

w(vN ,v1,1) w(vN ,v2,1) · · · w(vN ,vN ,1)

¾
¿¿¿¿À

(N×N)

with w(vi,vj ,1) = w(vj ,vi,1). We reorder nodes according to the sequence of node time series. More precisely,

we change the order of rows and columns in matrix WT from

(v1, 1), (v2, 1), · · · , (vN , 1), (v1, 2), (v2, 2), · · · , (vN , 2), (v1, T), (v2, T), · · · , (vN , T)

to

(v1, 1), (v1, 2), · · · , (v1, T), (v2, 1), (v2, 2), · · · , (v2, T), (vN , 1), (vN , 2), · · · , (vN , T).

The resulting matrix is denoted again as WT with

»
¼¼¼¼¼¼½

W̃11 W̃12 W̃13 · · · W̃1N

W̃21 W̃22 W̃23 · · · W̃2N

W̃31 W̃32 W̃33 · · · W̃3N

...
...

... · · ·
...

W̃N1 W̃N2 W̃N3 · · · W̃NN

¾
¿¿¿¿¿¿À

(NT ×NT)

,

where

W̃ij =

»
¼¼¼¼¼¼¼¼½

w(vi,vj ,1) w(vi,vj ,1)

w(vi,vj ,1) w(vi,vj ,1) w(vi,vj ,1)

w(vi,vj ,1) w(vi,vj ,1)

. . .

. . .
. . . w(vi,vj ,1)

w(vi,vj ,1) w(vi,vj ,1),

¾
¿¿¿¿¿¿¿¿À

(T ×T)

, i, j ∈ {1, 2, · · · N}.

By Definition 3 and (7), we have WT = W1 ⊗ H + W1 ⊗ IT . Since W1xr = λrxr, Hys = µrys, IN ys = ys,

according to Lemma 4, we get

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 11

(W1 ⊗ H + W1 ⊗ IN)(xr ⊗ ys)

= (W1 ⊗ H)(xr ⊗ ys) + (W1 ⊗ IN)(xr ⊗ ys)

= (W1xr) ⊗ (Hys) + (W1xr) ⊗ (IN ys)

= (λrxr) ⊗ (µsys) + (λrxr) ⊗ (ys)

= (λrµs + λr)(xr ⊗ ys). �

3.2. Case 2: Gt shares the same V1, and Wt,t+1 is a full-rank matrix for t ≥ 1

We consider that all Vt are composed of the same base nodes with |Vt| = N . However, Et, Wt and

Wt,t+1 may be different for graph time slices, and Wt,t+1, t ≥ 1 are full-rank matrices. Suppose that

the transformed graph GT = (VT , ET) defined by the temporal-attention product satisfies the following

assumption:

Assumption (h′). The transformed graph GT is composed of Gt with the same base nodes. The weighted

adjacency matrix WT ∈ R
NT ×NT satisfies det(Wt,t+1)
= 0.

Under this assumption, Wt and Wt,t+1 are N ×N matrices. Define a family of N ×N matrix polynomials

Pt(x). We call the zeros of Pt(x) the roots of the determinant of a matrix polynomial Pt(x), i.e., λ is a zero

of Pt(x) if det(Pt(λ)) = 0. The following theorem is very useful to calculate the eigenvalues and eigenvectors

of the weighted adjacency matrix:

Theorem 6. If the transformed graph GT satisfies Assumption (h′), let u be an eigenvector of the weighted

adjacency matrix WT . The eigenvector u corresponds to an eigenvalue λ if and only if λ is a zero of the

matrix polynomial PT +1(x), where PT +1(x) satisfies the three-term recurrence relation:

xPt(x) = W′
t−1,tPt−1(x) + WtPt(x) + Wt,t+1Pt+1(x), t = 1, 2, · · · , T (8)

with P0(x) = 0, P1(x) = IN and W0,1 = IN . The eigenvector u has the form

u =

»
¼¼¼¼½

P1(λ)y
...

PT −1(λ)y

PT (λ)y

¾
¿¿¿¿À

, (9)

where y ∈ C
N is a vector from the null space of the scalar matrix PT +1(λ), i.e., the vector y satisfies

PT +1(λ)y = 0.

The proof of the theorem can be directly obtained from the proof of Lemma 2.1 in [48]. When T → ∞,

the asymptotic behavior of eigenvalues has been shown in [27].

4. Signal processing on the dynamic graph

We consider a time-dependent graph signal f defined on a discrete dynamic graph network, which is

represented by a sequence of time-varying graphs {Gt = (Vt, Et), t = 1, · · · , T}. The definition of the

graph signal is f : ∪tVt → R. By applying the temporal-attention product, we get the transformed graph

GT = (ET , VT) with node set VT = {v1, · · · , vN#
T

}, and edge set ET . Furthermore, we assume that GT is

12 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

connected and undirected. Then, we generalize graph Fourier transforms (GFT) and spectral graph wavelet

transforms (SGWT) on the transformed graph GT .

4.1. Graph Fourier transform on the transformed graph

Let L2(VT) be the collection of all real-valued square-summable functions on VT . f ∈ L2(VT) is a signal

function defined on nodes of the transformed graph GT . Let WT = (w(vi,vj))N#
T ×N#

T
be the weighted

adjacency matrix of GT . The graph Laplacian matrix is defined as L = D − WT . D = (dij) is a diagonal

matrix with entries dii =
∑

k w(vi,vk). For any f ∈ L2(VT), one can check that

Lf(vi) =
∑

vj∈N 1,T
vi

w(vi,vj)(f(vi) − f(vj)), i, j = 1, · · · , N#
T , (10)

where N 1,T
vi

denotes the spatio-temporal one-hop neighbor of vi on GT .

Denote the non-negative, real-valued eigenvalues of L as 0 = λ1 ≤ λ2 ≤ · · · ≤ λN#
T

, and the corresponding

(normalized) eigenvectors are {ul, l = 1, · · · , N#
T }. Eigenvalues and eigenvectors of graph Laplacian are

closely related to almost all major invariants of a graph, and play an important role in understanding

graphs in spectral graph theory. For a small eigenvalue λl, if an edge connects two nodes with nontrivial

weight, the values of the eigenvector at those locations are more likely to be similar. On the other hand,

eigenvectors associated with larger eigenvalues, oscillate more rapidly and are more likely to have dissimilar

values on nearby neighbors.

The graph Laplacian eigenvectors and eigenvalues are analogous to the Fourier basis and frequencies

[9,8]. The GFT f̂ of any signal f ∈ L2(VT) on the nodes of GT can be defined as:

f̂(λl) =

N#
T∑

i=1

ul(vi)f(vi), l = 1, · · · , N#
T . (11)

The high-frequency Fourier coefficients indicate that a signal varies abruptly in some regions of the graph,

whereas low-frequency Fourier coefficients indicate smooth signal variation in some instances.

The computation of the Fourier coefficients from (11) requires a cost of O(N#
T

3
) operations. Based on

the techniques in [49], we can give a theorem to reduce the computational complexity of the graph Fourier

transform under Assumption (h′).

Theorem 7. Suppose that the transformed graph GT satisfies Assumption (h′). Let fT be the signal defined

on VT . The diagonal matrix D can be expressed as a block diagonal matrix D = diag(D1, · · ·, DT) with each

entry Dt ∈ R
N×N . A family of N × N matrix polynomials Pt(x) satisfies

xPt(x) = −W′
t−1,tPt−1(x) + (Dt − Wt)Pt(x) − Wt,t+1Pt+1(x), t = 1, 2, · · · , T (12)

with P0(x) = 0, P1(x) = IN and Wt−1,t = IN . Let Ym be an N × am matrix with columns given by basis

vectors for the null space of PT +1(λm), where λm is a zero of PT +1(x) with multiplicity am. Then

(i). λm is the eigenvalue of Laplace matrix L. The columns of the matrix

»
¼¼½

P1(λm)Ym

...

PT (λm)Ym

¾
¿¿À (13)

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 13

are linearly independent eigenvectors corresponding to the eigenvalue λm, 1 ≤ m ≤ m0, where m0 is the

number of distinct eigenvalues.

(ii). The graph Fourier transform of fT is

f̂T = U′fT ,

where

U =

»
¼¼½

P1(λ1)Y1 · · · P1(λm0
)Ym0

...
...

PT (λ1)Y1 · · · PT (λm0
)Ym0

¾
¿¿À. (14)

Proof. (i). Since λm is a zero of PT +1(x) and PT +1(x) satisfies (12), according to Theorem 6, λm is the

eigenvalue of Laplace matrix L. Let yk be the column in Ym, k = 1, · · · , am. By definition, yk is the basis

vector for the null space of PT +1(λm). We have that yk with k = 1, · · · , am is linearly independent. Since

P1(λm) = IN , the columns of (13) are linearly independent eigenvectors corresponding to the eigenvalue

λm.

(ii). Since the graph Laplacian matrix L is a symmetric matrix, it can be diagonalized. According to (12),

L

»
¼¼½

P1(λm)Ym

...

PT (λm)Ym

¾
¿¿À =

»
¼¼½

λmP1(λm)Ym

...

λmPT (λm)Ym + WT,T +1PT +1(λm)Ym

¾
¿¿À =

»
¼¼½

P1(λm)Ym

...

PT (λm)Ym

¾
¿¿ÀλmIam

. (15)

Hence, for U in (14), we obtain

LU = U

»
¼¼½

λ1Ia1

. . .

λm0
Iam0

¾
¿¿À. (16)

This decomposition is equal to the eigendecomposition, which confirms that U is an eigenvector matrix for

L. This proof borrows the idea of [49]. �

Direct computation of the eigenvectors requires the cost of O(N3T 3) under Assumption (h′). Instead,

we can calculate the bases of the null spaces of PT +1(λm), which requires only O(N2m0) operations, and

compute NT products of N × N matrices with vectors of length N , which requires O(N3T) operations.

The total operations required are O(N2m0) + O(N3T) = O(N3T). It can reduce the calculation cost for

long-term dynamic research of graphs of appropriate size.

For larger graphs and more general cases, such as when the number of nodes on each graph time slice

varies, we can calculate the approximate eigenvalues and eigenvectors in parallel using the divide-and-

conquer method [41,42,53], or apply the twisted block factorizations method [43,44].

4.2. Spectral graph wavelet transform on the transformed graph

The SGWT is proposed in [9,8] to analyze the local properties of the signal on the graph by first

introducing a graph spectral filter dictionary. {ĝm|m = 1, 2, · · · , M} represents a collection of graph spectral

14 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

filters, and M denotes the number of graph spectral filters in the dictionary. Let δv be the one-hot vector

at v for any v ∈ VT . The spectral graph wavelet indexed at (m, v) is then defined as

ψm,v := UDĝ,mU′δv,

with scale m ∈ R
+ and centered on node v. U is the unitary matrix, and the columns are given by the

eigenvectors ul, l = 1, · · · , N#
T .

Dĝ,m = diag(ĝm(λ1), · · ·, ĝm(λN#
T

))

is a diagonal matrix.

The SGWT of f can be defined as the wavelet coefficient at index (m, v), which can be calculated by:

Wf (m, v) := 〈f, ψm,v〉 =

N#
T∑

l=1

ĝm(λl)f̂(λl)ul(v). (17)

This is, indeed, a generalized Fourier transform with kernel ĝm(λl). Spectral graph wavelets, like conventional

wavelets, are localized in both frequency and time. The low-frequency wavelet coefficients (corresponding

to small m values) in node v are greater than the high-frequency coefficients (corresponding to large m

values), indicating a smoother signal fluctuation. In contrast, larger coefficients appear in high frequencies

in node v, indicating that the signal oscillates more abruptly on and around this node.

In this paper, we choose a wavelet dictionary proposed in [8] – the spectral graph wavelet (SGW) dic-

tionary. The dictionary is defined as ĝ1(λ) = ĥ(λ), and ĝm(λ) = ĝ(sM−m+2λ), for m = 2, · · · , M . In this

paper, we set M = 8.

ĝ(λ) =

⎧
⎪«
⎪¬

λ2, 0 ≤ λ < 1

−5 + 11λ − 6λ2 + λ3, 1 ≤ λ ≤ 2

4λ−2, 2 < λ

(18)

is a bandpass filter defined on the Fourier domain. The stretching scales s2, s3, · · · , sM are sampled log-

arithmically between s2 = 1/λN#
T

and sM = 40/λN#
T

. To represent the low frequency component of the

signal f , a scaling function acts as a low-pass filter:

ĥ(λ) = γ exp

(
−

(
(10λ)/(0.3λN#

T
)
)4

)
. (19)

The parameter γ is chosen such that ĥ(0) is equal to the maximum value of ĝ.

(17) requires eigendecomposition and has computational complexity of O(N#
T

3
). A fast spectral graph

wavelet transform based on Chebyshev polynomials approximation was proposed in [8]. It is shown that

(17) can be approximated by

Wf (m, v) ≈

(
cm,0f/2 +

Km∑

k=1

cm,kT k(L)f

)
(v), (20)

where

cm,k = (2/π)

π∫

0

cos(kθ)ĝm(λN#
T

(cos(θ) + 1)/2)dθ,

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 15

and Km represents the number of truncating terms. In this paper, we set Km = 40. Let T k be the shifted

Chebyshev polynomials with the domain of [0, λN#
T

]. T k(L) satisfies the recursive formula

T k(L)f = (4/λN#
T

)
(

L − (λN#
T

/2)IN#
T

)
T k−1(L)f − T k−2(L)f,

for 2 ≤ k ≤ Km, with initial conditions

T 0(L)f = f, T 1(L)f = (2/λN#
T

)
(

L − (λN#
T

/2)IN#
T

)
f,

where L is the graph Laplacian and f is the signal. Therefore, we only need to estimate the maximum

eigenvalue when performing SGWT. The computational cost to approximate the wavelet coefficients is

order O(Km|E| + KmN#
T). If the transformed graph satisfies Assumption (h′) and the calculation cost

permits, we can compute the wavelet coefficients specified in (17) based on Theorem 7. Additionally, using

the recurrence formula, it is beneficial to study the evolution of its wavelet coefficients when the time slice

is expanded. In particular, the weighted adjacency matrix of the transformed graph is recursive, we only

need to calculate PT +1 for the new time slice GT +1.

Remark 1. Graph signal processing is usually considered under an undirected graph framework, since L

may not have a complete set of eigenvectors for a directed graph. For a directed graph, we can consider the

extended Laplacian denoted by Lsym = (L + L′) /2. Then Lsym is a semi-positive symmetric matrix, and

its eigenvectors form a set of orthonormal bases in L2(VT).

5. Classification method based on SGWT coefficients

SGWT coefficients contain rich information about the graph signal; however, it remains a big challenge to

interpret them properly for non-experts. In this section, we will introduce the classification and visualization

methods based on SGWT coefficients, mainly based on the literature [23,54].

5.1. Node classification using SGWT coefficients

Through (17), we obtain the wavelet coefficients: [Wf (1, v), · · · , Wf (M, v)], where M denotes the number

of graph spectral filters in the dictionary. Next, we use wavelet coefficients to classify nodes:

Firstly, a robust scaler transform introduced in RobustScaler of the scikit-learn library [55] is applied by

S(m, v) = |Wf (m, v)|/IQR(m), m = 1, · · · , M, (21)

where IQR(m) is the Inter-Quartile Range (between the first and the third quartile) of |Wf(m, v)|. This

transform ensures that wavelet coefficients are on the same scale.

Secondly, to make it easier to compare the torque values between nodes, each coefficient is normalized

using a logarithmic normalization [56]

W f (m, v) = ln (1 + S(m, v)) / ln
(

1 + max
v

S(m, v)
)

, m = 1, · · · , M, (22)

to the range [0, 1]. The normalized wavelet coefficients can be represented as a vector:

W f (v) = [W f (1, v), · · · , W f (M, v)].

Thirdly, the torque function ϕ : VT → R is defined as [23]:

ϕ(v) = W f (v) · Z, (23)

16 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

Fig. 3. Node classification. Nodes in VT are divided into five classes V1
T , V2

T , V3
T , V4

T , and V5
T , representing the spatio-temporal

changes of the signal (in terms of the SGWT coefficients) as low frequency, mid-low frequency, average, mid-high frequency, and
high frequency, respectively.

Fig. 4. Node signals, node classification, and refined node classification based on SGWT. The refined classification method will be
introduced in section 5.2 with the hyperparameters ζ1 = 1 and ζ2 = 1. The bottom shows the wavelet coefficients of some nodes
in five classes.

where Z = [−M/2, · · · , −1, 1, · · · , M/2] is a (signed) weight vector and ‘·’ denotes inner product. Clearly,

for any v ∈ VT , the torque value ϕ(v) is a weighted sum of the normalized SGWT coefficients. The higher

the torque value, the more severe the signal change. The lower the torque value, the smoother the signal.

Finally, let ϕmin = min
v∈VT

ϕ(v), ϕmax = max
v∈VT

ϕ(v). Similar to [54], we define a classification score as

σ : VT → {1, 2, 3, 4, 5}

σ(v) = [5(ϕ(v) − ϕmin)/ (ϕmax − ϕmin)], (24)

where [·] is the integer function. Thus VT can be divided into five classes, as shown in Fig. 3.

We give 11 × 12 square lattices to illustrate that this classification method identifies the change of

signal well. The signal on it is defined as the combination of the low and high frequency eigenvectors:

f(vi) = u1(vi), if 1 ≤ i ≤ 36; f(vi) = u132(vi), if 37 ≤ i ≤ 132. Fig. 4 (a) describes the signal value on the

graph, where the color associated with the graph nodes encodes the graph signal. Fig. 4 (b) demonstrates

the node classification. When the signal is significantly different from the neighbor node, it is classified as

V5
T , and when the signal is similar to the neighbor node, it is classified as V1

T . The bottom shows the wavelet

coefficients of some nodes in five classes.

5.2. A refined node classification for anomaly detection

Effective anomaly detection could give early indications of danger or find interesting phenomena. This is

necessary for disease outbreak detection, genetic network analysis, activity monitoring in social networks,

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 17

Fig. 5. Refined anomaly detection on V4
T ∪ V5

T by a-scores.

environmental monitoring, malware detection, spam filtering, etc [57,58]. SGWT is a powerful tool to detect

the spatio-temporal anomaly of the signal with the help of the transformed graph. We say the nodes in

V4
T ∪ V5

T are anomaly nodes. However, as shown in Fig. 4, for example, there are completely different types

of nodes in V5
T by examining the distribution of the signal in more detail. As we can see for node v90, the

signal value is significantly lower than that of its neighbors; while for the one-hop neighbor of v90, the signal

value is higher than the surrounding values.

A refined node classification method based on [54] is used to identify these two different types of anomalies

for nodes in V4
T ∪ V5

T . Given a graph signal f ∈ L2(VT), a new metric ϑ : Vt → R is defined as

ϑ[(v, t)] = max{f [(v, t)] − ζ1f̄ [(v, t)], 0} + min{f [(v, t)] − ζ2f̄ [(v, t)], 0}, (25)

where

f̄ [(v, t)] = (1/|N1
(v,t)|)

∑

(w,t)∈N1
(v,t)

f [(w, t)], (26)

N1
(v,t) is the one-hop neighbor of (v, t) ∈ Vt on the t-th time slice Gt. ζi is a hyperparameter, which is used

to further subdivide the anomaly class.

Next, the anomaly score (a-score) function is χ : VT → {−2, −1, 0, 1, 2},

χ[(v, t)] =

{
0 (v, t) ∈ Vi

T , i = 1, 2, 3,

(i − 3) · sign(ϑ[(v, t)]) (v, t) ∈ Vi
T , i = 4, 5.

(27)

Thus V4
T and V5

T are further divided into two sub-classes. According to the value of the a-score, we thus have

a new classification of the nodes into the level sets of the a-score function as V = C−2 ∪ C−1 ∪ C0 ∪ C1 ∪ C2,

with Ci = {(v, t)|i = χ[(v, t)]}. This is also shown in Fig. 5, where we use different colors to represent these

anomaly classes. The a-score depends on both the spatial and temporal relationship of graph signals. Using

the a-score, we can obtain Fig. 4 (c), which shows the internal differences in V4
T ∪ V5

T in great detail.

5.3. Graph classification based on SGWT coefficients

A graph classification method is presented to classify each graph time slice {Gt, t = 1, · · · , T} on the

transformed graph GT . The distribution of the i-th class Vi
T on time slice Gt is calculated by

ρi
t = (1/Nt)

∑

(v,t)∈Vt

IVi
T

(v, t), i = 1, 2, · · · , 5, (28)

where IVi
T

is the indicator function of the i-th class Vi
T . We use the method in [23] to classify the graph

time slices {Gt, t = 1, · · · , T}. The graph classification function of Gt is defined as:

σt = arg max
i∈{1,2,3,4,5}

(ρi
t/ρi

max), (29)

where ρi
max = max{ρi

1, · · · , ρi
T }. We thus classify the t-th graph time slice as Vσt

T , which carries the most

weight in time slice Gt. The graph time slice belonging to V4
T

⋃
V5

T is known as the anomaly graph time

slice.

18 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

6. Spectral graph wavelet visual analysis on dynamic graphs

In this section, we implement SGWT on two real datasets. By classifying nodes based on wavelet coef-

ficients, it is shown that implementing SGWT on the transformed graph can catch abnormal events based

on signal changes and accurately find interesting key information. We use Matlab to perform fast SGWT

and visualization. In the case study 1, we use two types of signals, and calculating the wavelet coefficients

takes 0.762323 and 0.737458 seconds, respectively. In the case study 2, it costs 0.029278 seconds to compute

wavelet coefficients. Also, we train the graph attention neural network using Pytorch packages on a single

NVIDIA GeForce RTX 3090. It costs 5017.4465 seconds.

6.1. Case study 1: 2009 SFHH conference in Nice

We choose a dynamic network with a time-dependent graph topology to test the effectiveness of our

proposed method for dynamic graph signal processing. We use the dataset provided in [59], which describes

the face-to-face interactions of 405 participants at the 2009 SFHH conference in Nice, France (June 4-5,

2009). The data collection time was from 9:00 am to 9:00 pm on the first day, and from 8:30 am to 4:30

pm on the second day. The original data provided the pair-wise contact information among participants at

every 20-second interval during the two-day periods.

6.1.1. Construction of the dynamic graph

We first construct the discrete graph time slices {Gt = (Vt, Et), t = 1, · · · , T} with T = 22, where the

time interval is one hour. Because this dataset was recorded at a conference, the one-hour time period allows

us to better identify the size of the sub-communities where people interacted with one another. Here we

omitted the time slices at night when there is no communication. Note that someone may not communicate

with others in some time slices, and | Vt | and Et change with time. The link weight w(v,w,t) is proportional

to the length of the conversation and is the conversation count between (v, t) and (w, t) every 20 seconds

within an hour. Thus we get symmetric, undirected graphs {Gt, t = 1, · · · , T}.

In this section, we take two types of graph signal functions to analyze the conference data. Let

f1[(v, t)] =
∑

(w,t)∈N1
(v,t)

w(v,w,t),

where f1[(v, t)]) represents the total conversation counts of participant v during the t-th time slice. Let

f2[(v, t)] =
∑

(w,t)∈Vt

IEt
(e(v,w,t)),

where f2[(v, t)] represents how many people v contacted at the t-th time slice. Next, we construct the

transformed graph GT using the temporal-attention product. We also link the time slice 21:00-22:00, June

4 to the time slice 8:30-9:30, June 5 by temporal-attention product. Suppose w((v,t),(w,t+1)) inherits from

w(v,w,t) following the temporal evolution procedure, i.e., w((v,t),(w,t+1)) := w(v,w,t), w((v,t),(w,t)) := w(v,w,t).

There are some small groups (containing only 2-3 nodes) in which the participants only discuss within the

group and do not communicate with other groups. When we perform the analysis, we do not consider these

groups. So the transformed graph we get is a connected graph with | VT |= 5008. Then, we compute the

graph wavelet coefficients of the graph signal f1[(v, t)] and f2[(v, t)], respectively.

6.1.2. Overall visual analysis

We classify each graph time slice {Gt, t = 1, · · · , T} on the transformed graph GT by the graph classi-

fication method designed in section 5. Firstly, we assign each node (v, t) at t-th time slice to one of the

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 19

Fig. 6. The bar graph depicts the node classification distribution ρi
t in (28). The line chart (in blue) depicts the graph classification

for each graph time slice and the sum of signals. The subfigures on top and bottom are based on the graph signal f1 and f2,
respectively. The dotted line marks the start of the second-day meeting.

classes {Vi
T , i = 1, · · · , 5} by the node classification function σ[(v, t)] defined as in (24). Secondly, we show

the corresponding probability distribution ρi
t defined in (28), see the bar graph of Fig. 6. The color for the

probability distribution ρi
t matches that of Vi

T . Finally, using the graph classification function σt defined

in (29), we can assign each graph time slice a class Vσt

T with σt ∈ {1, 2, 3, 4, 5}. This allows us to better

understand how active the participants are in the meeting. The sum of f1 and the sum of f2 on each time

slice, are plotted as time series in the line chart of Fig. 6, respectively. Graph time slices are denoted by

different shapes and colors to indicate the class from {Vσt

T , t = 1, · · · , 5}, representing which spatio-temporal

changes (low frequency, mid-low frequency, average, mid-high frequency, and high frequency) of node signals

in the time slice account for the greater proportion.

On June 4, 11:00-12:00, it can be seen from bar graphs Fig. 6 that more than 250 participants had face-

to-face communication. Both graph signals reach their peaks, and the graph time slice G3 is classified as a

high frequency class. This means high-frequency signals in this time slice accounted for the most significant

proportion of the entire 22 hours-period. It can be inferred that there exists a lunch break and many people

start a conversation. It was the first break of the meeting, and most people were very active, greeting each

other out of politeness or making new friends. People with a large social circle will contact multiple people

at this time. The sizes of the social circle of participants are also different. At the same time, the total time

for one participant to communicate is also more than other time slices. These factors explain well that G3

belongs to V5
T in GT .

As an interesting phenomenon, we can see that on June 5, 12:30-13:30 (G17), nearly 330 people had

face-to-face communication, which counts for another peak time of the signals. However, G17 is identified

as a mid-low frequency class (in blue), contrary to G3, using the graph classification method. This should

20 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

Fig. 7. Node classification on G3 (left) and G17 (right) using the graph signal f1. One can see clearly the graph signal on G17 is
almost uniform and the low frequency accounts for more, thus should be classified as a normal subgraph; while G3 is definitely an
anomaly one.

be the lunchtime of the second day, and we can read from the plot that, during this hour, most participants

had the same social profile as their social objects. It can be speculated that people in the same social circle

communicate with each other, and there are few brief greetings between different social circles. This is also in

line with reality, because on the first-day lunch everyone will greet people they know or not out of courtesy,

and there will be brief exchanges between different social circles. But before leaving, most participants prefer

to have rather long conversations with friends. Therefore, it is not difficult to explain why the classification

method identifies this hour as a mid-low frequency class, instead of a high frequency class, compared to the

first lunchtime, using the graph signals.

To better assist in visualizations, we also plot graphs G3 and G17, see Fig. 7, together with the node

classifications on both graph time slices. It is consistent with the graph classifications.

6.1.3. Ranking participants by popularity

According to the a-score defined in (27), we can find the most popular participants at the conference, using

the two graph signal functions. Indeed, based on these two graph signals, we further define a comprehensive

anomaly score to analyze participants’ popularity:

χ̄′(v) := (1/T)
T∑

t=1

χf1
[(v, t)] · χf2

[(v, t)], (30)

where χf1
[(v, t)] > 0 and χf2

[(v, t)] > 0 are the a-scores defined in (27) with the hyperparameter ζ1 = ζ2 = 1.

We can easily rank the popularity of participants through the comprehensive anomaly score. The larger the

value, the more popular it is.

Fig. 8 shows the top five most popular (active) participants ranked using a comprehensive anomaly score

(30) based on graph signals f1 and f2. The first column of Fig. 8 is the score χ̄′(v) defined in (30). The

view also displays the a-scores (27) of participants on different time slices. To distinguish the two signals,

we use circles to represent the a-score based on signal f1, and triangles to represent the a-score based on

signal f2. According to (30), a score is recorded when the two signal markers in Fig. 8 overlap, indicating

that the participant’s talk time and the number of people he talks to are both greater than the average

of his neighbors at this time slice. That is, the participant is more popular if more people are willing to

spend more time communicating with him compared to others. As we can see that participants v84, v21

and v64 were identified as the most popular people during the first daytime; while v68 and v21 were mostly

active during the dinnertime of the first day. Participant v76 was the most popular one during the entire

conference, as he was very active for almost all the recorded time.

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 21

Fig. 8. Node ranking. The circle corresponds to the signal f1, and the triangle corresponds to the signal f2. The dotted line marks
the start of the second-day meeting. The first column is the score χ̄′(v) defined in (30). χfi

[(v, t)] is the a-score defined in (27).

Fig. 9. Top: node classifications for participant v76 on the transformed graph. Bottom: node classifications for participant v76 only
using a temporal series graph. The signal is f2. The dotted line marks the start of the second-day meeting.

We further provide a detailed graph signal analysis of participant v76 in Fig. 9. We visualize the temporal

activity of the participants in each time slice, using the node classifications by graph signal f2. Interestingly,

the classification by only the time-series graph of participant v76 (bottom) is rather different from the

classification on the transformed graph (top). This also explains that it is not sufficient to perform the node

classifications and anomaly detections by only the time-series.

To demonstrate that the dynamic model connected by temporal-attention product can better enable

SGWT to capture the changes of signal dynamic mode, we supplement the node rankings of dynamic

models connected by Cartesian product and strong product, respectively, in the Appendix.

6.2. Case study 2: COVID-19 data analysis among the Group of Twenty

The World Health Organization (WHO) on March 11, 2020, declared the novel coronavirus (COVID-

19) outbreak a global pandemic. There are many papers studying the spread of COVID-19 from different

perspectives, which include how national mitigation measures will affect the process of the COVID-19

pandemic [60], the comparison of pandemic situations among different countries [61,62], and the impact on

social life during the pandemic period [63–66].

22 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

Fig. 10. Time series of the confirmed COVID-19 cases per 100,000 people every week. The inset is the zoom-in view of some country
curves from Dec. 7, 2021 to Feb. 8, 2022, where the y-axis is log-scale.

To understand the roles of individual countries played in the pandemic spreading, we choose to analyze

COVID-19 data among the Group of Twenty (G20): Argentina, Australia, Brazil, Canada, China, France,

Germany, India, Indonesia, Italy, Japan, South Korea, Mexico, Russia, Saudi Arabia, South Africa, Turkey,

the United Kingdom, the United States, and the European Union. The data is taken from the official website

of the World Health Organization.2 The original data collected daily new cases in each country. Considering

some countries that do not update their data daily, we summed the data every seven days to analyze the

weekly new cases. The data collection period spans from May 5, 2021 to May 24, 2022. For simplicity,

we used the last date of each week as the label for that particular week in the subsequent visualization

analysis. The signals are the multivariate time series f [(vi, t)], i = 1, · · · , 20, confirmed cases of COVID-19

per 100,000 people every week (referred to as confirmed cases) for each of the G20:

f [(vi, t)] = 100000 ∗ Ii(t)/Ci, t = 1, · · · , T, (31)

where Ii(t) is the number of confirmed cases every week in country vi at time t and Ci is the population of

country vi. Let T = 55. The time evolution of f [(vi, t)], i = 1, · · · , 20, are plotted in Fig. 10 for G20.

For the multivariate time series of G20 confirmed cases, there is no graph structure at all. Since the

correlation of COVID-19 data between each country is different and changes over time. It may be affected

by complex factors such as trade or traffic flows among these countries. Therefore, we first construct a

sequence of identical complete graphs {Gt, t = 1, · · · , T} without self-loops. At this time, there is no weight

on the graph Gt. Then we obtain the transformed graph GT using the temporal-attention product. To

better capture the spatio-temporal connection of nodes, i.e., the weight in the transformed graph, the graph

attention neural network (GAT) [50] is used to learn the time-dependent attention weight of each pair

of nodes. GAT is a powerful deep learning method [50,67–70], which has state-of-art performance on node

classification, edge classification, and link predictions. The learned attention (weight) matrix is bidirectional

on the transformed graph. It is worth noting that, according to the spread of the pandemic, time flows in

one direction, from time t to time t + 1; only the weights of temporal-attention edges from Gt to Gt+1 need

to be learned, while the weights of temporal-attention edges from Gt+1 to Gt are 0.

2 https://covid19 .who .int.

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 23

6.2.1. Learning spatio-temporal transition matrix PT in the transformed graph

We introduce how to use GAT to learn the weights of transformed graphs based on the topological

structure and COVID-19 data feature similarity. We take the GAT coefficient obtained from the last layer

of the graph neural network as the weight of the transformed graph. This gives the spatio-temporal transition

matrix PT = (p(vi,vj))N#
T ×N#

T
as the weighted matrix in our transformed graph GT = (VT , ET).

Review the architecture of GAT.

We review the architecture of GAT. Let Xvi
∈ R

d be a d-dimensional feature of node vi in the transformed

graph GT . Let H
(1)
vi

= Xvi
be the initial feature at node vi. To increase the accuracy, one can add several

layers to the graph neural network. At the l-th layer, l ≥ 1, H
(l)
vi

denotes the input feature with dimension

dl. H
(l+1)
vi

is the output feature with dimension dl+1. The relative importance of neighboring features to

each other can be described by attention coefficients, which are calculated using an attentional function

α
(l)
(vi,vj) : R

dl × R
dl → R:

α
(l)
(vi,vj) =

exp
(

LeakyReLU(â · (W (l)H
(l)
vi

‖W (l)H
(l)
vj

))
)

∑
vk∈N 1,T

vi

exp
(

LeakyReLU(â · (W (l)H
(l)
vi

‖W (l)H
(l)
vk

))
) , (32)

where ‖ is the concatenation operation, and W (l) ∈ R
dl+1×dl is a learned embedding matrix. â ∈ R

2dl+1

is a single-layer feed-forward neural network. LeakyReLU3 is the activation function. Moreover, we assign

α
(l)
(vi,vi) = 0 to avoid self-loop.

H(l+1)
vi

= ELU

(∑

vj∈N 1,T
vi

α
(l)
(vi,vj)W

(l)H(l)
vj

)
, (33)

where ELU is an exponential linear unit.4 To improve the stability of the learning process, we use a multi-

head attention mechanism, that is, run the above process several times in parallel. The output features of

nodes’ neighbors are either concatenated or averaged to form their final output features.

Let S = S+ ∪ S− be the sample set of edges for the transformed graph, where S+ is a positive sample

set composed of node pairs with connected edges, and S− is a negative sample set composed of node pairs

without connected edges. The whole GAT framework is trained by minimizing the following cost function:

L = −(1/|S|)
∑

(vi,vj)∈S

(yi,j log rij + (1 − yi,j) log(1 − rij)) , (34)

where | · | represents the cardinality of the set. yi,j is the label information for the edge between vi and vj ,

with 0 for non-existence and 1 for existence.

ri,j = Sigmoid

(
θ · (H(l+1)

vi
� H(l+1)

vj
)

)
, (35)

represents the probability of whether there is an edge between node vi and node vj . Sigmoid5 is an activation

function. � denotes Hadamard product. θ is the learned parameter vector with the dimension as same as

H
(l+1)
vi

. This setting makes the feature outputs after GAT more relevant if there is an edge between two

nodes.

3 LeakyReLU(x) = 0.15x(1 − sgn(x))/2 + x(1 + sgn(x))/2.
4 ELU(x) = (exp(x) − 1)(1 − sgn(x))/2 + x(1 + sgn(x))/2.
5 Sigmoid(x) = 1/(1 + exp(−x)).

24 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

Fig. 11. The time evolution of the pandemic centrality score ci(t) in G20. The color represents the value of the centrality score.

Neural network training settings.

In our setup, the graph signal f [(v, t)] only takes one value at each node. This makes the learning

of attention weight rather difficult. To overcome this difficulty, we design a new feature function on the

transformed graph, which carries short-term temporal information. More precisely, for each node (v, t) ∈ Vt,

we define a 4-dimension X(v,t) = (f [(v, t −3)], · · · , f [(v, t)]) as the new temporal feature at node (v, t) in the

transformed graph GT . Therefore, in addition to the period we analyzed, we also use data for three weeks

from April 20, 2021 to May 4, 2021.

We take all connected node pairs in the transformed graph (which is rather sparse) as positive samples,

and downsample the same unconnected node pairs as negative samples. The ratio of the training set,

validation set, and test set is 6:2:2. The number of positive samples and negative samples in the test set is

the same. We use two layers of graph attention layers, the first layer has 7 attention heads, and the hidden

layer has 84 units and the output is in the form of a concatenation of 7 attention heads. The second layer

has a single attention head, and the hidden layer has 52 units. The transition probability p(vi,vj) is defined

as the GAT coefficients of the last GAT layer, i.e., (32) with l = 2. During the training process, the learning

rate is 1e − 5, the dropout rate is 0.1, and the optimizer is Adam. The early stopping strategy is applied to

the validation set to avoid overfitting, with the patience sets to 50 epochs. The edge classification accuracy

for the test set is 0.9534.

6.2.2. Capturing centrality of each country over time

The attention probability p(vi,vj) on GT has the advantage to capture the importance of the characteristics

of vj to vi among all its neighbors on GT . This enables us to identify the centrality of the i-th country at

time t using the following formula:

ci(t) =
∑

w∈N 1,T

(vi,t)

p(w,vi,t), i = 1, · · · , 20. (36)

It is the sum of the in-degree weights for each country and changes over time.

We demonstrate the time evolution of the centrality score ci(t) in G20 in Fig. 11. Since the time slices of

the endpoints lack neighbors on one side, we omit the endpoint time slice in our subsequent visualization

analysis. The centrality score changes over time. Take December 14, 2021 as an example, the number of

confirmed cases increased sharply during this time, making the centrality score change more obvious. The

countries with top five centrality scores were Brazil, Japan, Indonesia, Sandi Arabia, and Australia. It can

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 25

Fig. 12. Overall visual analysis using node classification and graph classification. The top figure depicts graph classification for each
graph time slice by σt defined in (29). The bottom figure depicts the node classification distribution ρi

t given by (28).

be seen from the inset in Fig. 10 that the pandemic situation in these countries began to show an upward

trend in the following month. Due to the delayed nature of pandemic transmission, the pandemic in some

countries will begin to increase subsequently. The pandemic has shown a downward trend in countries with

low centralities, such as Germany and Russia. For the United Kingdom and the United States, the pandemic

was on the rise at the beginning of December 14 due to the previous high centrality effect. Still, after a

while, their pandemic began to decline.

6.2.3. Overall visual analysis

We conduct an overall analysis of the spatio-temporal changes of the pandemic in G20 by the graph

classification method after performing SGWT.

As shown in Fig. 12, most of the time during the pandemic, the change in severity in each country was

uneven. The seriousness in some countries was significantly higher or lower than in others. This makes

the detected signal change mainly belong to mid-high frequency (V4
T) or high frequency (V5

T). This is also

consistent with Fig. 10. The time slice from December 14, 2021 to December 21, 2021 is classified as V2
T .

Due to the spread of the Omicron variant, the pandemic in most countries was on the rise, and the spatial

and temporal changes were low frequency. On January 18, 2022, the time slice is classified as V1
T . During

this period, only the French pandemic was high-frequency, and most countries had similar temporal and

spatial changes, so the proportion of countries classified as low-frequency is large, and the time slice was

classified as low-frequency. It can be seen that the rapid spread of the Omicron variant makes the pandemic

between countries more similar. Then, possibly due to different policies adopted by countries, the changes

in severity began to differ. Therefore, a subsequent time slice is classified as V5
T .

6.2.4. Ranking of G20 using the anomaly scores

We first evaluate the pandemic severity in G20 using the refined classification method – a-scores χ(v, t)

with the hyperparameters ζ1 = 1.5 and ζ2 = 0.5. We define the average anomaly score:

χ̄(v) := (1/T)

T∑

t=1

χ[(v, t)]. (37)

26 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

Fig. 13. Ranking of pandemic severity using the average a-score in G20. The first column is the average anomaly score χ̄(v) defined
in (37). χ[(v, t)] is the a-score defined in (27).

Then based on the average a-scores χ̄(v), we give overall ranking of these countries from May 18, 2021

to May 17, 2022 as follows: the United Kingdom, France, Turkey, the United States, Brazil, Argentina,

Russia, Germany, European Union, Italy, South Africa, Australia, South Korea, Canada, Mexico, Japan,

India, Indonesia, Saudi Arabia and China, see Fig. 13. The ranking provides a clear understanding of the

pandemic virus spread information among these countries. This is helpful to analyze the pandemic spread

patterns and find countries with good pandemic protection policies (such as Indonesia), and provide a good

reference for further pandemic prevention and control. Additionally, we can examine each country’s pandemic

intensity throughout a specific period from Fig. 13. For example, the countries with severe pandemics from

January 4, 2022 to May 17, 2022 are South Korea, Australia, Germany, France, and Italy. On the other

hand, the countries with fewer pandemics are China, Saudi Arabia and Indonesia.

7. Conclusion

In this paper, we propose a new method for modeling spatio-temporal dynamic graphs, by introducing

the temporal-attention product, which better reflects the evolution of the signal concerning the surrounding

environment over time. Especially, for dynamic networks with topological changes, this connection method

fully considers the spatial and temporal topological connections. The newly added temporal edges will not

affect the previous spatial graph structures. This method is robust, scalable, and can be defined inductively.

The transformed graph provides a solid mathematical foundation to model the time-dependent graph signal

processes as martingales. Moreover, the transformed graph is highly sparse. The number of edges of GT is

at most twice the total edges of the sequence of the dynamic graph network ∪T
t=1Gt. The large weighted

adjacency matrix obtained by the temporal-attention product is a block tridiagonal matrix, which appears

in many applications and has been extensively studied. Thus, it is very convenient to study its spectral

properties.

Based on the transformed graph, we can extend GFT and SGWT to study dynamic graph signals, as

well as multivariate time series. Compared with the previous dynamic graph signal processing methods, the

changes in topology and nodes of the transformed graph can be incorporated inductively. It is conducive to

the analysis of data flow. We apply two real datasets for spectral graph wavelet visualization analysis. For

the COVID-19 confirmed data of the G20 without a graph structure, we use GAT and COVID-19 confirmed

data to learn the weighted matrix of the transformed graph composed of complete graphs. We design

different visualization diagrams and methods for selecting key nodes, and provide valuable information for

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 27

Fig. A.14. Node ranking by temporal-attention product. The circle corresponds to the signal f1, and the triangle corresponds to the
signal f2. The dotted line marks the start of the second-day meeting. The first column is the score χ̄′(v) defined in (30). χfi

[(v, t)]
is the a-score defined in (27).

Fig. A.15. Node ranking by Cartesian product. The circle corresponds to the signal f1, and the triangle corresponds to the signal
f2. The dotted line marks the start of the second-day meeting. The first column is the score χ̄′(v) defined in (30). χfi

[(v, t)] is the
a-score defined in (27).

signal analysis. For example, it can identify the most popular participants in different social circles using

the SFHH conference dataset. Another example, from the COVID-19 data sets of G20, we found countries

with severe pandemic spread patterns, and identify countries with good pandemic prevention. These can be

used as references for further analysis of pandemics and the formulation of pandemic prevention policies. It

can be seen that SGWT on the transformed graph can successfully analyze the spatio-temporal dynamic

properties of events and capture the key information of interest.

Data availability

This article uses two datasets: the 2009 SFHH conference in Nice and COVID-19 confirmed cases in G20.

We have given the source link in the article.

Appendix A. Comparison of the temporal-attention product, Cartesian products, and strong product

To demonstrate that SGWT on the dynamic graph connected by temporal-attention product can better

capture the spatio-temporal dynamic properties of the signal, we also employ SGWT on the dynamic graph

connected by Cartesian product and strong product for case study 2 in section 6.1. Participants are ranked

for popularity using the same method as subsection 6.1.3. Fig. A.14, Fig. A.15 and Fig. A.16 show the node

ranking results on the dynamic graph connected by the temporal-attention product, Cartesian product and

28 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

Fig. A.16. Node ranking by strong product. The circle corresponds to the signal f1, and the triangle corresponds to the signal f2.
The dotted line marks the start of the second-day meeting. The first column is the score χ̄′(v) defined in (30). χfi

[(v, t)] is the
a-score defined in (27).

Fig. A.17. The node signal value f1 and the average signal value of its neighbors. A hollow circle represents a node whose signal
value exceeds the average value of its neighbors, and a solid circle represents a node whose signal value exceeds 1.5 times the
average signal value of its neighbors.

strong product, respectively. We choose three nodes v76, v21 and v68 to analyze which of the three rankings

is more reasonable.

Because the idea behind our popularity ranking is to assign an a-score by comparing the signal value

of the node with the average value of its one-hop neighbor nodes after the SGWT identifies that the node

belongs to high frequency or mid-high frequency. The comprehensive a-score of a node is calculated by

multiplying the a-scores of the node’s two signals and taking the average value over time. If a node has a

higher comprehensive a-score, it means that not only the number of people talking to this node is more

than the average number of interactions between its neighbors and other people, but also the conversation

time is longer than the average value of interactions between its neighbors and other people. This indicates

that more people tend to spend more time interacting with this node, thus showing that the node is more

popular in the venue.

According to the idea of popularity ranking, we can test the most popular nodes by two criteria:

(i). The nodes with signal value fi[(v, t)] > f̄i[(v, t)], i = 1, 2,

(ii). The nodes with signal value fi[(v, t)] > 1.5 · f̄i[(v, t)], i = 1, 2,

where f̄i[(v, t)], defined in (26), is the average signal value of one-hop neighbors of the node (v, t) on Gt.

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 29

Fig. A.18. The node signal value f2 and the average signal value of its neighbors. A hollow circle represents a node whose signal
value exceeds the average value of its neighbors, and a solid circle represents a node whose signal value exceeds 1.5 times the
average signal value of its neighbors.

Fig. A.19. The number of time slices where both signals f1 > f̄1 and f2 > f̄2 is shown in blue bars, while the number of time slices
where both signals f1 > 1.5 · f̄1 and f2 > 1.5 · f̄2 is shown in red bars.

Fig. A.17 and Fig. A.18 depict the signal fi of nodes v76, v21 and v68, and the corresponding f̄i, respectively.

Fig. A.19 shows the number of time slices that f1 > f̄1 and f2 > f̄2 (blue bars), and the number of time

slices that f1 > 1.5 · f̄1 and f2 > 1.5 · f̄2 (red bars). It can be seen that v76 should be ranked ahead of v21

in terms of popularity, and v21 should be ranked ahead of node v68. Therefore the ranking in Fig. 8 is more

reasonable.

The comparison of SGWT of different connection methods in this section is rough, due to the signal

criteria being self-defined. It would be interesting for future work to conduct a deeper analysis of this

comparison. The weights of the majority of temporal edges in the strong product graph are defined as the

same as the temporal-attention product method, i.e., w((v,t),(w,t+1)) := w(v,w,t), w((v,t),(w,t)) := w(v,w,t).

But for the edge between the same base node on the adjacent time slice, similar to [23], the weight is

assigned as 1 for the Cartesian product and strong product. Using different weights may yield different

results. However, since there is no self-loop in the original time slice Gt, what weight is reasonable is a

question that needs further discussion for the Cartesian product and strong product. It can be seen that the

ability of the temporal-attention product to assist SGWT in finding important and interesting information

in the applications we exemplify. Therefore, the temporal-attention product is reasonable compared to the

other methods.

30 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

References

[1] A. Ortega, P. Frossard, J. Kovačević, J.M. Moura, P. Vandergheynst, Graph signal processing: overview, challenges, and
applications, Proc. IEEE 106 (5) (2018) 808–828, https://doi .org /10 .1109 /JPROC .2018 .2820126.

[2] S. Itani, D. Thanou, A graph signal processing framework for the classiûcation of temporal brain data, in: 2020 28th
European Signal Processing Conference, IEEE, 2021, pp. 1180–1184.

[3] G. Taubin, A signal processing approach to fair surface design, in: Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques, 1995, pp. 351–358.

[4] A. Agaskar, Y.M. Lu, A spectral graph uncertainty principle, IEEE Trans. Inf. Theory 59 (7) (2013) 4338–4356, https://
doi .org /10 .1109 /TIT .2013 .2252233.

[5] A. Sandryhaila, J.M. Moura, Discrete signal processing on graphs: frequency analysis, IEEE Trans. Signal Process. 62 (12)
(2014) 3042–3054, https://doi .org /10 .1109 /TSP.2014 .2321121.

[6] D.I. Shuman, B. Ricaud, P. Vandergheynst, Vertex-frequency analysis on graphs, Appl. Comput. Harmon. Anal. 40 (2)
(2016) 260–291, https://doi .org /10 .1016 /j .acha .2015 .02 .005.

[7] R. Balan, I. Daubechies, V. Vaishampayan, The analysis and design of windowed Fourier frame based multiple description
source coding schemes, IEEE Trans. Inf. Theory 46 (7) (2000) 2491–2536, https://doi .org /10 .1109 /18 .887860.

[8] D.K. Hammond, P. Vandergheynst, R. Gribonval, Wavelets on graphs via spectral graph theory, Appl. Comput. Harmon.
Anal. 30 (2) (2011) 129–150, https://doi .org /10 .1016 /j .acha .2010 .04 .005.

[9] D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging ûeld of signal processing on graphs:
extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Process. Mag. 30 (3)
(2013) 83–98, https://doi .org /10 .1109 /MSP.2012 .2235192.

[10] D.I. Shuman, C. Wiesmeyr, N. Holighaus, P. Vandergheynst, Spectrum-adapted tight graph wavelet and vertex-frequency
frames, IEEE Trans. Signal Process. 63 (16) (2015) 4223–4235, https://doi .org /10 .1109 /TSP.2015 .2424203.

[11] D.M. Mohan, M.T. Asif, N. Mitrovic, J. Dauwels, P. Jaillet, Wavelets on graphs with application to transportation
networks, in: 17th International IEEE Conference on Intelligent Transportation Systems, IEEE, 2014, pp. 1707–1712.

[12] N. Tremblay, P. Borgnat, Graph wavelets for multiscale community mining, IEEE Trans. Signal Process. 62 (20) (2014)
5227–5239, https://doi .org /10 .1109 /TSP.2014 .2345355.

[13] P. Valdivia, F. Dias, F. Petronetto, C.T. Silva, L.G. Nonato, Wavelet-based visualization of time-varying data on graphs,
in: 2015 IEEE Conference on Visual Analytics Science and Technology, IEEE, 2015, pp. 1–8.

[14] B. Dong, Q. Jiang, C. Liu, Z. Shen, Multiscale representation of surfaces by tight wavelet frames with applications to
denoising, Appl. Comput. Harmon. Anal. 41 (2) (2016) 561–589, https://doi .org /10 .1016 /j .acha .2015 .03 .005.

[15] G.W. Yu, X. Zhuang, Tight framelets and fast framelet transforms on manifolds, Appl. Comput. Harmon. Anal. 48 (1)
(2016) 64–95, https://doi .org /10 .1016 /j .acha .2018 .02 .001.

[16] F. Harary, G. Gupta, Dynamic graph models, Math. Comput. Model. 25 (7) (1997) 79–87, https://doi .org /10 .1016 /S0895 -
7177(97)00050 -2.

[17] S. Moreno, S. Kirshner, J. Neville, S. Vishwanathan, Tied Kronecker product graph models to capture variance in net-
work populations, in: 2010 48th Annual Allerton Conference on Communication, Control, and Computing, IEEE, 2010,
pp. 1137–1144.

[18] S.I. Moreno, J. Neville, S. Kirshner, Learning mixed Kronecker product graph models with simulated method of moments,
in: Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2013, pp. 1052–1060.

[19] A. Sandryhaila, J.M. Moura, Big data analysis with signal processing on graphs: representation and processing of massive
data sets with irregular structure, IEEE Signal Process. Mag. 31 (5) (2014) 80–90, https://doi .org /10 .1109 /MSP.2014 .
2329213.

[20] A.D. Col, P. Valdivia, F. Petronetto, F. Dias, C.T. Silva, L.G. Nonato, Wavelet-based visual analysis for data exploration,
Comput. Sci. Eng. 19 (5) (2017) 85–91, https://doi .org /10 .1109 /MCSE .2017 .3421553.

[21] M. Villafañe-Delgado, S. Aviyente, Dynamic graph Fourier transform on temporal functional connectivity networks, in:
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017, pp. 949–953.

[22] F. Grassi, N. Perraudin, B. Ricaud, Tracking time-vertex propagation using dynamic graph wavelets, in: 2016 IEEE Global
Conference on Signal and Information Processing (GlobalSIP), IEEE, 2016, pp. 351–355.

[23] A. Dal Col, P. Valdivia, F. Petronetto, F. Dias, C.T. Silva, L.G. Nonato, Wavelet-based visual analysis of dynamic networks,
IEEE Trans. Vis. Comput. Graph. 24 (8) (2017) 2456–2469, https://doi .org /10 .1109 /MCSE .2017 .3421553.

[24] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, Y. Bengio, End-to-end attention-based large vocabulary speech recog-
nition, in: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2016, pp. 4945–4949.

[25] A. Asif, J.M. Moura, Data assimilation in large time-varying multidimensional ûelds, IEEE Trans. Image Process. 8 (11)
(1999) 1593–1607, https://doi .org /10 .1109 /83 .799887.

[26] E. Galligani, V. Ruggiero, A polynomial preconditioner for block tridiagonal matrices, Parallel Algorithms Appl. 3 (3–4)
(1994) 227–237, https://doi .org /10 .1080 /10637199408962539.

[27] I. Braeutigam, D.M. Polyakov, Asymptotics of eigenvalues of inûnite block matrices, Ufa Math. J. 11 (3) (2019) 11–28,
https://doi .org /10 .13108 /2019 -11 -3 -11.

[28] G. Casati, I. Guarneri, F.M. Izrailev, L. Molinari, K. Życzkowski, Periodic band random matrices, curvature, and conduc-
tance in disordered media, Phys. Rev. Lett. 72 (17) (1994) 2697, https://doi .org /10 .1103 /PhysRevLett .72 .2697.

[29] B. Kramer, A. MacKinnon, Localization: theory and experiment, Rep. Prog. Phys. 56 (12) (1993) 1469, https://doi .org /
10 .1088 /0034 -4885 /56 /12 /001.

[30] D.E. Petersen, H.H.B. Sørensen, P.C. Hansen, S. Skelboe, K. Stokbro, Block tridiagonal matrix inversion and fast trans-
mission calculations, J. Comput. Phys. 227 (6) (2008) 3174–3190, https://doi .org /10 .1016 /j .jcp .2007 .11 .035.

[31] H. Dette, B. Reuther, W. Studden, M. Zygmunt, Matrix measures and random walks with a block tridiagonal transition
matrix, SIAM J. Matrix Anal. Appl. 29 (1) (2007) 117–142, https://doi .org /10 .1137 /050638230.

R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579 31

[32] F.A. Grünbaum, The Karlin–Mcgregor formula for a variant of a discrete version of Walsh9s spider, J. Phys. A, Math.
Theor. 42 (45) (2009) 454010, https://doi .org /10 .1088 /1751 -8113 /42 /45 /454010.

[33] S. Iida, H. Weidenmüller, J. Zuk, Statistical scattering theory, the supersymmetry method and universal conductance
üuctuations, Ann. Phys. 200 (2) (1990) 219–270, https://doi .org /10 .1016 /0003 -4916(90)90275 -S.

[34] J.D. Anderson, J. Wendt, Computational Fluid Dynamics, vol. 206, Springer, 1995.
[35] A. Kavcic, J.M. Moura, Matrices with banded inverses: inversion algorithms and factorization of Gauss-Markov processes,

IEEE Trans. Inf. Theory 46 (4) (2000) 1495–1509, https://doi .org /10 .1109 /18 .954748.
[36] J.M. Moura, N. Balram, Recursive structure of noncausal Gauss-Markov random ûelds, IEEE Trans. Inf. Theory 38 (2)

(1992) 334–354, https://doi .org /10 .1109 /18 .119691.
[37] W.N. Gansterer, R.C. Ward, R.P. Muller, An extension of the divide-and-conquer method for a class of symmetric block-

tridiagonal eigenproblems, ACM Trans. Math. Softw. 28 (1) (2002) 45–58, https://doi .org /10 .1145 /513001 .513004.
[38] Y. Bai, W.N. Gansterer, R.C. Ward, Block tridiagonalization of 8effectively9 sparse symmetric matrices, ACM Trans. Math.

Softw. 30 (3) (2004) 326–352, https://doi .org /10 .1145 /1024074 .1024078.
[39] W.N. Gansterer, R.C. Ward, R.P. Muller, W.A. Goddard, Computing approximate eigenpairs of symmetric block tridiag-

onal matrices, SIAM J. Sci. Comput. 25 (1) (2003) 65–85, https://doi .org /10 .1137 /s1064827501399432.
[40] W.N. Gansterer, Computing orthogonal decompositions of block tridiagonal or banded matrices, in: International Confer-

ence on Computational Science, Springer, 2005, pp. 25–32.
[41] W.N. Gansterer, J. Zottl, Parallelization of divide-and-conquer eigenvector accumulation, in: European Conference on

Parallel Processing, Springer, 2005, pp. 847–856.
[42] Y. Bai, R.C. Ward, A parallel symmetric block-tridiagonal divide-and-conquer algorithm, ACM Trans. Math. Softw. 33 (4)

(2007) 25-es, https://doi .org /10 .1145 /1268776 .1268780.
[43] G. König, M. Moldaschl, W.N. Gansterer, Computing eigenvectors of block tridiagonal matrices based on twisted block

factorizations, J. Comput. Appl. Math. 236 (15) (2012) 3696–3703, https://doi .org /10 .1016 /j .cam .2011 .07 .010.
[44] W.N. Gansterer, G. König, On twisted factorizations of block tridiagonal matrices, Proc. Comput. Sci. 1 (1) (2010)

279–287, https://doi .org /10 .1016 /j .procs .2010 .04 .031.
[45] R. Askey, Orthogonal Polynomials and Special Functions, SIAM, 1975.
[46] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, OUP, Oxford, 2004.
[47] A. Sandryhaila, J. Kovacevic, M. Puschel, Algebraic signal processing theory: 1-d nearest neighbor models, IEEE Trans.

Signal Process. 60 (5) (2012) 2247–2259, https://doi .org /10 .1109 /TSP.2012 .2186133.
[48] A.J. Duran, P. Lopez-Rodriguez, Orthogonal matrix polynomials: zeros and Blumenthal9s theorem, J. Approx. Theory

84 (1) (1996) 96–118, https://doi .org /10 .1006 /jath .1996 .0007.
[49] A. Sandryhaila, J.M. Moura, Eigendecomposition of block tridiagonal matrices, arXiv preprint, arXiv :1306 .0217, 2013.
[50] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, in: International

Conference on Learning Representations, 2018.
[51] W.-C. Yueh, Eigenvalues of several tridiagonal matrices, Appl. Math. E-Notes [electronic only] 5 (2005) 66–74.
[52] A.J. Laub, Matrix Analysis for Scientists and Engineers, vol. 91, SIAM, 2005.
[53] W.N. Gansterer, Y. Bai, R.M. Day, R.C. Ward, Framework for approximating eigenpairs in electronic structure computa-

tions, Comput. Sci. Eng. 6 (5) (2004) 50–59, https://doi .org /10 .1109 /MCSE .2004 .25.
[54] R. Geng, Y. Gao, H. Zhang, J. Zu, Analysis of the spatio-temporal dynamics of Covid-19 in Massachusetts via spectral

graph wavelet theory, IEEE Trans. Signal Inf. Process. Netw. (2022), https://doi .org /10 .1109 /TSIPN .2022 .3193252.
[55] A.C. Müller, S. Guido, Introduction to Machine Learning with Python: a Guide for Data Scientists, O9Reilly Media, Inc.,

2016.
[56] H. Yao, C. Jiang, Y. Qian, Developing Networks Using Artiûcial Intelligence, Springer, 2019.
[57] J.L. Sharpnack, A. Krishnamurthy, A. Singh, Near-optimal anomaly detection in graphs using Lovasz extended scan

statistic, Adv. Neural Inf. Process. Syst. 26 (2013), https://doi .org /10 .1016 /j .asoc .2022 .108489.
[58] K. Sricharan, K. Das, Localizing anomalous changes in time-evolving graphs, in: Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, 2014, pp. 1347–1358.
[59] M. Génois, A. Barrat, Can co-location be used as a proxy for face-to-face contacts?, EPJ Data Sci. 7 (1) (2018) 11, https://

doi .org /10 .1140 /EPJDS /S13688 -018 -0140 -1.
[60] R.M. Anderson, H. Heesterbeek, D. Klinkenberg, T.D. Hollingsworth, How will country-based mitigation measures inüu-

ence the course of the Covid-19 epidemic?, Lancet 395 (10228) (2020) 931–934, https://doi .org /10 .1016 /SO140 -6736(20)
30567 -5.

[61] R.A. Middelburg, F.R. Rosendaal, Covid-19: how to make between-country comparisons, Int. J. Infect. Dis. 96 (2020)
477–481, https://doi .org /10 .1016 /j .ijid .2020 .05 .066.

[62] B. Balmford, J.D. Annan, J.C. Hargreaves, M. Altoè, I.J. Bateman, Cross-country comparisons of Covid-19: policy, politics
and the price of life, Environ. Resour. Econ. 76 (4) (2020) 525–551, https://doi .org /10 .1007 /s10640 -020 -00466 -5.

[63] M. Raûq, S.H. Batool, A.F. Ali, M. Ullah, University libraries response to Covid-19 pandemic: a developing country
perspective, J. Acad. Librariansh. 47 (1) (2021) 102280, https://doi .org /10 .1016 /j .acalib .2020 .102280.

[64] P. Tarkar, Impact of Covid-19 pandemic on education system, Int. J. Adv. Sci. Technol. 29 (9) (2020) 3812–3814, https://
doi .org /10 .36713 /epra6363.

[65] D.H.B. Phan, P.K. Narayan, Country responses and the reaction of the stock market to Covid-19—a preliminary exposition,
Emerg. Mark. Finance Trade 56 (10) (2020) 2138–2150, https://doi .org /10 .1080 /1540496X .2020 .1784719.

[66] I. Djekic, A. Nikolić, M. Uzunović, A. Marijke, A. Liu, J. Han, M. Brnčić, N. Knežević, P. Papademas, K. Lemoniati,
et al., Covid-19 pandemic effects on food safety-multi-country survey study, Food Control 122 (2021) 107800, https://
doi .org /10 .1016 /j .foodcont .2020 .107800.

[67] W. Gu, F. Gao, X. Lou, J. Zhang, Link prediction via graph attention network, arXiv preprint, arXiv :1910 .04807, 2019.
[68] C. Tang, J. Sun, Y. Sun, M. Peng, N. Gan, A general traffic üow prediction approach based on spatial-temporal graph

attention, IEEE Access 8 (2020) 153731–153741, https://doi .org /10 .1109 /ACCESS .2020 .3018452.

32 R. Geng et al. / Appl. Comput. Harmon. Anal. 67 (2023) 101579

[69] H. Zhou, D. Ren, H. Xia, M. Fan, X. Yang, H. Huang, Ast-gnn: an attention-based spatio-temporal graph neural network
for interaction-aware pedestrian trajectory prediction, Neurocomputing 445 (2021) 298–308, https://doi .org /10 .1016 /j .
neucom .2021 .03 .024.

[70] Z. Zhang, J. Huang, Q. Tan, Sr-hgat: symmetric relations based heterogeneous graph attention network, IEEE Access 8
(2020) 165631–165645, https://doi .org /10 .1109 /ACCESS .2020 .3022664.

	Graph signal processing on dynamic graphs based on temporal-attention product
	1 Introduction
	1.1 Notation

	2 The temporal-attention product on dynamic graphs
	2.1 Definition of temporal-attention product on dynamic graphs
	2.2 Martingale approximations of graph signals

	3 Spectral properties for weighted dynamic graph network
	3.1 Case 1: Gt shares the same V1, E1, and Wt,t+1=Wt=W1 for all t≥1
	3.2 Case 2: Gt shares the same V1, and Wt,t+1 is a full-rank matrix for t≥1

	4 Signal processing on the dynamic graph
	4.1 Graph Fourier transform on the transformed graph
	4.2 Spectral graph wavelet transform on the transformed graph

	5 Classification method based on SGWT coefficients
	5.1 Node classification using SGWT coefficients
	5.2 A refined node classification for anomaly detection
	5.3 Graph classification based on SGWT coefficients

	6 Spectral graph wavelet visual analysis on dynamic graphs
	6.1 Case study 1: 2009 SFHH conference in Nice
	6.1.1 Construction of the dynamic graph
	6.1.2 Overall visual analysis
	6.1.3 Ranking participants by popularity

	6.2 Case study 2: COVID-19 data analysis among the Group of Twenty
	6.2.1 Learning spatio-temporal transition matrix PT in the transformed graph
	6.2.2 Capturing centrality of each country over time
	6.2.3 Overall visual analysis
	6.2.4 Ranking of G20 using the anomaly scores

	7 Conclusion
	Data availability
	Appendix A Comparison of the temporal-attention product, Cartesian products, and strong product
	References

