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Signal processing is an important research topic. This paper aims to provide
a general framework for signal processing on arbitrary dynamic graphs. We
propose a new graph transformation by defining a temporal-attention product.
This product transforms the sequence of graph time slices with arbitrary topology
and number of nodes into a static graph, effectively capturing graph signals’
spatio-temporal dynamic evolution process. The temporal-attention product graph
provides a solid mathematical foundation to model the time-dependent graph signal
processes as martingales. The weighted adjacency matrix obtained by temporal-
attention products is a block tridiagonal matrix, which has been extensively studied.
Therefore, it is general and convenient to perform graph signal processing on this
new static graph. We apply two real datasets to illustrate the effectiveness of
spectral graph wavelet transform based on temporal-attention product. For one of
the datasets with no graph structure, we learn the graph weights through a neural
network.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Graph signal processing (GSP) is an emerging field in data science, and it has received much attention

in many fields, such as classifying cancer types, temporal brain data, theoretical chemistry, social network

analysis, computer networks (such as the Internet) and distributed systems, etc. Analyzing graph signal

data will help us understand the behavior patterns in the network, which is crucial in several application
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(a) Path graphs connected by Kronecker product (b) Path graphs connected by Cartesian product
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(c) Path graphs connected by strong product (d) Different graphs connected by Cartesian product

Fig. 1. Graph products. The green line is the temporal edge. The dotted line circle is a manually added node. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

areas, including sensor network data, processing and analysis of biological data, and applications of image
processing and machine learning [1], etc.

Many powerful tools have been proposed for studying graph signals, e.g., the graph Fourier transform
(GFT) [2-5], and the windowed graph Fourier transform (WGFT) [6,7]. However, these methods can not
capture local relationships of graph signals well and fail to identify abrupt signal changes. Due to its
multiresolution advantages, the spectral graph wavelet transforms (SGWT) proposed by Hammond et al.
[8] and Shuman et al. [6,9,10] is an improved tool to perform visualization analysis, detect and characterize
the attributes of signals, and play an important role in node classifications. For instance, Mohan et al.
[11] take the vehicle speed as signals and apply SGWT to detect the occurrence, propagation, and span
of destructive events such as traffic congestion, to guide and plan traffic routes. Other applications include
community mining [12], visual analysis [13], surface denoising [14], research on manifolds [15], etc.

The following entities are involved in the definitions of graphs: V' (a set of nodes), E (a set of edges),
f (signals defined on nodes), and w (weights defined on edges). A dynamic graph is obtained when any of
these four entities change over time [16]. Graphs in many real-world applications are inherently dynamic,
such as data-packet traffic on the Internet, disease spreading on social networks, temperature changes in an
area, users in e-commerce platforms continuing to interact with new items and connections established in
a communication network over time, etc. Because of the time-varying property of dynamic graphs, existing
GSP methods are severely hampered, and tools such as GFT, WGFT, and SGWT cannot be directly applied
to dynamic graphs.

One could use the graph product structure to obtain a static graph. The three well-known graph products
are the Kronecker product, the Cartesian product, and the strong product. These methods are useful in
studying discrete temporal graphs, where the graph time slices G; have identical nodes and edges, see
[8,13,17-20]. Fig. 1 (a), (b) and (c) depict the three graph products using the path graph' of three nodes as
an example. Another method is to perform GFT by expressing the Laplace of the dynamic graph as a tensor,
and obtaining the transformed basis function by Tucker decomposition of the tensor [21]. Alternatively, the
Laplace operator of the dynamic graph is represented as a discrete second-order derivative in time, and
then GFT and SGWT are performed [22]. All these methods are designed to deal with graph signals on
sequences of graph slices with the same nodes or topology. Recently, an important attempt was made in
[23], where the authors manually added some additional isolated points on graph time slices, to ensure all

1A path graph is a graph whose nodes are adjacent to exactly two other nodes, with the exception of the two extreme ones that
are connected to only one node.
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graph time slices have identical nodes, see Fig. 1 (d) (The dotted line circle is a manually added node).
They then connected these graphs by Cartesian product and used SGWT for the visual analysis of signals.
However, in real-world applications, this process can be rather expensive and unrealistic, as it not only adds
time edges that carry no information (such as on those manually added, isolated nodes) but also needs to
change the previous topology connection every time a new graph time slice is added. Another issue is that
by adding the extra temporal edges of the same nodes in adjacent graph time slices, the underlying diffusion
mechanism changes as if there are self-loops in each graph time slice.

To overcome these difficulties and effectively capture the temporal evolution of signals in dynamic graphs,
inspired by the attention mechanism introduced by Bahdanau et al. [24] in machine learning for language
processing, we propose to add time edges that capture the best information similarity carried by nodes in
adjacent graph time slices. We call this way of adding temporal edges the temporal-attention product. As a
result, a discrete dynamic graph with T' graph time slices (snapshots) {Gy,t = 1,--- , T} is transformed into
a static graph Gr, which is called a transformed graph. The nested transformed graphs {G;,t =1,--- , T}
accurately capture both the spatial and temporal structure of the first 7' discrete dynamic graph snapshots
{G,t =1,---T}, and are also suited for studying the dynamic evolution process of the graph signals. We can
define a filtration of o-algebra {F;,t > 1} generated by graph signals on {G;,t > 1}. The transformed graph
G, also provides a general mathematical tool for modeling graph signal processes using advanced methods in
probability theory (including diffusion and martingale processes, etc.). Furthermore, this new construction
is inductive: to construct G;y1 at each new time step, ¢+ 1, one only adds temporal edges for nodes between
G and G411 based on the graph structure of G;. The detailed construction of the transformed graphs can
be found in section 2.

The weighted adjacency matrix Wy of the transformed graph is a generic symmetrical block tridi-
agonal matrix. The block tridiagonal matrix can be found in many applications in the finite difference
method [25,26], discrete Sturm-Liouville operators [27], discrete transport problem simulation and elec-
tronic structure calculations [28-30], random walks and birth-and-death processes [31,32], scattering theory
[33], computational fluid dynamics [34], signal processing [25,35,36] and so on. It is convenient to study the
spectrum of the transformed graphs since the properties of block tridiagonal matrices have been extensively
studied. A widely used direct method is to compute eigenvalues and eigenvectors based on divide-and-
conquer [37-42], or twisted block factorizations [43,44]. For some special cases, the relationship between
tridiagonal matrices and orthogonal polynomials can be used to obtain eigenvalues and eigenvectors [45-49].
In this paper, we will give some spectral properties of the weighted adjacency matrix of the transformed
graph and some recursive formulas for GSP on the transformed graph.

SGWT is powerful in our transformed graph G;, enabling spatio-temporal anomaly detection and multi-
resolution visual signal analysis. Two real-world datasets are used to show that SGWT coefficients on the
transformed graph accurately capture the spatio-temporal dynamic changes of the signals. In one of our
applications, we only have multivariate time series. The underlying graph for these time series is unknown
prior and can not be constructed preliminarily through the topology of nodes of the graph. In this paper,
we explore a deep learning method to learn the graph link weights. More precisely, we apply the graph
attention neural network (GAT), a powerful graph neural network that introduces the attention mechanism
to refine the convolution process in a generic graph convolutional neural network [50].

This paper is organized as follows: In section 2, we introduce the temporal-attention product on dynamic
graphs. In section 3, we give the spectral properties of undirected dynamic graphs. In section 4, we discuss
GFT and SGWT on dynamic graphs. In section 5, we introduce the classification method based on SGWT
coefficients. In section 6, we analyze two real-world datasets using spectral graph wavelet visualization. We

close with a conclusion section.
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Table 1
Notations in G; and Gy.
Gt gt
Vi: Node set on graph Gy; V:: Node set on graph Gi;
N;: Cardinality of V%, i.e., | Vi |= Ng; NL#: Cardinality of Vg, i.e., | Vi |= Nt#;
E;: Edge set on graph Gy; &:: Edge set on graph Gy;
Ei 141 € & Temporal-attention edge set between G¢ and G¢q1;
(v,t) € Vz: Node on the t-th time slice Gy; v: Node on Gy;
€(v,w,t) € Et: Edge joining (v, t) and (w, t); e(v,w) € & Edge joining v and w;
At = (g, w,1)) € RNeXNe: Adjacency matrix of Gy. Ai = (an,w)) € RN xNE, Adjacency matrix of Gs.
Q(y,w,t) = 1 if there exists ey w,¢) € Et; otherwise, a(y,w) = 1 if there exists e, ,w) € &; otherwise, a(y w) = 0;
A(y,w,t) = 0;
Wi = (W(p,w,1)) € RN *Nt: Weighted adjacency matrix. Wi = (Wv,w)) € RN *N7. Weighted adjacency matrix.
W(y,v,t) € Ry represents the link intensity between (v, t) W(v,w) € Ry represents the link intensity between v and w;
and (w,t);
N(lmt) = {(w,t) € Vi | €(v,w.t) € Et}: One-hop neighbor of ~ N}* = {w € V; | e(y,w) € E:}: Spatio-temporal one-hop
(v,t) on Gy. neighbor of v on G;.

1.1. Notation
Table 1 lists the notations used in the graph time slice G; and the transformed graph G;.
2. The temporal-attention product on dynamic graphs

Signal processing on static graphs is an important research topic and has been applied in many tasks
over the years. However, most networks are dynamic in real applications, and their structures or properties
are constantly changing over time. Possible changes include the insertion and deletion of nodes (objects),
insertion and deletion of edges (relationships), and modification of attributes (for example, the node’s signal
or the weight of the edge). A discrete dynamic graph consists of T' graph snapshots (time slices), which are
observed along with the evolution of a dynamic graph. Specifically, the T graph snapshots can be denoted
as {G,t = 1,--- , T}, where G; is the graph observed at time ¢. In these cases, one major question is to
analyze the spatio-temporal behavior of graph signals {f;,t = 1,--- ,T} defined on the graph slice sequence
{Gt,t =1,--- ,T}. To capture the temporal evolution in the sequence of graphs, we introduce a new graph
topology, by defining a temporal-attention product for studying dynamic graph networks.

2.1. Definition of temporal-attention product on dynamic graphs

We consider a discrete dynamic graph network, represented by a sequence of undirected graph time slices
{Gy = WV, Ey),t = 1,--- ,T}. The same node may appear in different time slices. We call the set of all
different nodes in the T time slices the base node set By. We denote (v,t) € Vi, t < T if there is a base
node v € Br on the graph time slice G;. E; is an edge set with the element e, ., s connecting (v,t) to
(w,t). Let (v,t) € V; and (v,t+ 1) € Vi41, which represent the same base node v on the adjacent time slice.
We present a new method by introducing the temporal-attention product of graphs, which enables us to
transform these graph time slices into a static graph G;.

Definition 1. Let (v,t) € Vi, (w,t+1) € Viy1. We say €((y4),(w,t+1)) is a temporal-attention edge connecting
(v,t) to (w,t+1), if there exists (w,t) € V; belonging to the one-hop neighbor of (v,t) in V;. The temporal-
attention product Gy X4 Gi41 is defined by adding all temporal-attention edges between G; and G41.

See Fig. 2 for an example, where green lines are temporal-attention edges. Graph time slices are the same
as Fig. 1 (d).

Now we can introduce how to construct a static graph G; inductively. Let Ny = |V;| be the cardinality
of V;. We first define G; = G; and denote G; = (V1,&1). The node elements in V; inherit from V; are
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Gi1 Gy Gt

Fig. 2. A dynamic model of the transformed graph using temporal-attention product. Green lines are temporal-attention edges.
A; 1, Ay and Ay, are the adjacency matrices of G¢_1, G+ and G4 respectively.

denoted again by (v,1). Let the bold-type letter e((, 1),(w,1)) be the edge of & between (v,1) and (w, 1),
which inherits from e, .,,1) € £1. For the next time slice, let G = (V2, E2). We can define Go = G Xq¢ Go
with the node set Vo = V3 U Vo, [Va| = N1 + Ny and & = & U Ey U Eq 2, where Ej o is the collection of
temporal-attention edges from Gy X4 Ga. Assume inductively G; = (M, &) has been well defined.

Definition 2. We say Giy1 = (Vit1,E41) is a transformed graph if Gii1 = Gi Xt Giq1 satisfying Vipq1 =
ViU Vig, and &1 = & U By U By y4q, where Ey ¢4 is the collection of temporal-attention edges from
Gt Xat Gig1-

In graph theory, an adjacency matrix is a classical matrix representation for a graph, that allows us
to establish certain graph properties using matrix-theoretic methods. Its rows and columns correspond to
graph nodes and are both indexed by identical node orderings. Let A; = (a(v,w,t)) be the adjacency matrix
of Gy with a(v,w,t) = 1 if there exists e(v,w,t) € E; otherwise, a(v,w,t) = 0. To concisely represent nodes
in the transformed graph Gr, we can use bold-type letters to relabel the nodes. Let A; = (a(vi’vj)) be the
adjacency matrix of G; with a(v;,v;) = 1 if there exists e(v;,v;) € &; otherwise, a(v;,v;) = 0.

Let Nt# be the cardinality of V; in the transformed graph G;. The order of the rows and columns of the
adjacency matrix A; is arranged in increasing order of graph time slices. This order relation allows for the
flexible addition of new time slices to the transformed graph.

XN satisfies:

A A
Apr = ( / t At,t+1> : (1)
t,t4+1 t+1

where Ay 141 € RV *Nest infers whether there are edges between G; and Gyyq, and A} 1, denotes the
transpose of Ay +41.

Obviously, the adjacency matrix A1 € RN

Theorem 1. Let Gy 1 = (Viy1,E11) be a transformed graph with an adjacency matric Asyq1. Then Aiqq is
a block tridiagonal matriz and A; 11 has the following expression:

0
At,t+1 = (At t+1) ) (2)

where 0 € ]RNﬁlXN‘“ denotes a matriz that contains all O elements and A, 41 € RNexNev1 deseribes
whether there are edges between Gy and Gyy1. Here Ay is obtained based on Ay by:
(). deleting the i-th column if (v,t) is the i-th node of Gt and (v,t + 1) does not belong to Gii1;
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(7). inserting a zero-filled column as the j-th column if (v,t) is the j-th node of Giy1 and (v,t) does not
belong to Gy.

Proof. By Definition 1, the temporal-attention edges are defined between two adjacent time slices, we have
a(v,v;) = 0 for any v; € V;—1 and v; € Viiq. Thus, the first fol rows of As¢41 must be zero which
implies that A;y; is a block tridiagonal matrix. The last Ny rows of A; ;41 can be nonzero, which is just
right At ;1. Its row index corresponds to the nodes of G, and its column index corresponds to the nodes

of Gt+1-
Define
r[( 3 (vi,t) if the base node v; belongs to Gy,
v, t)] =
' NULL otherwise.
Let the node orderings of G; be T'[(v1,t)], - -+, T[(vn,,t)], t > 1, where Ny is the cardinality of the base set

Br. Let (v;,t) € V; and (v, t+1) € Vi41, which represent the same base node v; on the adjacent time slice.
Next, we can prove that A, ;11 is based on A;.

Let (v;,t) € Vi and (vp,t) € Vi If (v, 4+ 1) € Viq1, we have a((y, 1) (v,,t41) = G(v,.,0,,t)- Obviously, the
column of A, ;17 corresponding to (v;,t+ 1) is equal to the column of A, corresponding to (v;,t). Let (v, t)
be the i-th node of Gy. If (v,t + 1) does not belong to Gy+1, Ay41 doesn’t inherit the i-th column of A,.
Let (w,t+ 1) be the j-th node of Giy1. If (w,t) does not belong to G, there is no edge between (w,t + 1)
and any node of G;. Because of the existence of the column of A;;; corresponding to node (w,t+ 1), we
should insert a zero-filled column as the j-th column of A, ;. O

We next present an example to illustrate Theorem 1 using Fig. 2. Fig. 2 depicts three graph time slices
Gi-1, G, and G471 that are connected by the temporal-attention product. As a comparison, their Cartesian
product connection has been shown in Fig. 1 (d). From the structure of graphs G;_1, G¢, and G411, we have

0 0 1 0 1 01 1
At—l = 0 0 ]. 5 At = (1 0) B At+1 = ]. 0 ].
1 1 0 1 10

Compared to G¢_1, G keeps the base nodes v; and vg, so A;_;; is obtained by keeping the 1-st and 2-nd
columns of A;_q, i.e.,

00 f 0 0
Aiy=(00 f|=|00
11 4 11
By Theorem 1, we get
At_2 -At—2,t—1
0 0 110 0
At_z At—Q,t—l /
, Alo41 |0 0 1100
A = t—2,t—1 A Ao | = , 1 1 o1 1|’
A} A
t—1,t t 0 0 110 1
0 0 111 0

where the blank space represents the zero matrices. Similarly, G411 has one more base node vs than Gy, so
A, 111 is obtained by adding a zero-filled column in A;’s 3-rd column, i.e.,
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01 0
At,t+1 = (At 0) = <1 0 O) .

Therefore,

A Ay
Ai 1,t At At,t—‘rl
!
A A

-Ai—z t—1
At+1 = ’

2.2. Martingale approximations of graph signals

Now we consider a graph signal function f : UZ_;V; — R defined on the sequence of graph time slices
{Gt,t = 1,--- ,T}. Using the temporal-attention products, {G¢,t = 1,--- , T} has now been transformed
into a sequence of increasing graphs {G;,t = 1,--- ,T}. Using the fact that Vr = UL ;V;, thus the graph
signal f has a natural extension on the transformed graph Gr, with f : Vr — R. In real-world applications,
even if T < oo represents the current time, we would also like to consider future time slices, with T +
1, T+ 2,---. We denote Vo, = lim;_,o V¢. One important task for GSP is to perform forecasting, and one
would like to guarantee the stability of the graph signals processing method with increasing graph time
slices. This is impossible for classical GSP on the original dynamic graph network {G¢, t = 1,--- ,T}, as
G741 is completely unknown. One advantage of our transformed graphs is that the analysis of graph signals
on the transformed graphs becomes more stable as time slices increase. Let L?(Vr) be the collection of
all real-valued square-summable functions defined on Vp. The following result shows that the transformed
graph guarantees a Martingale approximation {f;,¢ > 0} of a possibly partially observed graph signal f by
the time T

Theorem 2. For any graph signal f € L?*(Vs), defined on the original dynamic graph network {Gy,t > 1},
there is a martingale approzimation sequence {f:,t > 0}, such that

lim f, = f 3)

t—o0

converges almost surely.

Proof. Let {G;,t > 1} be the sequence of transformed graphs for a dynamic graph network {Gy,t > 1}. Let
F = 0(L*(V)) be the o-algebra on V,, generated by the space of square-summable functions. Let u be
any probability measure defined on (Vu, F), which is absolutely continuous with respect to the Lebesgue
measure.

Next, we define a sequence of o-algebra F; = o(L?(V})), t > 1, which is generated by all L? functions
(graph signals) on the transformed graph G;. And Fy is the trivial o-algebra. Since V; C Vi1 is an increasing
sequence of subsets in V., one can check easily that the collection {F%,¢ > 0} is a filtration on the probability
space Voo, F, 1t).

Given any graph signal f € L?(V.,) defined on the original discrete dynamic graph network {Gy,t > 1},
we define, for t =1,2-- -,

fr =E(f[F) (4)

to be the conditional expectation of f on the o-algebra F;. Moreover, fy = E(f) to be the expectation of f
on V. We claim that {f;,¢ > 0} is a Martingale with respect to the filtration {F;,t > 0}. Note that for
any t >0, and s > 1,
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E(fir+s|Fr) = E(E(f|Fir0)|Fe) = E(f|F) = fr,

where we use the tower property for conditional expectations in the last step. Thus we have shown that
{fi,t =0,1,2,---} is a martingale. Note that f, € L?(V,) and sup, E(|f;|?) < oo. Using Doob’s Martingale
Convergence Theorem, we know that f; — f almost surely, as t — oco. O

Going back to the forecasting task, even if we can obtain the best prediction fr on each time slice T,
one may not know what a graph signal f : Voo — R looks like, nor does not know it even exists. But our
Theorem 3 guarantees that limp_, o, f7 exists, almost surely.

Theorem 3. Let {G;,t > 1} be an increasing sequence of transformed graphs. Let f; € L*>(V;) be the best-
forecasted graph signal at time t, i.e., {fy,t > 0} is an L? bounded Martingale with respect to the filtration
{Fy = o(L*(Vy)),t > 0} on V. Then there exists a graph signal f € L*(Vs), such that

lim f, = f (5)

t—o00

converges almost surely and in L*(Vso).
Proof. Since f € L?(V;), we can directly apply Doob’s Martingale Convergence. 0O

Now we can see that the transformed graph has not only practical significance, but also lays a solid
mathematical foundation for us to model the graph signal processes, using advanced tools in Martingale
theorems.

3. Spectral properties for weighted dynamic graph network

We consider a discrete undirected dynamic graph network, which is represented by a sequence of graph
time slices {G; = (V;, E¢), t = 1,--- , T} with a weighted adjacency matrix W; = (w(y,u,+)). The element
Wywe) € Ry is the weight relationship between (v,t) and (w,t). In particular, if a(, .+ = 0, we have
w(u’wyt) =0.

By the temporal-attention product, we have a transformed graph Gy = (Er, Vr) with a weighted adja-
cency matrix Wp = (w(vhvj)). The element w(y, ;) € Ry encodes how strong the relationship between v;
and v;. Let w(y, v,y =0 if ajy, v,) = 0 in the adjacency matrix. The weighted adjacency matrix of Gr is

W, W,
Wi, Wy Wy
Wr = b3 W3 ; (6)
Wr_ir

!
Wi air W

where Wy € RIVEXNT) W, ¢ RNexNe, W1 € RNt=1XNt describes the weights of edges between Gy_;
and Gy. Wj_; , denotes the transpose of a matrix W;_; ;. The blank position in the matrix represents that
filled with 0. Since Wr is symmetric, its eigenvalues and eigenvectors can be calculated using the divide-
and-conquer method [39] or the twisted block factorizations method [43]. Next, we discuss eigenvalues and
eigenvectors of the transformed graph in some special cases.
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3.1. Case 1: G shares the same Vi, E1, and Wy 1 = Wy =Wy forallt >1

We consider when the topological structure of the graphs on each time slice is identical. More precisely,
there exists a fixed node set Vi with | V4 |= N (edge set Ep), such that any V; (F;) shares the same
set of base nodes in V; (base edges in Fj). This is equivalent to assuming that the transformed graph
Gt = (Vr, Er) defined by the temporal-attention product satisfies the following:

Assumption (h). The transformed graph Gr has the weighted adjacency matriz Wy € RNTXNT sqtisfying
Wt,t-‘rl = Wt = W1 S RNXN.

W, has a completed set of eigenvalues {\,,n = 1,--- , N} and orthogonal eigenvectors {xi,--- ,xn}.
Let H = (H, ;) be the adjacency matrix of the path graph with T nodes, i.e.,

1 iffi—jl=1,
H,; = (7)

0 otherwise.

The eigenvalues and eigenvectors corresponding to H are {u1, uo -+ pr} and {y1,y2---yr}, respectively.
Specifically, they are p; = 2cos(in/(T + 1)), and y;(j) = sin((ijm)/(T + 1)), see [51], where y;(j) denotes
the j-th element of the eigenvector corresponding to the i-th eigenvalue.

Using the spectral information from H and W3, we can investigate the spectral properties of the trans-
formed graph Gr. First, we introduce the definition of Kronecker product, see [52].

Definition 3. Given two matrices C = (¢;;j)myxm, and B = (b;;)n, xn,, the Kronecker product of C and B
is defined by

CllB 612B e Clsz

c1B c2B - 02m2B
CoB= . .

lelB Cm12B ce lesz

(mlnl) X(TT'LQTLQ)

Some necessary properties of the Kronecker product are stated as the following lemma, see [52]:

Lemma 4. Let B; € R™*", By, € R¥*", B3 € R™*P, By € R™!, and k € R. Then
(Z) k’(Bl ®B2) =kB; ® B, = B; ® kB»,
(ZZ) (Bl +B2) ® Bs =B; ® Bs + B> ® Bs,
(iii). (B1 ® By) ® B3 = B; ® (B2 ® By),
(iv), (Bl & BQ)(B3 ® B4) S (B1B3) ® (B2B4)

The absence of operators in (iv) corresponds to the usual matrix product. Next, we obtain a theorem
describing the eigenvalues and eigenvectors of the transformed graph.

Theorem 5. Let Gr be the transformed graph satisfying Assumption (h). Its weighted adjacency matriz can
be expressed as Wr = W1 @ H+ W1 ® Iy, where ® is Kronecker product. H is the adjacency matrixz of the
path graph with T nodes, It is the identity matriz of size T x T'. Moreover, the eigenvalues and eigenvectors
of the transformed graph are Apjis + A\ and x,. @ ys (r=1,2---N;s=1,2---T), respectively.
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Proof. Based on (6) and Assumption (h), the weighted adjacency matrix of the transformed graph Gr is

W; W,
W: W, W,
Wr = W, w; . )
. W,
Wi W,y (NTxNT)
where
w(vl,ul,l) w(’Ul,’UQ,l) e w(vl,vN,l)
W, = W(vy,v1,1) W(yg,wa,1)  ~ "7 W(vg,vn,1)
w(’UN,’Ul,l) w(’t)N,vz,l) e w(’UN,’UN,l) (NXN)

with Wy, v;,1) = W(v, v;,1)- We reorder nodes according to the sequence of node time series. More precisely,

we change the order of rows and columns in matrix Wy from

(vi,1), (v2,1), -+, (on, 1), (01,2), (v2,2), -+, (N, 2), (v1, 1), (v2,T), -+ (on, T)
to

(v1,1), (v1,2), -+, (v1,T), (va,1), (v2,2), -+, (v2,T), (vNn,1), (VN,2), -, (vn,T).

The resulting matrix is denoted again as Wy with

Wi Wi Wy r Wiy
Wm sz Wzg o Why
Wi Wiz Wi -0 Wiy ,
Wyni Wro Wy - Wpyp (NTXNT)

where

w(vivvjal) w(viavjal)

w(vhvj)l) w(vixvjxl) w(vixvj’l)

Wij = W(v;,v;,1) ’ iv j € {1a27' : N}

W(w;,v5,1)
w('uirvj »1)

w(vi,vj,l) w(vi,'u]-,l)v (TXT)

By Definition 3 and (7), we have Wy = W; @ H4+ W, ® Ir. Since W1x, = A X, Hys = 1pys, INYs = Vs,
according to Lemma 4, we get
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(Wi H+ W @Iy)(x ®@ys)

= (W1 @ H)(x, ®ys) + (W1 @ In)(x ®ys)
= (Wix,) ® (Hys) + (W1ix,) @ (Inys)
= (MXp) @ (psys) + (Arxr) @ (¥5)
= (Arpts + Ar) (%, ®ys). O

3.2. Case 2: G shares the same Vi, and Wy y1 is a full-rank matriz for t > 1

We consider that all V; are composed of the same base nodes with |V;| = N. However, F;, W; and
W, ;41 may be different for graph time slices, and Wy 41, ¢ > 1 are full-rank matrices. Suppose that
the transformed graph Gr = (Vr,Er) defined by the temporal-attention product satisfies the following
assumption:

Assumption (h'). The transformed graph Gr is composed of Gy with the same base nodes. The weighted
adjacency matriz Wr € RNTXNT gqtisfies det(Wy 11) # 0.

Under this assumption, W; and Wy ;1 are N x N matrices. Define a family of N x N matrix polynomials
P;(x). We call the zeros of P;(x) the roots of the determinant of a matrix polynomial P;(z), i.e., A is a zero
of Pi(x) if det(P¢(A\)) = 0. The following theorem is very useful to calculate the eigenvalues and eigenvectors
of the weighted adjacency matrix:

Theorem 6. If the transformed graph Gr satisfies Assumption (I'), let u be an eigenvector of the weighted
adjacency matriz Wry. The eigenvector u corresponds to an eigenvalue X if and only if X is a zero of the
matriz polynomial Pryi(x), where Pryq(x) satisfies the three-term recurrence relation:

aPy(r) = Wi_y ,Pr1(2) + WiPy(2) + Wy Pra(z), t=1,2,---,T (8)

with Po(z) = 0, P1(x) =In and Wy 1 = Iy. The eigenvector u has the form

P:(\y

' ; (9)
Pr_i(Ny

1(
Pr(Ny
where y € CN is a vector from the null space of the scalar matriz Pryq1()\), i.e., the vector y satisfies
Prii(My =0.

The proof of the theorem can be directly obtained from the proof of Lemma 2.1 in [48]. When T' — oo,
the asymptotic behavior of eigenvalues has been shown in [27].

4. Signal processing on the dynamic graph

We consider a time-dependent graph signal f defined on a discrete dynamic graph network, which is
represented by a sequence of time-varying graphs {G; = (V;, E;),t = 1,--- ,T}. The definition of the
graph signal is f : U;V; — R. By applying the temporal-attention product, we get the transformed graph
Gr = (&7, Vr) with node set Vp = {vq,--- ,VN#}, and edge set &r. Furthermore, we assume that Gr is
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connected and undirected. Then, we generalize graph Fourier transforms (GFT) and spectral graph wavelet
transforms (SGWT) on the transformed graph Gr.

4.1. Graph Fourier transform on the transformed graph

Let L?2(Vr) be the collection of all real-valued square-summable functions on Vr. f € L?(Vr) is a signal
function defined on nodes of the transformed graph Gr. Let Wr = (w(y, v,)) N# <N be the weighted
adjacency matrix of Gp. The graph Laplacian matrix is defined as L = D — Wy. D = (d;;) is a diagonal
matrix with entries di; = > W(v, v,). For any f € L?(Vr), one can check that

Lf<vi) = Z W(Vi,v_j)(f(vi) - f(vj))v i,j=1,-- 7N7#? (10)

1,T
Vje./\/'vi

where N&;T denotes the spatio-temporal one-hop neighbor of v; on Gr.

Denote the non-negative, real-valued eigenvaluesof Las 0= A1 < Ao < -+ < A and the corresponding

N#»
(normalized) eigenvectors are {u;,l = 1,--- 7]\7;5’é }. Eigenvalues and eigenvectors of graph Laplacian are
closely related to almost all major invariants of a graph, and play an important role in understanding
graphs in spectral graph theory. For a small eigenvalue )\;, if an edge connects two nodes with nontrivial
weight, the values of the eigenvector at those locations are more likely to be similar. On the other hand,
eigenvectors associated with larger eigenvalues, oscillate more rapidly and are more likely to have dissimilar
values on nearby neighbors.

The graph Laplacian eigenvectors and eigenvalues are analogous to the Fourier basis and frequencies
[9,8]. The GFT fof any signal f € L?2(Vr) on the nodes of Gr can be defined as:

N
FO0) = wvi)f(vi), 1=1,--- Nf. (11)
i=1

The high-frequency Fourier coefficients indicate that a signal varies abruptly in some regions of the graph,
whereas low-frequency Fourier coeflicients indicate smooth signal variation in some instances.

The computation of the Fourier coefficients from (11) requires a cost of O(Nj# 3) operations. Based on
the techniques in [49], we can give a theorem to reduce the computational complexity of the graph Fourier
transform under Assumption (h').

Theorem 7. Suppose that the transformed graph Gr satisfies Assumption (N'). Let fr be the signal defined
on Vr. The diagonal matriz D can be expressed as a block diagonal matriz D = diag(Dy, - - -, D) with each
entry Dy € RV*N A family of N x N matriz polynomials Py(z) satisfies

th(m) = —Wéil’tPtfl(l') + (Dt — Wt)Pt(I) — Wt,t+1Pt+1(a?), t= 1, 2, s 7T‘ (12)
with Po(z) =0, P1(z) = Iy and Wy_1, =In. Let Y, be an N X a,,, matriz with columns given by basis

vectors for the null space of Pri1(Am), where Ay, is a zero of Pryq(x) with multiplicity a,,. Then
(i). Am is the eigenvalue of Laplace matriz L. The columns of the matriz

Pi(A)Ym

PT(/\m)Ym
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are linearly independent eigenvectors corresponding to the eigenvalue A\p,, 1 < m < mg, where mg is the
number of distinct eigenvalues.
(it). The graph Fourier transform of fr is

fr=Ufr,
where
Pi(A)Y1r - Pi(Ang) Yo,
U= : : . (14)
PT(AI)Yl T PT(Amo)YMO
Proof. (i). Since A, is a zero of Pryq(z) and Priq(x) satisfies (12), according to Theorem 6, Ay, is the
eigenvalue of Laplace matrix L. Let y; be the column in Y,,, k =1, -+, a,,. By definition, y is the basis
vector for the null space of Pryq(A;,). We have that y, with &k = 1,--- | a,, is linearly independent. Since

Pi(\n) = Iy, the columns of (13) are linearly independent eigenvectors corresponding to the eigenvalue
Am-
(ii). Since the graph Laplacian matrix L is a symmetric matrix, it can be diagonalized. According to (12),

Pi(An)Yn AnP1(Am)Y Pi(An) Yo
L : = : = : Ao, . (15)
PT(/\m)Ym /\mPT(Am)Ym + WT,T-‘rlPT-‘rl(Am)Ym PT()\m)Ym
Hence, for U in (14), we obtain
M1,
LU=U . (16)
/\moIamo

This decomposition is equal to the eigendecomposition, which confirms that U is an eigenvector matrix for
L. This proof borrows the idea of [19]. O

Direct computation of the eigenvectors requires the cost of O(N3T3) under Assumption (h'). Instead,
we can calculate the bases of the null spaces of Pr41(\y,), which requires only O(N?mg) operations, and
compute NT' products of N x N matrices with vectors of length N, which requires O(N3T) operations.
The total operations required are O(N%mg) + O(N3T) = O(N3T). It can reduce the calculation cost for
long-term dynamic research of graphs of appropriate size.

For larger graphs and more general cases, such as when the number of nodes on each graph time slice
varies, we can calculate the approximate eigenvalues and eigenvectors in parallel using the divide-and-
conquer method [41,42,53], or apply the twisted block factorizations method [43,44].

4.2. Spectral graph wavelet transform on the transformed graph

The SGWT is proposed in [9,8] to analyze the local properties of the signal on the graph by first
introducing a graph spectral filter dictionary. {g.,,|m = 1,2,---, M} represents a collection of graph spectral
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filters, and M denotes the number of graph spectral filters in the dictionary. Let §, be the one-hot vector
at v for any v € Vr. The spectral graph wavelet indexed at (m,v) is then defined as

wm,v = UDg,mUl(;va

with scale m € RT and centered on node v. U is the unitary matrix, and the columns are given by the
eigenvectors u;, [ =1, - ,N#.

Dq7m = dlag(gm(Al)a T gm(AN#))

is a diagonal matrix.
The SGWT of f can be defined as the wavelet coefficient at index (m,v), which can be calculated by:

Wf( ) = fa ¢mv ng /\l >\l ul( ) (17)

This is, indeed, a generalized Fourier transform with kernel §,,();). Spectral graph wavelets, like conventional
wavelets, are localized in both frequency and time. The low-frequency wavelet coefficients (corresponding
to small m values) in node v are greater than the high-frequency coefficients (corresponding to large m
values), indicating a smoother signal fluctuation. In contrast, larger coefficients appear in high frequencies
in node v, indicating that the signal oscillates more abruptly on and around this node.

In this paper, we choose a wavelet dictionary proposed in [8] — the spectral graph wavelet (SGW) dic-
tionary. The dictionary is defined as §1(A\) = A(A), and §m(A) = §(Sar—ms2A), for m = 2,--- M. In this
paper, we set M = 8.

A2, 0<A<1
GA) =14 =5+ 11N — 622 + A3, 1<A<L2 (18)
4N72, 2<A
is a bandpass filter defined on the Fourier domain. The stretching scales ss, s3,--- ,s) are sampled log-

arithmically between sy = 1/ )\N# and sy = 40/)\N#. To represent the low frequency component of the
signal f, a scaling function acts as a low-pass filter:

~

A(\) = 7 exp ( - ((1(»)/(0.3%@#))4 ) (19)

The parameter ~ is chosen such that A(0) is equal to the maximum value of .

3
(17) requires eigendecomposition and has computational complexity of O(Nf ). A fast spectral graph
wavelet transform based on Chebyshev polynomials approximation was proposed in [8]. It is shown that
(17) can be approximated by

Km
Wf (m7 V) ~ (Cm,Of/2 + Z cm,ka' (L)f> (V)7 (20)

k=1

where

Cme = (2/m) | cos( (005(9) +1)/2)do

o\
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and K, represents the number of truncating terms. In this paper, we set K,, = 40. Let T}, be the shifted
Chebyshev polynomials with the domain of [0, A N#]. T (L) satisfies the recursive formula

TW(L)f = 4/ y2) (L= Oz /20 ) Toa (L) = Tha (L),

for 2 < k < K,,,, with initial conditions

To(L)f = f, Tr(L)f = (2/Ayp) (L= Oy /2032 ) £,

where L is the graph Laplacian and f is the signal. Therefore, we only need to estimate the maximum
eigenvalue when performing SGWT. The computational cost to approximate the wavelet coeflicients is
order O(K,,|E] + KmN;i£ ). If the transformed graph satisfies Assumption (h’) and the calculation cost
permits, we can compute the wavelet coefficients specified in (17) based on Theorem 7. Additionally, using
the recurrence formula, it is beneficial to study the evolution of its wavelet coefficients when the time slice
is expanded. In particular, the weighted adjacency matrix of the transformed graph is recursive, we only
need to calculate Ppq for the new time slice Gpy 1.

Remark 1. Graph signal processing is usually considered under an undirected graph framework, since L
may not have a complete set of eigenvectors for a directed graph. For a directed graph, we can consider the
extended Laplacian denoted by Ly, = (L +L’) /2. Then Ly, is a semi-positive symmetric matrix, and
its eigenvectors form a set of orthonormal bases in L*(Vr).

5. Classification method based on SGWT coefficients

SGWT coeflicients contain rich information about the graph signal; however, it remains a big challenge to
interpret them properly for non-experts. In this section, we will introduce the classification and visualization
methods based on SGWT coeflicients, mainly based on the literature [23,54].

5.1. Node classification using SGWT coefficients

Through (17), we obtain the wavelet coefficients: [W¢(1,v),--- , W(M, V)], where M denotes the number
of graph spectral filters in the dictionary. Next, we use wavelet coefficients to classify nodes:
Firstly, a robust scaler transform introduced in RobustScaler of the scikit-learn library [55] is applied by

S(m,v) = [Wy(m,v)|/IQR(m), m=1,---, M, (21)

where IQR(m) is the Inter-Quartile Range (between the first and the third quartile) of |W¢(m,v)|. This
transform ensures that wavelet coefficients are on the same scale.

Secondly, to make it easier to compare the torque values between nodes, each coefficient is normalized
using a logarithmic normalization [56]

W (m,v) = In (1 + S(m,v)) /In (1 + max S(m,v)) S om=1,--, M, (22)
to the range [0, 1]. The normalized wavelet coefficients can be represented as a vector:
Wf(v) = [Wf(lv V), 7Wf(M7 v)l.

Thirdly, the torque function ¢ : Vr — R is defined as [23]:
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Node class Vql“ V% Vis‘ Vé‘ V;)“
Signal frequency low mid-low average mid-high high
Symbol [ | [} w ]

Fig. 3. Node classification. Nodes in Vr are divided into five classes V%, V%, V%, Vf}, and V%, representing the spatio-temporal
changes of the signal (in terms of the SGWT coefficients) as low frequency, mid-low frequency, average, mid-high frequency, and
high frequency, respectively.

v (a) Node signal (b) Node classification (c) A refined anomaly detection
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Fig. 4. Node signals, node classification, and refined node classification based on SGW'T. The refined classification method will be
introduced in section 5.2 with the hyperparameters (; = 1 and {2 = 1. The bottom shows the wavelet coefficients of some nodes
in five classes.

where Z = [-M/2,--- ,—1,1,---, M/2] is a (signed) weight vector and ‘-’ denotes inner product. Clearly,
for any v € Vp, the torque value p(v) is a weighted sum of the normalized SGWT coefficients. The higher
the torque value, the more severe the signal change. The lower the torque value, the smoother the signal.
Finally, let ¢min = min ¢(v), @max = max p(v). Similar to [54], we define a classification score as
veVr veVr

U:VT—>{1a273a4a5}

J(V) = [5(90(") - SDmin)/ (‘pmax - (Pmin)], (24)

where [-] is the integer function. Thus Vr can be divided into five classes, as shown in Fig. 3.

We give 11 x 12 square lattices to illustrate that this classification method identifies the change of
signal well. The signal on it is defined as the combination of the low and high frequency eigenvectors:
fvi) =uy(vy), if 1 <i <36; f(v;) = wsa(vy), if 37 <14 < 132. Fig. 4 (a) describes the signal value on the
graph, where the color associated with the graph nodes encodes the graph signal. Fig. 4 (b) demonstrates
the node classification. When the signal is significantly different from the neighbor node, it is classified as
V2., and when the signal is similar to the neighbor node, it is classified as V}.. The bottom shows the wavelet
coefficients of some nodes in five classes.

5.2. A refined node classification for anomaly detection

Effective anomaly detection could give early indications of danger or find interesting phenomena. This is
necessary for disease outbreak detection, genetic network analysis, activity monitoring in social networks,
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Fig. 5. Refined anomaly detection on V% U V;l by a-scores.

environmental monitoring, malware detection, spam filtering, etc [57,58]. SGWT is a powerful tool to detect
the spatio-temporal anomaly of the signal with the help of the transformed graph. We say the nodes in
V4 U V2 are anomaly nodes. However, as shown in Fig. 4, for example, there are completely different types
of nodes in V2. by examining the distribution of the signal in more detail. As we can see for node vgg, the
signal value is significantly lower than that of its neighbors; while for the one-hop neighbor of vgg, the signal
value is higher than the surrounding values.

A refined node classification method based on [54] is used to identify these two different types of anomalies
for nodes in V# U V3. Given a graph signal f € L?(Vr), a new metric 9 : V; — R is defined as

(v, )] = max{f[(v,t)] = (1 fl(v, )], 0} + min{f[(v, )] = C2f[(v,2)], 0}, (25)

where

flw, 0] = (/INGoh) DY flw, o), (26)
(w,t)eN(lv)t)
N(lm 0 is the one-hop neighbor of (v,t) € V; on the t-th time slice G;. ¢; is a hyperparameter, which is used
to further subdivide the anomaly class.
Next, the anomaly score (a-score) function is x : Vr — {—2,—1,0,1, 2},

0 (v,t) € Vi,i=1,2,3,

v, t)] = ) 27
x|, 2] {(z — 3) - sign(¥[(v, t)]) (v,t) € Vir,i = 4,5. (27)

Thus V7 and V. are further divided into two sub-classes. According to the value of the a-score, we thus have
a new classification of the nodes into the level sets of the a-score function as ¥V =C_oUC_; UCy U Cy UC o,
with C; = {(v,t)]i = x[(v,?)]}. This is also shown in Fig. 5, where we use different colors to represent these
anomaly classes. The a-score depends on both the spatial and temporal relationship of graph signals. Using
the a-score, we can obtain Fig. 4 (c), which shows the internal differences in V3 U V3 in great detail.

5.3. Graph classification based on SGWT coefficients

A graph classification method is presented to classify each graph time slice {G¢,t = 1,--- , T} on the
transformed graph Gr. The distribution of the i-th class V4 on time slice Gy is calculated by

pi=1/Ne) Y Iyi(vt), i=12--- 5, (28)
(v,t)eVL

where Iy is the indicator function of the i-th class Vi.. We use the method in [23] to classify the graph
time slices {G4,t =1,--- ,T}. The graph classification function of G; is defined as:

o1 = argmax (pi/pra); (29)
i€{1,2,3,4,5}
where pi,. = max{p},---,ph}. We thus classify the ¢-th graph time slice as V¢, which carries the most

weight in time slice G;. The graph time slice belonging to V4 |J V3 is known as the anomaly graph time
slice.
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6. Spectral graph wavelet visual analysis on dynamic graphs

In this section, we implement SGWT on two real datasets. By classifying nodes based on wavelet coef-
ficients, it is shown that implementing SGWT on the transformed graph can catch abnormal events based
on signal changes and accurately find interesting key information. We use Matlab to perform fast SGWT
and visualization. In the case study 1, we use two types of signals, and calculating the wavelet coeflicients
takes 0.762323 and 0.737458 seconds, respectively. In the case study 2, it costs 0.029278 seconds to compute
wavelet coefficients. Also, we train the graph attention neural network using Pytorch packages on a single
NVIDIA GeForce RTX 3090. It costs 5017.4465 seconds.

6.1. Case study 1: 2009 SFHH conference in Nice

We choose a dynamic network with a time-dependent graph topology to test the effectiveness of our
proposed method for dynamic graph signal processing. We use the dataset provided in [59], which describes
the face-to-face interactions of 405 participants at the 2009 SFHH conference in Nice, France (June 4-5,
2009). The data collection time was from 9:00 am to 9:00 pm on the first day, and from 8:30 am to 4:30
pm on the second day. The original data provided the pair-wise contact information among participants at
every 20-second interval during the two-day periods.

6.1.1. Construction of the dynamic graph

We first construct the discrete graph time slices {G; = (V;, By), t = 1,--- , T} with T = 22, where the
time interval is one hour. Because this dataset was recorded at a conference, the one-hour time period allows
us to better identify the size of the sub-communities where people interacted with one another. Here we
omitted the time slices at night when there is no communication. Note that someone may not communicate
with others in some time slices, and | V; | and E; change with time. The link weight w(, ., +) is proportional
to the length of the conversation and is the conversation count between (v,t) and (w,t) every 20 seconds
within an hour. Thus we get symmetric, undirected graphs {Gy,t =1,--- ,T}.

In this section, we take two types of graph signal functions to analyze the conference data. Let

Al = D wew,

('w,t)EN(lvyt)

where f1[(v,t)]) represents the total conversation counts of participant v during the ¢-th time slice. Let

fQ[(rUat)} = Z ]IEt (e(v,w,t))a

(w,t)eV;

where f>[(v,t)] represents how many people v contacted at the ¢-th time slice. Next, we construct the
transformed graph Gr using the temporal-attention product. We also link the time slice 21:00-22:00, June
4 to the time slice 8:30-9:30, June 5 by temporal-attention product. Suppose W((y.+),(w,t+1)) inherits from
W(y,w,¢) following the temporal evolution procedure, i.e., W((y ), (w,t41)) "= Wv,w,t)s W((w,t),(w,t)) ‘= Wv,w,t)-
There are some small groups (containing only 2-3 nodes) in which the participants only discuss within the
group and do not communicate with other groups. When we perform the analysis, we do not consider these
groups. So the transformed graph we get is a connected graph with | Vr |= 5008. Then, we compute the
graph wavelet coefficients of the graph signal fi[(v,t)] and fa[(v,t)], respectively.

6.1.2. Owverall visual analysis
We classify each graph time slice {G;,t = 1,--- ,T} on the transformed graph Gr by the graph classi-
fication method designed in section 5. Firstly, we assign each node (v,t) at t-th time slice to one of the
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Fig. 6. The bar graph depicts the node classification distribution pi in (28). The line chart (in blue) depicts the graph classification
for each graph time slice and the sum of signals. The subfigures on top and bottom are based on the graph signal f; and fa,
respectively. The dotted line marks the start of the second-day meeting.

classes {Vi.,i = 1,--- ,5} by the node classification function o[(v,t)] defined as in (24). Secondly, we show
the corresponding probability distribution pi defined in (28), see the bar graph of Fig. 6. The color for the
probability distribution p; matches that of V.. Finally, using the graph classification function o; defined
in (29), we can assign each graph time slice a class V7! with ¢ € {1,2,3,4,5}. This allows us to better
understand how active the participants are in the meeting. The sum of f; and the sum of f, on each time
slice, are plotted as time series in the line chart of Fig. 6, respectively. Graph time slices are denoted by
different shapes and colors to indicate the class from {V7,t =1,--- ,5}, representing which spatio-temporal
changes (low frequency, mid-low frequency, average, mid-high frequency, and high frequency) of node signals
in the time slice account for the greater proportion.

On June 4, 11:00-12:00, it can be seen from bar graphs Fig. 6 that more than 250 participants had face-
to-face communication. Both graph signals reach their peaks, and the graph time slice Gg is classified as a
high frequency class. This means high-frequency signals in this time slice accounted for the most significant
proportion of the entire 22 hours-period. It can be inferred that there exists a lunch break and many people
start a conversation. It was the first break of the meeting, and most people were very active, greeting each
other out of politeness or making new friends. People with a large social circle will contact multiple people
at this time. The sizes of the social circle of participants are also different. At the same time, the total time
for one participant to communicate is also more than other time slices. These factors explain well that G35
belongs to V% in Gp.

As an interesting phenomenon, we can see that on June 5, 12:30-13:30 (G17), nearly 330 people had
face-to-face communication, which counts for another peak time of the signals. However, G17 is identified
as a mid-low frequency class (in blue), contrary to G3, using the graph classification method. This should
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Fig. 7. Node classification on G5 (left) and G17 (right) using the graph signal fi. One can see clearly the graph signal on Gi7 is
almost uniform and the low frequency accounts for more, thus should be classified as a normal subgraph; while G3 is definitely an
anomaly one.

be the lunchtime of the second day, and we can read from the plot that, during this hour, most participants
had the same social profile as their social objects. It can be speculated that people in the same social circle
communicate with each other, and there are few brief greetings between different social circles. This is also in
line with reality, because on the first-day lunch everyone will greet people they know or not out of courtesy,
and there will be brief exchanges between different social circles. But before leaving, most participants prefer
to have rather long conversations with friends. Therefore, it is not difficult to explain why the classification
method identifies this hour as a mid-low frequency class, instead of a high frequency class, compared to the
first lunchtime, using the graph signals.

To better assist in visualizations, we also plot graphs G3 and Gi7, see Fig. 7, together with the node
classifications on both graph time slices. It is consistent with the graph classifications.

6.1.3. Ranking participants by popularity

According to the a~score defined in (27), we can find the most popular participants at the conference, using
the two graph signal functions. Indeed, based on these two graph signals, we further define a comprehensive
anomaly score to analyze participants’ popularity:

T
X ()= (/1) Y xalw, 0] - xpl(0. 1)), (30)
t=1

where x ¢, [(v,t)] > 0and xy,[(v,t)] > 0 are the a-scores defined in (27) with the hyperparameter (; = (» = 1.
We can easily rank the popularity of participants through the comprehensive anomaly score. The larger the
value, the more popular it is.

Fig. 8 shows the top five most popular (active) participants ranked using a comprehensive anomaly score
(30) based on graph signals f; and fo. The first column of Fig. 8 is the score X’(v) defined in (30). The
view also displays the a-scores (27) of participants on different time slices. To distinguish the two signals,
we use circles to represent the a-score based on signal f1, and triangles to represent the a-score based on
signal fo. According to (30), a score is recorded when the two signal markers in Fig. 8 overlap, indicating
that the participant’s talk time and the number of people he talks to are both greater than the average
of his neighbors at this time slice. That is, the participant is more popular if more people are willing to
spend more time communicating with him compared to others. As we can see that participants wvsy, vo1
and vgyq were identified as the most popular people during the first daytime; while vgg and vo; were mostly
active during the dinnertime of the first day. Participant v;¢ was the most popular one during the entire
conference, as he was very active for almost all the recorded time.
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Fig. 9. Top: node classifications for participant v7g on the transformed graph. Bottom: node classifications for participant vz¢ only
using a temporal series graph. The signal is f. The dotted line marks the start of the second-day meeting.

We further provide a detailed graph signal analysis of participant vz¢ in Fig. 9. We visualize the temporal
activity of the participants in each time slice, using the node classifications by graph signal fo. Interestingly,
the classification by only the time-series graph of participant vzg (bottom) is rather different from the
classification on the transformed graph (top). This also explains that it is not sufficient to perform the node
classifications and anomaly detections by only the time-series.

To demonstrate that the dynamic model connected by temporal-attention product can better enable
SGWT to capture the changes of signal dynamic mode, we supplement the node rankings of dynamic
models connected by Cartesian product and strong product, respectively, in the Appendix.

6.2. Case study 2: COVID-19 data analysis among the Group of Twenty

The World Health Organization (WHO) on March 11, 2020, declared the novel coronavirus (COVID-
19) outbreak a global pandemic. There are many papers studying the spread of COVID-19 from different
perspectives, which include how national mitigation measures will affect the process of the COVID-19
pandemic [60], the comparison of pandemic situations among different countries [61,62], and the impact on
social life during the pandemic period [63-66].
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Fig. 10. Time series of the confirmed COVID-19 cases per 100,000 people every week. The inset is the zoom-in view of some country
curves from Dec. 7, 2021 to Feb. 8, 2022, where the y-axis is log-scale.

To understand the roles of individual countries played in the pandemic spreading, we choose to analyze
COVID-19 data among the Group of Twenty (G20): Argentina, Australia, Brazil, Canada, China, France,
Germany, India, Indonesia, Italy, Japan, South Korea, Mexico, Russia, Saudi Arabia, South Africa, Turkey,
the United Kingdom, the United States, and the European Union. The data is taken from the official website
of the World Health Organization.? The original data collected daily new cases in each country. Considering
some countries that do not update their data daily, we summed the data every seven days to analyze the
weekly new cases. The data collection period spans from May 5, 2021 to May 24, 2022. For simplicity,
we used the last date of each week as the label for that particular week in the subsequent visualization
analysis. The signals are the multivariate time series f[(v;,t)], i = 1,- -, 20, confirmed cases of COVID-19
per 100,000 people every week (referred to as confirmed cases) for each of the G20:

f[(vi,t)] = 100000 % Ii(t)/Ci, t=1,--- 7T, (31)

where I;(t) is the number of confirmed cases every week in country v; at time ¢ and C; is the population of
country v;. Let T = 55. The time evolution of f[(v;,t)], i =1,---,20, are plotted in Fig. 10 for G20.

For the multivariate time series of G20 confirmed cases, there is no graph structure at all. Since the
correlation of COVID-19 data between each country is different and changes over time. It may be affected
by complex factors such as trade or traffic flows among these countries. Therefore, we first construct a
sequence of identical complete graphs {G;,t = 1,--- , T} without self-loops. At this time, there is no weight
on the graph G;. Then we obtain the transformed graph Gr using the temporal-attention product. To
better capture the spatio-temporal connection of nodes, i.e., the weight in the transformed graph, the graph
attention neural network (GAT) [50] is used to learn the time-dependent attention weight of each pair
of nodes. GAT is a powerful deep learning method [50,67—70], which has state-of-art performance on node
classification, edge classification, and link predictions. The learned attention (weight) matrix is bidirectional
on the transformed graph. It is worth noting that, according to the spread of the pandemic, time flows in
one direction, from time ¢ to time ¢+ 1; only the weights of temporal-attention edges from G; to G111 need
to be learned, while the weights of temporal-attention edges from Gyy; to G are 0.

2 https://covid19.who.int.
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6.2.1. Learning spatio-temporal transition matrixz Pr in the transformed graph

We introduce how to use GAT to learn the weights of transformed graphs based on the topological
structure and COVID-19 data feature similarity. We take the GAT coefficient obtained from the last layer
of the graph neural network as the weight of the transformed graph. This gives the spatio-temporal transition
matrix Pp = (p(w,vj))zv#xjv;% as the weighted matrix in our transformed graph Gr = (Vrp, Er).

Review the architecture of GAT.

We review the architecture of GAT. Let X, € R4 be a d-dimensional feature of node v; in the transformed
graph Gr. Let H\(,ll) = X, be the initial feature at node v;. To increase the accuracy, one can add several
layers to the graph neural network. At the I-th layer, [ > 1, H\(,l) denotes the input feature with dimension
dy. H\(,lfl) is the output feature with dimension dj;;. The relative importance of neighboring features to
each other can be described by attention coefficients, which are calculated using an attentional function
all) iR x RU 5 R:

(vi,vy)

" exp (LeakyReLU(a L (wWOHD WO ))) )
Ay vy — ,
) e Ak €XD (LeakyReLU(a : (W<1>H$?||W(1>H$Q)))

where || is the concatenation operation, and W® € R%+1%% is a learned embedding matrix. ¢ € R2®+1

is a single-layer feed-forward neural network. LeakyReLU? is the activation function. Moreover, we assign
O]

O[(V'ia

v;) = 0 to avoid self-loop.

H‘(,li“)—ELU( > oal WWH”?), (33)

1,7
\Z] GNvi

where ELU is an exponential linear unit.* To improve the stability of the learning process, we use a multi-
head attention mechanism, that is, run the above process several times in parallel. The output features of
nodes’ neighbors are either concatenated or averaged to form their final output features.

Let S = S U S_ be the sample set of edges for the transformed graph, where Sy is a positive sample
set composed of node pairs with connected edges, and S_ is a negative sample set composed of node pairs
without connected edges. The whole GAT framework is trained by minimizing the following cost function:

L£=—(1/]5]) Z (yi,5logri; + (1 — yi,5) log(1 —145)) (34)
(vi,vj)€S

where | - | represents the cardinality of the set. y; ; is the label information for the edge between v, and v,
with 0 for non-existence and 1 for existence.

ri; = Sigmoid (9 (HEY o Hgg+1>>> : (35)

represents the probability of whether there is an edge between node v; and node v;. Sigmoid® is an activation
function. ® denotes Hadamard product. 6 is the learned parameter vector with the dimension as same as
H‘(,lfl). This setting makes the feature outputs after GAT more relevant if there is an edge between two
nodes.

3 LeakyReLU(z) = 0.15z(1 — sgn(zx))/2 4+ (1 + sgn(x))/2.
4 ELU(z) = (exp(z) — 1)(1 — sgn(x))/2 + =(1 + sgn(z))/2.
5 Sigmoid(z) = 1/(1 + exp(—=x)).
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Fig. 11. The time evolution of the pandemic centrality score ¢;(t) in G20. The color represents the value of the centrality score.

Neural network training settings.

In our setup, the graph signal f[(v,t)] only takes one value at each node. This makes the learning
of attention weight rather difficult. To overcome this difficulty, we design a new feature function on the
transformed graph, which carries short-term temporal information. More precisely, for each node (v, t) € V4,
we define a 4-dimension X, ;) = (f[(v,t—=3)],---, f[(v,t)]) as the new temporal feature at node (v, ) in the
transformed graph Gr. Therefore, in addition to the period we analyzed, we also use data for three weeks
from April 20, 2021 to May 4, 2021.

We take all connected node pairs in the transformed graph (which is rather sparse) as positive samples,
and downsample the same unconnected node pairs as negative samples. The ratio of the training set,
validation set, and test set is 6:2:2. The number of positive samples and negative samples in the test set is
the same. We use two layers of graph attention layers, the first layer has 7 attention heads, and the hidden
layer has 84 units and the output is in the form of a concatenation of 7 attention heads. The second layer
has a single attention head, and the hidden layer has 52 units. The transition probability p(y, v;) is defined
as the GAT coefficients of the last GAT layer, i.e., (32) with [ = 2. During the training process, the learning
rate is le — 5, the dropout rate is 0.1, and the optimizer is Adam. The early stopping strategy is applied to
the validation set to avoid overfitting, with the patience sets to 50 epochs. The edge classification accuracy
for the test set is 0.9534.

6.2.2. Capturing centrality of each country over time

The attention probability p(y, v;) on Gr has the advantage to capture the importance of the characteristics
of v; to v; among all its neighbors on Gr. This enables us to identify the centrality of the i-th country at
time ¢ using the following formula:

ct)= Y. Pws i=1--,20. (36)

1,T
WEN 4

It is the sum of the in-degree weights for each country and changes over time.

We demonstrate the time evolution of the centrality score ¢;(t) in G20 in Fig. 11. Since the time slices of
the endpoints lack neighbors on one side, we omit the endpoint time slice in our subsequent visualization
analysis. The centrality score changes over time. Take December 14, 2021 as an example, the number of
confirmed cases increased sharply during this time, making the centrality score change more obvious. The
countries with top five centrality scores were Brazil, Japan, Indonesia, Sandi Arabia, and Australia. It can
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Fig. 12. Overall visual analysis using node classification and graph classification. The top figure depicts graph classification for each
graph time slice by o defined in (29). The bottom figure depicts the node classification distribution p; given by (28).

be seen from the inset in Fig. 10 that the pandemic situation in these countries began to show an upward
trend in the following month. Due to the delayed nature of pandemic transmission, the pandemic in some
countries will begin to increase subsequently. The pandemic has shown a downward trend in countries with
low centralities, such as Germany and Russia. For the United Kingdom and the United States, the pandemic
was on the rise at the beginning of December 14 due to the previous high centrality effect. Still, after a
while, their pandemic began to decline.

6.2.3. QOwverall visual analysis

We conduct an overall analysis of the spatio-temporal changes of the pandemic in G20 by the graph
classification method after performing SGWT.

As shown in Fig. 12, most of the time during the pandemic, the change in severity in each country was
uneven. The seriousness in some countries was significantly higher or lower than in others. This makes
the detected signal change mainly belong to mid-high frequency (V7) or high frequency (V3). This is also
consistent with Fig. 10. The time slice from December 14, 2021 to December 21, 2021 is classified as V3.
Due to the spread of the Omicron variant, the pandemic in most countries was on the rise, and the spatial
and temporal changes were low frequency. On January 18, 2022, the time slice is classified as V. During
this period, only the French pandemic was high-frequency, and most countries had similar temporal and
spatial changes, so the proportion of countries classified as low-frequency is large, and the time slice was
classified as low-frequency. It can be seen that the rapid spread of the Omicron variant makes the pandemic
between countries more similar. Then, possibly due to different policies adopted by countries, the changes
in severity began to differ. Therefore, a subsequent time slice is classified as V3.

6.2.4. Ranking of G20 using the anomaly scores
We first evaluate the pandemic severity in G20 using the refined classification method — a-scores x(v, t)
with the hyperparameters (; = 1.5 and (o = 0.5. We define the average anomaly score:

X(v) = (1/T) Y x(v, (37)
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Fig. 13. Ranking of pandemic severity using the average a-score in G20. The first column is the average anomaly score Xx(v) defined
in (37). x[(v, t)] is the a-score defined in (27).

Then based on the average a-scores x(v), we give overall ranking of these countries from May 18, 2021
to May 17, 2022 as follows: the United Kingdom, France, Turkey, the United States, Brazil, Argentina,
Russia, Germany, European Union, Italy, South Africa, Australia, South Korea, Canada, Mexico, Japan,
India, Indonesia, Saudi Arabia and China, see Fig. 13. The ranking provides a clear understanding of the
pandemic virus spread information among these countries. This is helpful to analyze the pandemic spread
patterns and find countries with good pandemic protection policies (such as Indonesia), and provide a good
reference for further pandemic prevention and control. Additionally, we can examine each country’s pandemic
intensity throughout a specific period from Fig. 13. For example, the countries with severe pandemics from
January 4, 2022 to May 17, 2022 are South Korea, Australia, Germany, France, and Italy. On the other
hand, the countries with fewer pandemics are China, Saudi Arabia and Indonesia.

7. Conclusion

In this paper, we propose a new method for modeling spatio-temporal dynamic graphs, by introducing
the temporal-attention product, which better reflects the evolution of the signal concerning the surrounding
environment over time. Especially, for dynamic networks with topological changes, this connection method
fully considers the spatial and temporal topological connections. The newly added temporal edges will not
affect the previous spatial graph structures. This method is robust, scalable, and can be defined inductively.
The transformed graph provides a solid mathematical foundation to model the time-dependent graph signal
processes as martingales. Moreover, the transformed graph is highly sparse. The number of edges of Gr is
at most twice the total edges of the sequence of the dynamic graph network U._,G;. The large weighted
adjacency matrix obtained by the temporal-attention product is a block tridiagonal matrix, which appears
in many applications and has been extensively studied. Thus, it is very convenient to study its spectral
properties.

Based on the transformed graph, we can extend GFT and SGWT to study dynamic graph signals, as
well as multivariate time series. Compared with the previous dynamic graph signal processing methods, the
changes in topology and nodes of the transformed graph can be incorporated inductively. It is conducive to
the analysis of data flow. We apply two real datasets for spectral graph wavelet visualization analysis. For
the COVID-19 confirmed data of the G20 without a graph structure, we use GAT and COVID-19 confirmed
data to learn the weighted matrix of the transformed graph composed of complete graphs. We design
different visualization diagrams and methods for selecting key nodes, and provide valuable information for
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Fig. A.14. Node ranking by temporal-attention product. The circle corresponds to the signal f1, and the triangle corresponds to the
signal f2. The dotted line marks the start of the second-day meeting. The first column is the score X’ (v) defined in (30). x, [(v, t)]
is the a-score defined in (27).
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Fig. A.15. Node ranking by Cartesian product. The circle corresponds to the signal fi1, and the triangle corresponds to the signal
f2. The dotted line marks the start of the second-day meeting. The first column is the score ¥’(v) defined in (30). xy,[(v, t)] is the
a-score defined in (27).

signal analysis. For example, it can identify the most popular participants in different social circles using
the SFHH conference dataset. Another example, from the COVID-19 data sets of G20, we found countries
with severe pandemic spread patterns, and identify countries with good pandemic prevention. These can be
used as references for further analysis of pandemics and the formulation of pandemic prevention policies. It
can be seen that SGWT on the transformed graph can successfully analyze the spatio-temporal dynamic
properties of events and capture the key information of interest.

Data availability

This article uses two datasets: the 2009 SFHH conference in Nice and COVID-19 confirmed cases in G20.
We have given the source link in the article.

Appendix A. Comparison of the temporal-attention product, Cartesian products, and strong product

To demonstrate that SGWT on the dynamic graph connected by temporal-attention product can better
capture the spatio-temporal dynamic properties of the signal, we also employ SGWT on the dynamic graph
connected by Cartesian product and strong product for case study 2 in section 6.1. Participants are ranked
for popularity using the same method as subsection 6.1.3. Fig. A.14, Fig. A.15 and Fig. A.16 show the node
ranking results on the dynamic graph connected by the temporal-attention product, Cartesian product and
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Fig. A.16. Node ranking by strong product. The circle corresponds to the signal fi, and the triangle corresponds to the signal fs.
The dotted line marks the start of the second-day meeting. The first column is the score X’(v) defined in (30). xy,[(v,t)] is the
a-score defined in (27).
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Fig. A.17. The node signal value f; and the average signal value of its neighbors. A hollow circle represents a node whose signal
value exceeds the average value of its neighbors, and a solid circle represents a node whose signal value exceeds 1.5 times the
average signal value of its neighbors.

strong product, respectively. We choose three nodes vrg, v21 and vgg to analyze which of the three rankings
is more reasonable.

Because the idea behind our popularity ranking is to assign an a-score by comparing the signal value
of the node with the average value of its one-hop neighbor nodes after the SGWT identifies that the node
belongs to high frequency or mid-high frequency. The comprehensive a-score of a node is calculated by
multiplying the a-scores of the node’s two signals and taking the average value over time. If a node has a
higher comprehensive a-score, it means that not only the number of people talking to this node is more
than the average number of interactions between its neighbors and other people, but also the conversation
time is longer than the average value of interactions between its neighbors and other people. This indicates
that more people tend to spend more time interacting with this node, thus showing that the node is more
popular in the venue.

According to the idea of popularity ranking, we can test the most popular nodes by two criteria:

(i). The nodes with signal value f;[(v,t)] > fi[(v,t)],i=1, 2,

(ii). The nodes with signal value f;[(v,t)] > 1.5 fi[(v,t)], i = 1, 2,
where f;[(v,t)], defined in (26), is the average signal value of one-hop neighbors of the node (v,t) on G.
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Fig. A.18. The node signal value f and the average signal value of its neighbors. A hollow circle represents a node whose signal
value exceeds the average value of its neighbors, and a solid circle represents a node whose signal value exceeds 1.5 times the
average signal value of its neighbors.
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Fig. A.19. The number of time slices where both signals f; > f1 and fa > f2 is shown in blue bars, while the number of time slices
where both signals f1 > 1.5 f; and f2 > 1.5 - fo is shown in red bars.

Fig. A.17 and Fig. A.18 depict the signal f; of nodes v7g, v21 and vgs, and the corresponding f;, respectively.
Fig. A.19 shows the number of time slices that fi > fi and fo > fo (blue bars), and the number of time
slices that f; > 1.5- f; and fo > 1.5 fa (red bars). It can be seen that vzg should be ranked ahead of vy
in terms of popularity, and vs; should be ranked ahead of node vgg. Therefore the ranking in Fig. 8 is more
reasonable.

The comparison of SGWT of different connection methods in this section is rough, due to the signal
criteria being self-defined. It would be interesting for future work to conduct a deeper analysis of this
comparison. The weights of the majority of temporal edges in the strong product graph are defined as the
same as the temporal-attention product method, i.e., W((y 1) (w,t4+1)) = Ww,aw,t)s W((v,t),(w,t)) = W(w,w,t)-
But for the edge between the same base node on the adjacent time slice, similar to [23], the weight is
assigned as 1 for the Cartesian product and strong product. Using different weights may yield different
results. However, since there is no self-loop in the original time slice G;, what weight is reasonable is a
question that needs further discussion for the Cartesian product and strong product. It can be seen that the
ability of the temporal-attention product to assist SGWT in finding important and interesting information
in the applications we exemplify. Therefore, the temporal-attention product is reasonable compared to the
other methods.
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