
J. Fluid Mech. (2024), vol. 981, A27, doi:10.1017/jfm.2024.67
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We investigate the effect of particle inertia on the merger of co-rotating dusty vortex
pairs at semi-dilute concentrations. In a particle-free flow, the merger is triggered
once the ratio of vortex core size to vortex separation reaches a critical value. The
vortex pair separation then decreases monotonically until the two cores merge together.
Using Eulerian–Lagrangian simulations of co-rotating particle-laden vortices, we show
substantial departure from the vortex dynamics previously established in particle-free
flows. Most strikingly, we find that disperse particles with moderate inertia cause the
vortex pair to push apart to a separation nearly twice as large as the initial separation.
During this stage, the drag force exerted by particles ejected out of the vortex cores on the
fluid results in a net repulsive force that pushes the two cores apart. Eventually, the two
dusty vortices merge into a single vortex with most particles accumulating outside the core,
similar to the dusty Lamb–Oseen vortex described in Shuai & Kasbaoui (J. Fluid Mech.,
vol 936, 2022, p. A8). For weakly inertial particles, we find that the merger dynamics
follows the same mechanics as that of a single-phase flow, albeit with a density that must
be adjusted to match the mixture density. For highly inertial particles, the feedback force
exerted by the particles on the fluid may stretch the two cores during the merger to a point
where each core splits into two, resulting in inner and outer vortex pairs. In this case, the
merger occurs in two stages where the inner vortices merge first, followed by the outer
ones.

Key words: particle/fluid flow, vortex dynamics

1. Introduction
The merger of vortices is relevant to many engineering problems and practical applications
including aeronautics, geophysical fluid dynamics, meteorology and astrophysics (Roberts
& Christiansen 1972; Rossow 1977; Overman & Zabusky 1982). Much of the prior
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work on co-rotating vortices was motivated by the observation of vortical structures
in aircraft trailing wakes (Chen, Jacob & Savaş 1999; Jacquin et al. 2005), which
represent a significant hazard to following aircraft during take-off and landing. Vortex
merger is also relevant in many geophysical flows where the large-scale motions appear
as two-dimensional turbulence (Boffetta & Ecke 2012). In such flows, vortex merger
is the primary mechanism for the evolution of the flow, as the merger of small-scale
vortices produces larger vortices and leads to the transfer of energy to larger scales, a
well-known characteristic of two-dimensional turbulence (Couder, Chomaz & Rabaud
1989; McWilliams 1990; Hopfinger & Van Heijst 1993; Jiménez, Moffatt & Vasco
1996). In three-dimensional turbulence, vortex interaction occurs between coherent flow
structures in the region of like-signed vorticity (Vincent & Meneguzzi 1991; Cadot,
Douady & Couder 1995).

The majority of prior work on vortex merger concerned single-phase flows. In particular,
the two-dimensional dynamics of an identical co-rotating vortex pair in a particle-free
flow has been studied extensively (Griffiths & Hopfinger 1987; Melander, Zabusky
& Mcwilliams 1988; Waugh 1992; Dritschel 1995; Meunier et al. 2002; Cerretelli &
Williamson 2003; Brandt & Nomura 2006; Orlandi 2007). The current understanding is
that two co-rotating vortices with equal strength do not merge until the ratio of vortex
core size a to pair separation b exceeds a critical value. If a/b is below the critical
threshold (a/b)crit, the two vortices undergo a diffusive stage during which their sizes
grow by viscous diffusion as they rotate around one another, but their separation remains
approximately constant. This is generally referred to as the first diffusive stage (Meunier
et al. 2002; Cerretelli & Williamson 2003). The convective stage starts once (a/b) reaches
the critical threshold (a/b)crit during which the vortex separation decreases significantly.
In one of the earliest merger experiments, Griffiths & Hopfinger (1987) found (a/b)crit
to be approximately ∼ 0.29–0.32. Later experiments by Meunier & Leweke (2001) and
Cerretelli & Williamson (2003) showed that the threshold is closer to (a/b)crit = 0.29.
For vortex pairs with non-uniform vorticity distributions, Meunier et al. (2002) proposed
a similar merger criterion based on a refined definition of vortex core size. In addition
to experimental observation, linear stability analyses carried out by Dritschel (1995)
and Meunier et al. (2002) show that vortex pairs that are too close, with a/b > 0.32
in Dritschel (1995), become unstable with respect to infinitesimal two-dimensional
perturbations. Melander et al. (1988) proposed that the formation of vortex filaments
during the convective stage drives the merger of the vortex pair. However, this notion was
later disputed by Brandt & Nomura (2006) and Orlandi (2007). Cerretelli & Williamson
(2003) showed that the dominant physical mechanism during the convective stage is
controlled by the antisymmetric vorticity field. The latter induces a velocity that pulls
the two cores together, resulting in the two vortices becoming intertwined. They further
showed that a second diffusive stage follows the convective stage. During this final stage,
viscous diffusion dominates once more and smooths out the large vorticity gradients
resulting from the merger.

Particle-free co-rotating vortices may also be subject to three-dimensional instabilities.
Jimenez (1975) showed that co-rotating vortices are stable to the Crow instability, a
long-wavelength instability that is known for destabilizing counter-rotating vortex tubes
(Crow 1970). However, co-rotating vortex tubes may be susceptible to a short-wavelength
instability called the elliptic instability (Tsai & Widnall 1976). Meunier & Leweke (2001)
showed that the elliptic instability emerges at a circulation Reynolds number ReΓ =
ρf Γ /µf over ∼2000, where Γ is the vortex circulation, ρf is the fluid density and µf is
the fluid viscosity. Orlandi (2007) performed direct numerical simulations at ReΓ = 3000,
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mirroring the experiments of Meunier & Leweke (2001), and showed that, depending on
the initial axial disturbance, the merger dynamics in three dimensions can be significantly
more complex than that in two dimensions. Below, the critical threshold ReΓ,crit ∼ 2000,
a pair of co-rotating vortex tubes evolve in a two-dimensional way.

To the best of our knowledge, vortex merger in semi-dilute dusty flows has not been
investigated. Yet, the dynamics in these flows may deviate considerably from that in
particle-free flows. This is especially true for dusty flows in the semi-dilute regime, where
the average particle volume fraction φp,0 is in the range O(10−6) to O(10−3). Due to large
solid-to-gas density ratio (ρp/ρf = O(103)), the mass loading M = ρpφp,0/ρf is O(1) in
semi-dilute dusty flows, which leads to a significant feedback force from the particles on
the fluid, i.e. two-way coupling. In this regime, the disperse phase may cause large flow
modulation. Several experiments and simulations of turbulent flows laden with semi-dilute
inertial particles attest to this effect (Ahmed & Elghobashi 2000; Hwang & Eaton 2006a,b;
Meyer 2012; Richter 2015; Kasbaoui, Koch & Desjardins 2019; Peng, Ayala & Wang 2019;
Costa, Brandt & Picano 2021; Brandt & Coletti 2022; Dave & Kasbaoui 2023). However,
there is a dearth of studies of particle–vortex interaction in canonical vortical semi-dilute
dusty flows. These configurations are best suited to tease out the fundamental mechanisms
and help build a physical understanding and intuition for how semi-dilute inertial particles
modulate flow structures in more complex flows.

Recently, we have shown that the interaction between disperse inertial particles and a
single vortex alters the dynamics from what is commonly understood as a particle-free
vortex dynamics (Shuai & Kasbaoui 2022; Shuai et al. 2022). For example, a two-way
coupled dusty Lamb–Oseen vortex decays significantly faster than a particle-free one
(Shuai & Kasbaoui 2022). This enhanced decay is due to the ejection of inertial particles
from the vortical core. While the particles cluster into a ring surrounding the vortex,
their feedback force on the fluid leads to faster decay of the flow structure. Perhaps an
even more striking effect is the fact that two-way coupled inertial particles dispersed in
the core of a two-dimensional vortex trigger an instability (Shuai & Kasbaoui 2022).
This is in contrast to the remarkable stability of particle-free vortices to two-dimensional
perturbations (Fung & Kurzweg 1975). We have shown in Shuai & Kasbaoui (2022) that
the ejection of the particles from the vortex core activates a centrifugal Rayleigh–Taylor
instability that persists even for non-inertial particles.

In light of these previous findings, it is expected that the merger dynamics in two-way
coupled dusty flows will be considerably different from that noted in earlier studies of
particle-free flows (Melander et al. 1988; Meunier et al. 2002; Cerretelli & Williamson
2003). In the present study, we revisit the problem of co-rotating vortices with equal
strength, augmented with mono-disperse inertial particles. We use Eulerian–Lagrangian
simulations to show new merger mechanisms that depend on particle inertia. A surprising
outcome is that inertial particles may even temporarily push apart the two vortices.

This paper is organized as follows. Section 2 presents the governing equations applied in
the Eulerian–Lagrangian method to simulate the two-way coupled particle-laden vortices.
The vortex merger process in particle-free flow is shown in § 3. In § 4, we present the
physical mechanism for merger of dusty vortices, the simulation configuration and the
numerical results in particle-laden flow. Finally, we provide concluding remarks in § 5.

2. Governing equations
We describe the dynamics of the gas–solid flow using the Eulerian–Lagrangian formalism
previously deployed in Shuai & Kasbaoui (2022) and Shuai et al. (2022) for the study of
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vortical dusty flows. For the sake of brevity, we reproduce here only the highlights of the
approach.

In the present formulation, the carrier phase is treated in the Eulerian frame, whereas
solid particles are tracked individually. The conservation equations for the carrier phase are
obtained by volume filtering the pointwise Navier–Stokes equations (Anderson & Jackson
1967). In the semi-dilute regime, the equations for mass and momentum conservation read

∂φf

∂t
+ ∇ · (φf uf ) = 0, (2.1)

ρf

(
∂φf uf

∂t
+ ∇ · (φf uf uf )

)
= −∇p + µf ∇2uf + F + ∇ · Rµ, (2.2)

where uf is the fluid velocity, p is the pressure, φf = 1 − φp is the local fluid volume
fraction, φp is the local particle volume fraction, ρf is the fluid density and µf is the
fluid viscosity. The tensor Rµ results from filtering the pointwise fluid stress tensor and
is responsible for the apparent viscosity of the suspension at large particle concentrations
φp > 10−2. This tensor vanishes in the semi-dilute regime considered in this study since
φp = O(10−4). For the same reason, effects due to volume displacement by the particles
are negligible in the semi-dilute regime as φf ≃ 1 in (2.1) and (2.2).

The term F in (2.2) represents the momentum exchange between particles and gas. It is
due to the feedback force exerted by the particles on the gas and reads

F = −φp∇ · τ |p + ρpφp
(up − uf |p)

τp
, (2.3)

where τ = −pI + µ(∇uf + ∇uT
f )/2 is the filtered fluid stress tensor, up is the Eulerian

particle velocity and τp = ρpd2
p/(18µf ) is the response time of spherical particles with

density ρp and diameter dp. The subscript ‘(·)|p’ indicates a quantity evaluated at the
particle locations. The first term in (2.3) is the stress exerted by the undisturbed flow. The
second term represents the drag force by the particle on the fluid, which is represented
using Stokes drag. The latter dominates the interphase coupling (2.3) in a dusty gas since
the particle-to-fluid density ratio is very large (ρp/ρf ≫ 1).

A scaling analysis of the drag terms shows that the mass loading M = ρpφp,0/ρf ,
where φp,0 is the average particle volume fraction, determines the strength of the coupling
between the gas and solid phases. Thus, for vanishingly small mass loadings, the merger
of co-rotating vortices follows the same dynamics as in a particle-free flow since the
solid phase has little effect on the gas phase in the limit M ≪ 1. Conversely, the merger
dynamics is expected to deviate from the established dynamics in particle-free flows when
M = O(1).

The particle phase is treated in the Lagrangian frame. The motion of the ith particle is
given by (Maxey & Riley 1983)

dxi
p

dt
(t) = ui

p(t), (2.4)

dui
p

dt
(t) = 1

ρp
∇ · τ (xi

p, t) +
uf (xi

p, t) − ui
p(t)

τp
, (2.5)

where xi
p and ui

p, are the Lagrangian position and velocity of the ‘ith particle, respectively.
Gravity is ignored in this work to focus on inertial effects. Other interactions, including
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particle collisions, are negligible due to the large density ratio and low volume fraction in
the semi-dilute regime. In the equations above, the instantaneous particle volume fraction
and Eulerian particle velocity field are obtained from Lagrangian quantities using

φp(x, t) =
N∑

i=1

VpG(∥x − xi
p∥), (2.6)

φpuf |p(x, t) =
N∑

i=1

uf (xi
p(t), t)VpG(∥x − xi

p∥), (2.7)

φpup(x, t) =
N∑

i=1

ui
p(t)VpG(∥x − xi

p∥), (2.8)

where Vp = πd3
p/6 is the particle volume, G represents a Gaussian filter kernel of size

δf = 3'x, where 'x is the grid spacing. Further details on the numerical aspects can be
found in Capecelatro & Desjardins (2013).

3. Particle-free vortex merger
Before addressing how inertial particles may modulate the merger dynamics, we first
describe the different stages of vortex-pair merger in a particle-free case that will
be used in § 4 to assess the effect of introducing inertial particles. To this end, we
consider a simulation of particle-free vortex merger at a circulation Reynolds number
ReΓ = ρf Γ /µf = 530, where Γ is the vortex circulation, that matches the experiments
of Cerretelli & Williamson (2003).

We perform a ‘pseudo-two-dimensional’ simulation in a periodic domain, subdivided
into 4 anti-symmetric quadrants, as previously done in Shuai & Kasbaoui (2022) and Shuai
et al. (2022). Here, ‘pseudo-two-dimensional’ refers to the fact that the axial direction
is considered periodic and discretized with only one grid point to enable the inclusion
of spherical particles at a later point. In each quadrant, we initialize two co-rotating
Lamb–Oseen vortices with equal initial radii a0 and separated by b0, such that the ratio
a0/b0 = 0.17 is initially below the merger threshold (a/b)crit = 0.29. This indicates that
the two vortices will not merge immediately, but rather undergo a first diffusive stage
before the onset of a convective stage. Each quadrant has a size 30a0-by-30a0, which
is sufficiently large to avoid interactions between vortices in different quadrants for the
length of the simulations considered (Shuai & Kasbaoui 2022). The simulation grid is
uniform with a high spatial resolution a0/'x ≈ 51 to provide good resolution of the vortex
cores. Data collected from all four quadrants are used in the computation of statistics after
application of appropriate symmetries.

According to Cerretelli & Williamson (2003), Melander et al. (1988) and Meunier et al.
(2002), the merger of two co-rotating vortices follows three stages, called the first diffusive
stage, the convective stage and the second diffusive stage. All these stages are reproduced
in our simulations, as can be seen in figure 1, which show the evolution of the normalized
vortex separation, b/b0, and axial vorticity, ωz, normalized by the angular velocity ωΓ =
Γ /(2πa2

0) from one of the four quadrants. Initially, the two vortices rotate around one
another, but their separation remains constant, as can be seen in figure 1. After a time
period tD, the cores grow sufficiently to reach the merger threshold (a/b)crit = 0.29, at
which point, the convective merger is initiated. During this stage, the separation decreases
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1.25

1.00

0.75

b/
b 0

0.50 First diffusive
stage

Convective
stage

Second
diffusive

stage

0.25

0
–8 –6 –4 –2 0

(t – tD)Γ/b2
0

2 4 6 8 10

Figure 1. The evolution of vortex separation b/b0 as a function of time in a single-phase fluid at ReΓ = 530.
Symbols: •, Cerretelli & Williamson (2003); !, present simulation. Snapshots represent normalized vorticity.

linearly. The vortices are deformed significantly as shown at (t − tD)Γ /b2
0 = 0 and 6 in

figure 1. The second diffusive stage occurs in the range 6 " (t − tD)Γ /b2
0 " 9, after which

the vortex pair can be considered fully merged.

4. Particle-laden vortex merger

4.1. The role of disperse phase on vortex merger
The merger of vortices in the presence of a particulate phase involves two additional
processes – the dispersion of inertial particles by the background flow and the feedback
force from the disperse phase. The former depends on the spatial distribution of
strain-dominated regions over rotation-dominated regions, while the latter depends on the
local particle concentration and the slip velocity between the two phases. These processes
are coupled, and one requires a full numerical simulation to understand completely how
a dusty vortex merger behaves differently from its particle-free counterpart. This will
be elaborated on in the next section. Here, we will attempt to identify some expected
behaviour in dusty vortex mergers based on the dispersion and feedback force in an
idealized scenario of two liked-signed point vortices of equal circulation.

The streamline pattern for a pair of point vortices in the co-rotating frame has three
stagnation points (S0, S1 and S2) and two elliptic fixed points (G1 and G2, the counterparts
of the ‘ghost vortices’ in the finite-sized vortex merger processes) as shown in figure 2(a).
Heavy inertial particles are expected to centrifuge to infinity in open vortical flows.
However, in the flow field for a vortex pair, heavy inertial particles can get trapped in the
vicinity of the vortices (Angilella 2010)! The locations of fixed points for inertial particles
are different from tracers as the ghost vortices, elliptic fixed points for tracers, now
turn into stable spirals and migrate towards the saddle points (Ravichandran, Perlekar &
Govindarajan 2014). At a critical Stokes number, the two fixed points merge and disappear.
Beyond the critical Stokes number, trapping is no longer possible, and all particles now fly
off to infinity. The rate at which particles are centrifuged from the vicinity of the vortices
also depends on the Stokes number; lower Stokes would lead to a slower depletion of
particles from the neighbourhood of the vortices.

The feedback force of the particles on the fluid depends on the local particle
concentration and slip velocity (see (2.3)). In the limit of small particle inertia, the slip
velocity can be written as (up − uf |p) ≈ −τp Duf |p/Dt, proportional to the local fluid
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Figure 2. Velocity field and negative of the acceleration field (∝ feedback force) for a pair of identical point
vortices in co-rotating frame. The point vortices are located at (±1, 0) and are marked as red circles. In the
velocity field (a) the stagnation points are at (0, 0) and (±

√
5, 0) and are labelled as S0, S1 and S2, respectively.

The elliptic fixed points are at (0, ±
√

3) and are labelled as G1 and G2, respectively; (a) u and (b) −Du/Dt.

acceleration. The negative of fluid acceleration is plotted in figure 2(b), revealing that each
of the vortices experiences a stretching force along the line joining the centres. The forces
are in balance when the particle inhomogeneity is minimal outside each of the vortices.
This would be a scenario for cases with low particle inertia, where the merger dynamics
would resemble that of particle-free cases. As we will show later in § 4.3, the dynamics
can be viewed as that of an effective fluid with modified density. The merger dynamics
will resemble that shown in the schematic in figure 3(a) – the particle-feedback forces are
in balance, and the outer antisymmetric vorticity components are responsible for bringing
the vortices together. When particle inertia is higher, the centroid of the two vortex system
(S0 in figure 2a) quickly becomes devoid of any particles. The particle depletion near the
origin reduces the inward feedback force compared with the outward feedback force, as
shown in figure 3(b). Thus, the vortex cores experience an increase in separation due to
this imbalance in the feedback force. Once the particles have centrifuged sufficiently far
from the vortices, the vortices reverse direction and start approaching each other due to
the induced velocity from the antisymmetric vorticity component. For high inertia, the
imbalance in the inward and outward feedback forces on each vortex core can also have
dramatic effects, where they significantly stretch an individual vortex to rip it into two
cores, as highlighted in figure 3(c).

Next, we will explore the role of the feedback force and the antisymmetric component
of the vorticity quantitatively using numerical simulations.

4.2. Simulation configuration and vortex centre identification
Except for the introduction of randomly placed mono-disperse particles, the simulation
configuration remains the same as described in § 3. The particles have diameter dp, density
ρp and are initialized with velocities that match the fluid velocity at their locations.

We consider seven cases where the particle inertia and mass loading are varied. Table 1
lists a summary of the non-dimensional parameters in each case. Case A is the reference
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Non-interacting vortex pair
pair separation is constant

(a)

(b)

(c)

Pair separation increases

Stretching induced by particle forcing
may cause the splitting of vortex cores

Figure 3. Mechanism of vortex merger process in presence of a disperse phase. Green arrows indicate the
particle-feedback force and the blue arrows indicate the antisymmetric component of the vorticity. (a) Low
inertia merger, (b) high inertia merger – initial stage and (c) high inertia merger – later stage.

particle-free case. Cases B and C correspond to the limit of very low particle inertia,
characterized by a circulation Stokes number StΓ = τp/τf = 0.01. Here, τf = 2πa2

0/Γ

is the characteristic fluid time scale associated with an isolated vortex of radius a0 and
circulation Γ . In these two cases, the mass loading is M = 1.0 and 0.5, respectively,
obtained by varying the average particle volume fraction φp,0. In cases D–G, we vary the
Stokes number StΓ by changing the particle diameter, as shown in table 1. For all cases,
the initial separation ratio is a0/b0 = 0.17 and the density ratio ρp/ρf is fixed at 2167. In
order to compute ensemble averages, we repeat the simulations several times, each time
with a different realization of the initial random distribution of the particles. The total
number of realizations Nr for each case is also shown in table 1. We chose Nr such that
Nra/dp ∼ 8000, i.e. there are approximately 16 000 particles within the core of a vortex
across all realizations. This ensures that ensemble-averaged quantities are not significantly
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Case StΓ M φp,0 a/dp Number of realizations Nr

A – – – – –
B 0.01 1 4.6 × 10−4 1008 8
C 0.01 0.5 2.3 × 10−4 1008 8
D 0.05 1 4.6 × 10−4 450 8
E 0.1 1 4.6 × 10−4 318 8
F 0.2 1 4.6 × 10−4 225 32
G 0.3 1 4.6 × 10−4 184 32

Table 1. Non-dimensional parameters considered in the simulations. For all cases, the initial separation ratio
is a0/b0 = 0.17 and the Reynolds number ReΓ = Γ /ν = 530.

Unfiltered Filtered

Apply filter with
size δf = a/2

Figure 4. To detect vortex centres, the vorticity field is filtered to remove fluctuations induced by the
Lagrangian forcing.

impacted by discrete fluctuations due to increasing particle size, particularly in cases D–G
where a/dp < 450.

The vortex separation is a significant variable to investigate the vortex merger process.
Unlike in particle-free merger where smooth vorticity fields allow easy detection of the
centres, the feedback force from disperse particles causes large vorticity fluctuations that
make the detection of the vortex centres harder. The left picture in figure 4 shows an
example of the large vorticity fluctuations obtained in a particle-laden case. Due to this,
we have found it necessary to filter the data from Euler–Lagrangian simulations to reliably
detect the vortex centres.

To identify the vortex centre, we first compute the filtered vorticity ω̄z(x) from the
instantaneous vorticity field ωz(x) by convolving with a triangle filter kernel g with support
δf as follows:

ω̄z(x, y, t) =
∫∫

ωz(x′, y′)g(x − x′, y − y′) dx′dy′. (4.1)

To retain the vortex feature after filtering, δf is set to be half of the initial vortex core
radius, that is a0/2. The right picture in figure 4 shows the result of applying this filtering
procedure to the field in the left side of figure 4. After filtering, we use the gradient
descent method to find the local extrema of the filtered vorticity field, thus obtaining
the locations of the two vortex centres. The distance between these two centres gives the
instantaneous vortex separation b(i)(t) for a realization ‘i’. Lastly, we ensemble average
the results across all realizations to obtain the vortex separation in a dusty gas flow
b(t) = (1/Nr)

∑Nr
i=1 b(i)(t).

981 A27-9

1�
��

:

  

�7
2�7

�0
 �

��
��

�	
 �/

�
��

��
��

�	
��

��
42:

1.
��

76
426

.�
�!

��
��

��
2�

0.
�


62
 .

�:
2�!

��
�.

::

https://doi.org/10.1017/jfm.2024.67


S. Shuai, A. Roy and M.H. Kasbaoui

tΓ/b2
0 = 0

φp St = 0.01

φp St = 0.1

φp St = 0.3

ω−z St = 0.01

ω−z St = 0.1

ω−z St = 0.38

0

–8 0 0 0 0
x′/a0 x′/a0 x′/a0 x′/a0 x′/a0

y′ /
a 0

8 8 8 8

8

0

–8 0

y′ /
a 0

8

8

0

–8 0

y′ /
a 0

8

8

0

–8

8

0

–8

8

0

–8

8

0

–8

8

0

–8

8

0

–8

8

0

–8

8

0

–8

8

0

–8

8

0

–8 0–8 8

0 0 08 8 8 0 8

0 0 08 8 8 0 8

0 0 08 8 8 0 8

0 0 08 8 8 0 8

0 0 08 8 8 0 8

8

0

–8

8

0

–8

8

0

–8

8

0

8

0

–8

8

0

–8

8

0

–80

y′ /
a 0

8

8

0

–8

8

0

–8

8

0

–8

8

0

–8

8

0

–80

y′ /
a 0

8

8

0

–8

8

0

–8

8

0

–8

8

0

–8

8

0

–80

y′ /
a 0

8

tΓ/b2
0 = 3.5 tΓ/b2

0 = 7.0 tΓ/b2
0 = 10.5 tΓ/b2

0 = 14.0

ω−z/ωΓ

–1.0 –0.5 0 0.5 1.0

φp/⟨φp⟩

0 0.25 0.50 0.75 1.00

Figure 5. Successive snapshots of normalized particle volume fraction φp and filtered vorticity ω̄z iso-contours
for cases B, E and G. See supplementary movies available at https://doi.org/10.1017/jfm.2024.67 for animations.

4.3. Weakly inertial particles
Figure 5 shows the iso-contours of normalized particle volume fraction and normalized
filtered vorticity from tΓ /b2

0 = 0 to 14 for StΓ = 0.01, 0.1 and 0.3 with mass loading
M = 1. Animations of these cases are provided in the supplementary movies. From the
snapshots in figure 5, it is clear that semi-dilute inertial particles alter the merger dynamics,
even at very small Stokes numbers. For the case at StΓ = 0.01, shown in the first and
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Figure 6. Evolution of the normalized separation b/b0 for (a) the weakly inertia cases B–C, (b) the
moderately inertial cases D and E and the highly inertial cases (c) F and (d) G.

second rows of figure 5, the dynamics of the vorticity field remains qualitatively similar
to that of the particle-free vortex pair, however, the merger takes significantly longer and
the vortices are further stretched than in the single-phase case. During this process, the
particles are gradually ejected from the two vortex cores under the effect of preferential
concentration, similar to the dynamics observed for an isolated dusty vortex in Shuai &
Kasbaoui (2022). By tΓ /b2

0 = 7, this results in the formation of two distinct void-fraction
bubbles. These structures become progressively larger and more stretched, as can be seen
at tΓ /b2

0 = 10.5 and 14. As the vortices approach one another, a line of particles can
be seen dividing the two vortices at tΓ /b2

0 = 14. This line of particles forms because
the region between the two vortices is dominated by straining, which draws in particles
originally located outside the vortices, and those that have been ejected from the cores.

Figure 6(a) shows the evolution of the vortex-pair separation for the particle-free case A,
and cases B (StΓ = 0.01, M = 1.0) and C (StΓ = 0.01, M = 0.5). While the particle-free
vortices merge around tΓ /b2

0 ≈ 16, merger occurs much later, around tΓ /b2
0 ≈ 28, with

mass loadings M = 1.0.
The observations in figures 5 and 6(a) suggest that, at a first approximation, the merger

of the dusty vortex pair at StΓ ≪ 1 is similar to the merger of particle-free vortices in
an effective fluid with density ρeff = (1 + M)ρf . To justify this reasoning, consider a
two-fluid model of the particle phase where the particle velocity field is expanded in the
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limit of small inertia as done in Kasbaoui et al. (2015) and Shuai et al. (2022), as

∂φ

∂t
+ up · ∇φ = −φ∇ · up, (4.2)

up = uf − τp

(
∂uf

∂t
+ uf · ∇uf

)
+ O(τ 2

p ). (4.3)

Combining these equations with the fluid conservation equations

∇ · uf = 0, (4.4)

ρf

(
∂uf

∂t
+ uf · ∇uf

)
= −∇p + µ∇2uf +

ρpφ

τp
(up − uf ), (4.5)

yields the following mixture equations:

∂ρeff

∂t
+ uf · ∇ρeff = τp

{(
ρeff − ρf

)
∇uf : ∇uf +

∇ρeff

ρeff
·
(
−∇p + µ∇2uf

)}
, (4.6)

ρeff

(
∂uf

∂t
+ uf · ∇uf

)
= −∇p + µ∇2uf , (4.7)

where ρeff = (1 + M(φp/φp,0))ρf is the local effective density, the first term on the
right-hand side of (4.6) represents preferential concentration and the second term is due
to the slip between the two phases. Thus, in the limit of negligible inertia, i.e. τp → 0, or
equivalently, StΓ → 0, the inertial effects due to preferential concentration and slip vanish,
making (4.6) and (4.7) identical to those of a single-phase fluid with effective density ρeff .

To verify this hypothesis, we conducted additional simulations of single-phase merger
where the fluid density equals ρeff = (1 + M)ρf for M = 0.5 and M = 1.0. Comparison
of the vortex-pair separation from these simulations with the separation measured in the
particle-laden cases B and C (see figure 6a) shows excellent agreement during most of the
merger. Deviations that can be seen for tΓ /b2

0 # 18 are likely due to inertial effects which,
as suggested by the growth of the void bubbles, become significant as time progresses,
despite the low Stokes number StΓ = 0.01.

Although the effective fluid analogy captures well the merger dynamics in the limit
StΓ ≪ 1, it is worth further investigating the precise mechanisms activated by the particles
causing the slowing down of the merger and which may play a larger role with increasing
StΓ . For this reason, we investigate the dynamics of the ensemble-averaged axial vorticity
⟨ω̄z⟩ and the particle feedback ⟨F̄ ⟩ as the interplay between these two fields controls the
merger. Following Cerretelli & Williamson (2003), we investigate these quantities in a
rotated reference frame (x′, y′) such that the x′-direction connects the two vortex centres.
The y′-direction is orthogonal to the latter and represents a plane of symmetry before the
vortex cores start deforming. Further, we decompose these quantities into symmetric and
antisymmetric parts. For the axial vorticity, this decomposition reads

⟨ω̄z⟩(x′, y′) = 1
2 [⟨ω̄z⟩(x′, y′) + ⟨ω̄z⟩(−x′, y′)] + 1

2 [⟨ω̄z⟩(x′, y′) − ⟨ω̄z⟩(−x′, y′)]

= ⟨ω̄S
z ⟩ + ⟨ω̄A

z ⟩, (4.8)

where ⟨ω̄S
z ⟩ and ⟨ω̄A

z ⟩ denote the symmetric and antisymmetric vorticities, respectively.
For illustration, figure 7 shows the filtered ensemble-averaged vorticity field ⟨ω̄z⟩ in the
laboratory reference frame, in the rotated reference frame, its symmetric part ⟨ω̄S

z ⟩ and
antisymmetric part ⟨ω̄A

z ⟩ at an arbitrary time during the merger.
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(a) (b)

–0.25 0 0.25

(c) (d)

ω−z/ωΓ

Figure 7. Iso-contours of ensemble-averaged and filtered (a) vorticity ⟨ω̄z⟩(x, y) in the laboratory reference
frame, (b) vorticity ⟨ω̄z⟩(x′, y′) in the rotated reference frame. (c) Symmetric vorticity ⟨ω̄S

z ⟩(x′, y′) and
(d) antisymmetric vorticity ⟨ω̄A

z ⟩(x′, y′).

As argued by Cerretelli & Williamson (2003), it is only the antisymmetric vorticity field
⟨ω̄A

z ⟩ that contributes to the change of separation in particle-free cases. Depending on the
symmetries of ⟨ω̄A

z ⟩, the induced velocity field may either pull together or push apart the
vortex cores. When inertial particles are dispersed in the flow, the antisymmetric part of
the component of the particle-feedback force in the direction parallel to the line connecting
the two vortex centres c1 and c2, i.e.

⟨F̄A
∥ ⟩ = ⟨F A⟩ · c2 − c1

∥c2 − c1∥
, (4.9)

also affects the pair separation. Note that, the dynamics of the symmetric part ⟨F̄S
∥⟩ in

the parallel direction controls the translational drift of the whole vortex pair but does
not impact the separation. The dynamics of the symmetric and antisymmetric parts of
particle-feedback force in the normal direction, i.e. ⟨F̄S

⊥⟩ and ⟨F̄A
⊥⟩, influences the normal

stretching and rotation rate of the vortex pair, respectively. Since our primary concern is
the rate at which a vortex pair merges in a dusty flow, we focus on analysing ⟨ω̄A

z ⟩ and
⟨F̄A

∥ ⟩ as these are the only two fields impacting the vortex separation. Figure 8 shows
the normalized, filtered and ensemble-averaged particle-feedback force in the parallel
direction ⟨F̄A

∥ ⟩ and antisymmetric vorticity ⟨ω̄A
z ⟩ in the rotated reference frame for case B

(StΓ = 0.01 and M = 1). To facilitate comparison, the ensemble-averaged particle volume
fraction ⟨φ̄p⟩ and fluid vorticity ⟨ω̄z⟩ in the rotated reference frame are also included in
this figure. The antisymmetric vorticity field ⟨ω̄A

z ⟩ displays features that are similar to
those observed by Cerretelli & Williamson (2003) in a particle-free vortex merger. Before
the convective merger is initiated, at approximately Γ t/b2

0 ∼ 14, each vortex centre is
surrounded by two inner and two outer regions where the antisymmetric vorticity is large.
The induced velocity by the inner antisymmetric vorticity pushes the two cores apart,
while the outer antisymmetric vorticity has the opposite effect of pulling the two cores
together. In a particle-free merger, there is a balance between these two effects during
the first diffusive stage, resulting in no change of the separation b. With the initiation of
the convective merger, the balance between inner and outer antisymmetric vorticities is
broken, with the former dominating and causing the separation b to decrease. In the dusty
flow case B, figure 8 shows that the disperse particles exert a force in the inner region of
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Figure 8. Iso-contours of ensemble-averaged and filtered antisymmetric particle-feedback force along the two
vortex centres ⟨F̄S

∥⟩, antisymmetric axial vorticity ⟨ω̄A
z ⟩, particle volume fraction ⟨φ̄p⟩ and total axial vorticity

⟨ω̄z⟩ at representative times during the merger. Data correspond to case B with StΓ = 0.01, M = 1 and ReΓ =
530.

each core that pulls the two vortices together, and a force on the outer regions that pushes
the vortices apart. Later, towards Γ t/b2

0 = 14, the inner attractive force vanishes, leaving
only the outer force with net repulsive effect. Thus, the particles oppose the attractive
pull generated by the antisymmetric vorticity leading to slower merger as observed in
figure 6(a).

4.4. Moderately inertial particles
While the merger dynamics of a dusty flow with weakly inertial particles (StΓ ≪ 1) is
qualitatively similar to that of a particle-free flow, a new dynamics emerges with increasing
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particle inertia. The most notable change noted in our simulations with 0.05 ≤ StΓ ≤ 0.1
is that the eventual merger of the vortex pair starts first with the two vortices pushing apart.

The void bubbles in case E (StΓ = 0.1, M = 1.0), shown in figure 5, grow significantly
faster than in the low inertia case B, as the effects of preferential concentration intensify
with increasing particle inertia (Shuai & Kasbaoui 2022). Further, the deformation of
vortex cores and the void bubbles starts earlier, suggesting that this process is related
to particle inertia. Due to the faster depletion of the cores, the particle line separating
the two vortices appears earlier, at around tΓ /b2

0 = 7, and becomes thinner as the merger
progresses. During this early transient tΓ /b2

0 " 10.5, the two cores push apart, leading to
an increase in separation compared with the initial state. The cores start approaching one
another only once the line of particles separating the cores becomes sufficiently thin, and
eventually ruptures.

Figure 6(b) shows the evolution of the normalized separation b/b0 for cases D and E,
alongside the data for the particle-free case A. While tΓ /b2

0 " 7, the separation remains
approximately constant. During this stage, the two vortices are mostly independent of one
another and evolve according to a dynamics similar to that reported in Shuai & Kasbaoui
(2022). Unlike in single-phase merger, where the growth of the vortex cores is exclusively
driven by viscosity, the growth of the cores and void bubbles are interlinked as the feedback
force from the particles exiting the cores causes greater spreading of the vorticity field.
Time tΓ /b2

0 ≃ 7 marks the start of a new stage, that we call the repulsion stage, and which
ends by tΓ /b2

0 ≃ 12 in case D (StΓ = 0.05) and tΓ /b2
0 ≃ 10 in case E (StΓ = 0.1). During

this stage, the vortex-pair separation increases monotonically, up to a saturation limits
b/b0 ∼ 1.35 and 1.5 in cases D and E, respectively. Then, the merger is initiated. This
stage resembles the convective stage in particle-free merger, during which the vortex-pair
separation drops rapidly and lasts until tΓ /b2

0 ≃ 18 in case D and tΓ /b2
0 ≃ 16 in case E.

At the end of this stage, the two void regions have merged, resulting in a large particle-free
region containing the two vortices. The dynamics from here and onward follows that of a
single-phase merger as the particles have been ejected from the central region.

To elucidate the mechanism driving the repulsion stage, we report in figure 9
iso-contours of the fields ⟨ω̄A

z ⟩, ⟨F̄A
∥ ⟩, ⟨φ̄p⟩ and ⟨ω̄z⟩ for case D (StΓ = 0.05) at

representative times in the rotated reference frame. As previously discussed in § 4.3, it
is the symmetries of ⟨ω̄A

z ⟩ and ⟨F̄A
∥ ⟩, and their interplay, that dictate the evolution of the

vortex-pair separation. Up until tΓ /b2
0 ≃ 10.5, there is a relative balance between the

inner and outer antisymmetric vorticities tΓ /b2
0 = 10.5. This suggests that the vorticity

dynamics does not have a significant effect on the vortex-pair separation during this time.
In contrast, a gradual imbalance develops between the inner and outer parts of the parallel
antisymmetric particle-feedback force ⟨F̄A

∥ ⟩. This imbalance favours the outer regions
which have a net repulsive effect on the vortex pair. It is caused by the drag force exerted by
inertial particles ejected away from the vortex pair. The weakening of the particle-feedback
force in the inner regions results from the growth of the void fraction bubbles and their
gradual merger. This imbalance leads to a gradual increase of the vortex-pair separation.
This effect accelerates significantly at approximately tΓ /b2

0 = 10.5, which represents the
time around which the inner regions become fully depleted of particles and no longer
exert any pull on the vortex pair. Later, the antisymmetric vorticity develops an imbalance
between the inner and outer regions, which can be seen in the iso-contours at tΓ /b2

0 = 14.
The induced velocity by the breaking of this balance causes the vortex cores to pull
together. When this attractive effect of the antisymmetric vorticity overcomes the repulsive
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Figure 9. Iso-contours of ensemble-averaged and filtered antisymmetric particle-feedback force along the two
vortex centres ⟨F̄S

∥⟩, antisymmetric axial vorticity ⟨ω̄A
z ⟩, particle volume fraction ⟨φ̄p⟩ and total axial vorticity

⟨ω̄z⟩ at representative times during the merger. Data correspond to case D with StΓ = 0.05, M = 1 and ReΓ =
530.

effect of the disperse particles, merger is initiated and the vortex pair separation decreases
rapidly.

4.5. Highly inertial particles
With increasing Stokes number, the feedback force from the particles increasingly distorts
the vortical structures, making the merger more complex. This is illustrated in case G
(StΓ = 0.3, M = 1) in figure 5, where the vortices appear highly stretched at a time
as early as tΓ /b2

0 = 3.5. This extreme distortion causes each vortex to split into two
smaller vortices, an inner one and an outer one, as can be clearly seen at tΓ /b2

0 = 7 in
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Figure 10. Iso-contours of ensemble-averaged and filtered antisymmetric particle-feedback force along the two
vortex centres ⟨F̄S

∥⟩, antisymmetric axial vorticity ⟨ω̄A
z ⟩, particle volume fraction ⟨φ̄p⟩ and total axial vorticity

⟨ω̄z⟩ at representative times during the merger. Data correspond to case F with StΓ = 0.2, M = 1 and ReΓ =
530.

the instantaneous fields in figure 5 and the ensemble-averaged fields in figure 10. From
figures 6(c) and 6(d), the inner vortices start merging around tΓ /b2

0 = 18 for case F
(StΓ = 0.2) and tΓ /b2

0 = 14 for case G (StΓ = 0.3), with no repulsion stage. Meanwhile,
the outer vortices start with a repulsive stage for 3 " tΓ /b2

0 " 9, during which the centres
push apart to a maximum distance b/b0 ≃ 1.9. This stage is followed by a convective stage
and a second diffusive stage in the range 9 " tΓ /b2

0 ≃ 16. At the end, a single distorted
vortex is left, enclosed inside a larger void-fraction bubble.

The splitting of each vortex results from the extreme distortion caused by the particles.
Figure 10 shows that the initial vortex pair stretches under the influence of the disperse
particles. By tΓ /b2

0 = 3.5, the vortices assume elliptical shapes with similarly shaped
void-fraction bubbles. Due to the fast depletion of the inner region between the two cores,
the particle-feedback force has a net repulsive effect on the vortex pair. However, since this
force is largest at the opposite ends of the vortex pair, it causes significant stretching of the
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(a) (b)

Figure 11. Vector plot of ⟨F̄ ⟩ overlayed on iso-contours of axial vorticity ⟨ωz⟩ from case F (StΓ = 0.2,
M = 1) at non-dimensional times (a) tΓ /b2

0 = 7 and (b) tΓ /b2
0 = 8.5. The vectors are scaled by magnitude.

cores and ultimately causes the appearance of two vorticity extrema for each initial vortex
core.

The inner vortices start merging when they become decoupled from the disperse
particles. This occurs at around tΓ /b2

0 = 7.0 as the inner region is devoid of particles
at this point. Figure 11 shows vector fields, where vectors are scaled by magnitude, of
the ensemble-averaged particle forcing ⟨F̄ ⟩ in the laboratory reference frame at times
tΓ /b2

0 = 7.0 and tΓ /b2
0 = 8.5. Whereas the outer vortices are dragged outward by the

centrifuging particles, the inner vortices are not subject to any forcing due to the absence of
particles locally. Meanwhile, the induced velocity by the inner vortices pulls them together,
following a similar dynamics to that acting during the convective merger of particle-free
vortices, as can be seen from the antisymmetric vorticity in figure 10 at times tΓ /b2

0 = 7.0
and tΓ /b2

0 = 8.5. Ultimately, this causes the inner vortices to merge before the outer ones.
The merger of the outer vortices starts around tΓ /b2

0 ∼ 9 and concludes around tΓ /b2
0 ∼

18 and tΓ /b2
0 ∼ 16 for cases F and G, respectively. The outer vortices merge when the

antisymmetric vorticity exerts a greater pull than the repulsion caused by the particles,
following a dynamics similar to that noted in § 4.4.

5. Conclusion
Eulerian–Lagrangian simulations of the merger of co-rotating vortices laden with inertial
particles reveal new mechanics specific to dusty flows. The present simulations were
carried out in the semi-dilute regime, specifically for average particle volume fractions
φp,0 = 2.3 − 4.6 × 10−4 and mass loadings M = 0.5–1.0. Despite the low particle
concentration, dusty flows in this regime have strong momentum coupling between the
carrier and disperse phases since the mass loading is order unity. To investigate the effect
of particle inertia, we varied the Stokes number StΓ in the range 0.01 to 0.3. We found that
these particles can be classified into three main categories. Particles that have a Stokes
number StΓ ≤ 0.01 are considered weakly inertial. With such particles, the merger of
dusty vortices is delayed compared with the merger of particle-free vortices. However, the
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merger dynamics is not much different from that of the particle-free case, if one considers
the particle–fluid mixture as an effective fluid with density ρeff = (1 + M)ρf . Particles
with Stokes number in the range ∼ 0.05 to ∼ 0.1 are considered as moderately inertial.
In this case, the merger of a dusty vortex pair exhibits an additional stage characterized
by a temporary repulsion of the vortex cores, before undergoing successive convective
merger and second diffusive stages. Analysing the antisymmetric vorticity field and the
antisymmetric particle-feedback force in a co-rotating reference frame, we find that the
vortex separation increase is caused by a repulsive force generated by the ejection of
particles from the vortex cores. Once all particles have been ejected from the inner
region separating the two cores, the attractive effect of the antisymmetric vorticity field
dominates, which triggers the merger of the vortex pair. For highly inertial particles
(StΓ # 0.2), the particle-feedback force causes each core to stretch to such extent that
it rips it into two cores. In this case, the merger of the inner and outer vortices takes place
in sequence. The inner vortices initiate the merger as soon as the inner region becomes
devoid of particles. The outer vortices push apart temporarily and then initiate the merger
once the inertial particles are ejected sufficiently away. In all cases, the final outcome of the
merger is a single vortex with a core that is depleted from all particles and a surrounding
hallo of high particle concentration.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.67.
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