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A B S T R A C T   

Although adaptive cruise control (ACC) has been widely analyzed in the car-following process, 
the way it reacts to cut-in maneuvers has been largely ignored. The cut-in maneuvers may trigger 
multiple disturbances to traffic, resulting in traffic oscillations and corresponding rear-end 
crashes. Hence, this study provides a theoretical analysis framework to model the disturbance 
evolution for ACC under cut-in scenarios. Specifically, we first derive the general ACC dynamic 
evolution based on the widely adopted ACC (i.e., linear feedback control) by applying Caley- 
Hamilton theorem. Given that, two representative cut-in scenarios are designed to comprehen-
sively understand the impact of cut-in vehicle behavior as well as control parameters on the safety 
and stability of the ACC system. Enable by the interpretability nature of ACC dynamic analytical 
solution, necessary and sufficient conditions for overshoot and potential safety risks are derived. 
The proposed framework is further applied to analyze the cut-in disturbance evolution of com-
mercial ACC systems using field-test data and calibrated control parameters, by which the 
probabilistic safety and stability condition is provided. Through the above efforts, the framework 
is instrumental in robust ACC design under cut-in scenarios.   

1. Introduction 

Adaptive cruise control (ACC) serves as the fundamental vehicular automation function to maintain a desired spacing from 
immediately preceding vehicle, which brings promises to enhance traffic safety and efficiency (Li et al., 2017; Zhou et al., 2019). There 
exist three major ACC system categories: linear control (Naus et al., 2010; Wang et al., 2020b; H. Zhou et al., 2022), optimal control 
(Wang et al., 2020a; Zhou et al., 2019, 2017), and reinforcement learning based controller (Cheng et al., 2019; Shi et al., 2021). 
Regardless of the control logic and algorithm, one of the essential properties of the ACC design is the robustness against various 
disturbances (e.g., temporary velocity drops and merging/diverging flow) to ensure safety and stability. Previous studies (Li et al., 
2023; Montanino and Punzo, 2021; Ploeg et al., 2014; Zhou et al., 2022a; Zhou et al., 2017) have conducted rigorous mathematical 
derivation to guarantee the local and string stability of linear control through proper selection of control parameters, which assures the 
disturbance dissipates as time goes to infinity and will not be amplified through the following vehicle and vehicular string respectively. 
Besides, the string stability have also been proven for nonlinear control (e.g., Model Predictive Control, MPC), as well as in scenarios 
incorporating delays and heterogenous traffic flow (Liu et al., 2001; Montanino and Punzo, 2021; Ward, 2009; Zhou et al., 2019). 
These approaches guarantee the desired local-stable and string-stable vehicle behavior, which helps in dampening traffic oscillations. 
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In the traditional stability analysis, they typically assume that the system is in equilibrium, but this assumption does not hold when an 
initial disturbance (e.g., cut-in disturbance) is introduced. Therefore, the stability is insufficient in fully describing the evolution of 
ACC’s dynamic over time and the corresponding potential collision risk (Khound et al., 2021; Li, 2022). ACC stability as well as safety, 
while interrelated, are not equivalent, though a stable ACC is generally safer than an unstable one. Stability describes properties 
guaranteeing disturbance resolving and dampening but fails to depict the ‘in-process’ disturbance. Whereas, during the disturbance 
resolving and dampening, the transitional dynamics of a stable ACC system can also create voids as well as cause collisions. In the 
control theory, a phenomenon wherein the system’s response to external disturbance either exceeds or fails short of its equilibrium, is 
referred to as positive or negative overshoot (Nise, 2020). In the spacing response of the ACC system, positive overshoot causes the 
spacing between two vehicles to exceed the ideal following spacing than necessary, which causes traffic void and reduces traffic 
throughput (Chen et al., 2020). On the other hand, the negative overshoot results in an undesirably reduced spacing. If the magnitude 
of the negative overshoot exceeds safety thresholds, the risk of rear-end collisions significantly increases (Jayasuriya and Dharne, 
2002). It is, therefore, of paramount importance to distinguish between stability, which pertains primarily to the system’s inherent 
capacity to regain equilibrium, and safety, which encompasses the entire evolution of the ACC system toward its equilibrium amidst 
various disturbances. 

Current disturbance analysis primarily pertains to a pure car-following process in both theoretical and practical aspects (Gunter 
et al., 2021; Li and Shrivastava, 2002; Marsden et al., 2001; Ossen and Hoogendoorn, 2011). Different from a pure car-following 
process, the cut-in vehicles will simultaneously trigger the disturbance by introducing target spacing deviation and speed changes 
of the following vehicle. Besides, the cut-in vehicle itself may accelerate or decelerate to reach its car-following steady states, which 
further contributes to traffic oscillations (Ahn and Cassidy, 2007; Zheng et al., 2013) and corresponding rear-end collision (Li et al., 
2017; Zheng et al., 2010). Addressing these disturbances has led to several studies proposing advanced controls, such as learning-based 
stochastic MPC (Kazemi et al., 2018), control mode transition (Milanés and Shladover, 2016), and adaptive control (Bang and Ahn, 
2018). However, commercial ACC system predominantly adopt linear control, which may not effectively handle cut-in disturbances, 
potentially leading to safety risk and overshoot condition (Li et al., 2021; Shi and Li, 2021). Despite the notable progress in control 
approaches, understanding of disturbance evolution subject to cut-in maneuver for linear ACC is significant but remains elusive (Li 
et al., 2021). 

The evolution of cut-in disturbance in the linear ACC system is a multifaceted process, influenced by multiple factors. The selection 
of control gain directly influences the acceleration profile of the controlled vehicle. Furthermore, the acceleration/deceleration 
boundaries of the ACC system have concurrent effects on ACC behavior and response characteristics. When the cut-in vehicle has 
merged into target lane, the speed oscillation further introduces disturbances in ACC evolution. It is evident that ACC design and the 
behavior of cut-in vehicle are both critical factors in ACC dynamic evolution, yet their compounded effects on safety and overshoot of 
the ACC system, along with their resultant implications (e.g., potential collision or traffic void), remain inadequately studied. Some 
relevant studies on ACC disturbance analysis under cut-in scenarios have been conducted. Chen et al. (2020) analytically investigated 
the impact mechanism of heterogeneity in driving behavior (i.e., preferred acceleration and car-following behavior) under lane- 
changing in mixed traffic flow. However, the study simplified the ACC preferred acceleration setting (i.e., larger or smaller acceler-
ation than HDV) and mainly focused on traffic throughput, rather than safety. Other related studies (Makridis et al., 2021; Zhao et al., 
2019) resorting to field experiment-based approaches have demonstrated that abnormal cut-in maneuvers (i.e., over-aggressive and 
over-conservative) can result in safety–critical situations. Despite these findings, it should be noted that such method lacks the 
capability to directly analyze and interpret the disturbance evolution as well as potential safety risk caused by the combined impact of 
cut-in vehicle behaviors and ACC design. Therefore, it is imminent to build up a fine-grained and firm understanding of ACC dynamic 
evolution under cut-in scenarios and its corresponding safety. 

To bridge these research gaps in cut-in disturbance analysis, this study provides a theoretical and analytical framework of dis-
turbances evolution and potential safety risks for linear ACC under cut-in scenarios. We theoretically examine two critical issues: (i) 
The manifestation of ACC dynamic evolution in response to cut-in disturbances, a process significantly impacted by ACC design (i.e., 
different control parameters) and cut-in behavior (i.e., initial cut-in condition and velocity change); and (ii) the impact of ACC dynamic 
evolution on the safety of vehicle subjected to cut-in maneuvers. We first provide an analytic derivation of ACC dynamic evolution by 
applying the Caley-Hamilton theorem, assuming a widely adopted ACC system based on second-order linear feedback control. 
Furthermore, the necessary and sufficient conditions for the ACC system’s inherent oscillation and the engagement of nonlinear control 
law are derived, enabled by the interpretability nature of ACC state analytical solution. Two specific cut-in scenarios are designed to 
provide a comprehensive understanding on the impact of cut-in vehicle behavior (i.e., cut-in position and speed and acceleration/ 
deceleration behavior after cut-in) as well as control parameters on the overshoot and safety condition of the ACC system. The pro-
posed analysis framework is further applied to analyze dynamic evolution of commercial ACCs under cut-in disturbances, using field- 
test data (Li et al., 2022) and corresponding calibration results (Y. Zhou et al., 2022), by which the probabilistic overshoot and safety 
condition of commercial ACCs is provided. The major contribution of this study is our focus on the disturbance evolution in linear ACC 
systems under cut-in maneuvers, addressing the limitations of existing local/string stability analysis and aiming to ensure both stability 
and safety simultaneously. 

In this study, we focus on linear ACC system (i.e., linear feedback control) because (i) its wide use in commercial ACC systems; (ii) 
its ability to provide foundational insights into ACC dynamics, essential for understanding more complex systems; and (iii) the 
theoretical analysis challenges posed by the implicit control laws of nonlinear control. Insights from this study are crucial for 
enhancing the robustness of linear ACC systems against cut-in disturbances. There are two notable limitations of linear feedback 
control: time-invariant control parameters and the inability to integrate collision-free constraints (Zhou et al., 2017). By analyzing the 
safety and overshoot conditions of linear ACC systems with acceleration/deceleration boundaries, we can explore the relationship 
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between cut-in maneuvers, ACC parameters, and safety/overshoot conditions. This relationship offers insights into making driving 
decisions, such as whether to overtake or yield, in response to a cut-in maneuver. It could also derive a feasible region of control gains 
to ensure stability and safety, given a cut-in maneuver. This complements the limitations of local/string stability analysis in linear 
feedback control by incorporating disturbance and safety analysis. 

The remainder of the paper is organized as follows: Section 2 presents the general derivation framework for ACC dynamic evolution 
under cut-in disturbances, and Section 3 provides scenarios-based derivation and analysis by giving velocity profiles of cut-in vehicle. 
Section 4 conducts a series of numerical experiments to understand ACC evolution and investigate related factors, as well as evaluate 
the probabilistic performance of field-testing ACC systems under cut-in maneuvers. Finally, the conclusion and future research are 
outlined in Section 5. 

2. General derivation framework for ACC traffic dynamics evolution 

As suggested by Chen et al. (2020) and Liu et al. (2021), current ACC algorithms in the market are predominantly linear feedback 
controllers. Hence, a linear controller with second-order dynamics is adopted in our paper for the following analysis, and it can be 
further extended to incorporate a higher-order dynamics ACC controller or nonlinear ACC controller that can be approximated through 
linearization. This section first derived ACC dynamic evolution under cut-in scenarios adopting the Caley-Hamilton theorem. Then, by 
considering the primary nonlinearity of the ACC system, i.e., bounded acceleration/deceleration, the general framework for ACC 
dynamic evolution is developed. These ACC dynamics evolution will serve as the base for the disturbance analysis and safety risks 
identification. 

In detail, by defining the system state for vehicle i at time interval t following xi(t) = [Δdi(t),Δvi(t) ]T . Δdi(t) = di(t)−d*i (t) rep-
resents the deviation of the spacing di(t) between vehicle i and i−1 at time interval t and the ideal spacing d*

i (t) = vi(t) • τ* + δ*, in 
which τ* and δ* are the pre-defined constant time gap and standstill distance, respectively. Δvi(t) = vi−1(t)−vi(t) is the velocity dif-
ference between preceding and following vehicle. Vehicular dynamics together can be formulated as a linear time-invariant (LTI) 
system as below: 

ẋi(t) = Axi(t) +Bui(t) +Dai−1(t) (1) 

Where the A =
[0 1

0 0
]
,B =

[
−τ*

−1
]
,D =

[0
1
]
.ui(t) = ai(t) represents the control input, the acceleration for vehicle i. ai−1(t) is 

acceleration for preceding vehicle i−1. 
According to the linear feedback law, we can have: 

ui(t) = kxi(t) (2) 
Where k = [ks, kv] are the feedback gain for the deviation from equilibrium spacing Δdi(t) and speed difference Δvi(t), respectively. 

By combining Eq. (1) and (2), Eq. (3) can be obtained as: 
ẋi(t) = Adxi(t) +Ddai−1(t) (3)  

Ad =
[
−τ*ks 1 − τ*kv

−ks −kv

]
,Dd =

[
0

1

]

Eq. (3) is also an LTI system, and its continuous solution can be solved by taking integral on both hand sides, which finally renders: 

xi(t) = eAd (t−t0)xi(t0)⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟
freeresponse

+
∫ t

t0

eAd (t−φ)Ddai−1(φ)dφ

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
forcedresponse

(4)  

In Eq. (4), xi(t) contains two components, including free response and forced response, where the free response describes how ACC 
reacts to initial conditions of cut-in vehicles xi(t0), and the forced response represents the further behaviors contributed by cut-in 
vehicle’s acceleration and deceleration after cut-in. In both responses, the matrix exponential eAd t can be obtained by Taylor-series 
expansion eAd t = I + Adt + 1

2!(Adt)2 + 1
3!(Adt)3 + ⋯, but it greatly prohibits the tractability and interpretability. To make Eq. (4) 

more interpretable, a further technique is needed to simplify eAd t . Note that simplifying eAd t is non-trivial since matrix Ad is non- 
diagonal nor nilpotent. Therefore, we apply the Cayley-Hamilton theorem (Straubing, 1983), as presented in Appendix 1. 
Proposition 1. (When (τ*ksi + kvi)2 −4ksi ≥ 0, the eigenvalues of Ad are all real numbers, and)   

eAd t = α0I + α1Ad =

⎡
⎢⎢⎢⎣

eλ1 t − eλ1 t−eλ2 t

λ1 − λ2

(λ1 + τ*ks)
eλ1 t−eλ2 t

λ1 − λ2

(1 − τ*kv)

−eλ1 t−eλ2 t

λ1 − λ2

ks eλ1 t − eλ1 t−eλ2 t

λ1 − λ2

(λ1 + kv)

⎤
⎥⎥⎥⎦ (5) 
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Where λ1 = −(τ*ks+kv)+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(τ*ks+kv)2−4ks

√
2 and.λ2 = −(τ*ks+kv)−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(τ*ks+kv)2−4ks

√
2 

Because eλ1t and eλ2t are monotonic functions, the ACC itself should be a non-oscillatory system resulting in smooth ACC dynamic 
evolution without overshoot. When λ1,λ2 < 0, smaller eigenvalues correspond to faster convergence towards equilibrium, because the 
magnitude of the eigenvalues determines the speed at which the system’s response decays over time. 
Proposition 2. (When (τ*ks + kv)2 −4ks < 0, the eigenvalues of Ad have an imaginary part, and)   

eAd t = α0I + α1Ad =

⎡
⎢⎢⎢⎣

eztcosyt − ezt(τ*
ks−z)
y

sinyt
ezt(1 − τ*kv)

y
sinyt

−kse
zt

y
sinyt eztcosyt − ezt(kv−z)

y
sinyt

⎤
⎥⎥⎥⎦ (6)  

Where z =−1
2 (τ*ks +kv) and y = 1

2

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(τ*ks + kv)2 − 4ks

√ )
. 

The detailed proofs of Propositions 1 and 2 are provided in Appendix 2. As can be found from Proposition 1 and 2, the eigen-
values of Ad in ACC system, λ1, λ2 plays crucial roles in determining the system’s stability and response characteristics, including 
whether the system is oscillatory or non-oscillatory (Franklin et al., 2002). If all the eigenvalues have a negative real part, the ACC 
system is locally stable. In the case of oscillatory systems, the eigenvalues have complex conjugates paired with negative real parts, 
which results in oscillatory behavior in the system’s response due to the sinusoidal/cosinusoidal terms. Moreover, the y determines the 
frequency of system oscillation, and the oscillation magnitudes decay exponentially by z. Note that the oscillatory behavior of the ACC 
system itself is independent of local/string instability. As long as the oscillations, attributable to the ACC design itself, exhibit decaying 
magnitude, the ACC system is stable. 
Remark 1. (.) eAdt of the second-order vehicle dynamics can be derived analytically. For higher-order vehicle dynamics, such as 
third-order dynamics (Zhou et al., 2020), or dynamics with delay (Brunner et al., 2022), eAd t can be approximated by Taylor expansion. 
Since it is not the main focus of our paper, we stick to the second-order vehicle dynamics for the following analysis. 

By combining Proposition 1 or Proposition 2, the preliminary solution of system state xi(t) can be obtained in Eq. (4). To further 
incorporate the impact of nonlinearity, such as bounded acceleration/deceleration, we derived the ACC dynamic evolution based on 
Eq. (4). Since integration by pieces always holds, Eq. (4) can be further expanded by conditioning on time t that acceleration/ 
deceleration boundary that is not touched as Proposition 3. 
Proposition 3. Given ks,kv, τ*,ub,ai−1(t),Δdi(t0),Δvi(t0), and t0, if the below equation on t has a positive solution, the ACC system will 
show nonlinear behavior due to the bounded acceleration/deceleration. Otherwise, the ACC system follows linear feedback control 
law as Eq. (4) with Propositions 1 or 2. 

[ ks ks(t − t0) + kv ]
[

Δdi(t0)
Δvi(t0)

]
+ [ ks kv ]

⎡
⎣−t2

2
+ (t0−τ*)t + τ*t0 −

t2
0

2

−t + t0

⎤
⎦ub +

∫ t

t0

(ks(t − φ) + kv )ai−1(φ)dφ

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
forcedresponse

− ub = 0 (7)   

Proof. Based on Eq. (1) and bounded acceleration/deceleration, the analytical solution to the continuous ACC system can be 
obtained: 

xi(t) = eA(t−t0)xi(t0)+
∫ t

t0

eA(t−φ)Bubdφ+
∫ t

t0

eA(t−φ)Dai−1(φ)dφ (8-a)  

ub =
{

uminkxi(t) ≤ umin

umaxkxi(t) ≥ umax

(8-b)  

A is a nilpotent matrix since its square results in a zero matrix, which allows for simplifying the Taylor expansion. eA(t−t0) = I +
A(t − t0) =

[1 t − t0
0 1

]
, and ub is the bounded acceleration or deceleration. From Eq. (2) and (8), we can have Eq. (7). By analyzing the 

solution of Eq. (7), Proposition 3 can be obtained. Taking ai−1(φ) = 0 (i.e., constant cut-in velocity) as an example, Eq. (7) could be 
revised as below: 

ub = kxi(t) = [ ks kst + kv ]
[

Δdi(0)
Δvi(0)

]
+ [ ks kv ]

⎡
⎣−t2

2
−τ*t

−t

⎤
⎦ub (9-a) 

Eq. (9-a) can be further simplified to Eq. (9-b), for which a solution can be readily derived as a quadratic equation of t. 
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− ksub

2
t2 +(ksΔvi(0)−ksubτ* − kvub )t+ ksΔdi(0)+ kvΔvi(0)− ub = 0 (9-b) 

The specific nonlinearity interval for ACC system is given in the following scenario-based derivation. If ai−1(φ) is the piecewise 
function (i.e., non-integrable), the definite integral of forced response can be obtained separately by each interval, and the framework 
remains valid. Moreover, Proposition 3 remains applicable for deriving the nonlinearity interval of the ACC system, even in cases 
where acceleration/deceleration of cut-in vehicles (i.e., ai−1(φ)) exceeds or falls below the boundary. 

3. Scenarios-based Derivation and Analysis Framework 

To further understand the disturbance evolution impacted by ACC design and cut-in vehicles’ behaviors, we conduct scenarios- 
based derivation and analysis by different cut-in vehicles’ initial condition xi(t0) and the cut-in vehicle’s acceleration/deceleration 
behavior ai−1(φ). In Scenario 1, the cut-in vehicle triggers the initial disturbance (i.e.,xi(t0) ∕= 0) while maintaining a constant speed 
afterward (i.e., ai−1(φ) = 0). Based on Scenario 1, we further assume the behaviors of the cut-in vehicle after cut-in by exemplar 
Scenario 2 as shown in Eq. (10) and Fig. 1. In Scenario 2, state evolution of the ACC system is jointly impacted by initial cut-in 
condition and the behaviors of the cut-in vehicle, which means ACC system has both free and forced responses. According to the 
analytic formulation of eAd t and given velocity profiles from the cut-in vehicle, we can derive the specific solution of Eq. (4), which is 
the dynamic evolution of the ACC system under disturbance. Note that the designed ACC system may behave distinctly due to the 
difference of Ad, the analytical solution for ACC state evolution is respectively provided to understand the overshoot and safety 
condition under two specific scenarios with Propositions 1 and 2. 

ai−1(φ) =

⎧
⎨
⎩

a1t ∈ (0, t1)
a2t ∈ (t1, t2)

0others

(10) 

In this study, we define safety risk as the bumper-to-bumper distance of two vehicles (i.e., following and cut-in vehicles) less than a 
pre-defined threshold (ε). As to the overshoot, if the extremum of Δdi(t) exists, and its sign is different from the initial state Δdi(t0), it 
indicates the overshoot in spacing response exists. Depending on the sign of Δdi(t0), it can be further categorized as positive overshoot 
and negative overshoot, illustrated by Fig. 2(a) and Fig. 2(b), respectively. As demonstrated in Fig. 2(a), the initial bumper-to-bumper 
distance is less than equilibrium (i.e., negative spacing deviation). Both non-oscillatory (blue profile) and oscillatory (red profile) ACC 
systems will gradually converge to equilibrium, but the oscillatory ACC system inherently exhibits decay oscillation due to the control 
parameters setting. This oscillation results in positive overshoot, as the response exceeds the equilibrium (red profile). Positive 
overshoot will create voids in traffic streams due to large spacing, which reduces traffic throughput. Additionally, collisions may 
happen if the initial cut-in spacing is excessively small (yellow profile) or due to the impact of bounded acceleration/deceleration in 
the ACC system (green profile), even in the absence of an overshoot. Conversely, as shown by Fig. 2(b), the initial spacing deviation is 
positive. The negative overshoot will occur when the response spacing falls below equilibrium. Negative overshoot causes spacing to 
be small, which may result in near-collision or collision conditions (red and green profiles). ACC system reaching the equilibrium 
spacing gradually in a safe manner, as shown by the blue profiles in Fig. 2, is more desirable. Note that both oscillatory and non- 
oscillatory ACC systems are locally stable, and the non-oscillatory ACC system does not correspond to string stability. It is because 
the local/string stability is the inherent property of ACC design, while the non-oscillation in ACC dynamic evolution is related to both 
ACC system design and external disturbance, as oscillation can originate from the ACC system itself or from the cut-in vehicle. 

3.1. Derivation of Scenario 1 under non-oscillatory ACC system 

Under Scenario 1, the ACC system solely has a free response, which is the reaction to the initial cut-in condition. Given the initial 
condition xi(t0), when vehicle just cut-in and ai−1(φ) ≡ 0, the state evolution of ACC can be derived from Eq. (5) as Eq. (14) if 

Fig. 1. Speed profile for Scenario 1 and 2.  
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Propositions 1 and 3 hold. Based on Eq. (11), the overshoot and safety risk conditions can be derived from Propositions 4 and 5. 

[
Δdi(t)
Δvi(t)

]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 t

0 1

][
Δdi(0)
Δvi(0)

]
+

⎡
⎢⎣−t2

2
− τ*t

−t

⎤
⎥⎦ubt ∈ [0, tw]

M(t, tw)
[

Δdi(tw)
Δvi(tw)

]
t ∈ (tw,∞)

(11) 

ACC reaches bounded acceleration/deceleration in Tw = [0, tw]. Suppose ACC follows linear feedback control law, then tw = 0.

Besides, M (t, t0) =

⎡
⎢⎢⎣

eλ1(t−t0) − eλ1(t−t0)−eλ2(t−t0)

λ1 − λ2
(λ1 + τ*ks)

eλ1(t−t0)−eλ2(t−t0)

λ1 − λ2
(1 − τ*kv)

−eλ1(t−t0)−eλ2(t−t0)

λ1 − λ2
ks eλ1(t−t0) − eλ1(t−t0)−eλ2(t−t0)

λ1 − λ2
(λ1 + kv)

⎤
⎥⎥⎦ represents a function of free response 

under non-oscillatory system that mapping xi(t0) to xi(t).
Lemma 1. (Switch time): Nonlinear interval is Tw = [0, tw], where switch time from nonlinear behavior due to bounded accelera-
tion/deceleration to linear feedback control law is given by tw = max

(
−B± ̅̅̅D√

2A
)

. When D = B2 −4AC < 0 or max

(
−B± ̅̅̅D√

2A
)
≤ 0, the ACC 

system adheres strictly to the linear control law and tw = 0, where A =−ksub
2 ,B = ksΔvi(0)−ksubτ* −kvub, and 

C = ksΔdi(0)+kvΔvi(0)−ub. The proof can be found in Appendix 3. 
Proposition 4. (Overshoot condition): When ACC exhibits nonlinear behavior, the spacing overshoot exists if Eq. (12-a) and t*

Δd,n ≤
tw or Eq. (12-b) and t*

Δd,n > tw are satisfied, where t*
Δd,n = Δvi(0)−ubτ*

ub
. 

Δdi

(
t*
Δd,n

)
• Δdi(0) < 0 (12-a)  

Δdi(tw) • Δdi(0) < 0 (12-b)   

Proof. From Eq. (11), the spacing response under Scenario 1 can be given as: 

Δdi(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Δdi(0) + Δvi(0)t −
ubt2

2
− ubτ*tt ∈ [0, tw]

eλ1(t−tw)Δdi(tw) −
eλ1(t−tw)−eλ2(t−tw)

λ1 − λ2

(λ1 + τ*ks)Δdi(tw) +
eλ1(t−tw)−eλ2(t−tw)

λ1 − λ2

(1 − τ*kv)Δvi(tw)t ∈ (tw,∞)
(13-a) 

According to the definition of overshoot, the extremum of Eq. (13-a) should exist, and its sign should be different from Δdi(0). Then, 
we can set Δdi(t)′ = 0, and derive the time of extreme spacing response (t*), as below: 

Fig. 2. Illustration of overshoot and safety risk for the ACC system (a) positive overshoot; (b) negative overshoot.  
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⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t*
Δd,n = Δvi(0) − ubτ*

ub

t*
Δd,l =

ln
−N

M
λ1 − λ2

+ tw

(13-b) 

Where M = λ1(−λ2 −τ*ks)Δdi(0)+λ1(1 − τ*kv)Δvi(0) and N = λ2(λ1 + τ*ks)Δdi(0)−λ2(1 − τ*kv)Δvi(0)
Therefore, Proposition 4 and Lemma 2 can be obtained considering the asymptotic stability nature of a stable ACC system. Based on 

the signs of Δdi(0), we can further distinguish the positive and negative overshoot following Remark 2. 
Lemma 2. (Overshoot condition): When the ACC system follows linear control law (tw = 0), the overshoot of the spacing response 
happens if Eq. (14-a) and (14-b) are satisfied. 

− N

M
> 0 (14-a)  

Δdi

(
t*
Δd,l

)
• Δdi(0) < 0 (14-b)   

Remark 2. If Proposition 4 or Lemma 2 holds and Δdi(0) < 0, the positive overshoot happens. Conversely, if Δdi(0) > 0, the 
negative overshoot happens. The illustration has shown in Fig. 2. 
Proposition 5. (Safety risk condition): When the following inequality equations are satisfied, the ACC system with nonlinearity 
property has safety risk. Specifically, when ε = 0, crashes happen. 

If t*
d,n ∕∈ [0, tw], 
min(di(0), di(tw) ) ≤ ε (15-a) 

If t*
d,n ∈ [0, tw], 

min

(
di(0), di

(
t*d,n

))
≤ ε (15-b)   

Proof. According to the definition of the safety risk, we can have the safety risk condition: 
di(t) = Δdi(t)+ (vi−1(t)−Δvi(t))τ* ≤ ε (16-a) 

By substituting Eq. (13-a) into Eq. (16-a), we can have: 

di(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−ubt2

2
+ Δvi(0)t + τ*vi−1(t) + Δdi(0) − τ*Δvi(0)t ∈ [0, tw]

eλ1(t−tw)

λ1 − λ2

[ − λ2Δdi(tw) + (1 + τ*λ2)Δvi(tw) ] +
eλ2(t−tw)

λ1 − λ2

[λ1Δdi(tw) − (1 + λ1τ*)Δvi(tw)] + vi−1(t)τ*t ∈ (tw,∞)
(16-b) 

vi−1(t) in Scenario 1 is constant, then Eq. (16-b) can be simplified as: 

di(t) =

⎧
⎪⎨
⎪⎩

−ubt2

2
+ Δvi(0)t + τ*vi−1(0) + Δdi(0) − τ*Δvi(0)t ∈ [0, tw]

Aeλ1(t−tw) + Beλ2(t−tw) + Ct ∈ (tw,∞)
(16-c) 

Where = −λ2Δdi(tw)+(1+λ2τ*)Δvi(tw)
λ1−λ2 , B = λ1Δdi(tw)−(1+λ1τ*)Δvi(tw)

λ1−λ2 , and C = vi−1(0)τ*. By derivatizing Eq.(16-c) with respect to t, the extremum 
of two pieces in Eq. (16-c) can be obtained: 

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t*d,n =
Δvi(0)

ub

t*d,l =
ln

(
− λ1A

λ2B

)

λ1 − λ2

+ tw

(16-d) 

To satisfy Eq. (16-a), Proposition 5 and Lemma 3 can be given by comparing the states of the extremum moment, switch moment, 
and initial cut-in. 
Lemma 3. (Safety risk condition): The ACC system following linear control law (tw = 0) is subject to the safety risk, when Eq. (16-e) 
is satisfied. 
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min

(
di(0), di

(
t*d,l

))
≤ ε (16-e)   

3.2. Derivation of Scenario 1 under oscillatory ACC system 

When Proposition 2 holds, the ACC system itself has oscillatory behavior, so the state evolution of ACC can be derived from Eq. (6) 
as Eq. (17) considering Proposition 3. 

[
Δdi(t)
Δvi(t)

]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 t

0 1

][
Δdi(0)
Δvi(0)

]
+

⎡
⎢⎣−t2

2
− τ*t

−t

⎤
⎥⎦ubt ∈ [0, tw]

M̃ (t, tw)
[

Δdi(tw)
Δvi(tw)

]
t ∈ (tw,∞)

(17) 

Where, M̃ (t, t0) =

⎡
⎢⎢⎣

ez(t−t0)cosy(t − t0) − ez(t−t0)(τ*ks−z)
y siny(t − t0) ez(t−t0)(1 − τ*kv)

y siny(t − t0)

−ksez(t−t0)

y siny(t − t0) ez(t−t0)cosy(t − t0) − ez(t−t0)(kv−z)
y siny(t − t0)

⎤
⎥⎥⎦ represents a 

function of free response under an oscillatory ACC system. 
Proposition 6. (Overshoot condition): If Proposition 2 holds, the overshoot is bound to happen. When the ACC system is impacted 
by bounded acceleration/deceleration, the first overshoot is in t*

Δd,n, if Eq. (18-a) is satisfied. Alternatively, the first overshoot happens 
in t*

Δd,l = π+2arctan(B/A)
2y + tw, if either Eq. (18-b) or (18-c) is met. If Eq.(18-d) is satisfied, the first overshoot occurs at switch time tw. 

Detailed proof has provided in Appendix 4. 
⎧
⎨
⎩

t*
Δd,n ∈ [0, tw]

Δdi

(
t*
Δd,n

)
*Δdi(0) < 0

(18-a)  

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t*
Δd,n ∈ [0, tw]

Δdi

(
t*
Δd,n

)
*Δdi(0) > 0

Δdi

(
t*
Δd,l

)
*Δdi(0) < 0

(18-b)  

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

t*
Δd,n ∕∈ [0, tw]

Δdi(tw)*Δdi(0) > 0

Δdi

(
t*
Δd,l

)
*Δdi(t) < 0

(18-c)  

{
t*
Δd,n ∕∈ [0, tw]

Δdi(tw)*Δdi(0) < 0
(18-d) 

Where, A = (2z−τ*ks)Δdi(tw)+(1 − τ*kv)Δvi(tw) and B =
(
−y−z(τ*ks−z)

y
)

Δdi(tw) + z(1−τ*kv)
y Δvi(tw). 

Lemma 4. (Overshoot condition): The first overshoot of ACC following linear control law (tw = 0) happens in t*
Δd,l = π+2arctan(B/A)

2y . 
Proposition 7. (Safety risk condition): The safety risk condition of Scenario 1 under Proposition 2 is similar to Proposition 5, with 
the difference being the time of extremum clearance t*d,l and its corresponding clearance di

(
t*
d,l
)

. The proof is in Appendix 5. 

From Proposition 4 to Proposition 7, we can find that the safety and overshoot are jointly impacted by the vehicle’s cut-in 
positions and speed, and the ACC design of the vehicle subject to cut-in maneuvers (manifested by λ1 and λ2) for Scenario 1. These 
four propositions significantly differ from stability analysis by Zhou et al., (2020), which is only related to the ACC control parameters. 
Moreover, the analytical derivation is extended to Scenario 2, which suggests that the safety and overshoot condition of the ACC 
system are further impacted by the deceleration and acceleration behavior of the cut-in vehicles. 
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3.3. Derivation of Scenario 2 under non-oscillatory ACC system 

When the velocity of cut-in vehicles is not constant, as shown in Fig. 1, the analytical derivation is relatively complicated because of 
the existence of forced response. Note that the velocity profile under Scenario 2 is not differentiable, but the analysis remains feasible 
because the integral can be obtained in each piecewise interval. Moreover, ACC dynamic evolution exhibits continuity at the 
discontinuity points of given velocity profiles, as the states from the left and right intervals at these points are equivalent. To simplify 
the following analysis, the overshoot and safety analysis is conducted in each piece of given velocity profiles to ensure continuity. The 
nonlinear ACC interval and extremum of spacing response (Δdi(t)), as well as extremum clearance (di(t)) in interval [0, t1], (t1, t2), and 
(t2,∞), is derived, respectively. By considering the result of all intervals, the nonlinear interval, overshoot, and safety condition of the 
entire cut-in process can be determined. Based on the velocity profile of Scenario 2, the nonlinear interval of ACC also starts from the 
initial, as long as the acceleration/deceleration of cut-in vehicle does not exceed the boundary. Yet, determining the switch time of 
nonlinear to linear control law is more complex due to the acceleration/deceleration change, as outlined in Proposition 3. Thus, we 
need to resort to Algorithm 1. 
Algorithm 1. (Switch time): According to the following steps, the ACC nonlinear interval Tw = [0, tw] could be obtained with similar 
logic of Eq. (7) in a segmented manner.  

Input:ks,kv, τ* ,ub ,a1,a2, t1 , t2,Δdi(0),Δvi(0)Output:tw 
1 revise Eq (7) to A1t2 +B1t+C1 = 0 (19-a)where A1 = ksa1 − ksub

2 ,B1 = ksΔvi(0)−ksubτ* −kvub + kva1,C1 = ksΔdi(0) + kvΔvi(0)−ub 
2 solve Eq. (19-a) 
3 if: roots of Eq. (19-a) are not real numbers or ts,1 = max(roots of Eq. (19-a)) <0: 
4  ACC follows linear feedback control law in all intervals 
5 else:  
6  if: ts,1 ≤ t1 
7   tw = ts,1 
8  else:  
9   calculate Δdi(t1),Δvi(t1) based on bounded acceleration/deceleration law 
10   revise Eq (7) to A2t2 +B2t+C2 = 0 (19-b)where A2 = ksa2 − ksub

2 ,B2 = ksΔvi(t1)−ksubτ* −kvub + kva2,C2 = ksΔdi(t1) + kvΔvi(t1)−ub 
11   solve Eq. (19-b) and obtain ts,2= max(roots of Eq. (19-b)) 
12   if: 0 < ts,2 < t2 −t1 

13    tw = t1 + ts,2 
14   else:  
15    calculate Δdi(t2),Δvi(t2) based on bounded acceleration/deceleration law 
16    revise Eq (7) to A3t2 +B3t+C3 = 0 (19-c)where A3 = −ksub

2 , B3 = ksΔvi(t2)−ksubτ* −kvub, C = ksΔdi(t2) + kvΔvi(t2)−ub 
17    solve Eq. (19-c) and obtain ts,3= max(roots of Eq. (19-c)) 
18    tw = t2 + ts,3  

The switch time of linear and nonlinear control law is impacted by the forced response, so we consider the most representative case 
tw < t1 to conduct the following derivation ACC dynamic evolution. In this condition, the ACC dynamic evolution under Scenario 2 can 
be represented as: 

[
Δdi(t)
Δvi(t)

]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 t

0 1

][
Δdi(0)
Δvi(0)

]
+

⎡
⎢⎣−t2

2
− τ*t

−t

⎤
⎥⎦ub + a1

⎡
⎢⎣

t2

2

t

⎤
⎥⎦t ∈ [0, tw]

M(t, tw)
[

Δdi(tw)
Δvi(tw)

]
+ a1F(t, tw)t ∈ (tw, t1]

M(t, t1)
[

Δdi(t1)
Δvi(t1)

]
+ a2F(t, t1)t ∈ (t1, t2]

M(t, t2)
[

Δdi(t2)
Δvi(t2)

]
t ∈ (t2,∞)

(20) 

Where F (t, t0) =

⎡
⎢⎢⎣

(1 − τ*kvi)
λ1 − λ2

(1
λ1

eλ1(t−t0) − 1
λ2

eλ2(t−t0) + 1
λ2

− 1
λ1

)

( − λ2 − kvi)
λ1 − λ2

( 1
−λ1

+ 1
λ1

eλ1(t−t0)
)
+ (λ1 + kvi)

λ1 − λ2

( 1
−λ2

+ 1
λ2

eλ2(t−t0)
)

⎤
⎥⎥⎦ represents the function of forced response 

under non-oscillatory ACC system mapping xi(t0) and xi(t).
Lemma 5. (Overshoot condition): Derivation of overshoot condition under Scenario 2 is similar to Proposition 4, whereas the 
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overshoot condition needs to examine interval by interval. We take t ∈ (tw, t1] to illustrate the process. When t ∈ (tw, t1], ACC dynamic 
evolution is in Eq. (21-a), and the time of extreme spacing response could be obtained in Eq. (21-b). if either of 0 < t*o < t1 and 
Δdi

(t*o
)
• Δdi(0) < 0, or Δdi(t1) • Δdi(0) < 0 is satisfied, the overshoot will occur in (tw, t1]. Otherwise, the overshoot does not exist in 

(tw,t1]. When there is no overshoot in all intervals, then the ACC system has no overshoot in the entire cut-in process. If t*o does not exist, 
it indicates the ACC dynamic evolution is smooth, but it may not be safe because the initial cut-in condition may be risky, as shown in 
Fig 2. 

Δdi(t) = eλ1(t−tw)Δdi(tw)−
eλ1(t−tw)−eλ2(t−tw)

λ1 − λ2

(λ1 + τ*ks)Δdi(tw)+
eλ1(t−tw)−eλ2(t−tw)

λ1 − λ2

(1 − τ*kv)Δvi(tw)

+ a1(1 − τ*kvi)
λ1 − λ2

(
1

λ1

eλ1(t−tw) − 1

λ2

eλ2(t−tw) + 1

λ2

− 1

λ1

)
(21-a) 

t*
o = ln−N

M
λ1−λ2 + tw(21-b) 

Where N = (λ1+τ*ks)Δdi(tw)−(1−τ*kv)Δvi(tw)
λ1−λ2 −a1(1−τ*kvi)

λ1−λ2
1
λ2 and M = λ1Δdi(tw) + (1−τ*kv)Δvi(tw)−(λ1+τ*ks)Δdi(tw)

λ1−λ2 + a1(1−τ*kvi)
λ1−λ2

1
λ1 

Lemma 6. (Safety risk condition): Derivation of safety condition is also conducted under each piece interval. We take t ∈ [0, tw] as 
an example. Based on Eq. (16-a), the distance gap evolution is shown in Eq. (22-a). If either of t*s ∈ [0, tw] and min(di(0),di

(t*s
)
) ≤ ε, or 

t*s ∕∈ [0, tw] and min(di(0), di(tw)) ≤ ε is satisfied, the vehicle subjected to cut-in maneuvers have safety risk. 

di(t) =
(a1 − ub)t2

2
+Δvi(0)t +Δdi(0)+ vi(0) τ* (22-a)  

t*s = Δvi(0)
ub − a1

(22-b) 

The detailed ACC dynamic evolution of oscillatory system under Scenario 2 is provided in Appendix 6. While the derivations based 
on these two scenarios are representative (Li et al., 2021; Sharma et al., 2019), the actual cut-in trajectory is more complex than these 
two scenarios, especially under the traffic oscillation. As discussed in Li et al. (2014), each trajectory could be treated as a superposition 
of a stationary component (i.e., average speed and spacing) and an oscillation component (i.e., sinusoidal fluctuation). In Scenario 1, 
the ACC dynamic evolution under stationary component has been derived. Consequently, Appendix 7 presents the dynamic evolution 
of non-oscillatory ACC system under oscillatory cut-in speed (i.e., ai−1(t) = Msinwt), as an example to demonstrate the genericity of the 
proposed framework. 

4. Analysis of Numerical Experiment 

In this section, we perform numerical experiments to have a comprehensive understanding of the overshoot and safety conditions 
under Scenario 1 and 2, respectively. Specifically, the numerical experiment considers particular numeric cases, and it differentiates 
from numerical simulation as solutions are derived analytically. The numerical experiment can be divided into three parts: (i) case 
studies; (ii) sensitivity analysis of control parameters; (iii) commercial ACC evaluations using calibrated control parameters (Jiang 
et al., 2023; Y. Zhou et al., 2022). The default parameter settings for experiments are given in Table 1. 

Considering Table 1, Proposition 1 and 2, we can find the region where the eigenvalue of Ad is real/complex, and the region of 
string stability (Chen et al., 2021) in Fig. 3(a-c) under different constant time gap. Note that the real eigenvalue of Ad indicates the non- 
oscillatory ACC system, whereases a complex eigenvalue signifies an oscillatory system. In Fig. 3, it is explicitly shown that the string 
stability and non-oscillation of ACC itself are two distinct properties. The boundary between non-oscillatory and oscillatory ACC 
systems is nonlinear with respect to control parameters, but the boundary between string stability and string instability is linearly 
separated. With the increase of the constant time gap, the string stability of the ACC system is enhanced accordingly. Meanwhile, the 
region of the oscillatory ACC system decreases, aligning with Propositions 1 and 2. Specifically, maintaining a larger constant time 
gap promotes a more non-oscillatory ACC system. The lower bound of ks and kv to ensure a non-oscillatory system both decrease as τ* 

enlargers, although ks is more sensitive compared to kv. Given an identical constant time gap, as ks increase, the oscillatory region 

Table 1 
Default value setting for numerical experiments.  

Parameters Value Parameters Value 
τ* 1.0 sec Δdi−1(t0) (-20 m, 10 m) 
ks 1.2 kv 1.0 
δ*

i 5 m Δvi−1(t0) (-20 m/s, 10 m/s) 
vinitial 20 m/s t0 0 s 
a1 −2 m/s2 t1, t2 4 s, 8 s 
a2 2 m/s2 Threshold of safety risk (ε) 2 m  

Z. Li et al.                                                                                                                                                                                                               



Transportation Research Part C xxx (xxxx) xxx

11

initially expands before contracting. However, with an increase in kv, the region of the oscillatory system consistently shrinks. 
However, it is important to acknowledge that although larger control parameters (i.e., constant time gap, spacing and velocity gain) 
enhance the non-oscillation and string stability domain of the ACC system, there is still a possibility of encountering overshoot and 
potential safety concerns under string-stable and non-oscillatory ACC system, arising from external disturbance (i.e., initial cut-in 
condition and following driving behavior). Therefore, the following case study presents the ACC dynamic evolution under various 
specific cut-in maneuvers to investigate the impact of cut-in behaviors on overshoot and safety risk conditions. 

4.1. Cases analysis of cut-in maneuvers 

In this section, we select ks = 1.2, kv = 1.0 and τ* = 1 to make the ACC system non-oscillatory and string-stable for illustration 
purposes. To better highlight the impacts rendered by cut-in maneuvers (i.e., initial cut-in condition and velocity change of the cut-in 
vehicle), Ten cut-in conditions are designed as Table 2. We adjust the initial spacing deviation and velocity deviation respectively 
between vehicle i and cut-in vehicle i−1 under negative and positive initial deviations from the equilibrium. The negative/positive 
initial spacing deviation indicates the cut-in maneuver is aggressive/conservative (i.e., initial cut-in spacing is less/more than equi-
librium spacing). On the other hand, the negative/positive initial velocity deviation represents that the cut-in velocity is slower/faster 
than that of the subjected vehicle. We design two sets of cases to analyze the impact of cut-in maneuvers on overshoot and safety risk 
conditions. In the cases of overshoot, we focus more on the positive initial spacing deviation, because it is more likely to lead to 
overshoot. In safety-critical cases, we are more concerned with aggressive cut-in maneuvers with different initial velocity deviations. 

Fig. 4 illustrates spacing trajectories and deviations from equilibrium spacing in two scenarios. In Scenario 1, the initial velocity 
deviation can disrupt the initial spacing equilibrium (case 1), but the temporary spacing deviation is not overshoot because the 
response remains consistently positive without change in sign. A similar phenomenon is also shown in case 3 when the initial spacing is 
not in equilibrium. When velocity equilibrium is initially maintained (case 2), spacing eventually returns to equilibrium without 
overshoot. For combined spacing and velocity deviation (cases 4, 5), larger initial cut-in spacing prevents overshoot for slow cut-in 
velocity (case 4), but excessively slow cut-in velocity can lead to negative overshoot (case 5). Therefore, differences in signs of 
initial spacing and velocity deviation tend to cause overshoot. Fig. 4(a-2) illustrates the safety-critical cases, characterized by 
aggressive cut-in maneuvers. If the initial spacing is adequate, a relatively slow cut-in speed may not lead to a collision or potential 
collision (case 6). A comparatively faster cut-in speed can mitigate the effects of a negative initial spacing deviation (case 9). When cut- 
in spacing is less than equilibrium but cut-in velocity matches equilibrium (case 7), the situation is also safe, as subsequent spacing is 
gradually increased. The highest risk, however, arises when both spacing and velocity deviations are negative (cases 8, 10). Under 
these conditions, as the cut-in velocity decreases, the safety risk condition transitions from potential collision to collision. 

In Scenario 2, the velocity dip of cut-in vehicle introduces more cut-in disturbances. Initial deceleration reduces positive velocity 
deviations in overshoot cases, further reducing spacing deviations (cases 1, 3). However, if initial velocity deviation is negative, 
deceleration worsens ACC dynamics due to forced response, intensifying negative overshoot (cases 4, 5). Minor impacts of velocity dip 
on spacing response are seen when initial velocity deviation is in equilibrium (case 2). Fig 4(b-2) shows increased safety risks during 

Fig. 3. System string stability and oscillation region for different feedback gains.  

Table 2 
Case design setting for initial cut-in condition.  

Overshoot Cases Δdi(t0)[m] Δvi(t0)[m/s] Safety-critical Cases Δdi(t0)[m] Δvi(t0)[m/s] 
#1 0 8 #6 0 −8 
#2 10 0 #7 −10 0 
#3 10 8 #8 −10 −8 
#4 10 −8 #9 −10 8 
#5 10 −12 #10 −10 −12  
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the deceleration period (0s to 4s), particularly for negative initial velocity deviation cases (6,8,10). This highlights cut-in vehicle 
behavior’s link to overshoot and safety conditions of ACC dynamic. 

4.2. Sensitivity analysis for control parameters 

For a more comprehensive understanding of the ACC system under cut-in maneuvers, we set the range of the initial spacing de-
viation and velocity deviation Δdi−1(t0) ∈ [−20m,10m], Δvi−1(t0) ∈ [−20m/s,10m/s], with 0.125 m (or m/s) as a resolution, to conduct 
a series of sensitivity analysis for control parameters. To quantify the result, we employ event frequency (i.e., safety risk and positive/ 
negative overshoot) across all initial cut-in conditions (57,600 = 30/0.125 × 30/0.125) as a metric. Note that both collision and 
potential collision are considered as safety risks. A larger metric suggests the event occurs more frequently. 

The event frequencies under different control parameters are detailed in Table 3. The results of Scenario 1, as presented in Fig. 5(a- 
1) to 5(a-3), show that when the spacing feedback gain increase, the safety of ACC is slightly compromised (safety risk frequency from 
38.52% to 38.63%). It is because the larger feedback gain more readily triggers the bounded acceleration and deceleration (refer to Eq. 
(11)), resulting in a longer response time. Therefore, handling safety-critical conditions becomes challenging. According to Eq. (17), 

Fig. 4. Overshoot and safety–critical cases analysis under different cut-in conditions in Scenario 1 and Scenario 2 (Black dotted line in (a-2) and (b- 
2) indicates the threshold of safety risk). 

Table 3 
Event frequency under different parameters setting in Scenario 1.  

Parameters Safe but with positive overshoot (%) Safety but with negative overshoot (%) Potential collision (%) Rear-end collision (%) 
a-1 

a-2 (ks ↑) 
a-3  

1.04  4.17  5.62  32.90  
1.80 ↑  4.54 ↑  5.63 ↑  32.92 ↑  

2.93 ↑  4.84 ↑  5.64 ↑  32.99 ↑ 

b-1  1.15  4.06  5.62  32.90 
b-2 (kv ↑)  1.40 ↑  4.30 ↑  5.62 →  32.90 → 

b-3  1.56 ↑  4.46 ↑  5.62 →  32.90 → 

c-1  1.00  4.71  2.54  27.27 
c-2 (τ* ↑)  1.88 ↑  6.07 ↑  2.17 ↓  22.77 ↓ 

c-3  3.27 ↑  7.61 ↑  1.95 ↓  18.77 ↓ 

Notes: the symbol denotes the increase (↑), decrease (↓), and unchanged (→) correlating with an increase in control parameters. 
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term eλ1 (t−tw )−eλ2 (t−tw )

λ1−λ2 is consistently non-negative due to λ1 > λ2, and term λ1 +τ*ks increase with an increase in ks. Consequently, Δdi(t) is 
more likely to have a different sign with Δdi(0), which leads to overshoot appearing more often (negative overshoot from 4.17% to 
4.84%; positive overshoot from 1.04% to 2.93%). Increasing velocity gain has a similar pattern from the perspective of overshoot 
(negative overshoot from 4.06% to 4.46%; positive overshoot from 1.15% to 1.56%), as shown in Fig. 5(b-1) to 5(b-3). Comparatively, 
ks exert larger impacts than kv. One plausible explanation is that spacing disturbance is the predominant disturbance under Scenario 1, 
and a larger ks could potentially lead to an overreaction of the ACC system to such disturbance. 

From Fig. 5(c-1) to 5(c-3), the larger constant time gap could enhance the safety (safety risk from 29.81% to 20.72%) but increase 
the occurrence of overshoot (positive overshoot from 1.00% to 3.27%; negative overshoot from 4.71% to 7.61%). The reason is that, 

Fig. 5. Sensitivity analysis for feedback gain and initial cut-in condition under Scenario 1: (a) spacing gain; (b) velocity gain; (c) constant time gap.  
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when the constant time gap increases, the magnitude of eigenvalues of Ad also increases, which results in a more aggressive response 
for the ACC system to equilibrium and hence triggers an overshoot by Proposition 1 and Eq. (14). As τ* gradually increases, there is a 
corresponding decrease in the margin gain for safety. Conversely, the regime where overshoot occurs experiences a significant 
expansion. 

Under Scenario 2, the velocity dip of the cut-in vehicle will elevate impacts on safety and overshoot significantly, as in Fig. 6. When 
the cut-in vehicle decelerates initially, it could render a greater likelihood of safety risk than Scenario 1 (safety risk probability under 
default setting (a-1) from 38.52% to 47.87%), as shown in Table 4. Besides, increasing the spacing gain could subtly broaden the region 
of negative overshoot and unsafe conditions, particularly when the initial cut-in spacing is larger (5m ≤ Δdi(0) ≤ 10m), and the 

Fig. 6. Sensitivity analysis for feedback gain and initial cut-in condition in Scenario 2: (a) spacing gain; (b) velocity gain; (c) constant time gap.  
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longitudinal velocity of the cut-in vehicle is slower than the subjected vehicle (−10m/s ≤ Δvi(0) ≤−5m/s). The negative overshoot 
caused by the large initial velocity deviation in Scenario 1, as depicted in Fig. 5(a-3), is mitigated by the cut-in vehicle’s velocity drop. 
Moreover, the escalation of the velocity gain, demonstrated in Fig. 6(b-1) to 6(b-3), amplifies the velocity perturbations under Sce-
nario 2. This may be because the ACC system behaves more aggressively to attain the velocity of cut-in vehicle, but its velocity is 
fluctuated, which results in a more extensive region of overshoot than Scenario 1 (overall overshoot in (b-1) from 5.21% to 30.47%). 
The pattern of τ* aligns with that of Scenario 1, but the velocity drop by the cut-in vehicle exacerbates the overshoot conditions, 
notably negative overshoot. A dramatic increase in overshoot frequency is observed from Fig. 6(a) to 6(b). This is because when kv =
1.0 and τ*=1.0, λ1 is consistently equal to -1 and unaffected by changes in ks (refer to Eq. (7)). Conversely, λ2 decreases as ks increases. 
In control parameters setting in Fig. 6b, λ1 increase and λ2 decrease with the increase of kv. It will cause a more rapid response (refer to 
Eq. (14)) and the overshoot condition is correspondingly escalated due to the impact of velocity dip in Scenario 2. 

Based on the outcomes of the two scenarios, there are three main insights: (i) ks and kv have a minor impact on safety under cut-in 
maneuver; (ii) increases in spacing or velocity gains may intensify the corresponding disturbance and further exacerbate the overshoot, 
especially when the increased control gain is consistent with the predominate disturbance (e.g., Fig 5(a) and 6(b)); (iii) τ* is strongly 
related to the safety condition, but it exhibits a trade-off with the frequency of overshoot occurrences. 

4.3. Analysis of commercial ACC 

In this section, we apply the proposed framework to analyze the performance of commercial ACC systems subject to cut-in ma-

Table 4 
Event frequency under different parameters setting in Scenario 2.  

Parameters Safe but with positive overshoot (%) Safety but with negative overshoot (%) Potential collision (%) Rear-end collision (%) 
a-1  0.63  2.46  4.81  43.06 
a-2 (ks ↑)  0.63 →  2.95 ↑  4.82 ↑  43.27 ↑ 

a-3  0.63 →  3.37 ↑  4.85 ↑  43.48 ↑ 

b-1  8.42  22.05  4.70  42.79 
b-2 (kv ↑)  11.24 ↑  22.05 →  4.70 →  42.79 → 

b-3  12.18 ↑  22.05 →  4.70 →  42.79 → 

c-1  14.54  22.86  1.97  38.73 
c-2 (τ* ↑)  22.81 ↑  23.95 ↑  1.73 ↓  35.21 ↓ 

c-3  28.40 ↑  24.99 ↑  1.70 ↓  31.89 ↓  

Fig. 7. Probabilistic safety risk and overshoot condition under Scenario 1 (a) and Scenario 2 (b): (1) probability of safety risk, (2) probability of 
overshoot, (3) expected maximum overshoot. 
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neuvers to have a practical understanding of ACC safety and overshoot boundaries. The field test ACC data is from (Li et al., 2022), in 
which the designed speed profile is similar to Scenario 2. Based on that, the empirical joint distributions of control parameters for the 
second-order linear ACC system are calibrated by approximated Bayesian computation approach (Jiang et al., 2023; Zhou et al., 
2022b). In this section, we randomly sample 50 parameters set from the calibrated joint distributions of ks, kv, δ*

i , τ*, li to examine the 
probability of the overshoot and safety conditions, based on the derivations given in Section 3. Specifically, each control parameter set 
can identify whether safety risk and overshoot happen (as exemplified in Figs. 5 and 6). By aggregation, we can collectively obtain the 
probability for those two conditions. In the safety analysis (Fig. 7(a-1) and (b-1)), when the cut-in maneuvers are extremely aggressive, 
with cut-in spacing substantially smaller than equilibrium (area 1), the larger cut-in longitudinal velocity could avoid collision, but still 
have near-collision risk. However, when the cut-in longitudinal velocity is much smaller than the following ACC vehicle (area 2), 
increasing the cut-in spacing is not able to avoid a collision. By comparing area 3 under scenarios 1 and 2, the temporary velocity drop 
of the cut-in vehicle can further increase the rear-end collision risk, resulting in the lower and upper boundary of area 3 increase. These 
changes signify that temporary velocity drops decrease the tolerance of ACC for extreme initial spacing and velocity deviations. From 
area 4, we can find that the positive velocity deviation (Δvi(0)≥ 0) with reasonable cut-in spacing (Δdi(0)≥ −10) is the critical in-
dicator for the safety of the ACC system under cut-in maneuvers in both scenarios. In overshoot analysis, under Scenario 1, the 
probability of overshoot is centered on the equilibrium and increases in a spiral outward. When initial spacing deviation is near 
equilibrium but with excessive velocity deviation, overshoot is most likely to occur (e.g., Δdi(0) =−1 and Δvi(0) = 10; Δdi(0) = 5 and 
Δvi(0) = −15). Under Scenario 2, the velocity dip of the cut-in vehicle amplifies overshoot likelihood. However, larger initial con-
ditions, as in Fig. 7(b-2), can mitigate overshoot. For instance, negative overshoot probability decreases from 100% to 86% when 
initial deviations (i.e., Δdi(0) and Δvi(0)) both transition from 1 to 10.  For each set of control parameters and given cut-in maneuver, 
the maximum overshoot can be derived. The expected value of maximum overshoot for a given cut-in maneuver is then visualized by 
averaging maximum overshoot across the selected joint distributions of control parameters, as shown in Figs. 7(a-3) and 7(b-3). It is 
observed that when cut-in vehicles experience a velocity dip, there is an increase in both the magnitude of overshoot and the likelihood 
of an overshoot condition. 

Section 4.2 underscores that by adjusting the control parameters, we can significantly mitigate the safety risks and overshoot 
situations that occur with the ACC system during cut-in maneuvers. However, the analysis of commercial ACC systems suggests a safety 
inadequacy with SAE Level 2 AV (Knoop et al., 2019), particularly in scenarios involving slower cut-in vehicles and aggressive cut-ins. 
In order to address this concern, it is crucial that Level 2 AVs are equipped with advanced anticipatory abilities for cut-in maneuvers, 
for example, a more refined perception and communication system (van Arem et al., 2006) and more accurate trajectory prediction 
models (Chen et al., 2023; Wang et al., 2015). Based on these anticipatory measures, the ACC system could then proactively determine 
optimal driving behavior to maintain both traffic safety and efficiency. For instance, when the initial cut-in condition falls into areas 1 
and 2, the system could prioritize overtaking the cut-in vehicle to avoid a collision. Conversely, if the cut-in condition falls into area 3, 
the subjected vehicle could slow down and yield to the cut-in vehicle, enabling a safe and non-overshoot ACC dynamic subject to cut-in 
maneuvers. These proactive and predictive strategies offer promising pathways to significantly enhance the safety performance of 
Level 2 AV. More importantly, the proposed framework provides not only instructive insights on ACC design, but a more compre-
hensive assessment of safety risk and overshoot conditions based on cut-in trajectory. If we incorporate the safety and overshoot 
evaluation results into the control logic, this feature will significantly improve the ACC system’s ability to determine the most suitable 
driving behavior in response to cut-in disturbances. When the cut-in maneuver is given, a feasible region of control gain for a linear 
ACC system can be identified to ensure safety and manage overshoot. As depicted in Fig. 8, the control gains within the intersection of 
the green region in Fig. 8(a) and the white region in Fig. 8(b) should be selected for the linear ACC system to maintain safety and 
prevent overshoot under the given cut-in disturbance. The proposed framework enables the linear feedback control to adaptively 
adjust the control gains, addressing the limitations of linear feedback controllers in guaranteeing safety constraints over cut-in sce-
narios. In other words, with the help of the proposed framework, the linear ACC can achieve maximum effectiveness in ensuring safety 
and stability. 

5. Conclusion 

This study proposes a theoretical and analytical framework to model the ACC dynamic evolution in response to cut-in disturbances, 
embedded with bounded acceleration/deceleration, a primary nonlinear characteristic of the ACC system. We first apply the Caley- 
Hamilton theorem to derive the general ACC dynamic evolution based on second-order linear feedback control. Through the deri-
vation, we show that while control parameters govern the ACC system’s inherent oscillation nature, the initial condition and subse-
quent behavior of the cut-in vehicle will collectively influence the system’s safety and overshoot. We also define safety risk as the 
distance gap between the subjected vehicle and the cut-in vehicle is smaller than a pre-defined threshold. Two representative cut-in 
velocity profiles (i.e., constant velocity and a velocity dip) are considered, and sufficient and necessary conditions for ensuring safety 
and non-overshoot, regardless of local and string stability, are derived. Notably, the proposed framework systematically incorporates 
control parameters, initial cut-in conditions, and cut-in behavior, thereby addressing the limitations of local/string stability analysis 
from a safety perspective. 

A series of numerical experiments have been conducted to gain a comprehensive and fine-grained understanding. Specifically, the 
case analysis of several initial cut-in conditions has validated that the cut-in maneuver is significantly related to the safety and stability 
of the ACC system, and excessive negative overshoot may lead to rear-end collision risk. Then, we examine the impact of control 
parameters on safety and overshoot by sensitivity analysis under various initial cut-in conditions. The results unveil that (i) cut-in with 
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a dip profile has a severe impact on exacerbating the safety risk and instability; (ii) increasing spacing and velocity gain may exacerbate 
cut-in disturbance but have a minor impact on safety; (iii) while adopting a larger constant time gap can enhance safety, it’s also 
important to consider its potential to increase the occurrence of overshoot conditions. Moreover, by adopting the field-tested pa-
rameters, we have provided the probabilistic safety and non-overshoot region for commercial ACC systems under different cut-in 
maneuvers. Finally, this paper sheds light on the understanding ACC system under cut-in scenarios and further provides physical 
insight to design a more robust, safe, and stable ACC system. 

While the proposed framework offers instructive insights, it could be further enhanced in several ways for future research. The 
framework incorporates the nonlinear factor (i.e., acceleration/deceleration boundary) of the linear ACC system, further consideration 
of factors such as control actuation delay, sensing delay, and nonlinear vehicle dynamics (Orosz, 2016; Treiber et al., 2006; Zhang 
et al., 2018) could lead to a more comprehensive understanding of the ACC systems. For nonlinear systems, as well as delayed systems, 
numerical approximations (e.g., Runge-Kutta methods and Padé approximation) are usually needed. This is because providing an 
analytical framework for nonlinear systems is very challenging due to the limitations of mathematical tools. Furthermore, future 
research could explore a broader range of cut-in scenarios to enrich the case analysis. However, it is important to note that the 
proposed framework remains applicable and valid in these additional contexts. 
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Appendix 1:. Cayley-Hamilton Theorem 

Theorem1. A is a given n × n matrix, and In is n × n identity matrix. Considering A with characteristic polynomial pA(λ) =
det(λIn −A) = λn + cn−1λn−1 + ⋯ + c0, then pA(A) ≡ On. The On is n × n null matrix. λ is an eigenvalue of A only when normal 
characteristic polynomial pA(λ) = 0. Then, the Taylor-series expansion can be re-illustrated without truncation as follows: 

Fig. 8. Feasible region of control gain for linear ACC to ensure safety and non-overshoot under given cut-in maneuver (Δdi(0) =−10m and Δvi(0) =
−8m/s under Scenario 1). 
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eAt =
∑n−1

k=0

αkAk (A1) 

where the αk’s are determined from the set of equations given by the eigenvalues of A. 

eλi t =
∑n−1

k=0

αkλk
i (A2)  

Appendix 2:. Proof of Proposition 1 and Proposition 2 

The eigenvalues for Ad can be computed as: 
λ2 +(τ*ks + kv)λ+ ks = 0 (A3)  

By solving Eq.(A3), we can get Ad’s eigenvalues λ1 and λ2 as: 

λ1 =
−(τ*ks + kv) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(τ*ks + kv)2 − 4ks

√

2
(A4)  

λ2 =
−(τ*ks + kv) −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(τ*ks + kv)2 − 4ks

√

2
(A5)  

From Eq. (A4) and (A5), we can find that, when (τ*ksi + kvi)2 −4ksi ≥ 0, both λ1 and λ2 are real, αk could be solved as below: 

{
eλ1 t = α0 + α1λ1

eλ2 t = α0 + α1λ2

⇒

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

α0 = eλ1 t − eλ1 t−eλ2 t

λ1 − λ2

λ1

α1 =
eλ1 t−eλ2 t

λ1 − λ2

(A6)  

By using Eq. (A1), we can obtain eAd t with only real eigenvalues of Ad as Proposition 1. 
By Eq. (A3), when (τ*ks + kv)2 −4ks < 0, the eigenvalues are complex conjugate numbers, which further represent them as λ1 =

z+yi and λ2 = z−yi. According to Euler’s formula eix = cosx + isinx, we have eλ1t = ezt(cosyt + isinyt) and eλ2t = ezt(cosyt−isinyt). By 
solving Eq. (A2), we have: 

α0 = ezt(cosyt − z

y
sinyt) (A7)  

α1 = ezt

y
sinyt (A8)  

Appendix 3:. Proof of Lemma 1 

Based on Proposition 3 and Eq. (7) under Scenario 1, Eq. (9-b) can be simplified as below: 
At2 +Bt+C = 0 (A9) 

When quadratic function Eq. (A9) has a positive solution, the ACC exhibit nonlinear behavior due to the bounded acceleration/ 
deceleration, and the nonlinearity interval is Tw = [max

(
0,min

(
−B± ̅̅̅D√

2A
))

, max(0, max

(
−B± ̅̅̅D√

2A
)
)]. Otherwise, the ACC follows linear 

control law. Furthermore, the ACC system exhibits a purely free response under Scenario 1, indicating that the bounded acceleration/ 
deceleration can only occur to attenuate the impact of the initial cut-in condition so that the nonlinearity interval is revised as Tw = [0,
max(0,max

(
−B± ̅̅̅D√

2A
)
)]. Therefore, Lemma 1 is derived. 

Appendix 4:. Proof of Proposition 6 

From Eq. (17), the spacing response in [0, tw] is the same as Eq. (13), and the extremum of it is t*
Δd,n = Δvi(0)−ubτ*

ub
. The spacing 

response in (tw,∞) can be given as: 
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Δdi(t) = ez(t−tw)cosy(t − tw)Δdi(0)−
ez(t−tw)(τ*ks−z)

y
siny(t − tw)Δdi(0)+

ez(t−tw)(1 − τ*kv)
y

siny(t − tw)Δvi(0) (A10) 

The solution of the derivative of Eq. (A10) for t is: 

t*
Δd,l =

(2n + 1)π + 2arctan(B/A)
2y

+ tw, n ∈ Z (A11) 

Where, A = zΔdi(tw)−τ*ksΔdi(tw)+zΔdi(tw)+(1 − τ*kv)Δvi(tw) and B = −yΔdi(tw)−z(τ*ks−z)
y Δdi(tw) + z(1−τ*kv)

y Δvi(tw). 
By analyzing the time of extremum spacing response Δdi(t) and the corresponding extremum value, Proposition 6 can be obtained. 

Appendix 5:. Proof of Proposition 7 

Refer to Eq. (17) and Eq. (16-a), we have: 

di(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ubt2

2
+ Δvi(0)t + τ*vi−1(t) + Δdi(0) − τ*Δvi(0)t ∈ [0, tw]

ez(t−tw)cosy(t − tw)Δdi(tw) −
ez(t−tw)(τ*

ks−z)
y

siny(t − tw)Δdi(tw) +
ez(t−tw)(1 − τ*kv)

y
siny(t − tw)Δvi(tw) + vi−1(t)τ*+

kse
z(t−tw)

y
siny(t − tw)τ*Δdi(tw) − ez(t−tw)cosy(t − tw)τ*Δvi(tw) +

ez(t−tw)(kv−z)
y

siny(t − tw)τ*Δvi(tw)t ∈ (tw,∞)

(A12) 

Then, Eq. (A12) can be simplified as Eq. (A13) and derivative it with respect to t, as in Eq. (A14). 

di(t) =

⎧
⎪⎨
⎪⎩

−ubt2

2
+ Δvi(0)t + τ*vi−1(0) + Δdi(0) − τ*Δvi(0)t ∈ [0, tw]

Aeztcosy(t − tw) + Beztsiny(t − tw) + Ct ∈ (tw,∞)
(A13) 

⎧
⎪⎪⎨
⎪⎪⎩

t*
d,n = Δvi(0)

ub

t*
d,l =

(2n + 1)π + 2arctan(BZ − Ay/Az + By)
2y + tw, n ∈ Z

(A14) 

A = Δdi(tw)− τ*Δvi(tw);B = 1

y
(zΔdi(tw)+Δvi(tw)− zτ*Δvi(tw) );C = vi−1(0)τ*  

Appendix 6:. Derivation of Scenario 2 under oscillatory system 

When Proposition 2 holds, the ACC dynamic evolution can be derived from Eqs. (4), (6), and (10) as Eq. (A15). 

[
Δdi(t)
Δvi(t)

]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 t

0 1

][
Δdi(0)
Δvi(0)

]
+

⎡
⎢⎣−t2

2
− τ*t

−t

⎤
⎥⎦ub + a1

⎡
⎢⎣

t2

2

t

⎤
⎥⎦t ∈ [0, tw]

M̃ (t, tw)
[

Δdi(tw)
Δvi(tw)

]
+ a1F̃ (t, tw)t ∈ (tw, t1]

M̃ (t, t1)
[

Δdi(t1)
Δvi(t1)

]
+ a2F̃ (t, t1)t ∈ (t1, t2]

M̃ (t, t2)
[

Δdi(t2)
Δvi(t2)

]
t ∈ (t2,∞)

(A15) 

Where F̃ (t, t0) =

⎡
⎢⎢⎣

(1 − τ*kv)
y • y − ez(t−t0)(ycosy(t − t0) − zsiny(t − t0) )

y2 + z2

ez(t−t0)(zcosy(t − t0) + ysiny(t − t0) ) − z
y2 + z2 + (kv−z)

y • ez(t−t0)(ycosy(t − t0) − zsiny(t − t0) ) − y
y2 + z2

⎤
⎥⎥⎦ represents the 

function of forced response under oscillatory ACC system. 
The derivation of the conditions for overshoot and safety aligns with the procedures outlined in Lemma 5 and 6. However, the 

functions of free and forced responses, as detailed in Eqs. (17) and (A15), are distinct for oscillatory and non-oscillatory ACC systems. 
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Appendix 7:. Dynamic Evolution of non-oscillatory ACC under Oscillation 

In a more generic scenario, when oscillation ai−1(t) = Msinwt is considered under a non-oscillatory ACC system, the state evolution 
of the ACC can be derived from Eqs. (4) and (5). Provided that the magnitude of oscillation remains within the acceleration/decel-
eration boundary, the non-linear behavior of the ACC system is primarily induced by the initial cut-in disturbance and the state 
evolution is adheres to Eq. (11) for t ∈ [0,tw]. Besides, the state evolution of ACC following linear control law (i.e., t ∈ (tw,∞)) is derived 
as follows: 

[
Δdi(t)
Δvi(t)

]
= eAd (t−t0)xi(tw)+

∫ t

t0

eAd (t−φ)Ddai−1(φ)dφ  

=

⎡
⎢⎢⎢⎢⎣

eλ1(t−tw) − eλ1(t−tw)−eλ2(t−tw)

λ1 − λ2

(λ1 + τ*ksi)
eλ1(t−tw)−eλ2(t−tw)

λ1 − λ2

(1 − τ*kvi)

−eλ1(t−tw)−eλ2(t−tw)

λ1 − λ2

ksi eλ1(t−t0) − eλ1(t−tw)−eλ2(t−tw)

λ1 − λ2

(λ1 + kvi)

⎤
⎥⎥⎥⎥⎦

[
Δdi(tw)
Δvi(tw)

]

+

⎡
⎢⎢⎢⎢⎣

(1 − τ*kvi)eλ1 t

λ1 − λ2

∫ t

tw

e−λ1φai−1(φ)dφ − (1 − τ*kvi)eλ2 t

λ1 − λ2

∫ t

tw

e−λ2φai−1(φ)dφ

eλ1 t

∫ t

tw

e−λ1φai−1(φ)dφ − (λ1 + kvi)eλ1 t

λ1 − λ2

∫ t

tw

e−λ1φai−1(φ)dφ − (λ1 + kvi)eλ2 t

λ1 − λ2

∫ t

tw

e−λ2φai−1(φ)dφ

⎤
⎥⎥⎥⎥⎦

(A16) 

By substituting ai−1(φ) = Msinwφ into Eq. (A16) and find integral of φ, we have Eq. (A17). 

[
Δdi(t)
Δvi(t)

]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 t

0 1

][
Δdi(0)
Δvi(0)

]
+

⎡
⎢⎣−t2

2
− τ*t

−t

⎤
⎥⎦ubt ∈ [0, tw]

M(t, tw)
[

Δdi(tw)
Δvi(tw)

]
+ MH(t, tw)t ∈ (tw,∞)

(A17)  

where 

M (t, tw) =

⎡
⎢⎢⎢⎣

eλ1(t−tw) − eλ1(t−tw)−eλ2(t−tw)

λ1 − λ2

(λ1 + τ*ksi)
eλ1(t−tw)−eλ2(t−tw)

λ1 − λ2

(1 − τ*kvi)

−eλ1(t−tw)−eλ2(t−tw)

λ1 − λ2

ksi eλ1(t−t0) − eλ1(t−tw)−eλ2(t−tw)

λ1 − λ2

(λ1 + kvi)

⎤
⎥⎥⎥⎦

and 

H (t, tw) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − τ*kvi)eλ1 t

λ1 − λ2

(
e−λ1 tw (wcoswtw + λ1*sinwtw) − e−λ1 t(wcoswt + λ1*sinwt)

λ1 + w2

)

−(1 − τ*kvi)eλ2 t

λ1 − λ2

(
e−λ2 tw (wcoswtw + λ2*sinwtw) − e−λ2 t(wcoswt + λ2*sinwt)

λ2 + w2

)

M(−λ2 − kvi)eλ1 t

λ1 − λ2

(
e−λ1 tw (wcoswtw + λ1*sinwtw) − e−λ1 t(wcoswt + λ1*sinwt)

λ1 + w2

)

−(λ1 + kvi)eλ2 t

λ1 − λ2

(
e−λ2 tw (wcoswtw + λ2*sinwtw) − e−λ2 t(wcoswt + λ2*sinwt)

λ2 + w2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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