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1 | INTRODUCTION

| Craig McCain'® | Anthony P.Crupil®® | James Clark!®” |

Abstract

Aim: The assembly of species into communities and ecoregions is the result of in-
teracting factors that affect plant and animal distribution and abundance at biogeo-
graphic scales. Here, we empirically derive ecoregions for mammals to test whether
human disturbance has become more important than climate and habitat resources in
structuring communities.

Location: Conterminous United States.

Time Period: 2010-2021.

Major Taxa Studied: Twenty-five species of mammals.

Methods: We analysed data from 25 mammal species recorded by camera traps at
6645 locations across the conterminous United States in a joint modelling framework
to estimate relative abundance of each species. We then used a clustering analysis to
describe 8 broad and 16 narrow mammal communities.

Results: Climate was the most important predictor of mammal abundance overall,
while human population density and agriculture were less important, with mixed ef-
fects across species. Seed production by forests also predicted mammal abundance,
especially hard-mast tree species. The mammal community maps are similar to those
of plants, with an east-west split driven by different dominant species of deer and
squirrels. Communities vary along gradients of temperature in the east and pre-
cipitation in the west. Most fine-scale mammal community boundaries aligned with
established plant ecoregions and were distinguished by the presence of regional spe-
cialists or shifts in relative abundance of widespread species. Maps of potential eco-
system services provided by these communities suggest high herbivory in the Rocky
Mountains and eastern forests, high invertebrate predation in the subtropical south
and greater predation pressure on large vertebrates in the west.

Main Conclusions: Our results highlight the importance of climate to modern mam-
mals and suggest that climate change will have strong impacts on these communities.
Our new empirical approach to recognizing ecoregions has potential to be applied to

expanded communities of mammals or other taxa.

KEYWORDS
climate, macroecology, mammal communities, masting, species distribution models

of plant and animal communities, including the effects of biotic

and abiotic factors on their distribution and abundance, as well as

Conserving biodiversity in the age of Earth's sixth mass extinction evaluating the recent impacts of human development. Species dis-

(Ceballos et al., 2015) will require understanding the basic properties tributions and patterns of abundance for both plants and animals

QSUADIT suowuo)) dAneaI) d[qedrjdde ayy £q paurdA0ST a1e s3[oNIE O (9sh JO SA[NI 10§ AIRIqIT dUI[UQ AJ[IA UO (SUONIPUOI-PUB-SULIY/WO0D" A3[1M ATRIqI[ouI[uo//:sd)Y) SUONIPUO) pue swd |, ) 39S ‘[$707/L0/67] U0 Areiqr aurjuQ A[IM ‘006€1°1PP/1111°01/10p/wod A3[1m Arelqraurjuo//:sdiy wolj papeojumo( ‘0 ‘TrorTLi1


https://orcid.org/0000-0002-0034-2460
https://orcid.org/0000-0002-0501-3471
https://orcid.org/0000-0003-3193-0377
https://orcid.org/0000-0001-6683-2553
https://orcid.org/0000-0001-5388-0871
https://orcid.org/0000-0002-5316-3159
https://orcid.org/0000-0002-5499-6777
https://orcid.org/0000-0003-0736-9946
https://orcid.org/0000-0002-1545-7658
https://orcid.org/0009-0004-1975-2779
https://orcid.org/0000-0001-6085-4698
https://orcid.org/0000-0003-2788-6238
https://orcid.org/0000-0003-1076-2896
mailto:rwkays@ncsu.edu

KAYS ET AL.

reflect many processes that operate at biogeographic scales, in-
cluding climate, geomorphology, habitat complexity, palaeogeog-
raphy and human impacts (Myers et al., 2000). However, widely
used biogeographic classes, including ecoregions (Olson, 2001),
forest types (Ruefenacht et al., 2008) and community classifications
(Jennings et al., 2009), are typically defined by the distribution of
plants. Accordingly, much of our understanding of large-scale bio-
geographic drivers focus on how climate, habitat variables (including
soils and drainage) and human influence (e.g., forest harvest, agricul-
tural practices) affect these plant ecoregions (Turner et al., 2001).
Similar knowledge of vertebrates has lagged because of the diffi-
culty measuring the abundances of multiple animal species at rep-
resentative scales.

Plant communities offer many of the critical resources needed
by mammals and are likely a key determinant of their distribution
and abundance. If vertebrate biogeography tracks plant forma-
tions, then animals either respond to the same influences or are
driven by bottom-up forces. On the other hand, animals are more
than the food they eat and their dynamic behaviours such as move-
ment and thermoregulation could result in different biogeographic
patterns than plants, especially in response to human disturbance
and resource supplementation. In North America, ecoregions are
defined along climatic and topographic gradients reflecting the
vegetative communities in deserts, plains, highlands, tundra and
seven forest types (Omernik & Griffith, 2014). Previous tests have
found mixed results when using these ecoregions to explain bird
and mammal distributions by predicting areas of high species turn-
over from animal range maps, with no support when considering
only North American species (McDonald et al., 2005), but stronger
support at the global scale (Smith et al., 2018). However, these
two studies were conducted by matching high-level biogeographic
patterns of diversity and both recognized the importance of ad-
ditional research to identify the specific mechanisms underlying
observed ecoregion patterns.

A historical perspective on the most important ecological driv-
ers for mammals indicates that prehistoric biogeography in North
America was strongly shaped by climate and then later by coloniz-
ing humans (Alroy, 2001). Human societies continue to exert large
impacts on modern mammal populations, extirpating predators
from large areas and driving substantial community changes along
urban-wild gradients, as sensitive species are restricted to wildlands,
while anthrophilic species thrive near people (Parsons et al., 2018).
However, the relative importance of human factors in comparison to
climate in modern populations has not been addressed at the large
scale needed to encompass meaningful climatic variation. Mammals
also depend on plant communities for cover and food. Green veg-
etation forms the base of the food web, along with tree mast (i.e.,
seeds, fruits, nuts) crops that feed diverse guilds of granivores and
frugivores (Martin et al., 1951). If food and climate drive the patterns
of distribution and abundance of mammals, we would expect plant
ecoregions to structure mammal communities. However, if human
factors are now the most important influence driving these patterns,
we would predict a homogenization of mammal communities across
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areas with similar levels of human development (McKinney, 2006).
Understanding the relative importance of these factors is critical
for conserving biodiversity in the face of climate change and human
population growth.

In this study, we examine a large compilation of mammal abun-
dance estimates at a continental scale that represent the full range
of climatic and human disturbance levels of the continental United
States: hot to cold, wet to dry and urban to wild (Figure S1). Together,
these data allow us to quantify the biogeography of mammals by
mapping the ecological communities of 25 of the most common,
larger terrestrial mammals of the conterminous United States, com-
pare them to regions based on plants and identify potential mecha-
nisms underlying ecoregion boundaries by comparing the extent to
which these communities are shaped by climate, habitat and human
disturbance. The relative importance of these factors on mammal
species today has important implications for managing biodiversity
on awarming, drying continent with a growing human population and
footprint. Additionally, these larger mammals play important ecolog-
ical roles that can cascade through ecosystems (Terborgh, 2010) and
we use our maps to predict the relative strength of their resulting

ecological impacts across the United States.

2 | MATERIALS AND METHODS

We used models of relative abundance from collaboratively col-
lected camera trap data from 424 array sites using a standardized
sampling design to predict mammal communities, which we then
grouped based on similarity and mapped across the country. An
overview of our approach is provided in Figure 1 and the steps are

also identified in sub-headings.

2.1 | Camera trap data (1)

We collected camera trap data from across the United States by
combining data from Snapshot USA (Cove et al., 2021; Kays, Cove,
et al., 2022), Carolina Critters (Lasky et al., 2021) and other data
sets from (Figure S1). To reduce the problem of uneven sampling
we thinned the data from North Carolina and Virginia to be similar
to the camera densities from other regions by randomly select-
ing 400 locations within each 3-degree grid cell. All cameras were
set at ~0.5m height and without bait. A variety of camera models
were used, but all had fast (<0.5s) trigger times and other fea-
tures that made their data comparable. Some cameras were set
on hiking trails or dirt roads and this was noted. We initially aimed
to include data from Canada but found much of it was collected
with cameras set higher on trees (to account for snowfall of cam-
eras left in remote areas for long time periods), which failed to
reliably detect smaller species. Cameras were set to take multiple
pictures for each trigger event and immediately retrigger and we
combined these into one sequence with a 60s independence in-
terval, which ensures temporal independence of detections (Kays
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1. Schematic of methods
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& Parsons, 2014). We used the number of independent detections
at a camera site as a measure of relative abundance for a species,
standardizing for the amount of time a camera was in place, essen-
tially comparing detection rate across sites for a species. We then
adjusted these measurements to account for differences in de-
tection area for species of different sizes (Rowcliffe et al., 2011).
While local animal movement rates can also affect detection rate
(Broadley et al., 2019), if cameras are set in standardized way it can
still provide an index of relative abundance that can be compared
across sites and species (Hofmeester et al., 2019) that is correlated
with absolute density (Parsons et al., 2017). It is likely that the re-
lationship between detection rate and true abundance is different
across species, but our models compare the relative abundance
of one species at a time, avoiding those complications. In total,
we collected data from sites monitored by 6447 cameras across
424 arrays (i.e., study sites) representing 688.4 camera-years of
survey effort.

We initially focused on 26 terrestrial, broad-ranging mam-
mal species that are large enough to be well surveyed by camera
traps, can be indisputably identified from images and which were
well covered in our data with a minimum size cut-off based on

FIGURE 1 An overview of our
approach for mapping mammal
communities in North America. (1) We
acquired relative abundance data for
25 mammal species across 6645 sites
monitored by camera traps (2) annotated
them with environmental covariates
and (3) used GJAM to predict their
potentially suitable habitat. We then (4)
used range maps to trim out areas not
used and (5) annotated a grid of points
with the predicted relative abundance
for all species. We used these mammal
community data in a (6) hierarchical
clustering algorithm to create 8 broad
and 16 narrow clusters, which (7) could
then be mapped, (8) characterized by
their typical mammal abundances and
(9) combined with diet and body size
information to extrapolate ecological
impacts.

Grid annotated for 25
species

Ecological effects

l#'W@j$

Herbivory

R ’f
7

performance of preliminary model runs (Table S1). The smallest
sample size was for grey wolves with 109 detections by 55 cam-
eras across 16 study areas. We excluded species that were not
sampled well because they are primarily aquatic or because they
are difficult or impossible to tell apart on camera trap pictures
(i.e., Sylvilagus, Neotoma, Glaucomys, Kays, Lasky, et al., 2022).
Our sampling is thus somewhat biased towards the larger, more
common, more widespread species, although it does include
small species like chipmunks and rare species like wolves and
cougar.

2.2 | Covariates (2)

We selected environmental covariates to describe the physical,
vegetative, climatic and human aspects of habitats sampled with
camera traps (Table 1). We zero-centred and standardized all co-
variates. We initially included a larger number of covariates and
removed those that were correlated (r>0.6; except annual tem-
perature and rainfall which were correlated at 0.63). We used the
MASTIF model to estimate the production of seeds and fruit by
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TABLE 1 Covariates used in GJAM models.

DT Wi ey

Type Name Source Description Scale Year Ref.
Human Human GPW V4 Number of people 1km? 2020 Center for
population size International Earth
Science Information
Network (2018)
Climate Temp MERRAclim Annual Mean Temperature 2.5 arcminutes 2000s decade  Vegaetal. (2017)
(degree Celsius multiplied
by 10)
Climate Precipitation MERRACclim Annual Precipitation 2.5 arcminutes 2000s decade  Vegaetal. (2017)
Climate Aridity index ENVIREM Degree of water deficit 30 arc seconds Current Title and Bemmels
below water need (2018)
Terrain Terrain Terrain Difference between central 1km Current Amatulli et al. (2018)
Ruggedness Index  pixel and surrounding cells
Habitat Shrub IUCN Habitats % of area that was shrub 1km? 2015 Jung et al. (2020)
Habitat AgCombo IUCN Habitats % of area that was pasture 1km? 2015 Jung et al. (2020)
or arable
Habitat Grass01 IUCN Habitats Scored 1 if % of area in grass 1km? 2015 Jung et al. (2020)
was >30%
Habitat Hard Mast, MASTIF Estimated production of 1km? 2015 Clark et al. (2019)
Big Nut Mast, each type of mast (kg/ha) and Jung
Conifer Mast, weighted by the amount of et al. (2020)

Fruit tree mast forest in 1km?

Note: Acronyms are MASTIF =mass inference and prediction, GPW V4 =gridded population of the world, version 4, Merraclim=modern-era
retrospective analysis for research and applications climate, ENVIREM =environmental rasters for ecological modelling, IUCN =international union

for conservation of nature.

trees at each camera location (Clark et al., 2019). Seeds were clas-
sified into four categories: hard mast, big nut, conifer, soft mast
(Table S2). The MASTIF data are estimates of typical mast produc-
tion for a site given the forest composition (species, size, age), but
do not account for year-to-year variation. Because MASTIF sites
(170,000 forest inventory plots) were not at the exact same loca-
tions as our cameras, we took an average of the three MASTIF
sites closest to the camera trap that were in the same forest type
(Ruefenacht et al., 2008). Because these fruits only come from
forested land, we then multiplied that value by the total % for-
est cover within 1km? (Jung et al., 2020) to get a measure of the
amount of mast available to mammals around a camera site. This
process resulted in four measures of forest cover weighted by the
amount of mast (hard, soft, big nut, or conifer) they were likely to
produce.

2.3 | Modelling community abundance (3-5)

We used a generalized joint attribute model GJAM (Clark et al., 2017)
to predict the relative abundance of 26 mammal species at the commu-
nity scale based on the covariates described above. This multivariate
approach extends single-species distribution models by considering
relationships among the community members through a correlation
matrix from the residuals. The model accepts response variables that
may be measured in different ways (i.e., continuous or discrete), rep-
resenting all observations as continuous through the latent vector ;

which, in this case, represents counts per effort (detection rate) for

each species up to S at camera trap i, where @ is given by:

@; ~ MVN(;,X) (1)

where p; is a vector of means of length S and X is an Sx S covariance
matrix which quantifies the residual correlation between species that
is not taken up by the mean structure of the model. These residual cor-
relations reflect species co-occurrence patterns not explained by envi-
ronmental predictors which could be due to model mis-specifications,
missing covariates, or species interactions.

The mean structure y; is modelled as a function of environmental

predictors following:
ui=FX; (2)

where Bis a QxS matrix of slope coefficients associated with each spe-
cies and each predictor up to length Q in design matrix X;.

The output of the model predicts the relative abundance of each
species at the observation (camera trap) scale and includes a species-
by-species covariance matrix with measures of the sensitivity of
each species to each covariate. We ran our model within a Bayesian
framework using non-informative priors via the gjam package (v 2.6.2,
Clark & Taylor-Rodriquez, 2021) in program R (R Core Team, 2023),
achieving convergence after 40,000 iterations with a burn-in of
10,000 iterations. The relative importance of each covariate was de-
termined through a sensitivity analysis that integrates the change in
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the model performance to removal of each covariate (Brynjarsdottir
& Gelfand, 2014).

As a measure of relative abundance for each species, we used the
number of detections from a camera trap and the amount of time a
camera was in place as a measure of effort (i.e., detection rate). To
make this abundance measure more comparable across species, we
accounted for the fact that larger species are detected by camera traps
over larger areas by dividing the abundance by the mass-adjusted area

surveyed by each camera following (Rowcliffe et al., 2011):
Area = 1.65 x mass®33 (3)

To evaluate the utility of mast-weighted measures of forest
cover, we ran two versions of the model, one with % forest cover
within 1km unweighted by mast and one with % forest cover within
1km weighted by the four mast types, respectively. Both models
included all other covariates. We used DIC values to compare the
performance of these two models.

We used a regular 10km grid of points across the country to pre-
dict relative abundance of each species to unsampled areas based
on covariate values at each grid point. We ran our prediction using
the predictGJAM routine in the GJAM package which allows species-
specific prediction while accounting for community-level vari-
ance-covariance relationships (i.e., multivariate prediction; Clark &
Taylor-Rodriquez, 2021). We used the resulting predictions to make
habitat suitability maps for each species across the country. The pre-
diction maps from GJAM show where potentially suitable habitat
occurs, but the species may not actually live in all these areas due
to dispersal limitations or other factors not included in our model.
Therefore, we used range maps (IUCN, 2020; USDA, 2022) to trim
these habitat suitability predictions to only include areas each spe-
cies is known to inhabit. These predicted measures were then anno-
tated onto a 10km grid of points across the country, predicting the
relative abundance of all members of the mammal community we
modelled. At this point we excluded the North American porcupine
(Erethizon dorsatum) from the analysis because of a poor fit between
their predicted and actual distribution, resulting in 25 modelled

species.

2.4 | Describing communities and ecological
impacts (6-9)

We used hierarchical clustering (JMP, SAS, Cary, NC, USA) to
group sites with similar mammal communities, based on the pre-
dicted relative abundance of each species. We used these to de-
scribe a number of clusters chosen to represent coarse (n=8) and
fine (n=16) scaled groupings to roughly align with the level of de-
tail in the level | and level Il ecoregions (Omernik & Griffith, 2014).
We compared the match of these communities with plant derived
ecoregions using a 10km grid of points annotated to level | and
level Il ecoregions (Omernik & Griffith, 2014). We then mapped
the location of these clusters and calculated the average relative

abundance for each speciesin each region. Following the approach
of two recent papers (Parsons et al., 2022; Ramirez et al., 2021),
we calculated the potential relative ecological impact of each spe-
cies as a consumer of plants or prey based on their activity at a
site, their body size and their diet. We calculated a scaled measure
of species activity by combining the camera trap data detection
rate (predicted from GJAM already scaled by survey area for each
species), average group size and average amount of time spent in

front of the camera:

nA
Dsj=<§>*ts*gs (4)

)

where Dsj is the scaled activity of species s at camera location j, ng
is the total count of species s on camera j divided by the expected
detection area of a camera based on body size of species s and Dj
is the total number of days cameraj ran. t_ is the average amount
of time species s spent in front of camera traps in seconds and g,
is the average group size of species s on camera traps. We used
detection rates predicted from the GJAM model, which already
account for differences in camera detection area based on body
size (this correction was made to data used in GJAM). Because
of the fact that the group size and time in front of the camera
were not available for all datasets, we calculated average values
for each species from the Snapshot USA data (Cove et al., 2021;
Kays, Cove, et al., 2022).

Next, we used this measure of animal activity at a site to esti-
mate their potential ecological impacts by adding information on
body size and diet following:

Iy, = M X pg, x dg; (5)
where M is the metabolically active tissue (species average kg°‘75;
Kleiber, 1947 in species s), p,, is the percent of the diet of species s
made up of items from trophic level v and dsj is the average scaled spe-
cies activity in front of a camera (Equation 4). Data on species mass
and diet were drawn from the PANTHERIA and CARNIDIET databases
(Jones et al., 2009; Middleton et al., 2021). We used the more detailed
datain CARNIDIET to classify the proportion of a species diet that was
large or small prey for the carnivores (15-kg cut-off). We quantified the
proportion of their dietary items that were large or small prey while
excluding trace dietary items (<15% volume per sample). This ecolog-
ical impact metric expresses in an index of the kg of mammal biomass
supported by potential feeding on a given food type, weighted by the

time spent in a given area.

3 | RESULTS

Camera traps at 6645 locations documented 215,722 visits made
by 25 focal mammal species (Table S1, which also has scientific
names for all species). Our GJAM models including measures of for-
est seed production performed much better (many fewer Deviance

QSUADIT suowuo)) dAneaI) d[qedrjdde ayy £q paurdA0ST a1e s3[oNIE O (9sh JO SA[NI 10§ AIRIqIT dUI[UQ AJ[IA UO (SUONIPUOI-PUB-SULIY/WO0D" A3[1M ATRIqI[ouI[uo//:sd)Y) SUONIPUO) pue swd |, ) 39S ‘[$707/L0/67] U0 Areiqr aurjuQ A[IM ‘006€1°1PP/1111°01/10p/wod A3[1m Arelqraurjuo//:sdiy wolj papeojumo( ‘0 ‘TrorTLi1



KAYS ET AL.

7 of 16
Cowersty o Disrutions BVVITR SRS

Information Criterion (DIC) points) than models using the simpler (Table S3). Using a sensitivity analysis, we identified climate varia-

measure of forest cover. The GJAM model converged well, with bles as being the most important factors, followed by a combination

stable beta chains and most species had good model performance of habitat, terrain and human factors (Figure 2a).

most important (highest sensitivity).
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Estimated relationships between the relative abundance of in-
dividual species and environmental conditions followed expecta-
tions based on species biology (Figure 2b, Figure S2, Table S4). For
example, Eastern grey squirrels had a strong positive relationship
with human population size, as did other well-known anthrophilic
species (e.g., northern raccoon, red fox, eastern chipmunk, Virginia
opossum, white-tailed deer) and black-tailed jackrabbit, wild pigs
and snowshoe hare had the strongest negative relationship with
human population size. Forest cover weighted by the type and
amount of seeds they produce was important in explaining the
distribution of a number of species, especially squirrels. Hard mast
production was positively associated with abundance of eastern
grey squirrels, eastern chipmunks and American red squirrels, but
negatively associated with eastern fox squirrels. Big nuts were
positively associated with eastern grey and eastern fox squirrels,
while conifer mast was positively associated with American red
squirrel abundance. Although none of these relationships were
surprising, taken together, they do allow us to predict the relative
abundance of each species across the United States (Figure S3),
enabling new insights into community structure and potential eco-

logical impacts.

3.1 | Clustering communities

Our clustering analysis on the predicted relative abundance of
mammals throughout a 10km grid of points across the contermi-

nous United States shows the hierarchical divisions of mammal

Mammals

Level 2

communities, with the first split being between the eastern and
western United States (Figure 3, Figure S4). The eastern United
States is then split latitudinally, with the four coarse community
clusters being subtropical, southeast, midwest and northeast.
The western communities also divide into four groups, but the
patterns appear to be driven more by precipitation than latitude.
There is a broad western and central plains group, one around
the extreme hot areas of the southwest and another in the ex-
treme cold parts of the Rocky Mountains. These patterns broadly
match those of ecoregions defined around plant communities
(Figure S1), with 82% of the area of the 8-community mammal
map matching up with the respective Level | ecoregion and 62%
of the 16-community map matching up with Level Il ecoregions
(Table S5).

The differences between the eight primary communities are
shown by the expected average relative abundance for species
(Figure 4, Figure S4). The east-west split is most obviously asso-
ciated with higher relative abundance overall in the east, driven
especially by many squirrels, northern raccoons and white-tailed
deer. Those species are present in some parts of the west, but are
much less abundant and mule deer replace white-tailed deer in
these drier western regions. The Rocky Mountain community is
the most divergent in the west and has by far the lowest northern
raccoon abundance. A number of species were characteristic of
one or two regions (e.g., abundant in one or two regions, but rare
or absent elsewhere) including elk in the Rocky Mountains, black-
tailed jackrabbits in the southwest and wild pigs and nine-banded

armadillos in the southeast. There was also a suite of cold-adapted

Plant Ecoregions (EPA)

.“i

Ny

P ‘,%
>F

\

FIGURE 3 Comparing mammal regions to the level 1 US Environmental Protection Agency (EPA) ecoregions (Omernik & Griffith, 2014)
shows a very good match for the Great Plains, Northern Forest and Subtropical zone. The Eastern Temperate Forest region is split into 2
for mammals while the general western mammal region includes 4 plant ecoregions. The Rocky Mountains mammal region matches the
northwestern forested mountains, in part, but does not include the Sierra Nevada range. The southwest mammal region is not recognized in
plant regions. At the more detailed level, the split of western and Great Plains regions generally matches between plants and mammals, as
does the split of Northeast into 2 regions (except the lower peninsula of Michigan which clusters with the Midwest mammals). The split of
the Rockies and Midwest each into 3 regions is not matched by the plant ecoregion.
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FIGURE 4 Average species' relative
abundances across the eight communities
with species colour coded as large 0.065
carnivores in red (although they are so

0.070

relatively rare they are hard to see), small 0.060
carnivores in purple, insectivores in blue 0.055
and herbivores in green (small) or brown
(large). Animal silhouettes are provided 0.050
for the most common species to help
distinguish colour gradients. Abundances 9 0-045
for the more detailed 16 communities are 8 0.040
shown in Figure S5. E
S 0.035
g
2 0030

0.025

0.020

0.010
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West

species that were most abundant in the Rocky Mountains and
northeast forests including moose and snowshoe hares. Finally,
several broad-ranging species were present in many different re-
gions, but had variable abundance across space, which helped dis-
tinguish communities.

The finer scale differences that distinguish the 16 communi-
ties tended to be due to minor differences in relative abundance
(Figure S4). The western region is split into three groups with fewer
Virginia opossums in zone 1, more northern raccoons in zone 2 and
fewer black-tailed jackrabbits but more black bears and bobcats in
zone 3. The central region is split into two with more typical warm-
tolerant species (i.e., grey fox, Virginia opossum, nine-banded ar-
madillo, wild pigs, black-tailed jackrabbit) in the south and more
cold-adapted species (i.e., elk, red fox, red squirrel) in the northern
zone (5). Mule deer and Eastern fox squirrels were more abundant
in zone 5, while Eastern grey squirrels were more abundant in zone
6. The Rocky Mountains are also split into three regions with a pe-
riphery (7), northern core (8) and southern core (9), with differences
driven especially by increases in red squirrel and elk abundance and
decreases in racoons in higher and more southerly mountains. The
Midwest zone is split into three due mostly to differences in squirrels,
with zone 12 having more eastern fox squirrels, zone 14 having more
eastern grey squirrels and zone 13 having similar but very high levels
of both. Virginia opossums are more abundant in zone 13, while zone
14 had higher levels of American black bears, bobcats and grey foxes
that also comprised portions of the Mid-Atlantic. Finally, the north-
ern forests split into two zones, with the cold-adapted species (i.e.,
snowshoe hare, moose, grey wolf) being more common in the north-
ern zone (15) and less cold-adapted species (i.e., Eastern grey squirrel,
eastern fox squirrel, racoon, Virginia opossum) being more common
in the southern zone (16).
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3.2 | Ecological impacts

We can represent spatially explicit ecological impacts by mapping
the relative strength of the ecological roles played by common mam-
mals across the country based on their typical abundance, time spent
in front of the camera, weight and diet (Figure 5). Potential herbivory
pressure is driven by the larger ungulates and is the highest in the Rocky
Mountains that are home to elk and abundant mule and white-tailed
deer, followed by eastern regions with high numbers of white-tailed
deer. Similarly, the potential ecological impact of invertebrate consum-
ers is also driven by the three largest-bodied species: American black
bears, wild pigs and northern raccoons. The addition of nine-banded
armadillos in the subtropical region helps give it the highest overall
invertebrate predation pressure. Northern raccoons are by far the
most abundant predator of small prey and they drive community-wide
patterns of small prey predation pressure in the east, while predation
pressure from other predators on small prey remains consistent across
regions. Finally, predation pressure on large prey (>15kg) is highest in
the Rocky Mountains where cougars and grey wolves are most abun-
dant. Coyotes hunt far fewer large prey than wolves or cougars, but
their abundance across the country makes them the most important

risk to large prey in many regions.

4 | DISCUSSION

We empirically derived communities of mammals based on pat-
terns of abundance and found them strikingly similar to well-known
ecoregions created from plant communities (Figure 3, Table S5).
More than just pattern matching, our niche models give insight
into the ecological mechanisms underlying these communities. We
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Mammal Effects on Large Vertebrate Prey
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found that climate variables are the most important influencers,
driving a primary split between the eastern and western United
States and producing secondary divisions along temperature gra-
dients in the east and precipitation gradients in the west that par-
allel those seen in plant ecoregions. Food production by forests is
also an important predictor of abundance, especially larger hard
mast producing trees that have a long coevolutionary history with
mammals (Stapanian & Smith, 1978). Anthropogenic disturbance
to the landscape is correlated with mammal abundance in con-
trasting ways for different species, but it is not presently affect-
ing mammal communities to the extent observed with climate and
food. The resulting patterns of mammal abundance, especially of
larger species, have ecological consequences due to differences
in the potential for herbivory and predation across the continent.

Three climatic covariates (precipitation, temperature, aridity)
were the most important predictors of abundance across the mam-
mal communities we modelled (Figure 2a). Although climate has
been linked to major evolutionary events in the history of North

RockyMt
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American mammals (1), no studies have evaluated its importance
on contemporary mammal distributions in comparison with habitat
and human factors. These effects can also be seen when consider-
ing the community maps and graphs of relative abundance, where
overall mammal abundance is higher in wetter regions (e.g., east and
Rocky Mountains) and where latitudinal change in zones (e.g., zones
14-16) reflect species turnover and addition of more abundant cold-
adapted species (i.e., snowshoe hare, moose). Our models suggest
that climate change will have strong impacts on the composition of
mammal communities and we are able to quantify these relation-
ships to predict those effects for 25 species (Table S4).

Human factors (population density, agriculture) were less im-
portant than climate, but still had strong impacts on mammal abun-
dance, although in contrasting ways, showing how some species
successfully occupy urbanized spaces while others do not. Human
population density was important for 68% of species, with a posi-
tive relationship for 11 species and negative for 6 species (Figure 2b,
Tables S2 and S4). Agriculture was strongly negatively correlated
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with abundance for four carnivore species and snowshoe hare, but
positively associated with eight species of herbivores and omnivores
(Figure 2b, Table S2). The simplistic covariates we were able to use for
this large scale analysis represent a more complex relationship and
additional variance could likely be explained with more information
on hunting by humans and recreation patterns (Kays et al., 2017), ef-
fects of historical extirpations (Laliberte & Ripple, 2004) and more
nuanced information about the types and intensities of agricultural
developments (Caldwell & Klip, 2023). Nonetheless, our data en-
compass the full range of variation of human footprint, from cities to
farmland to wilderness (Figure S1), allowing us to broadly compare
the importance of humans to other factors.

The seeds and fruits produced by trees represent food for many
mammal species and new large-scale estimates of their production
(Clark et al., 2019) allowed us to relate them to animal abundance
over broad scales for the first time, providing substantially better
predictions than using simple measures of forest cover. The largest
seeds (big nuts: Carya and Juglans) and other hard masting species
were the most important (Figure 2, Figure S2). This approach of
quantifying the potential value of a forest by the density of different
kinds of seeds it produces also has modelling advantages over using
categorical forest types. For the seed and fruit eating species, these
relationships probably reflect direct benefits of the trees producing
food for these mammals. The importance of mast for other species,
such as predators, was lower, but still important by reflecting other
aspects of habitat quality (i.e., prey abundance) associated with mast
production. We grouped tree species into four broad categories that
reflect mammal feeding preferences (Table S4, Figure S6), but ex-
pect more nuanced relationships could be discovered through more
fine-scale dietary categories related to species’ known dietary pref-
erences (Moller, 1983).

Ecological maps are key for many aspects of conservation, in-
cluding supporting biodiversity and red list assessments, predicting
carbon dynamics and assessing disease risk (Gatti et al., 2021). Our
ecological maps provide a unique perspective, not only because they
are specific to mammal communities, but also because they provide
the basis for quantifying the relative ecological impact of mammals
across these zones. Our results show strong regional differences in
mammalian herbivory and predation on small prey (e.g., ~2x higher
in much of the eastern United States than some western regions).
These maps also show that parts of the Rocky Mountains have high
levels of herbivory and predation on large prey. Whether the higher
absolute herbivory translates into higher pressure per plant would
depend on plant abundance and defences, which are clearly dif-
ferent across the United States (e.g., sparse, well-defended desert
plants vs. abundant leafy eastern deciduous forests). These results
also emphasize the ecological importance of common large species
over smaller rare species of the same guild, with animals like coyotes,
northern raccoons and white-tailed deer having the overall largest
roles across the continent. We hope these results will be useful in
generating hypotheses about the mechanisms underpinning ecolog-
ical impacts that can be tested with field experiments (e.g., herbiv-
ory; Rosin et al., 2017, predation risk Schuttler et al., 2016).
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One drawback of our study is that it only included 25 species of
mammals and future work could improve analyses by adding more
species and understudied habitats. Despite collecting one of the
largest camera trap datasets ever published, many species remained
data deficient, limiting our ability to model their abundance at a con-
tinental scale and in undersampled regions in the western United
States. Adding more camera data through standardized surveys
(Cove et al., 2021), common repositories (Ahumada et al., 2019), or
integrating other types of mammal datasets (Pacifici et al., 2017),
could help meet this goal. Expanding the species included in anal-
yses could change the resulting mammal communities identified,
especially through the addition of species endemic to small regions.
However, our work does include the most common large mammals,
which have the strongest ecological impacts (Figure 5, Equation 5),
so we expect fewer changes to those maps of ecological function.
Our work is also limited by having only one model per species, thus
forcing the same ecological relationships across an entire species’
range and not explicitly considering species interactions. Most wide-
ranging species probably have some variation in their ecology due to
local adaptation or subspecific genetic variation (Pease et al., 2022;
Rollinson et al., 2021) and accounting for this would improve local
abundance predictions.

This work shows the potential for continental-scale estimates of
animal abundance through large collaborations (Cove et al., 2021;
Kays, Cove, et al., 2022), data standards and sharing tools (Ahumada
et al.,, 2019) and the growing diversity of relevant ecological data
(i.e., mast production Clark et al., 2019). Our results show that the
patterns of modern mammal communities, as with plant ecoregions,
are driven by climate and are relatively stable across broad land-
scapes despite substantial variability in human densities and infra-
structure. This finding also highlights the potential impact of rapid
climate change (Shukla et al., 2019) to these communities and raises
questions about the ability of plant and animal communities to keep
pace without active management. Ecoregions have proven a useful
tool for mapping existing patterns and we see potential for our em-
pirical niche-driven approach to be extended to document changes
in near real time (Kays & Wikelski, 2023) and offer predictions useful
for conservation management about where species are likely to do

best in future conditions.

AFFILIATIONS

1Department of Forestry and Environmental Resources, North Carolina
State University, Raleigh, North Carolina, USA

2North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
3Department of Forestry and Environmental Conservation, Clemson
University, Clemson, South Carolina, USA

4Smithsonian's National Zoo and Conservation Biology Institute, Front Royal,
Virginia, USA

SIllinois Natural History Survey, Prairie Research Institute, University of
Illinois, Champaign, lllinois, USA

Fort Hood Natural Resources Management Branch, United States Army
Garrison, Fort Hood, Texas, USA

’Environmental Studies Department, Center for Integrated Spatial Research,
University of California Santa Cruz, Santa Cruz, California, USA

8Science Research Initiative, University of Utah, Salt Lake City, Utah, USA
?Sageland Collaborative, Salt Lake City, Utah, USA

QSUADIT suowuo)) dAneaI) d[qedrjdde ayy £q paurdA0ST a1e s3[oNIE O (9sh JO SA[NI 10§ AIRIqIT dUI[UQ AJ[IA UO (SUONIPUOI-PUB-SULIY/WO0D" A3[1M ATRIqI[ouI[uo//:sd)Y) SUONIPUO) pue swd |, ) 39S ‘[$707/L0/67] U0 Areiqr aurjuQ A[IM ‘006€1°1PP/1111°01/10p/wod A3[1m Arelqraurjuo//:sdiy wolj papeojumo( ‘0 ‘TrorTLi1



KAYS ET AL.

12 of 16
AYWAIB2A'& Diversity and Distributions

10Conservation Science Partners, Inc., Truckee, California, USA

National Climate Adaptation Science Center, United States Geological
Survey, Reston, Virginia, USA

12Biology Department, Swarthmore College, Swarthmore, Pennsylvania,
USA

BEntomology Department, Cornell University, Ithaca, New York, USA
YInformation Technology Department, Pace University, Pleasantville, New
York, USA

15Seattle University Department of Biology, Seattle, Washington, USA
16Department of Biology, Pace University, Pleasantville, New York, USA
Department of Ecology and Evolutionary Biology, Storrs, Connecticut, USA
Bwildlife Biology Program, Department of Ecosystem and Conservation
Sciences, University of Montana, Missoula, Montana, USA

¥Department of Forest and Environmental Biology, SUNY-ESF, Syracuse,
New York, USA

20Arizona State University, College of Integrative Sciences and Arts, Mesa,
Arizona, USA

2!University of Washington, School of Environmental and Forest Sciences,
Seattle, Washington, USA

22\Woodland Park Zoo, Seattle, Washington, USA

28Department of Biology, Wildlife Ecology and Conservation Science Lab,
Northern Michigan University, Marquette, Michigan, USA

24Department of Geography and Environmental Systems, University of
Maryland Baltimore County, Baltimore, Maryland, USA

25Biology Department and Nature Up North Program, St. Lawrence
University, Canton, New York, USA

26school of Resource and Environmental Management, Simon Fraser
University, Burnaby, British Columbia, Canada

?’Department of Geography, Geology, and Environmental Science,
University of Wisconsin-Whitewater, Whitewater, Wisconsin, USA
28Department of Biology, University of Wisconsin-Whitewater, Whitewater,
Wisconsin, USA

2’Department of Vertebrate Zoology, Smithsonian Institution, National
Museum of Natural History, Washington, District of Columbia, USA
39Caesar Kleberg Wildlife Research Institute, Texas A&M University-
Kingsville, Kingsville, Texas, USA

3lwildlife Health Laboratory, California Department of Fish and Wildlife,
Rancho Cordova, California, USA

32Warner College of Natural Resources, Colorado State University, Fort
Collins, Colorado, USA

33Department of Biological Sciences, Bridgewater State University,
Bridgewater, Massachusetts, USA

34Natural Resource Ecology and Management, lowa State University, Ames,
lowa, USA

35Mianus River Gorge, Bedford, New York, USA

36Department of Biology, Appalachian State University, Boone, North
Carolina, USA

37School of Science and Mathematics, Pittsburg State University, Pittsburg,
Kansas, USA

38USDA Forest Service, Pacific Northwest Research Station, Corvallis,
Oregon, USA

39Department of Fisheries, Wildlife, and Conservation, Oregon State
University, Corvallis, Oregon, USA

“ODepartment of Biology, The Pennsylvania State University, University
Park, Pennsylvania, USA

“ICenter for Conservation Medicine, Cummings School of Veterinary
Medicine at Tufts University, North Grafton, Massachusetts, USA

42School of Natural Resources and the Environment, University of Arizona,
Tucson, Arizona, USA

“3Centre for Research into Ecological and Environmental Modelling, School
of Mathematics and Statistics, St Andrews University, St Andrews, UK
“4Division of Forestry and Natural Resources, West Virginia University,
Morgantown, West Virginia, USA

“Edmonds Community College, Lynnwood, Washington, USA
46Department of Biology, Abilene Christian University, Abilene, Texas, USA
“’Department of Wildlife, Fisheries and Conservation Biology, University of
Maine, Orono, Maine, USA

48Department of Life Sciences, University of Trieste, Trieste, Italy

“*Point No Point Treaty Council, Poulsbo, Washington, USA

50Environmental Sciences and Studies Department, Stonehill College,
Easton, Massachusetts, USA

5IDepartment of Natural Resources Science, University of Rhode Island,
Kingston, Rhode Island, USA

52U.S. Geological Survey, Michigan Cooperative Fish and Wildlife Research
Unit, Michigan State University, East Lansing, Michigan, USA

535chool of Natural Resources, University of Nebraska-Lincoln, Lincoln,
Nebraska, USA

54Department of Fisheries and Wildlife, Michigan State University, East
Lansing, Michigan, USA

55Bat Conservation International, Austin, Texas, USA

5Department of Biology, Southeastern Louisiana University, Hammond,
Louisiana, USA

5’Department of Migration, Max Planck Institute of Animal Behavior,
Radolfzell, Germany

58Pepperwood, Santa Rosa, California, USA

*Georgia Department of Natural Resources, Wildlife Resources Division,
Brunswick, Georgia, USA

60y.s. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research
Unit, Oklahoma State University, Stillwater, Oklahoma, USA

61U.S. Air Force Academy, Department of Biology, Faculty Drive, Colorado,
USA

%2Department of Biological Sciences, Ohio University, Athens, Ohio, USA
3school for Environment and Sustainability, University of Michigan, Ann
Arbor, Michigan, USA

44Humane Rescue Alliance, Washington, District of Columbia, USA
5Texas State University, San Marcos, Texas, USA

°6Department of Natural Sciences, University of West Georgia, Carrollton,
Georgia, USA

5’Department of Forestry and Natural Resources, Purdue University, West
Lafayette, Indiana, USA

68Michigan Department of Natural Resources, Wildlife Division, Marquette,
Michigan, USA

$7School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
70Department of Natural Resources and Environmental Management,
University of Hawai‘i Manoa, Honolulu, Hawaii, USA

71Department of Fisheries, Wildlife, and Conservation Biology, University of
Minnesota, St. Paul, Minnesota, USA

"2Bjological Sciences Department, Utah Tech University, St. George, Utah,
USA

73Department of Biology, Missouri State University, Springfield, Missouri,
USA

74Department of Public Health & Exercise Science, Appalachian State
University, Boone, North Carolina, USA

7>Texas A&M Natural Resources Institute, Texas A&M University, College
Station, Texas, USA

76Department of Rangeland, Wildlife and Fisheries Management, Texas A&M
University, College Station, Texas, USA

77Department of Wildlife Ecology and Conservation, University of Florida,
Gainesville, Florida, USA

7 Environmental Studies Department, Gettysburg College, Gettysburg,
Pennsylvania, USA

7’Department of Biology, Northern lllinois University, DeKalb, lllinois, USA
8°New York Natural Heritage Program, SUNY College of Environmental
Science and Forestry, Albany, New York, USA

81Department of Biology, Oberlin College, Oberlin, Ohio, USA

82The Jones Center at Ichauway, Newton, Georgia, USA

835avannah River Ecology Laboratory and Warnell School of Forestry and
Natural Resources, University of Georgia, Aiken, South Carolina, USA
84Department of Wildlife Ecology and Conservation, North Florida Research
and Education Center, University of Florida, Quincy, Florida, USA
85Department of Biology, University of North Dakota, Grand Forks, North
Dakota, USA

86Noble Research Institute, Ardmore, Oklahoma, USA

8’New College of Interdisciplinary Arts & Sciences, Arizona State University,
Glendale, Arizona, USA

88Arizona Center for Nature Conservation, Phoenix Zoo, Phoenix, Arizona,
USA

89School of Life Sciences, Arizona State University, Tempe, Arizona, USA

QSUADIT suowuo)) dAneaI) d[qedrjdde ayy £q paurdA0ST a1e s3[oNIE O (9sh JO SA[NI 10§ AIRIqIT dUI[UQ AJ[IA UO (SUONIPUOI-PUB-SULIY/WO0D" A3[1M ATRIqI[ouI[uo//:sd)Y) SUONIPUO) pue swd |, ) 39S ‘[$707/L0/67] U0 Areiqr aurjuQ A[IM ‘006€1°1PP/1111°01/10p/wod A3[1m Arelqraurjuo//:sdiy wolj papeojumo( ‘0 ‘TrorTLi1



KAYS ET AL.

13 of 16
Coversy s isiwions RAVAT SRR

9°Department of Biological Sciences, Watershed Studies Institute, Murray
State University, Murray, Kentucky, USA

ICraighead Beringia South, Kelly, Wyoming, USA

92School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
P3Koc University Department of Molecular Biology and Genetics, Istanbul,
Turkey

94Department of Environmental Studies and Sciences, Siena College,
Loudonville, New York, USA

PSUSDA Forest Service, Southern Research Station, Nacogdoches, Texas,
USA

96College of Forestry, Wildlife and Environment, Auburn University, Auburn,
Alabama, USA

97Black Rock Forest, Cornwall, New York, USA

98Department of Natural Resources and Environmental Sciences, University
of Illinois, Urbana, lllinois, USA

?McDowell Sonoran Conservancy, Scottsdale, Arizona, USA

1005 chool of Earth and Sustainability, Northern Arizona University, Flagstaff,
Arizona, USA

10lytah's Hogle Zoo, Salt Lake City, Utah, USA

102Hyston-Brumbaugh Nature Center, University of Mount Union, Alliance,
Ohio, USA

103cyumberland Mountain Research Center, Department of Biology, Lincoln
Memorial University, Harrogate, Tennessee, USA

104Rutgers University Ecological Preserve, Piscataway, New Jersey, USA
105Department of Biology, University of North Texas, Denton, Texas, USA
106 Jaska Department of Fish and Game, Division of Wildlife Conservation,
Juneau, Alaska, USA

1%7Nicholas School of the Environment, Duke University, Durham, North
Carolina, USA

108pjexander Center for Applied Population Biology, Lincoln Park Zoo,
Chicago, lllinois, USA

ACKNOWLEDGEMENTS

Thanks for funding from the NC Museum of Natural Sciences,
NC State University, Michigan State and University of Montana
Boone and Crockett Club, University of North Dakota Department
of Biology, St. Lawrence University Biology Department, Nature
Up North, Thelma Doelger Trust for Animals, Noble Research
Institute, NSF grants (2206783, 1914928, 1754656, 1564954),
USDA National Institute of Food and Agriculture Mclntire-Stennis
projects (WVA00818, ME0-41913), USFWS (Grant F20AC11116)
and the United States Department of Energy (DE-EM0005228).
We also thank those who helped us run cameras Jeff Hickle, Louis
Kant, Sonny Bandak, Isabel Lepczyk, Olivia Lepczyk, David Spillo,
Elizabeth Saldo Gregory Wehr, Gina Wehr Marlin Dart, Joanne
Wasdin, John Erb, D. Warren, Jordan Nanney, Batubay Ozkan,
Barbara Watkins, citizen scientists of the Wasatch Wildlife Watch
camera trapping project, the Global Change and Sustainability
Center at the University of Utah, The Science Research Initiative
at the University of Utah, Sageland Collaborative, Utah's Hogle
Zoo, The Natural History Museum of Utah, the Trails and Natural
Lands Division of Salt Lake City's Public Lands Department, North
Country Wild Project, Woodland Park Zoo and students from
the Biology and Conservation Biology classes of St. Lawrence
University, the Conservation Biology course at the University of
West Georgia, the Environmental Science course at Siena College,
the Murray State University Chapter of The Wildlife Society, Seattle
University, Crocodile Lake NWR staff and volunteers and the North
Carolina State University Mammalogy students. We also thank
the institutions who helped with the work or allowed us to survey

mammals on their lands including the USDA Forest Service, Pacific
Northwest Research Station, Maine Department of Inland Fisheries
and Wildlife, Arkansas Game and Fish Department, the City of
Fayetteville, Louisiana Board of Regents, Mathematics Engineering
Science Achievement program at Santa Rosa Junior College, Spring
Creek Prairie Audubon Center, Texas State University, the Freeman
Center, Michigan Department of Natural Resources, Tule Springs
Fossil Bed National Monument, Minnesota Department of Natural
Resources, The Nachusa Grasslands, Fox Valley Park District, Aurora
County Club, The Jones Center at Ichauway, Rutgers University
Ecological Preserve, Cheatham WMA, University of North Dakota
Field Stations and Bridger-Teton National Forest. Any use of trade,
firm, or product names is for descriptive purposes only and does not
imply endorsement by the U.S. Government. This paper was written
and prepared in part by U.S. Government employees on official time
and therefore it is in the public domain and not subject to copyright.
This research was supported in part by the USDA Forest Service.
This publication represents the views of the authors, supported by
the U.S. Geological Survey and does not necessarily represent the
views of the USDA or U.S. Forest Service.

CONFLICT OF INTEREST STATEMENT
The authors declare that they have no conflicts of interest.

DATA AVAILABILITY STATEMENT
All camera trap data are publicly available through the references

cited in Figure S1.

ORCID
Roland Kays "= https://orcid.org/0000-0002-2947-6665
Matthew H. Snider ' https://orcid.org/0000-0002-1346-8943
Michael V. Cove "= https://orcid.org/0000-0001-5691-0634
https://orcid.org/0000-0003-0340-7765
Hila Shamon "= https://orcid.org/0000-0001-5252-7013
William J. McShea "= https://orcid.org/0000-0002-8102-0200
https://orcid.org/0009-0009-8745-1325
https://orcid.org/0000-0001-8976-889X
https://orcid.org/0000-0003-3694-4444
https://orcid.org/0000-0001-5024-399X
https://orcid.org/0000-0002-7443-3015
https://orcid.org/0000-0001-5952-2186
Matthew S. Leslie "= https://orcid.org/0000-0002-2536-6020
Sophie Nasrallah "= https://orcid.org/0009-0000-8396-9041
Mark Jordan "= https://orcid.org/0000-0003-0153-4269
Michael C. LaScaleia "= https://orcid.org/0000-0002-8777-5962
https://orcid.org/0000-0002-6370-2507
https://orcid.org/0000-0002-9473-9011
https://orcid.org/0000-0002-3071-5272

Alex Jensen

Brigit Rooney
Maximilian L. Allen
Charles E. Pekins
Mary E. Pendergast
Austin M. Green
Justin Suraci

Chris Hansen
Josh Millspaugh
Jesse S. Lewis

Robert Long “* https://orcid.org/0000-0003-4004-9573
Diana J. R. Lafferty "= https://orcid.org/0000-0001-8938-7130
Tru Hubbard "= https://orcid.org/0000-0002-0848-9184

Colin E. Studds
Erika L. Barthelmess

https://orcid.org/0000-0001-5715-1692
https://orcid.org/0000-0003-0219-3216

QSUADIT suowuo)) dAneaI) d[qedrjdde ayy £q paurdA0ST a1e s3[oNIE O (9sh JO SA[NI 10§ AIRIqIT dUI[UQ AJ[IA UO (SUONIPUOI-PUB-SULIY/WO0D" A3[1M ATRIqI[ouI[uo//:sd)Y) SUONIPUO) pue swd |, ) 39S ‘[$707/L0/67] U0 Areiqr aurjuQ A[IM ‘006€1°1PP/1111°01/10p/wod A3[1m Arelqraurjuo//:sdiy wolj papeojumo( ‘0 ‘TrorTLi1


https://orcid.org/0000-0002-2947-6665
https://orcid.org/0000-0002-2947-6665
https://orcid.org/0000-0002-1346-8943
https://orcid.org/0000-0002-1346-8943
https://orcid.org/0000-0001-5691-0634
https://orcid.org/0000-0001-5691-0634
https://orcid.org/0000-0003-0340-7765
https://orcid.org/0000-0003-0340-7765
https://orcid.org/0000-0001-5252-7013
https://orcid.org/0000-0001-5252-7013
https://orcid.org/0000-0002-8102-0200
https://orcid.org/0000-0002-8102-0200
https://orcid.org/0009-0009-8745-1325
https://orcid.org/0009-0009-8745-1325
https://orcid.org/0000-0001-8976-889X
https://orcid.org/0000-0001-8976-889X
https://orcid.org/0000-0003-3694-4444
https://orcid.org/0000-0003-3694-4444
https://orcid.org/0000-0001-5024-399X
https://orcid.org/0000-0001-5024-399X
https://orcid.org/0000-0002-7443-3015
https://orcid.org/0000-0002-7443-3015
https://orcid.org/0000-0001-5952-2186
https://orcid.org/0000-0001-5952-2186
https://orcid.org/0000-0002-2536-6020
https://orcid.org/0000-0002-2536-6020
https://orcid.org/0009-0000-8396-9041
https://orcid.org/0009-0000-8396-9041
https://orcid.org/0000-0003-0153-4269
https://orcid.org/0000-0003-0153-4269
https://orcid.org/0000-0002-8777-5962
https://orcid.org/0000-0002-8777-5962
https://orcid.org/0000-0002-6370-2507
https://orcid.org/0000-0002-6370-2507
https://orcid.org/0000-0002-9473-9011
https://orcid.org/0000-0002-9473-9011
https://orcid.org/0000-0002-3071-5272
https://orcid.org/0000-0002-3071-5272
https://orcid.org/0000-0003-4004-9573
https://orcid.org/0000-0003-4004-9573
https://orcid.org/0000-0001-8938-7130
https://orcid.org/0000-0001-8938-7130
https://orcid.org/0000-0002-0848-9184
https://orcid.org/0000-0002-0848-9184
https://orcid.org/0000-0001-5715-1692
https://orcid.org/0000-0001-5715-1692
https://orcid.org/0000-0003-0219-3216
https://orcid.org/0000-0003-0219-3216

KAYS ET AL.

14 of 16
AYWAIB2A'& Diversity and Distributions

Melissa T. R. Hawkins

Jason V. Lombardi

https://orcid.org/0000-0001-8929-1593
https://orcid.org/0000-0002-0017-5674
Maksim Sergeyev "= https://orcid.org/0000-0001-9975-0423
M. Caitlin Fisher-Reid " https://orcid.org/0000-0003-1587-7086
https://orcid.org/0000-0002-2835-2150
https://orcid.org/0000-0002-9911-2779
https://orcid.

Christopher Nagy
Jon M. Davenport
Christine C. Rega-Brodsky
org/0000-0002-3483-1465
https://orcid.org/0000-0002-4761-606X

Damon B. Lesmeister " https://orcid.org/0000-0003-1102-0122
Sean T. Giery " https://orcid.org/0000-0003-3774-5295
Christopher A. Whittier "= https://orcid.org/0000-0001-9626-6513
Jesse M. Alston "= https://orcid.org/0000-0001-5309-7625

Cara L. Appel

Chris Sutherland "= https://orcid.org/0000-0003-2073-1751
Christopher Rota " https://orcid.org/0000-0001-9272-4687
Thomas Murphy "= https://orcid.org/0000-0002-8876-6099
Alessio Mortelliti “= https://orcid.org/0000-0003-0480-6100

https://orcid.org/0000-0003-4450-3155
https://orcid.org/0000-0001-9285-9784
https://orcid.org/0000-0002-5273-049X
https://orcid.org/0000-0002-3722-8821
John F. Benson "= https://orcid.org/0000-0002-3993-4340
M. Teague O’Mara " https://orcid.org/0000-0002-6951-1648
https://orcid.org/0000-0002-2599-5011
https://orcid.org/0009-0000-1708-4958
Robert V. Horan Il = https://orcid.org/0009-0005-3964-7623
Robert C. Lonsinger "= https://orcid.org/0000-0002-1040-7299
Kellie M. Kuhn "= https://orcid.org/0000-0002-6246-2476
Steven C. M. Hasstedt "= https://orcid.org/0009-0001-0133-7751
https://orcid.org/0000-0002-8264-9879
Sophie M. Moore " https://orcid.org/0000-0001-7359-7109
Daniel J. Herrera "= https://orcid.org/0000-0002-8468-220X
Sarah Fritts " https://orcid.org/0000-0003-0651-0004
Andrew J. Edelman "= https://orcid.org/0000-0002-7980-9739
Elizabeth A. Flaherty "= https://orcid.org/0000-0001-6872-7984
https://orcid.org/0000-0003-4957-6732
Sean A. Neiswenter " https://orcid.org/0000-0002-2835-6653
Derek R. Risch "2 https://orcid.org/0000-0002-0394-0562
Fabiola lannarilli "= https://orcid.org/0000-0002-7018-3557
Sean P. Maher "= https://orcid.org/0000-0002-3430-0410
Stephen L. Webb "= https://orcid.org/0000-0001-6034-5164
David S. Mason "= https://orcid.org/0000-0001-8456-5700
Marcus A. Lashley "' https://orcid.org/0000-0002-1086-7754
Andrew M. Wilson "= https://orcid.org/0000-0001-8435-4516
John P. Vanek "2 https://orcid.org/0000-0002-8684-9632
L. Mike Conner "= https://orcid.org/0000-0003-4191-5963
James C. Beasley "= https://orcid.org/0000-0001-9707-3713
https://orcid.org/0000-0002-9457-2119
https://orcid.org/0000-0003-1796-9355
https://orcid.org/0000-0002-2334-2519
https://orcid.org/0000-0002-8338-7874
https://orcid.org/0000-0002-0034-2460
https://orcid.org/0000-0002-0501-3471

Justin A. Compton
Brian D. Gerber
Brett A. DeGregorio
Nathaniel H. Wehr

Morgan Gray
Dean E. Beyer Jr.

Marketa Zimova

Tyler R. Petroelje

Helen L. Bontrager
Carolina Baruzzi
Mike D. Proctor
Jan Schipper
Katherine C. B. Weiss
Peter D. Alexander

https://orcid.org/0000-0003-3193-0377
https://orcid.org/0000-0001-6683-2553
https://orcid.org/0000-0001-5388-0871
Christopher A. Lepczyk "= https://orcid.org/0000-0002-5316-3159
Scott LaPoint "= https://orcid.org/0000-0002-5499-6777
Laura S. Whipple "= https://orcid.org/0000-0003-0736-9946
https://orcid.org/0000-0002-1545-7658
https://orcid.org/0009-0004-1975-2779
https://orcid.org/0000-0001-6085-4698
https://orcid.org/0000-0003-2788-6238
https://orcid.org/0000-0003-1076-2896

Cagan H. Sekercioglu
Christopher M. Schalk
Jean E. Fantle-Lepczyk

Helen lvy Rowe
Kayleigh Mullen
Richard G. Lathrop
Anthony P. Crupi
Avrielle Parsons

REFERENCES

Ahumada, J. A, Fegraus, E., Birch, T., Flores, N., Kays, R., Brien, T. G. O.,
Palmer, J.,, Schuttler, S., Zhao, J. Y., Jetz, W., Kinnaird, M., Kulkarni,
S., Lyet, A., & Thau, D. (2019). Wildlife insights: A platform to max-
imize the potential of camera trap and other passive sensor wildlife
data for the planet. Environmental Conservation, 47, 1-6.

Alroy, J. (2001). A multispecies overkill simulation of the end-Pleistocene
megafaunal mass extinction. Science, 292, 1893-1896.

Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A.,
Malczyk, J., & Jetz, W. (2018). A suite of global, cross-scale topo-
graphic variables for environmental and biodiversity modeling.
Scientific data, 5, 1-15.

Broadley, K., Burton, A. C., Avgar, T., & Boutin, S. (2019). Density-
dependent space use affects interpretation of camera trap detec-
tion rates. Ecology and Evolution, 9, 14031-14041.

Brynjarsdottir, J., & Gelfand, A. E. (2014). On covariate importance for re-
gression models with multivariate response. Journal of Agricultural,
Biological, and Environmental Statistics, 19, 479-500.

Caldwell, M. R., & Klip, J. M. K. (2023). Influence of cattle grazing on
the spatiotemporal activity of wildlife. Rangeland Ecology &
Management, 88, 122-128.

Ceballos, G., Ehrlich, P. R, Barnosky, A. D., Garcia, A., Pringle, R. M., &
Palmer, T. M. (2015). Accelerated modern human-induced species
losses: Entering the sixth mass extinction. Science Advances, 1,
€1400253.

Center for International Earth Science Information Network. (2018).
Gridded Population of the World, Version 4 (GPWv4): Population
Count, Revision 11. NASA Socioeconomic Data and Applications
Center (SEDAC).

Clark, J. S., Nemergut, D., Seyednasrollah, B., Turner, P. J., & Zhang,
S. (2017). Generalized joint attribute modeling for biodiversity
analysis: Median-zero, multivariate, multifarious data. Ecological
Monographs, 87, 34-56.

Clark, J. S., Nufez, C. L., & Tomasek, B. (2019). Foodwebs based on unre-
liable foundations: Spatiotemporal masting merged with consumer
movement, storage, and diet. Ecological Monographs, 89, e01381.

Clark, J. S., & Taylor-Rodriquez, D. (2021). GJAM: Generalized joint attri-
bute modeling.

Cove, M. V,, Kays, R., Bontrager, H., Bresnan, C., Lasky, M., Frerichs, T.,
Klann, R., Lee, T. E., Crockett, S. C., Crupi, A. P., Weiss, K. C. B.,
Rowe, H., Sprague, T., Schipper, J., Tellez, C., Lepczyk, C. A., Fantle-
Lepczyk, J. E., LaPoint, S., Williamson, J., ... McShea, W. J. (2021).
SNAPSHOT USA 2019: A coordinated national camera trap survey
of the United States. Ecology, 102, 2019-2020.

Gatti, L. V., Basso, L. S., Miller, J. B., Gloor, M., Gatti Domingues, L.,
Cassol, H. L. G,, Tejada, G., Aragao, L. E. O. C., Nobre, C., Peters, W.,
Marani, L., Arai, E., Sanches, A. H., Corréa, S. M., Anderson, L., Von
Randow, C., Correia, C. S. C., Crispim, S. P, & Neves, R. A. L. (2021).
Amazonia as a carbon source linked to deforestation and climate
change. Nature, 595, 388-393.

QSUADIT suowuo)) dAneaI) d[qedrjdde ayy £q paurdA0ST a1e s3[oNIE O (9sh JO SA[NI 10§ AIRIqIT dUI[UQ AJ[IA UO (SUONIPUOI-PUB-SULIY/WO0D" A3[1M ATRIqI[ouI[uo//:sd)Y) SUONIPUO) pue swd |, ) 39S ‘[$707/L0/67] U0 Areiqr aurjuQ A[IM ‘006€1°1PP/1111°01/10p/wod A3[1m Arelqraurjuo//:sdiy wolj papeojumo( ‘0 ‘TrorTLi1


https://orcid.org/0000-0001-8929-1593
https://orcid.org/0000-0001-8929-1593
https://orcid.org/0000-0002-0017-5674
https://orcid.org/0000-0002-0017-5674
https://orcid.org/0000-0001-9975-0423
https://orcid.org/0000-0001-9975-0423
https://orcid.org/0000-0003-1587-7086
https://orcid.org/0000-0003-1587-7086
https://orcid.org/0000-0002-2835-2150
https://orcid.org/0000-0002-2835-2150
https://orcid.org/0000-0002-9911-2779
https://orcid.org/0000-0002-9911-2779
https://orcid.org/0000-0002-3483-1465
https://orcid.org/0000-0002-3483-1465
https://orcid.org/0000-0002-3483-1465
https://orcid.org/0000-0002-4761-606X
https://orcid.org/0000-0002-4761-606X
https://orcid.org/0000-0003-1102-0122
https://orcid.org/0000-0003-1102-0122
https://orcid.org/0000-0003-3774-5295
https://orcid.org/0000-0003-3774-5295
https://orcid.org/0000-0001-9626-6513
https://orcid.org/0000-0001-9626-6513
https://orcid.org/0000-0001-5309-7625
https://orcid.org/0000-0001-5309-7625
https://orcid.org/0000-0003-2073-1751
https://orcid.org/0000-0003-2073-1751
https://orcid.org/0000-0001-9272-4687
https://orcid.org/0000-0001-9272-4687
https://orcid.org/0000-0002-8876-6099
https://orcid.org/0000-0002-8876-6099
https://orcid.org/0000-0003-0480-6100
https://orcid.org/0000-0003-0480-6100
https://orcid.org/0000-0003-4450-3155
https://orcid.org/0000-0003-4450-3155
https://orcid.org/0000-0001-9285-9784
https://orcid.org/0000-0001-9285-9784
https://orcid.org/0000-0002-5273-049X
https://orcid.org/0000-0002-5273-049X
https://orcid.org/0000-0002-3722-8821
https://orcid.org/0000-0002-3722-8821
https://orcid.org/0000-0002-3993-4340
https://orcid.org/0000-0002-3993-4340
https://orcid.org/0000-0002-6951-1648
https://orcid.org/0000-0002-6951-1648
https://orcid.org/0000-0002-2599-5011
https://orcid.org/0000-0002-2599-5011
https://orcid.org/0009-0000-1708-4958
https://orcid.org/0009-0000-1708-4958
https://orcid.org/0009-0005-3964-7623
https://orcid.org/0009-0005-3964-7623
https://orcid.org/0000-0002-1040-7299
https://orcid.org/0000-0002-1040-7299
https://orcid.org/0000-0002-6246-2476
https://orcid.org/0000-0002-6246-2476
https://orcid.org/0009-0001-0133-7751
https://orcid.org/0009-0001-0133-7751
https://orcid.org/0000-0002-8264-9879
https://orcid.org/0000-0002-8264-9879
https://orcid.org/0000-0001-7359-7109
https://orcid.org/0000-0001-7359-7109
https://orcid.org/0000-0002-8468-220X
https://orcid.org/0000-0002-8468-220X
https://orcid.org/0000-0003-0651-0004
https://orcid.org/0000-0003-0651-0004
https://orcid.org/0000-0002-7980-9739
https://orcid.org/0000-0002-7980-9739
https://orcid.org/0000-0001-6872-7984
https://orcid.org/0000-0001-6872-7984
https://orcid.org/0000-0003-4957-6732
https://orcid.org/0000-0003-4957-6732
https://orcid.org/0000-0002-2835-6653
https://orcid.org/0000-0002-2835-6653
https://orcid.org/0000-0002-0394-0562
https://orcid.org/0000-0002-0394-0562
https://orcid.org/0000-0002-7018-3557
https://orcid.org/0000-0002-7018-3557
https://orcid.org/0000-0002-3430-0410
https://orcid.org/0000-0002-3430-0410
https://orcid.org/0000-0001-6034-5164
https://orcid.org/0000-0001-6034-5164
https://orcid.org/0000-0001-8456-5700
https://orcid.org/0000-0001-8456-5700
https://orcid.org/0000-0002-1086-7754
https://orcid.org/0000-0002-1086-7754
https://orcid.org/0000-0001-8435-4516
https://orcid.org/0000-0001-8435-4516
https://orcid.org/0000-0002-8684-9632
https://orcid.org/0000-0002-8684-9632
https://orcid.org/0000-0003-4191-5963
https://orcid.org/0000-0003-4191-5963
https://orcid.org/0000-0001-9707-3713
https://orcid.org/0000-0001-9707-3713
https://orcid.org/0000-0002-9457-2119
https://orcid.org/0000-0002-9457-2119
https://orcid.org/0000-0003-1796-9355
https://orcid.org/0000-0003-1796-9355
https://orcid.org/0000-0002-2334-2519
https://orcid.org/0000-0002-2334-2519
https://orcid.org/0000-0002-8338-7874
https://orcid.org/0000-0002-8338-7874
https://orcid.org/0000-0002-0034-2460
https://orcid.org/0000-0002-0034-2460
https://orcid.org/0000-0002-0501-3471
https://orcid.org/0000-0002-0501-3471
https://orcid.org/0000-0003-3193-0377
https://orcid.org/0000-0003-3193-0377
https://orcid.org/0000-0001-6683-2553
https://orcid.org/0000-0001-6683-2553
https://orcid.org/0000-0001-5388-0871
https://orcid.org/0000-0001-5388-0871
https://orcid.org/0000-0002-5316-3159
https://orcid.org/0000-0002-5316-3159
https://orcid.org/0000-0002-5499-6777
https://orcid.org/0000-0002-5499-6777
https://orcid.org/0000-0003-0736-9946
https://orcid.org/0000-0003-0736-9946
https://orcid.org/0000-0002-1545-7658
https://orcid.org/0000-0002-1545-7658
https://orcid.org/0009-0004-1975-2779
https://orcid.org/0009-0004-1975-2779
https://orcid.org/0000-0001-6085-4698
https://orcid.org/0000-0001-6085-4698
https://orcid.org/0000-0003-2788-6238
https://orcid.org/0000-0003-2788-6238
https://orcid.org/0000-0003-1076-2896
https://orcid.org/0000-0003-1076-2896

KAYS ET AL.

Hofmeester, T. R., Cromsigt, J. P. G. M., Odden, J., Andrén, H., Kindberg, J.,
& Linnell, J. D. C. (2019). Framing pictures: A conceptual framework to
identify and correct for biases in detection probability of camera traps
enabling multi-species comparison. Ecology and Evolution, 9, 2320-2336.

IUCN. (2020). Class Mammalia from North America. The IUCN red list of
threatened species. Version 2020-2.

Jennings, M. D., Faber-Langendoen, D., Loucks, O. L., Peet, R. K., &
Roberts, D. (2009). Standards for associations and alliances of the
US National Vegetation Classification. Ecological Monographs, 79,
173-199.

Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O'Dell, J., Orme, C. D.
L., Safi, K., Sechrest, W., Boakes, E. H., Carbone, C., Connolly,
C., Cutts, M. J,, Foster, J. K., Grenyer, R., Habib, M., Plaster, C.
A., Price, S. A., Rigby, E. A., Rist, J., ... Michener, W. K. (2009).
PanTHERIA: A species-level database of life history, ecology, and
geography of extant and recently extinct mammals. Ecology, 90,
2648.

Jung, M., Dahal, P. R, Butchart, S. H. M., Donald, P. F., Lamo, X. D., Lesiv,
M., Kapos, V., Rondinini, C., & Visconti, P. (2020). A global map of
terrestrial habitat types. Scientific Data, 7, 1-8.

Kays, R., Cove, M. V., Diaz, J., Todd, K., Bresnan, C., Snider, M., Lee, T.
E., Jr., Jasper, J. G., Douglas, B., Crupi, A. P., Weiss, K. C. B., Rowe,
H., Sprague, T., Schipper, J., Lepczyk, C. A., Fantle-Lepczyk, J.
E., Davenport, J., Zimova, M., Farris, Z., ... McShea, W. J. (2022).
SNAPSHOT USA 2020: A second coordinated national camera
trap survey of the United States during the COVID-19 pandemic.
Ecology, 103, e3775.

Kays, R., Lasky, M., Allen, M. L., Dowler, R. C., Hawkins, M. T. R, Hope,
A. G., Kohli, B. A., Mathis, V. L., McLean, B., Olson, L. E., Thompson,
C.W., Thornton, D., Widness, J., & Cove, M. V. (2022). Which mam-
mals can be identified from camera traps and crowdsourced photo-
graphs? Journal of Mammalogy, 103, 767-775.

Kays, R., & Parsons, A. W. (2014). Mammals in and around suburban yards,
and the attraction of chicken coops. Urban Ecosystems, 17, 691-705.

Kays, R., Parsons, A. W., Baker, M. C., Kalies, E. L., Forrester, T., Costello,
R., Rota, C. T., Millspaugh, J. J., & McShea, W. J. (2017). Does hunt-
ing or hiking affect wildlife communities in protected areas? Journal
of Applied Ecology, 54, 242-252.

Kays, R., & Wikelski, M. (2023). The internet of animals: What it is, what
it could be. Trends in Ecology & Evolution, 38, 859-869.

Kleiber, M. (1947). Body size and metabolic rate. Physiological Reviews,
27,511-541.

Laliberte, A. S., & Ripple, W. J. (2004). Range contractions of north
American carnivores and ungulates. Bioscience, 54, 123-138.
Lasky, M., Parsons, A. W., Schuttler, S. G., Hess, G., Sutherland, R., Kalies,

L., Clark, S., Olfenbuttel, C., Matthews, J., Davis, G., McShea, W. J,,
Shaw, J., Dukes, C., Hill, J., & Kays, R. (2021). CAROLINA CRITTERS:
A collection of camera trap data from wildlife surveys across North

Carolina. Ecology, 102, e03372.

Martin, A. C., Zim, H. S, & Nelson, A. L. (1951). American wildlife & plants
a guide to wildlife food habits. Dover Publications, Inc.

McDonald, R., McKnight, M., Weiss, D., Selig, E., O'Connor, M., Violin,
C., & Moody, A. (2005). Species compositional similarity and ecore-
gions: Do ecoregion boundaries represent zones of high species
turnover? Biological Conservation, 126, 24-40.

McKinney, M. L. (2006). Urbanization as a major cause of biotic homoge-
nization. Biological Conservation, 127, 247-260.

Middleton, O., Svensson, H., Scharlemann, J. P, Faurby, S., & Sandom, C.
(2021). CarniDIET 1.0: A database of terrestrial carnivorous mam-
mal diets. Global Ecology and Biogeography, 30, 1175-1182.

Moller, H. (1983). Foods and foraging behaviour of red (Sciurus vul-
garis) and Grey (Sciurus carolinensis) squirrels. Mammal Review, 13,
81-98.

Myers, N., Mittermeier, R. A, Mittermeier, C. G, da Fonseca, G. A. B., &
Kent, J. (2000). Biodiversity hotspots for conservation priorities.
Nature, 403, 845-853.

15 of 16
Coversy s isiuions RAVIT SRR

Olson, D. M. (2001). Terrestrial ecoregions of the world: A new map of
life on earth. Bioscience, 51, 933-938.

Omernik, J. M., & Griffith, G. E. (2014). Ecoregions of the conterminous
United States: Evolution of a hierarchical spatial Fframework.
Environmental Management, 54, 1249-1266.

Pacifici, K., Reich, B., Miller, D., Gardner, B., Glenn, S., Singh, S., McKerrow,
A., & Collazo, J. (2017). Integrating multiple data sources in species
distribution modeling: A framework for data fusion. Ecology, 98,
840-850.

Parsons, A. W, Forrester, T., Baker-Whatton, M. C., McShea, W. J., Rota,
C. T., Schuttler, S. G., Millspaugh, J. J., & Kays, R. (2018). Mammal
communities are larger and more diverse in moderately developed
areas. elife, 7, 1-13.

Parsons, A. W., Forrester, T., McShea, W. J., Baker-Whatton, M. C,,
Millspaugh, J. J., & Kays, R. (2017). Do occupancy or detection rates
from camera traps reflect deer density? Journal of Mammalogy, 98,
1547-1557.

Parsons, A. W., Wikelski, M., von Wolff, B. K., Dodel, J., & Kays, R. (2022).
Intensive hunting changes human-wildlife relationships. PeerJ, 10,
e14159.

Pease, B. S., Pacifici, K., Kays, R., & Reich, B. (2022). What drives spatially
varying ecological relationships in a wide-ranging species? Diversity
and Distributions, 28, 1752-1768.

R Core Team. (2023). R: A language and environment for statistical comput-
ing, version 4.2.2. R Foundation for Statistical Computing. http://
www.R-project.org

Ramirez, J. I, Jansen, P. A., den Ouden, J., Li, X., lacobelli, P., Herdoiza,
N., & Poorter, L. (2021). Temperate forests respond in a non-linear
way to a population gradient of wild deer. Forestry: An International
Journal of Forest Research., 94, 502-511.

Rollinson, C. R., Finley, A. O., Alexander, M. R., Banerjee, S., Hamil, K.
A. D., Koenig, L. E., Locke, D. H., Peterson, M., Tingley, M. W.,
Wheeler, K., Youngflesh, C., & Zipkin, E. F. (2021). Working across
space and time: Nonstationarity in ecological research and applica-
tion. Frontiers in Ecology and the Environment, 19, 66-72.

Rosin, C., Poulsen, J. R., Swamy, V., & Granados, A. (2017). A pantropi-
cal assessment of vertebrate physical damage to forest seedlings
and the effects of defaunation. Global Ecology and Conservation, 11,
188-195.

Rowcliffe, M. J., Carbone, C., Jansen, P. A., Kays, R., & Kranstauber, B.
(2011). Quantifying the sensitivity of camera traps using an adapted
distance sampling approach. Methods in Ecology and Evolution, 2,
467-476.

Ruefenacht, B., Finco, M. V., Nelson, M. D., Czaplewski, R., Helmer,
E. H., Blackard, J. A., Holden, G. R., Lister, A. J., Salajanu, D., &
Weyermann, D. (2008). Conterminous US and Alaska forest type
mapping using forest inventory and analysis data. Photogrammetric
Engineering & Remote Sensing, 74(11), 1379-1388.

Schuttler, S. G., Parsons, A. W., Forrester, T., Baker, M. C., McShea, W.
J., Costello, R., & Kays, R. (2016). Deer on the lookout: How hunt-
ing, hiking, and coyotes affect white-tailed deer vigilance. Journal of
Zoology, 301, 320-327.

Shukla, P. R., Skea, J., Buendia, E. C., Masson-Delmotte, V., Pértner, H.
0., Roberts, D. C., Zhai, P., Slade, R., Connors, S., & Diemen, R. V.
(2019). IPCC, 2019: Climate change and land: An IPCC special re-
port on climate change, desertification, land degradation, sustain-
able land management, food security, and greenhouse gas fluxes in
terrestrial ecosystems.

Smith, J. R, Letten, A. D., Ke, P.-J., Anderson, C. B., Hendershot, J. N.,
Dhami, M. K., Dlott, G. A., Grainger, T. N., Howard, M. E., Morrison,
B. M. L, Routh, D., San Juan, P. A., Mooney, H. A., Mordecai, E. A.,
Crowther, T. W., & Daily, G. C. (2018). A global test of ecoregions.
Nature Ecology & Evolution, 2, 1889-1896.

Stapanian, M. A., & Smith, C. C. (1978). A model for seed scatterhoard-
ing: Coevolution of fox squirrels and black walnuts. Ecology, 59,
884-896.

QSUADIT suowuo)) dAneaI) d[qedrjdde ayy £q paurdA0ST a1e s3[oNIE O (9sh JO SA[NI 10§ AIRIqIT dUI[UQ AJ[IA UO (SUONIPUOI-PUB-SULIY/WO0D" A3[1M ATRIqI[ouI[uo//:sd)Y) SUONIPUO) pue swd |, ) 39S ‘[$707/L0/67] U0 Areiqr aurjuQ A[IM ‘006€1°1PP/1111°01/10p/wod A3[1m Arelqraurjuo//:sdiy wolj papeojumo( ‘0 ‘TrorTLi1


http://www.r-project.org
http://www.r-project.org

KAYS ET AL.

16 of 16
AYWAIB2A'& Diversity and Distributions

Terborgh, J. E. J. A. (2010). Trophic cascades: Predators, prey, and the
changing dynamics of nature. Island Press.

Title, P. O., & Bemmels, J. B. (2018). ENVIREM: an expanded set of biocli-
matic and topographic variables increases flexibility and improves
performance of ecological niche modeling. Ecography, 41, 291-307.

Turner, M. G., Gardner, R. H., & O'Neill, R. V. (2001). Landscape ecology in
theory and practice. Springer.

USDA. (2022). History of feral swine in the Americas.

Vega, G. C., Pertierra, L. R., & Olalla-Tarraga, M. A.(2017). MERRAclim, a
high-resolution global dataset of remotely sensed bioclimatic vari-
ables for ecological modelling. Scientific data, 4, 1-12.

BIOSKETCH

This paper originated as part of the Snapshot USA national mam-
mal survey, a large scientific collaboration to sample mammals
across the country with camera traps each year. https://www.

snapshot-usa.org/.

Author contributions: All authors helped collect data and re-
viewed the manuscript. Roland Kays, Arielle Parsons and James

Clark conducted the analyses.

SUPPORTING INFORMATION
Additional supporting information can be found online in the

Supporting Information section at the end of this article.

How to cite this article: Kays, R., Snider, M. H., Hess, G.,
Cove, M. V., Jensen, A, Shamon, H., McShea, W. J., Rooney,
B., Allen, M. L., Pekins, C. E., Wilmers, C. C., Pendergast, M.
E., Green, A. M., Suraci, J., Leslie, M. S., Nasrallah, S., Farkas,
D., Jordan, M., Grigione, M., ... Parsons, A. (2024). Climate,
food and humans predict communities of mammals in the
United States. Diversity and Distributions, 00, e13900.
https://doi.org/10.1111/ddi.13900

QSUADIT suowuo)) dAneaI) d[qedrjdde ayy £q paurdA0ST a1e s3[oNIE O (9sh JO SA[NI 10§ AIRIqIT dUI[UQ AJ[IA UO (SUONIPUOI-PUB-SULIY/WO0D" A3[1M ATRIqI[ouI[uo//:sd)Y) SUONIPUO) pue swd |, ) 39S ‘[$707/L0/67] U0 Areiqr aurjuQ A[IM ‘006€1°1PP/1111°01/10p/wod A3[1m Arelqraurjuo//:sdiy wolj papeojumo( ‘0 ‘TrorTLi1


https://www.snapshot-usa.org/
https://www.snapshot-usa.org/
https://doi.org/10.1111/ddi.13900

	Climate, food and humans predict communities of mammals in the United States
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Camera trap data (1)
	2.2|Covariates (2)
	2.3|Modelling community abundance (3–5)
	2.4|Describing communities and ecological impacts (6–9)

	3|RESULTS
	3.1|Clustering communities
	3.2|Ecological impacts

	4|DISCUSSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES
	BIOSKETCH


