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Abstract
In this work, we tried to replicate and extend prior research on the relationship between social network size and the volume of the 
amygdala. We focused on the earliest evidence for this relationship (Bickart et al., Nature Neuroscience 14(2), 163–164, 2011) 
and another methodologically unique study that often is cited as a replication (Kanai et al., Proceedings of the Royal Society B: 
Biological Sciences, 279(1732), 1327–1334, 2012). Despite their tight link in the literature, we argue that Kanai et al. (Proceedings 
of the Royal Society B: Biological Sciences, 279(1732), 1327–1334, 2012) is not a replication of Bickart et al. Nature Neurosci-
ence 14(2), 163–164 (2011), because it uses different morphometric measurements. We collected data from 128 participants on a 
7-Tesla MRI and examined variations in gray matter volume (GMV) in the amygdala and its nuclei. We found inconclusive support 
for a correlation between measures of real-world social network and amygdala GMV, with small effect sizes and only anecdotal 
evidence for a positive relationship. We found support for the absence of a correlation between measures of online social network 
and amygdala GMV. We discuss different challenges faced in replication attempts for small effects, as initially reported in these 
two studies, and suggest that the results would be most helpful in the context of estimation and future meta-analytical efforts. Our 
findings underscore the value of a narrow approach in replication of brain-behavior relationships, one that is focused enough to 
investigate the specifics of what is measured. This approach can provide a complementary perspective to the more popular “the-
matic” alternative, in which conclusions are often broader but where conclusions may become disconnected from the evidence.
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Introduction

Our study seeks to replicate claims about the relationship 
between social network size and grey matter volume of the 
amygdala—a subcortical brain region known for its involve-
ment in emotion, cognition, and social behavior (Pessoa, 
2010). Humans, like other primates, possess a large brain-to-
body ratio. One proposal is that this is at least in part driven 
by the complexity of their social interactions (Dunbar, 1993; 
1998). This theory has been challenged, however, with other 
work suggesting diet quality may be as or more important in 
determining brain size across species (DeCasien & Higham, 
2019). Setting aside interspecies variability, others have 
suggested that individual differences in social group size in 
humans should be linked to variations in the brain regions 

that are relevant to social cognition. We address a specific 
offshoot of this larger claim: relating amygdala volume with 
various social network metrics. A landmark study by Bickart 
et al. (2011) (hereafter BI2011) reported that the size and 
complexity of real-world social networks predict overall 
amygdala volume, bilaterally. We revisit the evidence for 
the correlation through a replication of this specific analysis 
linking amygdala volume to the size of social networks. We 
also examine evidence for a variation of this claim, based 
on another study by Kanai et al. (2012a, 2012b) (hereafter 
KA2012) that was published soon after BI2011 and is often 
co-cited. The authors of these articles did not propose a spe-
cific mechanism for these effects. KA2012 explicitly noted 
that those with a larger amygdala could be better equipped 
to build large social networks, but that it also was possible 
that the experience of maintaining a larger social network 
could influence amygdala size. In the following paragraphs, 
we highlight challenges present in the existing literature, 
which make it difficult to get a clear picture of whether the 
main result from BI2011 has been supported in later work.
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Readers reviewing the literature on the brain correlates 
of social cognition may be struck by the variability in the 
measurement methods of both social network size and 
amygdala structure. Important differences between brain 
morphometry approaches (Goto et al., 2022a, 2022b) are 
often ignored and, as a result, entirely different dependent 
variables can be mistaken as equivalent. Authors often refer 
to KA2012 as a replication of BI2011, even though neither 
the brain measures nor the measures of social network were 
the same. There is increasing concern that many reported 
correlations between brain structure and behavior do not 
replicate and that very large samples (some argue in the 
thousands, although see Libedinsky et al., 2022) may be 
required to achieve sufficient power (Genon et al., 2022; 
Marek et al., 2022). Such sample sizes often are not feasible, 
although a meta-analytic approach offers promise (Libedin-
sky et al., 2022; Matsumoto et al., 2023). It is in this spirit 
that we conducted this replication study. As we planned a 
brain structure-focused project relating visual object and 
face recognition abilities to cortical thickness (McGugin & 
Gauthier, in preparation), we used the opportunity to reex-
amine BI2011’s central claim of the relationship between 
the volume of the amygdala and the size of a person’s social 
network. In a study trying to replicate 17 different struc-
tural brain-to-behavior associations (Boekel et al., 2015), a 
correlation between real-world social network size and the 
volume of the right amygdala was the only effect that was 
successfully replicated. However, both positive replications 
(Von Der Heide et al., 2014) and failures to replicate (Lewis 
et al., 2011) have been reported.

Differences in measures of social network  We focus on two 
early studies, BI2011 and KA2012, because they often are 
cited together, but there are important differences between 
them that should be highlighted. BI2011 measured the 
size and complexity of their participants’ real-world social 
network. KA2012 initially focused on a measure of online 
social network, but in a follow-up study, collected data on 
the size of the real-world network in a subset of their partici-
pants. As a result, together the two studies use four differ-
ent measures of social network size that vary in their focus 
on real-world (both BI2011 and KA2012) or online (only 
KA2012) contacts, including the number of individuals or 
the structure of the social network. On the one hand, these 
variables are strongly related theoretically (and to some 
extent empirically). On the other hand, some of the analyses 
report partial correlations with one of these measures when 
controlling for the other, indicating they are considered par-
tially distinct.

Differences in measures of neural correlates  Even when 
considering only studies limited to the structural measure-
ment of the amygdala, different measures have been used to 

index the size of this structure. This is in part because the 
options available for brain morphometry, and the way they 
are described, have changed over time (Goto et al., 2022a, 
2022b). From a standard structural brain scan, it is possi-
ble to obtain several measures of brain structure using an 
approach termed surface-based morphometry (SBM; Dale 
et al., 1999). SBM can provide experimenters with both 
cortical thickness (CT, measured in 2D units) and gray mat-
ter volume (GMV, measured in 3D units). The analyses in 
BI2011 measured GMV. KA2012 used a different method 
called voxel-based morphometry (VBM; Ashburner & Fris-
ton, 2000). Voxel-based morphometry has been criticized as 
a cruder approach than SBM for the measurement of brain 
anatomy (Boekel et al., 2015). Voxel-based morphometry 
relies on a soft segmentation approach; instead of labeling 
each voxel as “gray,” “white,” or “CSF,” it returns the gray 
matter density (GMD, unitless), a ratio of gray matter for 
each voxel. Many VBM studies use an optional scaling fac-
tor.1 These differences result in unique names for similar 
measures, but also sometimes mask potentially important 
differences that can make some measures of size incom-
mensurate. For instance, KA2012 discusses their dependent 
variable as either GMD or GMV, while others have called 
it “modulated” GMD. Modulated maps of GMD in fact are 
the multiplication of GMD and GMV at each voxel. To make 
matters more complicated, modulated GMD is sometimes 
called grey matter mass (GMM; Gennatas et al., 2017a, 
2017b; Herculano-Houzel et al., 2008). These different ways 
to measure local brain size should not be assumed to be 
equivalent or even strongly correlated. For instance, GMV 
and CT tend to diminish as individuals age (and GMM to 
a lesser extent), whereas GMD experiences a pronounced 
increase in relation to age. Gender effects in GMV and 
GMD can run in opposite directions (Gennatas et al., 2017a, 
2017b). In the present work, we used SBM to estimate GMV 
for three reasons. First, this is the measure used in BI2011, 
which we aimed to replicate. Second, SBM is more often 
reported as superior to VBM (Goto et al., 2022a, 2022b). 
Third, we found that the relationship between online social 
network and the amygdala by KA2012 often is cited as if 
it was based on GMV (so it is important to ask how such a 
relationship would replicate).

In the present work, we replicated the methods of BI2011, 
as well as the measures of social network size used in 
KA2012, with some adaptations. Our confirmatory analyses 
focus on the relationship between social network size and 
GMV in the right and left amygdala. This includes exam-
ining how real-world social networks correlate with GMV 
when controlling for online social network size (and vice 

1  This is  to account for volume changes between the individual’s 
native space image and a registration template.
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versa). In addition, we conduct exploratory analyses that 
decompose the amygdala into separate components, focus-
ing on two subdivisions in particular: the basolateral amyg-
dala and the central amygdala. In recent years, methods that 
were not available to BI2011 and KA2012 were developed 
for the automated measurement of more than a dozen dif-
ferent nuclei within the amygdala. These nuclei are richly 
interconnected but structurally and functionally distinct 
(LeDoux, 2007; Sah et al., 2003). The basal, lateral, and 
accessory basal nuclei share similar cell types, neurotrans-
mitters, and connectivity and, together, form the basolat-
eral nucleus complex (BLA), which serves as the principal 
input region and integrates somatosensory, visual, auditory, 
and visceral inputs to generate social behavior (deCampo & 
Fudge, 2012). The central nucleus (Ce), which exhibits dis-
tinct connectivity patterns compared with the BLA, serves 
as the primary output nucleus of the amygdala (Janak & Tye, 
2015; LeDoux, 2007). Previous work has linked the BLA 
and the Ce with social behavior (Jones et al., 2020a, 2020b; 
Wellman et al., 2016). Results for the remaining nuclei of the 
amygdala, including the medial, paralaminar, corticoamyg-
daloid transition area, and the anterior amygdaloid area will 
be included in the supplemental section.

Method

Participants

We collected data from 128 subjects from the Vanderbilt 
community and surrounding communities. All participants 
received monetary compensation for their participation. 
The participants were recruited for a study focusing on the 
correlates between laminar cortical thickness and visual 
abilities. Initially, we wanted to scan 150 participants, but 
data collection was limited because of time and funding 
resources spread thin because of the COVID pandemic. 
Each participant reported normal or corrected-to-normal 
vision and gave written informed consent in accordance 
with guidelines of the Vanderbilt University Institutional 
Review Board and Vanderbilt University Medical Center. 
Two subjects were excluded due to excessive head motion 
in the MRI portion of the experiment. Another nine sub-
jects were excluded due to incomplete social network sur-
vey data. Our final sample for this study consisted of 117 
subjects (71 identifying as women and the rest as men, age 
M = 22.0, SD = 5.8, range = 18–63 years). Most of these 
subjects reported being right-handed (n = 113), whereas 
two reported being left-handed and another two reported 
being ambidextrous.

Measures of social network size

To estimate the size and complexity of participants’ social 
networks, online and in the real-world, we use four sepa-
rate measures (SNI-Size, SNI-Complexity, SNS-Online, 
SNS-RealWorld), explained below and derived from two 
different surveys, as included in BI2011 and KA2012.

The first survey was the Social Network Index (SNI, 
Cohen et al., 1997) as used in by BI2011. The SNI consists 
of a 12-item questionnaire, and it produces two subscales. 
The Number of People in Social Network Subscale (SNI-
size) estimates the size of social networks by aggregating 
the people with whom an individual interacts with at least 
once every 2 weeks. The Number of Embedded Networks 
Subscale (SNI-complexity) estimates the complexity of 
social networks by aggregating different groups of at 
least four members with whom an individual talks at least 
once every 2 weeks. Because self-report of the number of 
people in one’s social network (SNI-size) is skewed, we 
applied a square root transformation.

The second survey was adapted from a questionnaire 
adapted from Stileman (2007a, 2007b) and was used in 
KA2012 to measure the size of online and real-world 
social networks. The questionnaire consisted of 11 ques-
tions. The questions used here were identical to those 
reported in (Stileman, 2007a, 2007b) with one exception. 
The original question about Facebook (“How many friends 
do you have on Facebook”) was replaced, because Face-
book was much less dominant during data collection in 
years 2021–2022 among college students than in 2012. 
The following three questions were used in its place: Q9. 
“How many different social media platforms (e.g., Face-
book, Twitter, Instagram, etc.) do you use on a regular 
basis (at least once a week)?” Q10. “How many friends 
or mutual followers (people you follow who ALSO fol-
low you) do you have across all platforms? Give your 
best estimate.” Q11. “Some individuals may be friends or 
mutual followers with you on several platforms. How many 
UNIQUE friends or mutual followers do you have total? 
A person only counts once, even if you encounter them 
on many platforms. Give your best estimate.” Question 9 
was included (but not used in calculations) to prime indi-
viduals to think about all the platforms they used before 
estimating the number of friends and followers. Questions 
10 and 11 were included in case there could be a large dif-
ference between them, but they were so highly correlated 
(r = .89) that we decided to only use Q11. Therefore, fol-
lowing KA2012, we derived two measures based on this 
questionnaire: SNS-Online (Q11, with square root applied 
to reduce skewness) and SNS-Real-World (Q1-Q8 inclu-
sively, with square root applied, z-scored and averaged). 
See supplemental section for the full questionnaire.
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MRI acquisition

All participants were imaged using a whole body 7T MRI 
scanner in combination with a quadrature, head only trans-
mit coil and a 32-channel receive coil array. In each partici-
pant, imaging was separated into three stages, consisting of 
whole brain anatomic imaging, functional localization, and 
ultra-high resolution susceptibility weighted imaging. Nei-
ther functional images nor ultra-high resolution susceptibil-
ity weighted images were used in this study. With our 0.7-
mm isotropic voxels at 7-Tesla, our magnetic field strength 
and spatial resolution are higher than that in BI2011. Our 
data were down sampled to 1-mm isotropic resolution before 
segmentation in FreeSurfer (FS). Although BI2011 do not 
report what version of FS they used, based on publication 
date, it is logical to assume their data were analyzed with 
v5.0.0 or earlier. Our data were processed with v7.4.0, after 
nearly a dozen years of research-based improvements to the 
automatic segmentation pipeline (Goto et al., 2022a, 2022b).

Sagittal whole-brain T1-weighted images were collected 
with a 3D MPRAGE sequence (TR = 4.8 ms; TE = 2.1 ms; 
TFE inversion delay = 1300 ms; TFE shot interval = 4500 
ms; flip angle = 7°; FOV = 246 x 246 x 174.3; matrix = 352 
x 352 x 249; resolution = 0.7-mm isotropic).

MRI analyses

Cortical reconstruction and segmentation of our whole-brain 
anatomical images was performed using FreeSurfer (FS) 
v7.4.0 image analysis suite (Dale et al., 1999; Fischl & Dale, 
2000), with amygdala segmentation (Saygin et al., 2017). 
For each subject, research assistants in our lab inspected the 
automated segmentation results for manual corrections. No 
adjustments were needed. The automated FreeSurfer pro-
cessing pipeline included motion correction, nonuniform 
intensity normalization for intensity inhomogeneity correc-
tion, removal of nonbrain tissue, transformation to Talairach 
space, and segmentation of the subcortical white matter and 
deep gray matter volumetric structures (Dale et al., 1999; 
Fischl et al., 2002). We selected FreeSurfer because of its 
reported high reproducibility in subcortical segmentations 
compared with other automated methods (Velasco-Annis 
et al., 2018).

Segmentation of the amygdala and amygdala subregion 
volumes is based on combining manual labels from ex vivo 
and in vivo T1 scans to generate an atlas of amygdala nuclei 
(Saygin, 2017). FreeSurfer’s automated Bayesian segmen-
tation technique establishes nine distinct amygdala nuclei 
per hemisphere: the lateral nucleus, basal nucleus, acces-
sory basal nucleus, anterior amygdaloid area (AAA), cen-
tral nucleus (Ce), medial nucleus, cortical nucleus, cortical 
amygdaloid transition area, and para-laminar nucleus. Due 
to functional and structural similarity, we summed the basal, 

lateral, and accessory basal nuclei to represent the BLA. The 
Ce is considered separately as the main hub for signals com-
ing out of the amygdala (Janak & Tye, 2015; LeDoux, 2007).

Thus, our analyses focused on four volumetric meas-
ures bilaterally: total amygdala (reported in BI2011 and 
KA2012), total hippocampus (used as a control region in 
BI2011), and the BLA and Ce subregions of the amygdala, 
as the main input and output pathways in the amygdala 
respectively. Estimated total intracranial volume (eTIV) was 
also measured and was controlled (with age and gender) in 
all our analyses.

Bayesian analysis

We used JASP (JASP Team, 2023) to conduct Bayesian tests 
comparing the support for different hypotheses. When we 
had expectations for a positive correlation, we estimated 
the support for a positive correlation relative to one that 
was null or 0 (BF+0). We sometimes also calculated the 
BF01 as a follow-up test to estimate the support for a null 
correlation versus any correlation. Priors are reported in 
figure legends and following best practices, we considered 
the robustness of the results to a variety of priors. Follow-
ing Jeffreys (1961) and others, we use the following criteria 
for interpretation of BF values, with values between 1 and 
3 being not worth more than a mention, values between 3 
and 10 representing substantial evidence, values between 
10 and 30 representing strong evidence, values between 30 
and 100 representing very strong evidence, and those above 
100, decisive evidence.

Results

Social network measures

Descriptive statistics for the social network measures are 
reported in Table 1. Two extreme values (14.90 and 17.89) 
for SNI-Size were winsorized to the next highest value 
(10.86). Before winsorization, skewness for this vari-
able was 1.15 and kurtosis was 8.51. Table 2 reports the 
pairwise correlations between these measures. We found 
support for positive correlations (against no correlation 
or the null) for all but SNI-complexity and SNS-Online, 
for which the evidence was anecdotal. The strongest cor-
relation was between the two variables derived from the 
SNI questionnaire (size and complexity). Interestingly, 
SNI-size was numerically more strongly related to SNI-
complexity (r = .64) than it was to SNS-RealWorld (r = 
.37), and SNS-RealWorld had very similar correlations 
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with the two SNI variables (SNI-Size, r = .37; SNI-com-
plexity, r = .36). These results in general support the valid-
ity of this group of measures as tapping into a common 
construct, with SNS-Online being more different from the 
other measures.

BI2011 included participants with a wide range in age 
(19–83 years). Likewise, we did not restrict age in the 
current sample (our sample had an age range of 18–63 
years). We found evidence in support of a null correlation 
between all four measures of social network and gender 
(rs between −.09 and .04, BF01 between 5.6 and 8.1). We 
found evidence in support of a null correlation between 
SNI-complexity as well as SNS-RealWorld and age (rs 
of −.01 and .05, BF01 of 8.6 and 7.4 respectively). The 
last two measures (SNI-Size and SNS-online) also showed 
small correlations with age with support for or against a 
correlation inconclusive (rs of −.14 and −.16, BF10 of .36 
and .51 respectively).

KA2012 did not report the correlation between their 
SNS-online (number of friends on Facebook) and a mean 
SNS-RealWorld measure, but they report that SNS-online 
correlated moderately (.3 < r < .4) with five of the eight 
items on the SNS-RealWorld scale. They considered the 
two measures as tapping distinct but related constructs, 
which is generally consistent with our results.

Amygdala GMV

Amygdala GMV was in the range reported in the literature 
(Majrashi et al., 2022): right amygdala (M = 1750 mm3, SD 
= 175, range = 1139–2191 mm3) and left amygdala (M = 
1773 mm3, SD = 202, range = 1292–2445 mm3). The nuclei 
comprising the BLA represented 77% of the total amygdala 
volume, bilaterally. The Ce nucleus comprised only 2% of 
the total amygdala volume. See Table S1 for volumetric 
measurements for segmented amygdala nuclei, as well as 
correlations with eTIV, age, and gender.

Men had significantly larger brains than women (eTIV; 
r = −.61, BF10 = 3.902e+10). This also was true for indi-
vidual ROIs (Table 3 and Supplemental section, including 
complete volumetric measurements separated by gender). 
For all further analyses, we will consider amygdala total 
and subregion volumes controlling for eTIV, age, and gender 
(Table 4).

Replication of BI2011

BI2011 reported that volume of the right and of the left 
amygdala was positively correlated with both SNI-Size and 
SNI-Complexity. Their sample was 58 adults (22 women; 
age range 19–83 years). They reported correlations by age 
group and by gender and generally found the same results in 
all groups with some differences in magnitude (e.g., larger 
correlations in younger than older participants, larger cor-
relation for SNI-Size in women than men). However, their 
sample size was smaller and neither age nor gender was 
tested as a moderator. The authors included the left and 
right hippocampus as control regions, which we also do here 
(Jones et al., 2020a, 2020b). Our partial correlations control 
for total brain volume, gender, and age. Aside from these 
confirmatory analyses, we also include exploratory correla-
tions with nuclei of the amygdala (BLA and Ce).

Our results do not qualitatively replicate the conclu-
sions of BI2011, as we do not find a positive correlation 
for the Amygdala with social network size or complex-
ity measures. All BF+0 are between .33 and 1, revealing 

Table 1   Means and descriptive statistics for the SNS measures

Reliability was estimated using the greatest lower bound (GLB), which is conservative and does not require assumptions about the equivalence 
of item variances or covariances (Jackson & Agunwamba, 1977). SNI-Size was transformed using a square-root. SNS-Real world items were 
transformed using a square root and z-scored before they were averaged

Mean (SD) Min Max Skewness Kurtosis Reli-
ability 
(GLB)

SNI-Size 5.71 (1.84) 2.65 10.86 0.75 0.32 .65
SNI-complexity 3.49 (1.44) 1.00 8.00 0.21 0.17 .60
SNS-Online 23.02 (13.29) 0.00 64.81 0.31 0.33 NA
SNS-RealWorld 0 (0.63) -1.56 1.85 0.50 0.18 .88

Table 2   Correlations between SNS measures with Bayesian support

For all tests, the alternative hypothesis specifies that the correlation is 
positive. An uninformative stretched beta prior of 1 was used because 
previous results indicated a wide range of correlations: *moderate 
and **extreme support for H1 (Lee & Wagenmakers, 2014)

Pearson's r 95% CI BF+0

SNI-Size - SNI-complexity .64 .51 , .73 2.16E+12 **
SNI-Size - SNS-Online .22 .05 , .38 3.714 *
SNI-Size - SNS-RealWorld .37 .19 , .51 761.952 **
SNI-complexity - SNS-Online .19 .03 , .36 1.77
SNI-complexity - SNS-Real-

World
.36 .19 , .50 609.198 **

SNS-Online - SNS-RealWorld .34 .16 , .48 188.686 **
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anecdotal support for our H0 that the correlation is either 
null or negative. Figure 1 plots the strongest correlation 
between SNI-Size and right amygdala volume. When 
considering the effect of priors, we note that the BF+0 
never reached 3 for any prior (the maximum was 2.23, at 
a stretched beta prior of .03). The BF01, providing a test 
comparing the support for the null relative to support for 
a correlation also were inconclusive (all < 3).

The exploratory analyses in the nuclei of the amygdala 
were generally consistent with these results. In some cases, 
we find moderate support for the null (SNI-Size with L 
Ce: BF01 = 3.58; SNI-Size with R Ce: BF01 = 3.96; SNI-
Complexity with L Ce: BF01 = 3.980).

When considering correlations of SNI-Size with hip-
pocampus volume, we likewise find that most correlations 
show only anecdotal support for H0, as the correlation is 
either null or negative but small. The BF01, which provide 
a test comparing support for the null relative to support for 
a correlation, were also inconclusive (all < 3). However, in 
the case of the correlations between SNI-Complexity with 

the volume of the hippocampus, we find moderate support 
for the null (R Hipp: BF01 = 3.03; L Hipp: BF01 = 4.41).

An important question focuses on what could be reason-
ably expected in any such specific replication attempt. To 
facilitate this discussion, Spence & Stanley (2016) advocate 
the use of a prediction interval (PI). The PI captures both 
the uncertainty in the population parameter and the inherent 
variability in individual observations and, as such, it tends 
to be larger than the confidence interval. For instance, con-
sider again the largest correlation we observed. Given the 
initial effect size observed (relating the volume of the right 
Amygdala and SNI-size), the sample size of the initial study 
(58) and that of the current study (117), the PI is 95% PI 
[−.01, .57]. This PI captures 95% of the replication results 
solely because of sampling error and acknowledging that the 
true effect size estimated by the first study is unknown. The 
PI depends on both the size of the initial study and of the 
replication. Of note, even a very large initial study sample 
size (e.g., 2000) would still yield a 95% PI that includes the 
observed correlation [.13, .46]. Likewise, if we had collected 

Table 3   Volumetric measurements (mm3) and correlation values (r), by hemisphere

For the correlations, males were coded as 0. A negative correlation with gender indicates a larger volume in men compared to women. Results 
are reported as Pearson correlations with BF10 in parentheses, using an uninformative stretched beta prior of 1. Values in bold have BFs >3 or 
<.33

Mean (SD) Min Max Skewness Kurtosis Correlation with age Correlation with gender

All participants (117)
  R Whole Amygdala 1753 (169) 1349 2191 0.10 2.90 .02 (0.12) -.31 (35.43)
  L Whole Amygdala 1775 (202) 1340 2445 0.40 3.20 .05 (0.14) -.38 (876.66)
    R BLA 1351 (131) 1034 1671 0.10 2.90 .02 (0.12) -.30 (21.60)
    L BLA 1368 (156) 1040 1883 0.30 3.30 .05 (0.13) -.37 (572.86)
    R Ce 41 (7) 29 57 0.20 2.50 .06 (0.15) -.20 (1.29)
    L Ce 40 (8) 20 62 0.30 3.80 .13 (0.31) -.27 (7.38)

R Hippocampus 4038 (305) 3208 4855 0.30 3.00 .06 (0.14) -.28 (12.62)
L Hippocampus 3879 (355) 2920 4791 0.00 3.20 .15 (0.41) -.13 (0.30)

Table 4   Correlations between SNI-Size and SNI-Complexity and the size of different structures

Bickart’s results are standardized regression coefficients and p-values in parentheses. Our results are reported as Pearson correlations with BF+0 
in parentheses, using an informative stretched beta prior of .3, which assumes that 80% of the correlations are likely to be between 0 and .5. Val-
ues in bold are considered significant or are supported by a BF+0 >3. Values in italics have a BF+0 <.33, in support of a null or negative cor-
relation. Some BF01 are also reported in the text to test support for the null

N L Amy. R Amy. L Hipp. R Hipp. L BLA R BLA L Ce R Ce

Bickart (2011)
  SNI-Size 58 .38 (.01) .29 (.04) .23 (.10) .10 (.47) - - - -
  SNI-Complexity 58 .39 (.00) .30 (.02) .25 (.06) .15 (.29) - - - -

Our study
  SNI-Size 117 .09 (0.55) .14 (1.25) .14 (1.20) .12 (0.88) .09 (0.59) .13 (1.10) .06 (0.42) -0.05 (0.16)
  SNI-Complexity 117 .11 (0.80) .10 (0.64) .01 (.25) .08 (0.53) .11 (0.81) .10 (0.62) .05 (0.34) -.09 (0.12)
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data from 2000 participants and observed an effect size of 
r = .14 (which clearly would have been significant in that 
case), it also would fall within the 95% PI [.03, .51]. The PI 
is highly sensitive to the effect size; for instance, the 95% PI 
for our replication of the correlation between left amygdala 
and SNI-Size is [.10, .64], and our observed value of r = .09 
falls outside of it. The reader is encouraged to explore the 
space of possibilities with the online calculator published 
by (Spence & Stanley, 2016): https://​repli​cation.​shiny​apps.​
io/​corre​lation/. What this illustrates is that single replica-
tion studies (indeed, single studies) are very limited and, 
because sampling error is unavoidable, especially for small 
to medium effect sizes, a meta-analytical mindset is the best 
approach (Margoni & Shepperd, 2020).

Analysis based on KA2012

KA2012 reported that GMD in the amygdala was correlated 
with both the size of the online social network (Facebook 
number) and real-world social network. We performed a 
co-citation analysis of BI2011 and KA2012, extracting all 
the citations of both articles from Web of Science (as of 
October 2023), and measuring the percentage of articles 
citing BI2011 that also cite KA2012. The results (Fig. 2) 
revealed that since BI2011 was published, 32% of the times 
it is cited, KA2012 also is cited. As of October 15, 2023, 

this rate has grown to 63.2%. Looking at the 12 papers cited 
in the past year, five articles (Driver et al., 2023; Dunbar & 
Shultz, 2023; Monninger et al., 2023; Tusche et al., 2023; 
Vandenbulcke et al., 2023) cited the two studies together or 
in contiguous sentences, and explicitly (incorrectly) referred 
to them as both using GMV. Another three articles (Gold-
man, 2023; Lu et al., 2023; Noonan et al., 2023) cited both 
without mentioning a dependent variable, whereas only four 
articles (Duffner et al., 2023; Fulford & Holt, 2023; Kieck-
haefer et al., 2023; Rollings et al., 2023) suggested there 
was a difference in dependent variable (although the spe-
cifics were sometimes inaccurate, with the wrong measure 
attributed to one or both studies). This situation may not 
be surprising; after years of systematic co-citation, authors 
increasingly rely on gist knowledge and secondary sources. 
As a result, KA2012 is increasingly likely to be seen as rep-
licating the link between amygdala GMV and the size of 
real-world social network, as well as extending this result to 
the size of an online social network. However, it never even 
reported GMV.

Other factors complicate the interpretation of KA2012. 
This article reports on four experiments. The first (n = 125) 
related GMM to SNS-Online in an exploratory manner over 
the entire brain but also in the amygdala specifically using 
an ROI analysis, motivated by the BI2011 result. The second 
experiment was a replication (n = 40), considering only the 
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Fig. 1   Left: One representative subject with right amygdala seg-
mentation overlaid, shown in three views. Separate colors represent 
segmented nuclei, whose GMVs were summed to form the R Whole 
Amygdala measurement. Right: Scatterplot showing the relation 

between SNI-Size and R Whole Amygdala, when controlling for total 
brain volume, gender, and age. Histograms illustrate the distribution 
of scores along each dimension
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amygdala and three other ROIs (left MTG, right STS, and 
right entorhinal cortex) that showed evidence for a corre-
lation in their first experiment. The third experiment was 
behavioral only, looking at the relation between SNS-Online 
and SNS-RealWorld. The fourth experiment (n = 65) was a 
reanalysis of GMM data from participants already included 
in Experiments 1 and 2, but who provided new survey data 
in Experiment 3, such that correlations of GMM could be 
evaluated relative to both SNS-Online and SNS-RealWorld.

Given this, it is unclear what should be considered 
the best estimates of the correlations with SNS-Online 

and amygdala volume (their stated question of interest), 
because the two estimates they provide are not independ-
ent (from E1: n = 125, r = .322 in the right AMY and r 
= .298 in the left AMY; from E2: n = 65, r = .182 in the 
right AMY and r = .135 in the left AMY). The only esti-
mates of correlations with SNS-RealWorld come from E2 
(n = 65, r = .264 in the Right AMY and r = .192 in the 
Left AMY). We chose to use the E1 estimates for SNS-
Online, because it is the largest sample, which can provide 
the most precise estimate, and the only estimate for SNS-
RealWorld comes from E2 with a smaller sample.

KA2012’s E3 examined the relationship between SNS-
Online and SNS-RealWorld, but they surprisingly did not 
report the exact correlation between the two indices. They 
do report that SNS-Online is larger than SNS-RealWorld 
and that most of the items on the SNS-RealWorld ques-
tionnaire correlate positively with SNS-Online. In the 
present dataset, the correlation between SNS-RealWorld 
and SNS-Online was r = .34 (Table 2, Fig. 3). Although 
they noted that the two variables are related, KA2012 also 
conducted analyses (based on E2, n = 65) on GMV to 
compute the unique correlation with SNS-Online, control-
ling for SNS-RealWorld, and vice versa.

Table 5 reports our results of GMV for SNS measures. 
This analysis is not a replication of KA2012, but instead is 
an attempt to test what many have taken to be the conclu-
sions of KA2012 as a replication of BI2011.

Our results do not provide support for the claim that the 
GMV of the amygdala correlates with either SNS-Online or 
SNS-RealWorld. In fact, considering SNS-Online for bilat-
eral amygdalae and SNS-RealWorld for the right amygdala, 
we found the BF+0 was < .33, offering support against the 
presence of a positive correlation. In all three cases when 
we directly compared support for the presence versus the 

Fig. 2   Odds of overlap between BI2011 and KA2012. Above each bar is the number of citations. Citations from Web of Science, October 15, 
2023
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absence of a correlation, we found moderate support for a 
null correlation (BF01 > 3).

The only region where any support was found for a 
correlation was the Left Ce, with moderate support for a 

positive correlation between SNS-RealWorld and GMV (r 
= .21, BF+0 = 4.62). This correlation was specific to SNS-
RealWorld, as it survived controlling for SNS-Online (r = 
.21, BF+0 = 5.10; Fig. 4).

Table 5   Results of GMV for SNS measures

Kanai’s results are Pearson rs, and p-values as reported in the article. Our results are reported as Pearson correlations with BF+0 in parentheses, 
using an informative stretched beta prior of .3, which assumes that 80% of the correlations are likely to be between 0 and .5. Values in bold are 
considered significant or are supported by a BF+0 >3. Values in italics have a BF+0 <.33, in support of a null or negative correlation. Some 
BF01 are also reported in the text to test support for the null

N L Amy. R Amy. L Hipp. R Hipp. L BLA R BLA L Ce R Ce

KANAI (2012)
  DV is GMM
    SNS-Online 125 .30 (.003) .32 (.001) - - - - - -
    SNS-RealWorld 65 .19 (.13) .26 (<.05) - - - - - -
    SNS-Online unique 65 .09 (.48) 0.11 (.41) - - - - - -
    SNS-RealWorld 

unique
65 not reported (p>.05) .29 (P<.05) - - - - - -

Our study
  DV is GMV

SNS-Online 117 -.03 (0.18) -.08 (0.13) -.04 (0.17) -.10 (0.12) -.02 (0.19) -.10 (0.12) .02 (0.28) .08 (0.52)
SNS-RealWorld 117 .16 (1.83) .04 (0.31) .02 (0.26) .00 (0.22) .14 (1.3) .03 (0.281) .21 (4.62) .02 (0.26)
SNS-Online unique 117 -.09 (0.12) -.09 (0.12) -.05 (0.16) -.10 (0.12) -.08 (0.13) -.11 (0.11) -.01 (0.16) .08 (0.52)
SNS-RealWorld unique 117 .18 (2.78) .07 (0.43) .03 (0.30) .03 (0.30) .16 (1.79) .06 (0.42) .21 (5.10) -.01 (0.20)
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Discussion

The initial motivation for this study was to provide a repli-
cation of the results in BI2011, which show that amygdala 
GMV is related to both SNI-Size and SNI-Complexity. 
Our replication was inconclusive in this regard, with small 
effect sizes below r = .2 and only anecdotal support for the 
existence of a positive correlation (but also no conclusive 
evidence in favor of the null). Only in some cases (the left 
and right Ce for SNI-Size, the left and right hippocampus, 
and the left Ce for SNI-Complexity) did we find moderate 
support for the absence of a correlation between social 
network measures and GMV.

When an initial study finding positive evidence is fol-
lowed by another failing to find evidence for the same rela-
tionship, authors typically conclude that an effect did not 
replicate. Based on a discussion of prediction intervals (PIs; 
Spence & Stanley, 2016), we propose an alternative inter-
pretation. Small effect sizes, such as those initially reported 
by BI2011, lead to very large PIs. This would be true even if 
the initial study, or this study, had used considerably larger 
samples. For instance, even if we had collected a sample 
of 2000 participants, our observed correlation of r = .14 
(SNI-size and right amygdala) would still be included in a 
95% PI that assumes the initial result of r = .29 by BI2011 
is true, providing only for sampling error. In other words, 
there is a sense in which it was almost impossible not to 
replicate the initial result. PIs offer a range within which 
future observations are expected to fall, given the data and 
model from a prior study. If the result of a new study falls 
within this interval, it is tempting to consider the study as a 
successful replication. In one sense, however, the large PI 
reveals the futility of trying to conduct a replication of such 
a small correlation. Spence & Stanley (2016) argue that lit-
tle useful knowledge can be derived from any single study 
and that we should instead shift to a meta-analytic approach 
to estimating effect sizes in which we are interested.

One challenge of a meta-analytic approach is that of pool-
ing together results that measure effects between the same 
construct. A multiplicity of different measures for the same 
construct can be a good thing. It can help strengthen claims 
when the different measures function as convergent indica-
tors of the same construct. Analyses that use correlated indi-
cators to define constructs as latent variables (Bollen, 2002) 
can support analytical methods that allow use to investigate 
relationships that focus on construct-relevant variance, sup-
porting stronger inferences (Engle et al., 1999; Richler et al., 
2019). However, when different measures are considered to 
be related to the same construct and they do not actually 
intercorrelate, progress about understanding the relation-
ships of the target construct to other variables is limited 
(Gauthier, 2020; Rezlescu et al., 2017).

With regards to evaluating whether the initial BI2011 
result has been replicated in the literature, our work pro-
vides good support that the four different measures of social 
network used in BI2011 and KA2012 are to some degree 
influenced by a common factor. Experimental results origi-
nating from these different indices of social network may 
be meaningfully combined and compared (e.g., ideally in 
a latent variable framework). In contrast, there are impor-
tant reasons to be careful about the commensurability of 
GMV to other measures that have been summarized as 
also indexing “volume,” in particular GMM, as used in 
KA2012. KA2012 is very often (and increasingly over the 
years) cited as providing a replication of BI2011. Because 
we did not perform VBM on our data, we cannot provide 
evidence for the correlation between GMV and GMM, but 
other work suggests they may yield quite distinct influences 
(Gennatas et al., 2017a, 2017b; Goto et al., 2022a, 2022b).

Following up on the results of KA2012, we provided a 
“replication” of a different nature—not one for the result 
they actually reported on correlations with GMM, but one 
that addresses the implied replication and extension of 
the GMV result that BI2011 reported. In other words, if 
KA2012’s results were indeed on GMV, as they have often 
been incorrectly cited for, would we replicate them here? We 
did not obtain support for the positive correlations reported 
in KA2012, and in several cases obtained moderate support 
for a null correlation. Even by the PI approach, our results 
often fall outside the 95% PI for this replication (e.g., the 
95% PI for the correlation of r = .32 between right amygdala 
and SNS-Online would be [.10, .54], and we observed a cor-
relation of r = −.08). Therefore, in addition to the principled 
reasons for why KA2012 does not represent a replication of 
BI2011 (i.e., they use different morphometric measures), 
these results provide some conclusive evidence that the 
effect does not in fact replicate.

In the present work, the only support for a positive cor-
relation was obtained in the left Ce nucleus of the amyg-
dala, with SNS-RealWorld. We did not expect this specific 
relationship, and we note that it was not found when using 
different measures of the size of real-world social network 
(those based on the SNI; Table 5). The 95% PI for a future 
large replication of this effect (n = 1000) is [.03, .38]. One 
recent project considering amygdala nuclei volume observed 
a similar pattern in the Ce nucleus, reporting that individu-
als with larger central nucleus volumes had larger social 
networks (Jones et al., 2020a, 2020b). We caution the reader 
when interpreting these results, however, given that (1) 
Jones et al. (2020a, 2020b) only considered homeless and 
precariously housed individuals, (2) social network size was 
assessed via a structured interview design, and (3) Jones’ 
secondary analysis with the same data showed no significant 
association between Ce nucleus and network size.
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Conclusions

With a sample size of 128 subjects scanned at high resolu-
tion, we examined the relationship between social network 
size and the grey matter volume of the amygdala and its 
nuclei. Our results highlight the relevance of matching criti-
cal morphometric measurement tools before directly com-
paring results across studies. We conclude that two often 
co-cited projects—KA2012 and BI2011—are in fact not 
comparable because of their unique morphometric meas-
urements. Our results highlight the value of a focused and 
narrow lens in evaluating evidence for replication over the 
years.
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