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Abstract

We report a deep learning-based approach to accurately predict the emission spec-

tra of phosphorescent heteroleptic [Ir(CˆN)2(NˆN)]+ complexes, enabling the rapid

discovery of novel Ir(III) chromophores for diverse applications including organic light-

emitting diodes and solar fuel cells. The deep learning models utilize graph neural

networks and other chemical features in architectures that reflect the inherent struc-

ture of the heteroleptic complexes, composed of CˆN and NˆN ligands, and are thus

geared towards efficient training over the dataset. By leveraging experimental emission

data, our models reliably predict the full emission spectra of these complexes across

various emission profiles, surpassing the accuracy of conventional DFT and correlated

wavefunction methods, while simultaneously achieving robustness to the presence of

imperfect (noisy, low-quality) training spectra. We showcase the potential applications

for these and related models for in silico prediction of complexes with tailored emission

properties, as well as in “design of experiment” contexts to reduce the synthetic burden

of high-throughput screening. In the latter case, we demonstrate that the models allow

us to exploit a limited amount of experimental data to explore a wide range of chemical

space, thus leveraging a modest synthetic effort.
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Introduction

Transition metal complexes of d6 second- and third-row transition metal elements can ex-

hibit phosphorescence properties ideal for a range of important applications. In particular,

cyclometalated octahedral Ir(III) complexes are common elements of organic light-emitting

diodes1–5 and solar fuel cells.6 They have also increasingly become utilized in organic photo-

catalytic reactions,1,7–9 photodynamic therapy,10,11 and bioimaging applications.12 The util-

ity of Ir(III) chromophores across so many different applications arises from several attractive

characteristics. They generally exhibit long excited-state lifetimes, high intersystem crossing

efficiency, and good resistance to photobleaching and chemical degradation. Perhaps the

most important feature of this class of compounds, however, is their structural modularity.

The synthesis of heteroleptic [Ir(CˆN)2(NˆN)]+ complexes (where CˆN is a cyclometalating

2-phenylpyridinato ligand and NˆN is a diimine ancillary ligand) is straightforward and ro-

bust,13–22 and the excited-state properties of many structurally modified Ir(III) complexes

have been reported.22,23 Thus, modification of the ligands on these compounds can provide

a straightforward means to tune the energy of the emissive excited state for a given chemi-

cal application. The ability to rationally and rapidly predict the excited-state properties of

novel Ir(III) chromophores would be a powerfully enabling capability in all the fields in which

they have proven to be useful. Quantitative prediction of the absolute redox potentials of

the singlet and the triplet states, the phosphorescence energies, and the emission spectra of

these complexes, however, is beyond the capabilities of
✿✿✿✿✿✿✿✿
remains

✿✿
a

✿✿✿✿✿✿✿✿✿✿
challenge

✿✿✿
for

✿
conventional

computational methods.

The emitting triplet excited state of this class of Ir(III) chromophores generally belong

to one of three different types: 1) predominantly CˆN ligand-centered (3LC) character, 2)

predominantly charge-transfer (3CT) character (metal and CˆN ligand to NˆN ligand charge

transfer), or 3) featuring significant contributions from both. 24–26 The phosphorescence

state of these complexes, i.e., the lowest triplet excited state (Kasha state), thus contains

signatures from multiple orbital transitions.27–31 Hence,
✿✿✿✿✿✿✿
Hence,

✿✿✿✿✿✿✿✿✿✿
achieving

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
quantitatively

✿
ac-
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curate in silico modeling
✿✿✿✿✿✿✿✿✿✿✿
predictions

✿
of the phosphorescence energies and spectra of these

complexesby quantum mechanical (QM) methods requires multiple
✿✿✿✿✿✿✿
across

✿✿
a

✿✿✿✿✿✿✿✿✿✿
diversity

✿✿✿
of

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
functionalized

✿✿✿✿✿✿✿✿✿✿✿✿
complexes,

✿✿✿✿✿✿✿✿✿✿✿✿
exhibiting

✿✿✿✿✿✿✿✿✿
differing

✿✿✿✿✿✿✿✿
classes

✿✿✿
of

✿✿✿✿✿✿✿✿
excited

✿✿✿✿✿✿✿✿
states,

✿✿✿✿✿✿✿✿✿
remains

✿✿✿✿✿✿✿✿✿✿✿
extremely

✿✿✿✿✿✿✿✿✿✿
challenge.

✿✿✿✿✿✿✿
While

✿
density functional theory (DFT) ,

✿✿✿✿✿✿✿
and/or

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
time-dependent

✿✿✿✿✿✿
DFT

✿✿✿✿✿✿✿✿✿✿✿✿
(TD-DFT)

✿✿✿✿
may

✿✿✿✿✿✿✿✿✿
exhibit

✿✿✿✿✿✿
good

✿✿✿✿✿✿✿✿✿✿✿✿✿
performance

✿✿✿✿
for

✿✿✿
a

✿✿✿✿✿✿✿✿✿✿✿
particular

✿✿✿✿✿✿
class

✿✿✿
of

✿✿✿✿✿✿✿✿✿✿✿✿
complexes,

✿✿✿✿✿
the

✿✿✿✿✿✿✿
results

✿✿✿✿✿
are

✿✿✿✿✿✿
often

✿✿✿✿✿✿✿✿
strongly

✿✿✿✿✿✿✿✿✿✿✿
functional

✿✿✿✿✿✿✿✿✿✿✿✿✿
dependent,

✿✿✿✿✿
with

✿✿✿
no

✿✿
a
✿✿✿✿✿✿✿
priori

✿✿✿✿✿✿
clear

✿✿
or

✿✿✿✿✿✿✿✿✿✿✿
universal

✿✿✿✿✿✿✿✿
optimal

✿✿✿✿✿✿✿✿
choice.

✿✿✿✿
As

✿✿✿✿✿✿
such,

✿✿✿
the

✿✿✿✿✿✿✿✿
highest

✿✿✿✿✿✿✿✿✿✿
accuracy

✿✿
is

✿✿✿✿✿✿✿✿✿
typically

✿✿✿✿✿✿✿✿✿✿
obtained

✿✿✿✿✿
with

✿✿✿✿✿✿✿✿✿✿✿
correlated

✿✿✿✿✿✿✿✿✿✿
methods,

✿✿✿✿✿
such

✿✿✿
as

✿
domain-based lo-

cal pair natural orbital coupled cluster theory (DLPNO-CCSD(T)), and/or time-dependent

DFT (TD-DFT) steps with their associated computational costs.32–37 Even then, the most

accurate of these QM methods, ΔDFT-DLPNO-CCSD(T), had a root-mean-squared devia-

tion of ∼5 kcal/mol compared to experimental values of phosphorescence energies,
✿✿✿

32 while

more common (and computationally efficient) DFT methods exhibit characteristic errors

that are much higher. This would roughly correspond to a prediction uncertainty window of

∼40-45 nm and higher around the 500 nm region of the visible spectrum.

Machine learning (ML) and deep learning (DL) models have attracted high interest re-

cently for the rapid and accurate predictions of molecular properties. 38–52 Concerning the

photophysical properties of Ir(III) complexes, Hatanaka and coworkers used a combination

of DFT calculations and machine learning to develop quantitative models to classify 148

Ir(III) complexes based on their computed luminescence quantum yields. 53 Later, Rasulev

and coworkers developed models to predict the excitation wavelengths for a set of 47 Ir(III)

complexes,54 developing quantitative structure–property relationship relationships between

the complex properties and the emission wavelengths.

Recently, Bernhard and co-workers published the high-throughput synthesis and spectral

evaluation of a much larger dataset of 1440 [Ir(CˆN)2(NˆN)]+ complexes.23 This extensive

spectral dataset, obtained under uniform experimental conditions, provides an opportunity

to develop and train predictive ML models,55 which can potentially be utilized to explore a

larger chemical space of [Ir(CˆN)2(NˆN)]+ complexes for promising properties as well as pro-
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vide guiding principles for future synthetic efforts. Bernhard and co-workers utilized their

aforementioned Ir-complex data to extract simple, quantitative structure-emission energy

relationships using linear combinations of energy shifts ascribed to individual ligands. 23 Al-

though their approach presented a framework to predict the emission energies of heteroleptic

Ir(III) complexes, it is not a general predictive method and is limited to only the specific

ligands contained within the original high-throughput dataset.

Subsequently, Kulik and coworkers developed more generalizable DL models 55 for this

same dataset using easy-to-interpret chemical information from both the molecular struc-

tures56,57 and the properties of the ligands, establishing relationships with the associated

photophysical properties of the complex, such as the mean emission energies of phosphores-

cence, the excitation state lifetimes, and the emission spectral integral. 55 Such models are

generalizable to novel ligands outside the training dataset, and thus to arbitrary heteroleptic

complexes. Moreover, the authors also conduct uncertainty-controlled chemical exploration

of hypothetical Ir(III) complexes to identify promising ligands, thus demonstrating the scope

of accelerated discovery of Ir(III) complexes using DL models.

The seminal work of Kulik and coworkers clearly establishes the promise of DL methods

for the prediction of photophysical properties for Ir complexes. However, several critical

issues remain open for further exploration. In particular, the emission spectra of Ir complexes

are often not simple, featureless, Gaussians (particularly for complexes of 3LC character)

but are characterized by multiple emission maxima that may be due to multiple emissive

states and/or vibronic progressions.
✿✿✿

23 As such, the prediction of simple emission maximum

(or related scalar quantities) does not necessarily provide a comprehensive picture of the

emission. Furthermore, the use of experimental (vs. computational) training data raises

important questions as to how to deal with finite and variable signal-to-noise in the measured

emission spectra, which thus cannot be treated as typical “gold-standard” training data. Both

of these issues – among others – are addressed in the present development.

It is notable that previous attempts to learn continuous spectra curves are far fewer in
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number compared to efforts aimed at predicting scalar quantities like emission maxima and

excitation wavelengths.51,54,55,58,59 Rinke and co-workers utilized various DL architectures

to predict the full molecular excitation spectra for organic molecules from the QM7B 60,61

and QM962 datasets.63 However, the models were trained on the computationally generated

spectra of 132k molecules. They were then tested against the computed spectra of diastere-

omers of a subset of 10k molecules within the training set. On the other hand, Park and

co-workers had trained DL models using experimental data for combinations of 11k organic

chromophores in 369 solvents.64 Both of these studies used diverse chemical data represen-

tations as inputs for their DL models. These included techniques ranging from a Coulomb

matrix encoding of the molecular structure for a multilayer perceptron (MLP) neural net-

work, to detailed connectivity information of the atoms for a tensor representation of a

molecule for graph convolutional networks (GCN). Notably, Park and co-workers built mod-

els consisting of two GCNs: one for the chromophore and the other for the solvent. These

were concatenated and finally passed through an MLP to derive the optical properties.

In order to address the challenges laid out above, we trained DL models to predict the

emission spectra of Ir(III) complexes using an extensive experimental dataset. While training

on experimental data, we achieve robustness to the presence of noisy, low-quality training

spectra. We tested the predictive performance of our DL models in two use cases: for

heteroleptic complexes formed by novel combinations of “known” CˆN and NˆN ligands in

the dataset, and for complexes including novel ligands (which cannot be found within any

complex in the training dataset). We find that our DL models are sufficient to capture the

emission profiles of even highly featured spectra, thus providing a comprehensive picture of

the emission energies. Consistent with prior results, 55 we found the models to be more accu-

rate in the first case
✿✿
of

✿✿✿✿✿✿✿✿✿✿✿
predicting

✿✿✿✿
the

✿✿✿✿✿✿✿✿
spectra

✿✿✿✿
for

✿✿✿✿✿✿
novel

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
combinations

✿✿
of

✿✿✿✿✿✿✿✿✿✿
“known”

✿✿✿✿✿✿✿
ligands

✿
and

subsequently, we mapped the performance of the second case
✿✿✿✿✿✿✿✿✿✿
predicting

✿✿✿
for

✿✿✿✿✿✿✿✿✿✿✿✿
complexes

✿✿✿✿✿
with

✿✿✿✿✿✿✿✿✿
“unseen”

✿✿✿✿✿✿✿✿
ligands

✿
in the chemical space to identify regions of high and low model accuracy.

Notably, the DL models produced a predictive performance for phosphorescence energies
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that significantly improved upon previously reported QM-based methods.

We further validated our DL model via additional experiments for several novel example

complexes. For scenarios with poor blind predictive performance for novel ligands, we also

found that having minimal additional data for these ligands greatly improves model accuracy

and closes the gap in performance between the two use cases. These findings, described in

the next sections, highlight our progress in obtaining general structure-luminescence rela-

tionships from the existing data toward the virtual discovery of new Ir(III) phosphorescent

complexes, as well as the opportunities and challenges when leveraging experimental (vs.

computational) data to train a data-driven model.

Methods

We have utilized the emission spectra data from the aforementioned work by Bernhard and

co-workers23 to train our models. The reference study’s complexes were produced by exhaus-

tive combinations of 60 CˆN and 24 NˆN ligands, yielding 1440 total complexes. The 60

CˆNs include derivatives of several 2-phenylpyridinato
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
2-phenylpyridine

✿
archetypal molecules

(Figure 1A), and the 24 NˆNs consisted of derivatives of 2,2’-bipryidine
✿✿✿✿✿✿✿✿✿✿✿
-bipyridine, 1,10-

phenanthroline, tetrazoles, and pyrazoles (Figure 1B). Among the ligands, 2-phenylbenzothiazole-

and 2-phenylbenzoxazole-derived CˆNs, and tetrazole- and pyrazole-derived NˆNs showed a

higher tendency to exhibit emissive states of 3LC character.23

It is important to note that since the same solvent (DMSO) and counterion (Cl-) were

used consistently throughout the high-throughput synthesis, any potential solvatochromism

or shifts due to ion interactions are implicitly included in the training data. That said, the

solvatochromic shifts of this particular class of complexes are typically relatively modest, 65

while the high dielectric of the current solvent is expected to largely mitigate a potential ion

pairing.66 As such, the resulting model likely exhibits at least moderate transferability to

other high-dielectric solvents.
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Figure 1: Combinatorial library formed by (A) cyclometalating CˆN and (B) ancillary NˆN
ligands. (C) Structure of a complex formed by a combination of CN1 and NN1 ligands.
Adapted with permission from Ref.23 Copyright © 2021 American Chemical Society.

We trained all our models to predict the normalized emission intensity values at 46

discrete wavelengths (475-700 nm with 5 nm intervals of resolution). While training to pre-

dict absolute emission intensities would be useful, unfortunately, the product concentrations

(essentially, yields) of the photocomplexes were not available due to the high-throughput

nature of the corresponding synthesis, which would be necessary to model the absolute emis-

sion intensities. Furthermore, we also calculated Em50/50 values from the predicted spectral

intensities. These were compared with the Em50/50 calculated from the true spectral inten-

sities.

Among the complexes prepared in the reference study, 23 some of the synthesis yields

and/or emission signals are low with corresponding high noise in the normalized spectra.

Therefore, we used a hyperbolic tangent-based (tanh) weighting function to reduce the train-

ing weight of emission spectra with low signal-to-noise. We used the maximum absolute

emission intensity, Ii, as a proxy for the signal-to-noise value, yielding a weight,
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wi =
1

2
(1 + tanh(

Ii − 550

100
)) (1)

A value of 550 counts was set as the origin, where the weighting function has a value

of 0.5. As a result, most spectra were assigned weights approaching 1, while the spectra

with reduced information content (such as those of complexes having a maximum absolute

intensity below 200) carried smaller weights approaching 0, resulting in ∼420 complexes

out of 1440 having substantially reduced weights.
✿✿✿✿✿
The

✿✿✿✿✿✿✿✿✿✿
threshold

✿✿✿✿✿✿
value

✿✿✿
of

✿✿✿✿✿
550

✿✿✿✿✿✿✿
counts

✿✿✿✿✿
was

✿✿✿✿✿✿✿✿✿✿✿
determined

✿✿✿✿✿✿✿✿✿✿✿✿
qualitative

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
examination

✿✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿✿✿
spectra

✿✿✿✿✿✿
data.

✿✿✿✿✿✿✿✿✿
Briefly,

✿✿✿✿
the

✿✿✿✿✿✿
most

✿✿✿✿✿✿✿✿
intense

✿✿✿✿✿✿✿✿✿
emitters

✿✿✿✿✿✿✿
exhibit

✿✿✿✿✿✿✿✿✿✿✿
maximum

✿✿✿✿✿✿✿
counts

✿✿✿
in

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿
thousands,

✿✿✿✿✿✿✿✿✿
whereas

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
weakest

✿✿✿✿✿✿✿✿✿
emitters

✿✿✿✿✿
(and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
background)

✿✿
is

✿✿
in

✿✿✿✿✿
the

✿✿✿✿✿
high

✿✿✿✿✿
tens

✿✿✿
of

✿✿✿✿✿✿✿✿✿✿✿
counts.23

✿✿✿✿✿✿✿✿
Spectra

✿✿
in

✿✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
threshold

✿✿✿✿✿✿✿✿
regime

✿✿✿✿✿✿✿✿
exhibit

✿✿✿✿✿✿✿✿✿✿✿✿✿
well-defined

✿✿✿✿✿✿✿
peaks,

✿✿✿✿
but

✿✿✿✿✿
often

✿✿✿✿✿✿✿✿
exhibit

✿✿✿✿✿✿
clear

✿✿✿✿✿✿
noise

✿✿✿
on

✿✿✿✿✿
top

✿✿
of

✿✿✿✿✿✿
those

✿✿✿✿✿✿✿✿
peaks.

✿
This weighting process avoids the need

for ad hoc culling of data from the training set and allows us to retain data that carries

reduced (but non-zero) information content while also achieving robustness.

Our models were trained using a loss function consisting of the squared errors of the

vectors of discretized, normalized spectral intensities over the fitted range (475 to 700 nm).

However, because of the differential weighting of the training data, the cost function was

defined as the weighted mean squared error (wMSE),

wMSE =

∑Test
i=1 (wi ∗ (ypred,i − ytrue,i)

2)∑Test
j=1 wj

(2)

We tested our models on randomized 80:20 training-testing splits of the exhaustive com-

binatorial dataset formed by the C^N and N^N ligands as well as ligand-specific splits. The

predictive performance was evaluated by metrics such as the weighted root-mean-squared

errors (wRMSE) and the weighted coefficients of determination (wR2)
✿✿✿✿✿✿✿✿✿
averaged

✿✿✿✿✿✿✿
across

✿✿✿
all

✿✿✿
46

✿✿✿✿✿✿✿✿✿✿✿✿
wavelengths,

wRMSE =

√√√√∑Test
i=1 (wi ∗ (ypred,i − ytrue,i)2)∑Test

j=1 wj

(3)
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wσ2 =

∑Test
i=1 (wi ∗ (ytrue,i −

∑Test
j=1 wj∗ytrue,j∑Test

k=1 wk
)2)∑Test

l=1 wl

(4)

wR2 = 1− wMSE

wσ2
(5)

We utilized 2 distinct frameworks for our DL models. The first of these involves a fully

connected neural network i.e., MLP, with QM-calculated CˆN and NˆN ligand properties as

the feature vectors. This simple structure naturally captures the diversity of the heteroleptic

Ir complexes in terms of their constituent CˆN and NˆN ligand properties, yielding a rela-

tively shallow neural network and a feature set of 16 scalar descriptors calculated for only

84 ligands. These features include intensive chemical properties of the ligands, such as the

HOMO, LUMO, dipole moment, etc., which were chosen for their relevance to the ligand

field theory-related phenomena involved in the emission of phosphorescent Ir complexes (a

full list of the ligand properties used is shown in Table S1 in the SI). Most property features

were obtained from singlet ground-state calculations. Some others like ionization energies,

electron affinities, and singlet-triplet energies require multiple calculations and were chosen

for their relevance to ligand-based charge transfer processes. We carried out DFT 67 calcu-

lations to obtain these ligand properties, using B3LYP-D3 theory 68–71 in combination with

the 6-31G** basis set72 for all the atoms using Gaussian 16.73 All DFT calculations included

continuum solvation corrections with the dielectric constant of dimethyl sulfoxide (via IEF-

PCM).74–76
✿✿✿✿✿
Due

✿✿
to

✿✿✿✿✿✿✿✿✿✿✿✿✿
convergence

✿✿✿✿✿✿✿
issues

✿✿✿✿✿✿
with

✿✿✿✿✿✿✿✿✿✿✿
calculation

✿✿✿
of

✿✿
a
✿✿✿✿✿✿
small

✿✿✿✿✿✿✿✿✿
number

✿✿✿
of

✿✿✿✿✿✿✿✿✿✿✿
properties,

✿✿✿✿
we

✿✿✿✿✿✿✿✿
omitted

✿✿
a

✿✿✿✿✿✿
small

✿✿✿✿✿✿✿✿✿
number

✿✿
of

✿✿✿✿✿✿
CˆN

✿✿✿
(6)

✿✿✿✿✿
and

✿✿✿✿✿✿
NˆN

✿✿✿
(3)

✿✿✿✿✿✿✿✿
ligands

✿✿✿✿✿✿
from

✿✿✿✿
the

✿✿✿✿✿
final

✿✿✿✿✿✿✿✿
model.

✿

We also examined an alternative graph network-based framework, which utilizes only the

structure-connectivity information of the constituent CˆN and NˆN ligands (and thus no

QM-calculated descriptors). This approach is based on MEGNet, a graph neural network

(GNN)-based framework for universal DL for both molecular and crystalline materials. 77 In

this framework, a molecule is represented as a graph with atoms at its vertices and bonds
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at its edges. The attributes of each atom and bond, along with the state attributes for

the whole molecule, are interconnected through the structure-connectivity framework of the

molecular graph, thus encoding the chemical information of a molecule. Each “block” of

MEGNet’s GNN conducts update operations on all the atom, bond, and state attributes

by “pooling” information from the attributes of the respective nearest-neighbor bonds and

atoms. Hence, successive blocks of MEGNet consider higher orders of nearest-neighbor

interactions between the atoms and bonds as the molecular graph is processed through the

GNN. MEGNet has been shown to outperform77 other state-of-art models, such as SchNet78

and MPNN models,79 for predicting molecular properties. Thus, the MEGNet framework

represents a more generalized and comprehensive approach compared to the shallow MLP

framework described earlier.

To better reflect the structure of the heteroleptic Ir complexes, we generate a new graph

network-based framework that initially encodes and processes the structural information

of the CˆN and NˆN ligands in separate graphs
✿✿✿✿✿
graph

✿✿✿✿✿✿✿✿✿✿✿
networks, before concatenating the

✿✿✿✿✿✿✿
output

✿✿✿✿✿✿✿
layers

✿✿
of

✿✿✿✿✿
the

✿
two graph networks together and finally running through an MLP to

generate the
✿✿
a

✿✿✿✿✿✿✿
vector

✿✿
of

✿✿✿✿✿✿✿✿✿
spectral

✿✿✿✿✿✿✿✿✿✿✿
intensities

✿✿✿
as

✿
output. We call this framework lig-MEGNet.

The architectures of the 2 frameworks for our models discussed above are shown in Figure 2.

lig-MEGNet contains 3 blocks of MEGNet convolution layers. The ligand-specific molecular

graphs were obtained using MEGNet’s molecular graph converter module from the DFT-

optimized XYZ files of the ligands.
✿✿✿
We

✿✿✿✿✿
also

✿✿✿✿✿✿✿
tested

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿
lig-MEGNet

✿✿✿✿✿✿✿✿✿✿✿✿✿
architecture

✿✿✿✿✿✿
while

✿✿✿✿✿✿✿
simply

✿✿✿✿✿
using

✿✿✿✿✿
the

✿✿✿✿✿✿✿✿
ligands’

✿✿✿✿✿✿✿✿✿✿
SMILES

✿✿✿✿✿✿✿✿
strings

✿✿✿
as

✿✿✿✿✿✿✿
input.

✿
The MLP and the lig-MEGNet-based models

are similar in their architectures to models utilized by Kulik and coworkers. 55

The MLP models were developed with Keras80 and trained using the Adam algorithm81

in mini-batches of 32 for 2000 epochs with an initial learning rate of 0.005 that was decayed

by a factor of 0.5 down to a minimum of 0.0001. The lig-MEGNet models were trained using

the Adam algorithm with the whole training set being treated as one batch and a learning

rate of 0.01 for the first 500 epochs, 0.001 for the next 11000 epochs, and 0.0001 for the last
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(a) (b)

Figure 2: Architectures of the (a) MLP and b) lig-MEGNet frameworks. Inputs for the MLP
models are vectors of 16 QM-calculated ligand property features for the CˆN and NˆN and
for the lig-MEGNet models are molecular graphs with the bond, atom, and state attributes.
The graphs are

✿✿✿✿
can

✿✿✿
be

✿
obtained from

✿✿✿✿✿✿
either

✿
the XYZ files of the CˆN and the NˆN ligands

✿✿
or

✿✿✿✿✿✿✿
simply

✿✿✿✿✿✿
from

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
SMILES

✿✿✿✿✿✿✿✿
strings

✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿✿✿
ligands. See Ref.77 for a more detailed explanation

of the working of the GNN in a MEGNet
✿
“block,

✿✿
”.

✿
3 of which

✿✿✿✿✿✿✿✿✿
MEGNet

✿✿✿✿✿✿✿✿✿
“blocks”

✿
were used

in
✿✿✿✿
each

✿✿✿✿✿✿✿✿
ligand

✿✿✿✿✿✿
graph

✿✿✿✿✿✿✿✿✿✿
network

✿✿
in

✿
the lig-MEGNet framework. The “dense” layers are fully

connected neural network layers. The final output layer for all models is a vector of 46
normalized intensities.

500 epochs. We chose these hyperparameters factoring in performance, speed, and memory

usage after several trial runs.

Results and Discussion

Over tests on randomized 80:20 training-testing splits of the dataset, both models, i.e.,

MLP with ligand properties and lig-MEGNet, have comparable performance for predicting

the spectral intensities, with test set wRMSEs of ∼0.06-0.07 and wR2 values that lie be-

tween 0.87 and 0.89 (see Table 1)
✿
,
✿✿✿✿✿✿
when

✿✿✿✿✿✿✿✿✿✿
averaged

✿✿✿✿✿✿✿
across

✿✿✿
all

✿✿✿
46

✿✿✿✿✿✿✿✿✿✿✿✿✿
wavelengths. Although such

GNNs have previously demonstrated strong performance on chemical problems, it is impor-

tant to note that many of these applications were on
✿✿✿✿
vast

✿✿✿✿✿
and structurally diverse datasets,

whereas the complexes in the current dataset exhibit strong structural similarity amongst the

respective CˆN and NˆN classes, differing primarily via their differential functionalization

✿✿
in

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
combinations

✿✿✿
of

✿✿✿✿✿✿
<100

✿✿✿✿✿✿✿✿
unique

✿✿✿✿✿✿✿✿
ligands. Nonetheless, strong predictive performance is re-
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tained. It is intriguing to note that the lig-MEGNet model is also able to achieve comparable

performance even in the absence of any QM-calculated information (which includes chem-

ically relevant descriptors, such as HOMO/LUMO energies, etc., or QM-optimized XYZ

structural information), instead being driven by ligand structure-connectivity information

through the SMILES strings.
✿✿✿✿✿✿
Note,

✿✿✿✿✿✿✿✿✿✿
however,

✿✿✿✿✿
that

✿✿✿✿✿✿
such

✿✿✿✿✿✿✿
GNNs

✿✿✿✿✿✿
may

✿✿✿✿✿
also

✿✿✿✿✿✿✿✿
require

✿✿
a
✿✿✿✿✿✿✿
larger

✿✿✿✿✿✿✿
dataset

✿✿✿✿
for

✿✿✿✿✿✿✿✿✿
training

✿✿✿✿✿✿✿✿✿
purposes

✿✿✿
as

✿✿✿✿✿✿✿✿✿✿✿
compared

✿✿
to

✿✿
a
✿✿✿✿✿✿✿
simple

✿✿✿✿✿✿
MLP

✿✿✿✿✿✿✿
based

✿✿✿
on

✿✿✿✿✿✿✿
ligand

✿✿✿✿✿✿✿✿✿✿✿
properties.

✿✿✿✿✿✿
This

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
consideration

✿✿✿✿✿✿
could

✿✿✿✿✿✿✿✿
become

✿✿✿✿✿✿✿✿✿
relevant

✿✿✿
in

✿✿✿✿✿✿✿✿
regimes

✿✿✿✿✿✿✿
where

✿✿✿✿✿✿✿✿✿
training

✿✿✿✿✿
data

✿✿✿
is

✿✿✿✿✿✿✿
scarce.

✿

Table 1: Performance of the different models for predicting spectral intensities
and Em50/50 over an 80:20 train-test split and the computational time required
to converge the training process

✿✿✿
on

✿✿
a

✿✿✿✿✿✿✿
single

✿✿✿✿✿✿✿✿✿✿✿✿
NVIDIA

✿✿✿✿✿✿
2080

✿✿✿✿✿✿✿
GPU.

Model Input
data

Spectra
Train
wR2

Spectra
Test
wR2

Spectra
Test

wRMSE

Em50/50

Test
wR2

Em50/50 Test
wRMSE

(kcal/mol)

Time
for

training

MLP QM ligand
properties 0.97 0.89 0.06 0.93 0.51 2 min.

lig-
MEGNet

ligand XYZ
✿✿✿✿✿
(QM)

✿

0.97 0.87 0.07 0.90 0.56 10 min.

lig-
MEGNet

ligand SMILES
(no QM) 0.96 0.89 0.06 0.92 0.54 16 min.

(a) (b) (c)

Figure 3: lig-MEGNet-predicted emission spectra (brown) vs. emission spectra from the
high-throughput experiments of Bernhard and co-workers (dashed blue), 23 at the (a) 75th
percentile, (b) median, and (c) 25th percentile points of test set error.

Figure 3 shows spectra predictions by the lig-MEGNet model (trained using QM-optimized

XYZ geometries) for 3 complexes in the test set, at the 75th percentile, median, and 25th
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percentile points of test set error. These samples are thus representative of the model’s

predictive ability in various performance regimes. It is noteworthy that the model performs

well in replicating spectra plots that display both the emission profile of 3CT character

(Figure 3b) as well as the vibronic emission profile of 3LC character (Figure 3c). Plots of

spectra predictions at the same 3 points of test set error by the MLP model can be found

in Figures S2 and S3 of the SI. The corresponding Em50/50 predictions have wRMSEs ∼0.5

kcal/mol. Although, these models were trained to predict the emission spectra, the Em50/50

predictions via the predicted spectra have similar errors to those shown by previous DL

models developed on this dataset by Kulik and coworkers. 55 It is important to note that

these errors, while not entirely trivial, are certainly smaller than can be achieved by even the

state-of-the-art electronic structure theory methods on similar complexes (with, for example,

a recentΔDFT-DLPNO-CCSD(T) study exhibiting characteristic mean squared errors of ∼5

kcal/mol).32 It is also possible that at least some of the residual error can likely be attributed

to the inherent “uncertainty” of the high-throughput experimental training data: since the

complexes were not isolated and purified prior to their characterization, there is likely some

small (but unquantifiable) contribution from factors such as emission or adsorption from

unreacted reactants or potential minor side products (vide infra).

The inclusion of ligand properties as state attributes to the lig-MEGNet framework, i.e.,

using both kinds of features, decreases the time needed to converge the training algorithm

substantially (4 min vs. 10 min for lig-MEGNet, shown in Table S2) but does not lead to

a significant improvement in performance. GNN models constructed using a single graph

for the whole complex also do not yield much improvement, while requiring far greater

training time. Thus, the design approach of representing the complexes by concatenating

two separate graphs for the ligands naturally reflects the structural variance of the dataset

and simultaneously optimizes the training requirements and the predictive performance.

Some of the complexes reported by Bernhard and co-workers 23 exhibit emission spectra

with low signal-to-noise, possibly due to poor synthetic yields (e.g. ligands such as NN4,
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NN7, NN14, N21, and NN37). The presence of such "noisy" emission spectra in the training

set could result in substantial bias during the training process. As such, and as noted

above, we thus employed a weighted training approach that reduces the training weight of

complexes exhibiting weak emission intensity, but without requiring ad hoc culling of the

training data. We compared a weighted model’s performance on the overall dataset with

an unweighted model’s performance on a manually “cleaned” dataset (removing the ligands

mentioned above), shown in Figure 4. The similar performance in both cases, with the highly

weighted points close to the parity line and similar metrics, demonstrates the robustness of

the training procedure even in the face of potentially low-fidelity training points.

(a) (b)

Figure 4: (a) Parity plot showing experimental values and predictions of Em50/50 from a
weighted model trained on the whole dataset. (b) Parity plot for an unweighted model
trained on a curated dataset. The scattered points are shaded based on their weights.

We envision two potential use cases for our predictive models. One such use case would

be to assist in the “design of experiment” in the sampling of a large space of heteroleptic

complexes, such as may arise during a partial sampling of a high-throughput dataset similar

to Bernhard and co-workers.23 Although that dataset is exhaustive (it contained all potential

combinations of CˆN and NˆN ligands within the sample space), one could envision a more

efficient partial sampling of heteroleptic complexes that include only a small fraction of all
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possible ligand combinations (while ensuring that all ligands arise in at least some of the

sampled complexes). Here, a predictive ML/DL model would have great value in identify-

ing promising ligand combinations within the larger sample space for further synthesis and

characterization. Alternatively, one can envision applications to complexes that may contain

entirely novel CˆN or NˆN ligands (or both), which have not been included in any of the

training data. This case is expected to be more challenging since it necessitates extrapo-

lation by the model in both the ligands space and the complexes space, whereas the prior

application only requires extrapolation in the latter.

Figure 5: CˆN ligand-wise LOLO wRMSEs of the predictions of spectral intensities by the
MLP and the lig-MEGNet models.

Assessing the performance of our models in the second use case scenario, i.e., application

to complexes containing novel ligands completely outside the original training set is more

complicated. Rather than attempting to synthesize large quantities of complexes containing

ligands outside the training set, we took a more pragmatic approach: we simulated this

scenario by selective tailoring of the original training set via a “leave-one-ligand-out” (LOLO)

approach. In this approach, we trained MLP and lig-MEGNet models over training sets that

excluded all the complexes containing a particular CˆN or an NˆN ligand (blind LOLO). As

such, the performance of a resulting model when applied to a complex that does contain the

excluded ligand can be considered a truly blind prediction, identical to the scenario when a

pre-trained model on the whole dataset is exposed to an “unknown” ligand in a new complex.

The predictive performance over the CˆN ligand-specific test sets is shown in Figure 5; a

corresponding grid showing results over individual NˆN ligands can be seen in Figure S4.
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Examining the blind LOLO performance data, we find that it lags for CˆN ligands belong-

ing to archetypes that have fewer derived ligands relative to the 5-methyl-2-phenylpyridine-

based groups, such as 5 ethyl-2-phenylpyridine (CN73, CN76), 2,4-diphenylpyridine (CN63,

CN71, CN74), etc. MLP performs better than lig-MEGNet for complexes with ligands which

typically exhibit emissive states of 3CT character in contrast to complexes with ligands ex-

hibiting 3LC character (CNN30-CN41
✿✿✿✿✿✿✿✿✿✿✿✿✿
CN30-CN41

✿
and CN102-CN109 regions), where lig-

MEGNet performs better. This is possibly due to the ligand features in the MLP being able

to better capture the charge transfer processes in the more 3CT-character states than the

intra-ligand interactions in the more 3LC-character states. Moreover, when we average over

the performance of the 2 models across all the CˆN ligands, we note that both models exhibit

similar blind performances, with wRMSEs of spectral intensities of ∼0.14 and wRMSEs of

the corresponding Em50/50 of ∼1.2 kcal/mol (Table 2). Similar to the performance difference

between the grouped and random split testing cases in the earlier Em50/50 DL study by Kulik

and coworkers,55 these errors are higher than those observed in the random 80:20 split test-

ing case (wRMSEs of ∼0.06 for the intensities and ∼0.5 kcal/mol for Em50/50). Nonetheless,

they still outperform the phosphorescence energy prediction errors of the state-of-the-art

QM methods.

Table 2: Averaged predictive performance across all CˆN ligands of the MLP
and the lig-MEGNet models over test sets of complexes of individual ligands left
out of the training sets (LOLO).

Model Input
data

Spectral intensities
avg. wRMSE

Em50/50 avg.
wRMSE (kcal/mol)

MLP QM ligand properties 0.140 1.24
lig-MEGNet ligand XYZ 0.139 1.20

Considering that these models utilize diverse levels of chemical information in networks of

significantly different depths, their similar performance suggests that both models are close

to saturation for learning from this dataset. Interestingly, when we compared the emission

spectra from the high-throughput experiments of Bernhard and co-workers, 23 which were
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used to train the models, and the emission spectra measured by us for a few of the com-

plexes (see Figure S6 in the SI), we noticed a shift towards bluer wavelengths. One notable

distinction between the two sets of experimental spectra data is that in the earlier experimen-

tal study by Bernhard and coworkers, the complexes were synthesized in a high-throughput

manner, thus omitting product isolation and purification. We hypothesize that the presence

of unreacted dimer complexes could slightly influence the measured emission spectra of the

final product, which was observed for one concrete case of CN14-NN6 (Figure S6b and S6d).

However, a quantitative correction is not possible due to uncertainties surrounding the reac-

tion yield (and thus residual dimer concentration). Thus, considering this inherent residual

uncertainty in the training dataset, we suspect that our models may have reached the limit

of learning from the cost function over this dataset.

As expected, the performance of the blind LOLO lags that of the conventional randomized

train/test splitting: in the LOLO analysis, the model is extrapolating in both the ligands

space and the complexes space, since the model has (by construction) never seen any complex

involving the ligand in question. From a practical point of view, it is natural to wonder

what the minimum amount of training data/complexes is that would be required to reach

performance comparable with the “conventional” scenario of randomized training-testing

splits. This would dictate, for example, the number of complexes involving a given ligand that

must be synthesized/characterized to allow for extrapolation from that data into the wider

space of heteroleptic Ir(III) complexes. To address this question, we gradually added back

between 1 and 11 complexes (
✿✿✿✿✿✿✿✿✿
randomly

✿✿✿✿✿✿✿✿
chosen

✿✿✿✿✿
from

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
complexes involving a candidate CˆN

ligand) into the formerly “blind” training set, resulting in a scenario intermediate between

the two use cases described earlier. The resulting models were tested over that CˆN ligand’s

remaining complexes. Here, we present results only for the MLP models for brevity and

efficiency.

Figure 6 shows results from this analysis for all CˆN ligands. The top row of the grid

shows the blind LOLO wRMSEs of the spectral intensities’ predictions for each of the CˆNs,
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Figure 6: CˆN ligand-wise LOLO wRMSEs of the predictions of spectral intensities vs the
number of complexes of the CˆN included in the training data.

with a ligand-average wRMSE of 0.14 (this is the same row as the top row from Figure 5).

As expected, the performance of the models improves as they are exposed (in their training

data) to complexes containing the test ligand, thus reducing the requirement for the models

to extrapolate in the ligand space. However, what is striking is how rapidly the performance

improves with only a tiny amount of additional data: adding only 2 complexes (containing

the test CˆN ligand) yields an average wRMSE of 0.10, a substantial improvement over the

“blind” value of 0.14 and slightly higher than the wRMSE of 0.06 from the full training set

of CˆN ligands (Table 1).

The influence of additional data can be seen in Figure 7, where parity with training with a

dataset containing the full set of CˆNs (Table 1) is reached by ∼6 added complexes. Notably,

we find significant inflection points in the curve when incorporating 1 or 2 complexes of the

test CˆN, suggesting diminishing gains in predictive accuracy as additional data is added.

Critically, this suggests that future high-throughput screening studies could utilize similar

ML/DL approaches to dramatically reduce the number of complexes that would need to be

explicitly synthesized. Upon adding a novel CˆN or NˆN ligand, the synthesis of only a

small number of additional complexes would be generally sufficient to predict the properties

of a vast number of possible heteroleptic complexes involving that ligand.

It is interesting to note that while training on datasets with highly unbalanced numbers

of complexes involving a given CˆN ligand (such as the augmented LOLO analysis described

19



Figure 7: CˆN ligand-averaged wRMSEs of the predictions of spectral intensities by the MLP
LOLO models vs the number of complexes of a test CˆN included in the training data (solid
blue curve). The 0-complex point corresponds to the ligand average of the blind LOLO
analysis (Table 2). The scenario of upweighting the data from a test CˆN’s 2 complexes
during training is represented by the bold red asterisk. The dashed orange line corresponds
to the 80:20 train-test split wRMSE of the MLP model (Table 1) and serves as a reference
for the asymptote of the plotted curve.

above), the imbalance may lead to correspondingly biased training and thus suboptimal

utilization of the additional data. Therefore, we also tested a scenario where we up-weighted

the data from the 2 included complexes of a test CˆN by a factor of 10.5 (=21/2) during

training to ensure a balanced representation, aligning the data of each of the other CˆNs’

21 complexes (with the 21 NˆNs) at “parity” with the test CˆN’s 2 complexes. In this

case, we found the ligand-average wRMSE is further reduced to 0.09 (from 0.10, without

up-weighting), and approaching even closer parity with the results from training with the

full set of CˆNs.

It is important to note that the model’s success in predicting the blind, un-augmented

LOLO analysis is far from uniform. For example, all models exhibit strong blind perfor-

mance on CN34, despite never having encountered this ligand during training. In contrast,

all models perform uniformly poorly on the blind prediction of CN101. We hypothesize that

these variations are due to the extent to which the models are forced to extrapolate in the

ligand space. To further shed light on the picture of ligand-wise variations in the models’
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performance, we mapped them in the ligand properties space. We utilized two approaches

for this. In the first, we compressed the CˆN ligand properties space of 16 properties to a

2-component space through a t-distributed stochastic neighbor embedding (t-SNE) analy-

sis.82,83 We generated a scatter plot of the CˆN ligands in this 2-D space (Figure 8). In the

second, we conducted a principal component (PC) analysis and projected the CˆN ligands

in a 2-D space of their 1st and 2nd PCs (Figure 9a) and their 1st and 3rd PCs (Figure

9b). The first 5 PCs account for 53.7%, 16.5%, 13.9%, 5.4%, and 3.6% of the total vari-

ance in the CˆN properties data. Hence, in Figure 9, we exclusively mapped the 2nd and

3rd PCs against the 1st PC, which contribute significantly more to the variance compared

to higher-numbered components. Both the t-SNE and the PCA analysis were carried out

using Scikit-learn.84 The t-SNE map helps us visualize similarities among various ligands by

conserving relationships within localized data groupings. In contrast, the PC maps offer the

added capability to visualize the absolute variance in the property features of the ligands

across different linear projections. For both the t-SNE and the PC space scatter plots, the

CˆN ligand dots are colored based on their blind LOLO wRMSEs of intensities’ predictions.

Figure 8: CˆN ligands in a 2-D embedded space of their properties from a t-SNE analysis.
The ligand dots are shaded by their blind LOLO wRMSEs of the MLP predictions of spectral
intensities. The new CˆNs tested in Figures 10 and 11 are annotated as 110 and 111,
respectively, and are represented as blue asterisks.

We note a general trend that similar ligands that cluster together in the 2-D t-SNE and
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(a)

(b)

Figure 9: CˆN ligands in a scatter plot showing the 1st principal component plotted against
(a) the 2nd principal component and (b) the 3rd principal component. The ligand dots are
shaded by their blind LOLO wRMSEs of the MLP predictions of spectral intensities. The
new CˆNs tested in Figures 10 and 11 are annotated as 110 and 111, respectively, and are
represented as blue asterisks in (a) and (b). 22



PC spaces tend to give lower wRMSEs for their blind LOLO predictions, whereas ligands

with properties that are farther away from the neighborhood of other ligands tend to have

higher wRMSEs. This trend is not just seen in the blind LOLO analysis but also in the aug-

mented 2-in-training LOLO analysis (Figure S5). Especially from the mappings in the PC

space (Figure 9), one can observe the dispersion in property values for ligands derived from

5-ethyl-2-phenylpyridine, 2,4-diphenylpyridine, and 5-methyl-2,4-diphenylpyridine (CN63,

CN70-CN81), as well as 1-phenylpyrazole and 1-methyl-4-phenyl-1H-1,2,3-triazole (CN21,

CN102-CN109). This dispersion is notable in contrast to a cluster of primarily 5-methyl-

2-phenylpyridine-based ligands located near the center of the distribution. While the blind

LOLO models are accurate for some of the distant ligands that form their own “mini-cluster”

(CN77-CN81), CˆNs belonging to the archetypes mentioned above are more likely to yield

poorer model performance.

To see how these insights from the LOLO, t-SNE, and PC analyses translate to novel

complexes, we compared the models’ predictions for 2 example complexes against experi-

mentally generated spectra. We synthesized these complexes with NN6 (4,4’-di-tert-butyl-

2,2’-bipyridine) and two novel CˆNs (outside the original training set): one that closely

resembles CN4, but with the Cl-group at a different position (CN110 in Figure 10); and

another that is similar to CN14, but with an additional trifluoromethyl group (CN111 in

Figure 11). The spectra predictions from the MLP and the lig-MEGNet models were plotted

against our experimental spectra in Figures 10 and 11. The predictions are more accurate

for CN110 (Figure 10) than for CN111. This is consistent with the fact that CN110 has

more nearby neighbors in the t-SNE space (Figure 8) and is also closer to its neighbors in

the PC space (Figure 9) when compared to CN111. Additionally, in the CN110 case, the

lig-MEGNet-predicted spectra mimic the blueshifts seen between the high-throughput spec-

tra of Bernhard and co-workers, which were used to train the models, and our measured

spectra (see SI Section S9). As such, this shift may be at least partially due to the “bias”

induced via training upon unpurified, high-throughput samples. Nevertheless, both models
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predicted reasonably accurately for the CN110 ligand, which is from a data-rich region of the

ligand space. The predicted spectra had errors lower than ∼15-20 nm for the peak emission

wavelength, which is similar to the uncertainty between the two sets of experiments (i.e.,

the prior high-throughput work23 and those conducted by us as shown in Figure S6). In

contrast, both models were similarly inaccurate for the CN111 ligand from a data-sparse

region. Similar trends in predictive performance were also seen between the CN110-NN40

and CN111-NN40 complexes (Figure S7).

Figure 10: Predicted spectra using lig-MEGNet (brown) and MLP (orange) vs spectra mea-
sured in our laboratory (dashed blue) for the CN110-NN6 complex. Inset: CN110.

The results for CN111 further suggest that the models, in their current state, have limita-

tions in extending their predictive capabilities to ligands representing substantial deviations

in the chemical space from the training set. Even with the significantly more complex archi-

tecture of the MEGNet framework, these limitations apply to both the MLP and lig-MEGNet

models. Nevertheless, as mentioned earlier, collecting even minimal additional experimental

data in the sparsely populated regions of the ligand space could further enhance the accu-

racy of the models. Thus, the experimentally validated insights from the chemical space vs

performance maps and the LOLO analyses showcase the utility of our findings for design-
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Figure 11: Predicted spectra using lig-MEGNet (brown) and MLP (orange) vs spectra mea-
sured in our laboratory (dashed blue) for the CN111-NN6 complex. Inset: CN111.

ing future experimental capacities for the rapid discovery of new phosphorescent complexes.

Furthermore, we observed instances of ligands in data-sparse regions exhibiting low model

uncertainty (Figure 9), indicating that models trained on existing data can also effectively

identify new ligands and complexes of interest in certain cases. Overall, both potential use

cases highlight how machine learning models can serve as a force multiplier by leveraging an

initial set of training data to accelerate the discovery of optimal phosphorescent complexes.

Conclusion

We have presented a DL approach to predict the phosphorescence spectra of heteroleptic

[Ir(CˆN)2(NˆN)]+ complexes using information from the molecular structures and/or prop-

erties of the constituent CˆN and NˆN ligands. Our models were trained directly on ex-

perimental data from ∼1400 complexes, including appropriate weighting to account for the

variable signal-to-noise of the underlying data, with the resulting models yielding smooth

spectra predictions whose overall accuracies far surpass those of DFT and even state-of-
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the-art correlated wavefunction methods. We found that DL architectures that reflect the

inherent structure of the heteroleptic complexes, composed of CˆN and NˆN ligands, are both

particularly effective and computationally efficient, yielding predicted emission energies via

the predicted spectra to within ∼1.2 kcal/mol of corresponding experimental measurements,

similar to a recently published benchmark DL study by Kulik and coworkers. 55 Additionally

our findings present a cautionary tale regarding the limitations in model accuracy due to

the inherent uncertainties in the training data as well as in getting exact agreement be-

tween the predictions of a model trained on high-throughput experiments with standalone

experiments. Nevertheless, we find that DL models of related structure exhibit strong po-

tential for applications including “design of experiment” to mitigate synthetic effort in future

high-throughput experimental studies.

However, we also find that the performance can be uneven, and may decline in regimes

where the training set is data-poor in the “ligands space”, particularly when making blind

predictions involving a complex with a previously “unseen” ligand. Although this observation

would seem detrimental for applications of these and similar models in their most potent

predictive capacity, we also find that this limitation can be largely mitigated by even a very

modest amount of additional training data – as few as 1-2 additional complexes per new

ligand. As such, the DL models retain significant promise as force multipliers, allowing the

exploitation of limited amounts of experimental data (and thus synthetic effort) to explore

a wide region of chemical space, and thus providing new pathways towards efficient design

and optimization of phosphorescent materials.

Supporting Information Available

The Supporting Information is available free of charge at DOI:

• Experimental procedures; characterization data; ligand property features used; perfor-
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comparison of predictions for additional complexes; supporting data and discussions.

• GitHub repository with code, data, and sample results can be accessed at https:
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