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Abstract

Background Two major factors that determine the efficiency of programs designed to mitigate greenhouse gases
by encouraging voluntary changes in U.S. agricultural land management are the effect of land use changes on pro-
ducers' profitability and the net sequestration those changes create. In this work, we investigate how the interac-
tion of these factors produces spatial heterogeneity in the cost-efficiency of voluntary programs incentivizing
tillage reduction and cover-cropping practices. We map county-level predicted rates of adoption for each prac-
tice with the greenhouse gas mitigation or carbon sequestration benefits expected from their use. Then, we use
these bivariate maps to describe how the cost efficiency of agricultural mitigation efforts is likely to vary spatially

in the United States.

Results Our results suggest the combination of high adoption rates and large reductions in net emissions make
reduced tillage programs most cost efficient in the Chesapeake Bay watershed or the Upper Mississippi and Lower
Missouri sub-basins of the Mississippi River. For programs aiming to reduce net emissions by incentivizing cover-
cropping, we expect cost-efficiency to be greatest in the areas near the main stem of the Mississippi River within its
Middle and Lower sections.

Conclusions Many voluntary agricultural conservation programs offer the same incentives across the United States.
Yet spatial variation in profitability and efficacy of conservation practices suggest that these uniform approaches are
not cost-effective. Spatial targeting of voluntary agricultural conservation programs has the potential to increase

the cost-efficiency of these programs due to regional heterogeneity in the profitability and greenhouse gas mitiga-
tion benefits of agricultural land management practices across the continental United States. We illustrate how pre-
dicted rates of adoption and greenhouse gas sequestration might be used to target regions where efforts to incentiv-
ize cover-cropping and reductions in tillage are most likely to be cost -effective.
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Background

In recent years, the United States has experienced an
explosion of interest in voluntary programs designed to
reduce net greenhouse gas (GHG) emissions by incen-
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adoption of conservation agriculture practices which
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increase sequestration or reduce emissions of GHGs [1].
In the private sector, several companies now contract
with agricultural producers to generate carbon cred-
its based on the net change in GHG emissions resulting
from their land use decisions [2]. Whether public or pri-
vate, these programs are Payment for Ecosystem Services
(PES) programs at their core, and past research on PES
programs suggests spatial targeting can greatly improve
the cost-efficiency of such programs [3, 4]. For agricul-
tural mitigation programs, cost effective targeting would
prioritize areas where the ratio of a practice’s mitiga-
tion benefit to its adoption cost, the benefit—cost ratio,
is greatest [5]. However, the site-specific data on land
management and producers’ adoption costs necessary for
benefit—cost targeting are rarely available to policy mak-
ers or program administrators.

The benefits of conservation agriculture practices being
adopted in a given location are determined by three main
drivers of the net change in GHG emissions: climate,
soil characteristics, and the current stock of carbon [6].
Of the three, climate is the dominant driver as it deter-
mines growing season length, temperature, and precipi-
tation patterns [7, 8]. Sequestration tends to be greater
in temperate regions with abundant precipitation as
higher temperatures can reduce biomass production and
increase the rate of carbon decomposition [9, 10]. Silt
and clay content are the most influential soil character-
istics determining GHG sequestration because soil and
clay can prevent carbon from decomposing by fixing it
into mineral-associated forms [11-13]. The final factor,
the present stock of soil carbon, results from the interac-
tion between climate, soil, and the history of land man-
agement in an area [14—16]. As such, determining the
present stock of soil carbon requires largely unavailable
records of farming practices like the frequency and tim-
ing of nutrient applications and tillage [17-19]. Produc-
ers have an incentive to keep such records private as they
provide detailed insights into their business decisions
within a competitive environment.

Producers have similar incentives to keep the cost of
adopting a conservation practice private. If it were avail-
able, programs could use this information to pay partici-
pants according to their willingness to accept instead of
the value of the benefits generated by their participation.
In our context for example, a producer may be willing to
adopt a land management practice that reduces net GHG
emissions for a small incentive because of its beneficial
impacts on productivity. While empirical estimates of the
cost of adopting agricultural practices that mitigate GHG
emissions are available, the results are often specific to the
region or sub-samples used in the analysis and may not
reflect actual costs to a farm operation [20-23]. Under-
standing the private costs of adoption can also address the
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issue of additionality, or the degree to which net reductions
in GHG emissions would not have occurred in the absence
of the program. Excluding producers who would make the
desired land use changes without an incentive, the non-
additional adopters, can greatly reduce unnecessary expen-
ditures. For example, a study of the impact of cost-share
programs on lowa producers’ adoption of cover-cropping
found 54% of the incentivized cover-crop adoption was
additional [24]. A study of producers in Ohio found only a
quarter of producers who were paid to adopt conservation
tillage were additional due to the practice’s relatively high
short run profitability [25], and the estimated rate of addi-
tionality at the national scale was 47% [26].

The objective of this work was to demonstrate how tar-
geting voluntary agricultural GHG mitigation programs
using aggregate data can make an improvement in cost-
efficiency despite the information asymmetry which
exists between producers and the policy maker. We begin
by presenting a conceptual model of technology diffusion
and describe how the relationships we identify between
the pace of adoption and additionality inform our empiri-
cal approach. Then, after describing the datasets in our
analyses, we turn our attention to the method we use to
forecast adoption of cover-cropping and tillage practices.
In brief, we use a machine learning approach to predict
the present rate of adoption and use these predicted rates
of adoption to proxy for the expected net return to prac-
tice adoption. After combining these predictions with
county-level estimates of the net GHG emissions changes
associated with each practice, we generate bivariate maps
comparing the predicted rates of adoption with expected
rates of carbon sequestration.

A related paper by Sperow [27] estimates county-spe-
cific carbon prices by assuming county-level EQIP pay-
ments equal the cost of adopting various tillage practices.
We build on this approach by instead relying on variation
in the adoption rate as an indicator of the net return to
adoption, the benefits of adoption minus the costs. This
has the benefit of addressing within-county variability in
the profitability of adoption and the accompanying issue
of additionality. As such, our approach relying on the rate
of adoption contributes to our understanding of volun-
tary agricultural mitigation programs by highlighting the
role of additionality in determining cost-efficiency.

Conceptual model and methodology

Our conceptual model is presented in two sections. The
first section illustrates how the decisions of agents to
adopt conservation agricultural practices generate the
county-level adoption outcomes we employ. We dem-
onstrate how the county-level rate of adoption relates
to producers’ net returns to adoption, and consequently
the likelihood of incentivized adoption being additional.
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Our conceptual model is inspired by the threshold model
of technology diffusion described in [28], the model
of voluntary opt-in presented in [29], and the model of
additionality in [30]. The second section of our concep-
tual model adds heterogeneity in the carbon sequestra-
tion potential of the practices being adopted. Then, we
illustrate our conceptual model of how the interaction
between the rate of adoption and carbon sequestra-
tion potential of a conservation practice affects the cost
efficiency of agricultural mitigation efforts. In the fol-
lowing section detailing our descriptive analysis, we use
these same inferences to predict the cost-effectiveness of
expenditures on agricultural GHG mitigation programs
in meeting carbon sequestration goals in a given county.
The numerical example used throughout the conceptual
model is meant to illustrate the concepts underpinning
our descriptive analysis and not generalized results.

Model of technology diffusion

Profit-maximizing producers choose whether to adopt
a conservation practice in each year, ¢ € [0, 2], based on
their heterogenous net returns to adoption, rﬁt, where i
is the producer and ¢ is the county the producer is in. The
net return to adoption represents the sum of all benefits
to using the practice, like yield improvements or reduc-
tions in risk, minus the total costs of implementation,
such as increased spending on inputs and the opportu-
nity cost of using an alternative practice. A producer
adopts the practice if the net return to adoption is posi-
tive, i, > 0. The net return to adopting the practice in
year ¢ is the sum of a time invariant component reflect-
ing the individual producer’s biophysical and operational
characteristics, rf and a time varying component, L;. The
time-varying component to producers’ returns, L;, rep-
resents factors that change over time such as prices, the
effectiveness of the practice, and the initial cost of adop-
tion. As such, the distribution of net returns for a pro-
ducer in a given county, g(rzt) will shift over time but
retain a constant shape determined by the distribution of
their producer’s time invariant characteristics, given by
S(rf) ~ N, ).

For example, consider two counties A and B with
different  time-invariant producer characteristics
f(rd) ~N(=2/3,1); f(rf) ~ N(-=2,1). In both coun-
ties, the time-varying component evolves identically,
Li—o=0;Li=1 = %; Li—y = %, such that the only dif-
ference between the counties is in the mean values of
their respective distributions. Panels (A) and (B) of Fig. 1
depict the probability density functions for net returns
at times ¢ = 0 to 2 in counties A and B, G (rf}t) and G
(rft). Panel (C) of Fig. 1 depicts the percent of producers
adopting the practice over time in counties A and B.
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In panels (A) and (B) of Fig. 1, the increase in net
returns to adoption caused by the growth of L; over
time produces the rightward shift of the G (r,',,g) curves
relative to the G(rj;—1) curves. In county A, depicted in
the panel (A) of Fig. 1, this shift causes the fraction of
the population adopting the practice, 1 — G(rft = O), to
double from a quarter to half of the producers between
times t = 0 and ¢t = 1. For county B, shown in the panel
(B) of Fig. 1, an equivalent increase in L; between times
t =0 and 1 increases adoption from roughly two per-
cent to just over nine percent of producers. Then, after
an equivalent increase in L; between times £ = 1 and 2,
adoption increases by 25 percentage points in county
A and 16 percentage points in county B. So, the rate of
change in adoption between one period and the next
serves as an indicator of the size of the population
with net returns near zero, and thus the expected mag-
nitude of adoption in the near future. Furthermore, if
we were to continue increasing L; and plot the result-
ing adoption, we would recreate the characteristic “S”
shaped adoption curve that typifies the adoption of new
agricultural technologies [31-33]. Panel (C) of Fig. 1
depicts these characteristic adoption curves for both
counties. Lastly, while we assume a normal distribution
for demonstration purposes, these dynamics will hold
so long as the distribution of net returns is unimodal
[28].

To demonstrate how the relationship between the rate
of change in adoption and the size of the population with
net returns near zero relates to additionality, consider
an administrator operating a payment-for-practice car-
bon credit program which pays producers a fixed incen-
tive, Py = $1/4, if they adopt the practice between time
t = 1 and time ¢ = 2. In addition to the cost of compen-
sating producers, the program administrator also incurs
a fixed cost, F; = $50, when establishing the program
in a county. The resulting probability density functions
are displayed in Panels (A) and (B) of Fig. 2. As depicted
in Panel (C) within Fig. 2, an additional seven percent
of county A’s producers and nine percent of county B’s
producers would enroll and adopt the practice relative
to the counterfactual scenario indicated by the dashed
curves. The program administrator, however, cannot
determine if producers would have adopted the practice
in the absence of the incentive without accurately know-
ing each producer’s individual net return to adoption. As
a result, the 25% of producers who would have adopted
the practice between times £ = 1 and 2 in the absence
of an incentive will also enroll in the program, mean-
ing the administrator pays the $0.25 incentive to 32% of
producers in county A. On average, deploying the pro-
gram in county A costs the administrator nearly $0.41
per enrollee. But, with only 7% of this adoption being
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Fig. 1 Adoption of conservation practice over time. A and B depict the probability density functions for the net returns to adoption in counties A
and B, respectively. C displays the percent of producers adopting the practice over time for counties A and B

additional, the policy maker pays roughly $1.86 per addi-
tional adoptee in county A.

In county B, shown in Panel (B) of Fig. 2, the policy
maker pays just under a quarter of producers to adopt the
practice, and there are almost twice as many non-addi-
tional adopters (16%) as additional adopters (9%). While
the payment-per-practice is identical between counties,
the average cost per enrollee is greater at $0.45 in county
B due to the smaller number of total program enrollees
and identical fixed cost. The average cost of an additional
adoptee, however, is cheaper in county B at $1.25. This
is because in the county with a lower rate of adoption
between the first and second periods, a greater portion
of the program administrator’s expenditure on incentiv-
izing adoption in the second period goes toward efficient,
additional adoption.

In summary, a lower rate of adoption suggests the
portion of non-adopting producers in an area with net
returns near zero is small and, consequently, programs

incentivizing adoption in the region are more likely to
create additional adoption. Furthermore, this statement
holds when the rate of adoption is negative. For if the
county level rate of adoption is negative, the baseline out-
come for most producers would be to not use the prac-
tice and increase net GHG emissions as a result. As such,
incentivizing adoption in areas with negative rates of
adoption will reduce net GHG emissions relative to the
counterfactual outcome where producers dis-adopt the
practice. The crucial assumption needed for comparisons
between rates of change to yield valid inferences con-
cerning additionality is that changes in the time-varying
component to producers’ returns are the same between
counties.

Model with heterogenous carbon sequestration potential

With the inverse relationship between the rate of adop-
tion and the likelihood of additionality established, we
now introduce heterogeneity in the carbon sequestration
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Fig. 2 Adoption of conservation practice over time when the payment-for-practice program is available at time t = 2. A and B depict
the probability density functions for the net returns to adoption in counties A and B, respectively, and C displays the percent of producers adopting
the practice over time for counties A and B. The dashed graphs indicate counterfactual outcomes without the program

potential of conservation practice adoption. Consider the
same scenario depicted in Fig. 2 except there are now two
versions of each county, and the producers in one version
of each county sequester more carbon on average if they
adopt the conservation practice. These four counties are
denoted as A/", AMgh, Blow and B"€", Counties A and
A’ have the same distributions of net returns as county
A in Panel (A) of Fig. 2, and counties B" and B"%" have
distributions of net returns identical to county B in Panel
(B) of Fig. 2. For simplicity, producers in counties with
low sequestration potential, A" and B/¥, sequester 1
ton of carbon if they adopt the practice, and producers
in counties with high sequestration potential, A”¢" and
B8 sequester 2 tons of carbon. The evolution of L, the
program administrator’s fixed cost of running the pro-
gram in each county, and the fixed incentive Py = $1/4
for adopting the practice between the second and third
periods remain unchanged.

Unlike the earlier program where the goal was increas-
ing adoption of the practice, the objective of the policy
maker in this case is to produce carbon credits. The
policy maker will generate one carbon credit for each
ton of carbon sequestered by a program enrollee. Note
that, because the policy maker is still unable to distin-
guish between additional and non-additional enroll-
ees, it will issue carbon sequestration credits for every
enrolled producer. For example, the policy maker would
issue 320 credits for the one unit of carbon sequestered
by each of the 320 producers in county A®" who adopt
the practice between times t =1 and 2, even though
250 of these producers would have adopted the prac-
tice and sequestered 250 tons of carbon even if the pro-
gram was unavailable. In the same way, the policy maker
produces 640, 250, and 500 credits in counties A"#",
Blow and B"€" respectively. The average costs of pro-
ducing a carbon credit (AC,.;) in the four counties, as
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calculated by the policy maker, are: AC .y (A") = $0.41;
AC e (B'") = $0.45; AC q (A7) = $0.21; AC cyeq
(Bhigh) = $0.23. There are two clear implications for the
policy maker. First, in choosing between two counties
with the same carbon sequestration potential (A"%#" vs,
Bligh; Alow s Blow) targeting the county with a higher
rate of practice adoption (A" Alo") will generate a
greater number of credits at a lower per-unit cost. Sec-
ond, deploying the policy in areas with high sequestra-
tion potential is an unambiguous improvement in cost
effectiveness:

ACared(B™) > ACorea(A"™) > ACcrea(BM) > AC e (A"
(1)

However, note that the discussion so far has focused
only on the cost-effectiveness per carbon credit and
not the cost-effectiveness per additional ton of carbon
sequestered.

Next, consider the average cost of sequestering an addi-
tional ton of carbon, AC 44, Using the $1.86 average
cost of an additional adopter for county A from earlier,
the average costs of sequestering an additional ton of
carbon in the two counties with high rates of adoption
are:  ACg45e0 (A1) = $1.86; AC 104504 (A"€") = $0.93.
In contrast, the policy maker pays $1.25 and $0.63 per
additional unit of carbon sequestered in counties B°"
and B"¢". Unlike the average cost of producing a credit,
the average cost of an additional ton of carbon seques-
tered is lower for a county with a lower rate of adoption
when comparing two counties with identical rates of
sequestration:

I
AC 44 seq (Alow) > AC 44 seq (B OW)
> ACudd soq(A"") > ACr0a(B"¥). @)

Additionally, consider a hypothetical county, B, with
the same low rate of adoption as counties B/*" and B/"&"
but having an intermediate sequestration rate of 1.5 tons
of carbon. Despite having a lower carbon sequestration
rate, the average cost per ton of additional sequestration
would be less than that of a county with greater seques-
tration, A"%":

AC 4 s0q (A" = $0.93 > AC 00(B™?) = $0.83.
®3)

So, if using the average cost of additional sequestration
as the efficiency metric, targeting areas with the highest
rates of carbon sequestration is not always optimal.

The diagram in Fig. 3 displays the adoption rate and
carbon sequestration characteristics for counties A",
Aligh, Blow and B"¢" along with the average cost per
credit calculated by the policy maker and the aver-
age cost per additional ton of carbon sequestration. To
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Fig. 3 Carbon credit quality and cost as a function of the rate
of practice adoption and carbon sequestration in the area
where the program occurs

facilitate interpretation of the maps presented in the
results section, we label each quadrant of Fig. 3 based
on these characteristics. The upper left quadrant of
Fig. 3, for example, describes county A" with its high
rate of adoption and low carbon sequestration poten-
tial. In comparison to the lower left quadrant, the lower
average cost of a credit indicates producing carbon
credits in this county will be relatively cheaper for the
policy maker.

If the policy maker sells the credits produced in each
county at their respective average costs, then every dol-
lar of carbon credits produced in county A" purchased
by an entity represents 0.54 tons of carbon sequestered.
In comparison to the credits produced in B®", where
every dollar of credits represents 0.8 tons of carbon
sequestered, the quality of the credits produced in county
Al s relatively poor. By making similar comparisons
between the remaining counties, we can see that the pro-
gram administrator’s cost of producing carbon credits is
decreasing in the northeasterly direction of Fig. 3, but the
quality of the credits produced is increasing in the south-
easterly direction. These relationships are the basis for
our categorization of counties in the maps we present in
the results section.

In Fig. 3, the clear implication of our conceptual model
is that targeting areas lying in the eastern quadrants,
regions with greater carbon sequestration potential, will
generally improve the cost-efficiency of a carbon off-
set program. Our conceptual model and the associated
numerical illustration demonstrate general principles for
voluntary carbon sequestration programs, which provide
a foundation on which the policy maker can incorporate
project-specific information when prioritizing funding.
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The choice between targeting regions with low or high
rates of adoption will of course depend on the specifics
of a potential program’s design and the policy maker’s
objectives.

Data

Adoption of conservation agriculture practices and NRCS
programs

The United States Department of Agriculture (USDA)
census of agriculture in 2012 and 2017 recorded the
number of acres where cover-cropping, no-till, and
conservation tillage practices were used in most coun-
ties within the continental United States. As we cannot
determine whether the change in acreage using no-till is
due to producers switching from conventional or conser-
vation tillage, we combine the acreage under no-till and
conservation tillage into one category representing the
use of any practice with reduced tillage. Lastly, we draw
data on total cropland acreage from the USDA National
Agricultural Statistics Service (NASS) and use the maxi-
mum value recorded for total cropland acres between the
2012 and 2017 data points. To prevent counties with little
agricultural acreage from affecting our results, we divide
this maximum cropland acres value by the total land area
of each county and exclude counties in the lowest decile
of the resulting ratio.

To provide a sense of current use of these practices,
we generate the share of cropland acres in each prac-
tice for 2012 and 2017 by dividing the number of acres
in each practice by the maximum total cropland acres
value. Additional file 1: Figures S1, S2, and S3 display the
change in this share of cropland employing cover-crop-
ping, no-till, and conservation tillage practices over this
five-year period. Additional file 1: Figure S4 displays the
change in a county’s cropland acreage using either no-till
or conservation tillage between 2012 and 2017.

Due to the role policies like EQIP may play in incentiv-
izing adoption of conservation agriculture practices, we
include county-level data on the dollars obligated by Nat-
ural Resource Conservation Service (NRCS) programs
in our analyses [34]. The original data contains all NRCS
programs and practices with obligations in the years run-
ning from 2014 through 2022. We aggregate these data in
three different ways to create annual measures of dollars
obligated. The first of these measures is the total across
all NRCS programs and practices for each year. We create
the second by summing up the obligations for practices
concerning cover crops, and the third is the sum across
all practices involving a reduction in tillage intensity. We
include all three variables because values for some pro-
gram and county combinations are missing in the original
data due to measures taken by NASS to prevent releas-
ing identifiable information. This rarely results in missing
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values for the measure summing across all programs and
practices but creates a greater number of missing values
when creating the cover-cropping and tillage specific
aggregations.

Carbon sequestration potential of practices

The COMET Planner tool contains county level esti-
mates of the net sequestration, or total change in GHG
emissions, caused by NRCS Conservation Practices [35].
Within COMET Planner, the values for a specific imple-
mentation of a NRCS Conservation Practice Standard
(CPS) are aggregations of estimates produced using the
COMET Farm tool, a field-scale platform for estimating
carbon fluxes using the DayCent process-based model
[36]. To create a single estimate for the adoption of no-
till or conservation tillage practices, we take the mean of
all county-level estimates for a change from intensive till-
age to reduced tillage (CPS 345) and a change from inten-
sive tillage to no-till or strip-till (CPS 329). The mean
expected sequestration in metric tons of carbon dioxide
equivalents per acre per year for the practices is displayed
in Additional file 1: Figure S5.

To generate the expected carbon sequestration associ-
ated with cover-cropping, we take the mean of COMET
Planner estimates for scenarios under USDA-NRCS
CPS number 340. These scenarios include the addition
of a legume seasonal cover crop with a 50% reduction
in nitrogen fertilizer or the addition of a non-legume
seasonal cover crop with a 25% reduction in nitrogen
fertilizer. The mean expected sequestration for cover-
cropping is depicted in Additional file 1: Figure S6. In
creating the average sequestration values for a reduction
in tillage or adoption of cover crops, we do not include
scenarios where multiple practices are adopted jointly.
For instance, we do not include scenarios involving the
joint adoption of no-till and cover-cropping contempo-
raneously when generating the expected carbon seques-
tration associated with tillage reduction in a county.
When combining the carbon sequestration data with
the rates of adoption to create the final maps displayed
in the results section, the carbon sequestration values are
divided into three categories by tercile.

Soil, climate, and weather characteristics

Each county’s time-invariant soil characteristics, such
as water holding capacity, are drawn from the Soil Sur-
vey Geographic Database (SSURGO) [37]. To ensure the
values for each soil characteristic reflect cropland soils,
we first filter out areas which were not identified as culti-
vated cropland using the Cultivated Layer data from the
2013 and 2017 Cropland Data Layers [38]. We then over-
lay these maps of cultivated cropland with a grid of one
square mile cells, remove any cells that are less than 50%
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cultivated cropland in both layers, and use the soil map
unit keys from the remaining cells to retrieve the respec-
tive soil characteristics. As the Cultivated Layer identi-
fies areas which were cultivated in at least two of the five
years preceding the specified year, this process ensures
the SSURGO data are drawn from cropland areas culti-
vated for at least two of the five years before each of the
USDA censuses in 2012 and 2017.

For the climate and weather variables, we focus on
the two main determinants of carbon sequestration
described above: temperature and precipitation. Daily
data on counties’ rainfall, maximum temperature, and
minimum temperature were drawn from the Parameter-
elevation Regressions on Independent Slopes Model
repository maintained by Oregon State University [39].
For precipitation, we aggregate the daily rainfall data
into pre-season, growing—season, and post-season totals
based on whether the rainfall event occurred between the
beginning of January and end of February, between the
beginning of March and the end of August, or after Sep-
tember 1st respectively.

To aggregate the temperature data, we first create expo-
sure variables as in Schlenker and Roberts (2009). Spe-
cifically, the first exposure variable counts all days with
temperatures below 0 degrees Celsius. The second, third,
and fourth bins represent the days spent in each of the
three 10-degree intervals between zero and 30 degrees
Celsius. Finally, the last temperature exposure variable
represents extreme heat days and contains the days of
exposure to temperatures above 30 degrees Celsius. As
with the precipitation data, we create total temperature
exposure variables representing the days spent in each
respective bin during the pre-season, growing-season,
and post-season months described above.

The climate characteristics used in our predictions are
the average of the temperature and precipitation varia-
bles across the 20 years before each NASS datapoint. The
weather characteristics, in contrast, are the average devi-
ation from these 20-year averages, or normals, during
the five-year periods between 2012 and 2017 or 2017 and
2022. We calculate the deviation in each year by subtract-
ing the annual data from the respective 20 year normal.

Methods

Predicting the rate of practice adoption between 2017

and 2022

As described in the previous section, the Census of Agri-
culture provides data on the historical rate of practice
adoption. However, our objective is to parameterize the
future rate of practice adoption because it predicts the
additionality of programs encouraging conservation agri-
culture practices. We use a random forest model trained
on historical data from 2012 and 2017 to predict the
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change in reduced tillage and cover cropping adoption
from 2017 to 2022. Random forests are a type of machine
learning algorithm that averages the output from mul-
tiple decision trees. A random forest model is superior
to a logistic or linear regression for prediction because
they provide improved predictive accuracy, accommo-
date highly non-linear relationships between predictors,
do not rely on parametric assumptions, and incorpo-
rate assessment of out-of-sample prediction error [41,
42]. We use the generalized random forest algorithm by
Athey et al. (2019) to generate predictions for the rate of
change in each practice’s use. Like the original random
forest by Breiman (2001), the generalized random forest
algorithm involves subsampling the dataset, recursively
partitioning the sample into training and test sets, and
randomly selecting variables to split the sample. To miti-
gate bias in predictions, the generalized random forest
algorithm from Athey et al. (2019) trains ‘honest’ forests
such that separate subsamples are used to determine the
optimal splits for each tree and make predictions [45].

To construct the training dataset, we merge the soil,
weather, and growing region variables with the observed
adoption behavior in 2012 and 2017 from the USDA
Census of Agriculture. The objective of the training exer-
cise is to minimize the squared prediction error when
modeling the following relationship:

ln(ylt> :f<yl't_r ,ln(yi,t_f),Xi,t>; T =5,
Vit—t cropland,;

(4)
where y;; is acres using a conservation practice in county
i for year ¢, cropland, is the log transformed maximum of
the 2012 and 2017 cropland acres for county i, and Xj;
contains the growing condition variables. Within X;; are
the temperature and precipitation normals, the average
deviation from the normals over the five years preceding
t, USDA-ERS farm resource region indicator variables,
the measures of dollar obligations for NRCS programs,
and time-invariant soil characteristics.

The interval between time points, t =5, in Eq. 4
reflects the gap between USDA Census datapoints. We
take the mean deviation from the precipitation and tem-
perature normals across these five years because we do
not know the year when adoption of a practice occurred.
So, as we only know if adoption occurred within the five-
year period, we allow weather conditions in any of the
intervening years to affect adoption equally. Similarly, we
use the mean values for the annual NRCS program obli-
gation measures from 2014 through 2017 when fitting the
random forest using the observed practice adoption data
and use NRCS program obligation measures from 2017
to 2022 when predicting the rate of adoption between
2017 and 2022. In addition, to account for differences in
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Table 1 Parameter values for the random forests predicting
the change in acres using tillage reduction and cover-cropping
practices

Parameter values

Sample. mtry min. Alpha Imbalance.
fraction node. penalty
size
Tillage reduc- 0.38 10 3 0.08 0.72
tion
Cover cropping 045 7 7 014 036
Table 2 Tests of the random forests predictive accuracy

using the held-out, or out-of-bag, data from the sub-sampling
procedure in each iteration

Estimate Std. Error t-value Pr(>t)

Tillage reduction

Mean forest prediction 1.01 0.06 1591 <0.001
Differential forest predic- ~ 1.17 0.09 13.15 <0.001
tion

Cover-cropping
Mean forest prediction 1.01 0.04 2537 <0.001
Differential forest predic- ~ 1.13 0.04 2644 <0.001
tion

county size, we divide the NRCS obligation measures for
each county by the county’s cropland acres.

To generate the random forest, we use the grf package
by Tibshirani et al. (2023) which implements the algo-
rithm defined by Athey et al. (2019). We grow the ran-
dom forest to have 2000 trees and allow the grf package
to select the optimal parameter values for the sample.
fraction, mtry, min.node.size, alpha, and imbalance.pen-
alty parameters. We set the honesty.fraction parameter
so 80% of each sample is used to determine the optimal
splits in trees and the other 20% is then used to generate
predictions. Due to the large number of predictors, we
train an initial forest on all the variables, and then train
our final forest using only the variables most frequently
used to make splits [47]. This iterative forest procedure
can improve the predictive performance of random for-
ests when there is a low signal to noise ratio in the data
[48]. The optimized parameter values for the random for-
ests produced using this iterative procedure are listed in
Table 1.

To evaluate the quality of our random forests, we
report two measures of fit in Table 2 that are generated
by the grf package during the training exercise using the
2012 and 2017 data. The first measure indicates if the
mean forest prediction is correct, while the second meas-
ures the degree to which the random forest accurately
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reproduces heterogeneity. For both tests, a value of 1
indicates the well forest is well calibrated. To determine
whether the random forest performs poorly in particu-
lar regions, we display the variance estimates for our
predictions in Additional file 1: Figures S7 and S8. The
asymptotic theory informing the variance estimates is
presented by [49] in their analysis of regression forests as
U-statistics.

After training the random forest using the county-level
data on use of tillage reduction and cover-cropping prac-
tices from 2012 and 2017, the rate of change between
2017 and 2022 is then predicted using the same set of
predictor variables. The resulting county-level rates of
change in practice use, expressed as the natural log of the
ratio between acres using the practice in 2022 and 2017,
are displayed in Additional file 1: Figures S9 and S10 for
tillage reduction and cover-cropping practices respec-
tively. To clarify the relationships driving these predic-
tions, Additional file 1: Figures S11 and S12 display the
relative importance for the variables selected in the itera-
tive forest procedure. The most important predictor of
the rate of change in both tillage reduction and cover-
cropping practice use is the lagged adoption rate.

The results, displayed and discussed in the next section,
are presented as two-way choropleths. To produce the
choropleths, we divide the predicted rates of change from
the random forest into three intervals and match them
by county to the terciles of carbon sequestration rates
contained in COMET Planner. For the predicted rates
of change in practice use, the first interval contains all
counties with negative predicted rates of change, and the
second and third intervals contain counties with rates of
change below and above the median positive value. Addi-
tional file 1: Figures S13 and S14 display the intervals for
the predicted rates of change in practice use and terciles
for sequestration rates associated with tillage reduction
practices as an example. In our conceptual model, we
used two categories of sequestration and adoption rates
to illustrate general principles in a simplified context.
For our results, we use three intervals to provide a richer
depiction of the heterogeneity between counties. In prac-
tice, policy makers and program administrators could
divide sequestration and adoption rates into a greater
number of intervals or use the raw values to prioritize
regions more precisely.

Results

We focus our analysis on four categories of counties
defined by their predicted rates of adoption and carbon
sequestration potential. Using these categories, we ana-
lyze the cost efficiency of expenditures on voluntary agri-
cultural GHG mitigation programs at the county level
across the continental United States. Counties in the first
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category have negative predicted rates of adoption and
net sequestration values in the lowest tercile. The nega-
tive rates of adoption suggest producers in this first cat-
egory of counties will require large incentives to adopt,
and the low net sequestration values indicate the benefit
of their adoption will be minimal. The second category
is defined by high predicted rates of adoption but low
carbon sequestration. While producers in these coun-
ties may require a smaller incentive to adopt conserva-
tion tillage, they are also more likely to be non-additional.
Counties in the third category comprise the opposite case
with negative predicted rates of adoption and high car-
bon sequestration potential. Producers in this third group
of counties may be less likely to adopt, but adoption will
lead to larger per adopter reductions in carbon emis-
sions on average. When deciding how to allocate funds
between counties in the second and third categories,
policy makers will need to consider these trade-offs given
the lack of information on precisely how many adopters
will be non-additional to accurately estimate the benefit—
cost ratio. Alternatively, policy makers could evaluate the
cost of using a more complex program design to address
additionality. The final category of counties is charac-
terized by high predicted rates of adoption and carbon
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sequestration, which offer a cost-effective combination of
both high adoption and high sequestration.

No-till, conservation tillage, or reduced tillage practices

In Fig. 4, we display the predicted rate of change in use
of reduced tillage practices between 2017 and 2022
along with the rate of greenhouse gas sequestration at
the county-level as a bivariate choropleth. Darker blue
counties have greater rates of predicted adoption, indi-
cated by moving upward in the legend. Darker red coun-
ties sequester more carbon from adopting the practice,
indicated by moving rightward in the legend. Counties in
white are missing data on conservation agriculture prac-
tice adoption for 2017.

First consider the counties in light purple, those in the
first category with negative rates of adoption and net
sequestration values in the lowest tercile. These coun-
ties are predominantly located east of the Appalachian
Mountains within the Atlantic Plains stretching from
Delaware to Florida. Using the relationships from our
conceptual model, we classify agricultural GHG mitiga-
tion programs in these areas as inefficient. The negative
rate of adoption suggests it will take a large incentive for
producers to change their practices, and the marginal
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Fig. 4 Two-way choropleth depicting the predicted rates of adoption for tillage reduction practices with the net sequestration due to their use.
Net sequestration values are divided into terciles and expressed in metric tons of carbon dioxide equivalents per acre per year. Rates of adoption are
expressed as the natural log of the ratio of acres using the practice predicted for 2022 to the acreage recorded for 2017. Counties with missing data

are in white
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increase in carbon sequestration for each producer who
does make the change is quite small.

Many of the semi-arid and arid states in the west con-
tain counties with low sequestration rates but high rates
of adoption for tillage reduction practices, indicated by
the bright blue color in the top left of Fig. 4’s legend. In
addition, there are also pockets of such counties in the
Great Lakes region, Texas, and Florida. While encour-
aging adoption in these areas is relatively cheap due to
the high predicted rate of adoption, the cost-efficiency
of agricultural mitigation efforts will be inhibited due to
the combination of low expected sequestration rates and
high likelihood of non-additional adoption.

Counties in bright red in Fig. 4, with negative predicted
rates of adoption but expected sequestration in the high-
est tercile, are concentrated in two areas: sub-basins of
the Mississippi River system and the Chesapeake Bay
watershed. Given the negative rates of adoption, pro-
ducers will likely require a large incentive to adopt or
continue using practices with reduced tillage intensity.
However, the producers who are incentivized to reduce
their tillage intensity are likely to be additional. So, while
encouraging adoption may be somewhat expensive,
the expenditures are likely to induce additional adop-
tion behavior or avoid emissions by prolonging the use
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of practices by producers who would have dis-adopted
them otherwise.

The final category of counties we focus on, those in
dark purple in Fig. 4, have a high predicted rate of adop-
tion and high expected carbon sequestration for till-
age reduction practices. These counties are scattered
throughout the Mississippi river basin, the Chesapeake
Bay watershed, and the northern portions of Maine and
New York. Due to their high adoption rate, incentivizing
producers to adopt tillage reduction practices would be
inexpensive. While this high rate of adoption suggests a
reduced likelihood of additionality, the high expected
carbon sequestration associated with adoption in these
regions serves to counterbalance the inefficiency intro-
duced by non-additional adopters. Taken together, oper-
ating a program designed to reduce net GHG emissions
through agricultural land management in these areas is
likely to be a cost-efficient endeavor.

Cover-cropping

Figure 5 depicts the predicted rate for cover-crop
adoption between 2017 and 2022 with the associated
rate of greenhouse gas sequestration using the same
relationships and categorizations outlined above for
Fig. 4. Given the additional water demand cover-crops
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Fig. 5 Two-way choropleth depicting predicted rates of adoption for cover-cropping with the expected sequestration due its use. Net
sequestration values emissions are divided into terciles and expressed in metric tons of carbon dioxide equivalents per acre per year. Rates
of adoption are expressed as the natural log of the ratio of acres using the practice predicted for 2022 to the acreage recorded for 2017. Counties

with missing data are in white
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represent, the greater occurrence of counties with
negative predicted rates of adoption and sequestra-
tion in the arid and semi-arid regions of the western
United States is not surprising. If rainfall and access to
irrigation are insufficient to support cover-cropping,
producers will require larger incentives to incorporate
cover-cropping into their land management. In general,
as is the case for tillage reduction practices, voluntary
agricultural mitigation programs focused on cover-
cropping would be expensive efforts producing little in
the way of sequestered carbon or avoided emissions in
many western states.

The greatest concentration of counties with high pre-
dicted rates of change and low expected sequestration
for cover-cropping is in the northern Midwest and spans
parts of Minnesota, North Dakota, and South Dakota.
There are also counties scattered throughout the west-
ern United States and around the Great Lakes that share
these characteristics as well. Due to the low expected
sequestration and high predicted rate of change in cover-
cropping, programs in these regions are less likely to be
cost-effective. Adoption is more likely to be non-addi-
tional, and the marginal change in net GHG emissions
for any adoption which is additional will be small in
magnitude.

Next, we focus on the counties in our third category in
Fig. 5, those with high expected rates of carbon seques-
tration, or avoided emissions, and negative rates of
change for cover-cropping practices. Most of the counties
with high expected rates of sequestration and negative
predicted rates of change in cover-cropping use, in bright
red in Fig. 5, are located near confluences of the Missis-
sippi River and its five major tributaries. The exceptions
to this statement are the cluster of counties in the south-
ern portion of the Ohio River basin and the group of
counties in south-eastern, coastal Texas. If programs are
especially concerned with minimizing non-additionality,
these regions will be the natural areas to target provided
the program administrators are willing to pay the steep
incentives necessary to encourage cover-cropping.

Similar to the previous category, counties in the final
category with high predicted rates of adoption and high
rates of carbon sequestration for cover-cropping are con-
centrated along the main stem of the Mississippi River
or its major tributaries. The increase in expected seques-
tration or avoided emissions in riparian areas is due to
cover-crops reducing soil erosion and nutrient pollution
[35]. Again, as was the case for tillage reduction prac-
tices, these regions are likely to be the most cost-effective
regions to target. While adoption may be non-additional,
the risk of non-additionality is offset by the small incen-
tives required to change behavior and the large reduc-
tions in net GHG emissions.
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Discussion

The results of this study demonstrate how publicly
available data on county level adoption of conservation
practices can be combined with expected sequestra-
tion rates to target expenditures on agricultural GHG
mitigation programs. Policy makers and private compa-
nies implementing such programs can use these results
and the general approach to prioritize regions without
having to acquire data on individual producers. One
immediately apparent similarity between the results
for tillage reduction practices in Fig. 4 and the results
for cover-cropping depicted in Fig. 5 is the prevalence
of counties with negative predicted rates of adoption
and low expected carbon sequestration in the arid and
semi-arid regions of the western United States. Given
the high cost of encouraging adoption and little return
in terms of carbon sequestration, we expect agricultural
GHG mitigation programs will not be cost-efficient in
these areas. Use of either of these practices may be ben-
eficial for other economic or environmental reasons in
these regions, but operating a program with the sole
objective of mitigating or sequestering GHG emissions
is likely to be an unproductive and costly endeavor.

Note, many of the counties with high expected
sequestration values and negative predicted rates of
adoption for cover-cropping, in bright red in Fig. 5,
also have high rates of sequestration and intermediate
or high rates of adoption in tillage reduction practices,
in maroon and dark purple in Fig. 4. If a program were
to incentivize using practices jointly in such counties,
it is possible the net return of adopting both practices
could become positive despite the high cost of cover-
cropping practices. Even though the incentive required
might be larger than what is necessary to incentivize
tillage reduction in isolation, the cumulative return in
carbon sequestration could offset this additional cost
given the high sequestration values for both practices
in the region.

For both practices, counties with high predicted rates
of adoption and high expected carbon sequestration val-
ues are concentrated in the Mississippi River Basin, espe-
cially in areas near confluences of the Mississippi Rivers
and its major tributaries. The higher rate of change sug-
gests producers would require small incentives to adopt
the practices, and the greater sequestration increases
the marginal benefit from such expenditures. For till-
age reductions, the greatest concentrations of counties
with these characteristics lie within the Chesapeake Bay
watershed or the Upper Mississippi and Lower Missouri
sub-basins of the Mississippi River. For cover-cropping,
counties with high rates of adoption and net sequestra-
tion values are more densely concentrated near the main
stem of the Mississippi River by comparison.
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An ongoing debate is whether to compensate produc-
ers by using payment-for-practice (such as in EQIP)
or payment-for-sequestration based on the predicted
amount of sequestration (such as in the voluntary carbon
market). Our results provide insights on where farmers
would be more likely to prefer one type of payment. In
general, we anticipate that producers in regions with low
net sequestration values will prefer payment-for-practice
programs, and producers in areas with greater sequestra-
tion will prefer payment-for-sequestration programs. But
the incentives will need to be larger to encourage adop-
tion in a payment-for-sequestration program due to the
transaction costs involved in estimating sequestration, so
the preference for payment-for-sequestration will likely
be strongest in the areas we identify as having greater
sequestration and high rates of adoption.

Conclusion

Due to the lack of site-specific estimates on carbon
sequestration and producers’ costs of adopting conserva-
tion practices, using benefit-cost ratios to target expen-
ditures on agricultural GHG mitigation programs is
often infeasible. In this paper, we present an alternative
approach that can improve targeting utilizing aggregate
data that is publicly available. Using a conceptual model
of technology adoption, we demonstrated how the pace
of adoption in a region serves as a proxy for the risk of
non-additional expenditures and the cost of adoption.
To anticipate the risk of inefficient expenditures facing
U.S. agricultural conservation programs, we predicted
county-level rates of adoption for two of the primary
changes to agricultural land management currently
incentivized by public and private programs: cover-
cropping and reductions in tillage. After combining the
predicted rates of adoption for cover-cropping and till-
age reduction practices with the net change in GHG
emissions expected due to their use, we illustrated how
the interaction between these two factors will determine
the cost-efficiency of voluntary programs intending to
mitigate GHG emissions through agricultural land use
changes across the U.S.

In regions with high expected sequestration and a
greater rate of adoption for conservation practices, pro-
ducers are more likely to accept a small incentive to
adopt a practice and sequester a greater quantity of car-
bon. However, the greater rate of adoption also suggests
an increased risk of incentives going to non-additional
adopters, producers who would have used the practice
without the incentive. As such, we cannot conclusively
state that voluntary agricultural GHG mitigation pro-
grams located in counties with high predicted rates of
change in practice use and large sequestration will always
be comparatively more efficient based on our analysis.
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Instead, our analysis highlights the challenges to cost-
efficiency involved with operating a voluntary agricul-
tural GHG mitigation program in three other conditions.

When the rate of adoption is negative and GHG mitiga-
tion benefits are small in magnitude, as is the case for till-
age reductions in the Atlantic Plains, producers will likely
require large incentives to use the practice which result
in minimal mitigation benefits. The expenditures needed
to encourage adoption may be smaller in areas where the
rate of adoption is high and the change in net GHG emis-
sions is similarly small, but the small marginal benefit to
net GHG emissions and greater risk of non-additional
adoption will detract from any savings on incentives.
Last, for areas with negative rates of adoption and high
net GHG emissions reductions, the primary obstacle to
cost-efficiency will be the large incentives necessary to
make using practices profitable for producers.

One limitation of this work is our reliance on two
datapoints from 2012 and 2017 for predicting the rate
of change in the acres using cover cropping and tillage
reduction practices between 2017 and 2022. As addi-
tional time series data on the use of cover-cropping and
tillage practices become available, we expect future work
will be able to predict adoption trends with greater accu-
racy and at a finer resolution. Further research would
help to understand how more detailed information, such
as the types of producers who adopt conservation prac-
tices or the likelihood of adoption persisting across years,
could be used to refine our approach and test the under-
lying assumptions. It would be especially valuable to
compare the cost of using the approach described in this
work against alternative approaches to inferring produc-
ers’ willingness to accept with greater transaction costs,
such as a reverse auction. Finally, predicting changes in
sequestration at fine spatial scales remains an ongoing
field of research. Incorporating updated estimates as they
emerge and addressing the magnitude of their accom-
panying uncertainties will improve the utility of similar
efforts going forward.
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Additional file 1. Description of fle—Figure S1. Change in share of
cropland acreage employing cover-cropping between 2012 and 2017.
Counties with missing data in either 2012 or 2017 are depicted in dark
grey. Figure S2. Change in share of cropland acreage using no-till
between 2012 and 2017. Counties with missing data in either 2012 or
2017 are depicted in dark grey. Figure S3. Change in share of cropland
acreage using conservation tillage between 2012 and 2017. Figure S4.
Change in share of cropland acreage using either no-till or conservation
tillage between 2012 and 2017. Figure S5. Average carbon sequestra-
tion for COMET Planner scenarios involving a reduction in tillage intensity
(CPS numbers 329 and 345). Figure S.6. Average carbon sequestration
for COMET Planner scenarios involving cover-cropping (CPS number 340).
Figure S7. Variance estimates for random forest predictions of the change
in acreage using tillage reduction practices between 2017 and 2022.
Figure S8. Variance estimates for random forest predictions of the change
in acreage cover cropping between 2017 and 2022. Figure S9. Predicted
rate of change in acres using tillage reduction practices between 2017
and 2022. Figure S10. Predicted rate of change in acres using cover crop-
ping practices between 2017 and 2022. Figure S11. Variable importance
plot for the random forest predicting the county-level rate of change in
acreage using a reduced tillage practice. Figure S12. Variable importance
plot for the random forest predicting the county-level rate of change in
acreage using cover crops. Figure S13. Average carbon sequestration
due to tillage reduction practices by tercile. Values are the average of CPS
329 and 345 practices from COMET Planner. Figure S14. Predicted rate

of adoption between 2017 and 2022 for tillage reduction practices by
category. Rates are divided into those below zero, between 0 and median
positive predicted rate, and values above the median positive predicted
rate.
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