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Abstract 

Background Two major factors that determine the efficiency of programs designed to mitigate greenhouse gases 

by encouraging voluntary changes in U.S. agricultural land management are the effect of land use changes on pro-

ducers’ profitability and the net sequestration those changes create. In this work, we investigate how the interac-

tion of these factors produces spatial heterogeneity in the cost-efficiency of voluntary programs incentivizing 

tillage reduction and cover-cropping practices. We map county-level predicted rates of adoption for each prac-

tice with the greenhouse gas mitigation or carbon sequestration benefits expected from their use. Then, we use 

these bivariate maps to describe how the cost efficiency of agricultural mitigation efforts is likely to vary spatially 

in the United States.

Results Our results suggest the combination of high adoption rates and large reductions in net emissions make 

reduced tillage programs most cost efficient in the Chesapeake Bay watershed or the Upper Mississippi and Lower 

Missouri sub-basins of the Mississippi River. For programs aiming to reduce net emissions by incentivizing cover-

cropping, we expect cost-efficiency to be greatest in the areas near the main stem of the Mississippi River within its 

Middle and Lower sections.

Conclusions Many voluntary agricultural conservation programs offer the same incentives across the United States. 

Yet spatial variation in profitability and efficacy of conservation practices suggest that these uniform approaches are 

not cost-effective. Spatial targeting of voluntary agricultural conservation programs has the potential to increase 

the cost-efficiency of these programs due to regional heterogeneity in the profitability and greenhouse gas mitiga-

tion benefits of agricultural land management practices across the continental United States. We illustrate how pre-

dicted rates of adoption and greenhouse gas sequestration might be used to target regions where efforts to incentiv-

ize cover-cropping and reductions in tillage are most likely to be cost -effective.
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Background

In recent years, the United States has experienced an 

explosion of interest in voluntary programs designed to 

reduce net greenhouse gas (GHG) emissions by incen-

tivizing changes in agricultural practices. For example, 

the Inflation Reduction Act specifies that the $8.45 bil-

lion appropriated for the  USDA Environmental Quality 

Incentives Program (EQIP) will focus on incentivizing 

adoption of conservation agriculture practices which 
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increase sequestration or reduce emissions of GHGs [1]. 

In the private sector, several companies now contract 

with agricultural producers to generate carbon cred-

its based on the net change in GHG emissions resulting 

from their land use decisions [2]. Whether public or pri-

vate, these programs are Payment for Ecosystem Services 

(PES) programs at their core, and past research on PES 

programs suggests spatial targeting can greatly improve 

the cost-efficiency of such programs [3, 4]. For agricul-

tural mitigation programs, cost effective targeting would 

prioritize areas where the ratio of a practice’s mitiga-

tion benefit to its adoption cost, the benefit–cost ratio, 

is greatest [5]. However, the site-specific data on land 

management and producers’ adoption costs necessary for 

benefit–cost targeting are rarely available to policy mak-

ers or program administrators.

�e benefits of conservation agriculture practices being 

adopted in a given location are determined by three main 

drivers of the net change in GHG emissions: climate, 

soil characteristics, and the current stock of carbon [6]. 

Of the three, climate is the dominant driver as it deter-

mines growing season length, temperature, and precipi-

tation patterns [7, 8]. Sequestration tends to be greater 

in temperate regions with abundant precipitation as 

higher temperatures can reduce biomass production and 

increase the rate of carbon decomposition [9, 10]. Silt 

and clay content are the most influential soil character-

istics determining GHG sequestration because soil and 

clay can prevent carbon from decomposing by fixing it 

into mineral-associated forms [11–13]. �e final factor, 

the present stock of soil carbon, results from the interac-

tion between climate, soil, and the history of land man-

agement in an area [14–16]. As such, determining the 

present stock of soil carbon requires largely unavailable 

records of farming practices like the frequency and tim-

ing of nutrient applications and tillage [17–19]. Produc-

ers have an incentive to keep such records private as they 

provide detailed insights into their business decisions 

within a competitive environment.

Producers have similar incentives to keep the cost of 

adopting a conservation practice private. If it were avail-

able, programs could use this information to pay partici-

pants according to their willingness to accept instead of 

the value of the benefits generated by their participation. 

In our context for example, a producer may be willing to 

adopt a land management practice that reduces net GHG 

emissions for a small incentive because of its beneficial 

impacts on productivity. While empirical estimates of the 

cost of adopting agricultural practices that mitigate GHG 

emissions are available, the results are often specific to the 

region or sub-samples used in the analysis and may not 

reflect actual costs to a farm operation [20–23]. Under-

standing the private costs of adoption can also address the 

issue of additionality, or the degree to which net reductions 

in GHG emissions would not have occurred in the absence 

of the program. Excluding producers who would make the 

desired land use changes without an incentive, the non-

additional adopters, can greatly reduce unnecessary expen-

ditures. For example, a study of the impact of cost-share 

programs on Iowa producers’ adoption of cover-cropping 

found 54% of the incentivized cover-crop adoption was 

additional [24]. A study of producers in Ohio found only a 

quarter of producers who were paid to adopt conservation 

tillage were additional due to the practice’s relatively high 

short run profitability [25], and the estimated rate of addi-

tionality at the national scale was 47% [26].

�e objective of this work was to demonstrate how tar-

geting voluntary agricultural GHG mitigation programs 

using aggregate data can make an improvement in cost-

efficiency despite the information asymmetry which 

exists between producers and the policy maker. We begin 

by presenting a conceptual model of technology diffusion 

and describe how the relationships we identify between 

the pace of adoption and additionality inform our empiri-

cal approach. �en, after describing the datasets in our 

analyses, we turn our attention to the method we use to 

forecast adoption of cover-cropping and tillage practices. 

In brief, we use a machine learning approach to predict 

the present rate of adoption and use these predicted rates 

of adoption to proxy for the expected net return to prac-

tice adoption. After combining these predictions with 

county-level estimates of the net GHG emissions changes 

associated with each practice, we generate bivariate maps 

comparing the predicted rates of adoption with expected 

rates of carbon sequestration.

A related paper by Sperow [27] estimates county-spe-

cific carbon prices by assuming county-level EQIP pay-

ments equal the cost of adopting various tillage practices. 

We build on this approach by instead relying on variation 

in the adoption rate as an indicator of the net return to 

adoption, the benefits of adoption minus the costs. �is 

has the benefit of addressing within-county variability in 

the profitability of adoption and the accompanying issue 

of additionality. As such, our approach relying on the rate 

of adoption contributes to our understanding of volun-

tary agricultural mitigation programs by highlighting the 

role of additionality in determining cost-efficiency.

Conceptual model and methodology

Our conceptual model is presented in two sections. �e 

first section illustrates how the decisions of agents to 

adopt conservation agricultural practices generate the 

county-level adoption outcomes we employ. We dem-

onstrate how the county-level rate of adoption relates 

to producers’ net returns to adoption, and consequently 

the likelihood of incentivized adoption being additional. 
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Our conceptual model is inspired by the threshold model 

of technology diffusion described in [28], the model 

of voluntary opt-in presented in [29], and the model of 

additionality in [30]. �e second section of our concep-

tual model adds heterogeneity in the carbon sequestra-

tion potential of the practices being adopted. �en, we 

illustrate our conceptual model of how the interaction 

between the rate of adoption and carbon sequestra-

tion potential of a conservation practice affects the cost 

efficiency of agricultural mitigation efforts. In the fol-

lowing section detailing our descriptive analysis, we use 

these same inferences to predict the cost-effectiveness of 

expenditures on agricultural GHG mitigation programs 

in meeting carbon sequestration goals in a given county. 

�e numerical example used throughout the conceptual 

model is meant to illustrate the concepts underpinning 

our descriptive analysis and not generalized results.

Model of technology di�usion

Profit-maximizing producers choose whether to adopt 

a conservation practice in each year, t ∈ [0, 2] , based on 

their heterogenous net returns to adoption, rc
i,t

 , where i 

is the producer and c is the county the producer is in. �e 

net return to adoption represents the sum of all benefits 

to using the practice, like yield improvements or reduc-

tions in risk, minus the total costs of implementation, 

such as increased spending on inputs and the opportu-

nity cost of using an alternative practice. A producer 

adopts the practice if the net return to adoption is posi-

tive, rc
i,t

> 0 . �e net return to adopting the practice in 

year t is the sum of a time invariant component reflect-

ing the individual producer’s biophysical and operational 

characteristics, rc
i
 and a time varying component, Lt . �e 

time-varying component to producers’ returns, Lt , rep-

resents factors that change over time such as prices, the 

effectiveness of the practice, and the initial cost of adop-

tion. As such, the distribution of net returns for a pro-

ducer in a given county, g
(

rci,t
)

 will shift over time but 

retain a constant shape determined by the distribution of 

their producer’s time invariant characteristics, given by 

f
(

rci
)

∼ N (µ, 1).

For example, consider two counties A and B with 

different time-invariant producer characteristics 

f
(

rAi
)

∼ N (−2/3, 1); f
(

rBi
)

∼ N (−2, 1) . In both coun-

ties, the time-varying component evolves identically, 

Lt=0 = 0; Lt=1 =
2

3
; Lt=2 =

4

3
 , such that the only dif-

ference between the counties is in the mean values of 

their respective distributions. Panels (A) and (B) of Fig. 1 

depict the probability density functions for net returns 

at times t = 0 to 2 in counties A and B, G 
(

r
A
i,t

)

 and G 
(

r
B

i,t

)

 . Panel (C) of Fig. 1 depicts the percent of producers 

adopting the practice over time in counties A and B.

In panels (A) and (B) of Fig.  1, the increase in net 

returns to adoption caused by the growth of Lt over 

time produces the rightward shift of the G
(

ri,t

)

 curves 

relative to the G
(

ri,t−1

)

 curves. In county A, depicted in 

the panel (A) of Fig. 1, this shift causes the fraction of 

the population adopting the practice, 1 − G
(

r
A
i,t

= 0
)

 , to 

double from a quarter to half of the producers between 

times t = 0 and t = 1 . For county B, shown in the panel 

(B) of Fig. 1, an equivalent increase in Lt between times 

t = 0 and 1 increases adoption from roughly two per-

cent to just over nine percent of producers. �en, after 

an equivalent increase in Lt between times t = 1 and 2, 

adoption increases by 25 percentage points in county 

A and 16 percentage points in county B. So, the rate of 

change in adoption between one period and the next 

serves as an indicator of the size of the population 

with net returns near zero, and thus the expected mag-

nitude of adoption in the near future. Furthermore, if 

we were to continue increasing Lt and plot the result-

ing adoption, we would recreate the characteristic “S” 

shaped adoption curve that typifies the adoption of new 

agricultural technologies [31–33]. Panel (C) of Fig.  1 

depicts these characteristic adoption curves for both 

counties. Lastly, while we assume a normal distribution 

for demonstration purposes, these dynamics will hold 

so long as the distribution of net returns is unimodal 

[28].

To demonstrate how the relationship between the rate 

of change in adoption and the size of the population with 

net returns near zero relates to additionality, consider 

an administrator operating a payment-for-practice car-

bon credit program which pays producers a fixed incen-

tive, P2 = $1/4 , if they adopt the practice between time 

t = 1 and time t = 2 . In addition to the cost of compen-

sating producers, the program administrator also incurs 

a fixed cost, Fc = $50 , when establishing the program 

in a county. �e resulting probability density functions 

are displayed in Panels (A) and (B) of Fig. 2. As depicted 

in Panel (C) within Fig.  2, an additional seven percent 

of county A’s producers and nine percent of county B’s 

producers would enroll and adopt the practice relative 

to the counterfactual scenario indicated by the dashed 

curves. �e program administrator, however, cannot 

determine if producers would have adopted the practice 

in the absence of the incentive without accurately know-

ing each producer’s individual net return to adoption. As 

a result, the 25% of producers who would have adopted 

the practice between times t = 1 and 2 in the absence 

of an incentive will also enroll in the program, mean-

ing the administrator pays the $0.25 incentive to 32% of 

producers in county A. On average, deploying the pro-

gram in county A costs the administrator nearly $0.41 

per enrollee. But, with only 7% of this adoption being 
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additional, the policy maker pays roughly $1.86 per addi-

tional adoptee in county A.

In county B, shown in Panel (B) of Fig.  2, the policy 

maker pays just under a quarter of producers to adopt the 

practice, and there are almost twice as many non-addi-

tional adopters (16%) as additional adopters (9%). While 

the payment-per-practice is identical between counties, 

the average cost per enrollee is greater at $0.45 in county 

B due to the smaller number of total program enrollees 

and identical fixed cost. �e average cost of an additional 

adoptee, however, is cheaper in county B at $1.25. �is 

is because in the county with a lower rate of adoption 

between the first and second periods, a greater portion 

of the program administrator’s expenditure on incentiv-

izing adoption in the second period goes toward efficient, 

additional adoption.

In summary, a lower rate of adoption suggests the 

portion of non-adopting producers in an area with net 

returns near zero is small and, consequently, programs 

incentivizing adoption in the region are more likely to 

create additional adoption. Furthermore, this statement 

holds when the rate of adoption is negative. For if the 

county level rate of adoption is negative, the baseline out-

come for most producers would be to not use the prac-

tice and increase net GHG emissions as a result. As such, 

incentivizing adoption in areas with negative rates of 

adoption will reduce net GHG emissions relative to the 

counterfactual outcome where producers dis-adopt the 

practice. �e crucial assumption needed for comparisons 

between rates of change to yield valid inferences con-

cerning additionality is that changes in the time-varying 

component to producers’ returns are the same between 

counties.

Model with heterogenous carbon sequestration potential

With the inverse relationship between the rate of adop-

tion and the likelihood of additionality established, we 

now introduce heterogeneity in the carbon sequestration 

Fig. 1 Adoption of conservation practice over time. A and B depict the probability density functions for the net returns to adoption in counties A 

and B, respectively. C displays the percent of producers adopting the practice over time for counties A and B 
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potential of conservation practice adoption. Consider the 

same scenario depicted in Fig. 2 except there are now two 

versions of each county, and the producers in one version 

of each county sequester more carbon on average if they 

adopt the conservation practice. �ese four counties are 

denoted as Alow , Ahigh , Blow and Bhigh . Counties Alow and 

Ahigh have the same distributions of net returns as county 

A in Panel (A) of Fig. 2, and counties Blow and Bhigh have 

distributions of net returns identical to county B in Panel 

(B) of Fig.  2. For simplicity, producers in counties with 

low sequestration potential, Alow and Blow , sequester 1 

ton of carbon if they adopt the practice, and producers 

in counties with high sequestration potential, Ahigh and 

Bhigh , sequester 2 tons of carbon. �e evolution of Lt , the 

program administrator’s fixed cost of running the pro-

gram in each county, and the fixed incentive P2 = $1/4 

for adopting the practice between the second and third 

periods remain unchanged.

Unlike the earlier program where the goal was increas-

ing adoption of the practice, the objective of the policy 

maker in this case is to produce carbon credits. �e 

policy maker will generate one carbon credit for each 

ton of carbon sequestered by a program enrollee. Note 

that, because the policy maker is still unable to distin-

guish between additional and non-additional enroll-

ees, it will issue carbon sequestration credits for every 

enrolled producer. For example, the policy maker would 

issue 320 credits for the one unit of carbon sequestered 

by each of the 320 producers in county Alow who adopt 

the practice between times t = 1 and 2 , even though 

250 of these producers would have adopted the prac-

tice and sequestered 250 tons of carbon even if the pro-

gram was unavailable. In the same way, the policy maker 

produces 640, 250, and 500 credits in counties Ahigh , 

B
low , and Bhigh respectively. �e average costs of pro-

ducing a carbon credit ( ACcred ) in the four counties, as 

Fig. 2 Adoption of conservation practice over time when the payment-for-practice program is available at time t = 2 . A and B depict 

the probability density functions for the net returns to adoption in counties A and B, respectively, and C displays the percent of producers adopting 

the practice over time for counties A and B. The dashed graphs indicate counterfactual outcomes without the program
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calculated by the policy maker, are: ACcred

(

Alow
)

= $0.41; 

ACcred

(

Blow
)

= $0.45;ACcred

(

Ahigh
)

= $0.21;ACcred
(

Bhigh
)

= $0.23 . �ere are two clear implications for the 

policy maker. First, in choosing between two counties 

with the same carbon sequestration potential ( Ahigh vs. 

Bhigh ; Alow vs. Blow ), targeting the county with a higher 

rate of practice adoption ( Ahigh ; Alow ) will generate a 

greater number of credits at a lower per-unit cost. Sec-

ond, deploying the policy in areas with high sequestra-

tion potential is an unambiguous improvement in cost 

effectiveness:

However, note that the discussion so far has focused 

only on the cost-effectiveness per carbon credit and 

not the cost-effectiveness per additional ton of carbon 

sequestered.

Next, consider the average cost of sequestering an addi-

tional ton of carbon, ACaddseq . Using the $1.86 average 

cost of an additional adopter for county A from earlier, 

the average costs of sequestering an additional ton of 

carbon in the two counties with high rates of adoption 

are:  ACaddseq

(

Alow
)

= $1.86; ACaddseq

(

Ahigh
)

= $0.93 . 

In contrast, the policy maker pays $1.25 and $0.63 per 

additional unit of carbon sequestered in counties Blow 

and Bhigh . Unlike the average cost of producing a credit, 

the average cost of an additional ton of carbon seques-

tered is lower for a county with a lower rate of adoption 

when comparing two counties with identical rates of 

sequestration:

Additionally, consider a hypothetical county, Bmid , with 

the same low rate of adoption as counties Blow and Bhigh 

but having an intermediate sequestration rate of 1.5 tons 

of carbon. Despite having a lower carbon sequestration 

rate, the average cost per ton of additional sequestration 

would be less than that of a county with greater seques-

tration, Ahigh:

So, if using the average cost of additional sequestration 

as the efficiency metric, targeting areas with the highest 

rates of carbon sequestration is not always optimal.

�e diagram in Fig.  3 displays the adoption rate and 

carbon sequestration characteristics for counties Alow , 

Ahigh , Blow and Bhigh , along with the average cost per 

credit calculated by the policy maker and the aver-

age cost per additional ton of carbon sequestration. To 

(1)
ACcred(B

low) > ACcred(A
low) > ACcred(B

high) > ACcred(A
high).

(2)

ACadd seq(A
low) > ACadd seq(B

low
)

> ACadd seq(A
high) > ACcred(B

high).

(3)

ACadd seq(A
high) = $0.93 > ACcred(B

mid) = $0.83.

facilitate interpretation of the maps presented in the 

results section, we label each quadrant of Fig.  3 based 

on these characteristics. �e upper left quadrant of 

Fig. 3, for example, describes county Alow with its high 

rate of adoption and low carbon sequestration poten-

tial. In comparison to the lower left quadrant, the lower 

average cost of a credit indicates producing carbon 

credits in this county will be relatively cheaper for the 

policy maker.

If the policy maker sells the credits produced in each 

county at their respective average costs, then every dol-

lar of carbon credits produced in county Alow purchased 

by an entity represents 0.54 tons of carbon sequestered. 

In comparison to the credits produced in Blow , where 

every dollar of credits represents 0.8 tons of carbon 

sequestered, the quality of the credits produced in county 

A
low is relatively poor. By making similar comparisons 

between the remaining counties, we can see that the pro-

gram administrator’s cost of producing carbon credits is 

decreasing in the northeasterly direction of Fig. 3, but the 

quality of the credits produced is increasing in the south-

easterly direction. �ese relationships are the basis for 

our categorization of counties in the maps we present in 

the results section.

In Fig. 3, the clear implication of our conceptual model 

is that targeting areas lying in the eastern quadrants, 

regions with greater carbon sequestration potential, will 

generally improve the cost-efficiency of a carbon off-

set program. Our conceptual model and the associated 

numerical illustration demonstrate general principles for 

voluntary carbon sequestration programs, which provide 

a foundation on which the policy maker can incorporate 

project-specific information when prioritizing funding. 

Fig. 3 Carbon credit quality and cost as a function of the rate 

of practice adoption and carbon sequestration in the area 

where the program occurs
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�e choice between targeting regions with low or high 

rates of adoption will of course depend on the specifics 

of a potential program’s design and the policy maker’s 

objectives.

Data
Adoption of conservation agriculture practices and NRCS 

programs

�e United States Department of Agriculture (USDA) 

census of agriculture in 2012 and 2017 recorded the 

number of acres where cover-cropping, no-till, and 

conservation tillage practices were used in most coun-

ties within the continental United States. As we cannot 

determine whether the change in acreage using no-till is 

due to producers switching from conventional or conser-

vation tillage, we combine the acreage under no-till and 

conservation tillage into one category representing the 

use of any practice with reduced tillage. Lastly, we draw 

data on total cropland acreage from the USDA National 

Agricultural Statistics Service (NASS) and use the maxi-

mum value recorded for total cropland acres between the 

2012 and 2017 data points. To prevent counties with little 

agricultural acreage from affecting our results, we divide 

this maximum cropland acres value by the total land area 

of each county and exclude counties in the lowest decile 

of the resulting ratio.

To provide a sense of current use of these practices, 

we generate the share of cropland acres in each prac-

tice for 2012 and 2017 by dividing the number of acres 

in each practice by the maximum total cropland acres 

value. Additional file 1: Figures S1, S2, and S3 display the 

change in this share of cropland employing cover-crop-

ping, no-till, and conservation tillage practices over this 

five-year period. Additional file 1: Figure S4 displays the 

change in a county’s cropland acreage using either no-till 

or conservation tillage between 2012 and 2017.

Due to the role policies like EQIP may play in incentiv-

izing adoption of conservation agriculture practices, we 

include county-level data on the dollars obligated by Nat-

ural Resource Conservation Service (NRCS) programs 

in our analyses [34]. �e original data contains all NRCS 

programs and practices with obligations in the years run-

ning from 2014 through 2022. We aggregate these data in 

three different ways to create annual measures of dollars 

obligated. �e first of these measures is the total across 

all NRCS programs and practices for each year. We create 

the second by summing up the obligations for practices 

concerning cover crops, and the third is the sum across 

all practices involving a reduction in tillage intensity. We 

include all three variables because values for some pro-

gram and county combinations are missing in the original 

data due to measures taken by NASS to prevent releas-

ing identifiable information. �is rarely results in missing 

values for the measure summing across all programs and 

practices but creates a greater number of missing values 

when creating the cover-cropping and tillage specific 

aggregations.

Carbon sequestration potential of practices

�e COMET Planner tool contains county level esti-

mates of the net sequestration, or total change in GHG 

emissions, caused by NRCS Conservation Practices [35]. 

Within COMET Planner, the values for a specific imple-

mentation of a NRCS Conservation Practice Standard 

(CPS) are aggregations of estimates produced using the 

COMET Farm tool, a field-scale platform for estimating 

carbon fluxes using the DayCent process-based model 

[36]. To create a single estimate for the adoption of no-

till or conservation tillage practices, we take the mean of 

all county-level estimates for a change from intensive till-

age to reduced tillage (CPS 345) and a change from inten-

sive tillage to no-till or strip-till (CPS 329). �e mean 

expected sequestration in metric tons of carbon dioxide 

equivalents per acre per year for the practices is displayed 

in Additional file 1: Figure S5.

To generate the expected carbon sequestration associ-

ated with cover-cropping, we take the mean of COMET 

Planner estimates for scenarios under USDA-NRCS 

CPS number 340. �ese scenarios include the addition 

of a legume seasonal cover crop with a 50% reduction 

in nitrogen fertilizer or the addition of a non-legume 

seasonal cover crop with a 25% reduction in nitrogen 

fertilizer. �e mean expected sequestration for cover-

cropping is depicted in Additional file  1: Figure S6. In 

creating the average sequestration values for a reduction 

in tillage or adoption of cover crops, we do not include 

scenarios where multiple practices are adopted jointly. 

For instance, we do not include scenarios involving the 

joint adoption of no-till and cover-cropping contempo-

raneously when generating the expected carbon seques-

tration associated with tillage reduction in a county. 

When combining the carbon sequestration data with 

the rates of adoption to create the final maps displayed 

in the results section, the carbon sequestration values are 

divided into three categories by tercile.

Soil, climate, and weather characteristics

Each county’s time-invariant soil characteristics, such 

as water holding capacity, are drawn from the Soil Sur-

vey Geographic Database (SSURGO) [37]. To ensure the 

values for each soil characteristic reflect cropland soils, 

we first filter out areas which were not identified as culti-

vated cropland using the Cultivated Layer data from the 

2013 and 2017 Cropland Data Layers [38]. We then over-

lay these maps of cultivated cropland with a grid of one 

square mile cells, remove any cells that are less than 50% 
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cultivated cropland in both layers, and use the soil map 

unit keys from the remaining cells to retrieve the respec-

tive soil characteristics. As the Cultivated Layer identi-

fies areas which were cultivated in at least two of the five 

years preceding the specified year, this process ensures 

the SSURGO data are drawn from cropland areas culti-

vated for at least two of the five years before each of the 

USDA censuses in 2012 and 2017.

For the climate and weather variables, we focus on 

the two main determinants of carbon sequestration 

described above: temperature and precipitation. Daily 

data on counties’ rainfall, maximum temperature, and 

minimum temperature were drawn from the Parameter-

elevation Regressions on Independent Slopes Model 

repository maintained by Oregon State University [39]. 

For precipitation, we aggregate the daily rainfall data 

into pre-season, growing-season, and post-season totals 

based on whether the rainfall event occurred between the 

beginning of January and end of February, between the 

beginning of March and the end of August, or after Sep-

tember 1st respectively.

To aggregate the temperature data, we first create expo-

sure variables as in Schlenker and Roberts (2009). Spe-

cifically, the first exposure variable counts all days with 

temperatures below 0 degrees Celsius. �e second, third, 

and fourth bins represent the days spent in each of the 

three 10-degree intervals between zero and 30 degrees 

Celsius. Finally, the last temperature exposure variable 

represents extreme heat days and contains the days of 

exposure to temperatures above 30 degrees Celsius. As 

with the precipitation data, we create total temperature 

exposure variables representing the days spent in each 

respective bin during the pre-season, growing-season, 

and post-season months described above.

�e climate characteristics used in our predictions are 

the average of the temperature and precipitation varia-

bles across the 20 years before each NASS datapoint. �e 

weather characteristics, in contrast, are the average devi-

ation from these 20-year averages, or normals, during 

the five-year periods between 2012 and 2017 or 2017 and 

2022. We calculate the deviation in each year by subtract-

ing the annual data from the respective 20 year normal.

Methods
Predicting the rate of practice adoption between 2017 

and 2022

As described in the previous section, the Census of Agri-

culture provides data on the historical rate of practice 

adoption. However, our objective is to parameterize the 

future rate of practice adoption because it predicts the 

additionality of programs encouraging conservation agri-

culture practices. We use a random forest model trained 

on historical data from 2012 and 2017 to predict the 

change in reduced tillage and cover cropping adoption 

from 2017 to 2022. Random forests are a type of machine 

learning algorithm that averages the output from mul-

tiple decision trees. A random forest model is superior 

to a logistic or linear regression for prediction because 

they provide improved predictive accuracy, accommo-

date highly non-linear relationships between predictors, 

do not rely on parametric assumptions, and incorpo-

rate assessment of out-of-sample prediction error [41, 

42]. We use the generalized random forest algorithm by 

Athey et al. (2019) to generate predictions for the rate of 

change in each practice’s use. Like the original random 

forest by Breiman (2001), the generalized random forest 

algorithm involves subsampling the dataset, recursively 

partitioning the sample into training and test sets, and 

randomly selecting variables to split the sample. To miti-

gate bias in predictions, the generalized random forest 

algorithm from Athey et al. (2019) trains ‘honest’ forests 

such that separate subsamples are used to determine the 

optimal splits for each tree and make predictions [45].

To construct the training dataset, we merge the soil, 

weather, and growing region variables with the observed 

adoption behavior in 2012 and 2017 from the USDA 

Census of Agriculture. �e objective of the training exer-

cise is to minimize the squared prediction error when 

modeling the following relationship:

 where yi,t is acres using a conservation practice in county 

i for year t , croplandi is the log transformed maximum of 

the 2012 and 2017 cropland acres for county i , and Xi,t 

contains the growing condition variables. Within Xi,t are 

the temperature and precipitation normals, the average 

deviation from the normals over the five years preceding 

t , USDA-ERS farm resource region indicator variables, 

the measures of dollar obligations for NRCS programs, 

and time-invariant soil characteristics.

�e interval between time points, τ = 5 , in Eq.  4 

reflects the gap between USDA Census datapoints. We 

take the mean deviation from the precipitation and tem-

perature normals across these five years because we do 

not know the year when adoption of a practice occurred. 

So, as we only know if adoption occurred within the five-

year period, we allow weather conditions in any of the 

intervening years to affect adoption equally. Similarly, we 

use the mean values for the annual NRCS program obli-

gation measures from 2014 through 2017 when fitting the 

random forest using the observed practice adoption data 

and use NRCS program obligation measures from 2017 

to 2022 when predicting the rate of adoption between 

2017 and 2022. In addition, to account for differences in 

(4)

ln

(

yi,t

yi,t−τ

)

= f

(

yi,t−τ

croplandi
, ln

(

yi,t−τ

)

,Xi,t

)

; τ = 5,
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county size, we divide the NRCS obligation measures for 

each county by the county’s cropland acres.

To generate the random forest, we use the grf package 

by Tibshirani et  al. (2023) which implements the algo-

rithm defined by Athey et  al. (2019). We grow the ran-

dom forest to have 2000 trees and allow the grf package 

to select the optimal parameter values for the sample.

fraction, mtry, min.node.size, alpha, and imbalance.pen-

alty parameters. We set the honesty.fraction parameter 

so 80% of each sample is used to determine the optimal 

splits in trees and the other 20% is then used to generate 

predictions. Due to the large number of predictors, we 

train an initial forest on all the variables, and then train 

our final forest using only the variables most frequently 

used to make splits [47]. �is iterative forest procedure 

can improve the predictive performance of random for-

ests when there is a low signal to noise ratio in the data 

[48]. �e optimized parameter values for the random for-

ests produced using this iterative procedure are listed in 

Table 1.

To evaluate the quality of our random forests, we 

report two measures of fit in Table 2 that are generated 

by the grf package during the training exercise using the 

2012 and 2017 data. �e first measure indicates if the 

mean forest prediction is correct, while the second meas-

ures the degree to which the random forest accurately 

reproduces heterogeneity. For both tests, a value of 1 

indicates the well forest is well calibrated. To determine 

whether the random forest performs poorly in particu-

lar regions, we display the variance estimates for our 

predictions in Additional file  1: Figures  S7 and S8. �e 

asymptotic theory informing the variance estimates is 

presented by [49] in their analysis of regression forests as 

U-statistics.

After training the random forest using the county-level 

data on use of tillage reduction and cover-cropping prac-

tices from 2012 and 2017, the rate of change between 

2017 and 2022 is then predicted using the same set of 

predictor variables. �e resulting county-level rates of 

change in practice use, expressed as the natural log of the 

ratio between acres using the practice in 2022 and 2017, 

are displayed in Additional file 1: Figures S9 and S10 for 

tillage reduction and cover-cropping practices respec-

tively. To clarify the relationships driving these predic-

tions, Additional file  1: Figures  S11 and S12 display the 

relative importance for the variables selected in the itera-

tive forest procedure. �e most important predictor of 

the rate of change in both tillage reduction and cover-

cropping practice use is the lagged adoption rate.

�e results, displayed and discussed in the next section, 

are presented as two-way choropleths. To produce the 

choropleths, we divide the predicted rates of change from 

the random forest into three intervals and match them 

by county to the terciles of carbon sequestration rates 

contained in COMET Planner. For the predicted rates 

of change in practice use, the first interval contains all 

counties with negative predicted rates of change, and the 

second and third intervals contain counties with rates of 

change below and above the median positive value. Addi-

tional file 1: Figures S13 and S14 display the intervals for 

the predicted rates of change in practice use and terciles 

for sequestration rates associated with tillage reduction 

practices as an example. In our conceptual model, we 

used two categories of sequestration and adoption rates 

to illustrate general principles in a simplified context. 

For our results, we use three intervals to provide a richer 

depiction of the heterogeneity between counties. In prac-

tice, policy makers and program administrators could 

divide sequestration and adoption rates into a greater 

number of intervals or use the raw values to prioritize 

regions more precisely.

Results
We focus our analysis on four categories of counties 

defined by their predicted rates of adoption and carbon 

sequestration potential. Using these categories, we ana-

lyze the cost efficiency of expenditures on voluntary agri-

cultural GHG mitigation programs at the county level 

across the continental United States. Counties in the first 

Table 1 Parameter values for the random forests predicting 

the change in acres using tillage reduction and cover-cropping 

practices

Parameter values

Sample.
fraction

mtry min.
node.
size

Alpha Imbalance.
penalty

Tillage reduc-
tion

0.38 10 3 0.08 0.72

Cover cropping 0.45 7 7 0.14 0.36

Table 2 Tests of the random forests predictive accuracy 

using the held-out, or out-of-bag, data from the sub-sampling 

procedure in each iteration

Estimate Std. Error t-value Pr(> t)

Tillage reduction

 Mean forest prediction 1.01 0.06 15.91  < 0.001

 Differential forest predic-
tion

1.17 0.09 13.15  < 0.001

Cover-cropping

 Mean forest prediction 1.01 0.04 25.37  < 0.001

 Differential forest predic-
tion

1.13 0.04 26.44  < 0.001
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category have negative predicted rates of adoption and 

net sequestration values in the lowest tercile. �e nega-

tive rates of adoption suggest producers in this first cat-

egory of counties will require large incentives to adopt, 

and the low net sequestration values indicate the benefit 

of their adoption will be minimal. �e second category 

is defined by high predicted rates of adoption but low 

carbon sequestration. While producers in these coun-

ties may require a smaller incentive to adopt conserva-

tion tillage, they are also more likely to be non-additional. 

Counties in the third category comprise the opposite case 

with negative predicted rates of adoption and high car-

bon sequestration potential. Producers in this third group 

of counties may be less likely to adopt, but adoption will 

lead to larger per adopter reductions in carbon emis-

sions on average. When deciding how to allocate funds 

between counties in the second and third categories, 

policy makers will need to consider these trade-offs given 

the lack of information on precisely how many adopters 

will be non-additional to accurately estimate the benefit–

cost ratio. Alternatively, policy makers could evaluate the 

cost of using a more complex program design to address 

additionality. �e final category of counties is charac-

terized by high predicted rates of adoption and carbon 

sequestration, which offer a cost-effective combination of 

both high adoption and high sequestration.

No-till, conservation tillage, or reduced tillage practices

In Fig. 4, we display the predicted rate of change in use 

of reduced tillage practices between 2017 and 2022 

along with the rate of greenhouse gas sequestration at 

the county-level as a bivariate choropleth. Darker blue 

counties have greater rates of predicted adoption, indi-

cated by moving upward in the legend. Darker red coun-

ties sequester more carbon from adopting the practice, 

indicated by moving rightward in the legend. Counties in 

white are missing data on conservation agriculture prac-

tice adoption for 2017.

First consider the counties in light purple, those in the 

first category with negative rates of adoption and net 

sequestration values in the lowest tercile. �ese coun-

ties are predominantly located east of the Appalachian 

Mountains within the Atlantic Plains stretching from 

Delaware to Florida. Using the relationships from our 

conceptual model, we classify agricultural GHG mitiga-

tion programs in these areas as inefficient. �e negative 

rate of adoption suggests it will take a large incentive for 

producers to change their practices, and the marginal 

Fig. 4 Two-way choropleth depicting the predicted rates of adoption for tillage reduction practices with the net sequestration due to their use. 

Net sequestration values are divided into terciles and expressed in metric tons of carbon dioxide equivalents per acre per year. Rates of adoption are 

expressed as the natural log of the ratio of acres using the practice predicted for 2022 to the acreage recorded for 2017. Counties with missing data 

are in white



Page 11 of 15Cameron‑Harp et al. Carbon Balance and Management  (2024) 19:6 

increase in carbon sequestration for each producer who 

does make the change is quite small.

Many of the semi-arid and arid states in the west con-

tain counties with low sequestration rates but high rates 

of adoption for tillage reduction practices, indicated by 

the bright blue color in the top left of Fig. 4’s legend. In 

addition, there are also pockets of such counties in the 

Great Lakes region, Texas, and Florida. While encour-

aging adoption in these areas is relatively cheap due to 

the high predicted rate of adoption, the cost-efficiency 

of agricultural mitigation efforts will be inhibited due to 

the combination of low expected sequestration rates and 

high likelihood of non-additional adoption.

Counties in bright red in Fig. 4, with negative predicted 

rates of adoption but expected sequestration in the high-

est tercile, are concentrated in two areas: sub-basins of 

the Mississippi River system and the Chesapeake Bay 

watershed. Given the negative rates of adoption, pro-

ducers will likely require a large incentive to adopt or 

continue using practices with reduced tillage intensity. 

However, the producers who are incentivized to reduce 

their tillage intensity are likely to be additional. So, while 

encouraging adoption may be somewhat expensive, 

the expenditures are likely to induce additional adop-

tion behavior or avoid emissions by prolonging the use 

of practices by producers who would have dis-adopted 

them otherwise.

�e final category of counties we focus on, those in 

dark purple in Fig. 4, have a high predicted rate of adop-

tion and high expected carbon sequestration for till-

age reduction practices. �ese counties are scattered 

throughout the Mississippi river basin, the Chesapeake 

Bay watershed, and the northern portions of Maine and 

New York. Due to their high adoption rate, incentivizing 

producers to adopt tillage reduction practices would be 

inexpensive. While this high rate of adoption suggests a 

reduced likelihood of additionality, the high expected 

carbon sequestration associated with adoption in these 

regions serves to counterbalance the inefficiency intro-

duced by non-additional adopters. Taken together, oper-

ating a program designed to reduce net GHG emissions 

through agricultural land management in these areas is 

likely to be a cost-efficient endeavor.

Cover-cropping

Figure  5 depicts the predicted rate for cover-crop 

adoption between 2017 and 2022 with the associated 

rate of greenhouse gas sequestration using the same 

relationships and categorizations outlined above for 

Fig. 4. Given the additional water demand cover-crops 

Fig. 5 Two-way choropleth depicting predicted rates of adoption for cover-cropping with the expected sequestration due its use. Net 

sequestration values emissions are divided into terciles and expressed in metric tons of carbon dioxide equivalents per acre per year. Rates 

of adoption are expressed as the natural log of the ratio of acres using the practice predicted for 2022 to the acreage recorded for 2017. Counties 

with missing data are in white
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represent, the greater occurrence of counties with 

negative predicted rates of adoption and sequestra-

tion in the arid and semi-arid regions of the western 

United States is not surprising. If rainfall and access to 

irrigation are insufficient to support cover-cropping, 

producers will require larger incentives to incorporate 

cover-cropping into their land management. In general, 

as is the case for tillage reduction practices, voluntary 

agricultural mitigation programs focused on cover-

cropping would be expensive efforts producing little in 

the way of sequestered carbon or avoided emissions in 

many western states.

�e greatest concentration of counties with high pre-

dicted rates of change and low expected sequestration 

for cover-cropping is in the northern Midwest and spans 

parts of Minnesota, North Dakota, and South Dakota. 

�ere are also counties scattered throughout the west-

ern United States and around the Great Lakes that share 

these characteristics as well. Due to the low expected 

sequestration and high predicted rate of change in cover-

cropping, programs in these regions are less likely to be 

cost-effective. Adoption is more likely to be non-addi-

tional, and the marginal change in net GHG emissions 

for any adoption which is additional will be small in 

magnitude.

Next, we focus on the counties in our third category in 

Fig. 5, those with high expected rates of carbon seques-

tration, or avoided emissions, and negative rates of 

change for cover-cropping practices. Most of the counties 

with high expected rates of sequestration and negative 

predicted rates of change in cover-cropping use, in bright 

red in Fig. 5, are located near confluences of the Missis-

sippi River and its five major tributaries. �e exceptions 

to this statement are the cluster of counties in the south-

ern portion of the Ohio River basin and the group of 

counties in south-eastern, coastal Texas. If programs are 

especially concerned with minimizing non-additionality, 

these regions will be the natural areas to target provided 

the program administrators are willing to pay the steep 

incentives necessary to encourage cover-cropping.

Similar to the previous category, counties in the final 

category with high predicted rates of adoption and high 

rates of carbon sequestration for cover-cropping are con-

centrated along the main stem of the Mississippi River 

or its major tributaries. �e increase in expected seques-

tration or avoided emissions in riparian areas is due to 

cover-crops reducing soil erosion and nutrient pollution 

[35]. Again, as was the case for tillage reduction prac-

tices, these regions are likely to be the most cost-effective 

regions to target. While adoption may be non-additional, 

the risk of non-additionality is offset by the small incen-

tives required to change behavior and the large reduc-

tions in net GHG emissions.

Discussion
�e results of this study demonstrate how publicly 

available data on county level adoption of conservation 

practices can be combined with expected sequestra-

tion rates to target expenditures on agricultural GHG 

mitigation programs. Policy makers and private compa-

nies implementing such programs can use these results 

and the general approach to prioritize regions without 

having to acquire data on individual producers. One 

immediately apparent similarity between the results 

for tillage reduction practices in Fig.  4 and the results 

for cover-cropping depicted in Fig. 5 is the prevalence 

of counties with negative predicted rates of adoption 

and low expected carbon sequestration in the arid and 

semi-arid regions of the western United States. Given 

the high cost of encouraging adoption and little return 

in terms of carbon sequestration, we expect agricultural 

GHG mitigation programs will not be cost-efficient in 

these areas. Use of either of these practices may be ben-

eficial for other economic or environmental reasons in 

these regions, but operating a program with the sole 

objective of mitigating or sequestering GHG emissions 

is likely to be an unproductive and costly endeavor.

Note, many of the counties with high expected 

sequestration values and negative predicted rates of 

adoption for cover-cropping, in bright red in Fig.  5, 

also have high rates of sequestration and intermediate 

or high rates of adoption in tillage reduction practices, 

in maroon and dark purple in Fig. 4. If a program were 

to incentivize using practices jointly in such counties, 

it is possible the net return of adopting both practices 

could become positive despite the high cost of cover-

cropping practices. Even though the incentive required 

might be larger than what is necessary to incentivize 

tillage reduction in isolation, the cumulative return in 

carbon sequestration could offset this additional cost 

given the high sequestration values for both practices 

in the region.

For both practices, counties with high predicted rates 

of adoption and high expected carbon sequestration val-

ues are concentrated in the Mississippi River Basin, espe-

cially in areas near confluences of the Mississippi Rivers 

and its major tributaries. �e higher rate of change sug-

gests producers would require small incentives to adopt 

the practices, and the greater sequestration increases 

the marginal benefit from such expenditures. For till-

age reductions, the greatest concentrations of counties 

with these characteristics lie within the Chesapeake Bay 

watershed or the Upper Mississippi and Lower Missouri 

sub-basins of the Mississippi River. For cover-cropping, 

counties with high rates of adoption and net sequestra-

tion values are more densely concentrated near the main 

stem of the Mississippi River by comparison.
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An ongoing debate is whether to compensate produc-

ers by using payment-for-practice (such as in EQIP) 

or payment-for-sequestration based on the predicted 

amount of sequestration (such as in the voluntary carbon 

market). Our results provide insights on where farmers 

would be more likely to prefer one type of payment. In 

general, we anticipate that producers in regions with low 

net sequestration values will prefer payment-for-practice 

programs, and producers in areas with greater sequestra-

tion will prefer payment-for-sequestration programs. But 

the incentives will need to be larger to encourage adop-

tion in a payment-for-sequestration program due to the 

transaction costs involved in estimating sequestration, so 

the preference for payment-for-sequestration will likely 

be strongest in the areas we identify as having greater 

sequestration and high rates of adoption.

Conclusion
Due to the lack of site-specific estimates on  carbon 

sequestration and producers’ costs of adopting conserva-

tion practices,  using benefit-cost ratios to target expen-

ditures on agricultural GHG mitigation programs  is 

often infeasible.  In this paper, we present an alternative 

approach that can improve targeting utilizing aggregate 

data that is publicly available. Using a conceptual model 

of technology adoption, we demonstrated how the pace 

of adoption in a region serves as a proxy for the risk of 

non-additional expenditures and the cost of adoption. 

To anticipate the risk of inefficient expenditures facing 

U.S. agricultural conservation programs, we predicted 

county-level rates of adoption for two of the primary 

changes to agricultural land management currently 

incentivized by public and private programs: cover-

cropping and reductions in tillage. After combining the 

predicted rates of adoption for cover-cropping and till-

age reduction practices with the net change in GHG 

emissions expected due to their use, we illustrated how 

the interaction between these two factors will determine 

the cost-efficiency of voluntary programs intending to 

mitigate GHG emissions through agricultural land use 

changes across the U.S.

In regions with high expected sequestration and a 

greater rate of adoption for conservation practices, pro-

ducers are more likely to accept a small incentive to 

adopt a practice and sequester a greater quantity of car-

bon. However, the greater rate of adoption also suggests 

an increased risk of incentives going to non-additional 

adopters, producers who would have used the practice 

without the incentive. As such, we cannot conclusively 

state that voluntary agricultural GHG mitigation pro-

grams located in counties with high predicted rates of 

change in practice use and large sequestration will always 

be comparatively more efficient based on our analysis. 

Instead, our analysis highlights the challenges to cost-

efficiency involved with operating a voluntary agricul-

tural GHG mitigation program in three other conditions.

When the rate of adoption is negative and GHG mitiga-

tion benefits are small in magnitude, as is the case for till-

age reductions in the Atlantic Plains, producers will likely 

require large incentives to use the practice which result 

in minimal mitigation benefits. �e expenditures needed 

to encourage adoption may be smaller in areas where the 

rate of adoption is high and the change in net GHG emis-

sions is similarly small, but the small marginal benefit to 

net GHG emissions and greater risk of non-additional 

adoption will detract from any savings on incentives. 

Last, for areas with negative rates of adoption and high 

net GHG emissions reductions, the primary obstacle to 

cost-efficiency will be the large incentives necessary to 

make using practices profitable for producers.

One limitation of this work is our reliance on two 

datapoints from 2012 and 2017 for predicting the rate 

of change in the acres using cover cropping and tillage 

reduction practices between 2017 and 2022. As addi-

tional time series data on the use of cover-cropping and 

tillage practices become available, we expect future work 

will be able to predict adoption trends with greater accu-

racy and at a finer resolution. Further research would 

help to understand how more detailed information, such 

as the types of producers who adopt conservation prac-

tices or the likelihood of adoption persisting across years, 

could be used to refine our approach and test the under-

lying assumptions. It would be especially valuable to 

compare the cost of using the approach described in this 

work against alternative approaches to inferring produc-

ers’ willingness to accept with greater transaction costs, 

such as a reverse auction.  Finally, predicting changes in 

sequestration at fine spatial scales remains an ongoing 

field of research. Incorporating updated estimates as they 

emerge and addressing the magnitude of their accom-

panying uncertainties will improve the utility of similar 

efforts going forward.
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Additional �le 1. Description of file—Figure S1. Change in share of 

cropland acreage employing cover-cropping between 2012 and 2017. 

Counties with missing data in either 2012 or 2017 are depicted in dark 

grey. Figure S2. Change in share of cropland acreage using no-till 

between 2012 and 2017. Counties with missing data in either 2012 or 

2017 are depicted in dark grey. Figure S3. Change in share of cropland 

acreage using conservation tillage between 2012 and 2017. Figure S4. 

Change in share of cropland acreage using either no-till or conservation 

tillage between 2012 and 2017. Figure S5. Average carbon sequestra-

tion for COMET Planner scenarios involving a reduction in tillage intensity 

(CPS numbers 329 and 345). Figure S.6. Average carbon sequestration 

for COMET Planner scenarios involving cover-cropping (CPS number 340). 

Figure S7. Variance estimates for random forest predictions of the change 

in acreage using tillage reduction practices between 2017 and 2022. 

Figure S8. Variance estimates for random forest predictions of the change 

in acreage cover cropping between 2017 and 2022. Figure S9. Predicted 

rate of change in acres using tillage reduction practices between 2017 

and 2022. Figure S10. Predicted rate of change in acres using cover crop-

ping practices between 2017 and 2022. Figure S11. Variable importance 

plot for the random forest predicting the county-level rate of change in 

acreage using a reduced tillage practice. Figure S12. Variable importance 

plot for the random forest predicting the county-level rate of change in 

acreage using cover crops. Figure S13. Average carbon sequestration 

due to tillage reduction practices by tercile. Values are the average of CPS 

329 and 345 practices from COMET Planner. Figure S14. Predicted rate 

of adoption between 2017 and 2022 for tillage reduction practices by 

category. Rates are divided into those below zero, between 0 and median 

positive predicted rate, and values above the median positive predicted 

rate.
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