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Abstract—Regulating blood glucose concentration is crucial for
all people, particularly for patients with diabetes or prediabetes
to manage their metabolic health. Poor glucose control results in
dysglycemia. Frequent dysglycemia exposure increases the risk of
cardiovascular disease, seizures, loss of consciousness, and poten-
tially death. Patients often struggle with glucose control due to a
multitude of interrelated behavioral, physiological, and biological
factors such as diet, insulin intake, and metabolism rate. There is
a need for a solution that can accurately predict future adverse
dysglycemic events and important parameters such as the area
under the glucose curve (AUC). However, current research uses
limited input parameters, lacks potential meal-based predictions,
is data-hungry and computationally expensive, and predicts
a single health outcome. In this research, GlucoseAssist', a
novel, personalized, Al-driven system was developed to predict
glucose response and area under the glucose curve in real-
time and identify dysglycemic events based on diet, health, and
medication data. Importantly, the devised tiered architecture uses
a multimodal convolutional neural network and random forest
classifier with time series data from a clinical dataset with 20, 040
Continuous Glucose Monitor (CGM) records. GlucoseAssist ac-
curately predicts blood glucose response for the next 30 minutes
with a Root Mean Squared Error of 1.23 mmol/L, Mean Absolute
Error of 0.920 mmol/L, and an accuracy of 97.1%.

Index Terms—deep learning, diabetes, forecasting, hyper-
glycemia, wearables

I. INTRODUCTION

As of 2021, over 537 million people globally suffer from
diabetes, and 374 million suffer from prediabetes. Diabetes is
prevalent among the youth as well. The American Diabetes
Association estimates that more than half a million young
people could have diabetes by 2060, a 700% increase from
today. One in three Americans have prediabetes, and one in
seven has diabetes, making this a large national issue [1].

Lack of glucose management is one of the world’s most
rapidly growing health problems, which leads to dysglycemic
events such as postprandial hyperglycemia and reactive hypo-
glycemia [2]. Postprandial hyperglycemia is abnormal spikes
in blood glucose levels after the consumption of a meal. Ef-
fects of postprandial hyperglycemia include diabetic retinopa-
thy, vascular dementia, nerve damage, cardiovascular diseases,
kidney disease, diabetic ketoacidosis, and diabetic neuropathy.
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Repeated exposure to postprandial hyperglycemia is con-
nected to several health disorders like prediabetes, diabetes,
atherosclerosis, and obesity [3]. Reactive hypoglycemia is
an unnatural drop in glucose levels. Multiple occurrences of
reactive hypoglycemia lead to confusion, loss of coordination,
slurred speech, and blurry vision. During severe cases, hypo-
glycemia can lead to seizures, loss of consciousness, higher
risk of heart disease and potentially death [4].

The utilization of CGMs to track blood glucose levels is
growing. CGMs measure glucose amounts in the bloodstream
at constant intervals and transmit the information to a monitor
for real-time viewing. Although CGMs can display blood
glucose data in real-time, they lack computational capabilities
to warn the user of future dysglycemic events, inhibiting the
user from taking preventative action. Previously, research was
conducted to use CGM data to detect hyperglycemic events
with interpretations [5], simulate glucose response using deep
learning [6], and predict blood glucose levels using a recurrent
neural network (RNN) that took both glucose and insulin
information as input [7]. Drawbacks of utilizing an RNN
includes its inability to learn long-term dependencies. Prendin
[8] developed a unique solution using RNN, it did not take
other parameters as input and disregarded the time steps
associated with the values. Mathiyazhagan et al. [9] combined
an adaptive network with a fuzzy inference system to predict
BG responses. However, the model only used data from 2
patients which led to overfitting. Aliberti [10] and Frandes [11]
used a non-linear autoregressive neural network that could not
predict dysglycemic events.

We propose a novel approach that uses a tiered Al archi-
tecture for the simultaneous prediction of hyperglycemia and
estimation of the area under the glucose curve. The two-layer
architecture uses (1) a convolutional neural network (CNN)
for accurate prediction of postprandial glucose response from
which the AUC is estimated; and (2) a random forest algo-
rithm that takes the predicted glucose values and infers the
glycemic state of the glucose response (i.e., normal versus
hyperglycemia).

II. GLUCOSEASSIST DESIGN

GlucoseAssist works in two steps: forecasting and de-
tecting. Fig. 1 shows a high-level diagram of the proposed
pipeline. A unique aspect of GlucoseAssist is its multi-
model approach. Within the pipeline, there needs to be two
intelligent frameworks to map future blood glucose levels
and to detect incoming abnormalities using the forecasted
values. Let X = {z1,2a,...,x,} be a set of n features that


prishashroff@gmail.com
https://github.com/prishashroff/GlucoseAssist

Bolus Insulin (BI)

i \ CNN Model ~———>
1
1 Blood Glucose 1
: Levels from CGM (G) : 5
1 . 1 d
: Metabolism Rate (MR) : o B =
1 Diet 1 2 s . g
I e ] P = o x
=
I 1 N 00 = o [
: Carbohydrates (C) 1 o = 8 c >
1 = @© ©
1 © o o0 -
1 Fat (Fa) : é :‘ -> 8 > c = g = ©
1 1 @© = qc_, % g
1 Fiber (Fi) 1 S = - 5]
1 1 2 = © ® (=}
1 1 5 = — 17}
1 Glycemic Index (Gl) 1 = X L c
1 1 g © 8
1 L c =
1 Medication : S
1 1 (&)
1 1
1 1
1 1
1 ]

Time Elapsed (last
\ insulin dose) (T) /
~ -,

Continuous glucose
level prediction

=—>» Random Forest Classifier =—% Preventative Suggestions

»
o
F1 VA
Ke® Warning: Go forarun
F2 . ° Hyperglycemia =  or Take
; o (ex.in 20 min) Insulin
e
ES é Fo®
—/ 0 —>
X Q-,,ﬁ . © Warning: Consume
 J e H poaglm(r:];gﬁia > food with
o - (e); in 2y0 min) higher Carb
o ® ’ content
F15 < °,
el .
e

Fig. 1. High-level overview of GlucoseAssist. It consists of a CNN model followed by a Random Forest classifier.

provide retrospective information for a timeseries. The aim is
to forecast the timeseries for a specific prediction horizon ¢
ie. F = {Fy,Fy,...,F}. To do that, a forecasting model f
needs to be trained in such a way that, if fed with desired data
X, it can map the future ¢t values of F'.

f:R" - R (1)

Here, R™ represents the n input features while R? represents
the ¢-timestamps long output sequence.

Furthermore, using the forecasted blood glucose level val-
ues, another machine learning model needs to be trained to
determine the occurrence of dysglycemia. Let’s denote the
predicted dysglycemia labels as z = {z1, za, ...}, where z; is
a ternary variable that represents hypoglycemia (0), normal
(1) and dysglycemia (2) based on the blood glucose level
prediction.

A. Forecasting Model

Personal diet, medication, and health data are sensitive
information and their availability with proper annotation is
often limited. However, CNN models offer advantages over
models like LSTM, as they can perform well even with small
datasets and exhibit noise resistance, ensuring improved model
performance.

For forecasting future glucose levels, a CNN architecture
comprising of four unique layers (Fig. 1) was developed. The
first layer is the convolutional layer and is responsible for
extracting high-level features by adjusting the weights (W o)
and biases (bcony). The output feature map is obtained by
applying the Rectified Linear Unit (ReLU) activation function.
Mathematically, the output can be represented as:

hconv = ReLU(WconU * X + bconv) (2)

Following the convolutional layer, the maximum pooling
layer enhances the robustness of the model. This layer per-
forms fuzzy operations by selecting the maximum values from
the dataset, reducing noise, and preventing overfitting. Later,
the flattening layer is placed to reduce the dimensionality of
the data, preparing it for further processing in the dense layer.

The dense layer performs matrix multiplication operations to
process the data and generates the final prediction results.

B. Detection Model

Random forest classifiers are utilized for binary and ternary
classification. A random forest classifier uses a series of deci-
sion trees, which start from a root node. The root node breaks
out into decision nodes, a split point that uses evaluations to
create leaf nodes, the consequences of the decision.

As shown in Fig. 1, GlucoseAssist takes the user’s health
data (blood glucose levels from a CGM and metabolism rate),
diet data (carbohydrates, fat, fiber, and glycemic index), and
medication data (bolus insulin amounts and time elapsed since
last insulin dose) from the last 60 minutes as input. Then,
a CNN model predicts the user’s blood glucose levels for
the next 30 minutes. Utilizing a random forest classifier,
GlucoseAssist notifies the user of future hyperglycemic or
hypoglycemic events along with timestamps of the occur-
rence. It includes an intervention aspect that supplies the user
with preventative feedback. For example, if the individual is
predicted to have a hyperglycemic event, GlucoseAssist will
recommend the user go for a run.

To summarize, GlucoseAssist initiates step 2 by leveraging
the forecasted results from step 1 and detects if an abnormal
event is forthcoming. If there is a hyperglycemic event im-
pending, GlucoseAssist provides the user with another meal
option with a lower carbohydrate value.

III. EXPERIMENTAL RESULTS
A. Dataset

The Nutrient Absorption dataset [12] was used to train
GlucoseAssist. This dataset contains 20,040 CGM records
of 167 meals from 5 patients (4 T2DM, 1T1DM, 4 males,
1 female, Ages: 35 + 15.18). Subjects’ dietary information
(carb, fat, fiber amounts, and glycemic index) from individual
meals, health data (individual’s metabolism rate and 4-hour
long postprandial CGM sequences captured at two-minute
intervals), and medication data (consisting of the bolus insulin



amounts and time elapsed since the last insulin dose) are read-
ily available within the dataset. Data Preprocessing involved
applying a sliding window on the multivariate data sequences
of over 4 hours, splitting it into samples of 60 minutes of
input and 30 minutes of output. The dataset was reshaped into
a 3D array of samples, timesteps, and features, utilizing an
automated framework we developed. The data was split into
80% training and 20% testing.

B. Hyperparameter Tuning

Several hyperparameters were tuned to predict future glu-
cose levels accurately. The ConvlD layer had 240 filters, a
kernel size of 2, and ReLU activation. The MaxPool layer
had a pool size of 2 followed by a flattening layer. Afterward,
there was a Dense Layer with 50 units and Relu activation.
Following that, there was another Dense layer with 15 units.
Adam Optimizer was used, and the model was run for 100
epochs.

The Random Forest Classifier was tuned using the Grid
Search method. Based on that, a maximum tree depth of 3,
minimum leaf samples of 3, 1 maximum feature and 200
n_estimators were determined to be the optimal hyperparame-
ters. Tuning hyperparameters allowed us to avoid underfitting
and overfitting while obtaining the highest accuracy.

C. Result Analysis

Standard analysis metrics were used to quantify the per-
formance of GlucoseAssist including Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), R?, accuracy,
confusion matrix and Clarke Error Grid. The formulas are
denoted below:

1 & X
MAE:E;|yi—yi| RMSE =

TABLE I
RMSE, MAE AND R? (MMOL/L) OF BLOOD GLUCOSE LEVEL
PREDICTIONS FOR A 30-MINUTE PREDICTION HORIZON USING CNN

CNN Avg. Avg. Avg. Avg. Avg. Average (30
P1 P2 P3 P4 Ps min)
RMSE 1.52 1.163 1.15 1.426  0.888 1.23
MAE 1.09 0.894 0.884 1.033  0.698 0.92
R? 0.801 0.783 0.874 0.706  0.922 0.817
TABLE II

RMSE, MAE AND R? (MMOL/L) OF BLOOD GLUCOSE LEVEL
PREDICTIONS FOR A 30-MINUTE PREDICTION HORIZON USING LSTM

Avg. Avg. Avg. Avg. Avg. Average (30
LST™ || b 'py p3 P4 ps iy
RMSE 2798 2222  3.039 2390 2487 2.587
MAE 2.194  1.721 1.965 1.64 2.05 1.914
R2 0.319 0.199 0.181 0.172 0.364 0.247

The RMSE was calculated by taking the average of 5 trials
for each subject and calculating the mean of those averages.
Forecasting performance was evaluated using the test dataset.

The CNN attained an RMSE of 1.230 and an MAE of 0.92
(Table I), which are 53% and 52% better than those of the
LSTM (Table II). Therefore, we moved ahead with the CNN
network for forecasting.
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Fig. 2. Glucose levels Actual vs Predicted Patient 5

Fig. 2 demonstrates the actual vs predicted blood glucose
levels for patients 5. The orange line at 7.8 mmol/L is the
standard hyperglycemic threshold, and the line at 3.3 mmol/L
is considered the standard hypoglycemic threshold. It was
noticed that the model was able to accurately identify the
hyperglycemic and hypoglycemic events, however, there is a
need for a slight fine-tuning.
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Fig. 3. Clarke Error Grid comparison of Patient 3 and Patient 5

Clarke’s Error grid demonstrated the difference between the
actual values and predicted values of GlucoseAssist. As seen in
Fig. 3, most values fell between A and B, which are clinically
accurate and clinically acceptable values, respectively. As
observed in the Clarke Error Grids, there were no values in
Zone C (overcorrecting) or E (erroneous treatment). Erroneous
Treatment would lead to incorrect feedback. Furthermore,
there were minimal values in Zone D, where dysglycemic
events went undetected.

The results of the predicted AUC were compared to the
values of the actual AUC [13] (Table III). The average values
were very similar to each other (actual = 110.85 and predicted
= 110.95), which demonstrates GlucoseAssist’s accuracy.



TABLE 111
AUC (MMOL/L-MINUTE) OF BLOOD GLUCOSE LEVEL PREDICTIONS FOR A
30-MINUTE PREDICTION HORIZON USING CNN

CNN Avg.  Avg.  Avg.  Avg.  Avg || Avg All
P1 P2 P3 P4 P5 Patients

(/f::[tilcal) 108.97 11431 99.81 114.03 117.14 110.85
(Prﬁ‘(}ijcged) 108.89 118.31 98.01 112.54 116.99 110.95
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Fig. 4. Random Forest Classifier Confusion Matrix depicts the true positives,
true negatives, false positives, and false negatives.

After the blood glucose levels were predicted, a random
forest model was used to identify hyperglycemic and hypo-
glycemic events (Fig. 4). The classifier predicted the events
correctly, with a 97.07% accuracy when analyzing data from
all patients. As seen in the confusion matrix, there were more
occurrences of hyperglycemia as the dataset was collected after
a meal.

IV. DI1scUSSION AND CONCLUSION

We designed a multimodal CNN model that predicts blood
glucose response in real-time for a potential meal and de-
tects dysglycemic events beforehand based on diet, health,
and medication data. With 30-minute prediction horizon,
GlucoseAssist utilizes advanced machine learning techniques
including neural-network-based regression and classification
techniques to accurately predict the glucose response with a
nominal MAE of 0.92 mmol/L, RMSE of 1.23 mmol/L, and a
97.07% glycemic event identification accuracy. GlucoseAssist
demonstrates the feasibility of developing a solution that
makes accurate predictions with a limited training dataset size.
The long prediction horizon leaves room for lifestyle changes.

The current research on computational modeling of human
health based on CGM data uses limited input parameters
and lacks potential meal-based predictions. In most cases,
the models are data-hungry and computationally expensive,
making user-friendly implementations with embedded systems
difficult. The proposed solution can potentially help individu-
als manage their blood glucose levels more effectively. The
developed technology predicts future blood glucose levels
based on a potential meal, health and medication data, and

this is used to estimate the AUC. Based on this information,
the system can notify the user of potential dysglycemic events
and suggest preventive measures.

Our future work will focus on enhancing the robustness
of the developed machine learning algorithms for use in
uncontrolled environments [14], designing solutions to dietary
assessment [15] using passive sensing data such as continuous
glucose monitor data, and deployment of the technology in
clinical studies. Additionally, we are currently working on
designing algorithms that use the prediction outcomes to
automate the process of behavioral feedback delivery.
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