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Abstract

With the increasing use of virtual simulated environments and immersive technologies in STEM education and
workforce training, it is becoming increasingly important to study and understand how learners’ interactions and
navigation in virtual environments affect their learning and skill development. In this paper, we quantify and assess
the effect of learners’ navigation in an immersive simulated environment on learning outcomes, where navigation is
characterized by the total time spent in the simulation and time allocations to different areas within the virtual
environment. We implement a set of immersive simulation-based learning (ISBL) modules in an undergraduate
computer science course with eighteen students and record their screen as they navigate in the simulation environment
to perform the tasks needed to complete the ISBL assignments. We use a video analytics tool to process and analyze
the videos and collect statistics related to a set of navigation-related measures for each student. We also use surveys
to collect data on students’ demographics, prior knowledge and experience, personality, experiential learning, and
self-assessment of learning. We then perform a set of multivariable regression analyses to characterize and explain
the relationship between navigation measures and constructs assessed via survey instruments to determine how/if
users’ navigation in the simulated environment can be a predictor of their learning outcomes. The results indicate that
the total time spent in the simulation and the distribution of time allocations among different areas within the simulated

environment are predictors of experiential learning and students’ self-assessment of learning.

Keywords: simulation-based learning; immersive technologies; human-computer interaction; video analytics

1. Introduction

The results of a comprehensive literature analysis on virtual immersive learning environments in higher education [1]
indicates that while there is general interest in studying user interaction with virtual environments, only a small subset
of current educational research studies (around 7%) collect and analyze usage and navigation data. Moreover, the

reviewed papers reveal that there are primarily three methods that are used for collecting usage/navigation data: (a)



manual, physical observation of the participants; (b) survey instruments and questionnaires; and (c) usage logs of user
activities collected by the virtual platform software. Each of these methods has its own shortcomings for educational
research. Manual observation of participants is extremely tedious, is subject to human error, and is only feasible for
small studies (in terms of number of participants and length of interaction with the virtual environment). On the other
hand, available survey instruments are primarily designed for assessing the overall “usability” and “user experience”
and do not provide any data on specific interactions and actions that the learner performs within the virtual learning
environment, hence fail to capture many aspects of learner-simulation interaction that are critical to educational
research. Questionnaires that ask for users’ freeform response/explanation about their interaction and navigation are
opinionated and obtrusive, and often fail to collect data on important details compared to when the user is observed in
real time as they interact with the virtual learning environment. Moreover, data logs that are automatically collected
by software platforms and apps only provide generic usage/navigation information (i.e., the same data points are
logged for all virtual environments), hence such data logs often do not contain the type of user-simulation

interaction/navigation data needed for investigating specific research questions in educational research studies.

As a result, there is a general paucity of scientific evidence on the relationship between learning outcomes and
usage/navigation in virtual simulated environments. The work presented in this paper is part of an overarching STEM
educational research project (summarized in Figure 1) and takes a first step toward addressing the above gap. More
specifically, the contributions of this paper are:

a) This paper is among a small percentage of studies that takes a quantitative approach toward measuring and
studying learner-simulation interactions. As mentioned earlier, a comprehensive literature review shows that
only 7% of studies collect interaction information and primarily do so in a qualitative manner via
questionnaires and survey instruments [1].

b) This paper performs a set of multivariable regression analyses to investigate how/if navigation-related factors
are predictors of certain learning outcomes. Our statistical results indicate that the total time spent in the
simulation and the distribution of time allocations among different areas within the simulated environment
are predictors of experiential learning and students’ self-assessment of learning.

c¢) From a learning analytics perspective, this study shows the application of a machine learning-based video
analytics tool to extract navigation-related statistics from screen recorded videos of students' interactions

with a virtual simulated environment.

The remainder of the paper is organized as follows. Section 2 provides a review of common ways of assessing user
interaction in simulated learning environments. Section 3 describes the immersive simulation-based learning modules
implemented in an undergraduate computer science course as part of our research experiments. Section 4 summarizes
the data collection, video analytics for extracting user-simulation interaction from screen recorded videos, and
statistical models. Section 5 presents the regression results and main findings. Section 6 provides a discussion on the
relevance to and implications for engineering education. Finally, conclusions and future research opportunities are

discussed in Section 7.
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Figure 1. Summary of the overarching NSF project and analysis methods used in this paper

2. Literature Review

This section provides an overview of common approaches used in educational research papers for assessing user
interaction with simulated learning environments. A comprehensive review of virtual reality (VR) applications in
higher education [1] shows that despite a general research interest in user interaction with virtual environments, only
a small number of papers (7%) collect and analyze usage and navigation data. A handful utilized manual, physical
observation of the participants, which is a tedious task and prone to human errors by the observer. Other papers that
study usage and navigation primarily used surveys, which are subjective and prone to bias [2], and only provide
qualitative data. In addition, participant responses to open-ended questions can be incomplete as the full interactive
experience is not tracked, recorded, or evaluated. Despite their pitfalls, traditional data collection methods such as
surveys/questionnaires and manual observation remain the primary methods in educational research studies for

collecting information on learner interactions in simulated environments. We summarize a sample of these studies in

this section.




In [3], undergraduate students are asked to write a paper on how a VR learning environment compares to viewing a
standard classroom slideshow. In an experiment related to analyzing player presence in computer games [4], the
research team concluded that physical observation of participant interaction is too tedious, hence they resorted to
collecting qualitative responses from their participants. Researchers in [5] investigate user interactions in mixed-reality
teaching and learning environments by manually reviewing and labelling the videos collected using a screen capture
tool. In another study [6], the authors assess two levels of immersive VR simulation to teach the skill of
decontamination to nursing students. Following initial training, participants who completed either of the two
interventions took part in a focus group interview, which was audiotaped and transcribed to analyze students’

satisfaction and experience with the two different VR simulation formats.

In [7], 147 undergraduate students watched a 360-degree video of a YouTuber traveling through a city by car. The
students were divided into two groups, a group that viewed the video through a VR headset, and the other group who
watched the video on a 2D screen monitor. The research team screen recorded the participants’ viewing behavior,
devised space quadrants in the 360 video, and measured changes in an omnidirectional movement space. Then, the
researchers manually reviewed the 147 videos and tracked each user’s time spent looking at each video quadrant space
through tedious manual measurements. In another study [8], a 3D virtual simulation of a retail store was used with
the objective to quantify interest in the rack and aisle design by measuring “exposure intensity” (i.e., how long they
are seen). The research team manually tracked the time each participant spent observing and interacting with different
product racks, which required a significant amount of time and effort that could be saved if an automated video
analytics tool like the one utilized in this paper was used to track the time each participant spends looking at a given
location. For a list of other papers that use surveys/questionnaires, manual observations, and/or data logs to study

learner interactions and navigation in simulated environments, see [9-13].

The inefficiency and inadequacy of manual and traditional data collection approaches explain why the literature
contains limited analysis of user interaction/navigation in virtual simulated learning environments despite the general
consensus on its importance. This paper contributes to filling this research gap in the current literature by taking a
quantitative approach toward measuring learner navigation in an immersive simulated environment and providing
statistical evidence on navigation-related factors as predictors of experiential learning and students’ self-assessment

of learning.

3. Overview of The Virtual Learning Environment and Course Implementation

This section describes the immersive simulation-based learning modules and their implementation in an undergraduate
programming course as part of our research experiments to measure learner navigation in immersive simulations and

study its relationship with learning outcomes.



3.1 Immersive Simulation-Based Learning (ISBL)

The virtual learning environments used in our experiments fall under Immersive Simulation-Based Learning (ISBL).

ISBL involves the use of an immersive simulated environment which serves as the context for problem-based learning

(PBL). The integration of immersive technologies with PBL enables utilizing the advantages of both paradigms to

improve critical thinking and problem-solving skills and enhance students’ motivation and overall learning experience

[14,15]. More specifically, an ISBL module consists of:

a)

b)

<)

d)

An immersive simulated environment that models a real system and serves as the context for technology-
enhanced PBL.

A set of entities in the simulated environment that are processed, assembled, produced, stored, or transported.
Depending on the context being simulated, these entities can represent people, products, raw material, or
information flowing in the simulated system.

A set of processes in the simulation that model the stages or stations that the entities go through during the
simulation run.

A PBL activity defined around the context and inspired by problems related to the real-world system modeled

in the simulated environment.

The integration of an immersive simulated environment with PBL also enables ISBL to support and augment the

pedagogical and psychological theories associated with traditional PBL, namely:

Constructivism Theory [16]: This theory suggests that learners construct their mental models and
interpretations of the real world through cognitive and interpretive activities that accommodate new
ideas/phenomena with prior knowledge. In ISBL, the immersive simulation serves as the context and
provides an environment to interact with, which enables knowledge to be constructed via interactions with
the virtual environment and indexed by relevant contexts.

Information Processing Approach to Learning theory [17]: The three principles of this theory are present in
ISBL to support long-lasting development of critical thinking and problem-solving skills by: (a) activating
prior knowledge related to the context under study; (b) enabling a contextually enriched learning environment
through an immersive simulation that mimics a real-world situation; and, (c) allowing learners to expand
their prior knowledge to solve a realistic and practical problem.

Self-determination Theory [18]: This theory promotes autonomous motivators in contrast to traditional
learning and teaching methods that are primarily based on controlled motivators such as rewards and
punishments (e.g., passing or failing a test). Such controlled motivators can lead to superficial learning and
cause a sense of stress and anxiety. ISBL aligns with this theory as it enables students to incorporate their
views and take greater responsibility for their learning, thus promoting autonomous motivators.

Adult Learning Theory [19]: ISBL enables the main pillars of this theory by providing a self-directed and
problem-centered learning experience that draws on previous work experiences and integrates into the

professional learner’s everyday life.



It is important to note that the assessment of ISBL as an intervention is out of the scope of this paper. We refer the
interested reader to [20-23] for a sample of studies on the effectiveness of ISBL for teaching and learning. Instead, the
focus of this paper is on learner-simulation interaction, and in particular, on the quantification of learner navigation in
an immersive simulated environment to investigate whether navigation-related factors can serve as statistical

predictors of certain learning outcomes. To that end, we chose ISBL as a testbed for our research experiments.

3.2 Course Description and Sample ISBL. Modules Implemented

We implement a set of ISBL modules in an undergraduate course on “object-oriented programming in Java”, a
required course for the B.S. in Computer Science program at The Pennsylvania State University, Abington Campus.
The high-level objectives of the course are to enable students to:

e program in an object-oriented language (Java).

e write code to interface databases using Java.

e create graphical user interfaces (GUIs) using Java.

e implement web-based object-oriented programming and design using net-centric computing concepts.

e perform interface prototyping, program design, implementation of both client and server programs, unit

testing, and documentation.

The course is structured to be taught online and includes video lectures, online quiz for each lecture, homework
assignments, a class project, and two exams. The course section used in this study was offered in Spring 2021. The
ISBL modules used in the experiments and analysis presented in this paper are related to an airport terminal and aim
to mimic object-oriented programming problems that arise in a real-life airport system. Each module is accompanied
by a three-dimensional, VR-compatible, animated simulation model that is to be treated as the “real-world system”.
Figure 2 provides a screenshot of the immersive simulation used in the ISBL modules. Students are given two weeks
to complete each ISBL assignment following the lecture on the respective topic. The document that comes with each

module includes a description of the system at hand and the object-oriented programming problems to be solved.

Figure 2. The immersive simulation model of an airport terminal.



We developed and implemented three related ISBL modules (i.c., three assignments) defined around the immersive
airport simulation (which serves as the context for the assignments). In these modules, the student is “hired” as a
software engineer to develop an information system for the airport terminal using an object-oriented programming
language. Students need to interact with and navigate through the simulation to make observations and collect the
necessary data/information needed to complete the assignments. The learning objectives for the three ISBL modules
can be summarized as follows:
o Identify relevant classes, attributes of classes, methods of classes, and their relationships to a given problem
by observing a real system.
e Develop a pseudocode of the system based on the identified classes and their attributes, methods, and
relationships.
e Create a UML class diagram from a pseudocode.
e Collect and import operational data into the database using SQL scripts.
e Create a CRUD (Create-Read-Update-Delete) database application and a graphical user interface (GUI).

e  Test the CRUD application and associated GUI under various events/test cases.

4. Research Data and Analysis Methodology

Figure 3 summarizes the research data and analysis methodology. Our research experiments include a total of 18
students. We screen record the students’ virtual tours as they navigate in the simulation environment to perform the
tasks needed to complete their ISBL assignments. We then use a video analytics tool to process and analyze the videos
and collect statistics on navigation-related measures for each student. In addition, we use a set of surveys to collect
data on students’ demographics, academic background and prior preparation, personality type, experiential learning,
and self-assessment of learning. The navigation data and survey data are then used to perform a set of multivariable
regression analyses to determine how/if users’ navigation in the simulated environment can be a statistical predictor

of their learning outcomes. The remainder of this section describes these steps in more detail.

Data Collection

Survey data

(demographlcs, acade.lmc backgrougd. Past Multivariable
experience, personality type, experiential . .
learning, self-assessment of learning) Regressmn Allal}’SlS

; Video Analytics
Video data

Screen recorded videos of students” navigation » Process and analyze videos via machine learning| |
in the virtual simulated environment to extract navigation-related statistics

Figure 3. Research data and analysis methodology.



We use the above methodology to explore the following research questions: (1) Is the total time spent in the simulation
environment a statistical predictor of experiential learning and self-assessment of learning? (2) Is the distribution of
time allocations to different areas within the virtual environment a statistical predictor of experiential learning and
self-assessment of learning? And, (3) can a combination of the above navigation-related factors and learners’
demographics, personality type, prior work experience, and past experience with computer simulations be used to

predict experiential learning and self-assessment of learning in the context of ISBL?

4.1 Data collection

The following instruments/methods are used for data collection (IRB approval was obtained prior to data collection):

e Demographics and academic background survey: We collect data on each student’s gender, race, grade

point average (GPA), major, semester standing, prior work experience, prior experience with computer
simulation, and experience with video games.

e Big-Five Inventory (BFI) Personality Test: This instrument [24] consists of 10 Likert scale questions and
measures five personality traits, namely extraversion, agreeableness, conscientiousness, neuroticism, and
openness.

o Experiential Learning Survey: Experiential learning or experience-based learning is generally referred to
actively applying knowledge and skills to solve real-world problems [25]. This survey involves 12 Likert scale
questions measuring students’ perception of incorporation of active, participatory learning in the course [26].
This instrument consists of four different constructs, namely environment, utility, active learning, and
relevance. We mainly focus on two of the constructs, namely how effective the environment was in students’
learning, and how beneficial the hands-on experiment was in terms of u#i/i¢y in students’ future activities.

o Self-assessment based on Bloom’s Taxonomy: In this instrument, adapted from [27], students rank their
perceived level of understanding for various concepts based on six cognitive levels from the Bloom’s
Taxonomy [28]: (1) remembering relevant knowledge; (2) understanding, classifying, and explaining the
material; (3) applying the knowledge learned; (4) analyzing and dividing materials through separating and
organizing; (5) evaluating by examining and criticizing based on standards; (6) creating solutions to new
problems.

e Screen-recorded videos of interaction with the simulation environment: We screen record students’
navigation in the virtual environment as they interact with the simulation, make observations, and collect the
data needed for solving the ISBL assignments. We then use a video analytics tool based on machine learning

techniques to extract data on navigation measures as described in the following subsection.

4.2 Quantifying Learner Navigation in the Simulated Environment via Video Analytics

In order to analyze the collected screen-recorded videos and extract students’ navigation data, we use a video analytics
tool developed by our research team as part of the overarching NSF project summarized in Figure 1. Here, we provide

a brief overview of the main methods used and refer the interested reader to [29] for technical details related to the



video analytics tool as the focus of this paper is on assessing the relationship between learning outcomes and
navigation in the simulated environment, and as space limitations preclude presenting a complete description of the

video analytics tool in this paper.

The video analytics tool uses two classification models and provides three statistics: two navigation-related measures
and a score related to video quality in terms of noisy data. More specifically, a multiclassification convolutional neural
network (CNN) is used for predicting time spent at areas of interest in a simulated environment. Once trained based
on manually labelled frames, the CNN takes extracted frames from the videos as inputs, runs convolutions over the
pixel arrays, and outputs a categorical prediction of the airport area being viewed in each frame. The tool tracks the
time spent in each area of the airport simulation model (e.g., check-in area, security checkpoint, departure gate, ...),
and computes a standard deviation-like measure (hereafter referred to as Stdev) based on the percentage of time spent

in different areas of the simulated environment. For each student, the Stdev measure is given by:

(X — u)?

Stdev =
ev N

where N denotes the number of areas of interest in the simulated environment, i is the index for the areas (i =
1,2, ...,N), X; denotes the percentage of time the student under study spent in area i, and y; denotes the percentage of
time the “average” student spends in area i. In our study, y; values represent the class average for area i, that is,
percentage of time student participants spend in each area i on average. In essence, this navigation measure calculates
the deviation from the average distribution of time allocations among different areas within the simulated environment,

in our case, the airport terminal.

The intuition and justification behind the proposed Stdev navigation measure can be described as follows. Based on
the problems and activities to be completed in each ISBL module, students need to interact with, study and/or collect
data from a certain area or areas of the simulated environment. For example, the first ISBL module used in our
experiment asks students to study the “entire” airport to develop a pseudocode of the airport system by identifying
relevant object classes and their attributes, methods, and relationships. Therefore, we expect a student that
“successfully” completes the ISBL module to spend some time in every area of the airport. For a class where the
majority of students successfully complete the ISBL module (along with additional inspiration from the Law of Large
Numbers), we expect the class’s average time distributions for different areas to converge to the “appropriate” time
allocation among the areas as needed for successful completion of the ISBL module. For example, if the entire class
on average allocates the interaction time uniformly among the check-in, security checkpoint, and departure gate areas,
then we consider a uniform time allocation among these areas to be the appropriate way to navigate the simulated
airport for that ISBL module. Consequently, for each student, the greater the discrepancies in their time allocation to
different areas compared to the average time allocations, the greater the deviation from the proper way of navigating

the simulated environment for that ISBL module, which is captured by a larger Stdev value.



It is important to clarify that we use percentage of time rather than the absolute amount of time to avoid differences
in video lengths to skew the class average and our results. This way, the following two sample students would both
report a small Stdev value as they both allocated their time almost uniformly among the three areas, even though
Student 2 spends twice the total time in the virtual environment:
e Student | spends a total of 16 minutes in the simulated airport with 5 minutes (31.25%) spent in check-in
area, 6 minutes (37.5%) in security checkpoint, and 5 minutes (31.25%) in the gate area.
e Student 2 spends a total of 32 minutes in the simulated airport with 11 minutes (34.38%) spent in check-in

area, 10 minutes (31.25%) in security checkpoint, and 11 minutes (34.38%) in the gate area.

Due to issues that may arise during recording the videos and the unpredictable nature of participants interacting with
a computer program, screen recordings may sometimes capture video frames in which the participant navigates away
from the simulation program. In the videos that we collected, we sometimes see frames that show the desktop, an
empty/black screen, or a different window/application when the student switches between programs in the middle of
the activity (say, the student switches to a chat application to respond to a message and then returns back to the
simulation to continue their assignment). These video frames can disrupt the overall accuracy of the multiclassification
predictions as such frames are not included in the original manually labelled training set. This is a common problem
in machine learning and is generally known as open-set recognition in which the trained model will still output a
prediction on unknown frames (e.g., the multiclassification CNN will still classify a blank screen as one of the areas
in the airport). To combat this issue, a separate binary classification model is included in the video analytics tool for
identifying frames outside the training set, and a “Flag Rate” is reported for each video indicating the percentage of
unrecognizable frames in that video. A video with a high Flag Rate contains a high percentage of such frames,
decreasing the reliability of the predictions by the multiclassification CNN and the estimated time allocations. We use

this Flag Rate to identify poorly recorded videos and to assess the reliability of calculated measures of navigation.

In addition to the Stdev and Flag Rate measures, the video analytics tool also calculates the total time that a student
spends in the simulated environment, hereafter referred to as “Total Time”, which we will use as a second measure of

navigation (besides Stdev) in our multivariable regression analysis described in the following subsection.

4.3 Multivariable Regression Analysis

A set of multivariable regression analyses are conducted to investigate how/if two dependent variables (i.e., aggregate
measures of experiential learning and self-assessment) can be explained by a set of independent variables or predictors
measured via the demographics and BFI surveys and video analytics. Prior to performing the analysis, the normality,
homoscedasticity, and linear relationship assumptions are validated. All stepwise regressions are performed at a 5%
level of significance. We use a forward stepwise regression approach which forms a prediction model from the bottom
up from a set of independent variables by entering the variables into the prediction model one at a time in a series of
steps. More specifically, at each step, the variable that, in addition to the previously entered variables, would result in

the maximum increase in the explained percentage of variance of the dependent variable will be added to the prediction



model. Equation (1) shows the general model structure with all n predictor variables, where the students’ overall
experiential learning score is the dependent variable, a, is a constant, x; (j = 1,2,...,n) denotes the predictor
variables, and a; (j =1,2,..,n) denotes the standardized coefficient for X. A similar general structure will be
investigated for the overall self-assessment level as shown in Equation (2). Tables 1 and 2 summarize the predictor

and dependent variables, respectively.

Overall Experiential Learning = ay + a;x; + ayx, + -+ apx, (1)

Overall Self-Assessment = by + bxy + byxy + -« + byx, (2)

Table 1. Predictor variables considered in the multivariable regression analysis.

Data collection Predictor variables ]?ata} type/ Measure
method indicator
Year of birth (age) Numerical 20-26
Gender Categorical Female, Male, Other
Race Categorical White, Asian, Hispanic, Black, Other
Demographics Semester standing Categorical Freshman, Sophomore, Junior, Senior
survey GPA Numerical 0-4.00
Major Categorical Information science, Other
Work experience Categorical Yes, No
Experience with computer Categorical Expert, Some experience, None
simulation
Experience with Categorical Expert, Some experience, None
video games
Extraversmp (Reserved, Score 125
Sociable)
Agreeableness (generally
trusting, find faults with others) Score 1-3
Conscientiousness (does a Score 125
BFI personality | thorough job, tends to be lazy)
traits ici
Neuroticism (rela?ced, gets Score 125
nervous easily)
Openness (has active
imagination, has artistic Score 1-5
interests)
Total time S}lm of (.1u.rat1on of all [0, 00) in seconds
virtual visits
Deviation from the
Standard deviation average time [0, o0) in seconds
Time allocations in (Stdev) allocations to different ’
the simulated areas of the simulation
environment Percentage of
Flag rate unrecognized frames 0%-100%
in a video




Table 2. Dependent variables considered in the multivariable regression analysis.

Data collection method Dependent variables Indicator Measure
Experiential Learning Environment Environment score 1-5
Survey Utility Utility Score 1-5
Overall Overall average score 1-5
Topic 1: Object oriented programming Score for Topic 1 1-6
Bloom’s Self-Assessment Topic 2: Database design Score for Topic 2 1-6
Survey Topic 3: CRUD development Score for Topic 3 1-6
Topic 4: GUI development Score for Topic 4 1-6
Overall self-assessment Overall score 1-6
Experiential Learning Bloom’s Taxonomy Self-assessment
All Flag Rates Flag Rates<10% Flag Rates<5%
Including BFI Variables Excluding BFI Variables

Figure 4. Design of stepwise regression experiments

Figure 4 summarizes the stepwise regression experiments. For instance, we experimented with the following six
models for Overall Experiential Learning score as the dependent variable (similarly, a set of six models were analyzed

for the overall self-assessment score):
® Model 1: All predictor variables in Table 1 and all student videos regardless of flag rate.
® Model 2: All predictor variables in Table 1 but only videos with a flag rate less than 10%.
®  Model 3: All predictor variables in Table 1 but only videos with a flag rate less than 5%.
®  Model 4: All predictor variables except BFI factors and all videos regardless of flag rate.
® Model 5: All predictor variables except BFI factors and only videos with flag rate < 10%.

® Model 6: All predictor variables except BFI factors and only videos with flag rate < 5%.

5. Results

This section presents the results of our regression analysis and supporting evidence from the literature to further justify

the resulting prediction models. For the sake of conciseness, and to keep the focus on the role of learner navigation in



the simulated environment, we only present the results where the navigation factors “Total Time” and “Stdev” enter

the final regression model.

5.1 Predictors of Experiential Learning

Equation (3) presents the resulting regression model when all videos are included (regardless of flag rate) and BFI
factors are excluded from the analysis. The model indicates that year of birth, total time spent in the virtual
environment, and prior experience with computer simulation are the most significant predictors of the Overall
Experiential Learning (OEL) measure. Table 3 illustrates the three models returned by the stepwise regression
procedure. The adjusted R? indicates that 76% of the variance could be explained by the regression model shown in

equation (3).

OEL = —0.827 * Year of birth — 0.440 * Total time 3)
+ 0.341 * Experience with computer simulation

Table 3. Predictors of the Overall Experiential Learning (OEL) score excluding BFI factors

Adjusted Standardized

. . 2 i .
Model  Predictor variables R R2 Beta t-value Sig.
1 Year of birth 0.61 0.593 -.786 -5.080 0.00
Year of birth -.883 -6.067 0.00

2 Total time 0.71 0.67 -.333 -2.210 0.043
Year of birth -.827 -6.597 0.00

3 Total time 0.80 076 440 3347 0.005

Experience with computer simulation 341 2.619 0.020

There is a negative correlation between the year of birth and OEL, indicating older students tend to report higher levels
of experiential learning and OEL score. This relationship can be explained by noting that older students have more
life experience and knowledge, which previous studies have shown to be important factors in developing applied
problem-solving skills [30]. Furthermore, as suggested in [31], more mature learners can easily connect the new
concepts to their experience, and immediately apply what they already know to new real-world situations, hence a

negative correlation between year of birth of OEL is expected.

Equation (3) also indicates that the total amount of time spent in the virtual simulated environment is negatively
associated with students’ OEL score. After further review of student-simulation interaction videos, we partially
attribute this negative relationship to the level of familiarity and ability to use/navigate the simulation software. In
other words, a portion of the time in the simulation is spent on becoming familiar with and getting used to
usage/navigation features. In addition, some of the longer interaction videos indicate that some students spent a

significant time navigating to certain parts of the simulated environment that are irrelevant to the learning activity



(perhaps they wanted to see what was going on in other parts of the simulation out of curiosity). Therefore, a high

“Total Time” does not necessarily lead to high experiential learning as the regression model also suggests.

Lastly, the regression model in Equation (3) suggests a positive correlation between OEL and prior experience with
computer simulation. This can be explained in two ways: (a) prior experience with computer simulation enables
students to apply/activate their past knowledge/information to build new knowledge and better relate to the ISBL
modules; (b) having prior experience with simulation environments allows the student to focus and spend the majority
of the interaction time on performing the tasks related to the learning activity, while students who lack such prior
experience tend to spend more time on becoming familiar with and getting used to usage/navigation in a new type of

environment as also observed in [32].

Equation (4) shows the regression model including BFI factors when only videos with a flag rate of less than 5% are
included in the analysis. The model indicates that year of birth, doing a thorough job, previous work experience, active
imagination, and the proposed Stdev navigation measure are the most significant predictors of the OEL score. The
adjusted R? suggests that 93% of the variance could be explained by the regression model shown in equation (4).

Table 4 summarizes the five models returned by the stepwise regression procedure.

OEL = —.264 * Year of birth + .897 * Thorough job @)
—.468 * Previous work experience — .258 * Stdev
+.213 * Active imagination

Table 4. Predictors of the Overall Experiential Learning (OEL) score including BFI factors

Adjusted Standardized

Model Predictor variables R? R2 Beta t-value Sig.
1 Year of birth 0.617 0.593 -.786 -5.080 0.00
Year of birth -.516 -3.870 0.002
2 Thorough job 0.80 0.781 512 2.894 0.012
Year of birth -.359 -2.868 0.012
3 Thorough job 0.874 0.847 .749 5.309 <0.001
Prior work experience -.330 -2.739 0.016
Year of birth -.256 -2.231 0.044
Thorough job 1.030 6.256 <0.001
4 Previous work experience 0-915 0.889 -474 -4.025 0.001
Stdev -.283 -2.502 0.026
Year of birth -.264 -2.812 0.016
Thorough job .897 6.245 <.001
5 Previous work experience 0.947 0.926* -.468 -4.854  <0.001
Stdev -.258 -2.772 0.017

Active imagination 213 2.717 0.019




Once again, we see a negative correlation between year of birth and OEL as in the previous model. “Doing a thorough
job” also enters the regression model, which is one of the conscientiousness personality factors describing individuals
who tend to be more responsible and goal oriented. Students with higher levels of conscientiousness tend to seek their
career goals by persistent studying, which can explain higher levels of OEL reported by these students. The positive
correlation between this personality factor and OEL can also be explained by existing research findings that suggest
such personality traits are also expected to enhance students’ acceptance of computer-based assessments such as the
ISBL modules used in our experiment [33]. Furthermore, this finding (and the order of entry of this trait in the
prediction model) is supported by the findings of a recent meta-analysis in [34] that identifies this personality trait as

the one with the most substantial association with academic achievement.

The negative correlation between previous work experience and OEL can be explained by previous research findings
that suggest more experienced students tend to blend the instructions materials with their (often irrelevant) work
experience, which could negatively affect their ability in absorbing new concepts [35]. Therefore, having work
experience is not necessarily a helpful resource to improve student’s experiential learning outcomes, especially if the
past work experience is not related to the context at hand, explaining the negative correlation reported in the regression

model.

We find a negative correlation between the Stdev navigation measure and OEL, which can be explained as follows.
As described previously, the learning activity for each ISBL module focuses on certain areas of the simulated airport
terminal. Since we assume the class average converges to the “appropriate” time allocations among areas in the
simulation, then a student that spends too much or insufficient time in the relevant area(s) compared to the class
average is most likely not doing the assignment properly. Therefore, we expect a large deviation from the average
distribution of time allocations among areas in the simulated environment to negatively affect the OEL score as also

indicated by Equation (4).

Lastly, Equation (4) indicates a positive correlation between active imagination and OEL, suggesting that active
imagination enhances students’ overall experiential learning outcome. From previous studies, we know active
imagination allows students to be more creative and improves their critical thinking skills and ability to find alternative
solutions for real-life problems [36]. Since the ISBL modules mimic real-world situations, the observed positive

correlation is expected.

5.2 Predictors of Self-Assessment of Learning

Equation (5) shows the regression model when BFI factors and videos with a flag rate of less than 10% are considered.
The model indicates that being generally trusting, doing a thorough job, year of birth, and the Stdev navigation
measure are the most significant predictors of the overall self-assessment score. The adjusted R? suggests that 92% of
the variance can explained by the regression model in Equation (5). Table 5 shows the models returned by the stepwise

regression procedure. Once again, we see a positive correlation between doing a thorough job and learners’ self-



assessment as justified previously for the case of OEL. We see a positive correlation between year of birth and the
learners’ self-assessment, suggesting younger students tend to report higher levels of self-assessment score. This could
be attributed to differences between younger and more mature students in social desirability bias [37] which includes
overreporting desirable attributes, in this case self-assessment of learning. We find a similar correlation between Stdev
and learner’s self-assessment as in the previous model indicating that a larger deviation from the average time

allocation distribution has a negative impact on the overall self-assessment of learning as justified previously.

Overall Self-Assessment = 1.591 * Thorough Job + .768 = Year of birth %)
—.317 * Stdev — 1.496 * Trusting

Table 5. Predictors of learner’s self-assessment

Adjusted  Standardized

. . 2 i .
Model Predictor variables R R2 Beta t-value Sig.
1 Trusting 0.67 0.63 -.82 -4.527 0.001
Trusting -1.234 -5.392 <.001

2 Thorough job 0.79 0.75 .546 2.388 .041
Trusting -1.320 -7.595 <.001

3 Thorough job 0.90 0.86 1.145 4.220 .003
Year of birth .623 2.844 .022

Trusting -1.496 -10.07 <.001

Thorough job 1.591 5.935 <.001

4 Year of birth 094 092 768 4369 003
Stdev -317 -2.609 .035

Lastly, we see a negative correlation between being generally trusting and the overall learners’ self-assessment score.
Students who identified themselves as more generally trusting report a lower self-assessment score. Both positive [38]
and negative [39] correlations between this personality trait and student achievement have been previously reported
in the literature. Therefore, this finding highlights a gap and an important area for future educational research to

enhance our understanding of the impact of such personality traits on learner’s perception of their own learning.

In summary, we wanted to investigate the impact of learner navigation in immersive simulated environments by
determining if and how users’ time allocation in the virtual environment can be a predictor of their learning outcomes.
The above statistical results indicate that navigation-related measures such as the total time spent in the simulation
and the distribution of time allocations among different areas within the simulated environment are predictors of
experiential learning and students’ self-assessment of learning. These results contribute to the existing body of
knowledge by addressing the general lack of quantitative analysis of user-simulation interaction in current educational
research studies, and by highlighting the potential value of further research on the role of interaction and navigation

in immersive simulation-based learning.



6. Discussions: Relevance to Engineering Education

In engineering education, the value of experiential learning and inquiry-based learning through real-world experiences
and experimentation is well-established as reflected by the fact that internships, industry projects, and laboratory
courses are recognized as key components of many undergraduate and graduate engineering programs. In recent years,
technological advancements have enabled virfual inquiry-based and experiential learning via digital simulations and
immersive technologies. Some of the most common examples include virtual field trips [40], where students perform
site visits in 360-degree panoramic VR rather than physically visiting a real-world site, and virtual laboratories [41],
where students interact with virtual equipment and materials, and conduct lab experiments in a technology-mediated
manner using a simulation or emulation of a physical lab. One of the main drivers behind the growing application of
immersive simulations in engineering education is that they can replace real-world experimentation and augment
inquiry-based learning by enabling low-cost and risk-free learning experiences, where learners’ interactions within a
simulated environment enable knowledge and skill development. Other drivers behind the ongoing shift to immersive

simulations are the emergence of online degrees and switching to remote learning during the COVID-19 pandemic.

The growing use of virtual simulated environments in engineering education necessitates a better understanding of
how learning occurs in such environments by measuring the relationships between learning outcomes and learners’
usage and navigation in virtual settings as well as their demographics, personality traits (say, technology acceptance),
and prior experiences [42]. A recent article [15] on the ongoing transition in engineering education from physical
experimentation to immersive simulated learning environments highlights learner-simulation interaction as an
important area for future educational research to address the existing knowledge gap related to teaching and learning
via immersive simulations. Quantification and understanding of the role of learner-simulation interaction can help
guide and optimize the design of immersive simulated environments to enhance learner engagement, and
consequently, students' learning experience, motivation, knowledge acquisition, and skill development. However,
despite the significant opportunity to use advanced learning analytics techniques to utilize the rich usage and
navigation data provided by immersive virtual environments, the results of a comprehensive literature analysis [1]

reveals that most educational research studies do not collect or analyze such data.

The work presented in this paper responds to the above critical needs and research gaps in today’s engineering
education landscape. Our findings have several important implications for engineering education. By showing the
importance of time allocations within the simulated environment, our results can inform the design of such virtual
environments. For example, a virtual field trip can be designed in a way that ensures students spend sufficient time
observing the relevant aspects to enhance their experiential learning and perceived value of the virtual learning
experience. By showing the relevance of age and personality traits, our findings indicate the potential to enhance
individualized teaching and learning by tailoring the design of immersive virtual experiences based on such factors.
By showing the effect of experience with computer simulations, our results indicate the potential to enhance the
effectiveness of immersive virtual environments through prerequisite training sessions. Lastly, by showing the effect

of past work experience, our findings suggest that the optimal design of virtual learning environments can vary for



traditional student populations (that typically lack prior work experience) versus professional learners, continuing
education, and workforce reskilling and upskilling. While traditional studies primarily focus on pre-/post-tests to
assess learning via computer simulations and ignore learner interactions with the simulation (see [43] for example),
our results add to the learning analytics literature [44] by showing the potential and value of recording students’ actions

within a simulated learning environment.

That said, due to the focus on a single subject matter and limited sample, care must be taken in interpreting and
generalizing our findings. Additional experiments with a larger sample size would enhance the study’s external
validity. Future experiments could also expand the subject pool to include a more diverse group of learners (e.g., age
groups). Our study involved undergraduate students from a particular course context (programming with Java). Further
studies will be needed across various engineering disciplines, student populations (e.g., graduate and professional
learners), and educational settings (e.g., online vs in-person). Another limitation of this work pertains to the use of
surveys to measure experiential learning and self-assessment of learning outcomes. In general, self-reported measures
are subjective and prone to biases. Future research could complement these results with other measures such as
performance assessments and knowledge tests to strengthen the study’s results. Future extensions could also involve
quantifying other measures of navigation that take into account the viewing angle, speed of movements, and paths
taken by the learner within the immersive simulated environment. The findings of such extensions will not only
enhance our understanding of the role of navigation, but also help developers of immersive learning environments to
optimize the design of guided virtual tours that involve prescribed navigation paths. Another rich avenue for future
research involves quantifying and assessing other types of user-simulation interaction beyond navigation, such as
interactions with static objects, interactive entities, and avatars of other users that are simultaneously present in the
same immersive simulated environment. Other immersive technologies, such as Augment Reality (AR) [45], can be
studied to see how learners’ interactions with the virtual environment vary depending on the technology being used.
Insights derived from future studies along the above lines will provide valuable information to enhance the design of

immersive virtual environments and the forms of interaction needed to improve learning outcomes.

With the growing application of virtual simulated environments and immersive technologies in STEM education and
workforce training, we hope that this paper and its future extensions will encourage more attention toward quantitative
assessment and analysis of learner-simulation interactions and their impact on learning outcomes. To further facilitate
future investigations by other educational researchers, we publicly share a set of ISBL modules related to various

STEM topics on our project website [46].

7. Conclusions

In this paper, we implemented sample ISBL modules for teaching and learning object-oriented programming in a
computer science course. ISBL provides a learning environment that enables students to interact and navigate through
a virtual environment that mimics real-world situations. We screen recorded students’ interactions and navigation in

the virtual simulated environment and employed a video analytics tool that uses machine learning techniques to extract



navigation statistics from students’ screen recorded videos. We then performed multivariable regression analysis to
investigate whether navigation-related factors can be predictors of students’ learning outcomes. Regarding the first
two research questions posed in Section 4, our statistical analysis indicated that two navigation-related measures,
namely the total time spent in the virtual environment and deviation from the average distribution of time allocations
across all participants (as measured by our Stdev factor), are significant statistical predictors of experiential learning
and self-assessment of learning. Regarding the third research question, the results showed that a combination of the
two navigation-related factors and learners’ demographics (e.g., age), personality factors (e.g., active imagination and
trusting), prior work experience, and past experience with computer simulations can be used to predict experiential
learning and self-assessment of learning. It is worth noting that our results did not show a significant effect for gender

and race in the context of ISBL.
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