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ABSTRACT
While existing strategies to execute deep learning-based classi-
fication on low-power platforms assume the models are trained
on all classes of interest, this paper posits that adopting context-
awareness i.e. narrowing down a classification task to the current
deployment context consisting of only recent inference queries
can substantially enhance performance in resource-constrained
environments. We propose a new paradigm, CACTUS, for scalable
and efficient context-aware classification where a micro-classifier
recognizes a small set of classes relevant to the current context
and, when context change happens (e.g., a new class comes into the
scene), rapidly switches to another suitable micro-classifier. CAC-
TUS features several innovations, including optimizing the training
cost of context-aware classifiers, enabling on-the-fly context-aware
switching between classifiers, and balancing context switching
costs and performance gains via simple yet effective switching
policies. We show that CACTUS achieves significant benefits in
accuracy, latency, and compute budget across a range of datasets
and IoT platforms.
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1 INTRODUCTION
There has been significant recent interest in executing deep learning
models on low-power embedded systems and IoT devices (e.g. [38,
48, 62]). These devices are heavily resource-constrained in terms
of compute and storage, and typically need to operate at very low
energy budgets to ensure that they can run for weeks or months
on battery power.

ACM ISBN 979-8-4007-0581-6/24/06.
https://doi.org/10.1145/3643832.3661888

Prior approaches to squeeze deep learning models fall into three
categories. The first is approaches to compress the model via prun-
ing, quantization, and knowledge distillation. For example, model
pruning [22] and model quantization [31, 45] techniques reduce
the number of neurons in the models or the number of bits in
the feature representation to achieve less compute. The second
category is model partitioning, which executes the first few lay-
ers of a DNN on the IoT device and the remaining layers on the
cloud [14, 16, 28, 30, 36, 60]. The third category is the early-exit
inference which takes advantage of the fact that most data input
can be classified with far less work than the entire model. Hence,
early exit models attach exits to early layers to execute easy cases
more efficiently [37, 59].
Context-aware inference: We argue that one dimension that
has not been fully explored in prior efforts is context-aware inference.
Context-aware inference narrows down a prediction task to the
current context – a much shorter time window than the overall
time span of the deployed task – to improve inference efficiency.
Rather than attempting to squeeze the original deep learning model
into memory, we instead load a smaller model that is relevant to the
current context. We refer to the smaller model as a “context-aware
classifier”, noted as 𝜇Classifier.

In this work, we define “context” as a time window where only
a subset of classes (called active classes) are likely to appear. A con-
text change indicates a transition to a time window whose active
classes are different because a new class comes into the scene. We
note that other definitions of contexts are possible, but not the
focus of this paper. For example, a context could also refer to a
particular difficulty level of inputs for all classes such as different
weather patterns (rain, fog, snow) or light conditions (bright sun-
light/overexposure). These definitions are orthogonal to context
changes caused by variations in active classes which is our focus.

In IoT settings, context awareness is useful in two scenarios:
a) when the camera is stationary but the scene changes (e.g., dif-
ferent animals appear at different times of day before a wildlife
monitoring camera), and b) when the camera itself moves (e.g.,
drones, robots, ego-centric cameras), for example, a mobile home
robot could switch context when moving from one room to another.
In this work, we focus on the former scenario given the rapidly
growing deployment of static cameras including wildlife trailcams,
backyard birdcams, and doorbell cameras. Context-aware inference
is particularly effective for such static camera settings because the
context tends to remain fairly static for extended periods. For exam-
ple, a trail camera positioned in a forest may primarily observe the
same set of animals. Similarly, a doorbell camera in a residential
area is likely to capture the same types of vehicles and individuals.
Context-aware inference could be beneficial in various other ap-
plications such as industrial monitoring systems where machinery
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states change infrequently or in smart agriculture where monitor-
ing conditions may remain constant over long growing seasons.
This idea holds even greater significance in environments where
compute and memory resources are scarce, such as in many IoT
devices. Even if the application does not require fast or real-time
inference, a decreased inference time, achieved through a more
efficient pipeline, proportionally reduces energy consumption on
IoT devices. This is crucial because a majority of IoT devices operate
on battery power, making energy efficiency vital for prolonging
their operation.
Challenges: Context-aware inference presents several new re-
search challenges. During training, we need to efficiently create a
𝜇Classifier for every possible context, but the number of contexts
grows exponentially with the number of classes. For example, if
there are 100 classes and we consider 3-class 𝜇classifiers, there are
𝐶3
100 = 161700 𝜇Classifers. In addition, there are many model con-

figurations for each 𝜇Classifer, such as the input size (resolution)
and the number of filters in the convolutional layers. The optimal
configuration of a 𝜇Classifer depends on the similarity of classes in
the context. A context whose classes have similar patterns would be
harder to recognize and need to use a 𝜇Classifier that has a higher
model capacity. If we consider 10 configurations per 𝜇Classifier,
then nearly 1.6M models need to be trained to identify the optimal
𝜇Classifers for all possible contexts. Training 𝜇Classifiers with ev-
ery configuration for each context cannot scale with a large number
of configurations and classes.

At inference time, two additional challenges need to be tackled.
First, we need a robust and lightweight method to detect context
change so that we can switch to an appropriate 𝜇Classifier for the
new context. Since context change detection lies on the critical
path of every prediction, the detector needs to be very fast to avoid
adding significant computation overhead to the 𝜇Classifier.

Second, after a new class is detected, we need to determine which
𝜇Classifier to switch to, i.e. what are the active classes in the new
context. One option is to switch to a 𝜇Classifier that handles more
classes, including the new class detected, to reduce the frequency of
future context switches. However, a 𝜇Classifier with more classes
tends to be more computation-intensive and thus has higher infer-
ence costs per input frame. Another option is to use a 𝜇Classifier
that recognizes only the new class. This can be more efficient but
will cause more frequent context switches and thus higher switch
costs. Thus, we need to design a context switching policy that con-
siders both the number of active classes in the new context and the
overhead due to context switches.

Existing approaches to explore context awareness do not address
all dimensions of the problem. The most relevant work [18, 21]
leverages class skewness in video processing to improve efficiency,
but rely on cloud servers to switch between models. This makes it
less applicable to devices with limited network connectivity. Other
approaches assume known class skews [57] or tailor DNN inference
to specific applications without studying how to handle context
changes effectively [32, 34, 42].
The CACTUS approach: We propose a novel paradigm for
scalable and efficient context-aware classification that we refer to
as CACTUS1.

1CACTUS: Context-Aware Classification Through Ultrafast Switching.

Our work has three major contributions. First, we develop an
inter-class similarity metric to estimate the difficulty in classifying
the active classes in each context. We show that this metric is
highly correlated with the optimal choice of configurations for the
𝜇Classifier, and hence allows us to rapidly and cheaply estimate the
best configuration for each 𝜇Classifier without incurring training
costs.

Second, we design an efficient context change adaptation pipeline
by splitting the process into two parts – a lightweight context
change detector that executes on each image as a separate head
attached to each 𝜇Classifer, and a more heavyweight context pre-
dictor that executes a regular all-class classifier to identify the new
class. This separation allows us to invoke the heavyweight classifier
sparingly thereby reducing the computational cost.

Third, we develop a simple yet effective context switch policy
that adaptively determines what size 𝜇Classifer to switch to depend-
ing on how fast active classes change in a particular deployment
environment. This allows us to achieve a balance between context
switching costs and the performance gain of context-aware infer-
ence. Furthermore, our system can deal with variable IoT-Cloud con-
nectivity to enable unattended operation where the device switches
between popular 𝜇Classifers that are locally stored, as well as cloud-
assisted operation where the device can request new 𝜇Classifers to
be created and downloaded for new contexts.

We implement CACTUS by modifying EfficientNet-B0 [58] and
conduct extensive evaluation across five datasets (STL-10 [15],
PLACES365 [64], and three Camera Trap datasets, Enonkishu [6],
Camdeboo [5], and Serengeti (season 4) [7]) and two IoT processors
(Risc-V(GAP8) [61] and low-end ARM 11 (Raspberry Pi Zero W)
[2]). We show that:
• CACTUS reduces computational cost by up to 13× while out-
performing All-Class EfficientNet-B0 in accuracy.

• Our inter-class similarity metric accurately captures the hard-
ness of a set of classes in a 𝜇Classifier (0.86-0.97 Pearson’s
coefficient with classification accuracy).

• CACTUS’s context change detector has 10-20% fewer false
positives and false negatives than an alternate lightweight
detector that uses similar FLOPs.

• Our context switching policy leads to higher speedups in com-
parison to alternative policies (up to 2.5×) while the accuracy
is on a par with them.

• End-to-end results on the Raspberry Pi Zero W and GAP8 IoT
processors show that CACTUS can achieve 1.6× – 5.0× speed-
up and up to 5.4% gain in accuracy compared to All-Class
EfficientNet-B0.

• We also show that CACTUS in Local-Only setting has up
to 4.1× speed-up compared to All-Class EfficientNet-B0 by
storing at most 30 𝜇Classifiers.

2 CASE FOR 𝜇CLASSIFIERS
In this section, we compare two designs for squeezing DNNs on
IoT devices — the canonical method of training and compressing
an all-class model and our approach of using a 𝜇Classifier that has
fewer classes.
Observation 1: Using fewer classes has significant perfor-
mance benefits. Intuitively, if a classifier has fewer classes than
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(a) Fewer classes is better (b) Pruning does not reduce gap (STL-10) (c) Early exit does not reduce gap

Figure 1: 𝜇Classifiers provide substantial performance gains. (a) shows that the accuracy increases substantially as #classes
decreases; (b) shows that model compression expands this gap further and (c) shows a similar trend for early-exit models.

another, it should be more accurate given the same resources. But
how much is this gain in accuracy?

To answer this, we look at the accuracy of EfficientNet-B0 on
different subsets of classes from STL-10 [15] and a Camera Trap
dataset called Enonkishu [6] (See §6.1 for details on the datasets).
Figure 1a shows the average accuracy across all 3-class subsets
of the dataset, 4-class subsets, and so on. Post-training dynamic
range quantization [1] is applied to all models. We see that accuracy
increases steadily as the number of classes decreases: the overall
increase is by about 5% and 5.5% for STL-10 and Enonkishu re-
spectively when we go from 10 classes to 3 classes. This indicates
the substantial accuracy advantage of 𝜇Classifiers over an all-class
model given the same DNN architecture.
Observation 2: Model compression does not diminish the
advantage of 𝜇Classifiers. In Figure 1a, we used EfficientNet-
B0 with quantization but did not apply other techniques that are
available for optimizing deep learning models for embedded MCUs
(e.g. weight sparsification, filter pruning, and others [11, 13, 23, 39,
41, 46, 47, 63]). We now ask whether these techniques can bridge
the accuracy gap between 𝜇Classifiers and the all-class model.

Figure 1b shows the performance gap between a 10-class and
3-class model after model pruning and quantization. We apply filter
pruning [43] which reduces the number of filters in each layer
based on ℓ1 norm. Each point represents a model architecture with
a specific pruning level. The accuracy of each point on the dashed
line that represents a 3-class model is computed by averaging the
accuracy of all 3-class subsets.We see that the accuracy gap between
the 𝜇Classifier and all-class classifier increases as resources reduce
(5% at 148 MFLOPs to 11.5% at 70 MFLOPs). The result highlights
that model optimization techniques cannot diminish the accuracy
advantage of 𝜇Classifiers over the all-class model.
Observation 3: The benefits hold for early exit models. An-
other approach to reduce the computational requirements of exe-
cuting models on IoT devices is to use early exit, where the model
only executes until it is sufficiently confident about the result and
can exit without having to run the remaining layers [27, 37, 59].
This is an orthogonal dimension to the idea of limiting the number
of classes, so we augment 𝜇Classifiers with early exit capability. We

compare the performance of a 𝜇Classifier with early-exit capability
against an all-class models with early exit.

Figure 1c shows the average accuracy across all 3-class subsets,
4-class subsets, and so on till all 10 classes after applying quan-
tization and adding two early exit branches (stages 4 and 6) to
EfficientNet-B0. We see that accuracy increases as the number of
classes decreases. In particular, 3-class 𝜇Classifiers have 5% and
8.6% higher accuracy compared to all-class models for STL-10 and
Enonkishu datasets respectively. Thus, the performance advantages
of 𝜇Classifiers remain even if we augment the model with early
exits.

3 CACTUS DESIGN OVERVIEW
We build on these observations to design a context-aware inference
pipeline CACTUS, which executes context-aware 𝜇Classifiers for
a prediction task and dynamically switches between 𝜇Classifiers to
handle context changes.

CACTUS has two main components. The first component, Con-
figuration Predictor, identifies the suitable configuration of the
𝜇Classifier for each context, i.e., a subset of classes (called active
classes), without any training costs. It represents a context based
on an inter-class similarity metric, which estimates the difficulty
in classifying the active classes in a context. The metric allows
a simple k-nearest neighbor approach to rapidly predict the opti-
mal configuration of a 𝜇Classifier without training every possible
configuration.

The second component, context-aware switching, enables the
device to seamlessly switch between 𝜇Classifiers based on context
changes. It occurs in two steps. To detect context changes, we
augment 𝜇Classifiers with a lightweight Context Change Detector
head. The first step executes the Context Change Detector head to
rapidly detect if the input frame is a new class without determining
which is the new class. If context change is detected, the second step
executes the all-class model, a heavyweight classification module,
that determines which classes are present in the scene. If a new class
is detected, it triggers a “model switch” to load a new 𝜇Classifier
based on the context switching policy. Figure 2 illustrates switching
at run-time.
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Figure 2: Context-Aware Switching in CACTUS for cloud-assisted and local-only (unattended) scenarios. In case the communi-
cation or cloud is not available, the framework relies on stored 𝜇Classifiers.

Usage scenarios: CACTUS supports cloud-assisted and unat-
tended operation.When cloud assistance is available, context-aware
switching detects changes in context and requests a 𝜇Classifier for
the new context.CACTUS cloud executes the Configuration Predic-
tor to rapidly identify the suitable configuration of the 𝜇Classifier,
then trains the model on-demand and sends the model to the device
to handle the new context. The new model can be cached on-device
and the next time the same context occurs, the cached model can be
used. For unattended operation i.e. no cloud availability, CACTUS
relies on locally stored 𝜇Classifiers. Figure 2 shows the pipeline for
both scenarios. In variable connectivity settings, a combination of
cloud-assisted and unattended operation is also possible. We now
describe the two components in more detail.

4 CONFIGURATION PREDICTOR
CACTUS needs to train a resource-efficient 𝜇Classifier for every
possible context. As the optimal 𝜇Classifier configuration for dif-
ferent contexts varies, the core challenge lies in how to quickly
determine the optimal configuration of the 𝜇Classifier given a con-
text. We first give a proper definition of context in this work:

Definition 4.1 (Context). For a classification task that recognizes
a set of 𝑁 = {1, · · · , 𝑛} classes, we define a context as the time
window where only a subset of classes 𝐶 ⊂ 𝑁 are active (i.e., likely
to appear). A 𝑚-class context means that the number of active
classes is𝑚, i.e., |𝐶 | =𝑚.

To see why the optimal 𝜇Classifier configuration varies across
contexts, consider classifying animals captured by a trail camera.
When a context consists of animals with similar features, textures,
or behaviors, the 𝜇Classifier faces a more challenging task in distin-
guishing between them. For instance, if the three classes represent
a deer, an elk, and a moose, the classifier has to contend with the
fact that all three animals have somewhat similar body shapes,
sizes, and features. Consequently, the model may need to employ
more computational resources to scrutinize subtle distinctions and
achieve a comparable level of accuracy.

To address the challenge, our idea is to design an “inter-class
similarity” metric that captures the similarity between the set of
classes in a 𝜇Classifier, which in turn correlates with how much
computational resources (i.e., the configuration) the model requires.
Based on the metric, we design a lightweight kNN-based configu-
ration selector to identify the best configuration of the 𝜇Classifier
without needing to train all configurations. The configuration se-
lector can be queried to output the best configuration i.e. the one
that achieves the lowest resource demands while meeting a target
accuracy for a set of classes (i.e., a context).

4.1 Inter-Class Similarity Metric
Given a set of classes, the inter-class similarity metric is a set of
real numbers, each representing a pairwise class similarity. Two
sets of classes that have similar statistics of inter-class similarities
would share a similar 𝜇Classifier configuration. We use the statis-
tics of inter-class similarities to represent a context, called context
representation.
Pairwise Class Similarity: To measure the similarity between
two classes, we first need to find a representation for each class.
For each input image of a specific class, we get its embedding
from a feature extractor that is trained on all classes. Given a set
of input images of that class, we can average the embedding of
all images as the class representation. The similarity between two
classes is calculated as the Cosine Similarity between their class
representations.
Context Representation: The vector representation of a set
of classes (i.e., a context) is the mean and standard deviation of
similarities among all class pairs. Mathematically, let 𝑠𝑖, 𝑗 be the
cosine similarity between class 𝑖 and class 𝑗 . Then the representation
of an𝑚 class combination 𝐶 (|𝐶 | =𝑚), is:

[mean({𝑠𝑖, 𝑗 }), std({𝑠𝑖, 𝑗 })], 𝑖, 𝑗 ∈ 𝐶. (1)

We note that the above class similarity and context representa-
tion were chosen after consideration of several alternate measures
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of similarity. We show empirical results comparing these metrics
in §6.3.

Figure 3 shows that the mean value of the inter-class similarity
metric generally tracks the difficulty level of a context. We sample
30 different 3-class combinations from the STL-10 image classifi-
cation dataset. We sort these combinations in terms of their mean
similarity (Eq. 1) from low to high (X-axis). The Y-axis shows the
model complexity of 𝜇Classifiers measured by FLOPs. Each entry in
the heatmap reports the accuracy of the 𝜇Classifier with a specific
FLOPs for a 3-class combination (darker is higher accuracy). Overall,
the higher the mean value of inter-class similarity, the less accurate
a 𝜇Classifier with the same configuration (i.e., same FLOPS) since
the context is more difficult. The figure indicates that our proposed
inter-class similarity metric correlates well with the computational
efforts required by a context.

Figure 3: Model complexity versus the proposed inter-class
similarity metric among classes (darker is higher accuracy).

4.2 KNN-based Configuration Predictor
The inter-class similarity metric allows us to develop a simple
kNN-based approach to estimate the optimal configuration for
a 𝜇Classifier. Building the kNN-based configuration predictor re-
quires a configuration space for 𝜇Classifiers, and a set of training
data points that consist of context representations and their corre-
sponding optimal configurations.
Configuration Space: While in principle the configuration space
can include any model compression method and its parameters,
for practical reasons, we restrict ourselves to a few parameters to
make training tractable. We therefore restrict our focus to configu-
ration parameters that provide the large dynamic range of resource-
accuracy tradeoffs for 𝜇Classifiers. We find that two methods are
particularly effective for configuring 𝜇Classifiers — changing the
input image resolution and the number of filters via filter pruning.
In addition, we utilize post-training quantization to further lower
the inference runtime and reduce the model size.
Similarity-directed sampling: The challenge of training the
kNN in a resource-efficient manner is to build an effective train-
ing set. On one hand, we want samples to have good coverage of
the spectrum of𝑚-class combinations so that we can predict the
best configuration of the remaining combinations accurately. On
the other hand, we want as small amount of samples as possible

Figure 4: To build the training dataset for the kNN, we (a)
use similarity-directed (SD) sampling to select 𝑥 subsets of
classes, and determine the best configuration for each subset
as the ground truth label (e.g., Config3 and Config4); and
(b) for each subset, calculate the mean and std of inter-class
similarities to get its context representation.

because for each sample, we need to train all possible 𝜇classifiers
(configurations) to identify the best one.

To sample efficiently, we propose a similarity-directed sampling
scheme that samples at different levels of hardness among all possi-
ble subsets of classes. Figure 4 illustrates the training of kNN. First,
we compute the mean of pair-wise similarity for all combinations.
We then cluster them into four groups of similarity (quartiles). We
then sample randomly from each cluster to gather enough data
samples for training the kNN. Compared to random sampling, our
empirical evaluation on three datasets shows that our sampling
scheme can reduce up to 25-66% of samples while getting similar
prediction accuracy.
Querying the kNN: Once the kNN is constructed, it can be
queried at run-time to predict the optimal 𝜇Classifier for the cur-
rent context. The mean and std of inter-class similarities of the
classes in the context are used to determine the closest configura-
tion parameters in the kNN as the predicted optimal 𝜇Classifier
configuration. Feature extractors of 𝜇Classifiers are frozen during
training to save storage overhead on device and also training time
on the cloud.

We note that an alternate approach to using a kNN-based con-
figuration predictor is to use Neural Architecture Search (NAS
[10, 52]). Our method is considerably lighter weight since, given a
context, we can cheaply determine which configuration parameters
to use via the kNN.

5 CONTEXT-AWARE SWITCHING
Another essential part of making our system work is precisely
detecting context change and, once detected, rapidly switching to
the right 𝜇Classifier for the new context.

This poses two challenges. The first challenge is to robustly and
rapidly detect context changes. A context change occurs when an
input frame falls into an unknown class that is not covered by
the current 𝜇Classifier. Since context change detection lies on the
critical path of every prediction, the detector should be very fast.
The second challenge is to determine the appropriate 𝜇Classifier to
switch to after the new class is identified. Switching to a 𝜇Classifier
with less number of classes can reduce the inference cost per input
frame as the 𝜇Classifier can be more lightweight. However, it can
introduce more frequent context switches and thus increase run-
time overhead in the future. We now explain the proposed context
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change adaptation pipeline and the hybrid context switching policy
that address the two challenges.

5.1 Context Change Adaptation Pipeline
We design an efficient context change adaptation pipeline by split-
ting the process into two parts – a lightweight context change detec-
tor that executes on each image as a separate head attached to each
𝜇Classifer, and a more heavyweight context predictor that executes a
regular all-class classifier to identify the new class. This separation
allows us to invoke the heavyweight classifier sparingly thereby
reducing the computational cost.
Context change detector: The goal of this module is to detect
when the current context has changed. The problem is essentially
the same as detecting out-of-distribution samples, which falls into
the area of uncertainty estimation [9, 19, 24, 40, 50, 51, 53–56].
Although many approaches have been proposed for uncertainty
estimation, most of them are computationally intensive and thus
cannot be applied in a real-time scenario (see §7). Among all the
approaches, Maximum Softmax Probability [24] is the cheapest way
to capture out-of-distribution samples. However, as we show later,
this method yields unsatisfactory performance in our work due to
high false positive and negative rates.

In this work, we introduce a regression-based context-change
detector. Specifically, a regression head is added to the 𝜇Classifier
as the second output head along with the classification head. The
regressor outputs a value around 0 for the classes on which the
𝜇Classifier is trained and a value around 1 for all other classes i.e.
for a new context. Both the classification and regression heads
share the feature extractor of the 𝜇Classifier and thus the additional
computation overhead introduced by the regressor is negligible.
Since the output of the regressor is a continuous value, a thresh-
old, 𝜃 , is needed to distinguish between the current context and
the new context. This threshold is dataset-dependent and tunable
considering the trade-off between the ratio of false positives and
false negatives. We set 𝜃 = 0.5 by default.
Context predictor: After a context change is confirmed by the
context change detector, the next step is to identify the new class.
This is accomplished by an all-class model that determines which
are the classes that need to be included in the new 𝜇classifier. The
all-class model can be either executed locally or at the edge cloud
depending on connectivity. Executing the all-classmodel at the edge
cloud allows us to use more powerful and more accurate models
for determining the classes in the current context, which in turn
can lead to more precise switching.

5.2 Hybrid Context Switching
After a new class is identified, the challenge is to decide what size
𝜇Classifier to switch to. The tradeoff is that using 𝜇Classifiers with
a larger number of classes can reduce future context switches and
improve accuracy whereas using 𝜇Classifiers with a small number
of classes can reduce inference latency per input frame.

Our insight are two-fold. First, the right balance depends on the
deployment environment: A device that encounters much more ac-
tive classes than another device is likely to prefer 𝜇Classifiers with
more classes to avoid higher context switch overheads. We intro-
duce a configuration parameter that can be easily tuned based on the

target deployment environment to determine how the 𝜇Classifiers
are switched.

Second, we do not need to consider all possible 𝜇Classifier sizes
since the computational benefits of 𝜇Classifiers drops dramatically
as the number of classes in them increases. Figure 5 illustrates this
using the PLACES20 dataset, which consists of a total of 20 classes
from PLACES365 [64]. For each combination of𝑚 classes, we select
the most efficient configuration that meets a pre-defined accuracy
threshold. Then we calculate an average of the computation sav-
ings compared to the all-class model for all possible combinations
of𝑚 classes. On the X-axis, "Max" denotes the maximum compu-
tation savings, achieved by consistently using the lowest FLOPs
configuration. Generally, the computation saving of 𝜇Classifiers
starts to decay as we increase the number of classes they cover and
at some point, they provide no computation saving. Here, as the
number of classes in a 𝜇Classifier goes beyond ten, the 𝜇Classifier
brings no computation savings compared to the full-class model.
This motivates us to prioritize 𝜇Classifiers with a small number of
classes (e.g., 2 to 5) to capitalize on the computation savings from
context-aware inference.

Figure 5: Computation saving vs 𝜇Classifier size (𝑚).

Based on the two insights, we develop a “hybrid” context switch
policy that switches between 𝜇Classifers based on the deployment
environment.

Our policy works as follows. A kNN is already trained for each
𝑚 ∈ {2, 3, 4, ...} with a predetermined accuracy threshold. We start
by looking at the configuration needed for the m-class 𝜇Classifier
(i.e. context size = m) where𝑚 ∈ {2, 3, 4, ...}. We then pick the con-
text (𝜇Classifier) with the most efficient configuration. If multiple
context sizes share the same configuration, we select the largest
context size that corresponds to this configuration. This allows us
to pick a minimal 𝜇Classifier configuration while also minimizing
future context switches by picking as large as possible context size.

We now explain two optimizations to efficiently implement the
context switching policy in both cloud-assisted and unattended
operation modes.
Caching 𝜇Classifiers: In cloud-assisted mode, a device down-
loads the 𝜇Classifier heads for a new context and caches them on
device to avoid model training for the same context. If the cache
is full due to device storage constraints, the least frequently used
model will be replaced. Model caching reduces the overhead of
cloud-side model training and device-cloud communication.
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In unattended mode, a set of 𝜇Classifiers will be pre-installed on
the device before deployment. The context switching policy will
switch between only the pre-installed 𝜇Classifiers. We select the
𝜇Classifiers that are most frequently used based on an input trace
collected from the IoT device deployed in a target environment.
Optimizing storage requirements: 𝜇Classifiers that operate on
the same model size share the same model weights as their feature
extractors and are frozen during training. We can reduce storage
requirements by storing one feature extractor per model size, and
only storing the classification and context change detection heads
for each chosen 𝜇Classifier.

Specifically, in cloud-assisted mode, a device stores all the unique
sized feature extractors, one classification and context change de-
tection head for the current context, and if storage is available,
additional classification and context change detection heads from
previous contexts.

In the unattended mode (i.e., without cloud availability), a device
stores all the unique sized feature extractors, an all-class model for
context predictor, and, subject to storage capacity, classification,
and context change detection heads from chosen contexts based on
the trace of the training data. These cached contexts are the most
frequent when we apply the hybrid context-switching policy on
the training set. We show in § 6.5 that the total amount of storage
required for 30 𝜇Classifiers plus feature extractors and the all-class
model is only 23.3MB.

6 EVALUATION
We first describe the experiment settings in § 6.1, and then evaluate
the end-to-end system over five datasets and on real platforms in
§ 6.2 and the components of CACTUS in § 6.3-6.5. We further per-
form ablation studies on context change frequency and scalability
of the system in § 6.6 and implement a camera trap application in
§ 6.7.

6.1 Experiment Settings
Dataset: We use five datasets. Three datasets come from the
Camera Trap applications called Enonkishu [6], Camdeboo [5], and
Serengeti (season 4) [7]. We refer to them together as Camera Trap
datasets. They have temporal data captured by trail cameras with
real-world context changes. Trail cameras make use of an infrared
motion detector and time-lapse modes to capture images, each
time in a sequence of three. The Camera Trap datasets normally
include a lot of species plus an empty class whose images show a
scene with no species in it. Not all species have enough samples
for both train and test sets. Hence we considered the most frequent
species plus the empty class for the classification task. The number
of considered classes were 9, 11, and 18 for Enonkishu, Camdeboo,
and Serengeti respectively.

We also evaluate on two other image datasets, STL-10 [15], and
PLACES365 [64], from which we synthesize temporal sequences.
STL-10 is an image recognition dataset consisting of RGB images
with a size of 96×96. The dataset contains 10 classes, each with 1300
labeled images. PLACES365 is intended for visual understanding
tasks such as scene context, object recognition, and action predic-
tion. We chose 100 scene categories, each with 1200 samples of size

256×256. While Most results are shown for 20 categories (called
PLACE20), we evaluate CACTUS’s scalability for 100 classes.
KNN-based configuration predictor: The 𝜇Classifier is based
on the feature extractor of EfficientNet-B0 [58] pre-trained on Ima-
geNet. We vary both the pruning level and the resolution of input
frames to get different configurations of the feature extractor. Specif-
ically, EfficientNet-B0 features 9 stages, each with a predetermined
output channel size. For pruning level 𝑝 , we scale down the output
channel size of each stage (except the first) by a factor of 1 − 𝑝 ,
creating a modified model. We then prune the filters with the lowest
ℓ1 norm from each layer of EfficientNet-B0 to align with the filter
count of the corresponding layer in the new model (new weights).
Then the new model is initialized with this new set of weights.
We applied three levels of pruning (𝑝), 10%, 30%, and 40%, so that
including the EfficientNet-B0, we have a total of four unique-sized
feature extractors. The range of image resolutions is considered
100–320, 58–96, and 130–256 for Camera Trap, STL-10, and PLACES
datasets respectively. Overall, the size of the configuration space
is 16. A 𝜇Classifier consists of one of the four feature extractors
and two heads, one for classification and one for regression (to
detect context change). Each head uses two Fully Connected layers.
Feature extractors are fine-tuned once on all classes and remain
frozen during the training of 𝜇Classifiers’ heads.

To build the training data for the configuration predictor, we
applied similarity-directed sampling (detailed in §4.2) on m-class
combinations. For each sampled 𝑚-class combination, we train
𝜇Classifiers with all 16 configurations to select the most efficient
one that achieves a target accuracy (i.e., the optimal 𝜇Classifier
configuration). We further use the feature extractor of ResNet-50
to extract the embedding of images from a class and average the
embeddings into a single vector to compute context representation
as Eq. 1. The pairs of context representation for the sampled 𝑚-
class combinations and the optimal 𝜇Classifier configuration for
the context are the training dataset of the kNN.

To balance computation efficiency and accuracy, the target accu-
racy threshold for selecting the best 𝜇Classifier is set to be around
94%, 87%, 92%, 92%, and 97% for Enonkishu, Camdeboo, Serengeti,
STL-10, and PLACES20 datasets respectively, unless noted differ-
ently.

After collecting the training data, we use the kNN to predict the
best 𝜇Classifier configuration for the remaining𝑚-class combina-
tions. kNN predicts the configuration of a 𝜇Classifier based on the
majority vote. It starts with 3 nearest neighbors and if there is no
majority, it considers 4 nearest neighbors and so on until a majority
is achieved.
Context-aware switching: As discussed in §5, a regression head
is attached to a 𝜇Classifier to detect context change. Once context
change is detected, we execute an all-class model (ResNet-50 for the
edge-cloud assisted setting and EfficientNet-B0 for unattended op.)
to identify which new class occurs in the scene. All-class models
are pre-trained on ImageNet and fine-tuned on the target dataset.
Implementation: We implement the CACTUS pipeline on two
different IoT devices — Raspberry Pi Zero W, and GAP8. On both
platforms, we profile the execution latency of models of different
configurations on different datasets. For profiling, We generate
TensorFlow Lite models using the default optimization and int-8
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quantization to reduce the model size and execution latency. For
profiling on Raspberry Zero W, we utilize the TVM framework
[12] to tune the operator implementations to reduce the execution
latency for the Arm Cores. For profiling on GAP8, we use the GAP8
tool chain [3] to transform the TensorFlow Lite models into C
code by fusing the operations. For the end-to-end implementation
on Raspberry Pi ZeroW (§ 6.7), we use the ONNX quantized version
of the models as it provides lower latency on the device without
TVM tuning. We utilize Joulescope JS110 [4] to measure the energy
consumption in § 6.7. A cluster of NVIDIA Tesla M40 24GB GPUs
was used for trainingmodels. The source code is available at GitHub.

6.2 End-to-End Evaluation
This section looks at an edge-cloud assisted system (the unattended
setting is examined in § 6.5). To evaluate the end-to-end perfor-
mance of CACTUS, we need datasets that have context changes.
The three Camera Trap datasets provide us with a real-world tem-
poral flow with context changes but other datasets are not temporal.
Hence, we sequence test sets from the PLACES and STL-10 datasets
to mimic the temporal flow of the Camera Trap to create a temporal
sequence with which to evaluate our methods. Specifically, we find
that for Camera Trap datasets considering 3-class contexts, the
average context interval is 30 frames (context changes in every 30
frames). We thus synthesize a test set with the context interval
of 30 frames for the PLACES and STL-10 datasets and use this in
our evaluation unless noted differently. In § 6.6, we further study
the effects of different context change rates in the performance of
CACTUS.

We compare the classification accuracy and overall speedup of
CACTUS against the following baselines: (a) FAST [57], a context-
aware approach that assumes the class skews are known offline.
During inference it detects the class skew using a window-based
detector and train a specialized classifier (top layers), (b) PALLEON
[18], a state-of-the-art video processing framework that applies a
Bayesian filter to adapt the model to the context. The Bayesian filter
is determined by applying an all-class model on a window of frames.
(c) All-Class Model, which uses the well-trained EfficientNet-B0
with all the classes and full image resolution. (d) All-Class-Early
Exit, which is the early exit variant (exit heads in stages 4 and 6) of
the All-Class Model. (e) All-Class-Pruned, where we apply 30%
pruning to the all-class model. We chose 30% as it gives the best
accuracy and efficiency trade-offs.

Table 1 shows the end-to-end results on two devices. The IoT
device communicates at a data rate of 3Mbps (typical LTE speed).
Computed latencies include the time spent on the inference on
the device, transmission of the triggered frames to the cloud, and
transmission of the classification and regression heads to the de-
vice. We assumed no 𝜇Classifiers are cached on the device which is
the worst-case scenario as it requires more transmission and incurs
higher latency. We averaged latencies over the test set and com-
puted the speedup relative to the All-Class Model. Note that for the
Camera Trap datasets, accuracies are generally low regardless of
whether we use EfficientNet or ResNet-50 due to data cases that
are difficult to classify as well as inaccurate labels.

Overall, our approach has the advantage in terms of accuracy
and latency over baselines. When compared to All-Class Model,

(a) Enonkishu (b) PLACES20

Figure 6: Performance of configuration predictor with differ-
ent accuracy thresholds.

CACTUS has up to 5.4% higher accuracy and also offers latency
speedup of 1.6 − 3.5× for the Pi0 and 2.0 − 5.0× for the GAP8.
CACTUS outperforms two other context-agnostic baselines, All-
Class-Early Exit, and All-Class-Pruned, in terms of both accuracy
and latency by leveraging context awareness to improve efficiency.

Compared to the context-aware approaches FAST [57] and PALLEON
[18], CACTUS demonstrates comparable accuracy on the Cam-
era trap datasets, and 3.7% – 4.9% accuracy improvement for the
PLACES20 dataset, but has 1.6× – 5.0× speedup. FAST and PALLEON
need to execute the All-Class model for several frames to determine
the class skew. Thus, they provide speedups only if the context
change is very infrequent. For this reason, their latency speedup
is at most 1.3× which is significantly lower than CACTUS. Al-
though Table 1 reports no accuracy gains for CACTUS on the
Camdeboo and Serengeti datasets, it is possible to achieve higher
accuracy by adjusting the trade-off between accuracy and inference
speed: a higher accuracy can be obtained by increasing the accu-
racy threshold when training the kNN model, which in turn lowers
the inference speedup as more heavyweight 𝜇Classifiers will be
selected.

We also profiled the peak memory consumption for different
configurations using TensorFlow Lite benchmark tools [8] on a
Raspberry Pi0. For camera trap datasets, 𝜇Classifiers showed a
memory usage range of 11.5-43.9MB, whereas the All-Class model
required 41.3MB. For the PLACES dataset, 𝜇Classifiers’ peak mem-
ory consumption varied between 13.5-31.8MB, while the All-Class
model demanded 30MB.

6.3 Performance of Config Predictor
We now look at the performance of the 𝜇Classifier Configuration
Predictor. We vary the target accuracy threshold from the lowest to
the highest of all the trained 𝜇Classifiers to show how the threshold
affects the performance of the configuration predictor. A lower tar-
get accuracy will result in lighter 𝜇Classifiers and thus less FLOPs.

Figure 6 shows how different target accuracy thresholds affect
the classification accuracy and the computation cost for our method
and baselines. We compare the CACTUS’s configuration predictor
(noted as CACTUS 𝜇C in the figure) with three baselines: (a) CAC-
TUS (Oracle) 𝜇C i.e. the 𝜇Classifier that meets the target accuracy
threshold with minimum FLOPs (which would be selected by an
omniscient scheme rather than the kNN-based method we use).
We note that training and storing the Oracle is not scalable — For
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Methods Enonkishu Camdeboo Serengeti PLACES20
Acc Pi0 GAP8 Acc Pi0 GAP8 Acc Pi0 GAP8 Acc Pi0 GAP8

All-Class Model 88.9% 1.0× 1.0× 65.4% 1.0× 1.0× 74.3% 1.0× 1.0× 90.5% 1.0× 1.0×
All-Class-Early Exit 84.6% 1.7× 2.0× 65.5% 1.1× 1.2× 68.7% 1.5× 1.5× 90.1% 1.2× 1.3×
All-Class-Pruned 81.4% 1.2× 1.7× 57.7% 1.2× 1.7× 69.6% 1.2× 1.7× 84.9% 1.4× 2.0×
FAST [57] 90.1% 1.1× 1.2× 64.9% 1.0× 1.0× 74.0% 1.0× 1.0× 91.0% 1.0× 1.0×
PALLEON [18] 90.7% 1.2× 1.3× 65.7% 1.0× 1.0× 74.1% 1.0× 1.0× 92.2% 1.0× 1.1×
CACTUS 92.2% 3.5× 5.0× 65.4% 1.6× 2.0× 73.8% 2.1× 2.8× 95.9% 2.0× 2.8×

Table 1: End-To-End performance of our approach vs baselines on three datasets; Context changes every 30 frames on average.
For CACTUS, we used the hybrid switching policy with m-class contexts where𝑚 ∈ {2, 3, 4}. Speedup values are rounded. The
gains improve if wireless data rates are higher (we use 3Mbps) or if caching is used (we assume no caching of the 𝜇Classifier
heads). Due to space constraints, results for STL-10 are not included but they follow similar trends.

(a) (b)

Figure 7: (a) The accuracy of a representative configuration
correlates well with the inter-class similarity. (b) The compu-
tational complexity of the predicted 𝜇Classifiers correlates
well with the inter-class similarity. Similarity is normalized
to [0, 1] in both figures.

example, using a 40 GPU cluster for training 3-class 𝜇Cs on the
PLACES dataset, our method (similarity-directed sampling) is faster
by 2 hours for 20 classes and 270 hours for 100 classes. (b)CACTUS
(Highest FLOPs) 𝜇C employs the 𝜇Classifier with the same classes
as CACTUS but at full image resolution and without pruning (and
hence computationally the most expensive). (c) All-Class Model,
which uses the well-trained EfficientNet-B0 with all the classes and
full image resolution. We omit results for other datasets for limited
space. Both the classification accuracy and FLOPs are averaged over
𝜇Classifiers for all 3-class combinations.

Overall, we see that CACTUS can cover a wide trade-off region
between accuracy and computational cost — accuracies vary by 3.5%
to 5% and compute by 6.5× to 13×. Across the range, the accuracy
is nearly as good as the CACTUS (Oracle), indicating that the kNN
together with the inter-class similarity metric works well in selecting
the best configuration. In contrast, All-Class Model (red star) and
CACTUS (Highest FLOPs) (green star) are point solutions. We see
that CACTUS (Highest FLOPs) has significantly higher accuracy
than the All-Class Model even though both models have the same
FLOPs.
Effectiveness of the inter-class similarity metric: The good
predictive performance of the configuration predictor results from
the effectiveness of the inter-class similarity metric in capturing
the difficulty level of contexts.

Figure 7a illustrates how the accuracy of a representative 𝜇Classifier
on each 3-class combination correlates with the inter-class simi-
larity averaged over the 3 classes (Eq. 1). For the graph, all 3-class

combinations were binned into six clusters based on the inter-class
similarity metric and the accuracy and similarity values are av-
eraged in each cluster. We observed that there is a clear inverse
relation between inter-class similarity and classification accuracy.
The Pearson correlation between the inter-class similarity metric
and the classification accuracy is extremely high (0.86 − 0.97), indi-
cating that our similarity metric closely mirrors the difficulty level of
3-class combinations.

Figure 7b looks at this relation from another performance di-
mension — computation savings. The same procedure of grouping
3-class combinations into six bins is applied here. The Y-axis shows
the computation saving of the predicted configurations (by kNN)
compared to the All-Class Model/ CACTUS (Highest FLOPs) and
the X-axis is the inter-class similarity. We see the computation sav-
ing drops as the similarity increases since a more powerful model
should be used to meet the target accuracy threshold. It also shows
that the similarity-aware kNN works well in selecting lightweight
configurations for low similarity combinations and more powerful
configurations for harder cases.

STL-10 PLACES Enonkishu
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Figure 8: Accuracy difference between the predicted 𝜇Cs by
kNN and oracle 𝜇Cs using different similarity metrics. Our
proposed similarity metric “Pair. (mean, std)” provides the
most accurate predictions. Negative difference means the
accuracy of the predicted 𝜇Cs is lower than the oracle.

Comparison with other similarity metrics: We also inves-
tigate alternative similarity metrics and context representations
including (1) confusion matrix-based similarity, (2) maximum and
minimum of pair-wise similarities in a combination, and (3) sorted
pair-wise similarities in a combination (distribution-based represen-
tation). To compute the pair-wise similarity using the confusion ma-
trix, the number of samples that are misclassified are summed and

513



MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan 1

normalized by the total number of those two classes. Figure 8 shows
the comparison using three datasets. Each bar reflects the accuracy
difference between predicted 𝜇Classifiers and oracle 𝜇Classifiers
averaged over all 4-class combinations for each similarity metric.
Overall we see kNN using our pair-wise similarity metric “Pair.
(mean,std)” provides the most accurate predictions on the STL-10
and PLACES20 datasets compared to other methods. Meanwhile,
performance on the Enonkishu dataset matches that of these alter-
natives.

6.4 Perf. of Context-Aware Switching
This section evaluates the performance of the context-aware switch-
ingmodule.We first evaluate the performance of the context change
detector and then the hybrid context switching policy.
Effectiveness of the context change detector: A false posi-
tive (FP) that wrongly predicts a context change would introduce
additional cost whereas a false negative (FN) will cause accuracy
degradation. To evaluate the performance of the regression head,
we test the 𝜇Classifier corresponding to a 3-class combination with
the test samples of 3 classes to calculate the FP rate. In order to
compute the FN rate, we test the mentioned 𝜇Classifier with sam-
ples of all out-of-context classes. For each approach, the reported
FP and FN rates are averaged over all combinations of 3 classes.

Method Enonkishu STL-10 PLACES
FP FN FP FN FP FN

𝜇C+regression (ours) 3.88% 13.61% 13.58% 10.91% 8.91% 8.18%
𝜇C+maximum prob [24] 16.96% 22.89% 31.44% 33.25% 19.49% 18.29%
Oracle 𝜇C+regression 4.01% 13.73% 13.83% 11.15% 8.57% 7.64%

Table 2: False Positive and False Negative rates of our ap-
proach vs baselines.

Table 2 compares the context-change detection performance
of CACTUS (“𝜇C + regression”) against baselines: (a) the same
𝜇Classifier as CACTUS but with a different approach for context
change detection based on maximum softmax probability [24]. (b)
the CACTUS (Oracle) 𝜇Classifier with regression head (“Oracle 𝜇C
+ regression”). CACTUS is much more accurate at context change
detection compared to the baseline that uses the maximum softmax
probability. The FP and FN rates of our approach are 10−20% lower
than the baseline. CACTUS is quite close to the Oracle 𝜇Classifer
as well. We note that the FP and FN rates can be lowered by in-
creasing the accuracy threshold explained in §6.1 or by using larger
𝜇Classifiers (e.g. 4 or 5-class) which would incur fewer context
switches. Also, FP and FN rates can be tuned via the context change
detection threshold.
Effectiveness of hybrid context switching: We now compare
hybrid context switching (i.e. switching between 2-class, 3-class,
4-class, and 5-class contexts) against a fixed-class switching policy
(e.g. only 2-class or 3-class or 4-class context). Table 3 shows the
accuracy and overall speedup for the Serengeti dataset. We see
that for fixed-class switching, accuracy increases as the number of
classes increases since the model is less likely to make mistakes
when deciding whether to trigger the all-class model. But speedup
drops since the models chosen are larger. CACTUS (Hybrid) gets
the best of both worlds — by intelligently switching, it achieves
high accuracy but with more speedup than the fixed-class models.

Methods Serengeti
Acc SpeedUp(Pi0) SpeedUp(GAP8)

CACTUS-Hybrid (2,3) 73.6% 1.9× 2.5×
CACTUS-Hybrid (2,3,4) 73.8% 2.1× 2.8×
CACTUS-Hybrid (2,3,4,5) 73.8% 2.1× 2.9×
CACTUS (2-Class) 72.8% 1.4× 1.7×
CACTUS (3-Class) 74.1% 1.3× 1.4×
CACTUS (4-Class) 74.9% 1.0× 1.1×

Table 3: Comparison between the hybrid switching policy
versus fixed-class switching

Methods Enonkishu Serengeti
Storage Acc SpeedUp Acc SpeedUp

All-Class Model 4.8MB 88.9% 1.0× 74.3% 1.0×
All-Class-Early Exit 4.9MB 84.6% 2.0× 68.7% 1.5×
All-Class-Pruned 2.6MB 81.4% 1.7× 69.6% 1.7×
CACTUS (15 𝜇Cs) 19.9MB 89.5% 2.2× 73.6% 2.0×
CACTUS (20 𝜇Cs) 20.8MB 90.1% 3.5× 73.9% 2.2×
CACTUS (30 𝜇Cs) 23.3MB 90.2% 4.1× 74.0% 2.4×

Table 4: End-to-End performance of Local-Only CACTUS and
baselines. Speedup numbers are computed for GAP8 (Rasp.
Pi0 results show a similar trend).

Table 3 also shows that the performance of CACTUS (Hybrid)
generally improves as the number of context sizes i.e.𝑚 increases
from𝑚 ∈ {2} to𝑚 ∈ {2, 3, 4, 5}. But we get diminishing returns
after𝑚 ∈ {2, 3, 4}, so that is our sweet spot.

6.5 Perf. of Local-Only CACTUS
We now consider unattended operation (i.e. local-only) — this is the
scenario where communication to the cloud is not available and the
IoT device uses only locally stored 𝜇Classifiers. Since the all-class
model also needs to be stored on the IoT device, we choose All-Class
EfficientNet for this purpose since it is resource optimized.

In order to decide which 𝜇Classifiers should be stored on the
device, we used the training set and cached the most frequently
used 𝜇Classifiers on the device. For local switching, if none of the
chosen m-class 𝜇Classifier (𝑚 ∈ {2, 3, 4}) is available on-device, we
simply select an available one that has the highest overlap in classes
with the chosen one.

Table 4 shows the accuracy and speedup on GAP8 for CAC-
TUS and baselines. We evaluated CACTUS with 15, 20, and 30
stored 𝜇Classifiers. Results show that by only storing 30 𝜇Classifiers,
CACTUS can achieve 4.1× and 2.4× speedup for Enonkishu and
Serengeti datasets respectively while the accuracy is on a par with
baselines. Note that 30 𝜇Classifiers constitute less than 1 percent of
all possible 2, 3, and 4-class 𝜇Classifiers for the Serengeti dataset.
Thus, even with a limited number of 𝜇Classifiers and storage CAC-
TUS can maintain its advantage in speedup without sacrificing
accuracy. CACTUS requires more Flash memory than baseline
methods, primarily due to the storage of multiple feature extrac-
tors. This is, however, not an issue because IoT devices are usually
more constrained by RAM instead of Flash memory. For example,
Raspberry Pi0 W has 512MB RAM but it supports SD cards for flash.
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Metrics Context Interval
Shuffled 3 4 10 30 100 No-CC

Accuracy Gain -1.3% 0.6% 1.4% 4.1% 5.4% 4.7% 4.0%
Speedup (Pi0) 0.81× 0.94× 1.07× 1.56× 1.96× 1.96× 1.91×
Speedup (GAP8) 1.64× 1.72× 1.97× 2.59× 2.81× 2.59× 2.20×
Table 5: CACTUS accuracy gain and speedup (Pi0 and GAP8)
with different context intervals compared to the All-Class
Model on PLACES dataset. (No-CC: No-Context-Change)

6.6 Ablation Study
Effect of context change rate: Wenow evaluate how our end-to-
end results change as we vary the interval between context changes.
We vary the rate from one context change every 100 frames to
once every 3 frames on the GAP8 and Pi0 platforms using the
PLACES20 dataset. We consider 3-class contexts for synthesizing
the temporal patterns. We also include extreme cases such as a)
no-context-change where the context is completely static, and b)
shuffled where the dataset is shuffled and context changes are
extremely frequent since there is no specific temporal pattern. For
the no-context-change case, we randomly pick a context (3-class)
and evaluate CACTUS on it. Experiments were repeated 20 times
and the averaged numbers were reported.

Table 5 shows that CACTUS maintains its advantage even
with higher context change rates i.e. shorter context intervals. The
speedup decreases slightly from 2.59–1.96× to 1.72–0.94× and ac-
curacy gain decreases from 4.7% to 0.6% as the interval becomes
smaller but CACTUS is still considerably better than the baseline
(All-Class Model). As the context interval narrows, the all-class
model processes an increased number of images, diminishing the
accuracy benefits of 𝜇Classifiers. Specifically, with context intervals
of 3 and 100, the all-class model handles 67% and 11.5% of images
respectively. We can see CACTUS remains effective even when
there is no context change. CACTUS, while less accurate than the
baseline in shuffled scenarios, maintains a latency advantage on
the GAP8 platform but is slower on Pi0.
Scalability: We now look at the scalability of CACTUS with
increasing the number of classes. Table 6 shows how CACTUS end-
to-end performance changes relative to the All-Class Model. We
used a fixed 3-class switching policy since it was computationally
intensive to train 2, 3, and 4-class 𝜇Classifiers for large number of
classes. We see that CACTUS’s accuracy gain over the All-Class
Model increases as we scale up the number classes, and its speedup
reduces but it is still better. We expect higher speedup if the hybrid
policy is utilized. We also see the benefits of similarity-directed
sampling with more classes. For example, we only need 5% of the
𝜇Classifiers to train the kNN when the number of classes is higher
than 60.
Overhead of model training: We briefly report the training
overhead for classification and context change detection heads.
Since the feature extractor is pre-trained offline, we only need
to train the 𝜇Classifier’s heads (FC layers) which is very fast. To
minimize training overhead even more, the embeddings that are
input to the FC layers are precomputed. The training overhead
for Enonkishu, Camdeboo, Serengeti, and PLACES datasets are on

Metrics Number of Classes
10 20 30 40 60 70 100

Accuracy Gain 4.4% 4.7% 4.3% 4.6% 5.3% 5.6% 6.5%
SpeedUp (GAP8) 2.33× 2.26× 2.18× 2.10× 1.96× 1.86× 1.63×
𝑆𝐷𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 ratio 50.0% 17.5% 10.0% 7.5% 6.0% 5.0% 5.0%

Table 6: Effect of scaling the number of covered classes on
CACTUS’s performance (PLACES dataset). 𝑆𝐷𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 is the
ratio of 𝜇Cs used for training the kNN.

average 5.4, 5.5, 5.7, and 3 seconds respectively on a Tesla M40
24GB GPU.

Figure 9: Raspberry Pi Zero W with a camera (mounted on
the Raspberry Pi board), LCD display, and a power bank.

6.7 TrailCam Implementation
We have developed an end-to-end implementation of an “unat-
tended mode” wild-life camera that can capture images of animals
or birds and classify them in real-time on the Raspberry Pi Zero W.
In this implementation, we store 15 𝜇Classifiers heads and a total
of four feature extractors plus an All-Class EfficientNet-B0 for the
context prediction. The 15 stored 𝜇Classifiers include 7 different
configurations. Figure 9 shows our implementation in operation. In
the figure, we re-run images from the Camera Trap dataset Enonk-
ishu [6] to illustrate how the system works but we can also directly
obtain input from the Raspberry Pi camera.

Figure 10a shows the latency breakdown of key components that
contribute to inference – that is, feature extractors corresponding
to different image resolutions (7 configurations), 𝜇Classifier heads
for different contexts, and the All-Class model. Also, we show the
latency overhead for context switch i.e. the elapsed time for load-
ing the feature extractor (configuration) for the new context. The
results show that the latency for executing 𝜇Classifier heads and
the context switch overhead is 2 and 1 milliseconds respectively,
which is negligible compared to other components. The latency
for the seven feature extractor configurations have a roughly 8×
dynamic range (94 to 759 milliseconds) which allows CACTUS to
adapt to the level of difficulty of the current context.

Figure 10b shows the energy breakdown for executing these
components. For each component, we break down the energy con-
sumed into "System Overhead" i.e. the energy consumed by the
board and peripherals when no computation is being performed
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Figure 10: (a) The breakdown of the latency for end-to-end
implementation of local-only CACTUS on Pi0. (b) The break-
down of the energy for end-to-end implementation of local-
only CACTUS on Pi0. Blue bars correspond to the consumed
energy for the execution of themodels. Orange bars show the
energy consumed by the setup when it is On but not doing
any operation. Ctx_Sw and All-C correspond to the context
switch and all-class model. 𝜇Classifiers are labeled by their
configuration parameters. The first number is the pruning
ratio and the input size is in the parenthesis.

and “Model” energy consumption which is the energy for actually
executing the model. Note that the system overhead is different for
different components since the execution time differs. The energy
for the system overhead is the power for the board and peripher-
als multiplied with execution time. The energy for the Model is
calculated by subtracting the System Overhead energy from the
overall measured energy for each component. The results show that
different configurations provide an 8.4× dynamic range in energy
consumption which is consistent with the latency range. We also
see the consumed energy for head execution and context switch is
very low. This validates the fact that reducing the inference time
on IoT devices proportionally reduces energy consumption. Hence,
even if the application does not require low inference latency, it is
important to have an efficient pipeline so that the battery on the
IoT device lasts longer.

7 RELATEDWORK
Deep Learning in low-power devices: Two popular approaches
for the execution of Deep Neural Networks (DNNs) on resource-
constrained IoT devices are early exit [37, 59] and model Compres-
sion techniques such as quantization [17, 22, 29], model pruning
[29, 31, 45, 49], and knowledge distillation [25, 44]. FLEET [27] in-
tegrates early exits with computation offloading to further adapt
DNN execution for constrained environments. These techniques
are either generic or complementary and usually can be combined
with other approaches. In this work, we show that both model com-
pression and early exit can be applied to 𝜇Classifiers to improve
the computation efficiency.

Another line of work is partitioned execution, where the IoT
device executes a few layers of a model and offloads the remaining

layers to the cloud. Some approaches [36, 60] focus on locating the
best partitioning point while others [14, 16, 28, 30] pay attention to
intermediate features. However, this approach intrinsically requires
continuous wireless communication that limits it to some scenarios.
Efficient video processing: Exploiting the temporal locality of
videos is the complementary direction for efficient IoT inference.
Prior works fall into two categories. The first set of approaches
[26, 33, 35] are query-based and assume scenarios are known of-
fline (static context). The second category of approaches [18, 21, 57]
consider dynamic context and try to adapt the deployed models.
However, [57] assumes class skews are known and [18, 21] require
network connectivity which limits them to specific scenarios. Also,
[18, 57] are only effective for applications with long context inter-
vals.
Uncertainty estimation: Our work is also related to uncertainty
estimation since detecting context changes is essentially estimat-
ing the prediction uncertainty. There are multiple approaches for
uncertainty estimation such as Ensemble methods [40], Dropout in-
ference (Bayesian Approximations) [19], Maximum Softmax Proba-
bility [24], Test-Time Augmentation [9, 56], and other deterministic
methods [20, 50, 51, 53–55]. Most existing methods involve substan-
tial overheads. For instance, Monte Carlo Dropout [19] requires
multiple forward passes for uncertainty estimation. Maximum Soft-
max Probability emerges as the most cost-effective approach for
identifying out-of-distribution samples. Themaximum value among
outputted softmax probabilities for in-distribution samples tends
to be larger than for out-of-distribution samples. This approach is
inexpensive in terms of computation and memory as it doesn’t need
any specialized model and it only uses the classification softmax
probabilities. However, it did not perform well in our experiments,
hence we introduced a regression-based detector to meet our needs.

8 CONCLUSION
This work presents a new paradigm, switchable 𝜇Classifiers, to the
growing set of approaches for squeezing deep learning models on
resource-constrained platforms. We showed that this method can
improve accuracy while significantly lowering latency and there-
fore power consumption. Our work opens up a new direction and
can spur follow-on work to fully explore the design space. While we
focused on IoT devices in this work, context-aware inference may
have broader applicability as models get larger and more complex,
for example, in self-driving vehicles.

ACKNOWLEDGMENTS
The research reported in this paper was sponsored in part by the
CCDC Army Research Laboratory (ARL) under Cooperative Agree-
ment W911NF-17-2-0196 (ARL IoBT CRA), and in part by the NSF
under Grant No. CNS-2312396, CNS-2338512, CNS-2224054, and
DMS-2220211. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of
the ARL, NSF or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein. We thank
our shepherd, Dr. Montanari, for helpful guidance on this paper.

516



CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

REFERENCES
[1] https://www.tensorflow.org/lite/performance/post_training_quant.
[2] Arm11. https://developer.arm.com/documentation/ddi0360/f/introduction/about-

the-processor.
[3] Gap8 tool chain. https://greenwaves-technologies.com/tools-and-software/.
[4] Joulescope js110. https://www.joulescope.com/products/joulescope-precision-

dc-energy-analyzer.
[5] Snapshot camdeboo. https://lila.science/datasets/snapshot-camdeboo.
[6] Snapshot enonkishu. https://lila.science/datasets/snapshot-enonkishu.
[7] Snapshot serengeti. https://lila.science/datasets/snapshot-serengeti.
[8] Tensorflow lite benchmark tools. https://www.tensorflow.org/lite/performance/

measurement.
[9] Murat Seckin Ayhan and Philipp Berens. Test-time data augmentation for es-

timation of heteroscedastic aleatoric uncertainty in deep neural networks. In
Medical Imaging with Deep Learning, 2018.

[10] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural
network architectures using reinforcement learning.

[11] Sourav Bhattacharya and Nicholas D Lane. Sparsification and separation of deep
learning layers for constrained resource inference on wearables. In Proceedings
of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, pages
176–189. ACM, 2016.

[12] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. TVM: An automated End-to-End optimizing compiler
for deep learning. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, Carlsbad, CA, October 2018. USENIX
Association.

[13] Yu Cheng, DuoWang, Pan Zhou, and Tao Zhang. A survey of model compression
and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

[14] Hyomin Choi and Ivan V Bajić. Deep feature compression for collaborative object
detection. In 2018 25th IEEE International Conference on Image Processing (ICIP),
pages 3743–3747. IEEE, 2018.

[15] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer net-
works in unsupervised feature learning. In Geoffrey Gordon, David Dunson, and
Miroslav Dudík, editors, Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning
Research, pages 215–223, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

[16] Robert A Cohen, Hyomin Choi, and Ivan V Bajić. Lightweight compression
of neural network feature tensors for collaborative intelligence. In 2020 IEEE
International Conference on Multimedia and Expo (ICME), pages 1–6. IEEE, 2020.

[17] Miguel de Prado, Manuele Rusci, Romain Donze, Alessandro Capotondi, Serge
Monnerat, Luca Benini, and Nuria Pazos. Robustifying the deployment of tinyML
models for autonomous mini-vehicles. In 2021 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, may 2021.

[18] Boyuan Feng, Yuke Wang, Gushu Li, Yuan Xie, and Yufei Ding. Palleon: A
runtime system for efficient video processing toward dynamic class skew. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), pages 427–441. USENIX
Association, July 2021.

[19] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Rep-
resenting model uncertainty in deep learning. In Maria Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on
Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages
1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR.

[20] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee,
Matthias Humt, Jianxiang Feng, Anna M. Kruspe, Rudolph Triebel, Peter Jung,
Ribana Roscher, Muhammad Shahzad, Wen Yang, Richard Bamler, and Xiao Xiang
Zhu. A survey of uncertainty in deep neural networks. CoRR, abs/2107.03342,
2021.

[21] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wol-
man, and Arvind Krishnamurthy. Mcdnn: An approximation-based execution
framework for deep stream processing under resource constraints. In Proceedings
of the 14th Annual International Conference on Mobile Systems, Applications, and
Services, pages 123–136, 2016.

[22] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015.

[23] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl
for model compression and acceleration on mobile devices. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 784–800, 2018.

[24] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and
out-of-distribution examples in neural networks. 2016.

[25] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

[26] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,
Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons, and Onur Mutlu. Focus:
Querying large video datasets with low latency and low cost. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), pages

269–286, Carlsbad, CA, October 2018. USENIX Association.
[27] Jin Huang, Deepak Ganesan, and Hui Guan. Re-thinking computation offload for

efficient inference on iot devices with duty-cycled radios. In The 29th International
Conference on Mobile Computing and Networking (MobiCom ’23), 2023.

[28] Jin Huang, Colin Samplawski, Deepak Ganesan, Benjamin Marlin, and Heesung
Kwon. Clio: Enabling automatic compilation of deep learning pipelines across iot
and cloud. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, pages 1–12, 2020.

[29] Dina Hussein, Dina Ibrahim, and Norah Alajlan. Tinyml: Enabling of inference
deep learning models on ultra-low-power iot edge devices for ai applications.
Micromachines, 13:851, 05 2022.

[30] Sohei Itahara, Takayuki Nishio, and Koji Yamamoto. Packet-loss-tolerant split
inference for delay-sensitive deep learning in lossy wireless networks. arXiv
preprint arXiv:2104.13629, 2021.

[31] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of
neural networks for efficient integer-arithmetic-only inference. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2704–2713,
2018.

[32] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. Chameleon: scalable adaptation of video analytics. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication, pages
253–266, 2018.

[33] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. Chameleon: Scalable adaptation of video analytics. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication, SIG-
COMM ’18, page 253–266, New York, NY, USA, 2018. Association for Computing
Machinery.

[34] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.
Noscope: optimizing neural network queries over video at scale. arXiv preprint
arXiv:1703.02529, 2017.

[35] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.
Noscope: Optimizing neural network queries over video at scale. Proc. VLDB
Endow., 10(11):1586–1597, aug 2017.

[36] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge. In ACM SIGARCH Computer Architecture News, volume 45,
pages 615–629. ACM, 2017.

[37] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks:
Understanding and mitigating network overthinking. In International Conference
on Machine Learning, pages 3301–3310. PMLR, 2019.

[38] Liangzhen Lai and Naveen Suda. Enabling deep learning at the lot edge. In 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
1–6, 2018.

[39] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Cmsis-nn: Efficient neural
network kernels for arm cortex-m cpus. arXiv preprint arXiv:1801.06601, 2018.

[40] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. In Proceedings
of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 6405–6416, Red Hook, NY, USA, 2017. Curran Associates Inc.

[41] Nicholas D Lane, Petko Georgiev, and Lorena Qendro. Deepear: robust smart-
phone audio sensing in unconstrained acoustic environments using deep learning.
In Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pages 283–294. ACM, 2015.

[42] Ilias Leontiadis, Stefanos Laskaridis, Stylianos I Venieris, and Nicholas D Lane.
It’s always personal: Using early exits for efficient on-device cnn personalisation.
In Proceedings of the 22nd International Workshop on Mobile Computing Systems
and Applications, pages 15–21, 2021.

[43] Hao Li, AsimKadav, Igor Durdanovic, Hanan Samet, andHans Peter Graf. Pruning
filters for efficient convnets, 2016.

[44] Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong. Learning small-size dnn
with output-distribution-based criteria. In Fifteenth annual conference of the
international speech communication association, 2014.

[45] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and
Joey Gonzalez. Train big, then compress: Rethinking model size for efficient
training and inference of transformers. In International Conference on Machine
Learning, pages 5958–5968. PMLR, 2020.

[46] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du.
On-demand deep model compression for mobile devices: A usage-driven model
selection framework. 2018.

[47] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting
Cheng, and Jian Sun. Metapruning: Meta learning for automatic neural network
channel pruning. In Proceedings of the IEEE International Conference on Computer
Vision, pages 3296–3305, 2019.

[48] Arnab Neelim Mazumder, Jian Meng, Hasib-Al Rashid, Utteja Kallakuri, Xin
Zhang, Jae-sun Seo, and Tinoosh Mohsenin. A survey on the optimization of
neural network accelerators for micro-ai on-device inference. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 2021.

517

https://www.tensorflow.org/lite/performance/post_training_quant
https://developer.arm.com/documentation/ddi0360/f/introduction/about-the-processor
https://developer.arm.com/documentation/ddi0360/f/introduction/about-the-processor
https://greenwaves-technologies.com/tools-and-software/
https://www.joulescope.com/products/joulescope-precision-dc-energy-analyzer
https://www.joulescope.com/products/joulescope-precision-dc-energy-analyzer
https://lila.science/datasets/snapshot-camdeboo
https://lila.science/datasets/snapshot-enonkishu
https://lila.science/datasets/snapshot-serengeti
https://www.tensorflow.org/lite/performance/measurement
https://www.tensorflow.org/lite/performance/measurement


MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan 1

[49] Massimo Merenda, Carlo Porcaro, and Demetrio Iero. Edge machine learning for
ai-enabled iot devices: A review. Sensors (Basel, Switzerland), 20, 2020.

[50] Marcin Możejko, Mateusz Susik, and Rafał Karczewski. Inhibited softmax for
uncertainty estimation in neural networks, 2018.

[51] Jay Nandy,WynneHsu, andMong Li Lee. Towardsmaximizing the representation
gap between in-domain &amp; out-of-distribution examples. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 9239–9250. Curran Associates,
Inc., 2020.

[52] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural
architecture search via parameters sharing. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 4095–4104. PMLR,
10–15 Jul 2018.

[53] Maithra Raghu, Katy Blumer, Rory Sayres, Ziad Obermeyer, Bobby Kleinberg,
Sendhil Mullainathan, and Jon Kleinberg. Direct uncertainty prediction for
medical second opinions. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 5281–5290. PMLR,
09–15 Jun 2019.

[54] Tiago Ramalho and Miguel Miranda. Density estimation in representation space
to predict model uncertainty, 2019.

[55] Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning
to quantify classification uncertainty. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 31. Curran Associates, Inc., 2018.

[56] Divya Shanmugam, Davis Blalock, Guha Balakrishnan, and John Guttag. Better
aggregation in test-time augmentation. 2020.

[57] Haichen Shen, Seungyeop Han, Matthai Philipose, and Arvind Krishnamurthy.
Fast video classification via adaptive cascading of deep models. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[58] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convo-
lutional neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 6105–6114. PMLR,
09–15 Jun 2019.

[59] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet:
Fast inference via early exiting from deep neural networks. In 2016 23rd In-
ternational Conference on Pattern Recognition (ICPR), pages 2464–2469. IEEE,
2016.

[60] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Distributed
deep neural networks over the cloud, the edge and end devices. In 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS), pages
328–339. IEEE, 2017.

[61] https://greenwaves-technologies.com/gap8-product/. GAP8: Ultra-low power,
always-on processor for embedded artificial intelligence.

[62] Pete Warden and Daniel Situnayake. Tinyml: Machine learning with tensorflow
lite on arduino and ultra-low-power microcontrollers. O’Reilly Media, 2019.

[63] Shuochao Yao, Yiran Zhao, Huajie Shao, ShengZhong Liu, Dongxin Liu, Lu Su, and
Tarek Abdelzaher. Fastdeepiot: Towards understanding and optimizing neural
network execution time on mobile and embedded devices. In Proceedings of the
16th ACM Conference on Embedded Networked Sensor Systems, pages 278–291.
ACM, 2018.

[64] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.
Places: A 10 million image database for scene recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017.

518

https://greenwaves-technologies.com/gap8-product/

	Abstract
	1 Introduction
	2 Case for Classifiers
	3 CACTUS Design Overview
	4 Configuration Predictor
	4.1 Inter-Class Similarity Metric
	4.2 KNN-based Configuration Predictor

	5 Context-aware Switching
	5.1 Context Change Adaptation Pipeline
	5.2 Hybrid Context Switching

	6 Evaluation
	6.1 Experiment Settings
	6.2 End-to-End Evaluation
	6.3 Performance of Config Predictor
	6.4 Perf. of Context-Aware Switching
	6.5 Perf. of Local-Only CACTUS
	6.6 Ablation Study
	6.7 TrailCam Implementation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

