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Abstract: The block design test (BDT) has been used for over a century in research and clinical contexts
as a measure of spatial cognition, both as a singular ability and as part of more comprehensive
intelligence assessment. Traditionally, the BDT has been scored using methods that do not reflect
the full potential of individual differences that could be measured by the test. Recent advancements
in technology, including eye-tracking, embedded sensor systems, and artificial intelligence, have
provided new opportunities to measure and analyze data from the BDT. In this methodological
review, we outline the information that BDT can assess, review several recent advancements in
measurement and analytic methods, discuss potential future uses of these methods, and advocate for
further research using these methods.
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1. Introduction

Despite exponential advancements in technology in recent years, many cognitive
and intelligence tests are still administered and scored using traditional paper-and-pencil
methods. Even spatial tests, which measure one’s ability to reason about, evaluate, and
solve problems dealing with physical spaces and objects or representations of such stimuli,
are still administered with paper and pencil. However, a few spatial tests use physical
manipulatives, particularly blocks, to measure spatial assembly and construction abilities.
Thus, these physical spatial tests have unique affordances for capturing spatial reasoning
through action (Shelton et al. 2022). One of the most used block-based spatial tests is the
block design test (BDT; Kohs 1920; Wechsler 1939, 2008), a test of spatial visualization that
requires spatial assembly, though there have been several other tests that utilize cube-like
blocks and building blocks, like LEGO blocks (Casey et al. 2008; Cortesa et al. 2017; Verdine
et al. 2014).

The BDT and related tasks are a rich source of information on spatial thinking. For
example, the BDT requires examinees to evaluate the design and the sides of the blocks,
rotate the blocks such that the correct side is facing up and in the correct orientation, plan
for the next block placement, and monitor their progress throughout the task. The cognitive
complexity of the BDT reflects real-world examples of spatial assembly tasks, such as
assembling furniture or working with mechanical systems.

Traditionally, the primary BDT score is based on the final accuracy of the block place-
ments and the time required (Wechsler 2008), but relying solely on this standardized score
sacrifices important information about the building process (Joy et al. 2001). Given the
action-by-action nature of the task, it is possible to evaluate not just the final product but
how individuals obtain the final product. Existing supplementary process scores include
analyzing performance without consideration of time bonuses, partial accuracy, and cer-
tain types of errors. However, even these supplemental scoring systems do not capture
information about each step taken to complete the design (Lichtenberger and Kaufman
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2009; Kaplan 1991; Ryan et al. 2013; White and Rose 1997). Process variables such as
block placements, time information, and looking behavior, could be particularly useful
for better understanding individual differences in spatial cognition (Salthouse 1987; Shah
and Frith 1993), as well as in a clinical diagnostic setting (Kaplan 1991; White and Rose
1997). Thus, nuanced scoring systems that record more detail would be highly valuable,
but most clinicians and researchers cannot measure and record more detailed information
when administering and scoring tests in real time. Modern advancements in technology
and artificial intelligence allow for a more detailed examination of the cognitive processes
used throughout the test.

In this methodological and theoretical review, we provide an overview of the history of
the BDT, reflect on the test’s usefulness in cognitive research, clinical, and educational settings,
describe advancements in technologies related to the BDT, and examine future directions.

2. History of the Block Design Test

Kohs introduced the BDT as a non-verbal performance test (Kohs 1920). Participants
were asked to use multi-colored blocks to construct three-dimensional copies of visual
designs. The designs increased in difficulty as the test progressed, starting with symmetrical
patterns that required fewer blocks to more complex patterns that required many blocks.
There were 17 different designs, ranging from 4-block to 16-block designs. Kohs’ scoring
system included final accuracy, total completion time, and the number of moves taken
to complete the design. In this context, “move” is defined by the placement of a block.
Increased time and number of moves taken to complete the design contributed to lower
scores while speed and accuracy led to higher scores.

Kohs introduced the test as a step away from the focus on faculty psychology, which
centers on the idea of separating the mind into different faculties, like judgement and
attention (Brooks 1976); instead of being a test for a specific, separate cognitive process,
the BDT requires multiple processes (Kohs 1920). Kohs compartmentalized the required
processes to include the ability to understand and maintain the goal design, placing blocks
so their combination works towards completing the goals, and evaluating the placed
blocks and comparing them to the goal. He proposed that the BDT was a measure of
general intelligence as it required the combination of several distinct cognitive processes.
Particularly, Kohs supported the notion that synthesis and combination were particularly
important aspects of human intelligence (Kohs 1923). In his standardization of the test, he
highlighted its correlation with the Binet scales, furthering the claim that his test was a
comprehensive measure of non-verbal intelligence.

As psychologists and psychiatrists started testing patients with the BDT in their
practices, there became an increasing demand for easier-to-administer versions of the BDT,
particularly as the test was initially supplemental to other more established tests (Wile
and Davis 1930). For example, Hutt introduced a new scoring method that removed the
counting of the number of moves an individual made (Hutt 1930, 1932). In the 1930s,
Wechsler further adapted Kohs’s BDT for his Wechsler—Bellevue Intelligence Scales (WBIS)
(Wechsler 1939). Most of the changes in this adaptation were intended to shorten and
simplify the test for use as part of a larger battery of tests. Wechsler decreased both the
number of items and the colors used. Further, he claimed that the BDT was the single best
predictive scale from the entire battery and that it correlated highly with the total test score
and other individual tests, including verbal measures. By 1955, an updated form of the
WBIS was introduced, named the Wechsler Adult Intelligence Scales (WAIS), which soon
surpassed the Stanford-Binet Intelligence Scales as the most popular and commonly used
test of intelligence (Lichtenberger et al. 2006). It is within WAIS that the BDT has most
often been administrated, though it has not been limited to this context. In 1949, Wechsler
developed the Wechsler Intelligence Scale for Children (WISC), which was modeled after
the WAIS but introduced easier items to adapt the existing tests, including the BDT, for
children (Littell 1960).
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3. Usage and Importance of the Block Design Test

In the decades since its creation, the BDT has been used not just for general cognitive
testing but also for clinical, educational, and research purposes.

3.1. Block Design as a Diagnostic Tool in Clinical Settings

For almost as long as the BDT has existed, clinicians have used it to estimate cognitive
abilities in a variety of settings across the lifespan (Hutt 1932). The BDT can also be used to
help diagnose ADHD (Antshel et al. 2007), autism spectrum disorder (Stewart et al. 2009),
and other developmental disorders in children (Cardillo et al. 2017). At the other end of
the lifespan, the BDT has been used in research on aging and cognitive decline (Joung et al.
2021a; Ronnlund and Nilsson 2006) and may help differentiate adult participants with
dementia, mild cognitive impairment, and Alzheimer’s Disease, as well as healthy adults
(Devanand et al. 1997; Joung et al. 2021b; Yin et al. 2015).

The BDT is particularly useful for assessing non-verbal learning disability (NLD) in
clinical contexts. NLD is a developmental disorder characterized by lower visuospatial
intelligence and memory and is often assessed by comparing children’s performance on
the BDT to other WISC subscales (Mammarella and Cornoldi 2014). Children with NLD
tend to perform worse than typically developing children on the BTD, both in terms of
accuracy and speed, while performance tends to be within the normal range on verbal
measures, such as vocabulary from the WISC (Mammarella et al. 2019; Pelletier et al. 2001;
Venneri et al. 2003). Children with NLD may struggle with the BDT because of weaknesses
in global processing, which involves reasoning about the relation between the overall
structure and sub-structures or individual blocks (Cardillo et al. 2017). In cases of highly
organized designs, where different parts of the design are highly cohesive and related,
children with NLD, on average, could only arrange about half as many blocks correctly as
typically developing children could (Mammarella et al. 2019). In line with this research,
the BDT has helped shed light on differences in visuospatial functioning between highly
comorbid developmental disorders, such as NLD, autism spectrum disorder, and ADHD
(Cardillo et al. 2020).

The BDT is also commonly used in the comprehensive neuropsychological assessment
of patients after a traumatic brain injury, both to assess the extent of cognitive sequelae
and monitor recovery over time (Goldstein et al. 2010; Hammond et al. 2004; Millis et al.
2001). Individuals with traumatic brain injuries and other neurological disorders that
damage spatial processes, such as epilepsy, tend to have more broken configuration errors
on the BDT than non-clinical populations (Akshoomoff et al. 1989; Ben-Yishay et al. 1971;
Wilde et al. 2000; Zipf-Williams et al. 2000). In a case study of three patients with brain
injuries, Toraldo and Shallice (2004) analyzed BDT performance at the individual move
level and found that their patients made several different types of errors, including broken
configurations, rotations, overestimation of dimensions of certain design aspects, and
missing blocks.

Lastly, the BDT can also help clinicians create individualized intervention plans for
their patients. For example, information from the BDT can help neuropsychologists create
targeted recommendations for patients to better cope with spatial deficits at school and
work. Academic accommodations might include specialized mathematics instruction, such
as multisensory instruction, and extra time in academic settings (Doty 2019).

3.2. The Block Design Test in Research and Educational Assessment

The BDT has been classified as a test of spatial visualization and has been used to
predict functional spatial skills for decades (Casey et al. 2008; Fenouillet and Rozencwajg
2015; Grote and Salmon 1986; Linn and Petersen 1985). Groth-Marnat and Teal (2000)
found that the BDT was related to everyday spatial abilities, such as arranging furniture
and packing boxes, thus providing evidence of the measure’s predictive validity in real-
world settings. Block-based construction tasks, such as the BDT, predict achievement
and entering careers in STEM fields (Fernandez-Méndez et al. 2020; Hsi et al. 1997; Tian
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et al. 2023; Verdine et al. 2014; Wolfgang et al. 2001); consequently, the BDT is used
frequently in educational assessment and research. Comprehensive cognitive assessment
identifies patterns of strengths and weakness and supports the creation of individualized
education plans (IEPs) (Grigorenko et al. 2020). Cognitive assessments have also been used
to identify talented children, and there is growing interest in “spatial giftedness” (Ballard
1984; Hagmann-von Arx et al. 2008; McCoach et al. 2001; Silverman and Gilman 2020; Lakin
and Wai 2020; Wiese et al. 1988).

Demonstrations of the role of spatial skills in STEM success have led to a new interest
in spatial training, which involves attempting to increase spatial skills and, eventually, STEM
(usually mathematics) performance (e.g., Hawes et al. 2022; Uttal and Cohen 2012). Spatial
abilities are malleable (Uttal et al. 2013); spatial training and experiences can improve
spatial abilities (Sorby et al. 2013; Wright et al. 2008), including block design performance
(Day et al. 1997; Dirks 1982). In addition, more general spatial experiences, such as block
play, are also related to higher block design scores (Casey et al. 2008; Jirout and Newcombe
2015). Thus, the BDT and related block construction tasks may be more than an assessment;
they may also potentially be an intervention or teaching tool.

4. Moving beyond the Limitations of the BDT

Traditionally, the BDT yields only a single accuracy score and the time required for
the construction (Hutt 1930, 1932). This scoring system has been used for almost a century
because it is efficient and provides valid diagnostic information for several aspects of
intelligence and clinical disorders. Moreover, the scoring system can be taught and learned
relatively easily.

However, the single numeric score does not capture all the complexities and individual
differences that occur during the BDT (Dunn et al. 2021). Completing the multiple steps of
the BDT requires the use of spatial information, executive function, and working memory
(Landau and Hoffman 2012). Test-takers must examine and parse the target design, hold
elements of the design in their visuospatial working memory while selecting a block,
decide which block to select, and properly orient and place the block in their copy (Ballard
et al. 1995; Kohs 1920; Shah and Frith 1993). The cognitive demands of this task reflect
Kohs’ original intent in designing the BDT purposefully to draw upon multiple cognitive
functions (Kohs 1920). Further, there are no restrictions on how test-takers complete the
task. Individuals may differ in how they segment the target design, which blocks they
select, and the placement of blocks into their copy, resulting in different possible strategies
(Rozencwajg 1991; Salthouse 1987; Shah and Frith 1993).

The traditional scoring system does not reflect many of these individual differences,
and consequently, many potential insights into cognitive processes are overlooked. Ad-
dressing these limitations could be transformative; we know from other cognitive tasks
that a step-by-step analysis of construction processes and errors can provide much greater
insight into the underlying cognitive factors involved in the task. For example, modeling
of the Tower of Hanoi, a problem-solving test in which individuals must rearrange rings
on pegs, has shown that subgoals that split the task into smaller components may play an
important role in how individuals approach the task (Donnarumma et al. 2016; Kotovsky
et al. 1985). The physical properties of the Tower of Hanoi make it easier for researchers to
identify and model solution strategies. Likewise, we suggest that the physical nature of the
BDT allows for more detailed examination of the cognitive sub-processes involved than
other spatial tasks do.

To realize the potential of the BDT to provide insights into cognitive processes, we
must be able to record details of the test that extend beyond the limits of the traditional
scoring method. One possibility is to videotape a participant as they construct the designs
and to watch the videos (often many times) to gather the necessary information. However,
manually reviewing video recordings is both time-consuming and tedious, especially in
the context of large research studies. Moreover, extracting data from videos also requires
creating reliable and analyzable coding schemes, which can be very challenging. Such
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challenges have limited the level of detail and depth of analyses of BDT responses. Al-
though many researchers have attempted to advance understanding and classification of
the cognitive processes that individuals use in completing the BDT, these efforts have been
limited in scope. For example, Joy et al. (2001) recorded block placements during BDT
constructions and described various kinds of errors and block placements that participants
made. However, while reporting on the presence and frequency of certain types of errors
can offer some insight into individual differences, it does not capture the entirety of pos-
sible errors and does not allow for easy comparison of total block placement sequences.
Furthermore, this kind of hand coding also leaves out certain variables, such as time for
each individual block placement. Thus, while there have been several researchers who
have studied various aspects of the BDT building processes, researchers have not been able
to provide a complete description or categorization of these processes (Dunn et al. 2021).
Fortunately, with the rise of new technologies and artificial intelligence, there are several
emerging methods that can greatly increase the amount of available information that can
be captured during a BDT construction and present new ways to analyze such data (Cha
et al. 2018, 2020; Lee et al. 2016).

5. Technological Advancements for Capturing BDT Actions

Advances in technology now give researchers and clinicians multiple ways to take
advantage of the physical nature of the BDT. Here, we discuss how new technologies can
capture important behavioral elements of the BDT, such as eye gaze and the block placing
sequence. Additionally, we discuss the potential uses of artificial intelligence for analyzing
the detailed information obtained from the new methods.

6. Measuring Gaze and Fixation Behavior during the BDT

Eye-tracking has a long history in the study of cognition, and major advancements
have recently been made in eye-tracking measures (Mele and Federici 2012). We can learn
a lot about individuals’ strategies on the BDT by analyzing which test components they
look at, how long they look, and the sequence of their gazes (Fenouillet and Rozencwajg
2015). For example, the sequence of when participants look at the target design, the bank
of blocks, and the copy area can shed light on individual strategies on spatial construction
tasks (Hayhoe et al. 1998). Further, the number of times that individuals look back to the
target design can shed light on their working memory—that is, how well they can maintain
the mental image of the design while selecting and placing blocks (Ballard et al. 1995). As
early as the 1990s, researchers begin to use gaze patterns to classify participants’ strategies
on BDT (Rozencwajg 1991). However, these methods were limited in what information
they could reveal or record. For example, while eye-tracking can determine if an individual
is looking at the target design, more precise equipment is required to determine exactly
where in the design the individual is looking or what block face they are looking at when
looking to pick up a block from the bank.

Modern eye-tracking techniques implement multiple cameras; an overhead camera
can record what the participant is doing, while corneal imaging cameras can identify
exactly where the participant is looking (e.g., Besari et al. 2023; Cha et al. 2020; Shigenaga
and Nagamune 2022). For the BDT in particular, corneal imaging is the preferred method
by which to measure gaze as participants need a wide space to recreate the designs, and
a typical monitor-mounted eye tracker or head-mounted gaze tracker often misses eye
movements (Cha et al. 2020). Corneal imaging is optimal as it is easy to calibrate and
does not require participants to wear unwieldy equipment. It also allows researchers to
accurately time how long a participant is looking at a certain area (e.g., the target design,
block bank, or construction area).

7. The Importance of Individual Block Placements

Despite the challenges in recording detailed behaviors by hand, several studies have
contributed to greater understanding by focusing on specific process variables, such as
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starting position or contiguous block placements. Recently, Dunn et al. (2021) conducted a
literature review of these extra variables that have been examined in the BDT. Here, we are
particularly interested in block placements and the sequence of block placements.

7.1. Sequence of Block Placements

The sequence of block placements is perhaps the greatest source of individual differ-
ences in the BDT (Jones and Torgesen 1981; Rozencwajg and Corroyer 2001). For example,
one person might place the blocks left-to-right, top-to-bottom, while another might place
the blocks starting in the four corners and then filling in bottom-to-top. Both constructions
are correct in the traditional scoring, but obviously there are differences in how the two par-
ticipants reached the final state. Figure 1 shows examples of these differences in building; it
illustrates four (hypothetical) participants’ constructions of the same design. Although all
participants successfully built the target design, each participant used a different building
strategy. For example, Participant 1 went side to side and filled out each row, whereas
Participant 2 had a less systematic building pattern.

S OO0 00
g [ [ aldi ARARZEe,
I IVIVIVIVICEZN?.

AR AN AN ANANANLN 2N INS

Figure 1. Example of building sequences. This figure shows four potential sequences on block

Placement

Participant
1 V V 4 LL

h

placements from four individuals recreating the target design. States of blocks with an * indicate that
an erroneous block placement was made. Erroneous block placement in this sense refers to a block
placed that does not match the target design.

Mathematically, for a 9-block 3 x 3 design, there are over 362,000 different sequences
of block placements where each placed block is correct. For 4 x 4 designs, the number
of possible sequences increases to over 479 million. Further, this possible sequence space
increases when considering erroneous block placements. Recent research indicates that
individuals typically adhere to only a few of the possible spatial assembly strategies, thus
reducing the number of observed sequences; however, there are still too many sequences to
easily track by hand (Shelton et al. 2022).

There are a few ways that sequences have been characterized. Contiguity refers to
whether blocks are placed adjacent to already placed block (Dirks 1982) and is one of the
only characterizations that maps the entire assembly process (Dunn et al. 2021). Other
characterizations focus on certain parts of the assembly process, such as where individuals
start the build or if they reach certain pre-final arrangements of blocks, such as completing
the outer ring before the middle or completing rows and columns (Cha et al. 2020; Jones
and Torgesen 1981).

7.2. Erroneous Block Placements

Erroneous block placements, placing blocks that do not match the target design, com-
plicate recording block placing sequences, but they may also shed new light on individual
differences. For example, in Figure 1, Participant 3 and Participant 4 both made an erro-
neous block placement while building. Participant 3 fixed their mistake after one action,
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while Participant 4 did not fix their mistake until the end of their building. In particular,
erroneous block placements can provide insight into how individuals are thinking about
the test or their more general cognition, such as global vs. local processing (Kramer et al.
1996, 1999). There are more severe errors, such as not building in the appropriate shape or
orientation or not completing the design, that would be recorded in the traditional scoring
method, as these kinds of errors would result in a null score for accuracy (Akshoomoff
et al. 1989; Akshoomoff and Stiles 1996; Joy et al. 2001). In clinical settings, these kinds
of errors may indicate cognitive impairment either from brain injury or neurological or
developmental disorder, such as Williams syndrome (Ben-Yishay et al. 1971; Farran and
Jarrold 2003). However, the traditional scoring method does not capture errors if they are
corrected before the participant is finished completing the design, except for increasing the
time taken. Typically, adults may make more subtle errors, such as mistakenly rotating one
block, and tend to fix their errors before finishing the task (Joy et al. 2001), whereas typically
developing children likely make certain types of errors based on the types of designs or
strategies used (Akshoomoff and Stiles 1996). Such errors would not be captured by the
traditional scoring method but could partially be captured by recording the number of
moves taken.

8. Computerized Versions of the Block Design Task

Advancements in technology have allowed for the BDT to be administered in new
ways that capture these important behavioral details. These advancements are the result
of work in several disciplines and have gone beyond the traditional administration of
physical blocks. There are now entirely computerized versions of the BDT, which offer new
affordances in how the task is analyzed, particularly because the virtual nature of such
administration can allow for the recording of every movement of the blocks.

8.1. Virtual Administration

Virtual administration of the BDT allows for instantaneous data collection based
on where a participant moves their mouse and clicks. For example, Rozencwajg and
Corroyer’s SAMUEL is a software version of the BDT (Rozencwajg and Corroyer 2001;
Rozencwajg et al. 2005; Rozencwajg and Fenouillet 2012). SAMUEL splits a computer
screen into three areas. The target designs are shown on the left side of the screen, and
the right side shows a workspace to reproduce the designs. A third area is located below
the other two and contains a bank of virtual blocks for participants to select and drag
into the workspace (Rozencwajg and Corroyer 2001). Since the placements are recorded
automatically, the experimenter can know immediately when a participant has finished the
design. Additionally, SAMUEL records instantaneous solution times, and will therefore be
more accurate. The program also records placement order and how often the participants
requested the design be shown. SAMUEL has been used with many ages, including
12-year-olds, 17-year-olds, young adults, and middle-aged adults.

More recent investigations have used virtual administration with typically developing
and children with learning disabilities. Cardillo et al. (2017) compared the performance of
children with symptoms of NLD or dyslexia to typically developing children on virtual
tasks based on the BDT. One potential limitation is that children indicated their selections
verbally because some children were unable to use the mouse. Researchers manually
entered the response time and choices, resulting in a potentially unreliable response time.

8.2. Virtual Reality

An advantage of digital administration of the BDT is that block placements can be
recorded easily. However, the presentation of the BDT on a computer or tablet screen is
quite different from the standard administration, which includes physical manipulatives,
and may affect how people approach the test. Virtual reality (VR) can offer the benefits of
computerized administration while also being closer to traditional administration. VR has
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wide ranging applications, and performance on block-related tasks in VR has been found
to relate to visuospatial abilities (Averbukh et al. 2019; Wikstrom et al. 2020).

Shigenaga and Nagamune (2022) directly compared physical and VR administration
of the BDT. For both types of administration, they recorded individuals’ eye and hand
movements. Participants took longer to complete the VR version and had more grasping
motions. This result can be explained by the need to learn how to grasp objects in VR when
one is not physically grabbing anything. As VR technology advances, it may be possible
to include haptic feedback that more realistically simulates manipulating physical blocks
(Shigenaga and Nagamune 2022).

Other researchers have also used the BDT in virtual environments to see if spatial
training in these VR environments extends to real world applications (e.g., Averbukh
et al. 2019; Park 2022). In one such application, participants with amnesic mild cognitive
impairment completed the BDT and other tasks before and after eight weeks of training
in a VR environment where they were asked to navigate themselves and find various
locations (Park 2022). The participants in this training group increased significantly more
than the control group in terms of their WAIS performance at post-test and had greater
improved hippocampal function overall. Although the researchers did not administer the
BDT in VR, this study shows that VR spatial training does relate to performance on physical
spatial tasks.

9. Embedded Sensor Systems

Advancements in virtual administration may eventually support the recording of mul-
tiple behavioral processes while an individual completes the BDT. However, the traditional,
hand-held version still has some important potential advantages. The tactile feedback
gained from using blocks may be important, particularly for children. Thus, it would be
useful to develop a system that offers some of the advantages of traditional blocks while
conveying the advantages of a computer-based system. In this section, we discuss the
development of sophisticated physical block systems that can record and easily analyze
the step-by-step actions required. These systems use a more sophisticated data collection
system that extends beyond the limits of video recording and subsequent coding.

Researchers can use accelerometers and transmitters that are embedded inside spe-
cially engineered blocks to record where each block is placed, the order of block placements,
and the time to each block placement (Lee et al. 2016, 2018; McKee et al. 2023). This
data allows researchers to classify strategies based on those block placements and actions
(Rozencwajg and Corroyer 2001; Cha et al. 2020; McKee et al. 2023). Given that the typical
administration of the BDT requires a professional to administer, code, and classify, embed-
ded sensor systems provide a less costly and easier alternative (Jeong et al. 2010), allowing
clinicians more time during evaluations to gather more detailed information about the
patient, rather than focusing exclusively on the time and performance.

9.1. Tangible Geometric Games

One such system is the sensor-integrated geometric blocks (SIG-Blocks) that can be
used alongside an interactive graphical user interface where participants can complete
tangible geometric games (TaG-Games) and be analyzed computationally without an
overhead camera (Jeong et al. 2010). These SIG-Blocks are designed with sensors on each
contact surface of the blocks and emit infrared signals to each other. Accelerometer and
assembly configurations can be displayed on a researcher’s graphical user interface in real
time. While other comparable systems have been designed previously, the SIG-Blocks were
the first to be wireless, and they track assembly in addition to orientation among other
measurable data (Lee et al. 2016). However, analyses of TaG-Games have mostly focused on
the speed of completion and overall correctness (Lee et al. 2016, 2018), which is comparable
to the traditional methods.
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9.2. Smart Cubes

One example of how to use technology like sensor systems to understand how par-
ticipants complete assembly tasks from a cognitive standpoint is sCubes, or Smart Cubes,
which can record the real-time movements and connections of blocks while participants
complete the BDT (McKee et al. 2023). The system records the actions an individual takes
while completing a design, providing a sequence of intermediate states of block placements.
In combination, the series of states represent the path taken by an individual to complete
the design, and we can use individual participants’ path diagrams to determine what
general patterns are taken to complete each design. Thus far, analyses have shown modal
paths and convergent states that are indicative of participants using comparable strategies
to complete certain designs in the BDT, and the goals of the project include implementing
artificial intelligence and machine learning algorithms to analyze these common paths,
likely through machine learning clustering algorithms (McKee et al. 2023).

10. Artificial Intelligence and Machine Learning in Measuring and Analyzing the BDT

The use of artificial intelligence, and specifically machine learning, is growing rapidly
and is particularly useful for scientific endeavors (Mjolsness and DeCoste 2001). Here, we
focus on one kind of artificial intelligence, machine learning. Machine learning consists of
computational processes, typically classified as algorithms, that can take input and perform
a task on that input without the need for explicitly coded instructions (El Naga and Murphy
2015). Machine learning has been used to automate parts of scientific research, allowing for
increasingly larger datasets to be used and analyzed (Rudin and Wagstaff 2014). The use
of machine learning in psychology is still relatively new but offers intriguing possibilities
(Dwyer et al. 2018; Orru et al. 2020; Yarkoni and Westfall 2017). There are several ways
in which artificial intelligence can be used in cognitive testing, and experts in the fields
of cognitive science, computer science, and engineering are currently pioneering these
avenues. Kunda (2019) highlights three specific ways in which artificial intelligence can
enhance cognitive testing: (1) behavioral sensing, which allows for better monitoring of
an individual’s behaviors during a test; (2) data mining, which enables the recognition
of patterns from large datasets; and (3) cognitive modeling, which provides a means to
examine computational models of cognition. Here, we consider uses of artificial intelli-
gence and machine learning that are specific to the BDT that generally align with Kunda'’s
(2019) roadmap for enhancing cognitive testing with artificial intelligence. Furthermore,
the advancements in eye-tracking, computer administration, and sensor system technology
described above also support these uses of artificial intelligence for measuring and analyz-
ing performance on the BDT. Such advancements in hardware and software allow for more
data that can be processed using novel artificial intelligence methods.

10.1. Computer Vision

One way machine learning and artificial intelligence can be used to automate the process
of measuring the BDT is with computer vision (El Naqa and Murphy 2015). Computer vision
systems can take pictures or video as an input and automatically detect and record objects and
actions taking place. Some researchers have begun developing systems that rely on machine
learning, artificial intelligence, and computer vision to parse spatial assembly tasks, such as
building with LEGO blocks (Jones et al. 2019). For the BDT specifically, the Laboratory for
Artificial Intelligence and Visal Analogical Systems (AIVAS Lab) at Vanderbilt has developed
an Automated Block Identification System (ABIS) (Cha et al. 2018, 2020).

ABIS employs both machine learning and computer vision to automatically detect
block placements during the BDT from overhead video recordings of the task (Cha et al.
2018). The set-up of the task is modified slightly by the addition of a frame and colored
background, and an overhead camera is placed above the build area. The overhead video
is then processed automatically by computer vision, specifically to detect and determine
where blocks have been placed, their orientation, and their color. This identification process
runs through each frame of the video, resulting in a frame-by-frame sequence of block
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states. Further, when applied to videos from multiple test-takers, this system can produce
sequences from each individual that are comparable to each other.

10.2. Supervised Machine Learning for Classifying BDT Sequence Data

The usefulness of machine learning and automated systems for BDT does not stop at
automating the coding of block sequences. Once researchers have obtained these sequences,
they can be analyzed and compared. The AIVAS Lab has also introduced a system for
analyzing the output of their computer vision system (Cha et al. 2018). Researchers first
identified a few distinct strategies that individuals may use on different designs of the BDT,
such as always going row-by-row or starting on the outside then completing the inside.
Then, the researchers created samples sets of block sequences that would fall into these
different strategy categories. Finally, they created a system that could classify the strategy
of real participant block sequences by calculating similarity scores between the obtained
sequences outputted from their ABIS computer vision system and the researcher-generated
sample sequences to determine the best fitting strategy.

10.3. Unsupervised Machine Learning Techniques for BDT Analysis

While supervised machine learning techniques can efficiently automate the process of
analyzing BDT data, such systems depend on humans instructing the system on how it
should classify different data. For instance, Cha et al. (2018)’s analysis system only classifies
sequences based on the strategies pre-determined by the human researchers. However,
there are machine learning techniques that do not depend on human knowledge to be
able to find patterns within datasets. Specifically, unsupervised machine learning, which is a
process where the system learns from itself on the input data (El Naga and Murphy 2015).
Such methods can be very useful for researchers as these unsupervised machine learning
methods can be used to identify patterns in data that humans cannot detect unassisted,
particularly in complex datasets (Eckhardt et al. 2023). Researchers in the medical sciences
have recently started to use unsupervised machine learning to find patterns among patients
based on genome data (Lopez et al. 2018). Such clustering can be useful as it might bring to
light certain similarities or differences between different patients previously unrecognized
by the physicians or researchers.

For BDT, unsupervised machine learning introduces an opportunity to find important
characteristics of how individuals complete the test that may not have been previously
considered. This method is currently under development (McKee et al. 2023). For example,
if many individuals are recorded by one of the methods above, such as the sCubes sensor
system or ABIS computer vision system described above, the unsupervised machine
learning algorithms might be able to detect strategies outside of those that researchers have
identified from their own observations. Further, such systems can potentially consider
multiple types of information at once. Thus far, we have discussed the analysis of the
sequence of block placements, but machine learning is not limited to just examining
sequences. For instance, an unsupervised machine learning system may combine block
sequence information with time information, such as how much time passes between each
block placement. This information could help to shed light on why slower building in the
BDT is typically associated with worse performance (Troyer et al. 1994; Back et al. 2022).
The system can be set up in such a way as to examine aspects of both the sequence of block
placements and the placement time information to find new connections between certain
strategies and overall ability at the task. Further, with more and more intricate systems,
more variables may be examined, such as eye-tracking data synced with block placements
or motor data from hand sensors (Besari et al. 2023).

With all uses of machine learning and artificial intelligence for evaluating the BDT, the
systems can automate processes that would otherwise consume countless hours of human
labor. While this is certainly useful to most researchers, the truly exciting aspects of these
techniques come from their potential to generate insights outside of human capabilities.
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11. Potential Insights into Cognitive Processes and Clinical Manifestations

While we will not know exactly what insights these methods have to offer until they are
implemented more widely, we can imagine what kinds of advancements can be built upon
both advancing technology and greater understanding of the cognitive processes behind
the BDT. In this section, we provide examples of how the technological advances in BDT
data collection, scoring, and analysis could provide new insights regarding psychological
processes. We envision a more informed approach to the collection and analysis of data
from the BDT that can provide new insights into psychological processes and clinical
disorders. Researchers will no longer need to rely solely on broad composite scores such as
overall accuracy and time. The new technologies will facilitate more nuanced recording
and analysis of construction data. BDT smart technologies in combination with machine
learning techniques offer several clinical applications. For example, researchers may use
these technologies to test different theories of BDT performance and gain new data that
have previously been difficult or impossible to collect or analyze. These data have the
potential to both answer and raise questions about how and why various factors can influence
performance, including both clinical disorders and normal variations in spatial abilities.

To illustrate how these technologies may contribute to cognitive theories on individual
differences, we provide a high-level overview of one of the strongest clinical application
areas for BDT research: autism spectrum disorder (ASD).

Understanding Differences in BDT Performance among Those Diagnosed with Autism Spectrum
Disorder (ASD)

For decades, researchers have observed that individuals diagnosed with ASD perform
differently than those without this diagnosis on the BDT (e.g., Bolte et al. 2008). The
direction and magnitude of these differences depends in part on what information is
reported. In some cases, the difference is reported as an overall higher score for individuals
with ASD, but this advantage is often offset by an increase in the time needed to complete
the tasks. One explanation for these differences is weak central coherence (WCC) theory
(Happé and Frith 2006), which suggests that individuals with ASD perform well on tasks
that focus on local, individual aspects of the task, but relatively poorly when the task
requires integrating concepts as a whole (i.e., the “Gestalt”). Whether these cognitive biases
lead to enhanced, reduced, or comparable performance to control groups depends on the
specific target designs used.

Existing research on the spatial abilities of individuals with ASD raises some important
questions that new BDT technologies could help to address. We know very little about
the actual performance of individuals with ASD, particularly the specific building strategies
these individuals use. Gaining such information would corroborate the findings of previous
studies as well as shed new light on performance at a more fine-grained level. Researchers
could record and analyze constructions at all stages. For example, researchers could record
whether participants diagnosed with ASD are more likely to be affected by the placement
of previous blocks, even at the expense of building the overall figure. Knowing this sort of
information could allow us to have a much more precise and informed evaluation of weak
central coherence theory or alternative theories.

Second, the use of smart technologies in the BDT could also shed light on heterogeneity
in performance. Currently, most research on the BDT focuses on group differences (e.g.,
ASD versus controls, or children of different ages). However, there may be substantial
heterogeneity within groups. By focusing only on inference from experimental design (and
not individual constructions), we may lose information that could be vitally important to
understanding the processes that are involved, how they may develop, and how different
disorders may affect these processes. For example, there may be broad differences between
ASD individuals versus controls that can be captured by traditional scoring methods;
however, there may be substantial differences between different ASD individuals in exact
block placing sequences or the time taken for each individual action.
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12. Addressing Limitations of These Methods and Techniques

Although these new technologies are exciting and have the potential to transform both
the use and score of the BDT, it is also important to consider some of the limitations. The
technologies that we describe here are still emerging, and many of the limitations stem
from their newness.

One obvious limitation is cost; these technologies are currently expensive. However,
we have every reason to believe that these technologies will become less expensive as
they become more commonly used. The cost is likely to decrease exponentially as the
technology improves and becomes more widely produced and distributed. One analogous
example is the cost of eye tracking equipment, which, in some cases, has exceeded USD
50,000. Over time, less expensive (but still effective) systems have become available, and
researchers can now obtain reasonably good eye tracking data for a fraction of the initial
cost. Consequently, eye tracking is becoming increasingly popular.

Further, we are only beginning to understand the extent and kinds of insights that
can be made using these methods. However, technological versions of BDT have already
begun to allow for insights into individual differences, which can be the beginning for un-
derstanding cognitive processes (Cha et al. 2020; Rozencwajg and Corroyer 2001). Likewise,
we are just beginning to learn what insights unsupervised machine learning can provide.
Unsupervised machine learning is a bottom-up process. Thus, this method has the potential
to find patterns in individual’s building data across multiple variables, including both block
placements and time, to find commonalities and differences across groups, individuals,
and even within individuals. Additionally, psychologists and cognitive scientists would
still have the job of deriving meaning from the patterns found by unsupervised machine
learning. Thus, not only do these methods serve as a tool for researchers to measure and
record more during the administration of the BDT, but they can also serve as a catalyst for
deeper thinking and possible discovery by human scientists.

13. Future Directions: Building upon These Methods and Techniques

Currently, these methods still have unexplored potential as a valuable tool for re-
searchers and clinicians. Given the overall increase in interest and use of machine learning
methods for science in all fields, the time is ripe to investigate how these technologies can
be used to support psychological research. Before these methods can become widespread,
there needs to be support and further work on their implementation. Specifically, studies
with a large number of participants should be conducted using both the collection and
analysis methods outlined in this paper to demonstrate what kinds of patterns in building
processes could be found at a large scale. Further, more specific variables within the build-
ing process, such as errors or time for each action, could be evaluated separately, but also
on a much larger scale than previous studies.

The Potential Use of These Technologies for Clinical Practice

Each of the measurement and analytical methods outlined above can provide insight
into how individuals complete the BDT and can be used for the discovery of important
individual differences. The combination of these insights and advanced technology can be
used to advance the use of the BDT. In particular, the potential for real-time assessment
can significantly change the way that the BDT is typically administered. Researchers and
clinicians could have individuals complete the BDT with a set of embedded sensor system
blocks, such as the sCubes systems, and have real-time data that could be automatically
scored (McKee et al. 2023). Such automated scoring systems have started to be used for
other cognitive tests; for example, recent work has created a machine learning system
for automatically scoring the Rey-Osterrieth Complex Figure Test (Simfukwe et al. 2021).
Further, any insights that come from a large BDT dataset analyzed with unsupervised clus-
tering machine learning could be incorporated into real-time assessment as well. Machine
learning systems could be designed to detect select strategies or building characteristics
while an individual is completing the test. From a clinical perspective, automated scoring
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offers several advantages. For example, it reduces the cognitive load of administering
the task so the examiner may attend to other important aspects of the assessment and
yields richer data on which to base clinical interpretations and recommendations (Young
et al. 2022). Moreover, the advanced process scores that technology-enabled versions of
block design can provide may offer new insights into the specific brain networks involved
in spatial weaknesses and how those impairments may manifest as functional outcomes.
Automated systems do not eliminate the need for a human examiner; rather, they allow
examiners to focus on tasks that are uniquely human, such as behavioral observations,
building rapport, and testing the limits of an examinees’ abilities.

14. Conclusions

The BDT is an important neuropsychological test with diverse research, educational,
and clinical applications. Traditional versions of the BDT offer the advantages of tangible
manipulatives in a physical assembly-based task yet are limited by a human examiner’s
ability to record nuanced process information in real-time. Advanced technologies enhance
the measurement capabilities of the BDT by easily recording minute details about how
individuals complete this task (Table 1). Further, artificial intelligence techniques open
the door for analyzing data from the BDT in ways not previously possible. Most of these
technologies are still relatively new, and more research and development is needed. We
encourage the further investigation and usage of these technologies for the BDT as well as
for other neuropsychological assessments. The general methodologies and technologies
reviewed in this paper could be widely applied to other tests of cognitive abilities and may
deepen our understanding of cognitive functions through a fine-grained examination of
behaviors and should be explored further.

Table 1. Summary of methodologies used for advancing measurement in the block design test.

Block Design Variable Description Tool
Frequency of individual looking at Corneal Imaging
Fixation Length and Sequence different components of the block design

test and sequence of where the individual VR-Based Eye-Tracking

Computerized Administration

Sequenced Individual Block Placements .Detalled.recorc! of each block placement Virtual Reality Administration
in order, including erroneous placements. Embedded Sensor System
Computer Vision with Video Recordings
Analysis of block sequence data to find Supervised Machine Learning

Pattern identification in block placements

across individuals

clusters of data, such as categories of

A ¢ Unsupervised Machine Learning
different strategies
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