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Abstract: Activity recognition using data collected with smart devices such as mobile and wearable sensors 1

has become a critical component of many emerging applications ranging from behavioral medicine to gaming. 2

However, an unprecedented increase in the diversity of smart devices in the Internet-of-Things era has limited the 3

adoption of activity recognition models for use across different devices. This lack of cross-domain adaptation is 4

particularly notable across sensors of different modalities where the mapping of the sensor data in the traditional 5

feature level is highly challenging. To address this challenge, we propose ActiLabel, a combinatorial framework 6

that learns structural similarities among the events that occur in a target domain and those of a source domain 7

and identifies an optimal mapping between the two domains at their structural level. The structural similarities 8

are captured through a graph model, referred to as the dependency graph, which abstracts details of activity 9

patterns in low-level signal and feature space. The activity labels are then autonomously learned in the target 10

domain by finding an optimal tiered mapping between the dependency graphs. We carry out an extensive set 11

of experiments on three large datasets collected with wearable sensors involving human subjects. The results 12

demonstrate the superiority of ActiLabel over state-of-the-art transfer learning and deep learning methods. 13

In particular, ActiLabel outperforms such algorithms by average F1-scores of 36.3%, 32.7%, and 9.1% for 14

cross-modality, cross-location, and cross-subject activity recognition, respectively. 15

Keywords: Activity recognition; wearables; mobile health; machine learning; transfer learning; model 16

independent; structural similarity. 17

1. Introduction 18

Smart devices such as wearable and mobile sensors are increasingly utilized for health monitor- 19

ing and personalized behavioral medicine. These technologies use machine-learning/deep-learning 20

algorithms to detect lifestyle and physiological biomarkers and to provide real-time clinical inter- 21

ventions [1–7]. However, the machine learning models are designed based on labeled training data 22

collected in a particular domain, such as with a specific sensor modality, wearing site, or user. A 23

significant challenge with this approach is that a machine learning model trained with a specific 24

setting performs extremely poorly in new settings such as when the model is used with a sensor 25

of different modality, when the on-body location of the sensor changes, or when a new subject 26

adopts the system [8,9]. This generalizability challenge has limited scalability of sensor-based health 27

monitoring because collecting sufficiently large amounts of labeled sensor data for every possible 28

domain is a time-consuming, labor-intensive, expensive, and often infeasible process. 29

To address the aforementioned challenges, we introduce ActiLabel, a combinatorial framework 30

that learns machine learning models in a new domain (i.e., target) without the need to manually 31

collect any labels. Our pilot application in this paper is activity recognition, where ActiLabel is 32

designed to detect human activities from wearable sensor data. A unique attribute of ActiLabel is 33

that it examines structural relationships between activity events (i.e., classes/clusters) in the two 34

domains and uses this information for target-to-source mapping. Such structural relationships allow 35
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us to compare the two domains at a much higher level of abstraction than the common feature space, 36

and therefore enable knowledge transfer across radically diverse domains. We hypothesize that even 37

under sever cross-domain spatial and temporal uncertainties (i.e., significant distribution shift due to 38

sensor modality change) physical activities exhibit similar structural dependencies across the two 39

domains. We aim to uncover such structural dependencies from the sensor data gathered in the two 40

domains and use this knowledge for mapping sensor data from the target domain to the data in the 41

source domain. 42

To the best of our knowledge, our work is the first study that develops a combinatorial approach 43

for structural transfer learning. Our notable contributions can be summarized as follows: (i) we 44

introduce a model-agnostic combinatorial optimization formulation for transfer learning in where no 45

labeled data are available in the target domain, and we show that this problem is non-deterministic 46

polynomial-time hardness (NP-hard); (ii) we devise methodologies for constructing a network 47

representation of wearable sensor readings, referred to as network graph, as a integral component of 48

our framework for understanding structural dependencies among activity classes; (iii) we design 49

algorithms that perform community detection on the network graph to identify core activity clusters; 50

(iv) we introduce an approach to construct a dependency graph based on the core activity clusters 51

identified on the network graph; (v) we show that combinatorial transfer learning can be transformed 52

into a tractable assignment problem in the new knowledge transfer space given by the dependency 53

graphs; (vi) we propose a novel multi-layer matching algorithm for mapping target-to-source 54

dependency graphs; and (vii) we conduct an extensive assessment of the performance of ActiLabel 55

for cross-modality, cross-subject, and cross-location activity learning using real sensor data collected 56

with human subjects. 57

1.1. Transfer Learning 58

Transfer learning is the ability to extend what has been learned in one setting (i.e., source) to 59

another, nonidentical but related, setting (i.e., target). Based on the common analogy in machine 60

learning, we refer to the previous setting as the source domain. The sensor data captured in this 61

domain is referred to as the source dataset, which is fully labeled in our case. The new state of 62

the system, which may exhibit radical changes from the source domain, is referred to as the target 63

domain where we intend to label the sensor data autonomously [10]. 64

Definition 1. (Transfer Learning). Given a source domain Ds and learning task Ts, a target domain 65

Dt and learning task Tt , transfer learning aims to help improve the learning of the target predictive 66

function Ft(.) in Dt using the knowledge in Ds and Ts, where Ds = Dt or Ts = Tt. 67

Depending on how the source and target tasks and domains are defined, one can categorize 68

transfer learning techniques into inductive transfer learning, transductive transfer learning, and 69

unsupervised transfer learning. Inductive transfer learning refers to the case where the tasks in the 70

target and source are different. Therefore, we need some labeled data to induce a prediction model 71

in the target domain. In transductive transfer learning, the source and target obtain the same tasks 72

but different domains. In this setting, there is no label in the target, but relatively large amount of 73

labeled data is available in the source domain. Finally, in the unsupervised transfer learning, the 74

target task is different from, but related to, the source, and no label is available in the target domain. 75

Unsupervised transfer learning aims to solve unsupervised learning problems such as clustering and 76

dimensionality reduction [11,12]. The transductive transfer learning, which is the focus of this paper, 77

can be defined as follows. 78

Definition 2. (Transductive Transfer Learning) Given a source domain Ds and a corresponding 79

learning task Ts, a target domain Dt and a corresponding learning task Tt , transductive transfer 80

learning aims to improve the learning of the target predictive function Ft(.) in Dt using the knowledge 81

in Ds and Ts, where Ds ̸= Dt and Ts = Ts . Also, some unlabeled target domain data must be 82

available at training time. 83

Transductive transfer learning is categorized into two cases: (1) source and target adopt different 84

feature domains Xs ̸= Xt; (2) source and target adopt the same feature domains, but the probability 85
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distributions of their observations are different P(Xs) ̸= P(Xt). This case is referred to as domain 86

adaptation. 87

Transfer learning for cross-domain variations in the context of sensor-based monitoring can be 88

categorized into cross-user, cross-modality, cross-platform, and cross-location [13]. Researchers 89

have proposed several transfer learning techniques to address the challenge of domain shift in the 90

context of sensor-based systems. Prior research utilized intra-affinity of classes to perform intra-class 91

knowledge transfer where 61.4% accuracy for cross-location and cross-subject transfer learning 92

was achieved [14]. Another study proposed a feature-level transfer learning approach for activity 93

recognition where 93.1% accuracy for cross-subject knowledge transfer was obtained [13]. Prior 94

research also developed OptiMapper as a transfer learning framework for the case where the target 95

domain provides data about only a subset of the classes [15]. However, as the degree of divergence 96

between source and target domains grows, the transfer learning task becomes more challenging. 97

These gaps result in a performance decline of pre-trained activity recognition algorithms. ActiLabel 98

is proposed as a combinatorial optimization to address the problem of autonomous learning across 99

highly diverse domains (e.g., across different sensor modalities, sensor locations, or users). 100

Prior research also proposed a deep convolution recurrent neural network to automate the 101

process of feature extraction and to capture general patterns from activity data [16]. In deep learning 102

based methods, the goal is to have a pre-trained model obtained in a source domain and make it fit to 103

our learning problem in the target domain by adding one more training step. Also, deep learning 104

based methods need a labeled set for training and do not aim to label the unlabeled samples in the 105

target domain. However, ActiLable is model-agnostic and does not rely on a specific type of machine 106

learning model. We create a labeled training dataset in the target domain by mapping the target 107

sensor data onto the labeled samples in the source domain prior. This model-agnostic approach 108

allows designers to utilize the obtained training dataset and develop the machine learning of their 109

choice for use in a target domain without being limited to the specific architecture that exists in the 110

source domain. 111

We also note that deep learning models may perform very poorly in profoundly different 112

domains such as cross-modality knowledge transfer or when the two domains exhibit a substantial 113

amount of shift in the distribution of the sensor data. For example, previous research achieved 114

only 54.2% accuracy in classifying human gestures using deep learning with computationally dense 115

algorithms when the system is used with sensors of different modalities than that of training [8,17]. 116

More advanced models combine knowledge of transfer and deep learning [18]. There have been 117

studies attempting to transfer different layers of deep neural networks across different domains. 118

In one study, a cross-domain deep transfer learning method was introduced that achieved 64.6% 119

accuracy with four activity classes for cross-location and cross-subject knowledge transfer [9]. 120

Unlike our transductive transfer learning approach in this paper, these approaches fall within the 121

category of inductive transfer learning, where some labeled instances are required in the target 122

domain. 123

1.2. Graph Modeling 124

Many areas of machine learning, such as clustering/community detection, dimensionality 125

reduction, and semi-supervised learning, employ neighbor graphs to extract high-level global 126

structures from local information within the dataset [19,20]. As an example, nearest neighbor 127

graphs are commonly used to classify unknown events using feature representations. During the 128

classification process, certain features are extracted from unknown events and classified based on the 129

features extracted from their k-nearest neighbors. 130

The nearest neighbor or, in general, the k-nearest neighbor (k-NN) graph of a dataset is obtained 131

by connecting each data point to its k closest points from the dataset. The closeness is defined based 132

on a distance metric between the data points. The symmetric k-NN graphs are a special case where 133

each point is connected to another only if both are in the k nearest vicinity of each other. 134

Definition 3 (Symmetric k-NN Grpah). A Symmetric k-NN graph is a directed graph G = (V, E), 135

where V is the set of vertices (i.e., data observations), and E is the set of edges. Vi is connected to 136
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vertex Vj if Vj is one of the k-NNs of Vi and vice versa according to a distance function δ : V ×V → 137

R. 138

Community detection algorithms are widely used to identify clusters in large scale network 139

graphs. Clusters, which represent groups of densely connected vertices with sparse connections to 140

each other, often provide useful structural information [21]. Recent research compared different 141

community detection algorithms with clustering techniques suggesting that detecting communities 142

from a network representation of data could result in a higher clustering performance compared 143

to traditional clustering algorithms [22,23]. We define some of the essential features related to 144

community detection in network graphs in the following. 145

Definition 4 (Cut). Given a graph G(VN ,EN) and communities C = {C1, . . . , CK}, ”Cut” between 146

communities Ci and Cj is defined as the number of edges (u, v) with one end in Ci and the other end 147

in Cj. That is, 148

Cut(Ci, Cj) = |(u, v) ∈ EN : u ∈ Ci & v ∈ Cj| (1)

Definition 5 (Cluster Density). Given a graph G(VN ,EN) and communities C = {C1, . . . , CK} 149

within the graph G, ”community density”, ∆(Ci), for community Ci is defined as the number of 150

edges (u, v) with both ends residing in Ci. 151

∆(Ci) = |(u, v) ∈ EN : u ∈ Ci & v ∈ Ci| (2)

Definition 6 (Community Size). Given a graph G(VN ,EN) and communities C = {C1, . . . , CK} 152

within the graph G, ”Community Size”, σ(Ci), for community Ci is defined as the number of vertices 153

that reside in Ci. 154

σ(Ci) = |v ∈ VN : v ∈ Ci| (3)

2. Problem Statement 155

Figure 1 depicts an activity recognition framework when it is adopted on a new wearable 156

sensor of different modality from the initial one. As shown in Figure 1a, an activity recognition 157

system consisting of a wearable sensor (e.g., accelerometer) uses a model learned based on annotated 158

data. We refer to this setting as source domain. As shown in Figure 1b, when the user replaces the 159

existing sensor with a new sensor with different modality (e.g., stretch sensor), the performance of 160

the existing model declines. We refer to this setting as the target domain. To overcome this challenge, 161

we need to label the dataset autonomously in the new setting (e.g., new sensor modality), as shown 162

in Figure 1c. Finally, as shown in Figure 1d, a more accurate classifier is trained using the labeled 163

training data in the target domain. 164

2.1. Problem Definition 165

We represent each sensor observation in an arbitrary domain (e.g., target domain) as a k- 166

dimensional feature vector Xi = { fi1, fi2, ..., fik}, which are computed from a given time window. 167

We define the activity recognition task as assigning activity label li to an observation Xi given a 168

set of possible labels L = {l1, l2, ..., lm}. The problem is to create a labeled dataset in the target 169

domain by transferring the knowledge from the labeled observations in the source domain such that 170

the activity misclassification in the target is minimized. We define this problem as combinatorial 171

transfer learning. 172

Problem 1 (Combinatorial Transfer Learning (CTL)). Let X = {X1 ,X2, . . . , Xn} be the set of 173

sensor observations (i.e., sensor readings represented in feature space) captured in the target domain. 174

Furthermore, let L = {l1, l2, . . . , lm} be the set of activity labels in the source domain that the target 175

domain aims to detect. Combinatorial transfer learning is to assign labels to Xi and develop a 176

classification model using the labeled data such that the classification error is minimized. 177
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(a) (b)

(c) (d)

Figure 1. Deployment of ActiLabel in real-world environments.

Because mislabeled sensor data adversely impacts the performance of the learned classifier, 178

therefore, CTL can be viewed as the problem of assigning labels lj ∈ L to target observations Xi in 179

X such that the error of label assignment is minimized. 180

2.2. Problem Formulation 181

We formulate the CTL described in Problem 1 as follows. 182

Minimize
n

∑
i=1

ϵijxij (4)

Subject to: 183

n

∑
i=1

xij ≤ λj ∀j ∈ {1, . . . , m} (5)

m

∑
j=1

xij = 1, ∀i ∈ {1, . . . , n} (6)

xij ∈ {0, 1} (7)
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where xij is a decision variable indicating whether or not Xi is assigned label lj, and ϵij denotes 184

error due to such a labeling. The constraint in (5) guarantees that at most λj target observations are 185

assigned label lj. Without such a constraint, a trivial solution is to label no observations in the target 186

domain. The constraint in (6) ensures that only one label is assigned to each observation Xi in the 187

target domain. 188

2.3. Solution Overview 189

The difficulty in solving Problem 1 arises not only from the hardness of the problem but 190

also from the fact that parameters λj and ϵij are not known a priori. Therefore, the solution to 191

the CTL problem in (4)–(7) needs to estimate λj and ϵij first. Since assigning a label to every 192

observation in the target is unlikely to result in a high labeling accuracy, we propose to find groups 193

of similar target observations that are reliable to receive the same label. Unsupervised clustering 194

is one approach to divide observations into groups, exclude noisy observations from the labeling 195

process; therefore, increase specificity of the labeling. We can estimate the value of λ by identifying 196

clusters of observations that are safe to receive the same activity label, namely core clusters. Let 197

CD
i = {X1, X2, ..., Xk} be a ith cluster in domain D. After clustering the target data, the goal is to 198

assign activity labels to the core clusters such that the label misassignment is minimized. Therefore 199

the CTL problem can be reformulated as below. 200

Minimize
n

∑
i=1

m

∑
j=1

αijϵij (8)

Subject to: 201

m

∑
j=1

αij = 1, ∀i ∈ {1, . . . , n} (9)

where αij is a binary variable indicating whether or not ith cluster in the target is assigned with label 202

lj from jth cluster in the source domain, and ϵij denotes the assignment error. ϵij can be estimated 203

as a structural dissimilarity between cluster Ct
i in the target and cluster Cs

j in the source domain. 204

Cluster Cs
j is cluster of observations with label Lj in the source domain. Note that computing the 205

dissimilarity between the clusters will be further discussed in the next steps. The constraint in 206

Equation 9 ensures that only one label is assigned to each core cluster ci from the target domain. 207

αij =

{
1, if label lj is assigned to cluster Ci

0, otherwise
(10)

3. ActiLabel 208

Figure 2. ActiLabel comprises of several steps. Network graph construction is done by quantifying the pairwise
similarity of sensor observations using statistical features and semantic information; Core clusters are directly
obtained through the available class labels; Dependency graph captures the structural relationships between
activity classes; and Optimal label learning uses two bipartite, one of which captures the cost of mapping each
vertex in the source dependency graph to every vertex in the target dependency graph. The other one quantifies
the costs of edge-wise mapping between the two domains

We propose ActiLabel as a solution to Equation 8. The overall approach in ActiLabel is 209

illustrated in Figure 3. The design process in ActiLabel involves the following steps, where we refer 210

to the first two steps as graph modeling and the next two steps as optimal label learning. 211
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Figure 3. An overview of ActiLabel design including graph modeling and optimal label learning.

1. Network graph construction: we first construct a network representation of sensor readings 212

and quantify the pairwise similarity of the network nodes (i.e., sensor observations) using a 213

combination of statistical features and semantic information about the network Figure 3-a. 214

2. Core cluster identification: we use the network graph to identify core clusters in the target 215

domain where no labeled data are available. For the source domain, the core clusters/classes 216

are directly obtained through the available class labels as shown in Figure 3-b. 217

3. Dependency graph construction: we use the core clusters and network graph to build a 218

dependency graph in both domains taking into account inter-class similarities as shown in 219

Figure 3-c. 220

4. Optimal Label Learning: we use the dependency graphs of the source and target domains to 221

build two bipartite graphs. The first bipartite graph captures the cost of mapping each vertex 222

in the source dependency graph to every vertex in the target dependency graph. The second 223

bipartite graph quantifies the costs of edge-wise mapping between the two domains as shown 224

in Figure 3-d, Figure 3-e, and Figure 3-f. 225

The process of ActiLabel is summarized in Algorithm 1.

Algorithm 1 ActiLabel

Input:Dt, unlabeled target dataset, {Ds, Ls}, labeled source dataset.
Result: Labeled target dataset, {Dt, Lt}
Graph Modeling: ▷ (section 3.1)

1: Construct Network Graphs in both domains; ▷ (section 3.1.1)
2: Identify core clusters in both domains; ▷ (section 3.1.2)
3: Build Dependency graphs; ▷ (section 3.1.3)
4: Extract structural relationships among the core clusters in both domains;

Optimal Label Learning ▷ (section 3.2)
5: Perform graph-level min-cost mapping from target to source;
6: Assign labels to the observations in target;
7: Train activity recognition model in target using new labels;

226

3.1. Graph Modeling 227

The goal of our graph modeling is to construct a dependency graph that captures structural 228

dependencies among the events (i.e., physical activities) in both target and source domains. Such 229

dependency graphs are then used in optimal label learning to label sensor observations and generate 230

a training dataset in the target domain. As shown in Figure 4, our graph modeling consists of three 231
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phases: (i) network graph construction; (ii) core cluster identification; and (iii) dependency graph 232

construction. This section elaborates on each phase. 233

network graph core clusters dependency graph

𝐶1 𝐶2

𝐶6 𝐶3

𝐶4𝐶5

𝐶1

𝐶2

𝐶6

𝐶3

𝐶4

𝐶5

Node weight:{Ci, 𝑤𝑖
𝑢}

Edge weight:{Ci, Cj, 𝑤𝑖𝑗
𝑒 }

Figure 4. Graph modeling phases.

3.1.1. Network Graph Construction 234

We initially build a network representation of the sensor observations to quantify the amount of 235

similarity between pairs of observations. To this end, we construct a symmetric k-nearest-neighbor 236

network on the sensor data. The symmetric property of the network graph eliminates many edges 237

from inclusion in the network, therefore reducing the complexity of future computations in ActiLabel. 238

Definition 7 (Network Graph). The network graph refers GN(VN ,EN) is a symmetric k-NN graph 239

where vertices are feature representation of the sensor data and distance function δ computes the 240

cosine similarity between the features. 241

Given the high dimensional feature space, we use Cosine distance as the measure of affinity 242

between each pair of sensor observations Xi and Xj, and as the distance function δ(vi, vj) used to 243

construct the network graph. 244

δ(vi, vj) = cos(Xi, Xj) =
Xi · Xj

||Xi|| · ||Xj||
(11)

3.1.2. Core Cluster Identification 245

To identify core clusters in ActiLabel, we propose a graph-based clustering algorithm similar to 246

the approach in prior research [24]. We refer to this approach as core cluster identification (CCID). 247

The core cluster identification algorithm is applied to the network graph G(VN ,EN). We first partition 248

the network graph into multiple communities of approximately the same vertex size using a greedy 249

community detection technique. We then merge communities with the highest similarity score based 250

on their dendrogram structure. 251

The amount of similarity αi,j between communities Ci and Cj is measured as the ratio of the 252

number of edges between the two communities (i.e., Cut(Ci,Cj)) to the average number of edges 253

that reside within the two communities. Therefore, the similarity score of αi,j is given by 254

α(i, j) =
Cut(Ci, Cj)

|Ci |+|Cj |
2

(12)

where the terms |Ci| and |Cj| denote the number of edges that reside in Ci and Cj, respectively. 255

Note that the similarity score α is defined such that it is not adversely influenced by the size of 256

communities in unbalanced datasets. 257
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3.1.3. Dependency Graph Construction 258

To capture high-level structural relationships among sensor observations, we devise a structural 259

dependency graph where the core clusters identified previously represent vertices of the dependency 260

graph. 261

Definition 8 (Dependency Graph). Given a network graph G(VN ,EN) where |VN | = |X | and core 262

clusters C = {C1, . . . , CK} obtained from the network graph, we define dependency graph G(VD 263

,ED, Wv
D, We

D) as a weighted directed complete graph as follows. Each vertex ui inVD is associated 264

with a core cluster Ci ∈ C. Thus, |VD| = |C|. Each vertex ui ∈ VD is assigned a weight wu
i given 265

by 266

wu
i =

∆(Ci)

σ(Ci)|
(13)

where ∆(Ci) and σ(Ci) refer to cluster density and cluster size, respectively, for core cluster Ci. 267

Each edge (ui, uj) ∈ ED, associated with core clusters Ci and Cj, is assigned a weight we
ij given by 268

we
ij =

Cut(Ci, Cj)

σ(Cj)
(14)

Algorithm 2 Optimal Label Learning

Input:Gt
D and Gs

D, dependency graphs for target and source domains.
Result: Labeled target dataset, {Dt, Lt}

1: Construct bipartite graph BGe using edge components;
2: Obtain bipartite mapping Me on GBe;
3: Construct bipartite graph BGv on vertex components;
4: Obtain bipartite mapping Mv on GBv;
5: Construct bipartite graph BGc using Me and Mv;
6: Obtain bipartite mapping OptMapping on GBc;
7: Assign source labels to appropriate core clusters in target using OptMapping;

3.2. Optimal Label Learning 269

Algorithm 2 summarizes the steps for optimal label learning. The goal of the optimal label 270

learning is to find a mapping from the dependency graph in the target domain to that of the source 271

domain. We note that graph isomorphism algorithms are not applicable to our graph-level mapping 272

problem because graph isomorphism algorithms only consider the structure of the graphs and do not 273

take into account important information such as edge weights and vertex weights in our dependency 274

graphs [25]. The core of our optimization in label learning is graph-level mapping, where we aim 275

to find a mapping from the dependency graph in the target domain to that of the source domain 276

while minimizing the amount of mapping error. We refer to this optimization problem as min-cost 277

dependency graph mapping and define it as follows. 278

Problem 2 (Min-Cost Dependency Graph Mapping). Let Gs
D and Gt

D denote dependency graphs 279

obtained from datasets in the source and target domains, respectively. The min-cost dependency 280

graph mapping is to find a mapping R : Gt
D → Gs

D from Gt
D to Gs

D such as the cost of such mapping 281

is minimized. 282

Problem 2 can be viewed as a combinatorial optimization problem that finds an optimal 283

mapping in a two-tier fashion: (i) it initially performs component-level mappings where vertex-wise 284

and edge-wise mappings are found between source and target dependency graphs; and (ii) it then 285



Version June 29, 2023 submitted to Sensors 10 of 24

uses the component-level mappings to reach a consensus about the optimal mapping for the problem 286

as a whole. Such a two-level mapping problem can be represented using the objective in (15). 287

Minimize
|Vt

D |

∑
i=1

|Vs
D |

∑
j=1

1 − µ(i, j)
M

(15)

where µ(i, j) represents the number of mappings between vi ∈ Vt
D and vj ∈ Vs

D obtained through 288

the component-level optimization. Furthermore, M is a normalization factor that is equal to the total 289

number of component-wise mappings. The objective in (15) attempts to minimize the amount of 290

mapping costs at the graph-level and, therefore, can be viewed as the objective for Problem 2. 291

𝑙1

𝑙2

𝑙3

𝑙4

Optimal assignment

𝑙5

𝐷

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝐶6

Bipartite graph

𝑙1

𝑙2

𝑙3

𝑙4

𝑙5

𝐷

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝐶6

Figure 5. Optimal label assignment includes constructing a component-wise bipartite graph and finding an
optimal mapping of those components from target to source.

We build a weighted complete bipartite graph on the elements of the similarity matrix to find 292

the minimum double-cost mapping. Figure 5 is an illustration of such a bipartite graph where the 293

nodes on the left shore of the graph represent elements (e.g., cluster density) of the target similarity 294

matrix and the nodes on the right shore of the bipartite graph are associated with corresponding 295

elements (e.g., cluster density) in the source similarity matrix. 296

In constructing a bipartite graph, a weight ωij is assigned to the edge that connects node i in 297

the target side to nodes j in the source side. This weight also represents the actual mapping cost and 298

is given by 299

ωij = |wsi − wtj| (16)

where wsi and wtj are respectively, the weight values associated with element i in the source domain 300

and component j in the target domain. We note that these weights can be computed using (13) and 301

(14) for vertex-wise mapping and edge-wise mapping, respectively. We also note that if the number 302

of components in source and target were not equal, we could add dummy nodes to one shore of the 303

bipartite graph to create a complete and balanced bipartite graph. 304

We use Hungarian Algorithm (a widely used weighted bipartite matching algorithm with 305

O(m3) time complexity) [26] to identify an optimal mapping from the nodes on the left shore of the 306

bipartite graph to the nodes on the right shore of the graph. 307

The last step is to assign the labels mapped to each cluster to the target observations within 308

that cluster. A classification model is trained on the labeled target dataset for physical activity 309

recognition. 310

4. Time Complexity Analysis 311

Lemma 1. The optimal label learning phase in ActiLabel has a time complexity of O(n + m3) 312

where n denotes the number of sensor observations and m represents the number of classes. 313
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Proof. To learn the optimal labels, ActiLabel finds an optimal matching between source and target 314

dependency graphs given the node and edge weight values. We solve the dependency graph matching 315

problem by running the Hungarian algorithm three times. Given that number of the core clusters is 316

proportional to the number of labels, m, the time complexity of running Hungarian algorithm three 317

times is O(m3). Distributing the labels to the cluster members can be done in O(n). Therefore, the 318

optimal label learning phase has a time complexity of O(n + m3). 319

The last step is to assign the labels to the target observations within each cluster. A classification 320

model is trained on the labeled target dataset for physical activity recognition. 321

Theorem 1. The time complexity of ActiLabel is quadratic in the number of sensor observations, n. 322

Proof. Assuming that the number of classes, m, is much smaller than the number of sensor observa- 323

tions, n, (i.e., m ≪ n), the proof follows Lemma 2 and Lemma 1. 324

Theorem 2. CTL is NP-hard. 325

Proof. Proof by reduction is done from the well-known generalized assignment problem [27]. 326

Theorem 2 claims that the CTL problem discussed in Problem 1 and formulated in (4)–(7) 327

is NP-hard. In this section, we prove that Problem 1 is NP-hard by reduction from Generalized 328

Assignment Problem (GAP), which is known to be NP-hard [27]. The generalized assignment 329

problem aims to assign a set of tasks to a set of agents while minimizing the total assignment cost. It 330

needs to guarantee that each task is assigned to one and only one agent. In GAP, each agent has a 331

limited capacity. Also, each task requires a given number of the resource of each agent. Each task 332

needs to be assigned to only one agent. 333

An instance of GAP is given by (I,J,A,B, C) where I = {1, 2, . . . , n} represents the set of n 334

tasks; J = {1, 2, . . . , m} denote the set of m agents; B={b1, b2, . . . , bm} maintains resource capacity 335

bj for each agent j in J; A = {aij} represents resource aij needed if task i is assigned to agent j; 336

and finally C={cij} represents the cost of assigning task i to agent j. The generalized assignment 337

problem can be formulated as follows. 338

Minimize
n

∑
i=1

m

∑
j=1

cijxij (17)

Subject to: 339

n

∑
i=1

aijxij ≤ bj ∀j ∈ {1, . . . , m} (18)

m

∑
j=1

xij = 1 ∀i ∈ {1, . . . , n} (19)

xij ∈ {0, 1} (20)

where xij is a decision variable indicating whether or not task i is assigned to agent j. 340

Consider an instance of the generalized assignment problem, (I,J,A,B,C). This problem can be 341

reduced to the combinatorial transfer. In fact, the generalized assignment problem is equivalent to 342

the CTL with 343

J = X (21)

I = L (22)

aij = 1 ∀i, j (23)
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bj = λj ∀j (24)

cij = ϵij ∀i, j (25)

344

Lemma 2. The graph modeling in ActiLabel has a time complexity of O(n2) where ’n’ denotes the 345

number of sensor observations. 346

Proof. Lemma 2 claims that the complexity of the graph modeling phase in ActiLabel is O(n2) 347

where ‘n’ represents the number of sensor observations. Here we provide the proof for this claim. 348

The graph modeling phase includes three steps, network graph construction, core cluster identifi- 349

cation, and dependency graph construction, which have a complexity of O(n2), O(nlog2(n) + m3), 350

and O(m) as discuss below. 351

Our introduced network graph in ActiLabel is a knn graph constructed using the input sensor 352

observations. Constructing a knn graph requires computing pairwise distances between sensor 353

observations. Therefore, the knn construction process has a time complexity of O(n2). 354

The core cluster identification algorithm consists of partitioning the network graph and merging 355

the partitions into a final set of clusters. We use Clauset-Newman-Moore greedy modularity 356

maximization algorithm for network graph partitioning. Because the network graph is sparse, the 357

partitioning algorithm runs in O(nlog2(n)) [28]. In the following, we show that the cluster merging 358

process has a time complexity of O(m3 + mn). Therefore, assuming n > m, the core cluster 359

identification algorithm has a time complexity of O(nlog2(n) + m3) 360

The cluster merging process requires (i) computing pair-wise similarity between the clusters in 361

(12); (ii) finding a pair of clusters that are most similar; and (iii) merging the two clusters, which 362

involves updating the membership of the sensor observations that reside in the merged clusters. We 363

note that, in the worst case, steps (ii) and (iii) will repeat until the entire network graph is merged 364

into a single cluster. To compute pair-wise cluster similarity, we use a fast algorithm that goes over 365

non-zero elements of the adjacency matrix (e.g., edges in the network graph) only once. For each 366

non-zero element, if the adjacent vertices in the network graph belong to the same cluster, we update 367

the cluster weight; otherwise, we update the edge weight between the two clusters based on the 368

similarity values. Therefore, computing the similarity measures runs in O(n). Note that because 369

the network graph is sparse, |E| ∼ |V| = n. Because the number of clusters is proportional to the 370

number of labels, m, the number of cluster-pairs is O(m2). Therefore, finding a cluster-pair with 371

maximum similarity takes O(m2) to complete. Finally, updating the cluster membership for data 372

points that reside in the merged clusters takes O(n). Note that because steps (ii) and (iii) can repeat 373

for at most m times, the complexity of combined steps (ii) and (iii) is O(m3 + mn). Combining 374

complexity of the three steps (i), (ii), and (iii) in cluster merging process will give us an overall 375

complexity of O(m3 + mn + n) = O(m3 + mn). 376

The dependency graph is a weighted complete graph that is built on the core clusters. The 377

process to compute edge weights and vertex weights in such a graph is similar to computing the 378

pair-wise similarity score while merging the initial clusters. All the edge weights and vertex weights 379

can be therefore calculated during the cluster merging process described earlier. Given that the 380

number of the final clusters is proportional to the number of the labels, m, dependency graph 381

construction can runs O(m) 382

Combining time complexities for network graph construction, core cluster identification, and
dependency graph construction will give us O(n2 + nlog2(n) + m3 + m) = (n2 + m3). Assuming
that in most real applications the number of sensor observations is orders of magnitude larger than
the number of class labels, we can conclude that the complexity of the graph modeling phase is
ActiLabel is O(n2). Hence,

O(n2 + nlog2(n) + m3 + m) = O(n2 + m3) = O(n2) (26)

383
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5. Experimental Setup 384

5.1. Datasets 385

We used three sizeable human activity datasets to evaluate the performance of ActiLabel. We 386

refer to these datasets as PAMAP2, a physical activity monitoring dataset used in [29], DAS, daily 387

and sport activity dataset used in [30], and Smartsock, a dataset containing ankle-worn sensor data 388

used in [31]. These datasets contained sensor data with a variety of sensor modalities such as 389

accelerometer, gyroscope, magnetometer, temperature, stretch sensor, and heart rate monitor. They 390

also provided data collected with 29 subjects. The number of wearing sites varied across the datasets 391

with a total of 8 body locations for the three datasets. Table 1 has provided a summary of the datasets 392

utilized in this study. 393

Table 1. Brief description on the datasets utilized for activity recognition.

Dataset # Subject # Activity # Sample # Feature Sensors Locations

PAMAP2 9 24 3850505 52
Accelerometer, Gyroscope, Heart rate

monitor, Temperature, Orientation,
Magnetometer

Chest, Hand, Ankle

DAS 8 19 1140000 45
Accelerometer, Gyroscope,

Magnetometer
Left Arm, Right Arm, Left

Leg, Right Leg, Torso
Smartsock 12 12 9888 30 Accelerometer, Stretch sensor Chest

5.2. PAMAP2 394

The data in PAMAP2 are collected from 9 participants performing 24 physical activities of 395

daily livings while wearing 3 IMUs (Inertial Measurement Units) on their chest, ankle, and hand 396

while also wearing a heart rate monitoring device on the chest. The IMUs recorded accelerometer 397

(@100 Hz), gyroscope (@100 Hz), orientation (@100 Hz), and temperature (@100 Hz) data, and 398

the heart rate monitor recorded heart rate information (@9 Hz) during the experiments. We only 399

consider 12 activities for our analysis in this paper because there were only 12 activities in the 400

dataset that were performed by all the 15 subjects. As Figure 6a, which visualizes the prevalence of 401

the activities, suggests, PAMAP2 is an imbalanced dataset. 402

5.3. DAS 403

DAS dataset is a collection of 19 sports physical activities performed by eight subjects between 404

the ages of 20 to 30 (four females and four males). The subjects wore the data collection devices, 405

embedding accelerometer (@25 Hz), gyroscope (@25 Hz), and magnetometer (@25 Hz) sensors, on 406

their torso, left arm, right arm, left leg, and right leg. Some of the activities were sitting, standing, 407

lying on the back and right side, ascending and descending stairs, walking, running, cycling, rowing 408

and jumping. DAS is a balanced dataset as illustrated in Figure 6b. 409

5.4. Smartsock 410

Smartsock dataset was collected from 12 participants (4 females and 8 males) aged between 23 411

and 31. The participant performed 12 different physical tasks while wearing a Smartsock prototype 412

on the dominant foot that measured the circumference of the ankle using a stretch sensor. They also 413

wore an accelerometer sensor on the chest during the protocols. The activities were sit in chair, sit 414

on floor, lay on floor, bend at knees, bend at waist, jump in place, descending stairs, walking and 415

running. Figure 6c visualizes the prevalence of the physical activities in Smartsock dataset. The 416

majority of the observations belonged to the walking and running activities. 417

5.5. Comparison Methods 418

We compare the performance of ActiLabel with the following algorithms. We deploy 5- 419

NN classifier on the feature representation of the data as the baseline classifier for the Baseline, 420

DirectMap, and Upper-bound as suggested by the results in Table 3 421

• Baseline refers to the case where we learn a feature-based activity recognition model in the 422

source domain and use it for activity recognition in the target domain. 423
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(a) PAMAP2 (b) DAS (c) Smartsock

Figure 6. Prevalence of physical activities in the PAMAP2 dataset.

• Deep Convolution LSTM (ConvLSTM) refers to using a deep convolution LSTM model that 424

was learned in the source domain and was utilized for activity recognition in the target domain. 425

The deep ConvLSTM is consists of one layer of input, four layers of convolution, two dense 426

layers consisting of LSTM cells as the hidden units, and a softmax layer as the output of the 427

model as proposed by [16]. 428

• DirectMap directly maps core clusters in a target domain to activity classes in a source domain 429

using the Hungarian algorithm. This algorithm assigns the labels from the source cluster to the 430

closest cluster in the target domain based on a similarity measure on the mean value of the data 431

points in each cluster. 432

• Upper-bound assumes that the actual labels are available in the target domain. 433

We assess the performance of ActiLabel and these competing algorithms in three transfer 434

learning scenarios as follows: (i) Cross-modality transfer refers to the case when sensors in the two 435

domains have different modalities (e.g., accelerometer and gyroscope); (ii) Cross-subject refers to 436

transfer learning across two different human subjects; and (iii) Cross-location refers to the case when 437

the location of the wearable sensor is different in the target domain from that in the source domain. 438

5.6. Implementation Details 439

The datasets are divided into 50% training, 25% test, and 25% validation parts with no overlap 440

to avoid possible bias. The input features are extracted from a 2-second window of data. We 441

extracted an exhaustive set of time-domain features from a sliding window of size 2 seconds with 442

25% overlap. Table 2 lists the extracted features which are shown to be useful in human physical 443

activity estimation using inertial sensor data [32,33]. 444
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Table 2. Extracted time-domain features. E(.) represents the expected value of the input variable. Func-
tions min(.), max(.), mean(.), median(.), tan(.), size(.) compute the minimum, maximum, average, median,
tangent, and size of an input vector.

Feature Computation for signal S

Peak amplitude of the signal max(S)− mean(S)

Median of the signal median(S)

Mean value of the signal µ = ∑N
i=1 Si
N

Maximum value of the signal max(S)

Minimum value of the signal min(S)

Variance of the signal v = ∑N
i=1 |si−µ|2

N−1

Standard deviation of the signal σ =

√
∑N

i=1 |Si−µ|2
N−1

Root mean square of the signal ∑N
i=1 S2

i
N

Peak to peak difference max(S)− min(S)

Zero crossing rate size({Si |Si==0,i=1,2,..,N})
N

Entropy of the signal −∑N
i=1 Silog(Si)

Skewness of the signal s = E(S−µ)3

σ3

kurtosis of the signal k = E(S−µ)4

σ4

Mean Magnitude of the signal M =
∑N

i=1

√
Six2+Siy2+Siz2

N

Energy of the signal e = ∑N
i=1 S2

i

Range of the signal r = max(S)− min(S)

Angle of the signal a = max(tan( Sz
S2

x+S2
y
))

Mean absolute deviation of the signal m = ∑N
i=1 |si−µ|

N

We performed dimensionality reduction based on UMAP [34] algorithm prior to clustering, 445

since distance-based clustering algorithms are negatively affected by high dimensionality in feature 446

space. The k parameter in Baseline graph construction was set to the 2% or 5% of the size of the 447

Baseline graph, as suggested by the results in Section 6.1. 448

In the following subsections, we discuss performance metrics, comparison algorithms, and 449

parameter settings for our evaluation of ActiLabel. 450

5.7. Evaluation Metrics 451

We adopt four metrics to evaluate the performance of ActiLabel in this paper. 452

• To evaluate the performance of the core cluster identification, we report normalized mutual 453

information (NMI) and purity. NMI is an entropy based method that is a measure of information 454

sharing between the ground truth labels and clustering. Purity shows how much each cluster 455

contains a single class. 456

NMI(L, C) =
2 × I(L; C)

[H(L) + H(C)]
(27)
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where L is the actual class labels, C is the cluster labels. Function H(.) computes the entropy 457

of the input vector, and I(Y; C) denote the mutual information between Y and C. To calculate 458

purity, we assume each cluster Ci is assigned to the most frequent label label in the cluster. 459

purity(C, L) =
∑k max

j
|wk

⋂
cj|

N
(28)

where C = {c1, c2, ..., ck} is the set of clusters and L is the set of labels. Both NMI and purity 460

are normalized between 0 and 1 [35] 461

• To evaluate the performance of the double-weighted matching algorithm, we report labeling 462

accuracy. The labeling accuracy is defined as the ratio of the target sensor observations that are 463

correctly mapped to an activity label in the source. 464

Labeling − Accuracy =
∑k

i=1
TPi+TNi

TPi+TNi+FPi+FNi

k
(29)

where k refers to the number of classes. For each cluster ci with label li, TPi refers to the 465

samples that are correctly labeled as li, FPi are the samples that are falsely labeled as li, TNi 466

are defined as the samples that are correctly not labeled as li, and FNi are the samples that are 467

falsely not labeled as li 468

• To evaluate the performance of the ActiLabel framework as a whole, we report the F1-Score of 469

the activity recognition algorithm that is autonomously trained because it better represents the 470

performance of the model when dealing with imbalanced data [36]. F1-Score is defined as the 471

weighted average of the precision and recall [36]. 472

F1 − Score =
2 × (Recall × Precision)

Recall + Precision
(30)

where precision refers to the average agreement of the actual class labels and classifier-predicted 473

labels, and recall is the average effectiveness of the classifier to identify each class label. 474

Precision and recall are computed by the following equations. 475

Precision =
∑k

i=1
TPi

TPi+FPi

k
, Recall =

∑k
i=1

TPi
TPi+FNi

k
(31)

where k refers to the number of classes. For each activity class Ai with label li, TPi refers to 476

the samples that are correctly classified as li, FPi are the samples that are falsely classified as li, 477

TNi are defined as the samples that are correctly not classified as li, and FNi are the samples that 478

are falsely not classified as li [37]. 479

6. Results 480

As mentioned previously, the main focus of ActiLabel is to create a labeled dataset in a 481

target domain. This dataset can then be used to train an activity recognition model. Therefore, 482

the methodologies presented in this paper are independent of the choice of the classifier that can 483

be used for activity recognition. For validation purposes, however, we performed an extensive 484

experiment to identify the most accurate classification model that can be used for activity recognition. 485

Table 3 compares the F1-Score for k-NN with k = 5, support vector machine (SVM) with RBF 486

kernel, logistic regression (LR), random forest (RF) with bagging of 100 decision trees, artificial 487

neural network (ANN), Naive Bayes(NB), and quadratic discriminant analysis (QDA). k-NN (K=5) 488

achieves the highest performance, such as 93.8% average F1-Score over different sensor locations in 489

PAMAP2 dataset, 94.5% over different sensor modalities, 97.1% over different sensor modalities 490

for DAS dataset. ANN achieved the best F1-Score for the rest of the cases. 491
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Table 3. Average F1-Score(%) for activity classification over different sensor modalities and locations for
PAMAP2, DAS, and Smartsock datasets.

Dataset Type k-NN SVM LR RF MLP NB QDA

PAMAP2
Modalities 78.9 65.6 65.5 81.6 73.6 55.0 65.7
Locations 93.8 57.0 87.5 73.6 93.3 73.2 90.6

DAS
Modalities 94.5 75.7 86.4 93.1 87.7 69.5 88.9
Locations 97.1 85.9 87.1 95.2 94.1 69.1 90

Smartsock Modalities 83.7 74.6 65.3 89.0 71.8 59.5 62.8

In what follows, we discuss the performance of ActiLabel for core cluster identification, 492

labeling accuracy, and activity recognition accuracy. 493

6.1. Performance of Core Cluster Identification 494

We analyzed the effect of parameter k in the k-NN network graph on the performance of the 495

core cluster identification as measured by normalized mutual information (NMI) and clustering 496

purity. As shown in Figure 7, the value of parameter k is set according to the size of the network 497

graph. Specifically, measure NMI and purity for k ranging from .5% to 50% of the network graph 498

size. Note that purity decreases as k grow because a higher purity (e.g., 0.85 to 0.98) can be achieved 499

when detecting more clusters. A smaller k results in a more sparse network graph, which in turn 500

leads to obtaining more clusters. As shown in Figure 7, NMI achieved its highest value (i.e., 0.67 for 501

PAMAP2, 0.88 for DAS, and 0.83 for Smartsock) when k was set to 2% or 5% of the graph network 502

size. This translates into a k=8 for PAMAP2 and Smartsock and k = 11 for DAS datasets. 503

(a) PAMAP2 (b) DAS (c) Smartsock

Figure 7. Performance (i.e., normalized mutual information and purity) of core cluster identification versus
parameter k in network graph construction.

Figure 8 compares the average NMI score and purity of clustering between the proposed core 504

cluster identification (CCI) method and well-known clustering and community detection algorithms. 505

We chose the algorithms that do not require prior knowledge on the cluster counts because the 506

activity labels are unknown in the target domain. Note that the community detection algorithms 507

were applied to a symmetric k-NN graph (k=10) built on the feature representation of observation 508

after dimensionality reduction using UMAP [34] algorithm. 509

• Affinity Propagation is a graph-based clustering algorithm that extracts the clusters by relaying 510

messages between pairs of samples until convergence [38]. 511

• Mean Shift is a centroid-based algorithm that extracts clusters on a smooth density of data [39] 512

• DBSCAN clustering algorithm detects the cluster based on a density measure [40]. 513

• Fast Greedy finds the communities in the graph using Clauset-Newman-Moore greedy modular- 514

ity maximization [28]. 515

• Lovain-Ward detects the communities in the graph by maximizing the modularity using the 516

Louvain heuristics [41]. 517
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• Label Propagation finds the communities in the graph using a semi-synchronous label propaga- 518

tion method [42]. 519

PAMAP2 DAS SmartSock
Dataset
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Figure 8. Performance comparison between core cluster identification in ActiLabel and standard clustering and
communication detection algorithms.

As shown in Figure 8, CCI outperforms state-of-the-art clustering and community detection 520

algorithms. The NMI for the competing methods ranged from 0.37–0.65 for PAMAP2, 0.25–0.77 521

for DAS, and 0.52–0.76 for Smartsock. The proposed algorithm CCI increased NMI to 0.67, 0.87, 522

and 0.85 for PAMAP2, DAS, and Smartsock datasets, respectively. 523

Affinity propagation, DBSCAN, Lovain-Ward, Fast Greedy, and Label Propagation algorithms 524

achieved 0.50-0.67, 0.44-0.73, and 0.51-0.69 purity for PAMAP2, DAS, and Smartsock datasets, 525

respectively. Mean shift achieved the lowest purity comparing to other comparison algorithms (0.32 526

for PAMAP2, 0.16 for DAS, and 0.40 for Smartsock). Using our core cluster identification The 527

purity measure reaches 0.77 for PAMAP2, 0.88 for DAS, and 0.80 for Smartsock dataset. Note 528

that the clustering was generally more accurate for Smartsock and DAS datasets because PAMAP2 529

contained data from sensor modalities (e.g., temperature) that might not be a good representative of 530

the activities of interest. 531

6.2. Labeling Accuracy in ActiLabel 532

Because ActiLabel generates a labeled training dataset in the target domain, it is reasonable to 533

assess the accuracy of the labeling task. Figure 9 shows the labeling accuracy for various transfer 534

learning scenarios and datasets. For brevity, the results from cross-subject labeling are not included 535

in this figure. 536

6.2.1. Cross-Modality Transfer 537

As the heatmap in Figure 9a shows, ActiLabel achieved 70.2%–88.0% labeling accuracy when 538

the accelerometer was the target modality. With accelerometer being the target modality, the highest 539

labeling accuracy (>80%) was obtained when the source modality was magnetometer, stretch sensor, 540

or another accelerometer. We also observed that the labeling accuracy ranged from 60% to 75% 541

when the target modality was magnetometer or orientation sensor. We also noted that transferring 542

labels between orientation and heart rate sensors achieved the lowest accuracy (i.e., 45%–0.65%), 543

mainly because these sensor modalities are not as good representative of the physical activities as 544

the accelerometer. The proposed mapping algorithm obtained > 80% labeling accuracy for the 545

remaining transfer scenarios except for ”magnetometer to orientation” mapping (77.9%) and for 546

”temperature to temperature” mapping (74.0%). 547

6.2.2. Cross-Location Transfer 548

The heatmap in Figure 9b shows the labeling accuracy between sensor locations in PAMAP2 549

and DAS datasets. Note that the Smartsock dataset contained only one sensor location, and therefore 550

a cross-location transfer did not apply to this dataset. As expected, mapping labels between the same 551

or similar body locations such as “chest to chest”, “hand to hand”, “ankle to ankle”, “torso to torso”, 552

“left arm to left arm”, “left leg to left leg”, and “left arm to right leg” achieved a relatively high labeling 553
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accuracy (i.e., > 70.3%). Furthermore, ActiLabel achieved 70.3%–80.1% labeling accuracy for 554

transfer tasks between chest, ankle, and hand in PAMAP2. One reason for a relatively high labeling 555

accuracy in such transfer tasks involving dissimilar sensor locations is that PAMAP2 contains a rich 556

collection of sensors (accelerometer, gyroscope, magnetometer, orientation, temperature, and heart 557

rate sensors) that provide sufficient information about inter-event structural similarities captured by 558

our label learning algorithms in ActiLabel. 559
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Figure 9. Labeling accuracy of ActiLabel for cross-modality (a), and cross-location learning.

6.3. Performance of Activity Recognition 560

Table 4 shows activity recognition performance (i.g., F1-Score) for ActiLabel as well as 561

algorithms under comparison including baseline (BL), deep convolution LSTM (CL), DirectMap 562

(DM), and upper-bound (UB) as discussed previously. 563

6.3.1. Cross-Modality Transfer 564

For this scenario, we examined transfer learning across these sensor modalities: accelerometer, 565

gyroscope, magnetometer, orientation, temperature, heart rate, and stretch sensor. The cross-modality 566

results in Table 4 reflect average performance over all possible cross-modality scenarios. The baseline 567

and ConvLSTM performed poorly with F1-scores of 7.8% and 8.1% in PAMAP2, 9.3%, and 8.2% 568

in DAS, and 16.2% and 12.8% in Smartsock. This demonstrates a highly diverse distribution of 569

data across sensors of different modalities. The DirectMap approach achieved 40.4%, 44.8%, and 570

66.0% F1-score for PAMAP2, DAS, and Smartsock datasets, respectively. ActiLabel outperformed 571

DirectMap by 19.3%, 21.4%, and 6.7% for PAMAP2, DAS, and Smartsock, respectively. 572

6.3.2. Cross-Location Transfer 573

We examined transfer learning among chest, ankle, hand, arms, legs, and torso. The cross- 574

location results in Table 4 represent average values over all possible transfer scenarios. The baseline 575

and ConvLSTM methods achieved F1-scores of 14.3% and 12.7% for PAMPA2 dataset, respectively. 576

Similarly, the baseline and ConvLSTMand algorithms achieved 13.2% and 12.4% F1-Scores, re- 577

spectively, for DAS dataset. The relatively low F1-scores of the baseline and ConvLSTM algorithms 578

can be explained by the high level of diversity between the source and target domains during cross- 579

location. The DirectMap and ActiLabel both outperformed the baseline and ConvLSTM models. 580

Specifically, DirectMap and ActiLabel 63.4% and 70.8% F1-Scores for PAMAP2, and 60.7% and 581

68.4% F1-Scores for DAS. 582

6.3.3. Cross-Subject Transfer 583

For this particular experiment, we included only four subjects from each dataset, because there 584

were only four subjects who performed all the activities in the protocol of the datasets. The baseline 585

and ConvLSTM achieved 65.8% and 61.9% F1-Score for PAMAP2, 67.1% and 56.8% F1-Score for 586

DAS, and 59.8% and 61.8% F1-Score for Smartsock datasets. The baseline feature-based classifier 587

achieved slightly higher performance than deep ConvLSTM. This can be explained by the fact that 588
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Table 4. Activity recognition performance (F1-Score).

Scenario Dataset Baseline ConvLSTM DirectMap ActiLabel Upper-
bound

Cross-modality
PAMAP2 7.8 8.1 40.4 59.3 80.8

DAS 9.3 8.2 44.8 66.2 86.1
Smartsock 16.2 12.8 66.0 72.7 84.2

Cross-location
PAMAP2 14.3 12.7 63.4 70.8 93.2

DAS 13.2 12.4 60.7 68.4 89.8

Cross-subject
PAMAP2 65.8 61.9 85.4 82.7 98.1

DAS 67.1 56.8 79.0 80.3 92.5
Smartsock 59.8 61.8 82.6 80.0 95.2

Average 31.6 29.3 63.4 71.9 89.9

complex deep learning models may not be superior to feature-based algorithms when applied to 589

data with low-dimensional feature space. Such deep learning models have been shown superiority 590

to feature-based estimation models when adopted to datasets with high-dimensional channels (e.g., 591

> 100). However, the datasets used for our analysis had few channels of data from a few locations 592

and sensors. 593

The DirectMap approach and ActiLabel obtained F1-Scores of 85.4%, and 82.7% in PAMAP2, 594

77.59% and 82.6% in DAS, and 82.6%, and 77.5% in Smartsock, respectively. All the algorithms 595

achieved higher F1-score values compared to the cross-location and cross-modality scenarios. This 596

observation suggests that cross-subject transfer learning is an easier task to accomplish compare to 597

cross-modality and cross-location because of the lower amount of variation in the distribution of the 598

sensor data during cross-subject learning. These results suggest that data variations among different 599

subjects can be normalized using techniques such as feature scaling, and feature selection before 600

classification. 601

7. Discussions and Future Work 602

In this section, first, we discuss our work from several perspectives and discuss promising 603

directions that will overcome some of the limitations of our work. 604

First, from the transfer learning perspective, the performance of different transfer learning 605

algorithms depends on four factors. First, how well the target can distinguish between different 606

physical activities when some correct labels are available. Second, how pure observations in target 607

and source domains could be clustered into activity labels. Third, accuracy of mapping between the 608

source and target core clusters. Lastly, the capability of source dataset in distinguishing different 609

activities when some labels are available. Table 4 shows that ActiLabel obtained 59.3% average 610

F1-Score in activity recognition of PAMAP2 dataset compared to 66.2% and 72.7% F1-Scores for 611

DAS and Smartsock datasets, respectively. The collection of more diverse sensor modalities such as 612

accelerometer, gyroscope, magnetometer, orientation, also, temperature, and heart rate, which are 613

less representative of human physical activity events, affects every step in Actilabel, including core 614

cluster identification, min-cost mapping and activity recognition. As shown in Table 3 the strongest 615

baseline classifier (e.g., 5-NN) achieved 78.9% average F1-Score in detecting the activities from 616

different sensor modalities from PAMAP2 dataset, while 5-NN reached to 94.5% activity recognition 617

F1-Score and random forest could obtain 89.0% average F1-Score for sensor modalities in DAS and 618

Smartsock datasets, respectively. 619

Second, from the structural perspective, we note that the community detection based algorithms 620

outperform clustering algorithms in our setting. From Figure 8 we can observe that Fast greedy, 621

Lovain-Ward, and label propagation community detection algorithms obtained NMI of 0.16–0.51 622

and purity of 0.25–59 for PAMAP2, DAS, and Smartsock datasets, respectively; while the clustering 623

methods including affinity propagation, mean shift and DBSCAN achieved NMI of 0.42–0.70 and 624

purity of 0.62–0.78 for these datasets, respectively. CCI, which is proposed as an extension to the 625

community detection algorithms achieved up to 20.4% higher NMI and 17.5% purity compared to 626
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these techniques. These results suggest that community detection algorithms are more reliable in 627

unsupervised clustering of datasets, in particular, human physical activity, when the models do not 628

have prior knowledge on the number of the clusters. Although the clustering algorithms, such as 629

affinity propagation and mean shift eliminates the need to specify the number of clusters, they have 630

other parameters such as "preference" and "damping" for affinity propagation and "bandwidth for 631

mean shift that is challenging to optimize [43,44]. We note that tuning the structure of the input 632

graph (e.g., modifying k for K-NN graphs) and merging strongly connected communities again, 633

as proposed in CCI, improves the clustering quality comparing to the other community detection 634

algorithms such as label propagation. 635

Finally, from the machine learning viewpoint of the activity recognition, we discuss the 636

problem of poor performance of the baseline models (e.g., 31.6% F1-Score, as shown in Table 4). 637

Specifically, in the cross-modality scenario, the gap between the baseline and other transfer learning 638

methods is the highest (e.g., gap of 32.6% to 59.9% in F1-Score). One explanation is that the 639

features adopted different distributions across different domains. We note that ConvLSTM did not 640

meet the expectations in solving the problem of cross-domain transfer learning; the main reason 641

that ConvLSTM could not improve the performance (e.g., 29.3% F1-Score) of the baseline was 642

Inadequate amount of data as the deep neural networks acquire a considerable amount to data to 643

extract effective features through the deep convolution layers [45]. We believe that adding more 644

data to the training dataset will improve the performance of the baseline method. Overall, assuming 645

lower F1-Score for the baseline represents higher diversity between domains and, therefore, more 646

challenging transfer scenario, the cross-modality with 40.4%–72.7% F1-Score for DirectMap and 647

ActiLabel, is the most challenging transfer learning scenario among all. Overall, assuming lower F1- 648

Score for the baseline represents higher diversity between domains and, therefore, more challenging 649

transfer scenario, the cross-modality with 40.4%–72.7% F1-Score for DirectMap and ActiLabel, is 650

the most challenging transfer learning scenario among all. 651

There are few limitations to the evaluation process of the ActiLabel. First, we assume that the 652

target activity labels are a subset of ones in the source domains. However, there are cases in real-word 653

settings that some of the activities in the target are not known to the source. The straightforward 654

solution to this scenario is to add dummy nodes in the construction of bipartite graphs for the domain 655

with fewer activities (e.g., source domain). However, such solution is naive and results in mapping 656

the dummy nodes from the source to the nodes associated with unknown activity labels from the 657

target domain in the best case. To solve this issue, our ongoing work involves investigating practical 658

approaches that allow for more complex mapping scenarios such as many-to-many mappings that 659

capture all possible complex mapping situations that might occur in real-world and uncontrolled 660

settings. Second, graph-based algorithms such as ActiLabel might encounter scalability challenges 661

when deployed in big real-world datasets. We are planning to investigate the efficacy of replacing the 662

k-NN graph with less computationally expensive graph structures such as kd-graphs and minimum 663

spanning trees to enhance the scalability of the ActiLabel. Finally, the practical challenges of 664

deploying our system in a real-world scenario will provide valuable information on the applicability 665

of ActiLabel and help us improve our system furthermore. Therefore, one interesting future direction 666

is the optimization of various computational components of ActiLabel for time, power and memory 667

efficiency given the dynamics of real-world scenarios. 668

Based on our analysis, Table 5 illustrates the merits and potential demerits of ActiLabels against 669

analogous methods. 670

The aim of ActiLabel is to leverage the knowledge from a source domain where labeled data 671

is abundand and use it to improve the performance of activity recognition task in a target domain 672

where labeled data is limited. It is designed to handle transfer learning scenarios with different 673

modalities, subjects, and sensor locations. The ActiLabel framework initiates community detection 674

algorithms to identify core clusters of similar activities in the target domain and then maps them to 675

corresponding activities in the source domain. By leveraging the relationships between activities 676

and the knowledge from the source domain, ActiLabel aims to improve the activity recognition 677

performance in the target domain. Additionally, ActiLabel’s performance is evaluated in three 678

transfer learning setups: cross-modality transfer, cross-subject transfer, and cross-location transfer. 679

These scenarios reflect the scope of application of ActiLabel in real-world situations where activity 680
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Table 5. Comparison of different Transfer Learning Techniques

Method Advantages Disadvantages

ActiLabel - Leverages community detection algorithms
- Graph-based modeling captures relationships between
activities
- Performs well in scenarios with similar sensor modali-
ties and diverse source datasets

- Depends on availability of diverse sensor modalities
- Scalability challenges with large datasets
- Assumes target labels are subset of source domain la-
bels

Deep Learning Models - Can learn complex representations from raw sensor
data
- Strong performance with large labeled datasets
- Can handle different modalities and adapt to domain
shifts

- Requires large labeled datasets for training
- Computationally expensive
- May suffer from overfitting if training dataset is not
representative

Uninformed Transfer
Learning Techniques

- Simple and straightforward implementation
- Applicable in scenarios with scarce labeled data
- Provide a starting point for activity recognition

- May not effectively leverage source domain knowledge
- Do not adapt to domain shifts
- Limited performance and applicability in diverse sce-
narios

recognition needs to be performed across different sensor modalities, different individuals, and 681

different sensor locations. While the focus of this study is activity recognition using wearable sensor 682

data, the ActiLabel method’s underlying principles of transfer learning and community detection 683

could potentially be applied to other domains and tasks where transfer learning deems fit. However, 684

further research and experimentation would be needed to explore its effectiveness in those specific 685

domains. 686

8. Conclusion 687

We introduced ActiLabel, a computational framework with combinatorial optimization method- 688

ologies for transferring physical activity knowledge across highly diverse domains. ActiLabel 689

extracts high-level structures from sensor observations in the target and source domains and learns 690

labels in the target domain by finding an optimal mapping between dependency graphs in the source 691

and target domains. We showed that deep learning models and uninformed transfer learning tech- 692

niques do not generalize well when transferring across different locations and sensor modalities, 693

although their performance is acceptable in cross-subject learning. ActiLabel, however, provides 694

consistently high accuracy for cross-domain knowledge transfer in various learning scenarios. Our 695

extensive experimental results showed that ActiLabel achieves average F1-scores of 59.2%%, 70.8, 696

and 82.7% for cross-modality, cross-location, and cross-subject activity recognition, respectively. 697

These results suggest that ActiLabel outperforms the competing algorithms by 36.3%, 32.7%, and 698

9.1% in cross-modality, cross-location, and cross-subject learning, respectively. 699
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