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Abstract: Activity recognition using data collected with smart devices such as mobile and wearable sensors
has become a critical component of many emerging applications ranging from behavioral medicine to gaming.
However, an unprecedented increase in the diversity of smart devices in the Internet-of-Things era has limited the
adoption of activity recognition models for use across different devices. This lack of cross-domain adaptation is
particularly notable across sensors of different modalities where the mapping of the sensor data in the traditional
feature level is highly challenging. To address this challenge, we propose ActiLabel, a combinatorial framework
that learns structural similarities among the events that occur in a target domain and those of a source domain
and identifies an optimal mapping between the two domains at their structural level. The structural similarities
are captured through a graph model, referred to as the dependency graph, which abstracts details of activity
patterns in low-level signal and feature space. The activity labels are then autonomously learned in the target
domain by finding an optimal tiered mapping between the dependency graphs. We carry out an extensive set
of experiments on three large datasets collected with wearable sensors involving human subjects. The results
demonstrate the superiority of Actilabel over state-of-the-art transfer learning and deep learning methods.
In particular, ActiLabel outperforms such algorithms by average F1-scores of 36.3%, 32.7%, and 9.1% for
cross-modality, cross-location, and cross-subject activity recognition, respectively.

Keywords: Activity recognition; wearables; mobile health; machine learning; transfer learning; model
independent; structural similarity.

1. Introduction

Smart devices such as wearable and mobile sensors are increasingly utilized for health monitor-
ing and personalized behavioral medicine. These technologies use machine-learning/deep-learning
algorithms to detect lifestyle and physiological biomarkers and to provide real-time clinical inter-
ventions [1-7]. However, the machine learning models are designed based on labeled training data
collected in a particular domain, such as with a specific sensor modality, wearing site, or user. A
significant challenge with this approach is that a machine learning model trained with a specific
setting performs extremely poorly in new settings such as when the model is used with a sensor
of different modality, when the on-body location of the sensor changes, or when a new subject
adopts the system [8,9]. This generalizability challenge has limited scalability of sensor-based health
monitoring because collecting sufficiently large amounts of labeled sensor data for every possible
domain is a time-consuming, labor-intensive, expensive, and often infeasible process.

To address the aforementioned challenges, we introduce ActiLabel, a combinatorial framework
that learns machine learning models in a new domain (i.e., target) without the need to manually
collect any labels. Our pilot application in this paper is activity recognition, where ActilLabel is
designed to detect human activities from wearable sensor data. A unique attribute of ActiLabel is
that it examines structural relationships between activity events (i.e., classes/clusters) in the two
domains and uses this information for target-to-source mapping. Such structural relationships allow
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us to compare the two domains at a much higher level of abstraction than the common feature space,
and therefore enable knowledge transfer across radically diverse domains. We hypothesize that even
under sever cross-domain spatial and temporal uncertainties (i.e., significant distribution shift due to
sensor modality change) physical activities exhibit similar structural dependencies across the two
domains. We aim to uncover such structural dependencies from the sensor data gathered in the two
domains and use this knowledge for mapping sensor data from the target domain to the data in the
source domain.

To the best of our knowledge, our work is the first study that develops a combinatorial approach
for structural transfer learning. Our notable contributions can be summarized as follows: (i) we
introduce a model-agnostic combinatorial optimization formulation for transfer learning in where no
labeled data are available in the target domain, and we show that this problem is non-deterministic
polynomial-time hardness (NP-hard); (ii) we devise methodologies for constructing a network
representation of wearable sensor readings, referred to as network graph, as a integral component of
our framework for understanding structural dependencies among activity classes; (iii) we design
algorithms that perform community detection on the network graph to identify core activity clusters;
(iv) we introduce an approach to construct a dependency graph based on the core activity clusters
identified on the network graph; (v) we show that combinatorial transfer learning can be transformed
into a tractable assignment problem in the new knowledge transfer space given by the dependency
graphs; (vi) we propose a novel multi-layer matching algorithm for mapping target-to-source
dependency graphs; and (vii) we conduct an extensive assessment of the performance of ActiLabel
for cross-modality, cross-subject, and cross-location activity learning using real sensor data collected
with human subjects.

1.1. Transfer Learning

Transfer learning is the ability to extend what has been learned in one setting (i.e., source) to
another, nonidentical but related, setting (i.e., target). Based on the common analogy in machine
learning, we refer to the previous setting as the source domain. The sensor data captured in this
domain is referred to as the source dataset, which is fully labeled in our case. The new state of
the system, which may exhibit radical changes from the source domain, is referred to as the rarget
domain where we intend to label the sensor data autonomously [10].

Definition 1. (Transfer Learning). Given a source domain Ds and learning task Ts, a target domain
Dy and learning task Ty , transfer learning aims to help improve the learning of the target predictive
function Fy(.) in Dy using the knowledge in Ds and Ts, where Ds = Dy or Ts = Ty

Depending on how the source and target tasks and domains are defined, one can categorize
transfer learning techniques into inductive transfer learning, transductive transfer learning, and
unsupervised transfer learning. Inductive transfer learning refers to the case where the tasks in the
target and source are different. Therefore, we need some labeled data to induce a prediction model
in the target domain. In transductive transfer learning, the source and target obtain the same tasks
but different domains. In this setting, there is no label in the target, but relatively large amount of
labeled data is available in the source domain. Finally, in the unsupervised transfer learning, the
target task is different from, but related to, the source, and no label is available in the target domain.
Unsupervised transfer learning aims to solve unsupervised learning problems such as clustering and
dimensionality reduction [11,12]. The transductive transfer learning, which is the focus of this paper,
can be defined as follows.

Definition 2. (Transductive Transfer Learning) Given a source domain Dg and a corresponding
learning task T, a target domain Dy and a corresponding learning task Ty , transductive transfer
learning aims to improve the learning of the target predictive function F;(.) in Dy using the knowledge
in Dy and Ts, where Ds # Dy and Ts = Ty . Also, some unlabeled target domain data must be
available at training time.

Transductive transfer learning is categorized into two cases: (1) source and target adopt different
feature domains X; # X;; (2) source and target adopt the same feature domains, but the probability
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distributions of their observations are different P(X;) # P(X;). This case is referred to as domain s
adaptation. 87

Transfer learning for cross-domain variations in the context of sensor-based monitoring can be s
categorized into cross-user, cross-modality, cross-platform, and cross-location [13]. Researchers s
have proposed several transfer learning techniques to address the challenge of domain shift in the o
context of sensor-based systems. Prior research utilized intra-affinity of classes to perform intra-class e
knowledge transfer where 61.4% accuracy for cross-location and cross-subject transfer learning s
was achieved [14]. Another study proposed a feature-level transfer learning approach for activity s
recognition where 93.1% accuracy for cross-subject knowledge transfer was obtained [13]. Prior o4
research also developed OptiMapper as a transfer learning framework for the case where the target o
domain provides data about only a subset of the classes [15]. However, as the degree of divergence s
between source and target domains grows, the transfer learning task becomes more challenging. o7
These gaps result in a performance decline of pre-trained activity recognition algorithms. ActiLabel s
is proposed as a combinatorial optimization to address the problem of autonomous learning across s
highly diverse domains (e.g., across different sensor modalities, sensor locations, or users). 100

Prior research also proposed a deep convolution recurrent neural network to automate the 101
process of feature extraction and to capture general patterns from activity data [16]. In deep learning 102
based methods, the goal is to have a pre-trained model obtained in a source domain and make it fit to 10
our learning problem in the target domain by adding one more training step. Also, deep learning 104
based methods need a labeled set for training and do not aim to label the unlabeled samples in the 105
target domain. However, ActiLable is model-agnostic and does not rely on a specific type of machine 106
learning model. We create a labeled training dataset in the target domain by mapping the target 107
sensor data onto the labeled samples in the source domain prior. This model-agnostic approach 108
allows designers to utilize the obtained training dataset and develop the machine learning of their  10s
choice for use in a target domain without being limited to the specific architecture that exists in the 110
source domain. 1

We also note that deep learning models may perform very poorly in profoundly different 112
domains such as cross-modality knowledge transfer or when the two domains exhibit a substantial 113
amount of shift in the distribution of the sensor data. For example, previous research achieved 114
only 54.2% accuracy in classifying human gestures using deep learning with computationally dense 115
algorithms when the system is used with sensors of different modalities than that of training [8,17]. 116
More advanced models combine knowledge of transfer and deep learning [18]. There have been 117
studies attempting to transfer different layers of deep neural networks across different domains. 118
In one study, a cross-domain deep transfer learning method was introduced that achieved 64.6% 119
accuracy with four activity classes for cross-location and cross-subject knowledge transfer [9]. 120
Unlike our transductive transfer learning approach in this paper, these approaches fall within the 121
category of inductive transfer learning, where some labeled instances are required in the target 122
domain. 123

1.2. Graph Modeling 124

Many areas of machine learning, such as clustering/community detection, dimensionality 12
reduction, and semi-supervised learning, employ neighbor graphs to extract high-level global 12
structures from local information within the dataset [19,20]. As an example, nearest neighbor 127
graphs are commonly used to classify unknown events using feature representations. During the 128
classification process, certain features are extracted from unknown events and classified based on the 129
features extracted from their k-nearest neighbors. 130

The nearest neighbor or, in general, the k-nearest neighbor (k-NN) graph of a dataset is obtained 131
by connecting each data point to its k closest points from the dataset. The closeness is defined based 132
on a distance metric between the data points. The symmetric k-NN graphs are a special case where 133
each point is connected to another only if both are in the k nearest vicinity of each other. 134

Definition 3 (Symmetric k-NN Grpah). A Symmetric k-NN graph is a directed graph G = (V,E), 13
where V is the set of vertices (i.e., data observations), and E is the set of edges. V; is connected to 136
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vertex V; if V; is one of the k-NNs of V; and vice versa according to a distance functiond : VX V. — 17
R. 138

Community detection algorithms are widely used to identify clusters in large scale network  13s
graphs. Clusters, which represent groups of densely connected vertices with sparse connections to 140
each other, often provide useful structural information [21]. Recent research compared different 141
community detection algorithms with clustering techniques suggesting that detecting communities 142
from a network representation of data could result in a higher clustering performance compared 1
to traditional clustering algorithms [22,23]. We define some of the essential features related to 14
community detection in network graphs in the following. 145

Definition 4 (Cut). Given a graph G(Vy,En) and communities C = {Cy, ..., Cx}, "Cut” between 14
communities C; and C; is defined as the number of edges (u, v) with one end in C; and the other end 147

in C/ That is, 148
Cut(Ci,Cj) = |(M,Z)) €eEv:ueC &ve C]| @)

Definition 5 (Cluster Density). Given a graph G(Vy,En) and communities C = {Cq, ..., Cx} 149

within the graph G, ”community density”, A(C;), for community C; is defined as the number of 15

edges (1,v) with both ends residing in C;. 151
A(Ci):|(u,v)€EN:u€C,» &UECZ'| 2)

Definition 6 (Community Size). Given a graph G(Vy,En) and communities C = {Cy, ..., Cx} 152

within the graph G, ”Community Size”, 0(C;), for community C; is defined as the number of vertices 153

that reside in C;. 154
U(C,‘):|UEVN:U€C1‘| 3)

2. Problem Statement 155

Figure 1 depicts an activity recognition framework when it is adopted on a new wearable 156
sensor of different modality from the initial one. As shown in Figure la, an activity recognition  1s7
system consisting of a wearable sensor (e.g., accelerometer) uses a model learned based on annotated  1ss
data. We refer to this setting as source domain. As shown in Figure 1b, when the user replaces the 15
existing sensor with a new sensor with different modality (e.g., stretch sensor), the performance of 160
the existing model declines. We refer to this setting as the target domain. To overcome this challenge, s
we need to label the dataset autonomously in the new setting (e.g., new sensor modality), as shown e
in Figure lc. Finally, as shown in Figure 1d, a more accurate classifier is trained using the labeled 1
training data in the target domain. 164

2.1. Problem Definition 165

We represent each sensor observation in an arbitrary domain (e.g., target domain) as a k- 1
dimensional feature vector X; = { fi1, fi2, -, fix }» which are computed from a given time window. 17
We define the activity recognition task as assigning activity label /; to an observation X; given a 1
set of possible labels £ = {I1,15,...,I;;}. The problem is to create a labeled dataset in the target 169
domain by transferring the knowledge from the labeled observations in the source domain such that 17
the activity misclassification in the target is minimized. We define this problem as combinatorial 171
transfer learning. 172

Problem 1 (Combinatorial Transfer Learning (CTL)). Let X = {Xq ,Xp, ..., X,/ be the set of 17
sensor observations (i.e., sensor readings represented in feature space) captured in the target domain. 17
Furthermore, let L = {1y, Iy, ..., ;] be the set of activity labels in the source domain that the target 17
domain aims to detect. Combinatorial transfer learning is to assign labels to X; and develop a 17
classification model using the labeled data such that the classification error is minimized. 177
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Figure 1. Deployment of ActiLabel in real-world environments.

Because mislabeled sensor data adversely impacts the performance of the learned classifier,
therefore, CTL can be viewed as the problem of assigning labels /; € L to target observations X; in
X such that the error of label assignment is minimized.

2.2. Problem Formulation

We formulate the CTL described in Problem 1 as follows.

n
Minimize Y €jjx;j )
i=1
Subject to:
n
xZJS)L] V]E {1,...,11’[} (®))
i=1
m
Y oxij=1, Vie{l,...n} (6)
j=1

xij € {0,1} )
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where x;; is a decision variable indicating whether or not X; is assigned label lj, and €;; denotes
error due to such a labeling. The constraint in (5) guarantees that at most )Lj target observations are
assigned label [ j- Without such a constraint, a trivial solution is to label no observations in the target
domain. The constraint in (6) ensures that only one label is assigned to each observation X; in the
target domain.

2.3. Solution Overview

The difficulty in solving Problem 1 arises not only from the hardness of the problem but
also from the fact that parameters A; and €;; are not known a priori. Therefore, the solution to
the CTL problem in (4)—~(7) needs to estimate A; and €;; first. Since assigning a label to every
observation in the target is unlikely to result in a high labeling accuracy, we propose to find groups
of similar target observations that are reliable to receive the same label. Unsupervised clustering
is one approach to divide observations into groups, exclude noisy observations from the labeling
process; therefore, increase specificity of the labeling. We can estimate the value of A by identifying
clusters of observations that are safe to receive the same activity label, namely core clusters. Let
CiD ={X1,Xy,..., Xx} bea it" cluster in domain D. After clustering the target data, the goal is to
assign activity labels to the core clusters such that the label misassignment is minimized. Therefore
the CTL problem can be reformulated as below.

n m
Minimize E Z jj€jj ®)
i=1j=1
Subject to:
m
Y ai=1, Vie{l,...n} 9)
j=1

where a; is a binary variable indicating whether or not it" cluster in the target is assigned with label
l j from jth cluster in the source domain, and €;; denotes the assignment error. €;; can be estimated

as a structural dissimilarity between cluster Cf in the target and cluster C]? in the source domain.

Cluster C? is cluster of observations with label L; in the source domain. Note that computing the
dissimilarity between the clusters will be further discussed in the next steps. The constraint in
Equation 9 ensures that only one label is assigned to each core cluster ¢; from the target domain.

1, iflabel [; is assigned to cluster C;
wjj = ! (10)
0, otherwise

3. ActiLabel

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Network graph
construction

Constructs a network representation
of the sensor data in both source
and target domains

Dependency graph
construction

Core clusters and network graph
are used to build a dependency
graph in both domains

Core cluster detection
Core clusters are identified in the
target domain where no labeled
data is available

Optimal label learning
Two bipartite graphs are
constructed to optimize label
learning

Figure 2. ActiLabel comprises of several steps. Network graph construction is done by quantifying the pairwise
similarity of sensor observations using statistical features and semantic information; Core clusters are directly
obtained through the available class labels; Dependency graph captures the structural relationships between
activity classes; and Optimal label learning uses two bipartite, one of which captures the cost of mapping each
vertex in the source dependency graph to every vertex in the target dependency graph. The other one quantifies
the costs of edge-wise mapping between the two domains

We propose ActilLabel as a solution to Equation 8. The overall approach in ActilLabel is
illustrated in Figure 3. The design process in ActiLabel involves the following steps, where we refer
to the first two steps as graph modeling and the next two steps as optimal label learning.
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Figure 3. An overview of ActiLabel design including graph modeling and optimal label learning.

Network graph construction: we first construct a network representation of sensor readings
and quantify the pairwise similarity of the network nodes (i.e., sensor observations) using a
combination of statistical features and semantic information about the network Figure 3-a.
Core cluster identification: we use the network graph to identify core clusters in the target
domain where no labeled data are available. For the source domain, the core clusters/classes
are directly obtained through the available class labels as shown in Figure 3-b.

Dependency graph construction: we use the core clusters and network graph to build a
dependency graph in both domains taking into account inter-class similarities as shown in
Figure 3-c.

Optimal Label Learning: we use the dependency graphs of the source and target domains to
build two bipartite graphs. The first bipartite graph captures the cost of mapping each vertex
in the source dependency graph to every vertex in the target dependency graph. The second
bipartite graph quantifies the costs of edge-wise mapping between the two domains as shown
in Figure 3-d, Figure 3-e, and Figure 3-f.

The process of ActiLabel is summarized in Algorithm 1.

Algorithm 1 Actilabel

Input:D;, unlabeled target dataset, { D, Ls}, labeled source dataset.
Result: Labeled target dataset, { Dy, Lt}

Graph Modeling: > (section 3.1)
1: Construct Network Graphs in both domains; > (section 3.1.1)
2: Identify core clusters in both domains; > (section 3.1.2)
3: Build Dependency graphs; > (section 3.1.3)
4: Extract structural relationships among the core clusters in both domains;

Optimal Label Learning > (section 3.2)
5: Perform graph-level min-cost mapping from target to source;
6: Assign labels to the observations in target;
7: Train activity recognition model in target using new labels;

3.1. Graph Modeling

The goal of our graph modeling is to construct a dependency graph that captures structural

dependencies among the events (i.e., physical activities) in both target and source domains. Such
dependency graphs are then used in optimal label learning to label sensor observations and generate
a training dataset in the target domain. As shown in Figure 4, our graph modeling consists of three
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phases: (i) network graph construction; (ii) core cluster identification; and (iii) dependency graph
construction. This section elaborates on each phase.

(o A

Edge weight:{C;, Cj, wf]-}

network graph core clusters dependency graph

Figure 4. Graph modeling phases.

3.1.1. Network Graph Construction

We initially build a network representation of the sensor observations to quantify the amount of
similarity between pairs of observations. To this end, we construct a symmetric k-nearest-neighbor
network on the sensor data. The symmetric property of the network graph eliminates many edges

from inclusion in the network, therefore reducing the complexity of future computations in ActiLabel.

Definition 7 (Network Graph). The network graph refers GN(Vn,En) is a symmetric k-NN graph
where vertices are feature representation of the sensor data and distance function § computes the
cosine similarity between the features.

Given the high dimensional feature space, we use Cosine distance as the measure of affinity
between each pair of sensor observations X; and Xj, and as the distance function § (v, v]-) used to
construct the network graph.

X; - X;

5('01‘,'0]‘) = COS(Xi,X]‘) = W
! ]

Y

3.1.2. Core Cluster Identification

To identify core clusters in ActiLabel, we propose a graph-based clustering algorithm similar to

the approach in prior research [24]. We refer to this approach as core cluster identification (CCID).

The core cluster identification algorithm is applied to the network graph G(Vy,En). We first partition
the network graph into multiple communities of approximately the same vertex size using a greedy
community detection technique. We then merge communities with the highest similarity score based
on their dendrogram structure.

The amount of similarity «; ; between communities C; and C]- is measured as the ratio of the
number of edges between the two communities (i.e., Cut(Ci,Cj)) to the average number of edges
that reside within the two communities. Therefore, the similarity score of «; ; is given by

Cut(C;, C])
(i) = ey
2

12)

where the terms |C;| and |C;| denote the number of edges that reside in C; and C;, respectively.

Note that the similarity score & is defined such that it is not adversely influenced by the size of
communities in unbalanced datasets.
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3.1.3. Dependency Graph Construction

To capture high-level structural relationships among sensor observations, we devise a structural
dependency graph where the core clusters identified previously represent vertices of the dependency
graph.

Definition 8 (Dependency Graph). Given a network graph G(Vn,En) where |V | = | X | and core
clusters C = {Cy, ..., Cx} obtained from the network graph, we define dependency graph G(Vp
,Ep, W}, W) as a weighted directed complete graph as follows. Each vertex u; inVp is associated
with a core cluster C; € C. Thus, |Vp| = |C|. Each vertex u; € Vp is assigned a weight w} given
by

u A(Ci)
YT (C)]

13)

where A(C;) and 0(C;) refer to cluster density and cluster size, respectively, for core cluster C;.

Each edge (u;, uj) € Ep, associated with core clusters C; and Cj, is assigned a weight wf] given by

e — Cut(C;, C])

ij U'(C]) (14)

Algorithm 2 Optimal Label Learning

Input:GtD and G3,, dependency graphs for target and source domains.
Result: Labeled target dataset, { Dy, Lt}

Construct bipartite graph BG, using edge components;

Obtain bipartite mapping M, on GB,;

Construct bipartite graph BG, on vertex components;

Obtain bipartite mapping My, on GB,;

Construct bipartite graph BG. using M, and My;

Obtain bipartite mapping OptMapping on GB.;

Assign source labels to appropriate core clusters in target using OptMapping;

A O S o

3.2. Optimal Label Learning

Algorithm 2 summarizes the steps for optimal label learning. The goal of the optimal label
learning is to find a mapping from the dependency graph in the target domain to that of the source
domain. We note that graph isomorphism algorithms are not applicable to our graph-level mapping
problem because graph isomorphism algorithms only consider the structure of the graphs and do not
take into account important information such as edge weights and vertex weights in our dependency
graphs [25]. The core of our optimization in label learning is graph-level mapping, where we aim
to find a mapping from the dependency graph in the target domain to that of the source domain
while minimizing the amount of mapping error. We refer to this optimization problem as min-cost
dependency graph mapping and define it as follows.

Problem 2 (Min-Cost Dependency Graph Mapping). Let G}, and Gltj denote dependency graphs
obtained from datasets in the source and target domains, respectively. The min-cost dependency
graph mapping is to find a mapping R : GB — G, from Gb to G}, such as the cost of such mapping
is minimized.

Problem 2 can be viewed as a combinatorial optimization problem that finds an optimal
mapping in a two-tier fashion: (i) it initially performs component-level mappings where vertex-wise
and edge-wise mappings are found between source and target dependency graphs; and (ii) it then
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uses the component-level mappings to reach a consensus about the optimal mapping for the problem  2ss

as a whole. Such a two-level mapping problem can be represented using the objective in (15). 287
VHIIVB ;o
o p(ij)
Minimize 1—"—= 15
i=1 ]; M >

where j(i, j) represents the number of mappings between v; € VE and v; € V7, obtained through  2s
the component-level optimization. Furthermore, M is a normalization factor that is equal to the total s
number of component-wise mappings. The objective in (15) attempts to minimize the amount of 2%
mapping costs at the graph-level and, therefore, can be viewed as the objective for Problem 2. 291

Cy

©)
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©
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Figure 5. Optimal label assignment includes constructing a component-wise bipartite graph and finding an
optimal mapping of those components from target to source.

We build a weighted complete bipartite graph on the elements of the similarity matrix to find 202
the minimum double-cost mapping. Figure 5 is an illustration of such a bipartite graph where the 2
nodes on the left shore of the graph represent elements (e.g., cluster density) of the target similarity 204
matrix and the nodes on the right shore of the bipartite graph are associated with corresponding 25
elements (e.g., cluster density) in the source similarity matrix. 296

In constructing a bipartite graph, a weight wj; is assigned to the edge that connects node i in 207
the target side to nodes j in the source side. This weight also represents the actual mapping cost and  zes
is given by 299

wij = |ws; — wtj| (16)

where wg; and wt;j are respectively, the weight values associated with element i in the source domain a0
and component j in the target domain. We note that these weights can be computed using (13) and  sor
(14) for vertex-wise mapping and edge-wise mapping, respectively. We also note that if the number 302
of components in source and target were not equal, we could add dummy nodes to one shore of the 30
bipartite graph to create a complete and balanced bipartite graph. 304

We use Hungarian Algorithm (a widely used weighted bipartite matching algorithm with 305
O(m3 ) time complexity) [26] to identify an optimal mapping from the nodes on the left shore of the s
bipartite graph to the nodes on the right shore of the graph. 307

The last step is to assign the labels mapped to each cluster to the target observations within 308
that cluster. A classification model is trained on the labeled target dataset for physical activity s
recognition. 310

4. Time Complexity Analysis 311

Lemma 1. The optimal label learning phase in ActiLabel has a time complexity of O(n + m3) 312
where n denotes the number of sensor observations and m represents the number of classes. 313
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Proof. To learn the optimal labels, ActiLabel finds an optimal matching between source and target
dependency graphs given the node and edge weight values. We solve the dependency graph matching
problem by running the Hungarian algorithm three times. Given that number of the core clusters is
proportional to the number of labels, 11, the time complexity of running Hungarian algorithm three
times is O(m3). Distributing the labels to the cluster members can be done in O(). Therefore, the
optimal label learning phase has a time complexity of O(n + m3). O

The last step is to assign the labels to the target observations within each cluster. A classification
model is trained on the labeled target dataset for physical activity recognition.

Theorem 1. The time complexity of ActiLabel is quadratic in the number of sensor observations, n.

Proof. Assuming that the number of classes, 11, is much smaller than the number of sensor observa-
tions, n, (i.e., m < n), the proof follows Lemma 2 and Lemma 1. [J

Theorem 2. CTL is NP-hard.

Proof. Proof by reduction is done from the well-known generalized assignment problem [27].

Theorem 2 claims that the CTL problem discussed in Problem 1 and formulated in (4)—(7)
is NP-hard. In this section, we prove that Problem | is NP-hard by reduction from Generalized
Assignment Problem (GAP), which is known to be NP-hard [27]. The generalized assignment
problem aims to assign a set of tasks to a set of agents while minimizing the total assignment cost. It
needs to guarantee that each task is assigned to one and only one agent. In GAP, each agent has a
limited capacity. Also, each task requires a given number of the resource of each agent. Each task
needs to be assigned to only one agent.

An instance of GAP is given by (I,],A,B, C) where [ = {1, 2, ..., n} represents the set of n
tasks; ] = {1, 2, ..., m} denote the set of m agents; B={by, by, ..., by, } maintains resource capacity
bj for each agent j in J; A = {a;;} represents resource a;; needed if task 7 is assigned to agent j;
and finally C={c;;} represents the cost of assigning task i to agent j. The generalized assignment
problem can be formulated as follows.

n m
Minimize Z Z CijXij a7
i=1j=1
Subject to:
n
Y aixj<b; Vje{l,...m} (18)
i=1
m
Y x;j=1 Vie{l,... n} (19)
j=1
Xjj S {0,1} (20)

where x;; is a decision variable indicating whether or not task i is assigned to agent j.

Consider an instance of the generalized assignment problem, (I,],A,B,C). This problem can be
reduced to the combinatorial transfer. In fact, the generalized assignment problem is equivalent to
the CTL with

J=X 210
I=L (22)

Lll'j =1 VZ,] (23)

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343



Version June 29, 2023 submitted to Sensors 12 of 24

i =Aj Vj (24)

C,‘]‘ = 6,‘]‘ Vi,j (25)
O

Lemma 2. The graph modeling in ActiLabel has a time complexity of O(nz) where 'n’ denotes the
number of sensor observations.

Proof. Lemma 2 claims that the complexity of the graph modeling phase in ActiLabel is O(n?)
where ‘n’ represents the number of sensor observations. Here we provide the proof for this claim.

The graph modeling phase includes three steps, network graph construction, core cluster identifi-
cation, and dependency graph construction, which have a complexity of O(n?), O(nlog?(n) + m?),
and O(m) as discuss below.

Our introduced network graph in ActiLabel is a knn graph constructed using the input sensor
observations. Constructing a knn graph requires computing pairwise distances between sensor
observations. Therefore, the knn construction process has a time complexity of O(n?).

The core cluster identification algorithm consists of partitioning the network graph and merging
the partitions into a final set of clusters. We use Clauset-Newman-Moore greedy modularity
maximization algorithm for network graph partitioning. Because the network graph is sparse, the
partitioning algorithm runs in O(nlog?(n)) [28]. In the following, we show that the cluster merging
process has a time complexity of O(m3 + mn). Therefore, assuming 1 > m, the core cluster
identification algorithm has a time complexity of O(nlog?(n) + m3)

The cluster merging process requires (i) computing pair-wise similarity between the clusters in
(12); (ii) finding a pair of clusters that are most similar; and (iii) merging the two clusters, which
involves updating the membership of the sensor observations that reside in the merged clusters. We
note that, in the worst case, steps (ii) and (iii) will repeat until the entire network graph is merged
into a single cluster. To compute pair-wise cluster similarity, we use a fast algorithm that goes over
non-zero elements of the adjacency matrix (e.g., edges in the network graph) only once. For each
non-zero element, if the adjacent vertices in the network graph belong to the same cluster, we update
the cluster weight; otherwise, we update the edge weight between the two clusters based on the
similarity values. Therefore, computing the similarity measures runs in O(#n). Note that because
the network graph is sparse, |E| ~ |V| = n. Because the number of clusters is proportional to the
number of labels, m, the number of cluster-pairs is O(mz). Therefore, finding a cluster-pair with
maximum similarity takes O(mz) to complete. Finally, updating the cluster membership for data
points that reside in the merged clusters takes O (7). Note that because steps (ii) and (iii) can repeat
for at most m times, the complexity of combined steps (ii) and (iii) is O(m3 + mn). Combining
complexity of the three steps (i), (ii), and (iii) in cluster merging process will give us an overall
complexity of O(m> + mn + n) = O(m® + mn).

The dependency graph is a weighted complete graph that is built on the core clusters. The
process to compute edge weights and vertex weights in such a graph is similar to computing the
pair-wise similarity score while merging the initial clusters. All the edge weights and vertex weights
can be therefore calculated during the cluster merging process described earlier. Given that the
number of the final clusters is proportional to the number of the labels, m, dependency graph
construction can runs O(m)

Combining time complexities for network graph construction, core cluster identification, and
dependency graph construction will give us O(n? + nlog?(n) + m>® 4+ m) = (n*> + m>). Assuming
that in most real applications the number of sensor observations is orders of magnitude larger than
the number of class labels, we can conclude that the complexity of the graph modeling phase is
ActiLabel is O(n?). Hence,

O(n* +nlog?(n) +m® +m) = O(n® +m®) = O(n?) (26)
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5. Experimental Setup
5.1. Datasets

We used three sizeable human activity datasets to evaluate the performance of ActiLabel. We
refer to these datasets as PAMAP2, a physical activity monitoring dataset used in [29], DAS, daily
and sport activity dataset used in [30], and Smartsock, a dataset containing ankle-worn sensor data
used in [31]. These datasets contained sensor data with a variety of sensor modalities such as
accelerometer, gyroscope, magnetometer, temperature, stretch sensor, and heart rate monitor. They
also provided data collected with 29 subjects. The number of wearing sites varied across the datasets
with a total of 8 body locations for the three datasets. Table | has provided a summary of the datasets
utilized in this study.

Table 1. Brief description on the datasets utilized for activity recognition.

Dataset # Subject # Activity # Sample # Feature Sensors Locations
Accelerometer, Gyroscope, Heart rate

PAMAP2 9 24 3850505 52 monitor, Temperature, Orientation, Chest, Hand, Ankle

Magnetometer
DAS 3 19 1140000 45 Accelerometer, Gyroscope, Left Arm_, Right Arm, Left

Magnetometer Leg, Right Leg, Torso

Smartsock 12 12 9888 30 Accelerometer, Stretch sensor Chest

5.2. PAMAP?2

The data in PAMAP2 are collected from 9 participants performing 24 physical activities of
daily livings while wearing 3 IMUs (Inertial Measurement Units) on their chest, ankle, and hand
while also wearing a heart rate monitoring device on the chest. The IMUs recorded accelerometer
(@100 Hz), gyroscope (@100 Hz), orientation (@100 Hz), and temperature (@ 100 Hz) data, and
the heart rate monitor recorded heart rate information (@9 Hz) during the experiments. We only
consider 12 activities for our analysis in this paper because there were only 12 activities in the
dataset that were performed by all the 15 subjects. As Figure 6a, which visualizes the prevalence of
the activities, suggests, PAMAP?2 is an imbalanced dataset.

5.3. DAS

DAS dataset is a collection of 19 sports physical activities performed by eight subjects between
the ages of 20 to 30 (four females and four males). The subjects wore the data collection devices,
embedding accelerometer (@25 Hz), gyroscope (@25 Hz), and magnetometer (@25 Hz) sensors, on
their torso, left arm, right arm, left leg, and right leg. Some of the activities were sitting, standing,
lying on the back and right side, ascending and descending stairs, walking, running, cycling, rowing
and jumping. DAS is a balanced dataset as illustrated in Figure 6b.

5.4. Smartsock

Smartsock dataset was collected from 12 participants (4 females and 8 males) aged between 23
and 31. The participant performed 12 different physical tasks while wearing a Smartsock prototype
on the dominant foot that measured the circumference of the ankle using a stretch sensor. They also
wore an accelerometer sensor on the chest during the protocols. The activities were sit in chair, sit
on floor, lay on floor, bend at knees, bend at waist, jump in place, descending stairs, walking and
running. Figure 6c¢ visualizes the prevalence of the physical activities in Smartsock dataset. The
majority of the observations belonged to the walking and running activities.

5.5. Comparison Methods

We compare the performance of ActilLabel with the following algorithms. We deploy 5-
NN classifier on the feature representation of the data as the baseline classifier for the Baseline,
DirectMap, and Upper-bound as suggested by the results in Table 3

*  Baseline refers to the case where we learn a feature-based activity recognition model in the
source domain and use it for activity recognition in the target domain.
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Figure 6. Prevalence of physical activities in the PAMAP?2 dataset.

*  Deep Convolution LSTM (ConvLSTM) refers to using a deep convolution LSTM model that
was learned in the source domain and was utilized for activity recognition in the target domain.
The deep ConvLLSTM is consists of one layer of input, four layers of convolution, two dense
layers consisting of LSTM cells as the hidden units, and a softmax layer as the output of the
model as proposed by [16].

*  DirectMap directly maps core clusters in a target domain to activity classes in a source domain
using the Hungarian algorithm. This algorithm assigns the labels from the source cluster to the
closest cluster in the target domain based on a similarity measure on the mean value of the data
points in each cluster.

*  Upper-bound assumes that the actual labels are available in the target domain.

We assess the performance of ActiLabel and these competing algorithms in three transfer
learning scenarios as follows: (i) Cross-modality transfer refers to the case when sensors in the two
domains have different modalities (e.g., accelerometer and gyroscope); (ii) Cross-subject refers to
transfer learning across two different human subjects; and (iii) Cross-location refers to the case when

the location of the wearable sensor is different in the target domain from that in the source domain.

5.6. Implementation Details

The datasets are divided into 50% training, 25% test, and 25% validation parts with no overlap
to avoid possible bias. The input features are extracted from a 2-second window of data. We
extracted an exhaustive set of time-domain features from a sliding window of size 2 seconds with
25% overlap. Table 2 lists the extracted features which are shown to be useful in human physical
activity estimation using inertial sensor data [32,33].
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Table 2. Extracted time-domain features. E(.) represents the expected value of the input variable. Func-
tions min(.), max(.), mean(.), median(.), tan(.), size(.) compute the minimum, maximum, average, median,
tangent, and size of an input vector.

Feature Computation for signal S
Peak amplitude of the signal max(S) — mean(S)
Median of the signal median(S)
. YN, S
Mean value of the signal p= =5
Maximum value of the signal max(S)
Minimum value of the signal min(S)
N |5 yl2
Variance of the signal v = M
- . Ly [Si—pl?
Standard deviation of the signal o=\ =T
R f the signal L 5
oot mean square of the signa -
Peak to peak difference max(S) — min(S)
Zero crossing rate Size({si|S":T\?’i:1’2’"’N})
Entropy of the signal — YN, Silog(S:)
_3
Skewness of the signal s = 15(5773”)
4
kurtosis of the signal k= ES-m)

-4
N /6221 G.,21G..2
Mean Magnitude of the signal M = L= S’xN+S’y +5iz

Energy of the signal e= Efil Slz
Range of the signal r = max(S) — min(S)
Angle of the signal a= max(tan(szsﬁ))
N Y
Mean absolute deviation of the signal m= W

We performed dimensionality reduction based on UMAP [34] algorithm prior to clustering,
since distance-based clustering algorithms are negatively affected by high dimensionality in feature
space. The k parameter in Baseline graph construction was set to the 2% or 5% of the size of the

Baseline graph, as suggested by the results in Section 6.1.

In the following subsections, we discuss performance metrics, comparison algorithms, and

parameter settings for our evaluation of ActiLabel.

5.7. Evaluation Metrics

We adopt four metrics to evaluate the performance of ActiLabel in this paper.

. To evaluate the performance of the core cluster identification, we report normalized mutual
information (NMI) and purity. NMI is an entropy based method that is a measure of information
sharing between the ground truth labels and clustering. Purity shows how much each cluster

contains a single class.

NMI(L,C) =

2 x I(L; C)
[H(L) + H(C)]
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where L is the actual class labels, C is the cluster labels. Function H(.) computes the entropy
of the input vector, and I(Y; C) denote the mutual information between Y and C. To calculate
purity, we assume each cluster C; is assigned to the most frequent label label in the cluster.

Lk max|wi (¢

purity(C,L) = N

(28)
where C = {cq,¢o, ..., ¢ } is the set of clusters and L is the set of labels. Both NMI and purity
are normalized between 0 and 1 [35]

*  To evaluate the performance of the double-weighted matching algorithm, we report labeling
accuracy. The labeling accuracy is defined as the ratio of the target sensor observations that are
correctly mapped to an activity label in the source.

yk TP;+TN;

i=1 TP;+TN;+FP;+FN;
k
where k refers to the number of classes. For each cluster ¢; with label [;, TP; refers to the
samples that are correctly labeled as I;, FP; are the samples that are falsely labeled as [;, TN;
are defined as the samples that are correctly not labeled as [;, and FN; are the samples that are
falsely not labeled as I;

*  To evaluate the performance of the ActiLabel framework as a whole, we report the F-Score of
the activity recognition algorithm that is autonomously trained because it better represents the
performance of the model when dealing with imbalanced data [36]. F1-Score is defined as the
weighted average of the precision and recall [36].

Labeling — Accuracy =

(29)

2 x (Recall x Precision)

F1-S =
core Recall + Precision

(30)

where precision refers to the average agreement of the actual class labels and classifier-predicted

labels, and recall is the average effectiveness of the classifier to identify each class label.

Precision and recall are computed by the following equations.

kTP gk TP,

Li-1 TP,+FP i=1 TP, +FN;,
k

Precision = p L Recall = 31)

where k refers to the number of classes. For each activity class A; with label [;, TP; refers to
the samples that are correctly classified as I;, FP; are the samples that are falsely classified as [;,
TN; are defined as the samples that are correctly not classified as [;, and FN; are the samples that

are falsely not classified as [; [37].

6. Results

As mentioned previously, the main focus of ActiLabel is to create a labeled dataset in a
target domain. This dataset can then be used to train an activity recognition model. Therefore,
the methodologies presented in this paper are independent of the choice of the classifier that can
be used for activity recognition. For validation purposes, however, we performed an extensive

experiment to identify the most accurate classification model that can be used for activity recognition.

Table 3 compares the F1-Score for k-NN with k = 5, support vector machine (SVM) with RBF
kernel, logistic regression (LR), random forest (RF) with bagging of 100 decision trees, artificial
neural network (ANN), Naive Bayes(NB), and quadratic discriminant analysis (QDA). k-NN (K=5)
achieves the highest performance, such as 93.8% average F1-Score over different sensor locations in
PAMARP?2 dataset, 94.5% over different sensor modalities, 97.1% over different sensor modalities
for DAS dataset. ANN achieved the best F1-Score for the rest of the cases.
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Table 3. Average F1-Score(%) for activity classification over different sensor modalities and locations for
PAMAP2, DAS, and Smartsock datasets.

Dataset Type k-NN SVM LR RF MLP NB QDA
Modalities  78.9 65.6 65.5 81.6 73.6 55.0 65.7

PAMAP2 Locations 93.8 57.0 87.5 73.6 93.3 73.2 90.6
DAS Modalities  94.5 75.7 86.4 93.1 87.7 69.5 88.9
Locations 97.1 85.9 87.1 95.2 94.1 69.1 90
Smartsock Modalities  83.7 74.6 65.3 89.0 71.8 59.5 62.8

In what follows, we discuss the performance of ActiLabel for core cluster identification,
labeling accuracy, and activity recognition accuracy.

6.1. Performance of Core Cluster Identification

We analyzed the effect of parameter k in the k-NN network graph on the performance of the
core cluster identification as measured by normalized mutual information (NMI) and clustering
purity. As shown in Figure 7, the value of parameter k is set according to the size of the network
graph. Specifically, measure NMI and purity for k ranging from .5% to 50% of the network graph
size. Note that purity decreases as k grow because a higher purity (e.g., 0.85 to 0.98) can be achieved
when detecting more clusters. A smaller k results in a more sparse network graph, which in turn
leads to obtaining more clusters. As shown in Figure 7, NMI achieved its highest value (i.e., 0.67 for
PAMAP?2, 0.88 for DAS, and 0.83 for Smartsock) when k was set to 2% or 5% of the graph network
size. This translates into a k=8 for PAMAP2 and Smartsock and k = 11 for DAS datasets.

1.0 1.0 1.0
;\3 | ;\? 70/ ;\3
5 0.8 ot 0.8 1 0.8-/
u) v] u]
5 0.6 5 0.6 5 0.6
£ " £ O £ O
) o o
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o Purity o Purity o Purity
0.24, - ‘ - , ' - 0.2 - ; ; - - , 0.2 . - . - . -
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k k k
(a) PAMAP2 (b) DAS (¢) Smartsock

Figure 7. Performance (i.e., normalized mutual information and purity) of core cluster identification versus
parameter k in network graph construction.

Figure 8 compares the average NMI score and purity of clustering between the proposed core
cluster identification (CCI) method and well-known clustering and community detection algorithms.
We chose the algorithms that do not require prior knowledge on the cluster counts because the
activity labels are unknown in the target domain. Note that the community detection algorithms
were applied to a symmetric k-NN graph (k=10) built on the feature representation of observation
after dimensionality reduction using UMAP [34] algorithm.

*  Affinity Propagation is a graph-based clustering algorithm that extracts the clusters by relaying
messages between pairs of samples until convergence [38].

*  Mean Shift is a centroid-based algorithm that extracts clusters on a smooth density of data [39]

*  DBSCAN clustering algorithm detects the cluster based on a density measure [40].

*  Fast Greedy finds the communities in the graph using Clauset-Newman-Moore greedy modular-
ity maximization [28].

*  Lovain-Ward detects the communities in the graph by maximizing the modularity using the
Louvain heuristics [41].

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517



Version June 29, 2023 submitted to Sensors 18 of 24

*  Label Propagation finds the communities in the graph using a semi-synchronous label propaga-
tion method [42].

Il AffinityPropagation [ DBSCAN [ LouvianWard I Core Cluster Identification
0 MeanShift [ FastGreedy [0 LabelPropagation
1.0 1.0
0.8 0.8
= 0.6 >
S £ 0.6
<04 04
0.2 0.2
0.0 0.0
PAMAP2 DAS SmartSock PAMAP2 DAS SmartSock
Dataset Dataset

Figure 8. Performance comparison between core cluster identification in ActiLabel and standard clustering and

communication detection algorithms.

As shown in Figure 8, CCI outperforms state-of-the-art clustering and community detection
algorithms. The NMI for the competing methods ranged from 0.37-0.65 for PAMAP2, 0.25-0.77
for DAS, and 0.52-0.76 for Smartsock. The proposed algorithm CCI increased NMI to 0.67, 0.87,
and 0.85 for PAMAP2, DAS, and Smartsock datasets, respectively.

Affinity propagation, DBSCAN, Lovain-Ward, Fast Greedy, and Label Propagation algorithms
achieved 0.50-0.67, 0.44-0.73, and 0.51-0.69 purity for PAMAP2, DAS, and Smartsock datasets,
respectively. Mean shift achieved the lowest purity comparing to other comparison algorithms (0.32
for PAMAP2, 0.16 for DAS, and 0.40 for Smartsock). Using our core cluster identification The
purity measure reaches 0.77 for PAMAP2, 0.88 for DAS, and 0.80 for Smartsock dataset. Note
that the clustering was generally more accurate for Smartsock and DAS datasets because PAMAP2
contained data from sensor modalities (e.g., temperature) that might not be a good representative of
the activities of interest.

6.2. Labeling Accuracy in ActiLabel

Because ActiLabel generates a labeled training dataset in the target domain, it is reasonable to
assess the accuracy of the labeling task. Figure 9 shows the labeling accuracy for various transfer
learning scenarios and datasets. For brevity, the results from cross-subject labeling are not included
in this figure.

6.2.1. Cross-Modality Transfer

As the heatmap in Figure 9a shows, ActiLabel achieved 70.2%—-88.0% labeling accuracy when
the accelerometer was the target modality. With accelerometer being the target modality, the highest
labeling accuracy (>80%) was obtained when the source modality was magnetometer, stretch sensor,
or another accelerometer. We also observed that the labeling accuracy ranged from 60% to 75%
when the target modality was magnetometer or orientation sensor. We also noted that transferring
labels between orientation and heart rate sensors achieved the lowest accuracy (i.e., 45%—0.65%),
mainly because these sensor modalities are not as good representative of the physical activities as
the accelerometer. The proposed mapping algorithm obtained > 80% labeling accuracy for the
remaining transfer scenarios except for “magnetometer to orientation” mapping (77.9%) and for
“temperature to temperature” mapping (74.0%).

6.2.2. Cross-Location Transfer

The heatmap in Figure 9b shows the labeling accuracy between sensor locations in PAMAP2
and DAS datasets. Note that the Smartsock dataset contained only one sensor location, and therefore
a cross-location transfer did not apply to this dataset. As expected, mapping labels between the same
or similar body locations such as “chest to chest”, “hand to hand”, “ankle to ankle”, “torso to torso”,
“left arm to left arm”, “left leg to left leg”, and “left arm to right leg” achieved a relatively high labeling
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accuracy (i.e., > 70.3%). Furthermore, Actilabel achieved 70.3%—-80.1% labeling accuracy for
transfer tasks between chest, ankle, and hand in PAMAP2. One reason for a relatively high labeling
accuracy in such transfer tasks involving dissimilar sensor locations is that PAMAP2 contains a rich
collection of sensors (accelerometer, gyroscope, magnetometer, orientation, temperature, and heart
rate sensors) that provide sufficient information about inter-event structural similarities captured by
our label learning algorithms in ActiLabel.
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Figure 9. Labeling accuracy of ActiLabel for cross-modality (a), and cross-location learning.

6.3. Performance of Activity Recognition

Table 4 shows activity recognition performance (i.g., F1-Score) for ActiLabel as well as
algorithms under comparison including baseline (BL), deep convolution LSTM (CL), DirectMap
(DM), and upper-bound (UB) as discussed previously.

6.3.1. Cross-Modality Transfer

For this scenario, we examined transfer learning across these sensor modalities: accelerometer,
gyroscope, magnetometer, orientation, temperature, heart rate, and stretch sensor. The cross-modality
results in Table 4 reflect average performance over all possible cross-modality scenarios. The baseline
and ConvLSTM performed poorly with F1-scores of 7.8% and 8.1% in PAMAP2, 9.3%, and 8.2%
in DAS, and 16.2% and 12.8% in Smartsock. This demonstrates a highly diverse distribution of
data across sensors of different modalities. The DirectMap approach achieved 40.4%, 44.8%, and
66.0% F1-score for PAMAP2, DAS, and Smartsock datasets, respectively. Actilabel outperformed
DirectMap by 19.3%, 21.4%, and 6.7% for PAMAP2, DAS, and Smartsock, respectively.

6.3.2. Cross-Location Transfer

We examined transfer learning among chest, ankle, hand, arms, legs, and torso. The cross-
location results in Table 4 represent average values over all possible transfer scenarios. The baseline
and ConvLSTM methods achieved F1-scores of 14.3% and 12.7% for PAMPA?2 dataset, respectively.
Similarly, the baseline and ConvLSTMand algorithms achieved 13.2% and 12.4% F1-Scores, re-
spectively, for DAS dataset. The relatively low F1-scores of the baseline and ConvLSTM algorithms
can be explained by the high level of diversity between the source and target domains during cross-
location. The DirectMap and ActilLabel both outperformed the baseline and ConvLSTM models.
Specifically, DirectMap and Actilabel 63.4% and 70.8% F1-Scores for PAMAP2, and 60.7% and
68.4% F1-Scores for DAS.

6.3.3. Cross-Subject Transfer

For this particular experiment, we included only four subjects from each dataset, because there
were only four subjects who performed all the activities in the protocol of the datasets. The baseline
and ConvLSTM achieved 65.8% and 61.9% F1-Score for PAMAP2, 67.1% and 56.8% F1-Score for
DAS, and 59.8% and 61.8% F1-Score for Smartsock datasets. The baseline feature-based classifier
achieved slightly higher performance than deep ConvLSTM. This can be explained by the fact that
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Table 4. Activity recognition performance (F1-Score).

Scenario Dataset Baseline ConvLSTM  DirectMap  ActiLabel ggfﬁ;
PAMAP2 7.8 8.1 404 59.3 80.8
Cross-modality  DAS 9.3 8.2 44.8 66.2 86.1
Smartsock 16.2 12.8 66.0 72.7 84.2

C locati PAMAP2 14.3 12.7 63.4 70.8 93.2
Fosslocalion - pag 132 12.4 60.7 68.4 89.8
PAMAP2 65.8 61.9 85.4 82.7 98.1

Cross-subject DAS 67.1 56.8 79.0 80.3 92.5
Smartsock 59.8 61.8 82.6 80.0 95.2

Average 31.6 29.3 63.4 71.9 89.9

complex deep learning models may not be superior to feature-based algorithms when applied to  sso
data with low-dimensional feature space. Such deep learning models have been shown superiority s
to feature-based estimation models when adopted to datasets with high-dimensional channels (e.g., se1
> 100). However, the datasets used for our analysis had few channels of data from a few locations s
and sensors. 593

The DirectMap approach and ActiLabel obtained F1-Scores of 85.4%, and 82.7% in PAMAP2,  se
77.59% and 82.6% in DAS, and 82.6%, and 77.5% in Smartsock, respectively. All the algorithms  ses
achieved higher F1-score values compared to the cross-location and cross-modality scenarios. This  ses
observation suggests that cross-subject transfer learning is an easier task to accomplish compare to  se7
cross-modality and cross-location because of the lower amount of variation in the distribution of the s
sensor data during cross-subject learning. These results suggest that data variations among different  ses
subjects can be normalized using techniques such as feature scaling, and feature selection before  e00
classification. 601

7. Discussions and Future Work 602

In this section, first, we discuss our work from several perspectives and discuss promising s
directions that will overcome some of the limitations of our work. 604

First, from the transfer learning perspective, the performance of different transfer learning  eos
algorithms depends on four factors. First, how well the target can distinguish between different e0s
physical activities when some correct labels are available. Second, how pure observations in target o7
and source domains could be clustered into activity labels. Third, accuracy of mapping between the  e0s
source and target core clusters. Lastly, the capability of source dataset in distinguishing different  eos
activities when some labels are available. Table 4 shows that ActilLabel obtained 59.3% average s
F1-Score in activity recognition of PAMAP2 dataset compared to 66.2% and 72.7% F1-Scores for 11
DAS and Smartsock datasets, respectively. The collection of more diverse sensor modalities such as sz
accelerometer, gyroscope, magnetometer, orientation, also, temperature, and heart rate, which are 13
less representative of human physical activity events, affects every step in Actilabel, including core 614
cluster identification, min-cost mapping and activity recognition. As shown in Table 3 the strongest 15
baseline classifier (e.g., 5-NN) achieved 78.9% average F1-Score in detecting the activities from &1
different sensor modalities from PAMAP?2 dataset, while 5-NN reached to 94.5% activity recognition 17
F1-Score and random forest could obtain 89.0% average F1-Score for sensor modalities in DAS and s
Smartsock datasets, respectively. 619

Second, from the structural perspective, we note that the community detection based algorithms 620
outperform clustering algorithms in our setting. From Figure 8 we can observe that Fast greedy, e
Lovain-Ward, and label propagation community detection algorithms obtained NMI of 0.16-0.51 22
and purity of 0.25-59 for PAMAP2, DAS, and Smartsock datasets, respectively; while the clustering ez
methods including affinity propagation, mean shift and DBSCAN achieved NMI of 0.42-0.70 and  ¢2s
purity of 0.62-0.78 for these datasets, respectively. CCI, which is proposed as an extension to the ez
community detection algorithms achieved up to 20.4% higher NMI and 17.5% purity compared to ez
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these techniques. These results suggest that community detection algorithms are more reliable in
unsupervised clustering of datasets, in particular, human physical activity, when the models do not
have prior knowledge on the number of the clusters. Although the clustering algorithms, such as
affinity propagation and mean shift eliminates the need to specify the number of clusters, they have
other parameters such as "preference” and "damping" for affinity propagation and "bandwidth for
mean shift that is challenging to optimize [43,44]. We note that tuning the structure of the input
graph (e.g., modifying k for K-NN graphs) and merging strongly connected communities again,
as proposed in CCI, improves the clustering quality comparing to the other community detection
algorithms such as label propagation.

Finally, from the machine learning viewpoint of the activity recognition, we discuss the
problem of poor performance of the baseline models (e.g., 31.6% F1-Score, as shown in Table 4).
Specifically, in the cross-modality scenario, the gap between the baseline and other transfer learning
methods is the highest (e.g., gap of 32.6% to 59.9% in F1-Score). One explanation is that the
features adopted different distributions across different domains. We note that ConvLSTM did not
meet the expectations in solving the problem of cross-domain transfer learning; the main reason
that ConvLSTM could not improve the performance (e.g., 29.3% F1-Score) of the baseline was
Inadequate amount of data as the deep neural networks acquire a considerable amount to data to
extract effective features through the deep convolution layers [45]. We believe that adding more
data to the training dataset will improve the performance of the baseline method. Overall, assuming
lower F1-Score for the baseline represents higher diversity between domains and, therefore, more
challenging transfer scenario, the cross-modality with 40.4%—72.7% F1-Score for DirectMap and
ActiLabel, is the most challenging transfer learning scenario among all. Overall, assuming lower F1-
Score for the baseline represents higher diversity between domains and, therefore, more challenging
transfer scenario, the cross-modality with 40.4%—72.7% F1-Score for DirectMap and ActiLabel, is
the most challenging transfer learning scenario among all.

There are few limitations to the evaluation process of the ActiLabel. First, we assume that the
target activity labels are a subset of ones in the source domains. However, there are cases in real-word
settings that some of the activities in the target are not known to the source. The straightforward
solution to this scenario is to add dummy nodes in the construction of bipartite graphs for the domain
with fewer activities (e.g., source domain). However, such solution is naive and results in mapping
the dummy nodes from the source to the nodes associated with unknown activity labels from the
target domain in the best case. To solve this issue, our ongoing work involves investigating practical
approaches that allow for more complex mapping scenarios such as many-to-many mappings that
capture all possible complex mapping situations that might occur in real-world and uncontrolled
settings. Second, graph-based algorithms such as ActilLabel might encounter scalability challenges
when deployed in big real-world datasets. We are planning to investigate the efficacy of replacing the
k-NN graph with less computationally expensive graph structures such as kd-graphs and minimum
spanning trees to enhance the scalability of the ActiLabel. Finally, the practical challenges of
deploying our system in a real-world scenario will provide valuable information on the applicability
of ActiLabel and help us improve our system furthermore. Therefore, one interesting future direction
is the optimization of various computational components of ActiLabel for time, power and memory
efficiency given the dynamics of real-world scenarios.

Based on our analysis, Table 5 illustrates the merits and potential demerits of ActiLabels against
analogous methods.

The aim of ActiLabel is to leverage the knowledge from a source domain where labeled data
is abundand and use it to improve the performance of activity recognition task in a target domain
where labeled data is limited. It is designed to handle transfer learning scenarios with different
modalities, subjects, and sensor locations. The ActiLabel framework initiates community detection
algorithms to identify core clusters of similar activities in the target domain and then maps them to
corresponding activities in the source domain. By leveraging the relationships between activities
and the knowledge from the source domain, ActiLabel aims to improve the activity recognition
performance in the target domain. Additionally, ActiLabel’s performance is evaluated in three
transfer learning setups: cross-modality transfer, cross-subject transfer, and cross-location transfer.
These scenarios reflect the scope of application of ActiLabel in real-world situations where activity
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Table S. Comparison of different Transfer Learning Techniques

Method

Advantages

Disadvantages

ActilLabel

Deep Learning Models

Uninformed Transfer
Learning Techniques

- Leverages community detection algorithms

- Graph-based modeling captures relationships between
activities

- Performs well in scenarios with similar sensor modali-
ties and diverse source datasets

- Can learn complex representations from raw sensor
data

- Strong performance with large labeled datasets

- Can handle different modalities and adapt to domain
shifts

- Simple and straightforward implementation

- Applicable in scenarios with scarce labeled data

- Provide a starting point for activity recognition

- Depends on availability of diverse sensor modalities

- Scalability challenges with large datasets

- Assumes target labels are subset of source domain la-
bels

- Requires large labeled datasets for training

- Computationally expensive

- May suffer from overfitting if training dataset is not
representative

- May not effectively leverage source domain knowledge
- Do not adapt to domain shifts

- Limited performance and applicability in diverse sce-
narios

recognition needs to be performed across different sensor modalities, different individuals, and
different sensor locations. While the focus of this study is activity recognition using wearable sensor
data, the ActiLabel method’s underlying principles of transfer learning and community detection
could potentially be applied to other domains and tasks where transfer learning deems fit. However,
further research and experimentation would be needed to explore its effectiveness in those specific

domains.

8. Conclusion

We introduced ActiLabel, a computational framework with combinatorial optimization method-
ologies for transferring physical activity knowledge across highly diverse domains. ActiLabel
extracts high-level structures from sensor observations in the target and source domains and learns
labels in the target domain by finding an optimal mapping between dependency graphs in the source
and target domains. We showed that deep learning models and uninformed transfer learning tech-
niques do not generalize well when transferring across different locations and sensor modalities,
although their performance is acceptable in cross-subject learning. ActilLabel, however, provides
consistently high accuracy for cross-domain knowledge transfer in various learning scenarios. Our
extensive experimental results showed that ActiLabel achieves average F1-scores of 59.2%%, 70.8,
and 82.7% for cross-modality, cross-location, and cross-subject activity recognition, respectively.
These results suggest that ActiLabel outperforms the competing algorithms by 36.3%, 32.7%, and
9.1% in cross-modality, cross-location, and cross-subject learning, respectively.
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