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Abstract—Effective prevention and management of diabetes
relies on maintaining a normal blood glucose level, thus avoid-
ing abnormal events such as hyperglycemia and hypoglycemia.
Predicting anomalous events beforehand can potentially help
patients and caregivers intervene to prevent such events through
modifiable behaviors such as exercise, diet, and medication.
Although Continuous Glucose Monitor (CGM) sensors have been
used to monitor and forecast blood glucose level, current research
lacks a computational approach that recommends a behavioral
intervention to bring the glucose level to a normal range. To
address this shortcoming, we present GlySim', a CGM simulator
that uses multimodal data to not only forecast future glucose
readings but also enable a user to examine the impacts of
behavior change on glucose response in advance. GlySim creates
opportunities for change in food consumption, medication, and
physical activity to avoid dysglycemia by pinpointing factors that
cause anomalous events using Grad-CAM (Gradient-weighted
Class Activation Mapping) and allowing users to observe how
adjusting a behavioral factor changes glucose trajectories. We
validate GlySim on a dataset of 10 patients with type 1 diabetes
and achieve an overall mean absolute error (MAE) as low as
16.5 mg/dl in simulating glycemic response. Furthermore, GlySim
detects hyperglycemic events with 0.89 average precision.

Index Terms—Wearable, continuous glucose monitor, diabetes,
forecasting, multimodal data, simulator, digital twin

I. INTRODUCTION

Glucose control, as well as diet monitoring and manage-
ment [1], is critical in both diabetes prevention and diabetes
management. Poor glucose control leads to abnormal events
such as hyperglycemia and hypoglycemia. Regular exposure to
dysglycemia can increase the risk of complications, including
cardiovascular disease, reduced eyesight, cancer, impaired
glycemic control, and seizure [2]. As part of remote health
monitoring and human-centered IoT applications [3], [4],
CGM sensors are commonly used to measure blood glucose.
Although there exist technologies for diet [5] and glucose
monitoring, their utility for behavior change is currently lim-
ited. Current CGM systems lack computational capabilities
to actively influence users’ behavior and work as a decision
support for individuals with or at risk for diabetes. Such
a limitation thwarts the effectiveness of CGM systems to
proactively promote health enhancing behaviors associated
with food consumption, medication, and physical activity, to
maintain stable blood glucose levels.

Recent work developed algorithms to predict blood glucose
from CGM sensors [6]. One study used a moving window
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on blood glucose and accelerometer signals to predict future
blood glucose levels with a LSTM (long short-term memory)
network [7]. Another study developed a lightweight LSTM
model, aiming to deploy it on a microcontroller for en-
hanced practicality [8]. Additionally, a low-cost and low-power
wearable system was designed with attention-based evidential
recurrent neural network convenient for use in clinical settings
[9]. Another study used multimodal data in a stacked LSTM
model followed by Kalman filter to predict blood glucose
values [10]. Furthermore, a modified ResNet architecture was
introduced to predict blood glucose levels 30 minutes into the
future [11]. Although the value of accurately forecasting blood
glucose level can be perceived from these studies, little effort
is given in designing a mechanism that enables interventions to
prevent abnormal blood glucose levels such as hyperglycemia
and hypoglycemia.

We address these shortcomings by developing GlySim, a
simulator for glycemic response that takes data from multi-
modal information sources and allows users to virtually exam-
ine the effects of changes in behavioral parameters on blood
glucose. Developing methods for modeling and simulating
glycemic response is central to the development of a digital
twin for human health. Beyond effective diabetes prevention
and management, a glycemic simulator will provide a platform
for developing and testing novel algorithms and techniques
for glucose management without extensive clinical studies.
Such a simulator will also be instrumental for developing
a reinforcement learning aided insulin optimizer, where the
reward function is based on maintaining a normal blood
glucose level. Simulating glucose response, researchers and
developers can test the effectiveness of different interventions,
algorithms, and decision-making strategies in a controlled and
flexible virtual environment. Moreover, GlySim enables the
construction of large-scale and diverse datasets to educate
and train healthcare professionals, patients, caregivers and
Al models on the interpretation of CGM data in a risk-free
environment.

GlySim can be viewed as a deep learning based blood glu-
cose simulator that enables us to predictively conduct virtual
interventions. In designing GlySim, a neural network is first
introduced to predict future glucose readings over a prediction
horizon and to identify occurrences of impending dyslycemia.
A dashboard simulator is then designed to visualize the pre-
dicted signals and allow the user to tune behavioral parameters
and observe the impact on the glucose curve. An intervention
strategy is finally recommended by using gradients of each
target prediction to determine what behavioral factor is most



responsible for the predicted outcome, followed by an iterative
process to virtually determine the intervention impact.
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Fig. 1: GlySim integrates data from smartphone, smartwatch,
wearable CGM and insulin pump, and devises a multi-task
learning model to predict glucose response.

II. GLYSIM DESIGN

GlySim consists of two main modules, prediction and
intervention, which respond to the modeling and simulation
requirement of a digital twin, respectively.

Fig. 1 shows a high level diagram that illustrates the
prediction approach. To this end, we formulate a predictive
model that utilizes a neural architecture to forecast future
blood glucose levels based on multimodal data. Let X =
{zM 22 2(D)} be the set of d feature/sensor observations
where each observation z(!) = {xgl),xgl),...,xgl)} is of
length ¢. We aim to predict the future blood glucose levels
within a specific interval, referred to as prediction horizon. If
n represents the total number of blood glucose readings to
be predicted, our target variable will be Y = {y1,y2, ..., Yn }-
Hence, our goal is to learn a predictive model that can estimate
the future blood glucose levels given the input features.
Mathematically, we seek a function f that maps the input
features X to the predicted blood glucose levels Y':

f R R (1)

where R?** represents the d-dimensional feature space of
length ¢t and R™ represents the n-dimensional space of the
output, for the predicted blood glucose levels.

In addition to the prediction module, GlySim has an in-
tervention module that allows one to simulate virtual inter-
ventions. If the predicted blood glucose level is above a hy-
perglycemic threshold, i.e. max(f(X)) > 178, an intervention
can be recommended to prevent the impending hyperglycemia.

A. Predictive Modeling Using Deep Learning

For glucose level prediction, we devise a 3-layer stacked
CNN-LSTM network architecture in GlySim (Fig. 2). The
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Fig. 2: Stacked CNN-LSTM architecture of GlySim. Input to
the model is 3-hour long multimodal data.

ideal approach to realize such as architecture is to apply a
sliding window on the multivariate time series and slice it
to produce sequences of length ¢ for input batches X. The
convolutional layer, with tanh activation, applies filters to the
input data to extract high-level relevant features. Therefore,
if Weon, and beoy, refer to the weights and biases of the
convolution layer, the output can be written as-

hconv = ta'lrll’l(‘RICOTL'U * X + bCOTLU) (2)

The LSTM layer processes the sequential data, capturing
both short-term and long-term dependencies. It takes the se-
quence of feature maps produced by the convolutional layer as
input. The LSTM layer maintains a memory cell that can store
and update information over time. The layer uses gates (input,
forget, and output) to control the flow of information within
the memory cell. The LSTM layer can learn to remember or
forget specific information based on the patterns in the input
sequence. By stacking multiple LSTM layers, the network can
capture more complex temporal dependencies. If o, is from
final output gate and c; is from final cell state, the output of
LSTM layer can be written as-

h; sy = o; * tanh(cy) 3)

The output layers of the model are configured to generate
multi-task outputs, where each task corresponds to a different
prediction horizon (i.e., 5-minute, 30-minute, 60-minute).

B. Intervention Simulation

Beside forecasting future blood glucose levels with the
predictive model, we introduce an approach to simulate inter-
ventions and identify a way that can lead to preventing dys-
glycemia (e.g., a hyperglycemic condition). Once the model
predicts values above the hyperglycemic threshold, an iterative
process is triggered to determine the required reduction in
consumed CHO amount from the input data in order to
maintain blood glucose levels within the desired range.

We manipulate the consumed carbohydrate (or any other
parameter effecting blood glucose) amount in input feature
X in an iterative process to identify the optimal reduction in
CHO to achieve a predicted CGM value below hyperglycemic
threshold. Algorithm 1 is for further illustration.

With this intervention mechanism in place, the aim is to
optimize the consumed CHO amount and maintain blood
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Fig. 3: GlySim dashboard for simulating glucose response based on behavioral parameters. The dashboard will hold options
to add events like meal, exercise, work, sleep etc. Values are scaled for visualization.

Algorithm 1 CHO reduction based intervention

Inputs:
multimodal features, X’ = {z(1),£(2) . £(d-1}
projected CHO intake, C'
hyperglycemic threshold, BGmax
predictive model, f(-)
Output: CHO reduction, C
if max(f(X @& C)) > BGmax then
while max(f(X @& C — Cy)) > BGmax do
Cr+=1
end while
return C)
else
Cr=0
end if

glucose levels within the desired range for effective glucose
management.

III. EXPERIMENTAL VALIDATION
A. Dataset

We chose the OhioT1DM [12] to demonstrate the results
of our proposed methods. OhioTIDM was collected over
an eight-week long clinical study of 12 deidentified T1
diabetes patients. Participants wore Medtronic 530G/630G
insulin pumps and Medtronic Enlite CGM that transmits
blood glucose level every 5 minutes. Their physiological
data (acceleration, skin response etc.) was recorded on either
Basis Peak fitness band or Empatica Embrace while their
self-reported CHO intake, work, exercise intensity and sleep
quality were recorded on smartphones. Of these eight weeks,
roughly 44 and 12 days were allocated for train and test
respectively. Missing values were imputed with interpolation
or extrapolation. However, subjects 540 and 567 were excluded
from analysis due to not having entries for CHO, work, sleep,
and exercise sessions.

B. Model Development

After smoothing the CGM stream with Kalman filter, we
produced 180-minute long multimodal time-series windows
with 175-minute overlap and fed them to a network with
one 1-D CNN layer and two LSTM layers, all equipped with
tanh activation and followed by a 50% droptout. The CNN
layer had 64 filters, a kernel size of 3, lo regularizer followed

by a mazxpool. The two LSTM layers had 50 units each.
The output specific layers were for 60-minute, 30-minute and
immediate next sample prediction each with linear activation.
Adam optimizer was used with a learning rate of 0.01 and
a decay of 0.001. We also used Grad-CAM [13] in the
intervention phase to identify the responsible factor(s) behind
hyperglycemic/hypoglycemic events.

C. Results

The performance of the simulator was measured using mean
absolute error (MAE) and root mean squared error (RMSE)
shown in Equations (4) and (5).

ln
MAE = — ;i — 1 4
nE lys — vl “4)

i=1

1
Ewamz (5)

where, y;, y; and n refer to actual value, predicted value and
number of test samples respectively.

Table I summarizes the performance of the proposed ap-
proach across different subjects and prediction horizons. Re-
gression performance varies across different prediction hori-
zons. While the model recorded the lowest MAE and RMSE

TABLE I: MAE (mg/dL) and RMSE (mg/dL) of blood glucose
level estimation for different subjects and prediction horizons.

Subject 60-minute 30-minute next sample
MAE RMSE | MAE RMSE | MAE RMSE
544 157 22.6 12 16.5 9 11.5
552 9.9 17.9 77 13.1 5.6 8.9
559 18.6 27 142 20.1 103 147
563 18.8 26.3 14.4 20.1 9.8 137
570 17.3 24.2 13.4 18.5 9.5 134
575 18 26.3 132 19.2 8.9 12
584 18.6 27.5 134 19 7.8 10.3
588 16.8 245 124 18 8.5 12
591 18 252 125 175 63 8.6
596 154 22.8 11 16 6.7 9.5

[ average [ 165 242 | 123 175 | 82 113 ]

[ Agnostic | 205 273 | 176 218 | 153 184 |




TABLE II: Performance of the models in detecting hyperglycemic events.

Subject — || 544 552 559 563

570 575 584 588 591 596

precision || 0.903 0.8 0913 1

0.885

0.969 1 0.714 0.875 0.871

values for the 60-minute and 30-minute prediction horizons for
subject 591, the lowest next sample prediction error was found
for subject 584. The average MAE and RMSE values serve
as a summary measure of the overall estimation accuracy. In
addition to subject specific models, we also trained a subject
agnostic model which, as expected, incurred higher error.

Performance of the models to detect hyperglycemia is
summarized in Table II using precision.

TP
TP+ FP

where, TP and FP refer to true positives and false positives.
The prediction model can detect hyperglycemia with an aver-
age precision of 0.89 (min 0.71, max 1). The intervention
simulator kicks in if any of the predicted values exceeds
hyperglycemic threshold. Initially, the algorithm identifies the
factor causing hyperglycemia or hypoglycemia. It determines
whether the abnormal blood sugar level is due to the consumed
carbohydrate (CHO) amount or if it is caused by factors
like insulin intake or exercise leading to hypoglycemia. The
Grad-CAM technique helps to pinpoint the underlying factor
contributing to the rise or fall in blood glucose levels. Once
the key factor is identified, the proposed algorithm iteratively
adjusts its value to minimize the impact and prevent the
anomalous event from taking place.

Fig. 4 provides a demonstration of the designed intervention
for subject 588. As soon as the model predicts values ex-
ceeding the hyperglycemic threshold, the intervention initiates
by employing Grad-CAM to locate the factor responsible.
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Fig. 4: Intervention phase identifies the key factor for hyper-
glycemia (or hypoglycemia) using Grad-CAM. Then repeat-
edly changes the value to identify the optimal amount that
ensures normoglycemia.

As shown, the heatmap produced by Grad-CAM highlights
that the consumption of 30g of CHO might be causing hy-
perglycemia. Now, the algorithm iteratively reduces the CHO
amount and determines a reduced value of 23¢g ensures pre-
dictions below the threshold. Table III displays the iterations,
reduced CHO amounts and corresponding maximum predicted
blood glucose levels.

TABLE III: Results from iterative intervention process.

Iteration # Reduced CHO (g)  Resulting maximum predicted CGM

1 30 183.2
2 29 182.8
3 28 182.4
4 27 181.6
5 26 180.2
6 25 179.5
7 24 178.7
8 23 177.5
9 22 176.9

In other cases/examples, Grad-CAM also detects whether
previous high glucose levels contribute to hyperglycemia or if
exercise intensity or insulin lead to hypoglycemia. However,
when hyperglycemia persists for over 3 hours, the simulator
naturally cannot recommend an intervention to prevent the
event. Additionally, due to the limitations of the dataset, there
are instances where subjects experience hyperglycemia despite
not consuming any CHO or being on insulin. In such cases, the
algorithm struggles in generating suggestions as there are no
concrete modifiable parameters to regulate their blood glucose.

IV. LIMITATIONS AND FUTURE WORKS

GlySim presents one approach to simulating behavioral
factors and observing the impact of behavior changes on
glucose response. A potential application area of such a tool
is in designing a digital twin library to simulate human blood
glucose level in presence of different constraints like specific
age, gender, meal and insulin intake and to use the technology
in clinical decision making and in identification of optimal
behavioral treatments. However, our progress is currently in
early stages. Our objective is to create a simulator featuring a
dashboard similar to the one depicted in Fig. 3. Achieving such
a goal requires effort from both a machine learning standpoint
to enhance model robustness against corner cases and from a
software development perspective to design a user-friendly and
interactive interface. Furthermore, deploying an Al-driven in-
tervention in a clinical environment imposes greater challenges
developing such as technology. The entire process may include
phases like approval, validation of scalability, reliability, user-
adaptability, regulatory compliance, and maintenance.

As indicated in Table I, the subject-agnostic model is
not as effective as the subject-specific models, leading to



generalization problems of the predictive model aided by
inconsistent settings and diverse subjects [14]. Therefore, part
of our follow-up work includes applying transfer learning and
domain adaptation techniques [15] to improve the generaliza-
tion performance of the subject-independent model.

V. CONCLUSION

We introduce GlySim, a framework for modeling blood glu-
cose response and simulating behavioral interventions based
on multimodal behavioral, physiological, and health data.
GlySim provides an extended forecast horizon utilizing the
multimodal data. The intervention simulation mechanism is
designed to empower individuals to make behavior changes
related to food consumption, medication intake, and physi-
cal exercise. The experimental validation on ten individuals
demonstrates promising performance in terms of prediction
accuracy, with low MAE and RMSE values for different
prediction horizons, as well as potential for identifying the
optimal lifestyle intervention. One of our future endeavors is
to use this simulator to develop a reinforcement learning based
intervention system and deploy the system in clinical studies.
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