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Inter-beat interval (IBI) measurement enables estimation of heart-tare variability (HRV) which, in turns, can provide early
indication of potential cardiovascular diseases (CVDs). However, extracting IBIs from noisy signals is challenging since the
morphology of the signal gets distorted in the presence of noise. Electrocardiogram (ECG) of a person in heavy motion is
highly corrupted with noise, known as motion-artifact, and IBI extracted from it is inaccurate. As a part of remote health
monitoring and wearable system development, denoising ECG signals and estimating IBIs correctly from them have become
an emerging topic among signal-processing researchers. Apart from conventional methods, deep-learning techniques have
been successfully used in signal denoising recently, and diagnosis process has become easier, leading to accuracy levels that
were previously unachievable. We propose a deep-learning approach leveraging tiramisu autoencoder model to suppress
motion-artifact noise and make the R-peaks of the ECG signal prominent even in the presence of high-intensity motion.
After denoising, IBIs are estimated more accurately expediting diagnosis tasks. Results illustrate that our method enables IBI
estimation from noisy ECG signals with SNR up to -30dB with average root mean square error (RMSE) of 13 milliseconds for
estimated IBIs. At this noise level, our error percentage remains below 8% and outperforms other state of the art techniques.

CCS Concepts: » Applied computing — Life and medical sciences; Health informatics; Consumer health.

Additional Key Words and Phrases: Autoencoder, denoising, electrode motion, inter-beat interval, motion artifacts, tiramisu
model

ACM Reference Format:

Asiful Arefeen, Ali Akbari, Seyed Iman Mirzadeh, Roozbeh Jafari, Behrooz A. Shirazi, and Hassan Ghasemzadeh. 2021.
Inter-Beat Interval Estimation with Tiramisu Model: A Novel Approach with Reduced Error. ACM Trans. Comput. Healthcare
37, 4, Article 111 (July 2021), 20 pages. https://doi.org/lo.l145/1122445.1122456

Authors’ addresses: Asiful Arefeen, College of Health Solutions, Arizona State University, 6161 E Mayo Blvd., Phoenix, AZ 85054, USA,
aarefeen@asu.edu; Ali Akbari, Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technologies Bldg, College
Station, TX 77843-3120, USA, aliakbari@tamu.edu; Seyed Iman Mirzadeh, School of Electrical Engineering & Computer Science, Washington
State University, 355 Spokane Street, Pullman, WA 99164-2752, USA, seyediman.mirzadeh@wsu.edu; Roozbeh Jafari, Department of Biomedical
Engineering, Texas A&M University, 5045 Emerging Technologies Bldg, College Station, TX 77843-3120, USA, rjafari@tamu.edu; Behrooz A.
Shirazi, School of Electrical Engineering & Computer Science, Washington State University, 305 NE Spokane Street, Pullman, WA 99163, USA,
shirazi@wsu.edu; Hassan Ghasemzadeh, College of Health Solutions, Arizona State University, 6161 E Mayo Blvd., Phoenix, AZ 85054, USA,
hassan.ghasemzadeh@asu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2021 Association for Computing Machinery.

2637-8051/2021/7-ART111 $15.00

https://doi.org/10.1145/1122445.1122456

ACM Trans. Comput. Healthcare, Vol. 37, No. 4, Article 111. Publication date: July 2021.



https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111:2  « Arefeen et al.

1 INTRODUCTION

CVDs have been a major concern for human health for a long time and touted as the leading cause of death [15].
World Health Organization (WHO) declared that CVDs were responsible for the death of almost 17.9 million
people in 2016 - 31% of all global deaths. 85% of these deaths are due to heart attack and stroke [57]. CVDs can
also cause permanent or temporary disabilities and reduce the quality of life [33]. As a consequence, numerous
research in CVD diagnosis have been carried out for the past decades with the goal of preventing and managing
cardiac diseases [31, 34]. For in-time CVD diagnosis, it is vital to contentiously monitor HRV parameters that
requires accurate estimation of IBI [1, 18].

IBI is one of the most important parameters that can be extracted from ECG and photoplethysmography
(PPG) signals. IBI in an ECG signal is the time interval between two consecutive beats as shown in Figure 1 and
generally measured in units of milliseconds. In normal heart function, each IBI value varies from beat to beat.
This natural variation is known as HRV. However, certain cardiac conditions may cause individual IBI values to
become nearly constant, resulting in lower HRV values. This can happen, for example, during periods of exercise
as the heart rate (HR) increases and the beats become more regular. Certain illnesses can cause the HR to increase
and become uniform as well, such as when a subject is afflicted by an infection. In fact, IBI and HRV can be used
as indicators of degraded cardiac system and can be early indicator of certain cardiac diseases [13].

Wearable sensors provide an opportunity for continuous and convenient measurement of health parameters
such as IBL For the last decade, there has been immense development in the domain of wearable devices for
physiological parameter monitoring, disease diagnosis and early prevention. Sleep apnea monitoring [10, 55],
cardiac anomalies or arrhythmia detection/classification [19, 22, 41], HRV estimation [37], ECG monitoring [58],
diabetes monitoring [6], gait assessment [32], edema monitoring [14], activity recognition [47, 49], dietary intake
assessment [20], and stress monitoring [21, 50] are some of the tasks worth mentioning.

Fig. 1. R-Rinterval or IBl in an ECG.

Although PPG sensors embedded in various wearables such as smart watches and smart rings enable conven-
tional, convenient and continuous measurement of IBI, processing PPG and extracting IBI values from them is
challenging due to their noise susceptibility. PPG sensors are particularly sensitive to noise and human hands
have a higher degree of freedom and therefore exhibit more motions than the chest [5] leading to noisy signals.
ECG, as opposed to PPG, includes more information about human heart activity. Alongside other tests, ECG is
frequently used to diagnose and monitor conditions affecting regular activities of heart. Regardless of the intensity
and type of motion, ECG is also prone to power-line interference and Gaussian noise [29] which sometimes
distort the morphological features and curb diagnosis process. Denoising ECG and recovering the fiducial points
can provide extra value because diagnosis of arrhythmia is highly dependent of the shape of ECG. Thus, being
able to remove noise from ECG, in general, is essential.

ECG signal that is embedded with Gaussian out-of-band noise can be denoised easily using different types of
finite impulse response (FIR) filters and empirical mode decomposition (EMD) techniques [11]. However, an ECG
signal that is corrupted with motion artifacts cannot be dealt with ease as the frequency spectrum of some of
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these noises (1-10 Hz) [27] overlaps with those of the PQRST contents (0-50 Hz) [28, 54]. Such situations emerge
specially when the subject is in constant and/or periodic motion or performs exercise, where extracting IBI values
from these motion embedded ECG signals is critical. Even if IBI is directly estimated under mobility, it will be
nowhere near perfect. Therefore, there is an unmet need for noise rejection techniques that can deal with the
high level of noise and motion artifact.

To overcome aforementioned unmet need, we propose a novel framework to determine IBI values from ECG
signals totally buried in intense motion artifact noise. We have modified The One Hundred Layers Tiramisu network
[24], made it suitable for time-series denoising process, and used it for our case. While the original Tiramisu
model in [24] had hundred convolution layers with a crossentropy loss function appropriate for classification
tasks, the one in our proposal is tailored lightweight with fifty convolution layers followed by a mean squared
error (MSE) loss function. The intention of this study is to eliminate motion artifact and make the R-peaks
of an ECG signal more prominent in a way that IBI values can be estimated from it as accurately as possible.
Our modified network works as an autoencoder. Autoencoder is a well-known framework for making compact
representation of a signal and taking it back to its original dimensions if required. Our methodology intends to
squeeze the given ECG signal using autoencoder, suppress the noise, get back to the original dimensions, and
represent the ECG signal with its peaks sufficiently visible to calculate IBI values. The autoencoder used in this
experiment is comprised of fully convolutional dense networks (FC DenseNet) - a Tiramisu model - which is
familiar for image segmentation, image classification and more recently time domain analysis.

In the process of estimating IBI values from noisy ECGs, the contribution of this paper can be highlighted as
follows.

1. An FC DenseNet based deep learning approach - derived from The One Hundred Layers Tiramisu model
[24] - which performs as a robust autoencoder to suppress the noise and makes the R-peaks of the noisy
ECG signal more notable. To the best of our knowledge, such a stacked tiramisu model is yet to be applied
on ECG with intense noise and IBI estimation as well.

2. Our proposed methodology is capable of reckoning IBI values from ECG with noise level up to -30dB with
a considerable error of 13 milliseconds (RMSE). Thus far, we have not identified other studies going beyond
-30dB without the inclusion of high frequency or Gaussian white noise which are easy to eliminate using
FIR filters.

As established by the tiramisu model in [24], our proposed approach does not require any sort of pre-processing
or post-processing algorithms or tools in contrast to many concurrent studies. However, a simple peak picking
algorithm has been used to facilitate the IBI calculation procedure.

The remaining of this paper is organized as follows. Related works are discussed in Section 2. The dataset
used in this work, noise signals, their characteristics, and noise addition protocols are discussed in Section 3,
development of the proposed method is explained in Section 4, results, detailed comparison with state of the art
work in Section 5, observations, drawbacks, and discussions are presented in Section 6. In the end, we conclude
with a brief conclusion in Section 7.

2 RELATED WORK

Research in the field of IBI estimation and ECG R-peak detection, which is a requirement for IBI estimation from
noisy ECG, is extensive. Researchers have used a plethora of signal processing tools and techniques for accurate
estimation of IBI in presence of motion artifacts. Mostly, they have focused on some publicly available ECG
datasets like MIT-BIH Arrhythmia database or IEEE SP Cup Dataset (2015).

Removing high frequency noise or Gaussian noise from ECG and then estimating IBI from it can be achieved
by applying straightforward moving average [39], low-pass, high-pass or band-pass FIR filters [2, 43], Empirical
Mode Decomposition (EMD) technique [26, 53], Pan-Tompkins peak detection [38], and wavelet transformation
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[51]. However, the challenge starts when we tend to do the same in presence of heavy motion artifacts. Again,
baseline wander and power line noise can be removed by using band-pass filter and notch filter. But, electrode
motion artifact noise - which is caused by skin stretching and alters the impedance of the skin around the
electrode - takes rigorous process to be encountered as its frequency spectrum (1 to 10 Hz) overlaps with that of
the PQRST complex of ECG waveform [27].

Rakhel et al. designed a study to evaluate the IBI signal qualities of a Holter device and a heart rate chest belt
monitor while the subjects were at rest and were performing 5 different levels of activities like sitting and reading,
doing household chores, walking, jogging, and training [16]. But there is no indication of the specific amount
of noise they dealt with. Shalini et al. used Slope Sum Function and Teager-Kaiser Energy operator method for
R-peak artifacts detection in cardiovascular and non-cardiovascular signals like Electroencephalogram (EEG),
Electrooculogram (EOG), and Electromyogram (EMG) [44]. However, they too didn’t mention the SNR level up
to which their algorithm works perfectly.

Sonia et al. discussed a new time delay estimation technique which is essentially derived from operational
calculus, differential algebra, and non commutative algebra and helps to estimate RR interval from noisy ECG
with SNR level up to 6dB with a considerable number of false peak detections [46]. Aygun et al. proposed a
technique to select the fiducial points from noisy ECG and PPG signal using shortest path algorithm which
takes the advantage of time-continuity of heartbeats [9]. With this, they accurately measured IBI up to -2dB
SNR level which they later used for determining HRV [8]. Here, the derivatives of the ECG or PPG signal are
calculated using Savitzky-Golay method to detect the possible fiducial points like R-peaks, systolic peaks, points
with maximum slope, and onset points. Since the signals are noisy, they ended up getting too many candidate
points and most of them were false fiducial points if not all. With all these points, a graph was generated for each
signal where the edges refer to IBIs, both true and false IBIs, and the vertices refer to morphological points, also
both true and false. From this graph, it was clear that the starting point of one heartbeat is the end point of the
last one and there is no disruption between them. Any candidate path that satisfies certain conditions derived
from average HR can be considered as a true IBI and the two associated nodes/vertices as true morphological
point for that specific signal. Next, each of the vertices were connected to some previous vertices which fell
within a specific time window. If the time difference between the reference vertex and any neighboring vertex
deviated the average IBI (which was calculated using average HR), the corresponding edge i.e. the ’time interval’
was assigned zero weight. Otherwise, a numerical weight was assigned to it where the weight varied according to
its difference with the average IBI. The intuition behind this weighting is the fact that the true IBIs should remain
close to the average IBI calculated from the average HR. The weights of the vertices were also derived from the
weights of corresponding edges. After all these weight distribution, the vertex with the minimum accumulated
weight, is the chosen true vertex inside the time window. This is indeed leveraging the shortest path algorithm
and enables detecting the IBIs that are closest to the average IBI. Finally, they combined all the shortest paths and
formed an array for each of the morphological features of each ECG and PPG signal. An overview of this process
is depicted in Figure 2. Although both [8] and [46] have employed novel mathematical tools for IBI estimation
without necessarily denoising the entire ECG signal, they haven’t been able to go far in terms of SNR level.

Many researchers have focused on R-peak detection from noisy ECG signals. As mentioned earlier, a robust
peak detection algorithm can also lead to accurate IBI estimation. In addition to applying a band-pass filter for
removing power line and baseline shifting noise, Pulavskyi et al. performed a two-stage smoothing using the
’boxcar’ and ’parzen’ kernel. This methodology allowed them to detect peaks with good precision and recall
values up to -15dB, however, there was presence of white and pink noise which decreased the relative weight of
electrode motion and muscle artifacts [40].

With advanced deep learning mechanisms, denoising tasks have gone further as they have been able to obtain
higher accuracy with minimal human supervision. To talk about a few deep learning based approaches, Ansari et
al. exploited a simple convolutional neural network (CNN) to differentiate between usable and unusable ECG
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Fig. 2. Overview of the work presented by Aygun et al. [8].

segments. The usable segments have higher probability of QRS detection. They carried out their research up to
0dB with some error [3]. Juho et al., on the other hand, utilized a bidirectional Long-Short Term Memory (LSTM)
network to suppress the noise up to 0.1dB and detect peaks from it [30]. A CNN encoder-decoder is used by
Natasa et al. to denoise the QRS complexes of the long term ECG signals acquired with their wearable armband
device and used them later to calculate HR [45]. They too were able to use the denoising process up to -17dB
with inclusion of white and brown noise, but no muscle artifact. Sricharan et al. modified the conventional U-Net
[48] algorithm for time-series data and used it along with distance transformation to determine the position
of the ECG R-peaks for noise level up to 0dB [56]. The peak detection task was framed as a regression task in
[56]. They obtained the Distance Transformation (DT) of all the ECG signals which disclose the distance of each
point on the ECG from its nearest peak. It results in a zig-zag wave where the lowest points refer to the R-peaks
of the corresponding ECG signal. The DT is of the same size as its input ECG. They have exploited the U-Net
architecture with conventional encoder-decoder where the encoder performs downsampling with 8 layers of
strided-convolutions, the decoder does upsampling in a similar way but in opposite direction. Both the encoder
and decoder perform 1D convolution and there is a bottleneck between them to hold the minimum representation.
Additionally, a residual inception block was placed at each layer which exploits skip connections to discard
vanishing gradient problem and ensure fast convergence. The architecture for this work is illustrated in Figure 3.
Likewise, Lishen et al. took advantage of U-Net and DR-Net to successfully perform a two-stage denoising
process [42]. Karol designed a generative adversarial network (GAN) based ECG synthesizer to generate a
synthesized ECG dataset. Later, noise was added to the artificial ECG, and a CNN autoencoder was trained using
this dataset to achieve an MSE of 0.017 (direct from the optimizer during training) [4]. Finally, Brosnan et al. [59]
demonstrated peak detection with a machine learning pipeline consisting of a Butterworth filter, two wavelet
convolutional neural networks (WaveletCNNs) autoencoders, an optional QRS complex inverter, a Monte Carlo
k-nearest neighbors (k-NN), and a convolutional long short-term memory (ConvLSTM) as shown in Figure 4.
The noisy one-channel ECG signal is fed into the Butterworth filter with a cut-off frequency set at 5Hz to
remove baseline shifting noise by attenuating the low-frequency components. Next, the output is decomposed
using symlet-4 wavelet to obtain the wavelet coefficients. These coefficients are then fed into a CNN autoencoder,
where the noisy unnecessary coefficients are rejected, but the significant parts are retained, producing clean
wavelet coefficients that are significant for further analysis. The CNN autoencoder that takes on the wavelet
coeflicients has a 2-layered encoder, a bottleneck, and a 2-layered decoder, with a Leaky-ReLU activation layer at
each hidden layer. A wavelet reconstruction is performed to get the coefficients back to the original form, i.e., a
single-channel ECG. After that, a difference filter is deployed prior to the next wavelet autoencoder to refine the
QRS complexes by suppressing the low-frequency components. The signal is then passed to the second wavelet
autoencoder, which has the same functionality as the previous one. Both of these wavelet autoencoders work as
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Butterworth Wavelet Difference Wavelet QRS | |
Filter CNN Filter CNN complex Monte Carlo
Single - [Autoencoder] - [Autoencoder] inverter KNN ConvLSTM]
Char?nel Removes 1 Works as 2 - -
ECG > Baseline > -- High-Pass > - Inverts Normalizes Detects
wandering Works as Filter Works as the the peaks
. ECG peaks
. Bandpass - Bandpass inverted
cut off = 5Hz Filter cut off = 1Hz Filter —| peaks [—

bandpass filters to remove unnecessary components. To deal with the inverted peaks, an inverter was placed
right after the second autoencoder, and it simply inverted the already inverted peaks. Then, the Monte Carlo
k-NN method was utilized to normalize the ECGs by scaling the beats to unit millivolt. Finally, the ConvLSTM
network was applied to detect the peak points, as it has pattern matching ability to detect specific characteristics
from a time-series signal. They used the MIT-BIH, the European ST-T, and the Long Term ST database Noise
Stress Test databases, going up to -6dB, and recorded some good results. However, all these deep learning-based
methods failed to leverage different deep learning algorithms’ power to improve the denoising accuracy or IBI

Fig. 4. The machine learning pipeline developed by Brosnan et al. [59].

estimation and explore intense noise scenarios.
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Table 1. List of used ECG recordings from different databases.

MIT-BIH Arrhythmia Database European ST-T Database IEEE SP Cup 2015
Train data Train data Train data
100 102 e0103 1
e0104 5
Test data Test data Test data
101 209 e0105 2
103 213 e0106 3
109 219 e0107 4
112 220 e0113 6
113 223 e0114 7
115 228 e0115 8
116 230 e0118 9
122 231 e0122 10
123 234 e0123 11
e0126 12
e0127
e0129

3 DATASETS

We have opted to use clean ECG recordings from publicly available databases like MIT-BIH Arrhythmia Database
v1.0.0 [17, 35], European ST-T Database from PhysioNet [52], and IEEE Signal Processing Cup 2015 [60].

The sampling frequency of the MIT-BIH Arrhythmia Database is 360 Hz, i.e., 1 sample in every 2.78 ms. For
ease of calculation and noise addition, we upsampled both the European ST-T Database and the IEEE SP Cup
2015 dataset from 250 Hz and 125 Hz to 360 Hz, respectively.

Next, we added electrode motion (EM) noise, motion artifact (MA) noise, and baseline wandering (BW) noise
from the MIT-BIH Noise Stress Test (NST) Database v1.0.0 [36] and generated noisy data for different SNR levels,
starting from 36dB to -36dB with a decrement of 6dB. Therefore, for each clean ECG signal, we generated 13
variants with different SNR levels. Needless to mention, noise was added to the signals thoroughly instead of
adding them between consecutive rest periods. Noise addition was carried out following the standard approach
[42] in the NST Database:

ECGnoisy = ECGdean + [a1] x EM + [612] * MA + [a3] * BW

Where ECGyey, refers to the clean ECG signal and ay, a,, a3 gain values are adjusted according to the expected
SNR value. Since we are more interested in estimating IBI values from a signal totally buried under muscle artifact
and electrode motion, these two noises have been assigned higher weights, meaning a, > a; > as. The noise
recordings were produced with physically active volunteers and captured with conventional ECG recorders,
leads, and electrodes; the electrodes were positioned on individuals’ limbs in areas where the ECGs could not
intervene. The noise signals were recorded for half an hour, and the volunteers were in light motion during the
collection phase. Thus, they are not synthetic but real.

In this work, we used the first 409600 data points of each ECG signal since the noise signals have limited data
points. Figure 5 shows a clean segment of ECG data from the MIT-BIH Arrhythmia database (recording # 101)
and its corresponding noisy variants starting from 6dB to -36dB. As the noise increases, specifically after 0 dB,
the R-peaks become heavily buried in noise, and detecting them with conventional signal processing techniques
would be very inaccurate and challenging, if even possible. These artifacts enforce redundant tests, additional
costs, and sometimes require specialists’ intervention. Table 1 lists the recordings from different datasets used
for training and testing. The training set was selected at random. However, distorted signals and ECGs with
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Fig. 5. A clean ECG segment and its noisy variants. EM, MA, BW noises have been added to clean signals and the numbers on
the left of each box refer to corresponding SNR values. IBls estimated from raw and noisy ECG signal are highly inaccurate
compared to the true IBls.

missing peaks were not included in the training of the model. Usually, autoencoder-type models require very
small training data [56], and our case is no different.

4 PROPOSED METHODOLOGY

Our working principle starts with a fully convolutional-dense deep neural network (tiramisu model) [24]. Noisy
signals are fed to this model which has multiple convolution and pooling layers intuitively responsible for
compressing the signal to a smaller representation, eliminating the noise, retaining the most patterned and
prominent features, and making the peaks more visible. Later, we identify the peaks with a simple peak picking
algorithm and then calculate IBI values from there. The overall procedure of this work is illustrated in Figure 6.

4.1 Tiramisu Model

Calculating IBI values from noisy ECG readings is challenging. As a potential solution, transformers/autoencoders
are well-known architectures used for minimizing the difference between the input and output, such as denoising.
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Fig. 6. An overview of the proposed IBI estimation framework.

This means that the objective function of any such architecture is focused on producing results (%) similar to the
input (x) i.e.
min |x — X| (1)

Hence, we designed a robust tiramisu model - a member of the autoenoder family - which consists of stacked
dense blocks (DB) and numerous feedback loops. High number of dense blocks and feedback loops eliminate
the requirement of pre-processing as the model itself is capable of removing high frequency or Gaussian white
noise. While the convolution and pooling layers perform the job of squeezing out the noise, the skip connections
between layers allow the output of each dense block and up convolution to encode finer details from actual
signal and later layers, solve the gradient vanishing problem, and provide improved results than without them. In
contrast to the standard U-Net architecture, the dense blocks in the tiramisu model have skip connections within
themselves which eliminate the possibility of gradient vanishing within the contraction path.

The overall architecture of the proposed model is illustrated in Figure 7. As depicted, the model incorporates a
contraction path, a bottleneck, an expanding path, and certain skip connections. The skip connections here help
the expanding path (or upsampling path) to get back information from the contraction path, reuse them and
thus abolish gradient vanishing. The main theme of this model is to take advantage of feature reuse and take the
already complicated DenseNet a step ahead.

The contraction path (or downsampling path) starts with a convolution with kernel size = 3. Then comes
a series of consecutive dense blocks and transition down (TD) blocks. Prior to the bottleneck, 3 dense blocks
have been placed on the contraction path with each having 4, 5, and 7 layers respectively. Right after each dense
block, a TD block has been attached. Note that, the TD blocks perform the pooling operation and cause some
information loss and resolution reduction along the downsampling path. In between, there are concatenation
blocks to create feedback loops from previous layers.

The expanding path is almost a mirror symmetry of the contraction path except it has lesser feedback loops
and the TD blocks are replaced by transition up (TU) blocks along the path. These TU blocks does transposed
convolution operation and upsample the previous mappings. The upsampled mappings are then concatenated
to the mappings coming from the downsampling path via skip connections and form a new input for the next
dense blocks along expanding path. The last dense block in this trajectory sums up the information from all the
previous dense blocks. Unlike the contraction path, we do not concatenate the input of a dense block with its
output since it does not make any significant difference. The final convolution in this path is done with window
size = 3. The dense block that lies between these two paths is the bottleneck.

The dense blocks in the model have different number of layers which perform one dimensional convolution with
kernel size = 3, ReLU activation function, Batch Normalization, and drop out value of 0.2. The batch normalization
function is given by-

BN(x) = =5 @

where, p, is the mean and o, is the standard deviation of input matrix x.
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Fig. 7. Big picture view of the proposed model. It consists of a contraction and an expanding path. Both paths have several
convolution blocks, dense blocks, transition downs, transition ups, concatenations and skip connections. The dense block
between these two paths is the bottleneck.

The TD layers also use one dimensional convolution with kernel size = 1, ReLU activation, Batch Normalization,
drop out value of 0.2 and Max Pooling with pool size = 2. However, the TU layers execute transposed convolution
with kernel size = 3 and stride = 2.

We have employed tanh activation on the final output layer to ensure that the output is between [-1 1] and to
gain non-linearity for better advantage during derivative calculation. The tanh function can be written as-

ex _ e—x
t anh(x ) = m (3)

As mentioned earlier, 3 dense blocks have been employed on either path with each block having 4, 5, and 7
layers respectively. Also, the architecture has 3 TUs or TDs and 1 input or output block on either side. Since
each layer has one convolution layer, each TU or TD also perform one convolution and each input/output block
has one convolution layer, There are a total of 40 convolution layers in the contraction and expanding paths
combined. Additionally, the bottle neck dense block has 10 layers i.e. 10 convolution layers. Summing up, a total
of 50 convolutions are done in this entire model. All the convolutions (except last one) are equipped with ReLU
activation, L2 regularization with factor of 0.01 and zero padding for redeeming the initial shape. Finally, Adam
optimizer with a default learning rate of 0.001 has been used followed by a mean square error (MSE) based loss
function-

1

N2 W) @)

™M=z

MSE =

Il
—
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Table 2. Tiramisu model architecture and contents of layer, TD and TU blocks.

Full tiramisu model
architecture
Layer block Transition Down Transition Up
Input (TD) block (TU) block
Convolution: kernel size = 3
DB (4 layers) + TD Batch Normalization Batch Normalization Trans. convolution:
DB (5 layers) + TD kernel size = 3
DB (7 layers) + TD ReLU activation ReLU activation 12 regularizer (0.01)
Bottleneck: DB (10 layers) 12 regularizer (0.01) 12 regularizer (0.01) stride = 2
DB (7 layers) + TU Convolution: kernel || Convolution: kernel
DB (5 layers) + TU size = 3 size = 1
DB (4 layers) + TU Dropout p = 0.2 Dropout p = 0.2
Convolution: kernel size = 3 Max Pooling: size = 2
tanh activation
Output

where, y; and yf refer to actual target values from ground truth sequences (noise free ECG) and predicted
values from recovered sequences respectively and N is the number of data points.

The model have been trained for one hundred iterations without any early stopping criteria while a batch size
of 16 have been maintained throughout the entire experiment. 80/20 ratio has been chosen for train/validation
split.

Table 2 shows the full architecture of our tiramisu model and the constituents of layer, TD, and TU blocks.

4.2 Peak Detection

Although numerous peak picking algorithms can be found in the literature [23], our choice is a generalized
algorithm [25]. Usually, resting HR varies from 60-100 bpm [7]. But for athletes, it could be as low as 40 bpm
during rest periods and as high as 200 bpm during work out sessions [12]. Our sampling frequency is 360 Hz. It
ensures that there must be at least one beat in every 108 to 540 data points. Therefore, we have used an algorithm
that takes on a given signal and finds out all the local maxima which must be at least 108 data points apart from
each other. In this way, we may end up getting some false peaks because, when the noise is intense and a motion
artifact-induced peak is higher than its neighboring R-peak, the tiramisu model fails to detect the R-peak and
removes it while the motion artifact remains. Subsequently, the peak detection algorithm detects this motion
artifact as an R-peak causing some error.

4.3 IBI Calculation

Under any circumstance, to estimate IBI precisely, the position of the beats/peaks need to be detected accurately.
After denoising the signal using the proposed AE-based model and detecting the R-peaks, in this step, the IBI
value using the identified R-peaks can be extracted with Equation 5.

IBl; = t; — t; (5)

where, t; is the occurrence time of the i R-peak and IBI is extracted for all peaks in an ECG signal.
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Fig. 8. Clean ECG: An ECG segment from MIT-BIH Arrhythmia Database (recording # 234). Noisy ECG: Muscle artifact,
baseline wander and electrode motion noise have been added to the clean signal. Resulting SNR of the ECG is -30dB. Model
output: The noisy ECG is fed to the tiramisu model and the output has the R-peaks more prominent. Peak Detection: Peak
detection algorithm has been applied to the output. IBI Comparison: |1Bl values estimated from the prominent peaks and
compared against the ground truth IBI values. The RMSE of IBI values in this case is only 3.44 ms.

5 RESULTS

In this study, the aim is to make the R-peaks of noisy ECG more prominent to estimate IBI from it as accurately as
possible. We evaluate the performance of our approach by testing it on different levels of noisy ECG, which have
been generated by adding certain level of noise, explained in Section 3. In this section, we define our evaluation
metrics and measure the performance of our model in terms of estimated IBI values extracted from ECGs with
different SNR levels. Lastly, we will compare our approach against a few state-of-the-art methods designed for
IBI calculation and/or peak detection from noisy ECG.

For further explanation we refer to Figure 8. The clean ECG in this figure is the first 40960 data points of
recording 234 from MIT-BIH Arrhythmia Database. Three different noises have been added to the clean ECG to
get a noisy signal of -30dB SNR. -30dB refers to a very high amount of noise and implies that the power of noise
is 10° times that of actual signal. Without any pre-processing, this noisy ECG is then fed to the tiramisu model to
make the R-peaks more visible. Next, our peak detection algorithm has been applied to the output of the model.
We estimated IBI values from the beats and in the final box, we have compared our IBI values with that of the
ground truth and recorded an RMSE of 3.44 ms.

Prior studies in the field of ECG denoising and beat detection exercised SNR;y,, Sensitivity or F; score to
evaluate their performance regarding detecting correct peaks. However, herein, we are interested in estimating
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Fig. 9. Bland-Altman plot with LOAs are depicted in Figs. 9a to 9d for different recordings. Also, correlation plot for same
recordings are shown with Pearson correlation coefficient in Figs. 9e to 9h. For some ECGs, the proposed method achieves r
values like 0.9895 though nominal values like 0.9 also exist.
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Fig. 10. Bland-Altman plot for IBI estimation on recording # 230 using methods of Brosnan et al., Sricharan et al., and Aycya
et al. are depicted in Figs. 10a to 10c respectively. Corresponding correlation plots are also shown along with correlation

coefficients in Figs. 10d to 10f.
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IBI from noisy signals. Therefore, we selected our performance metrics based on that objective and leveraged
RMSE and % error of IBI for performance evaluation. We define those metrics as follows-

* (P —0;)?
RMSE; = Z’-l(+ (6)
1< 10 - P
%error = — Z —o X 100% (7)

i=1 !

where, P; refers to predicted IBI, O; denotes observed IBI (groundtruth), and n indicates number of IBIs in one
segment of ECG. As shown in Figure 8, the denoising algorithm performs very good at exposing the R-peaks.
On top of that, the peak picking algorithm has also performed well to detect the exposed peaks. The peak
picking algorithm has found extra peaks (false peaks) in the recovered signals from -30dB SNR on extremely rare
occasions, with an approximate average ratio of 120:1. Given the fact that these false peaks are in between true
peaks and incur very small error in IBI estimation, their presence is simply ignored in evaluation.

The Bland-Altman plots in Figs. 9a to 9d show comparison of the IBIs estimated from noisy ECGs of SNR -30dB
against their true IBIs. The ECGs considered in these plots are recordings # 230, 220, 115 and 213. The limits of
agreements (LOAs) - which work as boundary for 95% of data and a good measurement of accuracy - are located
at [49.92, -50.85] ms, [73.74, -72.44] ms, [20.14, -20.29] ms, and [33.89, -33.52] ms respectively. Also, the Pearson
correlation plots are illustrated in figs. 9e to 9h for the same set of recordings. The high correlation coefficients
(r) - 0.96, 0.93, 0.99, and 0.9 - emphasize that the estimated IBIs are very coherent to the true IBIs.

RMSE (ms)
&

=
=

wn
L

0 ﬁ =S Y N S G U S S N
3 30 2 18 2 : 5 : ) = " » %
SNR level (dB)

Fig. 11. Box and whisker plot for different SNR levels of test data of MIT-BIH Arrhythmia Database. On the x-axis we
have SNR values starting from 36dB up to -36dB and on y-axis RMSE (ms) values are listed. The RMSEs are calculated by
comparing the estimated IBls with the true ones. Circular dots with low opacity are different RMSE values. The horizontal
edges of colored boxes mark the interquartile range (IQR) (Q;-Q3) and contain 50% data whereas the black horizontal lines
inside each box mark the median value. The vertical whiskers hold other 50% of the data and black horizontal lines mark the
minimum and maximum. ¢ symbols are the outliers.
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In comparison, similar plots are also shown in figs. 10a to 10c and figs. 10d to 10f highlighting the performance
of Brosnan et al., Sricharan et al., and Aygun et al. respectively on recording # 230. The LOAs are at [90.25, -94.40]
ms, [88.87, -88.38] ms, and [129.829, -134.76] ms respectively. Thus, our method is ensuring [40.33, -43.55] ms,
[38.95, -37.53] ms, and [79.91, -83.91] ms of improvements respectively. As stated in corresponding papers, these
methods also perform well under low noise situations. Correlation coefficients (r) for these methods on this
specific recording are 0.88, 0.87, and 0.79 respectively whereas our approach obtains 0.96 correlation for the same
setting. For other recordings of same dataset, none of these 3 methods achieve correlation above 0.9 at an SNR
value of -30dB. Performance of all methods (including ours) decline for recordings of IEEE SP Cup 2015 and
European ST-T Database and the rationale has been clearly explained in Section 6.

The accuracy of the proposed methodology can also be inferred from the box and whisker plot depicted in
Figure 11. The IBI values have been estimated for all 13 noisy variants of the test ECGs in MIT-BIH Arrhythmia
Database listed in Table 1 and compared with that of the clean versions. Notice that, we hardly get any error for
SNR values up to -12dB and the estimated IBI values are consistent and nearly as good as the true IBIs. However,
starting from -18dB, we encounter some amount of error and above -30dB the noise becomes very intense as well
as the RMSE. The median value at -30dB is 7.792 ms.

Plots of true IBIs, IBIs estimated with our approach and that of Brosnan et al. (both at -30dB) are pictured in
Figure 12. Some other methods have not been included with a view to keeping the plots clean to understand. IBls
estimated with our approach are not that much different from the true one following the trend in a cogent way.

—— True IBI
1400 —— our approach

—— Brosnan et al.

1200

1000

IBI value (ms)

0
=3
o

-]
o
o

40%.0 0.5 1.0 1.5 2.0 2.5 3.0
time (min)
Fig. 12. Comparison of IBI plot with true IBIs and estimated IBls obtained by Brosnan et al.. For higher resolution, only first
3 minutes have been plotted.

Lastly, we preform comparative analysis of 3 state-of-ther-art and our proposed method on MIT-BIH Arrhythmia
Database v1.0.0, European ST-T Database, and IEEE Signal Processing Cup 2015 in Tables 3a to 3c (the details of
these methods are described in Section 2). Once more, the performance metrics are average RMSE and average %
error and noise has been added to all the signals from each dataset. In these tables we have considered SNR levels
starting from 0dB to -30dB since performance of all methods on higher quality signals are almost flawless. The
weighted average of RMSE is 13.514 ms and % error is 7.97% for the proposed method whereas they are 31.467 ms
(17.953 ms higher than us) and 17.384% (9.414% higher) for Brosnan et al., 45.439 ms (31.925 ms higher) and 23.72%
(15.75% higher) for Sricharan et al., 49.739 ms (36.225 ms higher) and 20.349% (12.379% higher) for Aygun et al..

6 DISCUSSION

While analyzing the proposed method’s performance, we have come across some of the observations, facts, and
limitations which are worth mentioning-
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0dB -6dB -12dB -18dB -24dB -30dB
Brosnan et al.[59] 1.69 ms 6.86 ms 15.41 ms 21.22 ms 28.73 ms 31.44 ms
2.38% 6.97% 9.06% 12.74% 14.34% 17.24%
Sricharan et al.[56] 2.64 ms 8.61 ms 12.02 ms 20.05 ms 49.78 ms 54.33 ms
1.54% 3.79% 9.87% 18.71% 20.97% 22.41%
Aygun et al.[8] 5.08 ms 8.41 ms 17.24 ms 32.47 ms 42.32 ms 55.72 ms
3.54% 5.88% 8.77% 14.27% 17.31% 21.83%
Proposed Method 0.08 ms 0.17 ms 0.68 ms 1.09 ms 4.72 ms 8.39 ms
0.01% 0.08% 0.28% 0.95% 4.23% 6.34%
(a) MIT-BIH Arrhythmia Database
0dB -6dB -12dB -18dB -24dB -30dB
Brosnan et al.[59] 1.02 ms 3.27 ms 12.57 ms 23.29 ms 25.13 ms 30.53 ms
1.87% 1.51% 2.59% 9.61% 15.02% 18.72%
Sricharan et al.[56] 2.21 ms 7.07 ms 13.74 ms 19.69 ms 27.92 ms 37.81 ms
1.21% 3.17% 11.51% 17.94% 21.38% 27.33%
Aygun et al[8] 5.32 ms 7.95 ms 15.33 ms 33.41 ms 37.97 ms 47.86 ms
3.21% 5.12% 7.91% 12.02% 18.32% 19.27%
2.27 ms 3.85 ms 4.09 ms 5.76 ms 7.98 ms 10.52 ms
Proposed Method ¢ o0 1.59% 1.77% 2.31% 3.87% 7.71%
(b) European ST-T Database
0dB -6dB -12dB -18dB -24dB -30dB
Brosnan et al.[59] 2.35 ms 8.41 ms 15.14 ms 18.73 ms 21.61 ms 32.64 ms
2.17% 4.47% 7.37% 9.22% 13.36% 16.04%
Sricharan et al.[56] 4.97 ms 8.82 ms 11.46 ms 25.41 ms 32.63 ms 38.59 ms
1.73% 3.59% 7.15% 15.81% 17.23% 21.75%
Aygun et al[8] 6.21 ms 6.91 ms 17.13 ms 31.04 ms 35.31 ms 41.23 ms
3.64% 4.09% 7.42% 11.90% 18.47% 18.98%
Proposed Method 5.14 ms 7.11 ms 12.16 ms 11.91 ms 17.84 ms 26.33 ms
3.63% 4.22% 7.96% 8.05% 8.79% 11.23%

(c) IEEE Signal Processing Cup 2015

Table 3. Comparison of different methods on 3 dataset. For any method, the upper value refers to avg. RMSE and the lower
value refers to avg. % error. Performance have been measured on signals listed in Table 1 only.

The proposed algorithm can make the peaks more visible, detect them from intense noisy signals and estimate
the IBI values from it. However, it cannot redeem or rescue the typical shape of an ECG i.e. the PQRST wave. It
can only recover the R-peaks.

Additionally, the IEEE SP Cup 2015 data already contains some motion artifacts, and we are adding additional
noise to it. Therefore, the unexpected performance on this dataset is quite reasonable. Therefore, the subpar
performance on this dataset is quite reasonable.

The performance of the proposed algorithm on the European ST-T Database and IEEE Signal Processing Cup
2015 is lower than on the MIT-BIH Arrhythmia Database, likely due to the need for upsampling the latter.

Some of the signals are not clean enough; they are missing peaks, distorted, and have some innate noise. These
are beyond the scope of fixing with any sort of pre-processing, and we have had to omit such signals from the
database entirely. Such a distorted signal segment is presented in Figure 13.
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Fig. 13. A distorted ECG with missing peaks.
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Fig. 14. An ECG with inconsistent peak size. Signals like this have been omitted in both training and testing phases since
they decrease the performance.

Some of the signals have inconsistent peak sizes, like the one in Figure 14. This becomes a notable hindrance.
The SNR levels are set according to the power of the ECG and power of noise. Now, in an ECG with inconsistent
peak size, the consistent peaks play dominant role to set the power of ECG signal and the noise power is set
accordingly. In such a case, the noise peaks adjacent to the inconsistent peaks become much higher and the
tiramisu model fails to differentiate between the actual ECG peak and the noise. Consequently, it suppresses the
actual peak and retains the noisy peak leading to higher error in IBI estimation.

Signals with SNR levels beyond -30dB have extremely intense noise that cannot be suppressed effectively. As a
result, the detected peaks are not perfect, leading to significant errors in IBI estimation. Therefore, we claim, our
method is good for estimation up to -30dB.

7 CONCLUSION

This paper presents and analyzes a novel method based on a stacked tiramisu model for extracting IBI from ECG
signals submerged in motion artifacts. This method can be easily used for denoising purpose and can compete
with traditional concurrent techniques. The model suppresses the noise and later, most prominent feature of
ECG i.e. position of R-peaks, has been leveraged to estimate the IBIs. Also, this approach does not require any
pre-processing or post-processing method which saves some of the complexities. Results show the efficiency of
the proposed model and the estimated IBIs are highly correlated to that of the true IBIs even at -30dB SNR value.
The weighted average RMSE for IBI estimation is 13.514 ms. Although the size of the model is massive, with
tensorflowlite, it can also be optimized for embedded system applications. Our approach is generalizable, and
with some slight changes, it can be adapted for denoising other physiological signals as well.
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