IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 72, 2024

2421

Adaptive Binning Coincidence Test for
Uniformity Testing

Sudeep Salgia®, Xinyi Wang ©, Qing Zhao ©, Fellow, IEEE, and Lang Tong ©, Fellow, IEEE

Abstract—We consider the problem of uniformity testing of
Lipschitz continuous distributions with bounded support. The
alternative hypothesis is a composite set of Lipschitz continuous
distributions whose £; distances from the uniform distribution
are bounded by £ from below. We propose a sequential test
that adapts to the unknown distribution under the alternative
hypothesis. Referred to as the Adaptive Binning Coincidence
(ABC) test, the proposed strategy adapts in two ways. First, it
partitions the set of alternative distributions into layers based on
their distances to the uniform distribution. It then sequentially
eliminates the alternative distributions layer by layer in decreas-
ing distance to the uniform, allowing it to take advantage of
favorable situations of a distant alternative by terminating early.
Second, it adapts, across layers of the alternative distributions,
the resolution level of the discretization for computing the
coincidence statistic. The farther away the layer is from the
uniform, the coarser the discretization necessary for eliminating
this layer or terminating altogether. It thus terminates the test
both early (via the layered partition of the alternative set)
and quickly (via adaptive discretization) to take advantage of
favorable alternative distributions. The ABC test builds on an
adaptive sequential test for discrete distributions, which is of
independent interest.

Index Terms—Uniformity testing, adaptivity, coincidence test.

1. INTRODUCTION

ONSIDER the following composite hypothesis testing
problem: Given samples of a random variable with density
function f, we aim to determine whether f is the uniform
distribution u over [0, 1] (the null hypothesis) or f is at least
¢ distance away (in #;) from the uniform distribution. The
objective is to minimize the sample complexity subject to the
constraint of both the Type I and Type II errors being capped
below a prescribed value 6 € (0,1).
It turns out that without imposing structural constraints on
the set of alternative distributions, the above hypothesis testing
problem is not testable: no algorithm can achieve diminishing
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error probability as the number of samples increases [1], [2].
One class of distributions that are testable is the class of mono-
tone distributions [2], [3], for which it has been shown that the
sample complexity is of the order O(1/z2). General conditions
on testability remain unknown, and uniformity testing of con-
tinuous distributions has not been well explored.

In contrast, there is an extensive literature on uniformity test-
ing of discrete distributions with a support size m. The problem
dates back to the so-called empty-box problem first posed by
David in [4] and later generalized by Viktorova and Chistyakov
in [5]. David cast the problem as throwing balls in m boxes
and proposed to use the number of empty boxes or the number
of boxes containing exactly one ball (a.k.a the coincidence
number) as test statistics for uniformity testing!. More in-depth
studies of using the coincidence test statistic (i.e., the number of
letters in the distribution alphabet that see exactly one sample)
for uniformity testing were given by Paninski in [6] and Huang
and Meyn [7]. Specifically, Paninski showed that the sample
complexity of the coincidence test is of O( /m/c2) under the
condition that £ = (rn—'/4). Paninski also established that the
sample complexity of the coincidence test is order optimal by
providing a matching lower bound. Other test statistics used for
uniformity testing include empirical ¢ distance [8], [9], [10],
[11], empirical #; distance [12], and modified x 2-statistic [13].

Most existing algorithms for uniformity testing are batch
algorithms in the sense that all samples are collected prior to
performing the test, which makes it necessary to focus on the
most challenging alternative distributions (i.e., those that are at
the minimum distance £ away from the uniform). While such
approaches are sufficient to obtain minimax-optimal sample
complexity, they result in significantly suboptimal sample com-
plexity for almost all instances in the class of alternate distri-
butions. Such suboptimality may have significant implications
in practice. Consider, for example, the application of anomaly
detection in critical infrastructure such as the power grid (see
Sec. IV for an experimental study using real datasets collected
from a power system). In such cases, the null hypothesis cor-
responds to a known, nominal distribution? and it is safe for

!'The work by [4] considered the problem of testing whether samples are
drawn i.i.d. from a known continuous distribution. The problem was reduced
to a discrete problem by quantizing samples into m bins without discussing
the choice of m. The heuristic approaches proposed by the author are for
solving the discrete problem.

2In most applications, the probabilistic model of the normal state is known,
which can be transformed to a uniform distribution. Anomaly detection can
then be cast as uniformity testing.
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the system to operate within a prescribed distance from this
nominal distribution. The alternative hypothesis corresponds to
anomalous operational conditions that have exceeded the pre-
scribed level of deviation. For such applications, it is crucial to
detect quickly those severe anomalies far away from the normal
state, as more severe anomalies often carry more risk and may
lead to cascading failure. It is thus highly desirable to have a test
that adapts to the underlying alternative distributions and reacts
faster to more severe anomalous conditions. This motivates the
sequential and adaptive tests developed in this work.

A. Main Results

We consider uniformity testing of Lipschitz continuous (den-
sity) distributions, which is arguably more general than the class
of monotone distributions studied in [2] and [3]. Another theme
that separates this work from existing literature is the sequential
aspect of the proposed tests that adapt to the underlying alter-
native distribution.

Referred to as the Adaptive Binning Coincidence (ABC)
test, the proposed strategy adapts to the unknown alternative
distribution in two ways. First, it partitions the set of alternative
distributions into layers based on their distances to the uniform
distribution. It then sequentially eliminates the alternative dis-
tributions layer by layer in decreasing distance to the uniform,
and subsequently takes advantage of favorable situations of a
distant alternative by exiting early. Second, it adapts, across
layers of the alternative distributions, the resolution level of
the discretization for computing the coincidence statistic. The
farther away the layer is from the uniform, the coarser the
discretization is needed for eliminating/exiting this layer. It thus
exits both early in the detection process and quickly by using
a lower resolution to take advantage of favorable alternative
distributions. We establish the sample complexity of the ABC
test, which characterizes its adaptivity.

The ABC test builds on an adaptive sequential coincidence
test for discrete distributions, which is of independent interest.
Due to the adaptivity, this sequential test improves the sample
complexity under the alternative hypothesis from O(y/m/s?)
of Paninski’s batch algorithm to O(y~2,/mlog(1/7)). where
v is the distance of the underlying alternative distribution to
the uniform and is greater than the minimum distance . This
demonstrates that the sequential coincidence test adapts to the
realized distance ~ in an optimal order (up to a logarithmic
factor) in terms of sample complexity.

B. Related Work

The problem of estimating and testing properties of an un-
known distribution has an extensive literature (see an excellent
survey in [14]). The problem of uniformity testing is among the
most widely studied problems among this class. As discussed
earlier, most existing work focuses on discrete distributions and
batch algorithms (see [6], [7], [13]). A notable exception to
these batch-based strategies is work by Batu and Canonne in
[15]. The test developed in [15] uses 2-way and 3-way collisions
among the set of samples as test statistics, which in expectation
correspond to the ¢ and f3 norms of the distribution. The
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sample complexity of this algorithm, while having a distribution
dependent term of /3 norm of the distribution, maintains a term
determined by the worst distance to the alternative set, . In
other words, the adaptivity to the underlying hypothesis is only
partial, and the second term in terms of the worst distance
£ may dominate. The test strategies proposed here, however,
are fully adaptive as their sample complexities depend only on
the /; distance of the underlying distribution p to the uniform
distribution, with no dependence on <. In a work concurrent to
the first posting of this work [16], Fawzi et al. [17] also pro-
posed a sequential extension of the batch-based algorithm for
testing closeness of distributions. Their results also establish the
benefit of adaptivity obtained by sequential testing as opposed
to the batch based approach. However, their work is limited to
testing closeness of discrete distributions while our focus is on
continuous distributions.

The literature on uniformity testing of continuous distribu-
tions is slim. As mentioned previously, it is necessary to impose
a certain structure on the class of distributions being considered
in order to ensure feasibility of the problem. For the case when
the underlying distribution is monotone, Adamaszek et al. [2]
and Acharya et al. [3] have proposed algorithms that offer
optimal sample complexities using sample mean and modified
2 test as test statistics respectively. Diakonikolas et al. [18] also
studied identity testing of a distribution under various structural
assumptions. Ba et al. [19] approach the problem of closeness
testing through the estimation of the Earth Mover distance. In
[20], Ingster studied uniformity testing against an alternative
class of smooth densities, which includes the Lipschitz contin-
uous distributions studied here. The key differences are that the
algorithm in [20] uses the x?2 test statistic and does not offer
adaptivity to the underlying distribution. The focus of this work
is to develop fully adaptive test strategies employing the much
simpler test statistic of coincidence number.

II. UNIFORMITY TESTING OF DISCRETE DISTRIBUTIONS

In this section, we consider uniformity testing of discrete
distributions and develop a sequential test employing the coin-
cidence statistic. The results obtained for the discrete problem
form the foundation for tackling the continuous problem in the
next section.

The key property of this sequential coincidence test (SCT)
is that it adapts to the unknown alternative distribution in the
composite set. More specifically, the sample complexity of SCT
under the alternative hypothesis scales optimally with respect
to the distance -~ of the realized alternative distribution to the
uniform. This is in sharp contrast to batch algorithms whose
sample complexity is determined by the worst-case alternative
distribution seeing the minimum distance ¢ to the uniform.

A. Problem Formulation

Consider a binary hypothesis testing problem where the null
hypothesis Hj is the uniform distribution u with a support size
of m. Without loss of generality, we assume that the support
setis {1,2,...,m} denoted by [m]. The alternative hypothesis
H; is composite: it consists of all distributions over [m] whose
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£, distance to u is no smaller than £. More specifically, let C(z)
denote the composite set of alternative distributions under H,
we have

C(e) ={g€P(Im]): llg — ull >},

where P([m]) denotes the set of all probability distributions
over [m], |lg —ully =Y, |g; — 1/m| is the ¢, distance be-
tween distribution ¢ and the uniform distribution w.

For the hypothesis testing problems, i.i.d. samples are drawn
from either u (if Hy is true) or a specific distribution in C(g)
(if H; is true), unknown to the decision maker. The goal is to
determine, based on the random samples, which hypothesis is
true. The probabilities of false alarm and miss detection need
to be capped below a given § (6 € (0,1)) for all alternative
distributions in C(¢).

B. Sequential Coincidence Test

Existing work on uniformity testing all focuses on batch
methods (a.k.a. the fixed-sample-size tests). Specifically, based
on the reliability constraint 4 and the minimum separation &
between Hyp and H,, the number of required samples is pre-
determined to ensure d-reliability in the worst case of a closest
(i.e., distance ¢) alternative.

We propose a sequential test SCT that adapts to the unknown
alternative. When the alternative is at a distance greater than
e from u, the sequential test takes advantage of the favorable
situation and exits towards H; with fewer samples. In partic-
ular, the sample complexity of SCT scales optimally with the
realized distance ~ rather than the minimum distance =.

SCT employs the coincidence statistic. For a given set of
samples S, the coincidence K;(S) is the number of symbols
in [m] that appear exactly once in S. Specifically, let n; denote
the number of appearances of symbol j in S. Then

Ki(8)=Y 1{n;=1},

=1

where 1{-} is the indicator function. Let K;(n) denote the
coincidence number of n ii.d. samples drawn from a given
distribution p. It is a random variable whose distribution is
determined by n and p. We then introduce the constant ¢, (n),
which is the expected value of K;(n) under the uniform
distribution:

cu(n) = Eu[K1(S)),

The intuition behind the coincidence test statistic is as follows.
Since all the symbols are equally likely under the uniform
distribution, a set of n i.i.d. samples from a uniform distribution
results in fewer repetitions of the observed symbols resulting in
alarger value of K (n). On the other hand, for a distribution far
away from the uniform distribution, some symbols have higher
probability than others resulting in multiple observations of
such symbols and smaller values of K (n). Thus, by comparing
the value of K;(n) to a carefully designed threshold, one can
distinguish the uniform distribution from a distribution in the
alternative set.

where |S| =n, S "% u.
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Algorithm 1 Sequential Coincidence Test (SCT)

Input: m.e, 6 €(0,1)
Setk<+ 1,t+0,k=112"2,8={}
while £ <k do

e [i/mIog T 279

e o g 1B 2/5)
m

repeat
Obtain a sample X,
S+SuUX;
t+—t+1
until t ==n;
if Zp = cu(nk] = Kl(cS) > 71 then
Output < H;
break
end if
E+—EkE+1
end while
if £ > k then
Output < Hyp
end if
return Output

SCT proceeds in epochs. In each epoch the test takes O (,/m)
additional samples. At the end of each epoch, based on all
the samples S collected so far, the algorithm decides whether
there is sufficient evidence to exit towards H;. This decision is
made by comparing the difference between K1 (S) and ¢, (|S])
to a carefully chosen threshold. If the difference exceeds the
threshold (indicating a sufficient separation between the coin-
cidence number of the samples S and the expected coincidence
number of the uniform), the algorithm terminates and declares
H;. Otherwise, the algorithm enters the next epoch. In the
event that the process reaches the maximum number ©(c~2)
of epochs without exiting towards H;, the algorithm terminates
and declares Hp. A pseudo code for the algorithm is given
in Algorithm 1.

The sequential detection process of SCT can be visualized
as peeling an onion: the core of the onion is the uniform dis-
tribution and its s-neighbors; the layers represent alternative
distributions at increasing distance to the uniform distribution’.
Each epoch peels one layer of the onion, either by exiting
towards H; (if the realized alternative distribution resides in
this layer) or by eliminating this set of alternative distributions
and moving to the next layer closer to the core. If all outer
layers are eliminated (i.e., all alternative distributions in C(g)
are eliminated), SCT terminates and declares Hy. The ability of
peeling the onion layer by layer is rooted in the fact that when
the samples S are drawn from a distribution ~-distance away
from u, the difference in coincidence numbers ¢, (nx) — K1(S)

3The epoch structure of SCT effectively quantizes the distance to u,
hence forming a finite partition of the alternative distributions in Cés).
More specifically, C(<) is partitioned into k layers, where K = 1127 “ is
the maximum epoch number defined in Algorithm 1. Each epoch peels off
one layer.
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scales proportionally with +2. This difference hence exceeds
the threshold early when - is large (i.e., when the alternative
distribution resides farther from the core of the onion).

C. Sample Complexity

The expected sample complexity of SCT is characterized in
the following theorem.
Theorem 1: For m > mg and € = Q(m /%), where mg =
min{l > 0 : 112311/4e—0-25V1 < §:2} we have
e Under H; with an alternative distribution p that is ~
away from u, the expected sample complexity of SCT is
0 g\/ﬁ/w?)\/_log A/ +173)

¢ Under Hj, the expected sample complexity of SCT is
O ((vVm/e?)\/log (1/e +1/3) )

« The probabilities of miss detection and false alarm are
at most 4.

As evident from the above theorem, the sample complexity
of SCT under H; adapts to the distance - of the alternative dis-
tribution p to the uniform distribution. Since p € C(<), we have
7 > ¢, implying that the sample complexity is smaller than the
fixed-sample-size approaches which offer a sample complexity
of O(¢—2,/m). Moreover, the adaptivity of SCT to the realized
distance -y is order-optimal (up to a logarithmic factor). This
can be shown by noting that even with the knowledge of -, the
lower bound given by Paninski dictates Q(y~2,/m) samples to
ensure a constant probability of reliability.

Furthermore, in addition to the near-optimal scaling with ~,
SCT offers better scaling of sample complexity with respect to
d, the error probability, as compared to the batch algorithms.
In particular, the batch algorithms are designed to guarantee a
certain constant probability of error, and the common technique
to extend such tests to guarantee an arbitrary probability of
error ¢ is to repeat the test sufficiently many times so that
the result declared by the majority vote meets the confidence
requirements. Such an approach results in a log(1/4) depen-
dence of sample complexity on 4 as opposed to the 1/log(1/4)
offered by SCT. Thus, the refined analysis required to analyze
the sequential coincidence test not only demonstrates adaptiv-
ity to the underlying distribution but also results in improved
dependence on 4.

In addition to the dependence on ~ and 4, we would also
like to briefly mention the regime of input parameters m and
for which this result holds. The lower bound my is required to
ensure the support size is large enough to ensure a confidence of
4 in the sparse regime. Moreover, the regime of ¢ for which this
result is applicable can also in part be attributed to the fact that
the coincidence statistic works well only in the sparse regime.
We believe that the € = Q(m /%) requirement as opposed to
the standard requirement of £ = Q(m~1/4) for sparse regime
is merely an analysis artifact and can be improved using better
techniques for bounding the moment generating function of K;.

Proof of Theorem 1: The central idea of this proof is to
establish bounds on the moment generating function of the K;
statistic. Once we have obtained the bound on MGF, the final
result follows directly by an application of Markov’s inequality
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and union bound. Note that K; is a sub-Gaussian random
variable as it is bounded. In order to obtain tight bounds on the
variance proxy, we employ an approach similar to the one used
in [7]. [21] by appropriately modifying it to obtain bounds for
finite sample regime as opposed to for an asymptotic analysis.

Let p denote the underlying distribution and S be a set of
n ii.d. samples from p. With a slight abuse of notation, we
denote K1(S) as K;(n). We derive the bounds for a general
n > y/m number of samples, followed by substituting the par-
ticular choices later. Lastly, we assume that n/m < £2/1536*
and throughout the analysis, # is a variable lies in the range
[—0.4,0.4].

The following lemma establishes bounds on the moment
generating function of K.

Lemma 1: Letp={p1,p2,...,pm} € P([m]) and K;(n) be
as defined above. Then for 6 € [—0.4, 0.4], we have,

2 e () < 525 (%)

Hp [T ol(e?~1)|
X (e 0.1hg FATE ),

where Kj(n) :9Kl(n) =48 Ao is the solution to the

Apj(e’ — 14 e7P) m
303 (@ —1) T O =n, and Hp=) 7, log
(/\Opj(ee —1) + etops),

The above lemma forms a key step in the proof as it gives the
required bound the moment generating function of K, which is
used to obtain the bounds on the error probabilities. The proof of
this lemma is based on a finite sample analysis of the following
expression, which is adopted from [7, Eqn. (38)].

equation

B, [ (0K(0)] == foyar, @
where,

1

gA)=é* H (1 — )tpje_‘\pf + Ap;j e ee) e

j=1

The integral in Eqn. (1) is estimated using the saddle point
method [22]. This approach consists of two steps. In the first
step, a particular contour around A = 0 is chosen to carry out the
integration. The choice of this contour is such that g(\) behaves
violently along it, i.e., g(A) is very large for a very small interval
and significantly smaller on the rest of the contour, similar to
a dirac delta function. This violent behaviour allows one to
approximate the integral by only evaluating it on the small
interval where the function value is very large. Such a contour
is usually obtained by identifying a saddle point of g(A), a point
where the derivative of g goes to zero and choosing to contour to
pass through this point. The second step involves estimating the
integral along the contour using the Laplace method. We refer
the reader to Appendix D for a detailed proof of Lemma 1.

“The additional dependence on & is a result of the particular technique
being employed to bound the MGF. We conjecture that requirement can be
relaxed by using better analysis tools and techniques.
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Using this bound on the MGF, we obtain the following
bounds on the probability of error at the decision instant for
any epoch k:

Lemma 2: Let P.(n) denote the probability of error at the
decision instant for epoch k of SCT. Then for the choice of
parameters described in Alg. 1, we have,

e—u.zsnk)

¢ Under Hy,
n—cmsm,)

Lemma 2 allows us to obtain the required bounds on proba-
bility of error and sample complexity. Note that the probability
of miss detection and false alarm can be obtained by summing
the corresponding bounds from Lemma 2 over the range of
k. In particular, for the probability of false alarm, denoted by
Pr(err|Hyp), we have,

3 i e
(k+2/6)3 2

Pe(nk) S 61/127}.;, (

« Under H; for k> 11272,

3 7 nEw
(k+2/8)%5 2

Pe(nk) < 81/1211.:: (

Pr(err|Hp) = Pr (U {Eu[K1(ng)] — K1(ng) > Tk})

k=1

< i Pr ( K™ _E k™) < —'rk) < i P.(nx)
k=1 k=1

ca - 3 }'nk:*rn__ -

S"-’22161/1? ((k—+2/5)3 i 5 € 0.25 )
L 5 3 \/ﬁ‘”n—ogsﬁ
5(”6\,@);({“2/5)3*\/ 7 )

1 5 : 12 T2E/=

v 0 Xl L [¥/mm 112e :
6y/m 2 g2

where the fifth line follows by noting that e* <14 2z for

<1, \/Te */* is decreasing for £ >2 and n; > /m. On

plugging in the lower bound for m, we obtain that the above

expression is less than 4, as required. Similarly, the probability
of miss detection, denoted by Pr(err|H;), can be bounded as

Pr(err|H;) = Pr (ﬂ {Eu[K:1(ni)] — K1(nx) < Tk})

k=1

3 My T
1/12n, & _0.25n,
< P(ne) < e/ (WWTB )55-

We now move on to establish the bound on the expected
sample complexity of SCT. Let I" denote the random number
of sample taken by the procedure. For the scenario when the
underlying distribution is uniform, i.e., Hp, we use a simple

upper bound given as
112, .2
1 = ek I
oo (3 +3)+

EIL|Ho) < n, < 220
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For the case when the underlying distribution belongs to C(z)
such that ||p — u||; =~ > ¢, the expected sample complexity is
given as

E[["Hl] = Z ng PI(F — nk) < ko () + Z ng41
k=1 k=ko(7)

The second term in the expression can be bounded as

K

Y g Pe(ni)

k=ko(7y)
3 nEmT
Z 1/127:;,( SEER. —nkﬁi)
Ng1€ e €
k+2/6 as. b 2
k=ko(7) gl
<o 2": 45y/mlog(k +2/3) _ [or RESWZ
= (k+2/6)15 "

IA

) e 2
e | 27y/m (ku(’f) —4+ 3) log (ko(’lf) il 5 g)

+ \/%cua\/a)

< Cingy ()
for some universal constants Cy, C;. Consequently, E[l'|H;] =
| |
(0] (7_2 mlog (— - 3) , as required. O
¥

III. UNIFORMITY TESTING OF CONTINUOUS DISTRIBUTIONS
A. Problem Formulation

We now consider uniformity testing of continuous distri-
butions, particularly Lipschitz continuous distributions with
bounded support. Specifically, the null hypothesis Hy is the
uniform distribution u over [0,1]. The alternative composite
hypothesis H; is the set of L-Lipschitz distributions whose ¢,
distance to u is no smaller than . Let P([0, 1]; L) denote the set
of distributions over [0, 1] that are absolutely continuous with
the Lebesgue measure on [0, 1] and whose density functions are
L-Lipschitz. Specifically, for all distributions g € P([0,1]; L),
the density functions f,(z) satisfies, for all =,y € [0, 1],

|fa(z) — fo(¥)| < L|z —yl.

The composite set of alternative distributions under H, is
given by

1
cule)={aeP@1:D): [ 10 -1/ dr> e},

The objective of the uniformity testing is the same as in the
discrete problem: to determine, with a reliability constraint of
4, whether the observed random samples are generated from u
(Hp) or from a distribution in Cr(g) (Hy).

B. Adaptive Binning Coincidence Test

We now generalize SCT to the continuous problem specified
above. Our goal is to preserve the adaptivity of SCT to the
underlying alternative distribution under H;.
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The relation among the set of continuous distributions can
still be visualized as an onion: u and its e-neighbors form the
core, and alternative distributions in Cy,(¢) form layers accord-
ing to their distances to u. The algorithm still aims to deter-
mine, sequentially over epochs, in which layer the underlying
distribution of the observed samples resides, starting from the
outer-most and moving towards the core. The key question in
the continuous problem is how to infer, from a coincidence
type of statistic, whether the underlying distribution resides in
the current layer. A straightforward answer to this question is
discretization: a uniform binning of the support set [0, 1] with
coincidence number defined with respect to the bin labels of
the random samples. Much less obvious is the choice of the
resolution level for the discretization, i.e., how finely to bin
the continuum domain. A key rationale behind the proposed
ABC (Adaptive Binning Coincidence) test is that the farther
away the layer is from the core, the coarser the discretization is
needed for inferring whether the underlying distribution resides
in this layer. More specifically, not only the test can exit early
when the realized distance ~y is favorable, but also the number
of required samples for making the peeling decision is fewer
due to a coarser discretization. In other words, ABC adapts to
the unknown realized distance ~ by exiting both early in the
detection process and quickly by using a lower resolution to
take advantage of favorable alternative distributions.

We can now describe the ABC test, which proceeds in a
similar epoch structure as SCT with two key modifications.
First, the resolution of the discretization increases at a carefully
chosen rate over epochs, and the number of samples taken in
each epoch is adjusted accordingly. Specifically, let 7, denote
the number of discretization bins in epoch k, where m; in-
creases at the rate of k*log k. The number of samples taken
in epoch k is {2(,/my), which retains the same squared-root
relation to the effective support size my as in the discrete
case. Second, the coincidence number K (S) in each epoch is
computed by rebinning all observed samples (including those
obtained in previous epochs) based on the refined discretization
my, in the current epoch. A detailed description of the algorithm
is given in Algorithm 2, where K (S;m) denotes the coinci-
dence number computed over the set S of samples when the
interval is uniformly divided into m bins. Similarly, ¢, (n;m)
denotes the expected coincidence number of n samples from
the uniform distribution with a support of m bins. The constant’
cp > max{28212, my, 2L}, where my is defined in Theorem 1.

We would like to point out that while we have described ABC
for uniform distribution, it can be easily extended to cases where
the null hypothesis corresponds to an arbitrary distribution in
P([0,1]; L). In this case, we can employ a non-uniform binning
strategy that bins the null hypothesis into a discrete uniform
distribution (See Sec. IV for empirical results). It can be shown
that the sample complexity as analyzed next holds for this more
general problem provided that the null hypothesis distribution
is lower bounded by a constant.

5The constant 28212 as a lower bound for cp arises from the conditions
imposed on n and m during analysis. We would like to point out that these
numerical constants are not optimized. The analysis focuses on the order.
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Algorithm 2 Adaptive Binning Coincidence (ABC) Test

Input: £, L, 6 € (0,1)
Setk+1,t+ 0, k+ 57672, S+ {}
while £ <k do

my. + [cok* log(k + 2/6)]

ng < [/cok> log(k +2/6)]
log(k +2/4)

My

Tr < 9ng

repeat
Obtain a sample X,
S+SuUX;
t+—t+1
until t ==n;
if Zi := cy(ng;my) — K1(S; mg) > 71 then
Output < H;
break
end if
E—k+1
end while
if k£ > x then
Ol.ltpl.lt +— Hj
end if
return Output

C. Sample Complexity

The theorem below establishes the sample complexity of
ABC and its adaptivity to the realized distance + under H.
Theorem 2:
¢ Under H; with an alternative distribution p that is -~
away from u, the expected sample complexity of ABC is
0 (VIySlog(1/7+1/9)).

* Under Hj, the expected sample complexity of ABC is
0 (\/fs_ﬁ log (1/2 + 1/5)).

* The probabilities of miss detection and false alarm are at
most 4.

The lower bound on the sample complexity for this problem
is Q(+/Le—3/2) as shown in [20]. Evidently, there is a signifi-
cant gap between the lower bound on sample complexity and the
sample complexity guarantees offered by ABC. This gap, we
believe is rooted in that coincidence statistic is informative only
in sparse regimes where the number of samples is of sublinear
order of the support size. We conjecture that the gap to the lower
bound is unavoidable for tests using the coincidence statistic.
In other words, we conjecture that while coincidence statistic is
sufficient for achieving order-optimal sample complexity in the
discrete case, it ceases to remain so in the continuous case. An
interesting question is to explore is a lower bound on the sample
complexity achievable by the simple test statistic of coincidence
number. While the dependence on ¢ is suboptimal, we would
like to point out that ABC achieves optimal scaling with the
Lipschitz constant L.

Proof of Theorem 2: The proof of this theorem is heavily
built on the proof of Theorem 1. The basic idea is to first
show that for a fine enough discretization, the ¢; distance of
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resulting discrete distribution is the same as that of the con-
tinuous distribution up to a constant factor. Once this relation
is established, we can simply invoke the results obtained in
the previous theorem to obtain the results. We begin with the
following lemma that relates the #; distances of the discrete and
continuous distributions.

Lemma 3: Let p be a distribution in Cr(c) such that
|lp — ul|l1 =+ and let p* be the discrete distribution obtained
by a uniform discretization of the interval [0, 1] into m bins.
The ¢; distance of p"ﬁ‘ from the uniform distribution, denoted
by [Y]m. satisfies the following relation

m
Plm = _lpi* = 1/m| >y~ L/m,
i=1
where p® denotes the probability mass of p? in the i bin.

The proof of this lemma can be found in Appendix C.

Once we have obtained a discretization, the proof for the
probability of error and sample complexity is almost identical
to that in the case of SCT. We have the following lemma for
the continuous setting that is the counterpart of Lemma 2 in
the discrete setting.

Lemma 4: Let P.(n) denote the probability of error at the
decision instant for epoch k of ABC. Then for the choice of
parameters described in Alg. 2, we have,

¢ Under Hy,

3 R
< (1/12m KT _—0.25m; |
e ((k+2/6)3 3 )

* Under H; for k > ko(7),

3 ngT
< el/12m KT _—0.25m,
P < (s B

where ko(7) := min{k : k > 144[y] ;.2 }.

Note that the bounds on the probability of error for ABC are
smaller than those of SCT for both Hy and H;. Consequently,
using the same sequence of arguments, we can conclude that
Pr(err|Hp) < 6 and Pr(err|H;) < 4.

The expected sample complexity for the uniform case can
once again be simply bounded as n,, implying that E[['| Hp] is
O(VLe~®log(e~1 + 6~ 1), where the /L factor comes from
the leading constant in the expression for ny. The sample com-
plexity for case when the underlying distribution belongs to
Cr.(¢) such that |[p — ul|; = > ¢ is given as follows:

E|H1] =) nkPr(T=ni) <ngoeyy+ D, nes1Pe(k).

k=1 k=ko(7)

Once again, the second term can be bounded using the sequence
of steps similar to that in proof of Theorem 1.
K
Z N1 Pe(nz)

k=ko(7)

K
3 [T _py /4
S Z nk-l-lel/lzﬂk ( T = ng/ )
k+2/§)45 2
k=kqo(v) (kr2/0)
+ 7.511 / gni'se_“*/‘i)

= 3 log(k +2/4)
iR Z (‘/(aj;_,_gg/g)l.&

k=kq(7)
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9 —1/2
< 2 (18\/5 (ku(’y) « sy 3)

2 ,
x log (kg(’y] -1+ 5) g 7.5\/%006\/6)

= C;ﬂ‘ko("f)’

for some universal constants Cj, C;. As a result, the expected
sample complexity is of the order ng, (). From the particular
choice of m; and Lemma 3, we can conclude that ko(v) <
576+~ 2. This bound along with the expression for ny, () yields

E[|Hi] =0 (\/E»rﬁ log (v + 5—1)), asrequired. [

IV. SIMULATIONS

We corroborate our theoretical findings by testing the algo-
rithms empirically using both synthetic and real-world datasets.
We carry out three different sets of experiments to demon-
strate the effectiveness of our proposed approach. In the first
set of experiments, we demonstrate the adaptivity of our pro-
posed approach by comparing the performance of our proposed
algorithms against several fixed-sample-size algorithms in
terms of true positive rates and sample complexities. In the sec-
ond set of experiments, we compare the performance of ABC
against a sequential version of the fixed-sample-size algorithms
obtained using the “doubling search technique”. Lastly, we
conduct experiments where the null hypothesis is a non-uniform
distribution to demonstrate the applicability of our process to
scenarios where the null distribution is non-uniform.

We compare our proposed algorithms with several represen-
tative fixed-sample-size tests, including the fixed-sample-size
coincidence test in [6], the fixed-sample-size chi-squared test in
[13], the high probability identity test in [12], and the closeness
test between two distributions proposed in [11]. These existing
algorithms are referred to in the legends as coincidence test,
chi-squared test, identity test and closeness test respectively.

A. Adaptivity of ABC

For the first set of experiments, we consider two synthetic
and one real-world dataset. We first consider the discrete prob-
lem as described in Sec. II with m = 20000 and € = 0.3. The
composite set of distributions C(£) under the alternative hypoth-
esis is parameterized by ~ with the probability mass functions
given by

Py =QQ+7)/m; ply=(1—7)/m,

for i={1,2,...,m/2}. Note that the ¢; distance of p”
from the uniform distribution is +. We consider 7 dis-
tributions corresponding to the values of ~ € {0.3,0.35,
0.4,0.45,0.5,0.55,0.6}. For all algorithms, the thresholds are
set to obtain an false positive rate bounded below 0.2. The
constants in the thresholds for all the algorithms are optimized
using grid search to give the best empirical sample complex-
ity. Fig. 1 shows the empirical sample complexities and true
positive rates obtained under different distributions. For SCT,
the expected sample complexity is obtained by taking an av-
erage over 1000 Monte Carlo runs. As expected, the sample
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complexities for all the fixed-sample-size tests are the same for
all the distributions. In contrast, the sample complexity of the
ABC adapts to the #; distance of the underlying distribution
and decreases as the /; distance increases, demonstrating the
adaptivity of the proposed approach to the unknown alternative
distribution. As shown by Fig. 1(left), we also see that the ABC
achieves similar level of true positive rates with better empir-
ical sample complexities as compared with the fixed sample-
size methods.

In the next example, we consider the continuous uniformity
testing problem as described in Sec. IIIl. We take beta dis-
tributions as the alternative distributions. The parameters of
beta distribution («, 3) were taken in the set {(1.5,1.5), (2, 2),
(3,3),(3,5),(3,8)}. Fig. 2 shows the empirical sample com-
plexities and false positive rates obtained by all methods.
Similar to the discrete case, ABC demonstrates its adaptive
sample complexity over fixed-sample-size methods with similar
level of accuracy for all continuous alternative distributions.

In the third example, we consider a real-world application.
The dataset consists of current samples collected from a power
system provided by EPFL® [23]. To obtain alternative cases
with different #; distance, we constructed a synthetic system
similar to the EPFL campus grid through MATLAB/Simulink.
The power system topology is shown in Fig. 7, where L1, Lo,
and Ipg are driven by EPFL current measurement collected at
bus A, B and C, respectively, to approximate the randomness of

l"https:.-';‘giﬂluh.ct.&rm'[l'ESI_,—]-_T.Plil.r‘l’clint—|:b11—wa\re—Data—of—EPFi_,—t.‘.ampl.ls—
Distribution- Network
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True positive rate (left) and empirical sample complexity (right) vs £ distance for discrete alternative distributions.

g
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o
"
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True positive rate (left) and empirical sample complexity (right) vs £; distance for continuous alternative distributions.

consumer load profiles and the power output of the distributed
generation. We simulated the fault scenarios located on the
line of Z3, with different electrical distance. We then adopted
method in [24] to transform the waveform to samples on [0, 1],
and anomaly-free samples are transformed to i.i.d samples of
continuous uniform distribution. The ABC algorithm and other
testing methods were applied on the transformed sequence to
detect anomalous and anomaly-free segments.

Fig. 3 shows the true positive rate and sample complexity for
the transformed power system data, collected at false positive
rate of 0.05. ABC is shown to have the optimal true positive rate
and sample complexity over other baselines, demonstrating its
effectiveness in real-world applications.

B. Batch Methods With Doubling Search Technique

For the second set of experiments, we compare our pro-
posed sequential algorithm against a sequential version of
fixed-sample-size algorithms. Specifically, the sequential ver-
sion of a fixed-sample-size algorithm A is defined using the
doubling search technique [17] as follows. For each k=
0.1,...,logy(1/€), the algorithm A is run to distinguish distri-
butions that are 2—* away in ¢; distance. If for any value of k,
the algorithm returns H1, the process is terminated and H; is
returned. Otherwise, after log,(1/¢) iterations, Hy is returned.

While this doubling search technique offers similar sample
complexity to SCT, our proposed algorithm has two advantages
over this doubling search technique. First, the sample complex-
ity of the doubling search technique has a suboptimal log(1/4)
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with the doubling search technique.

dependence on the error probability 4 which our proposed ap-
proach improves it to the optimal order /log(1/4). Second,
our algorithm performs a linear discretization of the interval
of possible ¢; distances instead of a geometric discretization
(as done in the doubling search technique), thereby offering
a finer control on the estimated ¢; distance. As a result, our
estimate of the ¢; distance is always within a (1 4 o(1)) factor
of the true value as opposed to within a factor of 2 achieved
by the doubling search technique. Consequently, the leading
constant in the sample complexity of the doubling approach is
up to 4 times worse than that of our proposed algorithm, as the
sample complexity is inversely proportional to the square of the
£, distance. Our empirical studies corroborate our theoretical
claims. The superior empirical performance of sequential test

E i

Sample Complexity
i 8

o2 o3 a4 3] L1] oy 1] 1] 1
#; Distance

True positive rate (left) and empirical sample complexity (right) vs £1 distance for continuous alternative distributions. Batch algorithms are equipped

over the doubling search technique extensions of fixed-sample-
sized tests was also noted in [17].

We compare the algorithms on same the synthetic datasets
considered in the previous experiment. Figs. 4 and 5 shows the
true positive rate and sample complexity for the discrete and
continuous settings respectively. As evident from the figures,
SCT offers a significant improvement in sample complexity
over the doubling search technique based approaches without
any compromise in the error rate.

C. Non-Uniformity Testing

In this experiment, we assess the performance of ABC for the
case when the null hypothesis is non-uniform. As described in
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Sec. III, we can extend the ABC approach to scenarios with
non-uniform null hypothesis by using a non-uniform binning.
The choice of non-uniform binning transforms the nominal
distribution to a uniform one, after which the ABC test can
be applied.

For this experiment, we consider the following distribution
fo(zx) as the null hypothesis:

2
Lot 3 (1—-4]z—0.25]) ze][0,0.5],
folz) = ;g
1— 3 (1—-4jz—0.75]) ze(0.5,1].
For the alternate hypothesis, we chose a distribution f,(z) =
fo(z +p) mod 1, given by

_ JJo(z—p)
folz) = {fu(z—p+1}

for different values of p € [0, 1]. It is straightforward to show
that the £, distance between f,(x) and f,,(r) is given by 8p(1 —
p)/3. The results for true positive rate and sample complexity
are plotted in Fig. 6. As shown in Fig. 6, the ABC test can
effectively handle the scenario for non-uniform null hypothesis
by employing a non-uniform binning of the domain.

if z € [p, 1],
ifze]0,p),

V. CONCLUSION AND FUTURE WORK

In this work, we considered the problem of uniformity testing
of an unknown, Lipschitz continuous distribution on [0, 1]. We
proposed a sequential test called Adaptive Binning Coincidence
(ABC) test that adapts to the unknown distribution under the
alternative hypothesis. It builds on our proposed adaptive se-
quential test for discrete distributions with a sample complexity
of O(y/m~y~2) improving upon that of O(/me~2) offered
by offline tests, where v > ¢ is the acfual ¢, distance of the
unknown distribution to the uniform distribution. ABC offers

03 L2 3 o4 045 [:33 055 a8 L 0T
#; Distance

True positive rate (left) and empirical sample complexity (right) vs £1 distance for nonuniform null hypothesis for ABC.

a two-fold adaptivity — it terminates the test both early and
quickly using a layered partition of the alternative set and adap-
tive discretization respectively, resulting in an improved sample
complexity for favorable alternative distributions. For ABC,
we established a sample complexity of O(y®,/log(1/4))
and O(c—%,/log(1/3)) samples under the alternative and null
hypotheses respectively. Lastly, we provided an empirical
demonstration of the benefit of the proposed approach for both
synthetic and real-world settings.

An interesting future direction is to develop sequential tests
based on other test statistics that are also valid beyond the sparse
regime. We conjecture this might also help address the gap be-
tween the upper and lower bounds for continuous distributions.

APPENDIX
A. Proof of Lemma 1

As mentioned earlier, the proof is based on evaluating the
integral in Eqn. (1) using the saddle point method [22]. Recall
that, we defined the function g as

1

g(A) =e*[] (1 — Apje P + Apje P2 €°) i

j=1
To choose the contour, we first differentiate ¢ to find the saddle
point. On differentiating, we obtain,

. 2 pj(ea—l—i—e"‘pf}) n+1
A)=g(A -
g(A)=g(}) ; (Apj(69—1)+e’“’f \

Instead of exactly choosing the minimizer, we choose a point
very close to it, defined as the solution to the following equation:

Apj(e® — 1+ *P1)
dps(? —1) + e
It is established in [7] that the above equation has a unique non-

negative solution, which we denote using Ag. Furthermore, it
satisfies the following inequalities:

=n. 2)

<ho<n(l+e (e —1))
nl+e (e —1)<r<ne? @3

For§>0: ne?
For 6 <0:

From the above inequalities, it is clear that Ag =O(n). We
can also obtain a more refined approximation of the relation
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between Ag and n as follows. We first split the set of symbols
into two sets based on the magnitude of their probabilities and
obtain the approximation separately for these sets. In particular,
we define W= {j : p; > 8/m} and B(p) = 3" )y p;- We first
focus on the symbols that not do not belong in W. For these
symbols, the following set of inequalities hold.

LB Ap;
Mopse’ +X5p3 (1 —€*) +1(6)Xop; < ;\ uf((.: = 11):Aop1
/\ng (€% 14 &*P)
Aopj(ef — 1) +erops’
4)
9¢? +3)1{f <0} and u(f):=
— 9¢? + 3) 1{u > 0}. For the symbols in W, we have,

Nopse” + A2p2(1—¢®) + u(B)X3p} >

where () := £ (6% —

oo
Aopj(e? — 1 +XP7) . e f 4 eHoPi(1 —e9)
Aopj(e? — 1) +eXoPi 1+ Agpje—2oPs(ef —1)

v

:=D.

AOPJ 891

On plugging these approximations for dlfferent regnnes in (2),
o1+ w)
1+ ZJGWPJ(DJ 1)’
where w is the small approximating factor, on which we will
obtain bounds. For brevity, we define D, :=1+ EjEW Pj
(Dj —1). Lastly, we can obtain the range on the ratio
(14 w)/D, from the relations in (3).
On summing the lower bound in (4) over j, we obtain,

n> Z Dj/\opjea

we obtain that Ag is of the form, Ag =

JEW
+ ) [lopje? + A3p3(1 — ®) + 1(6)A3p5]
JEW
n>XoDie? + XY p21—®) +UON D 1)

JEW JEW
On plugging in the value of Ay and rearranging the equation,
we obtain,
—29)

w< g1+ Y P

JEW
—e(a)n2(1+“’) Z 3 )

A similar series of steps using the upper bound in (4) yields

n(l 4 w)? 3
’wz% ZP? (1—e)

o JEW
—u(@)n2(1+w) Y B ©)
JEW

With these relations at our disposal, we now move on to evalu-
ating the integral in (1) along the closed contour A = Age'¥ for
1 € [—m, w]. The integral reads as
= ! »: 2 :
Ep [exp (657)] =e~" 2= / g(Moe™) Ao do
T J_x

= ;EAD—n.e—ﬂﬂRe [
v

 hw) v

—m
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where

h(y)=e ™Y H (/\opj (e —1)e™ + eADp"ew).

j=1

Instead of h(¢’), we focus on bounding H(v¢) =log(h(v))
since it is easier to deal with sums than products. We have,

B9 = -+ 3 0~ e 4 )
j=1

We split the integral into three parts by evaluating it over three
different ranges, i.e., [-m,—7/2), [-7/2,7/2] and (7 /2, 7).
We first consider the integral over [—m/2,7/2]. This is the
region where the integrand behaviour behaves violently and
thus will correspond to the dominant term. We have,

Re(H(¥)) = i Re [10g (,\Opj(ea —1)e? + eaup,.ew)]

j=1
m -
=) Re [‘Og(e’w ")
j=1

+10g (1 % )il]pj(ee sl 1)811,!;8—)\0?531'\&) ]

'ME

Il
-

[:«opj cos(¥)

J

+ log (1 + ,\upje—)\opj '305(‘9-")(69 — 1)) ] L

We define a function G(7; ) that corresponds to the general
form of the RHS in the above expression. That is for u > 0,

G(v;u) =ucos(v) + log (1 + ue~ueos(¥)(f — 1))

Note that G'(0;u)=0 and G"(0;u) < —0.4u for ¢ €
[-7/2,7/2]. Thus, by using mean value theorem it can be
shown that G(v; u) satisfies G(v; u) < G(0;u) — 0.2ur)? for
¥ € [—w/2,7/2] for all u > 0. On plugging this inequality in
previous one, we have,

Re(H(¢)) < Z G(¥; Aop;)
j=1

< H(0)

< Z [G(0; Aop;) — 0-2A0Pj?;92]
j=1
—0.220¢>.

Using this relation, we can establish the following bound.
w /2 /2
Re l JIRC d¢] ~Re [ ) cw)]
/2
<[ expRe((v)) dv
—m/2

w2 5
SBH(O)/ e 0-20¥? gy
—m /2

geﬂfo)ﬂfﬁ. )
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For ¢ € [-m, —m /2] U [r/2, =], we have |e*oPs€™| < 1. Con-
sequently, |[Agp;(ef — 1)e™ + e*oPs€™| <1+ Agp;(f — 1).
Thus, we have,

Re(H(¢)) = Zm:Re [log (/\UP_;; (89 . ].)Ei"b 3 e,\[,pje"lf)]

j=1
< "log (1+ Aop;|(e? — 1)]) < Ao|(¢? —1).
j=1

Using this bound, we can bound the following integral.

—m/2 —x/2
Re [/ h() d¢]=ke l [ ety dzp]

o T ole®—1]
<[ ep(Re(H (@) dv < T,

We can similarly bound the integral for [ /2, 7]. On combining
all of them, we have,

B I ™
E, [exp (6K1(n))] = ;‘—W,\g"e—&"Re [ / h(¥) dq)]
nl (D \"( a0 [= Dol(€*—1)|
= 2mmn (1 ¥ w) (e Uiy :

8)

The statement of the lemma follows by noting H, := H(0) and
D, _ ne—?

14w Ao °

B. Proof of Lemma 2

We begin with bounding the probability of false alarm, that is,
the underlying distribution is uniform (Hy) and we fail to detect
it. For this scenario, the following relation holds for € <0,
where 7, denotes the threshold when n samples have been taken
and P;(n) denotes the error probability at that time instant.
P.(n) =Pr(K1(n) — E4[Ki(n)] < —)

< E [exp(0(K (n) — E[K; (n)]))] ¥
< E[exp(6(K1(n) — n))] exp (6(n — Eu[K1(n)] + 72))

<E [expwf?l(n) ) )}

Xe}cp la(Tﬂ+M_
D,

n! =
< —— ) (e
— 2" (l—l—w) (

Since the underlying distribution is uniform, W =10
and consequently D, =1. Moreover, for § <0, H(0) <
> ieq [Mopje® + 5A3p3 (1 —€)]. Using these relations
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along with polynomial expansions of e* and log(1 + z) near
z = 0, we can bound the first term in the expression as

T := (lJ_iD_*w)ﬂexp lH(O) —n
L (ﬂ_—l)

242
<exp (27;19 +6 (Tn = % — g (%)2) 2nw2).
(10)

+6[Tﬂ+

Using the condition on the ratio of n and m, we have = +
1'13 I"l3 RZEZ - -
i e Note that for the particular choice of T

and corresponding decision instant in the Sequential Coin-
cidence Test satisfies n2c2/1536m < 7,,/75 for all epochs.

Lastly, using (5), we have, 2nw? < 2n (3.762(1 — 3—29))2 <
114n2:262

. On combining these two bounds with the bound on

1536m
Ti. we obtain,
n262 114¢2 7461,
Ty < alnlalimy (8B L)
1—EXP( m ( L 1536)+ 75 )
. __ 14 . 5476
0r12 plugging §=—T22%, we obtain T; < exp (—zs5

mT,

—n!&) When evaluated at the decision for epoch k, the above
relation simplifies to

Ty <exp(—3log(k+2/6)) < ("‘7‘3'712/5)3

With the above choice of # and the bound on w obtained
from (6), the second term in the expression of F.(n) can be

simplified as,

D,

= (1+w)ne_u'3n
o o[ 2=z (221)T]

nd (n—1Y
<exp|—0.3n— — —nlog(l + w)
2 m

S B—ﬂ/4‘

On combining the bounds on 75 and T3 and plugging them back
in the expression of P.(n), we obtain the following bound on
the error probability at the decision instant during epoch k:

'ﬂk!eﬂic 1 187 —0.25
Pu(me) < o 25m
o) < S ((k TolE N

< el/12nk ( 3 ) ;‘n;‘”e—o.%m)_

(k+2/6)3
The second step follows by invoking Stirling’s approximation
for factorials.
We bound the probability of miss detection using a similar
process. In this case, the underlying distribution p belongs to
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C(e) such that |[p —u|l; =+ > &. For this scenario, the fol-
lowing relation holds for # >0, with 7, and Pe(n) defined
as before.

Pr(err) = Pr(Ey[Ki(n)] — K1(n) < 7n)
< E[exp(6(K1(n) — n))]
x exp (0(n — Ey[K1(n)] + 7))

< E[exp(8(Ki (n) — )] exp (9 (Tﬂ 4 ”—;))
<t (39) (et )

g (o e 2]

For # > 0, H(0) can be bounded as

1 fe*
HO < 3 [apse? + 230 - ) + 0385
JgEw
+ 37 (Mopse? + Aops (1 — 2)(1 — €?))

JEW

Similar to the previous case, we express F.(n) as a sum of
two terms, 77 and T3 and bound them separately. Using the
above bound on H (0), we can simplify the first term as,

T! = (lﬁ*w)“exp (H{O) —n+0 (T,. +%2))

n’ 2, 20 n’
< exp ?Zp,-(e —1)+6('rn+;)

€W
) 320n3 (14 w\>
m2 D,

(1+w)
D

1+ Y pi(1 — Py 1)
JjeEW

con(efrome(52)))

To further simplify 77, we define

xXexp | n

1D

_ (1+w)
1 i ZjEWPJ(Dj — 1)

Iz

x [14 ) pj(1—ePr)(e® —1)
JEW

11 1+w
—1—log L

This corresponds to the term in the exponential in the third and
fourth lines of (11). We also define two functions D(z) and
E(z) as follows:

R e (11— e_e}
1+ ze=(e? —1)
E(z):=(e? — 1)1 —e72).

D(z) :=

2433

Note that D;=D(Aop;) and E(Aop;)=(1— e*oPs)
(e~? — 1). Moreover, the function F(z)= Dg(gl is decreas-

ing for all = > 0 and satisfies the relation 1 < F(z) <1 + ¢°.
Consequently, (1 + ¢°)E(z) < D(z) — 1 < E(z) holds for all
z > 0 since E(z) < 0. Thus, we have,

3 pi(D; -2 (1+e) Y py(1— roP)(e? — 1)

JEW JEW
Y pi(D; —1) <) pi(1 —eMoPs)(e? —1).
JEW jEW

If welet =3}, )y p;(D; — 1), then we can write J as

-y (2

where p e [(1+€%)~1,1]. Since D(y) > e~ 2 for all y >0,
the domain of z is given as z € [—B(p)(1 — e 2%),0]. As
B(p) <1 and @ < 0.4, the function J(z) is increasing through-
out the domain of z. Consequently, J(z) < J(0) < w?. Further-
more, over this domain, we can upper bound J(z) as J(z) =
w? + 0.2z. Lastly, since D(z) is a decreasing function D; <
D (%2). Once again, using a local linear approximation of
D(z), we have the upper bound D(z) <1+ 0.7(e~% — €%)z.
On combining everything, we can bound J as,

J<w?+02) pi(D;—1)
JEW
§w2+0.22 Dj (D (%) - 1)
JEW
<w?+0.14 Z pj%(e_e — &)
v ™

n(l+

< w? +1.128(p) ij"') e —1).

On plugging this back into the bound for T3, we obtain,

n2

T <exp S

m Y p;+28(p) | (e —1)

JEW

2 320n3 (1 >
xexp(@('rn—l—n—)—l—L“:(ﬁ) + nw? |.
m m y i
Letpi=2+A;.S0) " A;j=0and )", |Aj| =, the

actual #; distance to the uniform distribution. Using this, the
first term can be written as,

2
% mZP?+QZPi

JEW JEW
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where the last step follows from E:JewJA'| > /2. The
3

326n? fnc?

bound on n/m and (3) together imply ==~ i (—g"—“’) <=

&m -
3

Lastly using (5) and (3), we have, n o ;4(1—i—
2 Tn2e2 .
(5, 13) 0 -0 22 0 g

on these bounds in the bound for 77, we obtain,

21262 A2 7e2 n242
m (1+?+?) ‘f’( Sm ))
Note that the particular choice of T and corresponding decision

instant as used in Alg. 1 satisfy — —L > 27, forall k > 112/~
Thus, if we define ko(v) = 112/72, then for all k > ko(7),

we have
4.25n202
T| <exp (—nﬁ — 91’,[).
m

ﬂsmm(

2

an

9 5 2’ 1802
evaluating the above expression at decision instant for epoch
k > ko(~y), we obtain

On plugging 6 = we obtain, T] < exp

1

Similar to the previous case, the above choice of # along with
bound on w obtained from (5), yields the bound

n 2
T 1= (ID* ) exp (—0.3n +6 ('rn -+ l)) e,
g ' m

On combining the bounds on 77 and T3, we obtain the following
result for the probability of error at the decision instant of
epoch k.

P 7 Nl .25n;
(k) < e ((k s Ve

< el/12nk ( 3 + /“;We—uzsnk)‘

where the second line again employs Stirling’s Approximation.

C. Proof of Lemma 3

The proof of Lemma 3 uses the Lipschitz continuity of the
PDF of p to bound the error between the /; distances of the con-
tinuous and the discrete distributions. We denote the continuous
uniform distribution on [0, 1] using u(x). From the definition of
¢; distance, we have,

1

- / Ip(e) — ()] dx
(1]
m—1

(i+1)/m

— ) —u(zx)| dr

> /‘_lm o) — )|
m—1 .(i+1)/m

=3 [ Ipt@) — g+t —u(a)]| do

i=0 Y1/m

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

o (i+1)/m B

<y [/ (Ip(z) — mp | + lmp — 1]) de
i=0 vi/m
L (+1)/m /1.

52[ (& -+ <11) a2

i= m
m—1 ifm
i F ]
2y | = / il -
=™ (i-1)/m m

(i+1)/m
X f m dz

In the fifth step, we have used the mean value theorem along
with the Lipschitz condition on the PDF. From the mean
value theorem, we can conclude that there exists an x; €
[i/m, (i + 1)/m] such that p(z;) = p5* /(1/m) = mp; for all
1=0,1,2,...,m — 1 and since PDF is L-Lipschitz, we have
lp(z) — p(z:i)| < L/m for all z € [i/m, (i + 1)/m]. Conse-
quently, we can relate the /; distances between the continu-
ous and discrete distributions. In particular, if m > L/2~, then

Vm > /2.

D. Proof of Lemma 4

The proof of this lemma is almost the same as that of
Lemma 2 with very minor modifications. Firstly, we modify the
set Wto Wi deﬁned for each epoch as Wk ={j : p{ > 8/my},
where once again 'pj is the mass in the 7 bin in the discretiza-
tion. Also for this case, instead of computing the error for any
sample n, we just compute it for the decision instant n;, and the
corresponding number of bins my.

‘We begin with the probability of false alarm. It can be verified
that for the choice of n;. and my, all the conditions in the proof
of Lemma 2 (Appendix B) are satisfied yielding us same bounds
on 77 and 73 and consequently, the following result holds for
the probability of error at the decision instant corresponding to

epoch k.
—0.25n;
Ft2/08 V2 ° )

Similarly, we consider the probability of miss detection. In
this scenario, the #; distance to the uniform distribution of the
underlying distribution p is « and for simplicity, we denote the
discretized ¢, distance as [y]g instead of [v];,,. If we define
ko(v) =min{k : k > 144[y], %}, then using this definition of
ko(7), we can obtain all the results from Appendix C. Specif-

32003 (1+w\> _ 6n2[y)?
ically, for k > h k < B Uk
ically, for k > ko(), we have, m% ( D. ) ST

3 g

Pe(ﬂk) < 61/12nk (

]

ngw? < 62 - Tz i

M
k > ko(7y). we have,

292
o (4.25nk9 B h).

2012
and 27 < m. Consequently, for
Smk

mg
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METk
9.5n2’
(k+2/6)~°/2. 1t is not difficult to see that T} < exp(—nx/4)
holds for k> ko(v), yielding the required expression
for P,(ny).

< [

On plugging 6 = we obtain, T} < exp (—%}i) <
k
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