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Abstract

In this review, we provide an up-to-date account of quantitative bottom-up holographic descriptions of the strongly

coupled quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions, based on the class of gauge-gravity

Einstein-Maxwell-Dilaton (EMD) effective models. The holographic approach is employed to tentatively map the QCD

phase diagram at finite temperature onto a dual theory of charged, asymptotically Anti-de Sitter (AdS) black holes living

in five dimensions. With a quantitative focus on the hot QCD phase diagram, the nonconformal holographic EMD models

reviewed here are adjusted to describe first-principles lattice results for the finite-temperature QCD equation of state, with

2 + 1 flavors and physical quark masses, at zero chemical potential and vanishing electromagnetic fields. We review the

evolution of such effective models and the corresponding improvements produced in quantitative holographic descriptions

of the deconfined hot QGP phase of QCD. The predictive power of holographic EMD models is tested by quantitatively

comparing their predictions for the hot QCD equation of state at nonzero baryon density and the corresponding state-of-

the-art lattice QCD results. Hydrodynamic transport coefficients such as the shear and bulk viscosities predicted by these

EMD constructions are also compared to the corresponding profiles favored by the latest phenomenological multistage

models simultaneously describing different types of heavy-ion data. We briefly report preliminary results from a Bayesian

analysis using EMD models, which provide systematic evidence that lattice QCD results at finite temperature and zero

baryon density strongly constrains the free parameters of such bottom-up holographic constructions. Remarkably, the

set of parameters constrained by lattice results at vanishing chemical potential turns out to produce EMD models in

quantitative agreement with lattice QCD results also at finite baryon density. We also review results for equilibrium

and transport properties from magnetic EMD models, which effectively describe the hot and magnetized QGP at finite

temperatures and magnetic fields with zero chemical potentials. Finally, we provide a critical assessment of the main

limitations and drawbacks of the holographic models reviewed in the present work, and point out some perspectives we

believe are of fundamental importance for future developments.
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1. Introduction

Quantum chromodynamics (QCD) is the quantum field theory (QFT) responsible for the sector of the standard model

of particle physics associated with the strong interaction. At the most fundamental level, it comprises quarks and gluons

(collectively called partons) as particles of the corresponding fermionic and non-Abelian gauge vector fields, respectively

[1, 2]. A rich and complex diversity of phases and regimes is possible for QCD matter, depending on the conditions to

which partons are subjected [3, 4, 5, 6]. These different regimes have been intensively investigated in the last five decades,

conjuring simultaneous efforts from theory, experiments, astrophysical observations, and large computational simulations

[7, 8, 9, 10, 11, 12].

At the microscopic level, QCD is fundamentally responsible for two of the most important aspects of ordinary baryonic

matter in our universe, namely: i) the stability of nuclei due to the effective exchange of pions binding the nucleons (protons

and neutrons), with the most fundamental interaction between the composite hadronic particles being mediated via gluon

exchange between quarks; ii) most of its mass, thus generating the vast majority of the mass of ordinary matter in our

universe, as a result of the dynamical breaking of chiral symmetry at low energies — for instance, at low temperatures

compared to the typical scale Tc ∼ 150 MeV of the QCD deconfinement crossover transition at zero baryon density

[13, 14, 15]. In fact, about ≳ 98% of the mass of the nucleons (and, consequently, also the mass of atoms and the ordinary

macroscopic structures of the universe built upon them) comes from strong interactions, with the tiny rest being actually

due to the current quark masses generated by the Higgs mechanism [1, 2, 16, 17, 18]. Intrinsically related to the two

aforementioned facts, QCD also presents what is called color confinement, which generically refers to the fact that quarks

and gluons, as degrees of freedom carrying color charge under the non-Abelian gauge group SU(Nc = 3) of QCD, are

never observed in isolation as asymptotic states in experiments, being confined inside color-neutral hadrons [19].

Relying on various properties of QCD, we can determine its degrees of freedom at specific energy scales. Due to

the number of colors, Nc = 3, and quark flavors, Nf = 6, QCD is an asymptotically free non-Abelian gauge theory

[20, 21]. That is, the β-function for the QCD coupling constant is negative, implying that it is a decreasing function of

the renormalization group energy scale, vanishing at asymptotically high energies. Conversely, QCD becomes a strongly

coupled non-perturbative QFT at energy scales below or around the QCD dimensional transmutation scale, ΛQCD ∼ 200

MeV, indicating the failure of perturbative QFT methods when applied to low energy QCD phenomena (e.g. quark

confinement). Indeed, due to quark confinement, one expects a hadron gas resonance (HRG) phase at low energies

and temperatures, while, due to asymptotic freedom, a deconfined phase of quarks and gluons called the quark-gluon

plasma (QGP) is expected at high energies. Because of its asymptotic freedom, the latter could naively be expected

to be a weakly interacting medium. In fact, at high enough temperatures, as attained in the quark epoch (where the

cosmic background radiation temperature varied from hundreds of GeV to hundreds of MeV within a time window of

microseconds), and before the QCD phase transition in the early universe, the QGP was a weakly coupled fluid. As

a clear comparison, hard thermal loop (HTL) perturbation theory in QCD seems to provide a reasonable description

of some thermodynamic observables computed non-perturbatively in lattice QCD (LQCD) simulations for temperatures

T ≳ 300 MeV [22]. However, at temperatures below that approximate threshold, the agreement between perturbative

QCD (pQCD) and non-perturbative LQCD results is generally lost, which approximately sets the temperature window

Tc ∼ 150 MeV < T < 2Tc ∼ 300 MeV (at zero baryon density) for which the QGP is a strongly coupled fluid [6]. This

is just within the range of temperatures probed by relativistic heavy-ion collision experiments conducted e.g. at the

Relativistic Heavy Ion Collider (RHIC) [23, 24, 25, 26] and at the Large Hadron Collider (LHC) [27, 28].

3



1.1. Some phenomenological results from heavy-ion collisions

The strongly coupled nature of the QGP produced in heavy-ion collisions is not only deduced from thermodynamic

observables but also from hydrodynamic transport coefficients. These coefficients are typically inferred from the analysis

of phenomenological models simultaneously describing several types of heavy-ion data [6, 29, 30, 31, 32, 33].

Figure 1.1: An artistic illustration (made by C. Shen) regarding the expected evolution of the medium produced in relativistic heavy-ion

collisions. From: https://u.osu.edu/vishnu/2014/08/06/sketch-of-relativistic-heavy-ion-collisions/

The hot and dense medium produced in relativistic heavy-ion collisions is commonly believed to pass through several

different stages during its space and time evolution, as sketched in Fig. 1.1. Initially, two heavy ions are accelerated to

speeds close to the speed of light, and at very high energies, the gluon density inside those nuclei grows until reaching a

saturation value, forming the so-called color glass condensate (CGC) [34, 35, 36, 37], which is a typical source of initial

conditions for the medium produced after the collision. For a characteristic time interval ≲ 1 fm/c after the collision1, in

the pre-equilibrium stage, the system is expected to be described by a turbulent medium composed by highly coherent

gluons. Therefore, this stage is dominated by the dynamics of classical chromodynamic fields forming the so-called glasma,

a reference to the fact that this is an intermediate stage between the color glass condensate and the quark-gluon plasma

[38]. As the glasma expands and cools, it begins to decohere towards a state of QCD matter which possesses an effective

description in terms of relativistic viscous hydrodynamics [39, 40, 41, 42] and whose physically relevant degrees of freedom

correspond to deconfined, but still strongly interacting quarks and gluons formed around ≳ 1 fm/c after the collision.

As the QGP keeps expanding and cooling, it eventually hadronizes by entering into the QGP-HRG crossover region of

the QCD phase diagram [13, 15]. The next stage of the space and time evolution of the system comprise the so-called

chemical freeze-out [43], when inelastic collisions between the hadrons cease and the relative ratio between the different

kinds of particles in the hadron gas is kept fixed. Afterwards, there is the thermal or kinetic freeze-out, when the average

distance between the hadrons is large enough to make the short-range residual strong nuclear interaction between them

effectively negligible. This fixes the momentum distribution of the hadrons. After that, the produced hadrons are almost

free and the particles resulting from their decays reach the experimental detectors, providing information on the previous

stages in the evolution of the system.

1Notice that 1 fm/c ≈ 3.33564× 10−24 s, so that the characteristic time scales involved in heavy-ion collisions are extremely short.
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Of particular relevance for the topics to be approached in the present review are the shear, η, and bulk viscosities,

ζ. These hydrodynamic transport coefficients cannot be directly measured in heavy-ion collision experiments and are

typically employed as free functions (of temperature and eventually also of other possible variables, such as chemical

potentials and/or electromagnetic fields) in phenomenological hydrodynamic models, which are then fixed by comparison

to heavy-ion data (for example, using Bayesian inference methods [32, 33, 44, 45]).

From such an approach, it is generally found that, around the QGP-HRG crossover region at zero baryon density in

the QCD phase diagram, η/s (where s is the entropy density of the medium) should be of the same order of magnitude

(in natural units with c = ℏ = kB = 1) of 1/4π (which, as we shall discuss in section 1.4, is a benchmark value for strongly

coupled quantum fluids coming from a very broad class of holographic models [46, 47, 48]), being at least one order of

magnitude smaller than perturbative calculations [49, 50, 51]. The small value of the shear viscosity to entropy density

ratio, η/s, inferred for the QGP produced in heavy-ion collisions is physically interpreted as a clear manifestation of its

nearly-perfect fluidity, as sketched in Fig. 1.2.

Figure 1.2: A schematic illustration comparing the rescaled specific shear viscosity — the “fluid imperfection” index, 4πη/s, — for different

fluids in nature. Notice also the different temperature scales on the horizontal axis: the QGP is the hottest3 and the less viscous (or almost

perfect) fluid ever created in nature. The string theory limit refers to the holographic benchmark value, η/s = 1/4π. From: R. Tribble (Chair),

A. Burrows et al., Report to the Nuclear Science Advisory Committee, Implementing the 2007 Long Range Plan, January 31, 2013.

Besides η/s, also the bulk viscosity to entropy density ratio ζ/s plays a prominent role in the phenomenological

description of heavy-ion data [52, 53, 31]. For instance, in Ref. [33] the JETSCAPE Collaboration developed a state-of-

the-art phenomenological multistage model for heavy-ion collisions, which was employed to simultaneously describe several

hadronic measurements from different experiments at RHIC and LHC. Their results favor the temperature-dependent

profiles (at zero baryon density) for ζ/s and η/s shown in Fig. 1.3. These phenomenological results for the hydrodynamic

viscosities will be compared to quantitative microscopic holographic calculations and predictions in section 2.1.2.

By varying the conditions under which heavy-ion collisions take place in particle accelerators, it is possible to experi-

mentally probe some aspects and regions of the QCD phase diagram at finite temperature and nonzero baryon density.

For instance, for heavy-ion collisions at the LHC operating at the center of mass energies of
√
sNN = 2.76− 5.02 TeV, the

energy of the collisions is so large that average effects due to a nonzero baryon chemical potential µB become negligible

3As a reference, in the QGP-HRG crossover window, where the QGP temperature is low enough to make the medium hadronize, Tc ∼

150MeV ∼ 1.72× 1012 K ∼ 105 Tcenter of sun (see e.g. NASA/Marshall Solar Physics). In heavy-ion collisions realized in particle accelerators,

the QGP attains temperatures at most 2 - 3 times Tc while much higher temperatures were achieved in the early universe.
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goes to zero. In practice, due to the large increase in the computational cost of numerical simulations with decreasing

lattice spacing, the formal continuum limit is approached by extrapolating a sequence of calculations with progressively

decreasing lattice spacings, which are nonetheless still large enough to be computationally manageable [54]. Some very

remarkable achievements of LQCD relevant to this review include the first principles calculation of light hadron masses,

like pions and nucleons, compatible with experimental measurements [77], and mainly the determination of the nature

of the transition between the HRG and QGP phases of QCD at zero baryon density, which turns out to be a broad

continuous crossover [13, 15].

However, despite its notable successes, LQCD calculations also feature some important limitations, in particular: i)

the difficulties in performing numerical simulations at nonzero baryon density, due to the so-called sign problem of lattice

field theory [78, 79], and ii) the issues in calculating non-equilibrium transport observables associated with the real-time

dynamics of the system. The former is an algorithmic issue that arises from the fermion determinant of the quarks

becoming a complex quantity at real nonzero µB , which implies that it cannot be employed to define a probabilistic

measure to be used in importance sampling — thus spoiling the direct evaluation of the LQCD path integral by means

of Monte Carlo methods. The latter is due to difficulties in analytically continuing the Euclidean correlators calculated

in the lattice at imaginary times to real-time intervals in a spacetime with Minkowski signature [80].

Figure 1.4: An artistic illustration of the QCD phase diagram at finite temperature and baryon density. From: https://www.bnl.gov/

newsroom/news.php?a=24473 (Courtesy of Brookhaven National Laboratory).

Nonetheless, in recent years several different techniques have been developed and applied to calculate in LQCD the

equation of state at finite temperature and moderate values of baryon chemical potential, and also to estimate the behavior

of some transport coefficients at finite temperature and zero baryon density, as reviewed in Refs. [54, 81]. In fact, state-

of-the-art lattice simulations for the continuum-extrapolated QCD equation of state with 2+1 flavors and physical values

of the quark masses are now available up to µB/T ≤ 3.5 [82] from a novel expansion scheme, and up to µB/T ≤ 3 from

a traditional Taylor expansion [83]. Some of these LQCD results for thermodynamic observables at finite (T, µB) will be

compared to quantitative microscopic holographic calculations and predictions in section 2.1.1.
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1.3. Some basic aspects of the holographic gauge-gravity duality

The limitations of present-day lattice simulations mentioned above prevent first-principles QCD calculations to be

employed in the investigation of strongly interacting QCD matter at higher baryon densities, where an actual phase

transition between confining hadronic and deconfined partonic degrees of freedom may exist, as depicted in the sketch

displayed in Fig. 1.4. Also, LQCD simulations of QCD transport properties are considerably difficult already at µB = 0

[80], let alone at finite baryon density. In such cases, it is customary to resort to effective models and other alternative

theoretical approaches to obtain some qualitative insight and even some quantitative predictions for the behavior of QCD

matter under such extreme conditions.

One such alternative approach, which is the theoretical tool considered in the present review, is what is broadly called

the holographic gauge-gravity duality (also known, under more restricted conditions, as the AdS-CFT correspondence)

[84, 85, 86, 87]. The holographic gauge-gravity duality is motivated by the framework of string theory, which originally

had an old and curious relationship with the strong interaction. Indeed, (non-supersymmetric) string theory was originally

developed as an S-matrix theory for the strong nuclear force between hadrons, which were empirically known to fall into

linear Regge trajectories relating their total angular momentum J to their mass squared m2, in what is known as the

Chew-Frautschi plots [88]. By modeling a meson as a relativistic open string spinning around its center, it is possible to

reproduce the observed Chew-Frautschi relation, J = α0 + α′m2, where the relativistic string tension is given in terms

of the measured slope of the linear Regge trajectory, σ = (2πα′)
−1 ≈ (440MeV)

2
[19]. The slope is approximately the

same for the different Regge trajectories defined by the different measured values of the Regge intercept, α0 (which is

known to depend on the flavor quantum numbers of the hadrons considered — hadrons with the same flavor quantum

numbers fall into the same Regge trajectory, and can be viewed as resonances of this trajectory with different values of

mass and angular momentum). However, since this simple string model also predicts results in striking contradiction

with hadronic experiments (e.g. a wrong, soft exponential falloff for the associated Veneziano scattering amplitude in the

high energy limit of hard scattering for hadrons at fixed angles), it has been abandoned as a model for hadrons, being

superseded by the advent of QCD, with its theoretical and experimental successes as the fundamental description of the

strong interaction.

Later, the theoretical interest in string theory greatly resurfaced, although within a very different context, with the

so-called first and second superstring revolutions, which correspond, respectively: 1) to the discovery of five different

consistent supersymmetric quantum string theories in 10 spacetime dimensions (superstring theories of Type I, Type IIA,

Type IIB, Heterotic SO(32) and Heterotic E8⊗E8); and also, 2) the latter discovery that these five superstring theories in

10 dimensions are related through a web of duality transformations, besides being also related to a theory of membranes

defined in 11 spacetime dimensions called M-theory, whose low energy limit corresponds to a unique 11-dimensional

theory of supergravity. A remarkable common feature of all superstring theories is that all of them possess a tensorial

spin 2 massless particle in their spectrum, which is the graviton, the hypothetic vibrational string mode responsible for

mediating the gravitational interaction at the quantum level. Due to that reason, and also due to the fundamental fact

that at low energies superstring reduces to supergravity, therefore containing general relativity as the low energy, classical

description of gravity, superstring theory is an interesting candidate for a theory of quantum gravity [89, 90, 91, 92, 93].

There is also some expectation that the standard model would emerge as a low-energy sector in string theory with 6

of its 10 dimensions compactified in some appropriate manifold, which should be chosen in a very specific way in order

to generate the observed phenomenology of particle physics in our universe. This way, string theory could be seen as a
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“theory of everything”, in the sense of possibly describing all the particles and fundamental interactions in nature.

Regardless of whether string theory is the unifying theory of all the fundamental interactions of nature [94, 95, 96] or

not, it is undeniable that new effective approaches and applications, directly inspired by string theory and aimed towards

the strong interaction, flourished with the advent of the holographic gauge-gravity duality. Before discussing some of

their phenomenological aspects in regard to the physics of the hot and baryon dense strongly-coupled QGP in section 2,

we discuss below some basic general aspects of the holographic correspondence.

The original formulation of the so-called AdS-CFT correspondence [84, 85, 86, 87], relates Type IIB superstring theory

defined on the product manifold between a 5-dimensional Anti-de Sitter (AdS) spacetime and a 5-dimensional sphere,

AdS5 ⊗ S5, to a conformal quantum field theory (CFT) corresponding to N = 4 Supersymmetric Yang-Mills (SYM)

theory with gauge group SU(Nc),
4 defined on the conformally flat 4-dimensional boundary of AdS5. Two other early

realizations of the AdS-CFT duality comprise also the relation between M-theory defined on AdS4⊗S7 and the Aharony-

Bergman-Jafferis-Maldacena (ABJM) superconformal field theory defined on the 3-dimensional boundary of AdS4, besides

the relation between M-theory defined on AdS7 ⊗ S4 and the so-called 6D (2, 0) superconformal field theory defined on

the 6-dimensional boundary of AdS7. In a very naive and imprecise way, one could in principle think of the first example

of the N = 4 SYM theory as a “toy model” for QCD, while the second example regarding the ABJM theory could

be taken as a “toy model” for low-dimensional condensed matter systems. However, this is inadequate from a realistic

phenomenological perspective, both at the quantitative and qualitative levels, as we shall discuss in section 1.4.

Before doing that, let us first comment a little bit more on the original proposal (see e.g. the discussion in section 3 of

the standard review [97], and also other works such as [98, 99, 100, 101] for details). We take for definiteness the example

relating Type IIB superstring theory compactified on AdS5⊗S5 and N = 4 SYM theory living on the boundary of AdS5.

One first considers Type IIB string theory in flat R
1,9 Minkowski spacetime and a collection of Nc coincident parallel

D3-branes in this background.5 The perturbative string theory excitations in this system correspond to vibrational modes

of both, closed strings, and also open strings with their ends attached to the D3-branes. If we consider the system defined

at low energies compared to the characteristic string scale, (α′)
−1/2 ≡ (ls)

−1
, only massless string modes can be excited

which, for closed strings give a gravity supermultiplet and, for the open strings with their ends attached to the (3 + 1)-

dimensional worldvolume of the Nc coincident D3-branes, give a N = 4 vector supermultiplet with gauge group SU(Nc).

A low energy effective action for these massless string excitations in the background considered can be schematically

written by integrating out the massive string modes,

Seff = SR1,9 bulk + SR1,3 brane + Sint, (1.1)

4N = 4 refers to the number of different supersymmetries of the theory.
5An endpoint of an open string must satisfy either Dirichlet or Neumann boundary conditions. If one considers Neumann boundary

conditions on p spatial dimensions plus time, then the remaining D − p− 1 dimensions must satisfy Dirichlet boundary conditions. Since for

Dirichlet boundary conditions a string endpoint is fixed in space, while for Neumann boundary conditions it must move at the speed of light,

then with Neumann boundary conditions on p+1 dimensions, the open string endpoints are constrained to move within a (p+1)-dimensional

hypersurface, which is a dynamical object called Dp-brane. Dp-branes are shown to be related to black p-branes [102, 103], which are solutions

of higher dimensional (super)gravity which generalize the concept of black holes by having extended event horizons which are translationally

invariant through p spatial dimensions. They actually provide different descriptions of a single object, which in a perturbative string regime is

accurately described by Dp-branes not backreacting on the background spacetime, while at low energies (corresponding to take α′ ≡ l2s to be

small, where ls is the fundamental string length, so that massive string states can be neglected) and large gravitational fields, the backreaction

of the Dp-branes on the background produces a black p-brane geometry [104].
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where SR1,9 bulk is the low energy action for the gravity supermultiplet, corresponding to Type IIB supergravity (SUGRA)

in R
1,9 plus higher order derivative corrections coming from the integration of the string massive modes; SR1,3 brane is the

low energy action for the N = 4 vector supermultiplet living on the R
1,3 worldvolume of the Nc coincident D3-branes,

corresponding to N = 4 SYM theory with gauge group SU(Nc) plus higher order derivative corrections coming from the

integration of the string massive modes; and Sint is an interaction term between the bulk and brane modes.

The higher order derivative corrections for the bulk and brane actions coming from the integration of massive string

modes are proportional to positive powers of α′, while the interaction action is proportional to positive powers of the

square root of the 10D Newton’s gravitational constant, κ10 ≡ √
8πG10 ∼ gsα

′ 2, where gs is the string coupling, so that

by considering the so-called decoupling limit where α′ ≡ l2s → 0 with fixed Nc, gs, one has SR1,9 bulk → SR1,9 IIB SUGRA,

SR1,3 brane → SR1,3 N=4 SYM, and Sint → 0, so that we end up with two decoupled actions,

lim
α′→0 (fixedNc,gs)

Seff = SR1,9 IIB SUGRA + SR1,3 N=4 SYM. (1.2)

For a given number Nc of coincident D3-branes, the ‘t Hooft coupling effectively controlling the strength of the interactions

in the N = 4 SYM SU(Nc) gauge theory is given by λt ≡ Ncg
2
SYM = Ncgs.

6 This picture holds for any value of λt (and

since the SYM theory is a CFT, its ‘t Hooft coupling remains constant for any value of energy so that one actually has

infinitely many different SYM theories, each one of them defined at some given value of λt).

Another perspective for the same system can be considered as follows. The effective gravitational field generated

by the collection of Nc coincident D3-branes is ∼ Ncgs(ls/r)
4 [100, 101], and by considering a very large Nc such that

λt = Ncgs ≫ 1 even for small values of gs (so that one can ignore quantum string loop contributions in the bulk), very

close to the D3-branes for r → 0 the gravitational field is very intense and its backreaction on the background spacetime

highly distorts its geometry, producing a curved manifold. In this limit it is necessary to replace the perturbative string

description of D3-branes in flat Minkowski spacetime with the associated black 3-brane supergravity solution, whose

near-horizon (i.e. near-black brane) geometry approaches precisely that of AdS5(L) ⊗ S5(L), with the same curvature

radius L for the AdS5 and S5 manifolds.7 On the other hand, far away from the black brane the background geometry

is still that of Minkowski R1,9. In both regions (near and far from the black brane), since we considered that the string

coupling gs is small (so that string loops may be discarded), by taking the decoupling limit as before, with ls → 0 and

fixed Nc, gs, the bulk spacetime is inhabited only by Type IIB SUGRA fields.

By comparing the two perspectives above for the same system, when defined in the same regime corresponding to

low energies, low string coupling, large Nc, and strong ‘t Hooft coupling (α′ ≡ l2s → 0 with fixed Nc, gs, but such that

gs is small, Nc is large and λt = Ncg
2
SYM = Ncgs ≫ 1), one notices that in both views there is a common element,

which is Type IIB SUGRA defined on R
1,9, and it is then conjectured that the remaining pieces in each perspective

should be dual to each other: strongly coupled, large Nc, N = 4 SYM theory with gauge group SU(Nc), defined on

R
1,3 (which is equivalent, up to a conformal factor, to the boundary of AdS5), and classical, weakly coupled Type IIB

SUGRA defined on AdS5(L)⊗ S5(L). The duality involved in this comparison actually conveys a detailed mathematical

dictionary translating the evaluation of physical observables in a classical SUGRA theory defined at weak coupling on top

6The relation g2
SYM

= gs can be inferred from the fact that a closed string, governed by the gs coupling, can be formed from the collision

between the endpoints of two open strings moving on the D3-branes, with gSYM being the coupling of the non-Abelian gauge field corresponding

to the massless mode of the open strings on these branes [99].
7For the other two early examples of the AdS-CFT correspondence mentioned before, one obtains: AdS4(L/2)⊗S7(L) and AdS7(2L)⊗S4(L)

(see e.g. [98]).
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of a background given by the product of an AdS spacetime and a compact manifold, to the calculation of other observables

in a different, conformal quantum gauge field theory defined at strong coupling and with a large number of colors on

top of the conformally flat boundary of the AdS manifold. Then, the notion of the hologram comprised in the AdS-CFT

duality refers to the fact that the gravitational information of a higher dimensional bulk spacetime can be encoded in its

boundary.

This is the weakest form of the holographic AdS-CFT correspondence, and a particular case of the broader gauge-

gravity duality, being largely supported by a plethora of independent consistency checks (see e.g. [97, 98, 99, 100, 101]).

The strongest version of the AdS-CFT conjecture, corresponding to a particular case of the so-called gauge-string duality

(which is more general than the gauge-gravity duality, which can be seen as a low-energy limit of the latter), proposes

that the duality should be valid for all values of gs and Nc, therefore relating N = 4 SYM theory on R
1,3 with arbitrary

‘t Hooft coupling and an arbitrary number of colors for the gauge group SU(Nc), and full quantum Type IIB superstring

theory generally formulated in a nonperturbative way on AdS5(L) ⊗ S5(L) (instead of just its classical low energy limit

corresponding to Type IIB SUGRA). It is also posited that high derivative/curvature corrections in the bulk correspond

to the inverse of ‘t Hooft coupling corrections in the dual CFT, since according to the detailed holographic dictionary,

α′/L2 =
{

ls/
[

ls (Ncgs)
1/4
]}2

= 1/
√
λt, and that quantum string loop corrections in the bulk correspond to the inverse

of Nc corrections in the dual CFT, since, gs (ls/L)
4
= gs

(

ls/
[

ls (Ncgs)
1/4
])4

= 1/Nc.

The conjectured holographic AdS-CFT duality has a very clear attractive feature, which is the fact that complicated

nonperturbative calculations in a strongly coupled quantum CFT can be translated, through the detailed mathematical

holographic dictionary, into much simpler (although not necessarily easy) calculations involving weakly coupled classical

gravity in higher dimensions.

More generally, the broader holographic gauge-gravity duality8 is not restricted to bulk AdS spacetimes and dual

boundary CFTs. Indeed, for instance, by considering the backreaction of effective 5D massive fields living on AdS5,

which are associated with the Kaluza-Klein (KK) reduction on S5 of the originally 10D massless modes of SUGRA, the

background AdS5 metric is generally deformed within the bulk, and the effective 5D bulk spacetime geometry becomes just

asymptotically AdS, with the metric of AdS5 being recovered asymptotically near the boundary of the bulk spacetime.

Generally, there is also a corresponding deformation of the dual QFT theory at the boundary of the asymptotically

AdS spacetime induced by the consideration of relevant or marginal operators, which may break conformal symmetry and

supersymmetry and whose scaling dimension is associated through the holographic dictionary to the masses of the effective

5D bulk fields. In this sense, one has a broader holographic gauge-gravity duality relating a strongly coupled QFT (not

necessarily conformal or supersymmetric) living at the boundary of a higher dimensional asymptotically AdS spacetime,

whose geometry is dynamically determined by a classical gravity theory interacting with different matter fields in the

bulk. In the holographic gauge-gravity duality, the extra dimension connecting the bulk asymptotically AdS spacetime

to its boundary plays the role of a geometrization of the energy scale of the renormalization group flow in the QFT living

at the boundary [105], with low/high energy processes in the QFT being mapped into the deep interior/near-boundary

regions of the bulk spacetime, respectively.

8The even broader gauge-string duality is very difficult to handle in practice, due to the present lack of a detailed and fully nonperturbative

definition of string theory on asymptotically AdS spacetimes. Consequently, we focus in this review only on its low-energy manifestation

corresponding to the gauge-gravity duality, which is the framework where the vast majority of the calculations are done in the literature

regarding the holographic correspondence.
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Since its original proposal by Maldacena in 1997 [84], the holographic gauge-gravity duality has established itself as

one of the major breakthroughs in theoretical physics in the last few decades, being applied to obtain several insights

into the nonperturbative physics of different strongly coupled quantum systems, comprising studies in the context of the

strong interaction [106, 107, 108, 109, 110, 111, 112], condensed matter systems [113, 114, 115, 116, 117, 118] and, more

recently, also quantum entanglement and information theory [119, 120, 121, 122].

1.4. Main purpose of this review

Holographic gauge-gravity models are generally classified as being either i) top-down constructions when the bulk

supergravity action comes from known low-energy solutions of superstrings and the associated holographic dual at the

boundary is precisely determined, ii) or bottom-up constructions when the bulk effective action is generally constructed by

using phenomenological inputs and considerations with the purpose of obtaining a closer description of different aspects

of some real-world physical systems, but the exact holographic dual, in this case, is not precisely known. Actually, for

bottom-up holographic models, one assumes or conjectures that the main aspects of the gauge-gravity dictionary inferred

from top-down constructions remain valid under general circumstances, such that for a given asymptotically AdS solution

of Einstein field equations coupled to other fields in the bulk, some definite holographic dual QFT state at the boundary

should exist.9 In order to be useful in practice for different phenomenological purposes, such an assumption for bottom-up

holographic models should provide explicit examples where the target phenomenology is indeed well reproduced by the

considered bulk gravity actions, which should furthermore be able to provide new and testable predictions. In fact, as we

are going to discuss in this review, one can construct holographic bottom-up models which are able to provide quantitative

results and predictions in compatibility with first principles LQCD simulations and with some phenomenological outputs

inferred from heavy-ion collisions, besides providing new predictions for thermodynamic and transport quantities in

regions of the QCD phase diagram currently not amenable to first principles analysis due to the limitations discussed in

the preceding sections.

Let us first analyze thermal SYM theory10 as a possible “proxy” for the strongly coupled deconfined QGP, as it has

been commonly considered within a considerable part of the holographic literature for years. It is often said that SYM

theory has some qualitative features in common with QCD at the typical temperatures attained by the QGP in heavy-ion

collisions, namely: within the considered temperature window, both theories are strongly coupled, deconfined, with non-

Abelian vector fields corresponding to gluons transforming in the adjoint representation of the gauge group, and their

η/s have comparable magnitude.

Although the points above are true, they are insufficient to establish a reliable connection between SYM and QCD.

9This putative bottom-up holographic dual does not need to (and generally will not) coincide with the exact QFT taken as a target to

be described in the real world. Instead, one will generally obtain some holographic dual of a QFT which is close to some aspects of the

target QFT, but which differs from the latter in many other regards. In a general sense, this is not different, for instance, from the reasoning

employed to construct several non-holographic effective models for QCD, where a given effective model is used to produce approximate results

for some but not all aspects of QCD. In fact, if an exact holographic dual of real-word QCD (with gauge group SU(3), 6 flavors and physical

values of the quark masses) does exist, its dual bulk formulation will likely comprise not merely a gravity dual, but instead some complicated

nonperturbative full string dual whose formulation is currently unknown.
10That the SYM theory is completely inadequate as a holographic model for the confined phase of QCD is immediately obvious from e.g. the

fact that SYM is a CFT and QCD is a nonconformal QFT with a mass gap in the spectrum. Even if one considers a comparison of SYM with

just pure YM theory (i.e. the pure gluon sector of QCD without dynamical quarks), the issues remain since YM features linear confinement

between static, infinitely heavy probe quarks (corresponding to an area law for the Wilson loop [19]) and a mass gap in the spectrum.
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Indeed, there are infinitely many different holographic theories with the same properties listed above. In fact, all gauge-

gravity duals are strongly coupled and all isotropic and translationally invariant Einstein’s11 gauge-gravity duals have a

specific shear viscosity given by the “(quasi)universal holographic” result η/s = 1/4π [46, 47, 48], which is actually a clear

indication that even for nonconformal gauge-gravity duals with running coupling (which is not the case of SYM theory,

since it is a CFT), the effective coupling of the holographic theory remains large at all temperature scales. Consequently,

classical gauge-gravity duals lack asymptotic freedom, featuring instead a strongly coupled ultraviolet fixed point, being

asymptotic safe but not asymptotic free. Moreover, there are infinitely many different holographic duals with deconfined

phases at high temperatures. In the face of this infinite degeneracy of holographic gauge-gravity duals with the very same

generic features often employed to “justify” the use of SYM theory as a “proxy” for the QGP, one may be led to conclude

that such a choice is not well-defined. One may argue that this choice is more related to the fact that SYM theory is

the most well-known and one of the simplest examples of gauge-gravity duality, than to any realistic phenomenological

connection between the SYM plasma and the real-world QGP.

In order to take steps towards lifting the infinite degeneracy of holographic models to describe (some aspects of) the

actual QGP, one needs to look at the behavior of more physical observables than just η/s. In this regard, the SYM plasma

is easily discarded as a viable phenomenological holographic model for the QGP due to several reasons, among which we

mention mainly the following. The SYM plasma is a CFT, while the QGP is highly nonconformal within the window of

temperatures probed by heavy-ion collisions, and this fact makes the equation of state for the SYM plasma completely

different from the one obtained for the QGP in LQCD simulations, not only quantitatively, but also qualitatively [123].

Indeed, dimensionless ratios for thermodynamic observables such as the normalized pressure (P/T 4), energy density

(ϵ/T 4), entropy density (s/T 3), the speed of sound squared (c2s), and the trace anomaly (I/T 4 = (ϵ − 3P )/T 4, which

is identically zero for a CFT), are all given by constants in the SYM plasma, while they display nontrivial behavior as

functions of the temperature in the QGP. Furthermore, the bulk viscosity vanishes for the conformal SYM plasma, while

it is expected to possess nontrivial behavior as a function of the temperature in the QGP, playing an important role in

the description of heavy-ion data, as inferred from phenomenological multistage models (see the discussion in section 1.1

and Fig. 1.3). Therefore, when considering thermodynamic equilibrium observables and transport coefficients, the SYM

plasma is not a realistic model for the QGP both at the quantitative and qualitative levels.

On the other hand, the holographic duality can be indeed employed to construct effective gauge-gravity models

which make it possible to actually calculate several thermodynamic and transport observables, displaying remarkable

quantitative agreement with state-of-the-art LQCD simulations at zero and finite baryon density, while simultaneously

possessing transport properties very close to those inferred in state-of-the-art phenomenological multistage models for

heavy-ion collisions. Additionally, such holographic models also provide quantitative predictions for the QGP in regions

of the QCD phase diagram which are currently out of the reach of first-principles calculations. The main purpose

of the present paper is to review these results, mainly obtained through specific bottom-up constructions engineered

within the so-called Einstein-Maxwell-Dilaton class of holographic models, discussing the main reasoning involved in

their formulation, and also pointing out their phenomenological limitations and drawbacks, in addition to their successful

achievements. This will be done in the course of the next sections, with holographic applications to the hot and baryon

dense strongly coupled QGP being discussed in section 2. We will also review some applications to the hot and magnetized

QGP (at zero chemical potential) in section 3. In the concluding section 4, we provide an overview of the main points

11That is, with the kinetic term for the metric field in the bulk action given by the usual Einstein-Hilbert term with two derivatives.
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discussed through this review and list important perspectives for the future of phenomenological holographic model

applications to the physics of the QGP.

In this review, unless otherwise stated, we make use of natural units where c = ℏ = kB = 1, and adopt a mostly plus

metric signature.
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2. Holographic models for the hot and baryon dense quark-gluon plasma

In this section, we review the construction and the main results obtained from phenomenologically-oriented bottom-up

holographic models aimed at a quantitative description of the strongly coupled QGP at finite temperature and baryon

density. We focus on a class of holographic constructions called Einstein-Maxwell-Dilaton (EMD) gauge-gravity models,

which has provided up to now the best quantitative holographic models for describing equilibrium thermodynamic and

hydrodynamic transport properties of the hot and baryon dense QGP produced in heavy-ion collisions. We also discuss

different predictions for the structure of the QCD phase diagram, comprising at high baryon chemical potential a line of

first-order phase transition ending at a CEP, which separates the phase transition line from the smooth crossover observed

at low baryon densities.

2.1. Holographic Einstein-Maxwell-Dilaton models

In order to possibly obtain a quantitative holographic model for the QGP (and also quantitative holographic construc-

tions for other strongly coupled physical systems in the real world), one necessarily needs to break conformal symmetry

in the holographic setting. However, breaking conformal symmetry alone is not sufficient to reproduce several QCD

results, since one needs to obtain a holographic modeling of specific phenomenological properties, and not just an ar-

bitrary or generic nonconformal model. Therefore, the conformal symmetry-breaking pattern needs to be driven in a

phenomenologically-oriented fashion.

One possible approach to obtain a nonconformal system is a bottom-up holographic construction where the free

parameters of the model are constrained by existing results from LQCD in some specific regime. Once the parameters are

fixed, one can then use this model to make predictions. Of course, as in any effective theory construction, the functional

form of the bulk action and also the ansatze for the bulk fields must be previously chosen based on some symmetry and

other physically relevant considerations, taking into account a given set of observables from the target phenomenology

and the basic rules for evaluating these observables using holography.

The seminal works of [124, 125, 126, 127, 128] laid down a remarkably simple and efficient way of constructing

quantitative holographic models for the strongly coupled QGP in equilibrium. The general reasoning originally developed

in these works may be schematically structured as follows:

i. The focus is on constructing an approximate holographic dual or emulator for the equation of state of the strongly

coupled QGP in the deconfined regime of QCD, without trying to implement confinement (e.g. Regge trajectories for

hadrons), chiral symmetry breaking at low temperatures, asymptotic freedom at asymptotically high temperatures,

nor an explicit embedding into string theory. In this construction, the QCD equation of state (and the second-order

baryon susceptibility for the case of finite baryon densities, see section 2.1.1) is used to fix the free parameters at finite

temperature and vanishing chemical potentials. Note that only these specific LQCD data are used to fix the free

parameters of the model. All other resulting thermodynamic quantities or transport coefficients are then predictions

of the holographic construction;

ii. The dynamical field content and the general functional form of the bulk gravity action is taken to be the simplest

possible in order to accomplish the above. One considers a bulk metric field (holographically dual to the boundary

QFT energy-momentum tensor) plus a Maxwell field with the boundary value of its time component providing the

chemical potential at the dual QFT. Additionally, a real scalar field (called the dilaton) is used to break conformal

symmetry in the holographic setting, emulating the QGP equation of state at zero chemical potential. The dilaton
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field also relates string and Einstein frames, as used e.g. in the holographic calculation of parton energy loss (some

results in this regard will be briefly reviewed in section 2.1.2);

iii. The general functional form for the bulk action constructed with the dynamical field content features at most two

derivatives of the fields. The bulk action includes the Einstein-Hilbert term with a negative cosmological constant

(associated with asymptotically AdS5 spacetimes) for the metric field gµν , the kinetic terms for the Abelian gauge

field Aµ and the dilaton field ϕ, an almost arbitrary potential (free function) V (ϕ) for the dilaton, and an interaction

term between the Maxwell and the dilaton fields, which features another free function of the dilaton field, f(ϕ). The

free functions, V (ϕ) and f(ϕ), the effective 5D Newton’s constant, G5, and the characteristic energy scale of the

nonconformal model, Λ ∝ L−1, need to be dynamically fixed by holographically matching the specific set of LQCD

results mentioned in the first item above. Note that these parameters comprise the entire set of free parameters of

the bottom-up EMD construction.

iv. The effects of the dynamical quarks in the medium are assumed to be effectively encoded in the form of the bottom-up

model parameters fixed to holographically match the QCD equation of state and second-order baryon susceptibility

obtained from LQCD simulations at zero chemical potential (no explicit flavor-branes are employed for this purpose

in the holographic EMD models reviewed in the present paper).

More details on the procedure mentioned above will be discussed in section 2.1.1. Let us now comment on the main

limitations of such an approach, some of which are fairly general and refer to all classical gauge-gravity models.

First, gauge-gravity models such as the one mentioned above lack asymptotic freedom. This is expected from the

original AdS-CFT correspondence since classical gravity in the bulk lacks the contributions coming both from massive

string states and quantum string loops. By discarding such contributions in the bulk, one obtains a strongly coupled dual

QFT at the boundary with a large number of degrees of freedom (large Nc). The consideration of deformations of the

bulk geometry given by asymptotic (but not strictly) AdS solutions of classical gravity does not seem enough to claim

that such deformations could in principle describe asymptotic freedom in the dual gauge theory at the boundary. The

fact that η/s = 1/4π for any value of temperature (and chemical potentials) in isotropic and translationally invariant

gauge-gravity models with two derivatives of the metric field, conformal or not, is a clear indication that such models are

strongly coupled at all energy scales. Therefore, these models miss asymptotic freedom in the ultraviolet regime. It is

then clear that the ultraviolet regime of such models is in striking contradiction with perturbative QCD (expected to be

relevant at high temperatures), where η/s is an order of magnitude larger than 1/4π. One possible way of improving this

situation has been discussed in Ref. [129]. There they consider the effects of higher curvature corrections to the metric

field in the bulk (i.e., higher derivative corrections to Einstein’s gravity) in the presence of a dilaton field, which allows for

a temperature-dependent η/s. Higher derivative corrections for the bulk action are associated with contributions coming

from massive string states, which are expected to lead to a reduction of the effective coupling of the boundary QFT

theory. However, consistently including higher derivative curvature corrections for an EMD model, taking into account

the full dynamical backreaction of the higher curvature terms into the background geometry, is a very challenging task

that has yet to be done.

Another general limitation of gauge-gravity models for QCD is that a realistic holographic description of thermody-

namic and hydrodynamic observables in the HRG confining phase seems unfeasible. Standard gauge-gravity models de-

scribe large Nc systems. However, the pressure of the QCD medium in the confining hadronic phase goes as ∼ N0
c = O (1),

while in the deconfined QGP phase it goes as ∼ N2
c . Therefore, the pressure in hadron thermodynamics is N−2

c sup-
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pressed relative to the pressure in the QGP phase in a large Nc expansion. Formally, the hadron phase requires string

loop corrections in the bulk in order to have a feasible holographic dual description at the boundary. Such a quantum

string loop corrected holographic dual would be much more complicated than simple classical gauge-gravity models.

The two above limitations are common to all gauge-gravity models aimed at realistically describing QCD. Further

limitations are related to the EMD constructions reviewed here. We have already alluded to the fact that such models are

not intended to describe chiral symmetry breaking, confinement, and thus, hadron spectroscopy. These points, together

with the intrinsic limitations of gauge-gravity models regarding the description of hadron thermodynamics and asymptotic

freedom, clearly restrict the target phenomenology of such EMD models to be the hot deconfined phase of QCD matter

corresponding to the strongly coupled QGP produced in heavy-ion collisions.

Another phenomenological limitation of EMD models is that they only describe a single conserved charge (i.e. only

one finite chemical potential is considered; it is possible to consider in holography more than one conserved charge

and different global symmetry patterns by working with more than one Maxwell field or by considering a Yang-Mills

field in the bulk, however, in this review we focus on simple EMD models — perspectives to extend the holographic

phenomenological approaches reviewed here to more general bottom-up constructions will be briefly mentioned in the

conclusions). Typically, finite baryon chemical potential µB is considered (see section 2.1.1). However, the hot and baryon

dense QGP produced in relativistic heavy-ion collisions at low energies actually comprises three chemical potentials (µB ,

the electric charge chemical potential µQ, and the strangeness chemical potential µS). In equilibrium, these chemical

potentials can be related to each other through the global strangeness neutrality condition realized in such collisions, due

to the fact that the colliding nuclei do not carry net strangeness. The strangeness neutrality condition is

⟨S⟩ = ⟨NS̄ −NS⟩ = V T 3χ̂S
1 = 0, (2.1)

where NS is the number of strange quarks, NS̄ is the number of strange antiquarks, and χ̂S
1 ≡ ∂

(

P/T 4
)

/∂(µS/T ) is the

reduced strangeness density.

Additionally, µQ can also be constrained by the charge to baryon number ratio of the colliding nuclei. There is a small

isospin imbalance for lead-lead (Pb+Pb) collisions at the LHC and gold-gold (Au+Au) collisions at RHIC,

⟨Q⟩/⟨B⟩ = ⟨NQ −NQ̄⟩/⟨NB −NB̄⟩ = χ̂Q
1 /χ̂

B
1 = Z/A ≈ 0.4, (2.2)

where Z is the atomic number and A is the mass number of the colliding nuclei. Thus, from strangeness neutrality and

charge conservation, one can then determine µQ = µQ(T, µB) and µS = µS(T, µB) [130, 131, 132, 133, 134, 135, 136].

These phenomenological constraints from heavy-ion collisions are not implemented in the holographic EMD constructions

reviewed here, where one simply sets µQ = µS = 0.

We finish these introductory comments on phenomenological bottom-up holographic EMD models for the QGP by

remarking that these models are partially inspired by, but not actually derived from string theory. Therefore, the actual

applicability of the holographic dictionary for such constructions, and more generally, for any bottom-up gauge-gravity

model, may be questioned. Indeed, the phenomenological viability of bottom-up holographic models can be checked by

direct comparison with the results of the target phenomenology. The degree of agreement between holographic EMD

results and several first principles LQCD calculations as well as hydrodynamic viscosities inferred from phenomenological

multistage models describing several heavy-ion data, provides compelling evidence that the holographic dictionary works

in practice for these models.

17



The general reasoning outlined above may be systematically adapted to successfully describe different aspects of

phenomenology, indicating that at least some of the entries in the holographic dictionary may have a broad range of validity.

For instance, one could consider using gauge-gravity models to describe pure YM theory without dynamical quarks.

Bottom-up dilatonic gauge-gravity models with specific functional forms for the dilaton potential may be engineered

to quantitatively describe the thermodynamics of a deconfined pure gluon plasma with a first-order phase transition

(although the thermodynamics of the confining phase corresponding to a gas of glueballs cannot be described by classical

gauge-gravity models), besides describing also glueball spectroscopy [124, 125, 137, 138].

2.1.1. Holographic equations of state

A gauge-gravity model is usually defined by its action on the classical gravity side of the holographic duality, while

different dynamic situations for its dual QFT, living at the boundary of the asymptotically AdS bulk spacetime, are

related to different ansatze and boundary conditions for the bulk fields. For instance, given some bulk action, the vacuum

state in the dual QFT is associated with solutions of the bulk equations of motion with no event horizon, which is

accomplished by an ansatz for the metric field with no blackening function. Thermal states in equilibrium for the same

dual QFT are often associated with equilibrium black hole (or more generally, black brane) solutions of the bulk equations

of motion, which now require a blackening function in the ansatz for the metric field. Hydrodynamic transport coefficients

and characteristic equilibration time scales may be evaluated from the spectra of quasinormal modes [139, 140, 141] of

these black hole solutions slightly disturbed out of thermal equilibrium, while different far-from-equilibrium dynamics

may be simulated by taking into account boundary conditions and ansatze for the bulk fields with nontrivial dependence

on spacetime directions parallel to the boundary [142].

The main bottom-up holographic models reviewed in the present manuscript are specified by actions of the EMD

class, whose general form in the bulk is given below [127, 128],12

S =

∫

M5

d5xL =
1

2κ2
5

∫

M5

d5x
√−g

[

R− (∂µϕ)
2

2
− V (ϕ)− f(ϕ)F 2

µν

4

]

, (2.3)

where κ2
5 ≡ 8πG5 is the 5D gravitational constant. The bulk action (2.3) is supplemented by two boundary terms: i)

the Gibbons-Hawking-York (GHY) boundary action [143, 144], which in a manifold M5 with a boundary (as in the case

of asymptotically AdS spacetimes) is required in the formulation of a well-defined variational problem with a Dirichlet

boundary condition for the metric field,13 and ii) a boundary counterterm action employed to remove the ultraviolet

12Since the dilaton is a real scalar field, being thus uncharged under the Abelian gauge symmetry associated to the Maxwell field, there is no

minimal coupling between those two fields. Instead, in the action (2.3) the form of the Maxwell-dilaton coupling involving the function f(φ)

is inspired from top-down low-energy string theory solutions compactified to 5D, as in the one R-charge black hole model also discussed e.g.

in Ref. [128]. However, contrary to bottom-up constructions where the 5D gravitational constant and the potentials V (φ) and f(φ) are taken

as free parameters and functions of the holographic setup (to be fixed by some appropriately chosen phenomenological inputs), in top-down

models those potentials and parameter are fixed by the kind of low-energy string construction considered. In such top-down constructions

it is common to appear exponential terms in the potentials, which also serves as a motivation to employ e.g. hyperbolic functions in the

parametrization of potentials in bottom-up models, as it will be used e.g. in Eqs. (2.24) and (2.25).
13By the variational principle, the variation of the gravity action must vanish for arbitrary variations δgµν of the metric field in the bulk. In

the case of spacetime manifolds with a boundary, in calculating the variation of the metric tensor in the bulk, integration by parts in directions

transverse to the boundary leads to a boundary term that is nonvanishing even by imposing the Dirichlet boundary condition that the metric

is held fixed at the boundary, δgµν |∂M5
= 0. This boundary term is exactly canceled out by the variation of the GHY action (see e.g. chapter

4 of [145]), allowing for the variation of the total gravity action to vanish in compatibility with Einstein’s equations in a bulk spacetime with
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divergences of the on-shell action by means of the holographic renormalization procedure [146, 147, 148, 149, 150, 151].

Although needed in order to write the full holographic renormalized on-shell action, those two boundary terms do not

contribute to the bulk equations of motion and are not strictly required in the calculations reviewed in the present work.

Therefore, we shall not write their explicit form here.

It is important to make some general remarks at this point. The holographic renormalized on-shell action is generally

employed in the evaluation of the pressure and energy density (the diagonal entries in the expectation value of the energy-

momentum tensor) of the medium defined in the dual QFT at the boundary, also for the calculation of hydrodynamic

transport coefficients extracted from perturbations of the bulk fields, and for the analysis of far-from-equilibrium dynamics.

However, here we will not consider far-from-equilibrium calculations. Regarding the equilibrium pressure of the medium,

its calculation can also be done by integrating over temperature the entropy evaluated through the Bekenstein-Hawking

relation for black hole thermodynamics [152, 153], which does not require holographic renormalization. Moreover, for the

holographic calculation of the specific hydrodynamic transport coefficients reviewed in this work, which are related through

Kubo formulas to the imaginary part of thermal retarded correlators of the relevant dual QFT operators, holographic

renormalization can also be bypassed through the use of radially conserved fluxes extracted from the equations of motion

for the relevant bulk perturbations — see e.g. [128] and also [126, 154, 155].

The holographic renormalization procedure is generally a very laborious task and the aforementioned shortcuts are

surely convenient in order to have an alternative and easier access to some physical observables through the holographic

machinery. On the other hand, without implementing the holographic renormalization procedure, one has to face some

limitations. Besides the ones already mentioned above, another relevant limitation is the following: although one can

calculate the energy density by using the thermodynamic relation (2.21), it would be also important to provide an explicit

check that Eq. (2.21) holds when calculating the pressure and the energy density through the holographic renormalized

on-shell action, with the entropy density calculated independently by using Bekenstein-Hawking’s relation (2.15) and

the charge density evaluated independently by using the boundary value of the radial momentum conjugate to the bulk

Maxwell field, as in Eq. (2.16). Although holographic renormalization has not been implemented yet for the EMD models

of Refs. [127, 128, 156, 157, 158, 159, 160, 161, 162, 163, 164], very recently it has been implemented for the EMD model

of Refs. [165, 166], with the aforementioned consistency check being successfully performed. Moreover, a nontrivial check

of thermodynamic consistency has been also performed for the EMD model of Refs. [160, 161, 162, 163] by using the

Gibbs-Duhem equation to evaluate the pressure via the temperature integral of the Bekenstein-Hawking’s entropy density

at fixed chemical potential, and checking that it coincides with the chemical potential integral of the baryon density at

fixed temperature (with an additive integration constant computed from the temperature integral of the entropy density

at zero chemical potential). This consistency check is important since the entropy and baryon charge densities are two

different entries of the holographic dictionary evaluated at the two opposite sides of the bulk geometry.

The set of free parameters and functions {G5,Λ, V (ϕ), f(ϕ)} comprised in the bottom-up EMD setup can be fixed by

taking as phenomenological inputs some adequate lattice results on QCD thermodynamics at finite temperature and zero

chemical potentials (and vanishing electromagnetic fields), where Λ is a characteristic energy scale of the nonconformal

holographic model employed to express in powers of MeV dimensionful observables in the dual QFT, which are calculated

in the gravity side of the holographic correspondence in powers of the inverse of the asymptotic AdS radius L. In practice,

we simply set L = 1 and trade it off as a free parameter by the energy scale Λ, without changing the number of free

a boundary.
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parameters of the model [156, 160]. The set {G5,Λ, V (ϕ)} can be fixed by the LQCD equation of state evaluated at

vanishing chemical potential, while f(ϕ) may be fixed, up to its overall normalization, by the LQCD second order baryon

susceptibility, also evaluated at zero chemical potential [127, 156, 160].14

In order to do this, one first needs to specify the adequate ansatze for the bulk EMD fields such as to describe isotropic

and translationally invariant thermal states at the dual boundary quantum gauge theory (as in LQCD simulations). Since

we are going to consider, in general, also the description of thermal states at finite baryon chemical potential, we take

the form below for the bulk fields corresponding to isotropic and translationally invariant charged EMD black hole

backgrounds in equilibrium [127, 156, 160],

ds2 = gµνdx
µdxν = e2A(r)[−h(r)dt2 + dx⃗2] +

dr2

h(r)
, ϕ = ϕ(r), Aµdx

µ = Φ(r)dt, (2.4)

where r is the holographic radial coordinate, with the boundary at r → ∞ and the black hole horizon at r = rH , and rH

being the largest root of the blackening function, h(rH) = 0. The set of general EMD equations of motion obtained by

extremizing the bulk action (2.3) with respect to the EMD fields can be written in the following form [167],

Rµν − gµν
3

[

V (ϕ)− f(ϕ)

4
F 2
αβ

]

− 1

2
∂µϕ∂νϕ− f(ϕ)

2
gαβFµαFνβ = 0, (2.5)

∂µ
(√−gf(ϕ)gµαgνβFαβ

)

= 0, (2.6)

1√−g
∂µ
(√−ggµν∂νϕ

)

− ∂V (ϕ)

∂ϕ
− F 2

µν

4

∂f(ϕ)

∂ϕ
= 0, (2.7)

which, for the isotropic ansatze for the EMD fields in equilibrium given in Eqs. (2.4), reduce to the following set of

coupled ordinary differential equations of motion,

ϕ′′(r) +

[

h′(r)

h(r)
+ 4A′(r)

]

ϕ′(r)− 1

h(r)

[

∂V (ϕ)

∂ϕ
− e−2A(r)Φ′(r)2

2

∂f(ϕ)

∂ϕ

]

= 0, (2.8)

Φ′′(r) +

[

2A′(r) +
d[ln f(ϕ)]

dϕ
ϕ′(r)

]

Φ′(r) = 0, (2.9)

A′′(r) +
ϕ′(r)2

6
= 0, (2.10)

h′′(r) + 4A′(r)h′(r)− e−2A(r)f(ϕ)Φ′(r)2 = 0, (2.11)

h(r)[24A′(r)2 − ϕ′(r)2] + 6A′(r)h′(r) + 2V (ϕ) + e−2A(r)f(ϕ)Φ′(r)2 = 0, (2.12)

where Eq. (2.12) is a constraint. These equations of motion are discussed in detail in Refs. [127, 156, 160]. They

must be solved numerically, and different algorithms have been developed through the years to accomplish this task

with increasing levels of refinement [127, 156, 160, 161]. Two different sets of coordinates are used in this endeavor: the

so-called standard coordinates (denoted with a tilde), in which the blackening function goes to unity at the boundary,

h̃(r̃ → ∞) = 1, and also Ã(r̃ → ∞) → r̃, such that holographic formulas for the physical observables are expressed

in standard form; and the so-called numerical coordinates (denoted without a tilde), corresponding to rescalings of the

standard coordinates used to specify definite numerical values for the radial location of the black hole horizon and also

for some of the initially undetermined infrared expansion coefficients of the background bulk fields close to the black hole

horizon, which is required to start the numerical integration of the bulk equations of motion from the black hole horizon

14However, as we are going to discuss afterward in this section, and more deeply in section 2.1.3, available LQCD results cannot constrain

the set of free parameters of the EMD model to be fixed in a unique way.
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up to the boundary.15 In fact, with such rescalings, all the infrared coefficients are determined in terms of just two initially

undetermined coefficients, ϕ0 and Φ1, which are taken as the “initial conditions” (in the holographic radial coordinate,

r) for the system of differential equations of motion. Those correspond, respectively, to the value of the dilaton field and

the value of the radial derivative of the Maxwell field evaluated at the black hole horizon.

For the holographic calculation of physical observables at the boundary QFT, one also needs to obtain the ultraviolet

expansion coefficients of the bulk fields near the boundary, far from the horizon. For the evaluation of the observables

reviewed in this paper, it suffices to determine four ultraviolet expansion coefficients of the bulk fields, namely, hfar
0

coming from the blackening function h(r) of the metric field, Φfar
0 and Φfar

2 coming from the nontrivial component of the

Maxwell field Φ(r), and ϕA coming from the dilaton field ϕ(r), with the functional forms of the ultraviolet expansions

being derived by solving the asymptotic forms of the equations of motion near the boundary [127]. In order to determine

the numerical values of the ultraviolet coefficients for a given numerical solution generated by a given choice of the pair

of initial conditions (ϕ0,Φ1), one matches the full numerical solution for the bulk fields to the functional forms of their

corresponding ultraviolet expansions near the boundary. While the values of hfar
0 , Φfar

0 and Φfar
2 can be easily obtained,

the evaluation of ϕA is much more subtle and delicate due to the exponential decay of the dilaton close to the boundary

[127, 156]. In Refs. [156, 160], different algorithms were proposed to extract ϕA in a reliable and numerically stable

way from the near-boundary analysis of the numerical solutions for the dilaton field, with progressively increasing levels

of accuracy and precision. Moreover, in Ref. [161], a new algorithm for choosing the grid of initial conditions (ϕ0,Φ1)

was devised in order to cover the phase diagram of the dual QFT in the (T, µB)-plane in a much more efficient and

broader way than in earlier works, like e.g. [156, 157, 158, 159]. Together with more precise fittings to LQCD results at

zero chemical potential, which led to the construction of an improved version of the EMD model at finite temperature

and baryon density in Ref. [160], all the algorithmic upgrades mentioned above allowed to obtain predictions from this

improved EMD model not only for the location of the CEP [160], but also for the location of the line of first-order

phase transition and the calculation of several thermodynamic [161] and transport [162] observables in a broad region

of the (T, µB)-plane, including the phase transition regions, where the numerical calculations are particularly difficult to

perform due to the coexistence of competing branches of black hole solutions and the manifestation of significant noise

in the numerical solutions.

Before comparing some thermodynamic results from some different versions of the EMD model in the literature,

displaying the aforementioned improvements and discussing some of their consequences for the holographic predictions

regarding the structure of the QCD phase diagram in the (T, µB)-plane, we provide below the relevant formulas for

their calculation on the gravity side of the holographic duality. The numerical solutions for the EMD fields in thermal

equilibrium generated by solving the bulk equations of motion for different pairs of initial conditions (ϕ0,Φ1) are associated

through the holographic dictionary with definite thermal states at the boundary QFT, where the temperature T , the

baryon chemical potential µB , the entropy density s, and the baryon charge density ρB of the medium are given by

[127, 156],16

15Notice that the part of the bulk geometry within the interior of the black hole horizon is causally disconnected from observers at the

boundary.
16We provide the formulas in the standard coordinates (with a tilde) and in the numerical coordinates (in terms of which the numerical

solutions are obtained and the relevant ultraviolet coefficients are evaluated). It is worth mentioning that [127] introduced three extra free

parameters in the holographic model, corresponding to different energy scaling parameters for µB , s, and ρB , besides the one for T . These

parameters are unnecessary as they artificially augment the number of free parameters of the bottom-up construction without a clear physical
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T =

√

−g′
t̃t̃
gr̃r̃ ′

4π

∣

∣

∣

∣

∣

∣

r̃=r̃H

Λ =
eÃ(r̃H)

4π
|h̃′(r̃H)|Λ =

1

4πϕ
1/ν
A

√

hfar
0

Λ, (2.13)

µB = lim
r̃→∞

Φ̃(r̃)Λ =
Φfar

0

ϕ
1/ν
A

√

hfar
0

Λ, (2.14)

s =
S

V
Λ3 =

AH

4G5V
Λ3 =

2π

κ2
5

e3Ã(r̃H)Λ3 =
2π

κ2
5ϕ

3/ν
A

Λ3, (2.15)

ρB = lim
r̃→∞

∂L
∂(∂r̃Φ̃)

Λ3 = − Φfar
2

κ2
5ϕ

3/ν
A

√

hfar
0

Λ3, (2.16)

where AH is the area of the black hole event horizon, the prime denotes radial derivative, and ν ≡ d−∆, with d = 4 being

the number of spacetime dimensions of the boundary and with ∆ = (d +
√
d2 + 4m2L2)/2 being the scaling dimension

of the (relevant) QFT operator dual to the bulk dilaton field ϕ(r), which has a mass m obtained from the form of the

dilaton potential V (ϕ), to be discussed in a moment.

The dimensionless ratio

χ̂B
2 ≡ χB

2

T 2
≡ ∂2(P/T 4)

∂(µB/T )2
(2.17)

corresponds to the reduced second order baryon susceptibility. When evaluated at µB = 0, χ̂B
2 has an integral expression

given by [127, 156]

χ̂B
2 (T, µB = 0) =

1

16π2

s

T 3

1

f(0)
∫∞

rH
dr e−2A(r)f(ϕ(r))−1

, (2.18)

which is to be evaluated over EMD backgrounds generated with the initial condition Φ1 = 0.17 In numerical calculations

[156, 160, 161], one actually takes the following substitutions in Eq. (2.18), rH → rstart and ∞ → rmax, where rstart is

some small number (typically rstart ∼ 10−8) employed to avoid the singular point of the EMD equations of motion at the

rescaled numerical horizon rH = 0, and rmax is a numerical parametrization of the radial position of the boundary, which

is ideally at r → ∞. Of course, it is not possible to use infinity in numerical calculations, and in practice, rmax ∼ 2−10 is

typically enough for the numerical EMD backgrounds to reach, within a small numerical tolerance, the ultraviolet fixed

point of the holographic renormalization group flow associated with the AdS5 geometry. It must be also emphasized that

Eq. (2.18) is not valid at µB ̸= 0. In fact, to calculate the second order baryon susceptibility at finite µB , we take in

practice

χ̂B
2 = ∂(ρB/T

3)/∂(µB/T ) (2.19)

where ρB is the baryon density.

For holographic models where the holographic renormalization procedure is still not implemented, one cannot extract

the pressure (and the energy density) directly from the renormalized on-shell boundary action, since such a quantity is

still not available.18 Nevertheless, in such a case, one may approximate the pressure of the dual QFT fluid as follows (for

motivation. In the holographic formulas reviewed in this paper there is just a single energy scale Λ associated with the nonconformal nature of

the EMD model [156, 160, 161, 157, 158, 159, 162], as mentioned above. In this context, if an observable has energy dimension p, its formula in

the gravity side of the holographic duality gets multiplied by Λp in order to express the corresponding result in the dual QFT at the boundary

in physical units of MeVp.
17Although the holographic mapping (φ0,Φ1) 7→ (T, µB , s, ρB) is highly nontrivial [127, 156, 161], choosing Φ1 = 0 automatically provides

only EMD backgrounds with µB = 0.
18Notice, however, that holographic renormalization has been already successfully implemented for the EMD model of Refs. [165, 166].
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fixed values of µB),

P (T, µB) ≈
∫ T

Tlow

dT s(T, µB), (2.20)

where Tlow is the lowest value of temperature available for all solutions with different values of µB within the set of

EMD black hole backgrounds generated with the grid of initial conditions considered. Eq. (2.20) ceases to be a good

approximation for the pressure for values of T ∼ Tlow.19 The energy density of the medium can be calculated from the

thermodynamic relation,

ϵ(s, ρB) = Ts(T, µB)− P (T, µB) + µBρB(T, µB). (2.21)

The trace anomaly of the energy-momentum tensor (also known as the interaction measure) of the dual QFT at the

boundary is given by,

I(T, µB) = ϵ(T, µB)− 3P (T, µB). (2.22)

The square of the speed of sound in the medium calculated along different trajectories of constant entropy over baryon

number in the (T, µB)-plane is defined as c2s = (dP/dϵ)s/ρB
. For phenomenological applications in the context of heavy-ion

collisions, one can rewrite this c2s in terms of derivatives of (T, µB) [168, 169],

[

c2s(T, µB)
]

s/ρB
=

ρ2B∂
2
TP − 2sρB∂T∂µB

P + s2∂2
µB

P

(ϵ+ P )[∂2
TP∂2

µB
P − (∂T∂µB

P )2]
(2.23)

that provides a much more convenient formula since most equations of state use (T, µB) as the free variables.

The above expressions allow the calculation of the main thermodynamic observables characterizing the equilibrium

state of the QGP. Particularly, in order to fix the free parameters of the EMD model, we take as phenomenological inputs

state-of-the-art continuum extrapolated results from first principles LQCD simulations with 2 + 1 flavors and physical

values of the quarks masses, regarding the QCD equation of state [14] and the second order baryon susceptibility [170],

both evaluated at finite temperature and zero chemical potential. In fact, the choice of an adequate susceptibility is

what seeds the bottom-up EMD model with phenomenological information concerning the nature of the controlling state

variable(s) of the medium besides the temperature.20 In this way, it was constructed in Ref. [160], and latter also used

in Refs. [161, 162, 163], a second-generation improved version of the EMD model (relative to previous constructions

in the literature, namely, the original one in Refs. [127, 128], and the first generation improved EMD model of Refs.

[156, 157, 158, 159]), which is defined by the bulk action (2.3) with the following set of holographically fixed bottom-up

parameters and functions,

V (ϕ) = −12 cosh(0.63ϕ) + 0.65ϕ2 − 0.05ϕ4 + 0.003ϕ6, κ2
5 = 8πG5 = 8π(0.46), Λ = 1058.83MeV, (2.24)

f(ϕ) =
sech(−0.27ϕ+ 0.4ϕ2) + 1.7 sech(100ϕ)

2.7
. (2.25)

A number of observations are in order concerning the forms fixed above for the dilaton potential V (ϕ) and the Maxwell-

dilaton coupling function f(ϕ).

19The reason for taking a finite Tlow instead of zero as the lower limit in the temperature integral of the entropy density in Eq. (2.20) is that

it is numerically difficult to obtain solutions of the EMD equations of motion at very low temperatures. For instance, Tlow = 2 MeV for the

calculations done in Ref. [161]. By varying the value of Tlow it is possible to numerically check the window of values for which the approximate

results for the pressure remain stable within a given numerical tolerance.
20For instance, while the baryon susceptibility is used in the present section, the magnetic susceptibility will be employed in section 3.1

within the context of the magnetic EMD model at finite temperature and magnetic field, but with zero chemical potential.
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First, regarding the dilaton potential, since from the ultraviolet asymptotic expansions for the EMD fields the dilaton

is known to vanish at the boundary for relevant QFT deformations [127], the boundary value V (0) = −12 =̇ 2ΛAdS5

is required in order to recover the value of the negative cosmological constant of AdS5 in the ultraviolet regime, as

ΛAdSd+1
= −d(d−1)/2L2 is equal to −6 for d = 4 and L = 1 (recall that we set here the asymptotic AdS radius to unity).21

One notices from (2.24) that for this EMD model, the dilaton field has a mass squared given by m2 = ∂2
φV (0) ≈ −3.4628,

which satisfies the Breitenlohner-Freedman (BF) stability bound [171, 172] for massive scalar fields in asymptotically AdS

backgrounds, m2 > m2
BF = −d2/4L2 = −4. Also, since the scaling dimension of the QFT operator dual to the dilaton

is ∆ = (d +
√
d2 + 4m2L2)/2 ≈ 2.73294 < d = 4 (which implies that ν ≡ d − ∆ ≈ 1.26706), as anticipated, this is a

relevant operator triggering a renormalization group flow from the AdS5 ultraviolet fixed point towards a nonconformal

state as one moves from the ultraviolet to the infrared regime of the dual QFT, or correspondingly, as one moves from

the near-boundary to the interior of the bulk in the gravity side of the holographic duality. In fact, if one wishes

to introduce a relevant deformation in the dual QFT away from the conformal regime asymptotically attained in the

ultraviolet, and simultaneously satisfy the BF stability bound, then one should engineer the dilaton potential such as

to have ∆BF = 2 < ∆ < d = 4, or equivalently, m2
BF = −4 < m2 < 0. Moreover, the dilaton potential in (2.24)

monotonically decreases from its maximum at the boundary to the deep infrared of the bulk geometry, such that there

are no singular points (associated with local extrema of the potential) in the bulk equations of motion between the

boundary and the black hole horizon, and also, Gubser’s criterion for admissible classical gravitational singularities [173],

V (ϕ(rH)) ≤ V (ϕ(r → ∞) = 0) = −12, is satisfied.

Second, concerning the Maxwell-dilaton coupling function, one should note from Eq. (2.18) that the baryon suscepti-

bility calculated at zero chemical potential cannot fix the overall normalization of f(ϕ). In (2.25) this overall normalization

was chosen such that f(0) = 1, as originally proposed in [127].22 Moreover, by also following [127], we choose f(ϕ) such

that it asymptotically goes to zero for large ϕ(r), in the infrared regime of the theory. However, differently from [127], in

order to obtain a quantitative description of this observable at zero chemical potential one seems to be forced to engineer

a functional form for f(ϕ) such that it presents a very fast variation close to the boundary (i.e., for ϕ(r → ∞) → 0).23

This peculiar feature has been also observed in other bottom-up EMD constructions with different functional forms for

f(ϕ) and which had been proved to quantitatively describe χ̂B
2 (T, µB = 0) from LQCD simulations with 2+1 flavors and

physical values of the quark masses [164, 165].

In Fig. 2.1, we display the improvements in the holographic fits, from three different EMD models in the literature,

taking as the target data to be described the LQCD results for the reduced second-order baryon susceptibility at vanishing

chemical potential — one can also notice the improvements in the lattice results (see the figure caption for the details).

The profile for the Maxwell-dilaton coupling f(ϕ) in Eq. (2.25) was engineered to produce the result in the bottom panel

of this figure, by using Eq. (2.18) evaluated over the zero chemical potential, finite temperature EMD backgrounds.

Those backgrounds, in turn, are generated with the choices of the EMD parameters in Eq. (2.24), which were fixed in

order to produce the results shown in Fig. 2.2 for the holographic equation of state at µB = 0. In Fig. 2.2, the full set of

21We remark that, in spite of the similar notation, the cosmological constant ΛAdS5
= −6 has no relation with the nonconformal energy

scale Λ in (2.24).
22In practice, this choice for the overall normalization of f(φ) can be motivated by the fact that it allows a quantitative description of LQCD

results at nonzero µB , as we are going to see later in this review.
23This is the practical reason for the term ∼ sech(100φ) in (2.25) (the numerical factor of 100 can be substituted by some other ‘large

number’ without considerably affecting the results).

24





LQCD results shown were used as inputs for the model. In particular, using the holographic model it seems very difficult

to quantitatively reproduce the LQCD result for the trace anomaly over the entire temperature interval considered.

With the bottom-up EMD parameters for V (ϕ) fixed in Eq. (2.24) by the results displayed in Fig. 2.2, and the

parameters for f(ϕ) fixed in Eq. (2.25) by the results displayed in the bottom panel of Fig. 2.1, one can proceed to

make holographic predictions for several observables relevant for the physics of the strongly coupled QGP. Aside from the

specific set of LQCD results at µB = 0 used to fix the free parameters of the EMD model, any other calculation follows

as a legitimate prediction of the holographic setup considered.

In order to populate the phase diagram of the model, several EMD black hole solutions are numerically generated

with a set of initial conditions (ϕ0,Φ1/Φ
max
1 ) chosen as indicated in the two top panels of Fig. 2.3 [161], where Φmax

1 =
√

−2V (ϕ0)/f(ϕ0) is a bound on the maximum value of Φ1, given some ϕ0 > 0 (which produces only positive values for the

dilaton field), such as to have asymptotically AdS5 solutions [127]. The corresponding holographic EMD predictions for

the QCD equation of state at finite temperature and baryon chemical potential are also shown in Fig. 2.3 and compared

to state-of-the-art LQCD results at finite baryon density (with µQ = µS = 0, as in the holographic model) [82]. One

notices a good quantitative agreement between the EMD holographic predictions and the lattice results for the QCD

equation of state at finite (T, µB), except for the baryon charge density for T ≳ 190 MeV with µB/T ≳ 2. It is important

to emphasize that the holographic predictions shown in Fig. 2.3 were obtained from the holographic EMD model of

Ref. [160], which was constructed in 2017, 4 years before the publication of the lattice results of Ref. [82]. As far as

we know, this was the first model in the literature, holographic or not, to correctly predict at the quantitative level the

behavior of this state-of-the-art lattice QCD equation of state at finite temperature and baryon chemical potential. In

this regard, it is also important to point out that in the same 2017 paper [160], holographic predictions were put forward

for higher-order baryon susceptibilities at zero chemical potential, which were quantitatively confirmed one year later by

the LQCD simulations of Ref. [177], as depicted in the top panel of Fig. 2.4. This is particularly relevant in order to

show part of the predictive power of holographic EMD models since baryon susceptibilities higher than the second order

one at zero chemical potential were not used to fix the free parameters and functions of the model. Therefore, results for

higher order baryon susceptibilities follow as actual holographic predictions of the EMD model.

A broad scanning of the phase diagram of the EMD model of Ref. [160], comprising not only the crossover region and

the CEP originally reported in this paper, but also the line of first-order phase transition ending at the CEP, was finally

obtained in Ref. [161], thanks to the significant algorithmic and numerical improvements achieved in that work, which

also allowed the calculation of physical observables over the phase transitions regions in the phase diagram of the model.

The EMD model prediction for the QCD phase diagram in the (T, µB)-plane is displayed in the bottom panel of Fig. 2.4,

with the predicted CEP location lying around (T, µB)
[1706.00455]
CEP ≈ (89, 724) MeV. The different curves characterizing the

crossover region refer to characteristic points (extrema or inflections) of different equilibrium and transport observables

that evolve with µB such that they merge at the CEP [162]. The CEP location also coincides with the end of the

coexistence region with multiple black hole solutions with the same values of (T, µB) in the phase diagram of the model,

as displayed in Fig. 2.3 (b). Within this coexistence region, the thermodynamically stable branch of black hole solutions

refers to the backgrounds with the largest pressure (or, equivalently, the smallest free energy). In Ref. [161], also the

discontinuity gaps for all the considered thermodynamic observables were calculated across the first-order phase transition

line.

We remark that the functional forms of V (ϕ) and f(ϕ) are not uniquely fixed by current lattice QCD results. The
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Figure 2.3: From Refs. [161, 162]. (a) Grid of initial conditions for the numerical EMD black hole solutions and (b) the corresponding grid

of points in the (T, µB)-plane of the dual QFT. Predictions for the holographic equation of state at finite temperature and baryon chemical

potential compared to state-of-the-art LQCD results from [82]: (c) pressure, (d) entropy density, (e) energy density and (f) baryon charge

density.
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Figure 2.4: Top panel (from Ref. [163]): EMD holographic predictions for the sixth and eighth order reduced baryon susceptibilities at

zero chemical potential and the corresponding LQCD results from [177] (still not extrapolated to the continuum, but calculated using a lattice

with a temporal extent Nτ = 12). Bottom panel (from Ref. [162]): EMD holographic prediction for the hot and baryon dense QCD phase

diagram.

very same set of LQCD results at µB = 0 [14, 170], which was used to fix the dilaton potential and the Maxwell-dilaton

coupling function for the EMD model of Refs. [160, 161, 162, 163], was also employed to fix different functional forms for

V (ϕ) and f(ϕ) in the EMD model proposed in Ref. [164]. They also found a good quantitative fit to those set of LQCD

results, and a very close result to that of [160] (∆ ≈ 2.73294) for the scaling dimension of the QFT operator dual to the

bulk dilaton field, namely ∆ ≈ 2.769. Although the EMD model of Ref. [164] had not been compared to LQCD results

at finite µB , it predicts a CEP in a different location in the phase diagram, (T, µB)
[1702.06731]
CEP = (111.5± 0.5, 611.5± 0.5)

MeV.

More recently, another competing EMD model was proposed in Ref. [165] that employed the LQCD results for the

equation of state at finite temperature and µB = 0 from the HotQCD collaboration [178] to fix V (ϕ). For the baryon

susceptibility they used the Wuppertal-Budapest results from [82] to fix f(ϕ), also imposing by construction ∆ = 3 for

the scaling dimension of the QFT operator dual to the dilaton. Up until this work from 2022 [165], only the Wuppertal

Budapest LQCD results were used. While the Wuppertal Budapest and HotQCD collaboration results predominately

agree, there are still quantitative differences at large temperatures and the error bars from HotQCD are slightly larger.

Then, the results from [165] also produced a holographic equation of state in good quantitative agreement with the state-

of-the-art LQCD results at finite temperature and baryon chemical potential from Ref. [82], besides a good agreement
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In regions where first-order derivatives of the pressure like the entropy and charge densities change discontinuously there

is a first-order phase transition, while in regions where these derivatives develop an infinite slope, such that second-order

derivatives of the pressure (like the baryon susceptibility and the specific heat) diverge there is a second-order phase

transition. In the bottom panel of Fig. 2.4 the blue line is the first-order phase transition line for the EMD model of Refs.

[160, 161, 162, 163], which ends at the red point corresponding to the second-order critical point of that model. Since the

EMD models reviewed here are associated to effective holographic descriptions of the hot and baryon dense QCD phase

diagram, it is expected that such phase transitions should refer either to the deconfinement and/or to the chiral phase

transition. Notice, however, that in QCD with dynamical fermions, as emulated by the EMD models reviewed here, the

deconfinement transition has no clear order parameter, since the Polyakov loop is only an actual order parameter for pure

Yang-Mills theory [19]. Moreover, since the chiral symmetry is not exact in QCD, also the chiral condensate is not an

exact order parameter for the chiral phase transition. Nonetheless, in order to compute it one needs to add an extra bulk

scalar field to the model, which would play the role of being the source of the chiral condensate at the dual boundary

QFT.24

2.1.2. Holographic transport coefficients

One of the most attractive features of the holographic gauge-gravity duality, when applied to the strongly coupled

QGP, is that, besides the evaluation of thermodynamic observables at finite temperature and baryon density, it also

allows for the calculation of transport coefficients entering as microscopic inputs into hydrodynamic calculations and

also the evaluation of other microscopic properties such as partonic energy loss. These transport observables, which are

of fundamental relevance for the phenomenology of the QGP produced in relativistic heavy-ion collisions, are generally

determined through the holographic duality by employing two kinds of approaches, namely,

i. Hydrodynamic coefficients (such as the first-order shear and bulk viscosity transport coefficients [47, 46, 47, 48, 125,

126, 128, 180, 159, 162] and coefficients associated with higher-order derivative expansions of the energy-momentum

tensor of the boundary QFT [181, 182, 183], besides different conductivities and diffusion coefficients associated with

the transport of conserved charges [128, 157, 159, 162, 184]), and also the thermal production rates of photons and

dileptons within the medium [158, 185], may be evaluated through the use of holographic Kubo formulas obtained via

linear response theory. The Kubo formulas relate transport coefficients to the expectation values of retarded thermal

correlators of gauge invariant operators at the dual QFT, which can be calculated by solving with some adequate

boundary conditions linearized equations of motion for quadratic perturbations of the bulk fields defined at the level of

the bulk action, with these linearized equations of motion for the perturbations being evaluated over the equilibrium

background geometries holographically associated with definite thermal states at the boundary QFT;25

ii. Observables associated with momentum transport and the energy loss of partons within the strongly coupled quantum

fluid are generally evaluated by employing the Nambu-Goto action for strings within different setups (which may

24One possibility is to consider an action for an extra probe scalar field defined on top of the thermodynamic EMD backgrounds, as done

e.g. in Ref. [165]. By following a similar reasoning, one can also add extra probe vector fields with the aim of describing some properties

associated to hadron spectroscopy, as e.g. in Ref. [179]. However, it is clear that such approaches amount to introduce extra fields and free

functions/parameters to the holographic setup, which are not part of the EMD model itself. Also, a more general approach considering the

fully backreacted interaction between the EMD and possible additional fields would constitute a much more difficult task to implement.
25Alternatively, some of these hydrodynamic transport coefficients can also be calculated from the spectra of quasinormal modes in different

channels of holographic gauge-gravity models, see e.g. [181].
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be holographically associated with probe partons traversing the medium described by the background black hole

solutions) [186, 187, 188, 189, 190, 191] (see also [156, 162, 192, 193, 194, 195, 196]).

Let us first review some relevant EMD predictions for a few hydrodynamic transport coefficients, namely the shear

viscosity, bulk viscosity, and baryon conductivity. Afterwards, we shall also briefly review some EMD results for transport

observables associated with partonic energy loss.

Here we will consider the calculation of homogeneous hydrodynamic transport coefficients of the hot and baryon dense

quantum fluid holographically dual to the EMD model close to thermal equilibrium. The SO(3) rotation symmetry of the

isotropic medium classifies into different irreducible representations (also called “channels”) the gauge and diffeomorphism

invariant combinations of the linearized plane-wave EMD field perturbations at the level of the equations of motion,

evaluated at zero spatial momentum [128]. The bulk viscosity of the boundary QFT is holographically dual to the

diffeomorphism and gauge invariant bulk EMD perturbation transforming under the singlet (scalar) representation of

SO(3). The baryon conductivity is dual to the EMD perturbations transforming under the triplet (vector) representation,

and the shear viscosity is dual to the EMD perturbations transforming under the quintuplet (tensor) representation of the

SO(3) rotation symmetry group of the isotropic medium. Indeed, due to the fact that these gauge and diffeomorphism

invariant EMD perturbations transform under different irreducible representations of SO(3), they do not mix at the

linearized level and, consequently, one obtains a single decoupled equation of motion for each of these bulk perturbations

[128, 140].

The tensor components of the isotropic EMD SO(3) quintuplet graviton perturbation are given by five independent

combinations of components of the bulk metric field perturbation sourcing the piece of the boundary energy-momentum

tensor which is traceless and transverse to the fluid flow. These components satisfy the same differential equation,

corresponding to the equation of motion for a massless scalar perturbation over the background geometry considered.

The equation of motion has the same form in the standard and in the numerical coordinates (as a consequence of the

diffeomorphism invariance of these perturbations) [128]. Then, it was shown [128] that the shear viscosity satisfies

η/s = 1/4π ∀ T > 0, µB ≥ 0, as expected since the isotropic EMD model fits into the very broad class of holographic

gauge-gravity models which are translationally and rotationally invariant, besides having two derivatives of the metric field

in the bulk action [46, 47, 48]. However, the natural dimensionless ratio for the shear viscosity at finite baryon densities is

no longer simply η/s, but rather ηT/(ϵ+P ) [197, 198]. This dimensionless ratio reduces to η/s when evaluated at µB = 0,

developing a nontrivial behavior as a function of (T, µB) at nonzero baryon densities. ηT/(ϵ + P ) has been analyzed in

detail across the phase diagram of the EMD model in Ref. [162], where it was shown that ηT/(ϵ + P ) decreases with

increasing values of µB . In that work, ηT/(ϵ+P ) developed an inflection point and a minimum, with the former evolving

toward the CEP of the model, where it acquires an infinite slope. For larger values of the baryon chemical potential and

lower temperatures, ηT/(ϵ+ P ) develops a discontinuity gap across the first-order phase transition line of the model, as

depicted in Fig. 2.6 (a). With the overall reduction in the value of ηT/(ϵ + P ) with increasing µB , the EMD model

predicts that the QGP becomes even closer to the perfect fluid limit in its baryon-dense regime.

The three vector components of the EMD SO(3) triplet perturbation are associated with the spatial components of

the perturbation of the bulk Maxwell field sourcing the baryon vector current at the dual boundary QFT. Again, due

to the spatial isotropy of the medium, these vector components satisfy a single decoupled equation of motion. One may

consider the bulk spatial Maxwell perturbation, a ≡ ai, i ∈ {x, y, z}, to calculate in holography the baryon conductivity,
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which gives the same result in any direction. The equation of motion for the vector perturbation [128] is

a′′(r, ω) +

[

2A′(r) +
h′(r)

h(r)
+

∂φf(ϕ)

f(ϕ)
ϕ′(r)

]

a′(r, ω) +
e−2A(r)

h(r)

[

ω2

h(r)
− f(ϕ)Φ′(r)2

]

a(r, ω) = 0, (2.26)

where ω is the frequency of the plane-wave ansatz for the Maxwell perturbation and the prime denotes the radial

derivative. One must solve Eq. (2.26) imposing the infalling wave boundary condition for the Maxwell perturbation at

the background black hole horizon. In holography, this is equivalent to solving for the retarded thermal correlator of the

boundary baryon vector current operator with the further requirement that the Maxwell perturbation is normalized to

unity at the boundary [128]. These two boundary conditions may be systematically implemented by writing the Maxwell

perturbation as follows [162],

a(r, ω) ≡ r−iωP (r, ω)

r−iω
maxP (rmax, ω)

, (2.27)

where rmax is a numerical parametrization of the boundary (see below Eq. (2.18)), and P (r, ω) is a regular function at

the black hole horizon, whose equation of motion is obtained by substituting (2.27) into (2.26). The holographic Kubo

formula for the baryon conductivity in the EMD model in physical units of MeV [128, 157, 159, 162] is given by

σB(T, µB) = − 1

2κ2
5ϕ

1/ν
A

lim
ω→0

1

ω

(

e2A(r)h(r)f(ϕ)Im[a∗(r, ω)a′(r, ω)]
)

∣

∣

∣

∣

on-shell

Λ [MeV], (2.28)

where the term between brackets in Eq. (2.28) is a radially conserved flux that can be calculated at any value of the

radial coordinate. The details regarding the numerical procedure are discussed in [162].

The dimensionless ratio σB/T has been analyzed in detail in Ref. [162] where it was shown that it generically increases

with the temperature, as displayed in Fig. 2.6 (b). For σB/T there is a temperature window from T ∼ 150 − 180 MeV

where the different curves at fixed values of µB approximately cross. For values of temperature above this crossing

window, T > 180 MeV, σB/T decreases with increasing µB , whereas the opposite behavior is observed for temperatures

below the crossing window, T < 150 MeV. One also notices that at the CEP of the model, the baryon conductivity is finite

and develops an infinite slope, with a small discontinuity gap being observed across the first-order phase transition line

at larger values of µB and lower values of T . In Ref. [162], it was also calculated the second-order baryon susceptibility,

χB
2 , and the baryon diffusion coefficient, DB across the phase diagram of the EMD model. It was found that χB

2 diverges

at the critical point (a universal feature of all critical points) whereas DB → 0 at the CEP, since DB = σB/χ
B
2 and σB

remains finite at the critical point of the EMD model.

We remark that the baryon conductivity measures how the system, and more specifically its baryon current, responds

to gradients of baryon chemical potential. Therefore, it is also directly proportional to the diffusion of baryon number

— that is, to how gradients of baryon number dissipate in the medium, with the proportionality factor corresponding

to the baryon susceptibility. Observable effects of a diffusive baryon current in relativistic heavy-ion collisions were

investigated, for instance, in Ref. [199]. Based on 3 + 1 hydrodynamic simulations of heavy-ion collisions, effects of the

baryon conductivity were found on the difference between proton and antiproton mean transverse momentum, as well as

on the difference between proton and antiproton elliptic flow. Understanding the dissipative dynamics of baryon number

is particularly important for the theoretical modeling of relativistic heavy-ion collisions at lower beam energies, and,

therefore, for the experimental exploration of the QCD phase diagram.

The traceful and transverse piece of the boundary energy-momentum tensor Tµν is associated with the bulk viscous

pressure of the medium. Note that Tr [Tµν ] ̸= 0 in nonconformal boundary QFTs, where the trace anomaly of Tµν is

related to the bulk dilaton field. The scalar EMD SO(3) singlet perturbation is composed by the spatial trace of the
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Figure 2.6: From Ref. [162]. Dimensionless combinations involving: (a) the shear viscosity, (b) the baryon conductivity, and (c) the bulk

viscosity, calculated as functions of the temperature and the baryon chemical potential of the medium. The different observables develop

an infinite slope at the CEP located at (T, µB)CEP ≈ (89, 724) MeV while displaying discontinuity gaps across the line of first-order phase

transition at larger values of µB and lower values of T . (d) We also show the comparison between the holographic EMD prediction for the

specific bulk viscosity of the QGP at zero baryon chemical potential and the results favored by the phenomenological multistage models from

Ref. [33] (blue band - the same one plotted on the left side of Fig. 1.3) and from Ref. [32] (red band).

34



graviton and the dilaton perturbation. The singlet perturbation sources the traceful part of Tµν , being holographically

related to the bulk viscosity. Denoting the singlet perturbation by H, its equation of motion [128] is shown to be given

by

H′′ +

[

4A′ +
h′

h
+

2ϕ′′

ϕ
− 2A′′

A′

]

H′ +

[

e−2Aω2

h2
+

h′

h

(

A′′

A′
− ϕ′′

ϕ′

)

+
e−2A

hϕ′
(3A′∂φf(ϕ)− f(ϕ)ϕ′) Φ′2

]

H = 0, (2.29)

which must be solved with infalling boundary condition at the background black hole horizon and normalized to unity at

the boundary. In practice this is implemented by setting,

H(r, ω) ≡ r−iωF (r, ω)

r−iω
maxF (rmax, ω)

, (2.30)

where F (r, ω) is a regular function at the black hole horizon, whose equation of motion is obtained by substituting (2.30)

into (2.29).

The holographic Kubo formula for the bulk viscosity in the EMD model [128, 159, 162] is

ζ

s
(T, µB) = − 1

36π
lim
ω→0

1

ω

(

e4A(r)h(r)ϕ′(r)2Im[H∗(r, ω)H′(r, ω)]

A′(r)2

)
∣

∣

∣

∣

on-shell

, (2.31)

where the term between brackets in Eq. (2.31) is a radially conserved flux that may be evaluated at any value of the radial

coordinate. The details concerning the numerical calculations are discussed in [162]. At µB = 0, the numerical results

obtained using this holographic formula were checked to be the same as the holographic formula provided in [125, 126] by

following a different approach based on the r = ϕ gauge. The latter approach, however, does not seem to be extensible

to finite µB calculations.

Similarly to shear viscosity at µB > 0, one can no longer use ζ/s as the natural hydrodynamic expression, but instead

the dimensionless combination ζT/(ϵ+P ) that reduces to ζ/s at µB = 0. ζT/(ϵ+P ) was analyzed in detail in Ref. [162],

where it was shown that ζT/(ϵ + P ) develops a peak in the crossover region at µB = 0. In contrast to older versions

of the EMD model from Refs. [128, 159], this peak does not move toward the CEP of the model as one increases µB .

Instead, in the EMD model of Ref. [162], the location of the peak in ζT/(ϵ+ P ) moves to slightly higher values of T as

the baryon density increases. While in the original EMD construction of Ref. [128] the height of the peak of ζT/(ϵ+ P )

remains approximately constant as µB increases toward the CEP, both in the second generation improved EMD model

of Ref. [162] (see Fig. 2.6 (c) ) and in the first generation improved model of Ref. [159] the magnitude of the peak of

ζT/(ϵ+ P ) reduces as one increases the value of µB . Therefore, the behavior of the peak of ζT/(ϵ+ P ) is clearly model

dependent within the class of holographic EMD constructions.

In Fig. 2.6 (c) at different values of µB , ζT/(ϵ + P ) starts to develop both an inflection point and a minimum as a

function of T , with both characteristic points evolving toward the CEP location as the baryon density of the medium

is increased (see also the bottom panel in Fig. 2.4). At the CEP, ζT/(ϵ + P ) acquires an infinite slope, while further

developing discontinuity gaps across the first-order phase transition line of the EMD model. Similarly to what happens

with the shear viscosity, the magnitude of the bulk viscosity is also suppressed with increasing values of µB . This overall

suppression of viscous effects within the strongly coupled medium maybe constitutes a robust property of holographic

EMD models seeded with lattice QCD inputs, since this same qualitative behavior has been also observed in the older

versions of the EMD model of Refs. [128, 159].

In Fig. 2.6 (d), we show the comparison between the EMD prediction for [ζ/s](T ) at µB = 0 to extracted values of

[ζ/s](T ) from recent Bayesian analyses [32, 33] that simultaneously describe several experimental heavy-ion data. The

holographic EMD prediction for [ζ/s](T ) is in the ballpark of values favored by state-of-the-art phenomenological models.
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Considering that η/s (for any holographic model) is in the correct magnitude for extracted η/s from experimental data

and that there is quantitative agreement for the equation of state as well (see Figs. 2.3 and 2.4) between the EMD

predictions and the QCD equation of state and susceptibilities at finite (T, µB), there is reasonable evidence for the

practical and quantitative applicability of bottom-up EMD holography as an effective modeling of the strongly coupled

QGP produced in heavy-ion collisions. This argument will be further strengthened in section 3.1, when we will discuss

the applicability of the magnetic version of the EMD model at finite temperature and magnetic fields to the physics of

the hot and magnetized QGP.

The fact that at the CEP of the EMD model the baryon conductivity and also the shear and bulk viscosities remain

finite indicates that the EMD model is compatible with the model B dynamical universality class [200]. This seems to be

a common feature of large Nc gauge theories (as in any holographic gauge-gravity model) [201], and it is different from

general expectations for Nc = 3 QCD, where these three observables are expected to diverge at the CEP [202, 203, 204],

in compatibility with the model H dynamical universality class [200].

It is also informative to briefly comment on some results obtained from the calculation of the spectra of homogeneous

quasinormal modes (QNMs) in the SO(3) quintuplet, triplet, and singlet channels of the EMD model [163]. In fact, the

QNMs of asymptotically AdS black holes [139, 140, 141, 205, 206] encode a wide range of physical information concerning

the holographic dual QFT linearly perturbed out of thermal equilibrium.

The near-boundary expansions of the perturbed bulk fields typically feature a leading order non-normalizable mode and

a subleading normalizable mode for each field perturbation. The leading modes source the corresponding local and gauge

invariant operators at the dual boundary QFT, while the subleading modes are associated with the expectation values of

these operators. If one sets the subleading modes to zero at the boundary and imposes the infalling wave condition at the

black hole horizon, the corresponding solutions to the linearized equations of motions for the bulk perturbations can be

used to evaluate the on-shell action and obtain the retarded thermal correlators of the dual QFT, which are associated

through Kubo formulas to transport coefficients of the strongly coupled quantum fluid. For transport coefficients extracted

from the imaginary part of the Green’s functions, this procedure is physically equivalent to the calculation of transport

coefficients through the use of radially conserved fluxes, which has been discussed before.

On the other hand, since the retarded thermal correlators of the dual QFT are given by minus the ratio between the

subleading and the leading modes of the bulk perturbations [207], by setting these leading modes to zero at the boundary

and imposing the causal infalling wave condition at the black hole horizon, one gets the poles of these Green’s functions.

Since the frequency eigenvalue problem for QNMs defined on asymptotically AdS spacetimes is precisely defined by the

Dirichlet boundary condition corresponding to the vanishing of these leading modes at the boundary [140],26 one sees

that the QNMs describing the exponential decay of linear perturbations of asymptotically AdS black holes holographically

correspond to the poles of retarded thermal Green’s functions at the dual QFT. These, in turn, describe hydrodynamic

and non-hydrodynamic dispersion relations of collective excitations in the strongly coupled quantum fluid, in terms of

which it is possible to calculate, respectively, some hydrodynamic transport coefficients [181, 208] (in an alternative way to

the more direct method of holographic Kubo formulas previously discussed) and also some upper values for characteristic

equilibration times of the dual QFT linearly perturbed out of equilibrium.

26Notice this is different from the calculation of transport coefficients discussed before, where these leading modes for the on-shell perturba-

tions of the bulk fields were normalized to unity at the boundary.
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Indeed, as discussed in [139], the non-hydrodynamic QNMs27 with the lowest absolute value of its imaginary part, cor-

responding to the longest-lived non-hydrodynamic excitations of the system, give upper bounds for different equilibration

times of the medium close to thermal equilibrium. From the lowest homogeneous non-hydrodynamic QNMs in the SO(3)

quintuplet, triplet, and singlet channels of the EMD model of Ref. [163], it has been shown that the equilibration times

in these different channels are very close to each other at high temperatures while developing a pronounced separation at

the CEP. This result indicates that the energy-momentum tensor dual to the bulk metric field, the baryon current dual

to the bulk Maxwell field, and the scalar condensate dual to the bulk dilaton field, equilibrate at considerably different

rates in the critical regime of the EMD model, with the baryon current taking the longest time to approach thermal

equilibrium, while the energy-momentum tensor generally equilibrates faster than the other observables, also within the

regions of the phase diagram far from the criticality. Moreover, in most cases, the characteristic equilibration times of

the medium decrease with increasing values of the baryon chemical potential, while strongly increasing with decreasing

values of temperature.

There have been also various holographic calculations of transport coefficients associated with partonic energy loss

within strongly coupled quantum fluids, such as the energy loss of heavy quarks due to the heavy quark drag force

[186, 187], the Langevin momentum diffusion coefficients for heavy quarks [188, 189], and the jet quenching parameter

associated with the energy loss of light partons moving at the speed of light [190, 191]. These energy loss transport

coefficients are evaluated by considering different calculations done with a probe Nambu-Goto (NG) action for a classical

string defined over the background solutions for the bulk fields. The NG action depends on
√
λt, where the ‘t Hooft

coupling is typically considered in holographic calculations as an extra free parameter. In principle, this parameter may

be fixed in different ways by considering holographic observables calculated with the NG action compared to different

kinds of phenomenological data (see e.g. Refs. [156, 209]). For the class of isotropic EMD models at finite temperature

and baryon density, the holographic formulas for these partonic energy loss observables were derived in Ref. [156]. The

corresponding results for the improved EMD model [162] were numerically calculated across its phase diagram, including

the regions with the CEP and the line of first-order phase transition. It was found that the heavy quark drag force and

energy loss, the Langevin momentum diffusion, and the jet quenching parameter are all enhanced by increasing the baryon

density of the medium toward the critical region of the phase diagram. In fact, faster partons are more sensitive to the

temperature and baryon chemical potential of the medium. Those results indicate that there is more jet suppression and

partonic energy loss in the baryon-dense regime of the fluid. All of these observables developed an infinite slope at the

CEP, while displaying large discontinuity gaps across the line of first-order phase transition. In the bottom panel of Fig.

2.4 some crossover characteristic curves (made of sequences of inflection points or extrema) of these observables converging

to a single location corresponding to the CEP are displayed with other characteristic curves for different observables of

the model — see Ref. [162] for details.

2.1.3. Holographic Bayesian analysis

The results for the EMD model discussed above rely on the choice of holographic potentials V (ϕ) and f(ϕ). That is,

calculations require that suitable functional forms are provided, along with the corresponding parameters. As discussed

above, several competing parametrizations for these functions can be found in the literature, but no systematic comparison

27Non-hydrodynamic QNMs are associated with collective excitations of the medium with nonvanishing frequencies even in the homogeneous

regime of perturbations with zero wavenumber.
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Prior

Parameter min max

Λ 400 MeV 1400 MeV

κ2 9.0 15.0

γ1 0.40 0.57

γ2 0.50 0.68

∆ϕV 1.5 3.0

A 0.25 0.50

ϕ1 -0.1 0.5

δϕ1 (J) 10−5 0.3

ϕ2 0.8 4.5

δϕ2 0.2 4.0

Posterior 95% CI

Parameter min max best value

Λ 862 MeV 1043 MeV 955 MeV

κ2 11.3 11.5 11.4

γ1 0.50 0.54 0.52

γ2 0.60 0.62 0.61

∆ϕV 1.6 2.1 1.8

A 0.369 0.374 0.371

ϕ1 0.000 0.025 0.002

δϕ1 (J) 0.0001 0.0032 0.0003

ϕ2 2.1 2.3 2.2

δϕ2 0.65 0.73 0.69

Table 2.1: Prior ranges (left) and 95% confidence intervals for the posterior distribution (right) for parameters of the parametric ansatz for

the EMD model, fit to reproduce the baryon susceptibility and the entropy density from lattice QCD at µB = 0, within error bars [14, 82].

The symbol ‘(J)’ marks δφ1, for which Jeffreys prior, uniform over its logarithm, was taken instead of a uniform distribution.

between them has been performed thus far. A pressing question regarding any particular parametrization of the EMD

model concerns how much of its predictions are informed by lattice QCD results used to fit the different parameters, and

how robust they are against uncertainties in these results. Such issues can only be addressed by quantifying uncertainties

in V (ϕ) and f(ϕ) and systematically comparing different parametrizations.

The tools required for a systematic analysis of parameter sensitivity and uncertainty quantification in modeling

the QCD equation of state can be found in the framework of Bayesian statistical inference [210, 211]. In recent years,

Bayesian statistics have become the state-of-the-art tool for systematically assessing models and hypotheses across high-

energy physics, including neutron-star [212, 213, 214, 215] and heavy-ion physics [32, 33, 44, 216, 217, 218]. The core

tenet of Bayesian inference resides in Bayes’ theorem:

P (M (θ)|D) =
P (D|M (θ))× P (M (θ))

P (D)
, (2.32)

where D represents the data and M (θ) is a given model with parameters θ. Equation (2.32) follows from expressing

the joint probability P (D ∩M (θ)) in terms of the associated conditional probabilities P (M (θ)|D) and P (D|M (θ)). The

conditional distribution P (M (θ)|D) is called the posterior and can be used to discriminate between different parameter

sets θ. It is the product of the likelihood P (D|M (θ)), quantifying agreement between model and data, and the prior

P (M (θ)), which assigns a priori weights to the different parameter sets to reflect prior knowledge. The denominator P (D)

on the right-hand side of Eq. (2.32) is known as the evidence and can be obtained as a normalization constant.

Recently, an improved numerical implementation of the EMD model developed within the MUSES Collaboration has

enabled a Bayesian analysis over lattice QCD results for the zero-density equation of state [219]. In Eqs. (2.24) and (2.25),

the very nonlinear character of the potentials over ϕ make functional forms, such as seen in Fig. 2.5, highly sensitive to

precise parameter values. A complete Bayesian analysis is presented in [219], while here, we briefly highlight and explain

the results obtained from an initial analysis.

New parametric ansatze for the free functions V (ϕ) and f(ϕ) of the holographic EMD action (2.3) are introduced to
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[82], shown as wide bands with the same color scheme. While it is not apparent at first sight, thousands of lines are

shown over each band in Fig. 2.7. Remarkably, the zero-density equation of state constrains the model parameters so

tightly that these lines accumulate in what appears to be a very thin band.

Constraining the model with input from lattice QCD in this fashion, one is able to extract predictions at higher

densities, and even around the QCD phase transition. Because it generates a large set of model realizations, this Bayesian

analysis of the EMD model will also enable the investigation of the role of each different model parameter, both in

predictions and in fitting lattice results. Perhaps even more importantly, this kind of analysis provides the possibility

of assigning probabilities to predictions and hypotheses. In principle, Bayesian model selection can also be used to

discriminate between different models. Overall, the combination of bottom-up holographic models with Bayesian tools

thus provides a promising tool for extrapolating knowledge on the low-density and high-temperature QCD equation of

state to higher densities in a partially systematic way. Because of its ability to capture the physics of the strongly coupled

QGP in the crossover region, the EMD model is a particularly fitting candidate for this task.

2.2. Other holographic models

Although the focus of the present review is on the results from bottom-up holographic EMD models for the hot

and baryon-dense QCD phase diagram, in this section, we briefly mention some results obtained from other kinds of

holographic constructions.

Within the broad class of bottom-up Einstein-Dilaton constructions, but without considering the effects of flavor

dynamics effectively enclosed in the form of the dilaton potential matched to the corresponding LQCD results, as originally

proposed in Refs. [124, 125, 127, 128], there is the so-called class of “Improved Holographic QCD” (ihQCD) models

originally devised in Refs. [222, 223], and further reviewed in [138]. Due to the fact that flavor dynamics are not taken

into account in those ihQCD models, such a class of bottom-up holographic constructions actually refers to effective models

for pure Yang-Mills systems, instead of QCD. In a pure YM system at T = 0 at large color-charge separations, there is

a linear confining potential for infinitely heavy probe quarks as well as a mass gap featured in the physical spectrum of

glueball excitations, which are both well described by ihQCD models. In contrast to the deconfinement crossover observed

in actual QCD with 2+1 dynamical quark flavors, pure YM theory has a first-order phase transition between a confining

gas of glueballs and a deconfined phase corresponding to a pure gluon plasma. At finite temperature the ihQCD models

are able to achieve this first-order phase transition, just like what is seen in pure YM theory. However, η/s = 1/4π in

these ihQCD models that demonstrates the theory is strongly coupled at all energy scales and, therefore, misses crucial

properties related to asymptotic freedom in the ultraviolet. As explicitly shown in Ref. [129], higher curvature corrections

to ihQCD models can provide a nontrivial temperature dependence for [η/s](T ), allowing this observable to acquire a

similar profile to what is expected for pure YM and also QCD matter where [η/s](T ) is expected to largely increase with

the temperature of the medium in the ultraviolet regime due to asymptotic freedom. Simple Einstein’s gauge-gravity

models with two derivatives of the metric field in the bulk gravity action lack asymptotic freedom, while the consideration

of higher curvature corrections for the bulk action is associated with corrections that reduce the value of the effective ‘t

Hooft coupling of the dual QFT at the boundary.

Generalizations of the original ihQCD constructions for pure YM systems that consider a very large number Nf of
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qualitatively the correct LQCD behavior for this observable below the pseudocritical temperature. Indeed, while in actual

QCD with 2 + 1 flavors there is no phase transition at µB = 0 between the hadron gas and QGP regimes, but just an

analytical crossover [13, 15], in the holographic V-QCD approach there is a first-order phase transition [224], which is

reminiscent from the ihQCD backgrounds embedded in such constructions. Therefore, keeping in mind the limitations

and shortcomings stated in section 2.1, it is fair to say that the EMD class of holographic models discussed in this review

remains the leading description to provide a quantitative description of lattice results on actual QCD thermodynamics

with 2 + 1 dynamical flavors with physical quark masses, both at zero and finite baryon density.

Another class of holographic models, but of top-down nature, which has been extensively studied in the literature,

mainly connected to spectroscopic properties of QCD, is the so-called Witten-Sakai-Sugimoto model [87, 232, 233] —

see also [234] for a review.29 This kind of holographic model has not been shown to be able to provide an accurate

quantitative description of first principles lattice results of hot QCD thermodynamics with dynamical quark flavors. On

the other hand, in Ref. [235] the Witten-Sakai-Sugimoto approach has been employed to provide a phenomenologically

realistic description of cold and dense nuclear matter at zero temperature, which is in good agreement with some known

theoretical and observational constraints regarding the physics of neutron stars. See also the recent review [112] for a

broad discussion on the holographic modeling of compact stars.

29This top-down holographic construction stems from Type IIA instead of Type IIB superstring theory. Contrary to most gauge-gravity

models, the background geometries in the Witten-Sakai-Sugimoto model are not asymptotically AdS and feature a dilaton field that diverges

at the boundary, consequently, the Witten-Sakai-Sugimoto model has no ultraviolet fixed point [112].
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3. Holographic models for the hot and magnetized quark-gluon plasma

The QCD phase diagram is not just a function of (T, µB) but is also dependent on the chemical potentials for

strangeness (µS) and electric charge (µQ), electromagnetic fields, the number of flavors relevant for a given physical

environment, etc. By varying the centrality class of heavy-ion collisions it is possible to investigate the phase diagram of

QCD in the plane of temperature and magnetic field, (T, eB). The most intense magnetic fields ever created by humankind

are reached in high-energy peripheral heavy-ion collisions at RHIC (eBmax ∼ 5m2
π ∼ 0.09 GeV2 for Au+Au collisions at

center of mass energies of
√
sNN = 200 GeV with an impact parameter of b ∼ 12 fm) and at the LHC (eBmax ∼ 70m2

π ∼ 1.3

GeV2 for Pb+Pb collisions at center of mass energies of
√
sNN = 2.76 TeV with an impact parameter of b ∼ 13 fm) 30

— see e.g. Fig. 2 in [236]; see also Refs. [237, 238, 239, 240, 241]. The study of the QCD matter under the influence of

strong magnetic fields is also relevant in the context of the physics of magnetars [242] and of the early universe [243, 244],

making it a very active research field in recent years see, e.g., [245, 246, 247, 248, 249, 250, 251, 252, 253].

Even though very intense magnetic fields are produced in the early stages of noncentral heavy-ion collisions, being

therefore important in those initial stages, due to the receding spectator hadrons fastly leaving the collision zone, one

generally expects the magnitude of such strong magnetic fields to have significantly decayed by the time the QGP is

formed [254]. Early papers argued that by considering effects due to the electric conductivity induced in the medium

[255, 256] and the quantum nature of the sources of such fields [257], the decay of the magnetic field may be considerably

delayed within the medium. More recently in [258] it was argued that an incomplete electromagnetic response of the

medium to the decaying external magnetic field that is associated with an induced electric current that is lower than

expected by Ohm’s law, leads to a strong suppression in the magnitude of the induced magnetic field in the medium (two

orders below previous estimates in the literature done by assuming the validity of Ohm’s law). This argument may help

to explain the consequences of the recent STAR isobar run [259] where it was originally thought that strong magnetic

fields would lead to the chiral magnetic effect.

Nonetheless, it is interesting to investigate the structure of the QCD phase diagram in the (T, eB)-plane from a

theoretical perspective. At low temperatures the magnitude of the chiral condensate is enhanced with increasing magnetic

fields constituting the so-called magnetic catalysis phenomenon [260]. However, for higher temperatures slightly above

the QCD crossover region, the inverse effect is observed with a reduction in the magnitude of the chiral condensate and

a decreasing pseudocritical crossover temperature for increasing values of the magnetic field, known as inverse magnetic

catalysis (or magnetic inhibition) as found in the first principles lattice QCD simulations of Refs. [239, 261, 262, 263, 264],

see also [265]. There is also a prediction [266] that a first-order phase transition line ending at a critical point exists in

the (T, eB)-plane of the QCD phase diagram for very high values of the magnetic field, eB ∼ 4− 10(2) GeV2 [267, 268],

although current lattice simulations [264] for the QCD equation of state with 2 + 1 flavors and physical values of the

quark masses only found an analytic deconfinement crossover for values of 110 MeV < T < 300 MeV and eB ≲ 0.7 GeV2.

Various holographic models have been proposed in the literature to study different aspects of strongly coupled quantum

systems under the influence of external magnetic fields, with either a more qualitative view towards different physical

observables calculated from holographic methods — see e.g. [269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280,

281, 282, 283, 284, 285, 286, 287, 288, 289, 290], or with a more quantitative perspective aimed towards direct comparisons

with results from first principles LQCD calculations — see, for instance, [209, 291, 292, 293].

30We note that eB = 1 GeV2 ⇒ B ≈ 1.69× 1020 G.
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In the present section, we focus on quantitative holographic EMD predictions for some thermodynamic and transport

observables of the hot and magnetized strongly coupled QGP.

3.1. Magnetic Einstein-Maxwell-Dilaton models

The first phenomenological magnetic holographic EMD model at finite temperature with a constant external magnetic

field (and µB = 0) was [291]. This model generalized the isotropic approach considered in the previous section to

anisotropic EMD backgrounds with the SO(3) rotation symmetry broken down to SO(2) in the transverse plane to the

magnetic field. The general form of the bulk action in this case is the same as in Eq. (2.3), but the Maxwell-dilaton

coupling function f(ϕ) must be different from the case at finite temperature and baryon chemical potential. In the EMD

model at finite (T, µB), f(ϕ) effectively represents the coupling associated with the conserved baryon current, with this

coupling being dynamically fixed in the holographic setup by matching the LQCD baryon susceptibility evaluated at

finite temperature and zero chemical potential, as discussed in section 2.1.1. In the case of the magnetic EMD model at

finite (T, eB) the coupling must be associated with the electric sector, instead of the baryon sector of the dual QFT at

the boundary. Then, instead of the baryon susceptibility the phenomenological input seeded to the holographic model to

“teach” the asymptotically AdS black hole backgrounds to behave as a hot and magnetized QGP, is the LQCD magnetic

susceptibility evaluated at finite temperature and zero magnetic field.31

We shall review the main aspects of this endeavor in the next section, but before that, paralleling the discussion

made in section 2.1.1 for the improvements done through the years regarding the EMD model at finite (T, µB), we briefly

comment below on the improvements done also in the construction of the magnetic EMD model at finite (T, eB).

The original construction at finite (T, eB) presented in Ref. [291] has the same set of free parameters {G5,Λ, V (ϕ)}
of the first generation improved EMD model of Refs. [156, 157, 158, 159], meaning that both models represent the same

system at finite temperature when the baryon chemical potential and the magnetic field are turned off. On the other

hand, as already mentioned, the Maxwell-dilaton coupling f(ϕ) for the magnetic EMD model is different from the baryon

dense model. In Ref. [292] it was constructed an improved version of the magnetic EMD model (with this improved

version being also used in Refs. [209, 293]), where the set of free parameters and functions {G5,Λ, V (ϕ), f(ϕ)} was

updated by performing a better matching procedure to more recent lattice results on the QCD equation of state and

magnetic susceptibility at finite temperature and zero magnetic fields. The set of improved free parameters {G5,Λ, V (ϕ)},
originally obtained in Ref. [292] for the improved magnetic EMD model, was later employed also in the second generation

improved EMD model of Refs. [160, 161, 162, 163] describing a baryon dense medium. In what follows, we mainly review

the results for physical observables calculated with the improved version of the magnetic EMD model at finite (T, eB)

from Refs. [209, 292, 293].

31In principle, one could also choose to use the electric susceptibility, instead of the magnetic susceptibility, in order to fix the Maxwell-dilaton

coupling f(φ) for the electric sector of the dual QFT at the boundary. However, as discussed in Appendix A of Ref. [291], a simple EMD model

is not versatile enough to adequately cover the entire electromagnetic sector of the QGP, in the sense that by fixing f(φ) by matching the LQCD

electric susceptibility, one obtains a holographic prediction for the magnetic susceptibility in disagreement with the corresponding LQCD result,

and vice-versa. Therefore, it seems unfeasible to obtain a simultaneously good description of QCD magnetic and electric response functions

using a single EMD model. Consequently, in order to describe magnetic field-related phenomena, one chooses the magnetic susceptibility as a

phenomenological input to fix f(φ) within the holographic EMD approach.
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3.1.1. Anisotropic holographic thermodynamics

The general EMD equations of motion obtained from the bulk action (2.3) are given by Eqs. (2.5) — (2.7). The

presence of a constant external magnetic field, which we arbitrarily take to be directed along the z-axis, breaks the SO(3)

rotation symmetry of the dual QFT down to SO(2) rotations around the direction of the magnetic field. This symmetry

breaking implies that the ansatz for the bulk metric field must be anisotropic when the magnetic field is turned on. Thus,

for the description of a hot and magnetized fluid in thermodynamic equilibrium, we take the following anisotropic and

translationally invariant charged black hole ansatze for the bulk EMD fields [291, 292],

ds2 = gµνdx
µdxν = e2a(r)

[

−h(r)dt2 + dz2
]

+ e2c(r)(dx2 + dy2) +
dr2

h(r)
,

ϕ = ϕ(r), A = Aµdx
µ = Bxdy ⇒ F = dA = Bdx ∧ dy, (3.1)

where B is the constant magnetic field expressed in the numerical coordinates. By substituting the ansatze (3.1) into

the general EMD field equations (2.5) — (2.7), one obtains the following set of coupled ordinary differential equations of

motion [291, 292],

ϕ′′ +

(

2a′ + 2c′ +
h′

h

)

ϕ′ − 1

h

(

∂V (ϕ)

∂ϕ
+
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a′

2
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)

h′

h
+ 4a′c′ +

1

2h

(

V (ϕ) +
B2e−4c

2
f(ϕ)

)

= 0, (3.6)

where Eq. (3.6) is a constraint. The steps used to numerically solve the above equations of motion for a given pair

of initial conditions (ϕ0,B) are discussed in detail in Refs. [292, 293] (with algorithmic and numerical improvements

regarding the original approach devised in [291]). Similarly to the EMD model at finite temperature and baryon density

discussed in section 2.1.1, one extracts the following set of ultraviolet expansion coefficients required for the holographic

calculation of several thermodynamic observables: {hfar
0 , afar

0 , cfar0 , ϕA} from the numerical solutions for the background

anisotropic EMD fields at finite temperature and magnetic field evaluated near the boundary. From these ultraviolet

coefficients one can write down the following holographic formulas for the temperature T , the electric charge e times

the constant external magnetic field B at the boundary (expressed in standard coordinates), and the entropy density s

(measured, respectively, in units of MeV, MeV2, and MeV3) [291, 292, 293],

T =
1

4πϕ
1/ν
A

√

hfar
0

Λ, eB =
e2(a

far

0 −cfar0 )B
ϕ
2/ν
A

Λ2, s =
2πe2(a

far

0 −cfar0 )

κ2
5ϕ

3/ν
A

Λ3, (3.7)

where the energy scale Λ, as well as the 5D Newton’s constant and the dilaton potential are the same as given in Eq.

(2.24). In order to fix the Maxwell-dilaton coupling function f(ϕ) for the magnetic EMD model at finite temperature

and magnetic field, one needs to dynamically match the holographic magnetic susceptibility at finite temperature and

zero magnetic field with the corresponding LQCD result. As discussed in [291], the holographic EMD formula for the

regularized magnetic susceptibility evaluated at finite temperature and zero magnetic field may be written as follows in
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the numerical coordinates,32

χ(T,B = 0) = χbare(T,B = 0)− χbare(Tlow, B = 0) = − 1

2κ2
5

[(

1
√

hfar
0

∫ rvar

max

rstart

drf(ϕ(r))

)

∣

∣

∣

∣

T,B=0

− (same)

∣

∣

∣

∣

Tlow,B=0

]

on-shell

,

(3.8)

where rvar
max ≡

√

hfar
0

[

r̃fixed
max − afar

0 + ln
(

ϕ
1/ν
A

)]

, with r̃fixed
max being a fixed ultraviolet cutoff in standard coordinates which

must be chosen such that the upper limits of integration in Eq. (3.8) satisfy rconformal ≤ rvar
max ≤ rmax for all the

background geometries under consideration. We remark that rconformal is a value of the radial coordinate33 where the

background geometry already reached the conformal AdS5 ultraviolet fixed point (within some numerical tolerance), and

rmax ≥ rconformal is the maximum value of the radial coordinate up to which we perform the numerical integration of the

bulk equations of motion. By taking as phenomenological input the LQCD magnetic susceptibility at finite temperature

and zero magnetic field with 2 + 1 flavors and physical values of the quark masses from Ref. [294], one may fix the form

of the Maxwell-dilaton coupling function as follows [292],

f(ϕ) = 0.95 sech(0.22ϕ2 − 0.15ϕ− 0.32), (3.9)

with the result displayed in Fig. 3.1 (a).

Also in Fig. 3.1, we show the predictions from the magnetic EMD model at finite (T, eB) [292] compared to the LQCD

results from [264] for (b) the pressure difference, ∆p(T, eB) ≡ p(T, eB)− p(T = 125MeV, eB), (c) the normalized entropy

density s/T 3 (we also show the LQCD results from [14] at B = 0), and (d) the crossover temperature as a function

of the magnetic field, as extracted from the inflection of s/T 3. For the values of the magnetic field considered there is

no actual phase transition between the hadronic and partonic regimes of the hot and magnetized QCD matter, just an

analytic crossover. Contrary to the EMD model at finite (T, µB) from Refs. [160, 161, 162], whose phase diagram has

been deeply investigated, the phase diagram of the magnetic EMD model at finite (T, eB) from Refs. [209, 292, 293] still

remains largely unexplored. One challenge, however, is that the magnetic EMD model typically requires a much larger

set of background black hole solutions than the baryon dense model in order to allow for smooth interpolations of physical

observables as functions of T and eB.

Some comments akin to what was discussed before for the baryon dense EMD model are in order at this point.

The holographic renormalization procedure for the magnetic EMD models is still not implemented in the literature,

consequently, one faces limitations in what can be currently calculated with such models. As before, the pressure (and

the energy density) cannot be extracted directly from the renormalized on-shell boundary action, since this quantity

is still not available. However, similarly to what was done in Eq. (2.20) for the baryon dense EMD model, one may

evaluate the pressure as the temperature integral of the entropy density in Eq. (3.7) calculated with the magnetic field

held fixed. As discussed in detail in Section 2 of [264], such a procedure gives the isotropic pressure in the so-called

“B-scheme”, where the magnetic field is held fixed during compression, with the pressure being the response function of

the system to such a compression. Correspondingly, this also gives the anisotropic longitudinal pressure in the direction

of the magnetic field in the so-called “Φ-scheme”, where it is the magnetic flux that is held fixed during a compression. In

32One should ideally take Tlow = 0, however, due to numerical difficulties in reaching exactly the vacuum geometry in the EMD model, we

numerically subtract a zero magnetic field background geometry with a small but nonzero temperature, similarly to what was done in Eq.

(2.20) for the calculation of the pressure.
33Typically, rconformal ∼ 2.
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the Φ-scheme, the transverse pressures to the direction of the magnetic field depend on the magnetization of the medium,

which requires holographic renormalization of the bulk action to be evaluated through the gauge-gravity duality, and that

has not been calculated yet in Refs. [291, 292]. Moreover, without the renormalized on-shell action, one is also currently

missing the calculation of the energy density at finite magnetic field in the magnetic EMD models. Once the holographic

renormalization procedure is implemented for the magnetic EMD models, it would be also interesting to check whether

they satisfy a conjectured universal asymptotic scaling for the ratio between the transverse and longitudinal anisotropic

pressures explicitly found in Ref. [296] to hold for QCD and the magnetized SYM plasma.

In Ref. [209], the holographic magnetic EMD model at finite (T, eB) was further employed to calculate the magnitude

of the expectation value of the renormalized Polyakov loop operator [297, 298, 299, 300],34 Pr(T, eB) = |⟨L̂P ⟩r| =

e−F r
Q(T,eB)/T , where F r

Q(T, eB) is the renormalized free energy of a single static heavy quark at the boundary.35 In

holography, this quantity depends on the ‘t Hooft coupling coming from the NG action, which in a bottom-up setup

is taken as an extra free parameter. Since
√
λt = L2/α′ = (L/ls)

2
,36 where ls is the fundamental string length and

L is the asymptotic AdS radius (which is set here to unity), one expects that in the classical gauge-gravity regime of

the holographic duality the ‘t Hooft coupling should be large, since in this limit, ls ≪ L. Indeed, by matching the

overall magnitude of the holographic Polyakov loop, Pr(T, eB), with the corresponding LQCD results from [263, 267], as

illustrated in Fig. 3.1 (e), in Ref. [209] it was fixed the large value
√
λt = 1450, which hints at a nontrivial consistency

between top-down theoretical expectations and bottom-up phenomenological results within this holographic approach.

Furthermore, one also notices that the magnetic EMD model provides a reasonable description of the LQCD results for

the Polyakov loop in the deconfined regime of QCD matter corresponding to the strongly coupled hot and magnetized

QGP, for magnetic fields up to eB ≲ 1 GeV2 with T ≳ 150 MeV.

Also in Ref. [209], the holographic EMD prediction for the heavy quark entropy, SQ(T, eB) = −∂F r
Q(T, eB)/∂T was

computed. The ratio between any two different values of SQ is particularly interesting because it does not depend on the

extra free parameter
√
λt present in the holographic calculation of the Polyakov loop. Consequently, once the background

black hole solutions are obtained, there are no extra free parameters to fix in such a calculation. In Fig. 3.1 (f), there

are shown the EMD predictions for the ratio SQ(T, eB)/SQ(T = 200MeV, eB = 0), with the result at zero magnetic

field being compared to the corresponding available LQCD result from [295]. Interestingly enough, the EMD prediction

at B = 0 is in perfect quantitative agreement with the LQCD result in the deconfined regime for T ≳ 150 MeV, while

completely missing the correct behavior for the heavy quark entropy in the confined hadronic regime.

The disagreement found with the lattice results for the Polyakov loop and the heavy quark entropy below the crossover

temperature in the hadronic regime, in clearly contrast to the quantitative agreement found above the crossover tem-

perature in the partonic regime, is a consequence of the fact that the holographic EMD model is suited to describe the

deconfined QGP phase of hot QCD matter but not the confined hadronic phase. It is also worthy to mention that the

holographic results for these two physical observables compared to available LQCD data also attest the nature of the

scalar field considered in the EMD action as being the dilaton field. This is so since in Ref. [209] it was also investigated

34The holographic renormalization procedure for the calculation of the Polyakov loop involves only the on-shell Nambu-Goto (NG) action for

a probe string extending from an isolated quark at the boundary up to the background black hole horizon deep into the bulk, and not the bulk

action (which generates the black hole backgrounds, over which the probe string described by the NG action is defined) [301, 302, 303, 304].
35The renormalization scheme at nonzero magnetic field employed in Ref. [209] was the same one used in the LQCD simulations of Refs.

[263, 267].
36See the discussion in section 1.3.
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the possibility that the scalar field ϕ in the EMD action is not the dilaton, in which case the bulk metric in string and

Einstein frames would be the same for the EMD model. With such an approach, the holographic EMD results for the

Polyakov loop and the heavy quark entropy become different from the corresponding LQCD data even at the qualitative

level. As discussed in [209], since the holographic EMD thermodynamics is matched to lattice data for the QCD equation

of state and magnetic susceptibility at B = 0, and since the only way to obtain results for the Polyakov loop and the heavy

quark entropy in compatibility with LQCD data is by interpreting the scalar field in the EMD action as being the dilaton,

such an analysis clearly sets the physical meaning of the scalar field ϕ in the bulk of the holographic correspondence for

phenomenological EMD models.

The results from the magnetic EMD model at finite (T, eB) displayed in Fig. 3.1, and the results from the EMD model

at finite (T, µB) shown in Figs. 2.3, 2.4, 2.6 (d), compared to first principles LQCD results on several thermodynamic

observables and transport coefficients posteriors from Bayesian analyses using heavy-ion data, comprise the main argument

for the actual phenomenological applicability of EMD holography in the description of many aspects of the hot QGP

produced in heavy-ion collisions. These results are interesting mainly due to the following reasons:

• The class of relatively simple bottom-up holographic EMD constructions reviewed here may be used to make

physically reasonable predictions for the QGP, providing not only qualitative insight but also some quantitatively

reliable results, which may extend beyond the current reach of first principles approaches in QCD.

• As a class of bottom-up holographic constructions, the phenomenological EMD models reviewed here provide further

evidence that the holographic dictionary may be useful in practice even when the precise form of the holographic

dual QFT at the boundary of the higher dimensional bulk spacetime is unknown.

• Even though the precise holographic dual is unknown, the results reviewed here show that this holographic dual must

be some effective 4D strongly coupled QFT which very closely mimics several aspects of QCD. While EMD holog-

raphy differs from QCD in several aspects (e.g., concerning the lack of asymptotic freedom and the thermodynamic

behavior in the confining hadronic regime), it is still able to capture several other key features of QCD.

3.1.2. Anisotropic holographic transport coefficients

The presence of an external magnetic field (or, more generally, of any source of anisotropy) in the medium splits the

transport coefficients into several anisotropic components, when compared to the more simple case of an isotropic medium.

Holographic analyses regarding the anisotropic heavy quark drag forces and the Langevin momentum diffusion coefficients,

and also the anisotropic jet quenching parameters involving light partons, were done e.g. in Refs. [274, 292, 293, 305, 306,

307, 308, 309, 310]. Additionally, anisotropic shear and bulk viscosities were analyzed in [155, 272, 292, 311, 312, 313].

At this time systematic checks of these transport coefficients have not yet been performed, since the field of relativistic

magnetohydrodynamics is currently under intense development [314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324,

325, 326, 327, 328, 329, 330, 331, 332]. The purpose of the present section is to briefly review some of the main results

obtained in Refs. [292, 293] regarding the magnetic EMD predictions at finite (T, eB) for some transport coefficients of

the strongly coupled hot and magnetized QGP.

The holographic formulas of the anisotropic heavy quark drag forces and Langevin momentum diffusion coefficients

can be found in Appendix A of [292], and then applied to the magnetic EMD model at finite (T, eB) as done in sections
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4. Summary and outlook

In this work, we provided an up-to-date review of quantitative holographic EMD models for the hot and strongly

coupled QGP produced in relativistic heavy-ion collisions. We reviewed both isotropic EMD constructions at finite tem-

perature and baryon chemical potential with vanishing electromagnetic fields and anisotropic EMD backgrounds at finite

temperature and magnetic field with zero chemical potential. Evidence that the holographic duality can quantitatively

provide reliable predictions for the hot and deconfined QGP phase of QCD, depending on the class(es) of gauge-gravity

models considered and how their free parameters are fixed by phenomenological inputs, was discussed. These key results

highlight precisely this evidence for the reliability of the EMD predictions:

i) EMD model for the (T, µB)-plane of QCD: in Figs. 2.3 and 2.4 we displayed, respectively, the holographic

predictions for the equation of state at finite temperature and baryon chemical potential, and for the 6th and 8th

order baryon susceptibilities at µB = 0, compared to state-of-the-art first principles LQCD results; and in Fig. 2.6

(d), we have shown the EMD prediction for the bulk viscosity to entropy density ratio at vanishing baryon density

compared to the profiles favored by the latest phenomenological multistage models that simultaneously describes

several different experimental data from relativistic heavy-ion collisions. As an isotropic and translationally invariant

holographic model with two derivatives of the metric field in the bulk gravity action, the model naturally encompasses

a small shear viscosity, η/s = 1/4π, compatible with the overall magnitude estimated for the strongly coupled

QGP produced in heavy-ion collisions. A number of other holographic EMD models are currently available in the

literature which have been also shown to successfully describe LQCD results at the quantitative level, such as the

works presented in Refs. [164, 165, 166].

ii) Magnetic EMD model for the (T, eB)-plane of QCD: in Fig. 3.1 we displayed the holographic predictions

for the anisotropic equation of state, the crossover transition temperature, the renormalized Polyakov loop, and the

heavy quark entropy at finite temperature and magnetic field compared to the available first principles LQCD results.

The holographic EMD model allows one to go beyond the current capabilities of LQCD simulations. For instance,

one prediction of this model is the existence of a critical end point. While different competing EMD models do provide

differences in the predicted location of this critical point after fitting to LQCD results for µB = 0, they all lead to the

existence of a critical point in an approximately similar region of the QCD phase diagram. Such a spread of critical points

clearly motivates a more systematic investigation of different parametrizations of the free functions and parameters of the

bottom-up class of holographic EMD models through Bayesian statistical inference.

A detailed Bayesian analysis of such models is presented in [219], but preliminary results were discussed in section

2.1.3. This Bayesian analysis considered uniform prior distributions of the free parameters. Using the LQCD results

for the entropy density and the baryon susceptibility at µB = 0 as constraints, the posterior distributions for the free

parameters of the holographic EMD setup become strongly constrained, as shown in Table 2.1. Thousands of different

EMD models were generated within the constrained posterior distributions that provided holographic predictions for the

behavior of the QCD equation of state at finite temperature and baryon density. The resulting equation of state has

remarkably thin bands, as shown in Fig. 2.7, which are in quantitative agreement with state-of-the-art lattice results

for the QCD equation of state also at finite baryon density.40 For a complete analysis considering regions of the phase

40Although some deviations exist for the baryon charge density at high temperatures and high baryon chemical potentials, as depicted in
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diagram beyond the reach of current lattice simulations and the distribution of critical points predicted by a broader class

of holographic EMD models see [219].

A critical assessment of the most relevant limitations and the drawbacks of holographic approaches to the description

of hot QCD phenomenology were also discussed in detail. First, classical holographic gauge-gravity models with two

derivatives of the metric field in the bulk gravity action lack asymptotic freedom, with the dual effective QFT at the

boundary of the higher dimensional bulk spacetime being strongly coupled at all energy scales. This is explicitly manifest

in the temperature-independent value of η/s = 1/4π found in these models, which is in contrast to the gas-like pQCD

results at asymptotically high temperatures. Instead of a trivial ultraviolet fixed point, classical holographic gauge-gravity

models which are asymptotically AdS feature a strongly coupled ultraviolet fixed point, being asymptotically safe but

not asymptotically free. The lack of asymptotic freedom and the constant value η/s = 1/4π are presumably tied to the

neglected contributions from massive string states and quantum string loops in the classical gravity bulk theory. This

can be possibly improved by considering higher derivative corrections associated with massive string states in the bulk

action, which in the presence of a nontrivial dilaton background has already been shown in the literature [129] to produce

temperature-dependent profiles for η/s in holographic models. However, the systematic construction of phenomenolog-

ically realistic and fully-backreacted dilatonic models with higher-order derivative corrections is a challenging task still

not accomplished in the literature.

Another very general limitation of classical holographic gauge-gravity models regards their inability to describe the

thermodynamic and transport properties of the confining hadron resonance gas phase of QCD. This limitation is related to

the large Nc character of classical gauge-gravity models, in which the pressure in the confining phase is largely suppressed

by a multiplicative factor of ∼ N−2
c relatively to the deconfined QGP phase.41 In principle, this situation can be improved

by considering quantum string loops contributions to the dilatonic bulk theory. However, this task is considerably more

complicated than the one discussed in the previous paragraph.

Specific limitations and drawbacks of the holographic EMD models reviewed here have been also identified in the

literature. For instance, the strangeness neutrality condition realized in heavy-ion collisions is not implemented in the

EMD model, as it only features a single chemical potential (in the case considered here, the baryon chemical potential).

Moreover, in the investigation of the phase diagram of the EMD model of Refs. [160, 161, 162, 163] no regions were

found where the square of the speed of sound exceeds its conformal limit (c2s|CFT = 1/3), strongly indicating that such

models are inadequate to describe the dense QCD equation of state of the most massive neutron stars [335, 336, 337,

338, 339, 340, 341, 342]. Furthermore, as mentioned in section 3.1, the magnetic EMD model is not versatile enough to

simultaneously describe the magnetic and the electric sectors of the QGP with a single Maxwell-dilaton coupling function

f(ϕ).

For future work, it is important to extend dilatonic holographic approaches to simultaneously include fully backreacted

effects from conserved baryon, electric, and strangeness charges. Such an endeavor would enable the implementation of

strangeness neutrality, which is relevant for applications in heavy-ion collisions. In order to pursue this task within a

consistent implementation of QCD flavor symmetry in the holographic setup, the EMD class of holographic models should

Fig. 2.7. However, that also corresponds to the regime where the expansion scheme may begin to break down in lattice QCD and/or weaker

coupling may be relevant.
41One very clear manifestation of such a limitation has been shown in Fig. 3.1 (f), where the holographic prediction for the heavy quark

entropy was found to be in perfect agreement with the corresponding LQCD results above the pseudocritical crossover temperature, while for

temperatures below the crossover region the holographic heavy quark entropy suddenly completely misses the correct LQCD behavior.
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be substituted by a more general class of (fully backreacted) Einstein-Yang-Mills-Dilaton (EYMD) models.

Still within the class of holographic EMD models, the more complicated magnetic EMD setups at finite temperature

and magnetic field remain largely unexplored. Most of its phase diagram has yet to be investigated and holographic

renormalization still needs to be implemented, which will allow for the calculation of several physical observables not

addressed in the present review. Additionally, a Bayesian analysis would be another important next step to understand

properties at large B fields (as in the case of the Bayesian analysis implemented for the isotropic setup at finite baryon

density in Ref. [219]).

Other important developments to be pursued in the future include the consideration of rotation effects for the strongly

coupled dual plasma by taking into account more general ansatze for the bulk fields allowing for rotating and charged

asymptotically AdS black holes. Also numerical simulations of far-from-equilibrium holographic dynamics [142] should

be further pursed, such as the consideration of holographic Bjorken flow and holographic collisions of shockwaves in the

context of the phenomenologically realistic EMD models reviewed in this manuscript.
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