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Abstract

Data scarcity has been the main factor that hin-

ders the progress of event extraction. To over-

come this issue, we propose a Self-Training

with Feedback (STF) framework that lever-

ages the large-scale unlabeled data and acquires

feedback for each new event prediction from

the unlabeled data by comparing it to the Ab-

stract Meaning Representation (AMR) graph of

the same sentence. Specifically, STF consists

of (1) a base event extraction model trained on

existing event annotations and then applied to

large-scale unlabeled corpora to predict new

event mentions as pseudo training samples, and

(2) a novel scoring model that takes in each

new predicted event trigger, an argument, its ar-

gument role, as well as their paths in the AMR

graph to estimate a compatibility score indicat-

ing the correctness of the pseudo label. The

compatibility scores further act as feedback to

encourage or discourage the model learning on

the pseudo labels during self-training. Exper-

imental results on three benchmark datasets,

including ACE05-E, ACE05-E+, and ERE,

demonstrate the effectiveness of the STF frame-

work on event extraction, especially event argu-

ment extraction, with significant performance

gain over the base event extraction models and

strong baselines. Our experimental analysis

further shows that STF is a generic framework

as it can be applied to improve most, if not all,

event extraction models by leveraging large-

scale unlabeled data, even when high-quality

AMR graph annotations are not available.1

1 Introduction

Event extraction (EE), which aims to identify and

classify event triggers and arguments, has been

a long-stand challenging problem in natural lan-

guage processing. Despite the large performance

leap brought by advances in deep learning, recent

∗ corresponding authors
1The source code and model checkpoints are pub-

licly available at https://github.com/VT-NLP/Event_
Extraction_with_Self_Training.

studies (Deng et al., 2021; Wang et al., 2021b)

have shown that the data scarcity of existing event

annotations has been the major issue that hinders

the progress of EE. For example, in ACE-052, one

of the most popular event extraction benchmark

datasets, 10 of the 33 event types have less than 80

annotations. However, creating event annotations

is extremely expensive and time-consuming, e.g.,

it takes several linguists over one year to annotate

500 documents with about 5000 event mentions for

ACE-05.

To overcome the data scarcity issue of EE, pre-

vious studies (Chen and Ji, 2009; Liao and Gr-

ishman, 2011a; Ferguson et al., 2018a) develop

self-training methods that allow the trained EE

model to learn further by regarding its own predic-

tions on large-scale unlabeled corpora as pseudo la-

bels. However, simply adding the high-confidence

event predictions to the training set inevitably intro-

duces noises (Liu et al., 2021; Arazo et al., 2020;

Jiang et al., 2018), especially given that the current

state-of-the-art performance of event argument ex-

traction is still less than 60% F-score. To tackle

this challenge, we introduce a Self-Training with

Feedback framework, named STF, which consists

of an event extraction model that is firstly trained

on the existing event annotations and then contin-

ually updated on the unlabeled corpus with self-

training, and a scoring model that is to evaluate the

correctness of the new event predictions (pseudo

labels) from the unlabeled corpus, and the scores

further act as feedback to encourage or discourage

the learning of the event extraction model on the

pseudo labels during self-training, inspired by the

REINFORCE algorithms (Williams, 1992).

Specifically, the event extraction model of our

STF framework can be based on any state-of-the-art

architecture. In this paper, we choose OneIE (Lin

et al., 2020) and AMR-IE (Zhang and Ji, 2021), due

2https://www.ldc.upenn.edu/collaborations/
past-projects/ace
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to their superior performance and publicly available

source code. The scoring model leverages the Ab-

stract Meaning Representation (AMR) (Banarescu

et al., 2013) which has been proven to be able to

provide rich semantic and structural signals to map

AMR structures to event predictions (Huang et al.,

2016, 2018; Wang et al., 2021b) and thus their com-

patibility can indicate the correctness of each event

prediction. The scoring model is a self-attention

network that takes in a predicted event trigger, a

candidate argument and its argument role, as well

as their path in the AMR graph of the whole sen-

tence, and computes a score ranging in [-1, 1] based

on the compatibility between the AMR and the pre-

dicted event structure: -1 means incompatible, 1

means compatible, and 0 means uncertain. Inspired

by the REINFORCE algorithm (Williams, 1992),

we multiply the compatibility scores and the gradi-

ent of the EE model computed on the pseudo event

labels during self-training, so as to (1) encourage

the event extraction model to follow the gradient

and hence maximize the likelihood of the pseudo

label when it is compatible with the AMR structure;

(2) negate the gradient and minimize the likelihood

of the pseudo label when it is incompatible with

the AMR structure; and (3) reduce the magnitude

of the gradient when the scoring model is uncertain

about the correctness of the pseudo label.

We take AMR 3.03 and part of the New York

Times (NYT) 2004 corpus4 as additional unlabeled

corpora to enhance the event extraction model with

STF, and evaluate the event extraction performance

on three public benchmark datasets: ACE05-E5,

ACE05-E+6, and ERE-EN7. The experimental re-

sults demonstrate that: (1) the vanilla self-training

barely improves event extraction due to the noise

introduced by the pseudo examples, while the pro-

posed STF framework leverages the compatibility

scores from the scoring model as feedback and thus

makes more robust and efficient use of the pseudo

labels; (2) STF is a generic framework and can be

applied to improve most, if not all, of the event

extraction models optimized by gradient descent

algorithm and achieves significant improvement

over the base event extraction models and strong

baselines on event argument extraction on the three

public benchmark datasets; (3) By exploiting dif-

3https://catalog.ldc.upenn.edu/LDC2020T02.
4https://catalog.ldc.upenn.edu/LDC2008T19
5https://catalog.ldc.upenn.edu/LDC2006T06
6https://catalog.ldc.upenn.edu/LDC2006T06
7Deep Exploration and Filtering of Test (DEFT) program.

ferent unlabeled corpora with gold or system-based

AMR parsing, STF always improves the base event

extraction models, demonstrating that it can work

with various qualities of AMR parsing. Notably,

different from previous studies (Huang et al., 2018;

Zhang and Ji, 2021; Wang et al., 2021b) that require

high-quality AMR graphs as input to the model

during both training and inference, STF does not

require any AMR graphs during inference, making

it more computationally efficient and free from the

potential errors propagated from AMR parsing.

2 STF for Event Extraction

The event extraction task consists of three subtasks:

event detection, argument identification and argu-

ment role classification. Given an input sentence

W = [w1, w2, ..., wN ], event detection aims to

identify the span of an event trigger τi in W and

assign a label lτi ∈ T where T denotes the set of

target event types. Argument identification aims

to find the span of an argument εj in W , and ar-

gument role classification further predicts a role

αij ∈ A that the argument εj plays in an event τi
given the set of target argument roles A.

Figure 1 shows the overview of our STF frame-

work which consists of two training stages. At the

first stage, a base event extraction model (Sec-

tion 2.1) is trained on a labeled dataset. At the

second stage, we apply the trained event extraction

model to an unlabeled corpus to predict new event

mentions. Instead of directly taking the new event

predictions as pseudo training examples like the

vanilla self-training, we propose a novel scoring

model (Section 2.2) to estimate the correctness of

each event prediction by measuring its compati-

bility to the corresponding AMR graph, and then

take both event predictions and their compatibility

scores to continue to train the base event extraction

model while the scores update the gradient com-

puted on pseudo labels (Section 2.3). After the

training of the second stage, we get a new event

extraction model and evaluate it on the test set.

2.1 Base Event Extraction Model

Our proposed framework can be applied to most,

if not all, event extraction models. We select

OneIE (Lin et al., 2020) and AMR-IE (Zhang and

Ji, 2021) as base models given their state-of-the-

art performance on the event extraction task and

publicly available source code. Next, we briefly de-

scribe the common architectures in the two models
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operating deep in Iraq , destroyed a command
and control post and killed a number of
soldiers , according to the country 's defense
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Figure 1: The overall framework of STF (We omit the first stage of STF.). Given an unlabeled sentence W̃ : (1) run

an event extraction model to compute event predictions and an AMR parser to parse it into an AMR graph; (2) map

the predicted trigger and argument to corresponding nodes in the AMR graph, find their AMR path and combine it

with the predicted event type and argument role into a new sequence (Life:Die, killed, ARG0, commandos, ARG0,

PLACE, Iraq, Other); (3) feed the sequence into the scoring model to compute a compatibility score; (4) leverage

the pseudo label and compatibility score to further update the event extraction model.

and refer readers to the original papers for more

details. OneIE and AMR-IE perform event ex-

traction in four8 steps. First, a language model

encoder (Devlin et al., 2019; Liu et al., 2019) com-

putes the contextual representations W for an input

sentence W . Second, two identification layers take

in the contextual representations W. One identifies

the spans of event triggers and the other identifies

the spans of arguments (i.e., entities). Both of them

are based on a linear classification layer followed

by a CRF layer (Lafferty et al., 2001) to capture the

dependencies between predicted tags. They are op-

timized by minimizing the negative log-likelihood

of the gold-standard tag path, which is denoted as

L
Tri_I and L

Arg_I for trigger and argument identi-

fication, respectively. Third, for each trigger or

argument candidate, we compute its representation

by averaging the token representations within the

whole identified span. Each trigger representation

is fed into a classification layer to predict its type

by minimizing the cross-entropy classification loss

L
Tri_C. Each pair of trigger and argument repre-

sentations are concatenated and fed into another

classification layer to predict the argument role,

which is also optimized by the cross-entropy loss

L
Arg_C. Finally, both OneIE and AMR-IE learn

an additional global feature vector to capture the

interactions across sub-tasks (e.g., a LOC entity is

impossible to be the Attacker of an Attack event)

8We only focus on event extraction task and thus omit the
description of relation extraction.

and instances (e.g., the Defendant of a Sentence

event can also be an Agent of a Die event). Dur-

ing training, a global feature score is computed

for the predicted information graph and the gold

annotation, respectively, from their global feature

vectors. The training objective is to minimize the

gap between these two global feature scores, de-

noted as L
G. Thus, the overall loss for the base

event extraction model is:

L
E = L

Tri_I + L
Arg_I + L

Tri_C + L
Arg_C + L

G,

As the first stage of our STF framework, we op-

timize the base event extraction model on labeled

event mentions XL based on L
E and the trained

model will later be used to predict new event men-

tions for self-training.

2.2 Scoring Model

At the second stage of STF, we aim to further im-

prove the event extraction model by taking the

event mentions predicted from an external un-

labeled corpus Xu as pseudo samples for self-

training. To avoid the noise contained in the pseudo

samples, we propose a scoring model that can eval-

uate the correctness of each event prediction. Our

scoring model takes AMR graph as a reference mo-

tivated by the observation that an event structure

usually shares similar semantics and network topol-

ogy as the AMR graph of the same sentence, thus

their compatibility can be used to measure the cor-

rectness of each event structure. This observation
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has also been discussed and shown effective in pre-

vious studies (Rao et al., 2017; Huang et al., 2018;

Zhang and Ji, 2021). However, previous studies

directly take AMR graphs as input to the extraction

model and thus require AMR graphs during both

training and inference, making their performance

highly dependent on the quality of AMR parsing.

Different from them, our proposed STF only takes

AMR graphs during reference to measure the cor-

rectness of event predictions during self-training,

making it free from the potential errors propagation

from AMR parsing during inference.

Given a sentence W̃ ∈ Xu from the unlabeled

corpus and a predicted trigger τ̃i and its argument

ε̃j from W̃ , we aim to estimate a correctness score

for each pair of the trigger and argument prediction

based on its compatibility with their path in the

AMR graph9. Thus, we first apply the state-of-the-

art AMR parsing tool (Astudillo et al., 2020) to

generate an AMR graph for W̃ : G = (V,E), E =
{(vi, eij , vj)|eij ∈ R)}. We follow (Huang et al.,

2016; Zhang and Ji, 2021) and group the original

set of AMR relations into 19 categories10, thus

eij denotes a particular relation category and R
denotes the set of AMR relation categories. Then,

we identify the vi, vj from AMR graph G as the

corresponding node of τ̃i, ε̃j , by node alignment

following Zhang and Ji (2021). Then, we utilize the

Breadth First Search to find the shortest path pi,j
that connects and includes, vi and vj in G. If there

is no path between vi and vj , we add a new edge

to connect them and assign other as the relation.

Given a predicted trigger τ̃i and its type l̃τi , a pre-

dicted argument ε̃j and its argument role α̃ij , the

scoring model estimates their correctness by taking

[l̃τi , pij , α̃ij ] as input and outputs a compatibility

score. As Figure 1 shows, it consists of a language

model encoder (Devlin et al., 2019; Liu et al., 2019)

to encode the sentence W̃ and obtain the contex-

tual representations for the tokens11, which are then

used to initialize the representation of each node

in pij based on the alignment between the input to-

kens and the nodes in AMR graph following Zhang

and Ji (2021). We draw edge representations from

the AMR relation embedding matrix E
rel and com-

9Comparing with the whole AMR graph, the path of the
trigger and argument in the AMR graph shows more improve-
ment for the scoring model.

10The details of AMR relation categories are shown in Ap-
pendix A.

11If a token is split into multiple subtokens, we average
the representations of all subtokens to obtain an overall token
representation.

bine them with node representations to form Hpij ,

a representation for path pij . We also get an event

type representation hτi for l̃τi from the event-type

embedding matrix E
tri and an argument role rep-

resentation hαij
for α̃ij from the argument role

embedding matrix E
arg. Here, E

rel, E
tri, and

E
arg are all randomly initialized and will be opti-

mized during training. Finally, we obtain the initial

representations H
init
ij = [hτi ,Hpij ,hαij

] for the

sequence [l̃τi , pij , α̃ij ].
To estimate the compatibility between the event

trigger and argument prediction and their path

in the AMR graph, we apply multi-layer self-

attention (Vaswani et al., 2017) over the joint repre-

sentation of the AMR path and the event prediction

H
init
ij to learn better contextual representations for

the sequence [l̃τi , pij , α̃ij ] and we add the position

embedding E
pos to H

init
ij before feed it into the

self-attention layers:

H
final
ij = self-attention(Hinit

ij )×M,

where M denotes the number of attention layers.

Finally, we compute an overall vector represen-

tation Ĥ
final
ij from H

final
ij via average-pooling and

feed it into a linear-layer and a Sigmoid function

to compute a probability cij , indicating the correct-

ness of the predicted event trigger and argument.

We optimize the scoring model based on the binary

cross-entropy objective:

L
Score = BCE (yij , cij ;ψ) ,

where yij ∈ (0, 1) is a binary label that indi-

cates the argument role is correct (yij = 1) or

not (yij = 0)12, and ψ is the parameters of the

scoring model. During training, we have gold trig-

gers and arguments as positive training instances

and we swap the argument roles in positive training

instances with randomly sampled incorrect labels

to create negative training instances. After training

the scoring model, we will fix its parameters and

apply it to self-training.

2.3 Self-Training with Feedback

To improve the base event extraction model with

self-training, we take the new event predictions

(τ̃i, l̃τi , ε̃j , α̃ij) from the unlabeled corpus Xu as

pseudo samples to further train the event extraction

12We don’t not consider the cases where the trigger labels
are incorrect, since by observation the semantics and structure
of AMR graphs are more related to the argument role types
between event triggers and their arguments.
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model. The gradients of the event extraction model

on each pseudo sample is computed as:

gstij = ∇θL
E
(

W̃ , (τ̃i, l̃τi , ãij , ε̃j); θ
)

where θ denotes the parameters of the event extrac-

tion model. Note that there can be multiple event

predictions in one sentence.

Due to the prediction errors of the pseudo labels,

simply following the gradients gstij computed on

the pseudo labels can hurt model’s performance.

Thus, we utilize the correctness score cij predicted

by the scoring model to update the gradients, based

on the motivation that: (1) if an event prediction

is compatible with the AMR structure, it’s likely

to be correct and we should encourage the model

learning on the pseudo label; (2) on the other side,

if an event prediction is incompatible with its AMR

structure, it’s likely incorrect and we should dis-

courage the model learning on the pseudo label;

(3) if the scoring model is uncertain about the cor-

rectness of the event prediction, we should reduce

the magnitude of the gradients learned from the

pseudo label. Motivated by this, we first design a

transformation function f c to project the correct-

ness score cij ∈ [0, 1] into a range [−1, 1] where -1

(or cij = 0) indicates incompatible, 1 (or cij = 1)

means compatible, and 0 (or cij = 0.5) means

uncertain. Here, f c is based on a linear mapping:

f c(cij) = 2× cij − 1

We then apply the compatibility scores as feed-

back to update the gradients of the event extraction

model on each pseudo sample during self-training:

L
STF =

∑

i,j

f c(cij) · L
E
(

W̃ , (τ̃i, l̃τi , ãij , ε̃j); θ
)

To improve the efficiency of self-training, we up-

date the event extraction model on every minibatch,

and to avoid the model diverging, we combine the

supervised training and self-training, so the overall

loss for STF is:

L = L
E + βLSTF

where β is the combining ratio, LE is computed on

the labeled dataset XL and L
STF is computed on

the pseudo-labeled instances from Xu.

3 Experimental Setups

For evaluation, we consider two base event extrac-

tion models: OneIE (Lin et al., 2020) and AMR-

IE (Zhang and Ji, 2021) due to their superior per-

formance on event extraction and publicly avail-

able source code, and demonstrate the effectiveness

of STF on three benchmark datasets: ACE05-E,

ACE05-E+ and ERE-EN, with the same evaluation

metrics following previous studies (Wadden et al.,

2019; Lin et al., 2020; Zhang and Ji, 2021; Wang

et al., 2022)13. To show the generalizability of STF,

we explore two unlabeled corpora for self-training:

(1) AMR 3.0 (Knight et al., 2021) which origi-

nally contains 55,635 sentences in the training set

while each sentence is associated with a manually

annotated AMR graph. (2) New York Times An-

notated Corpus (NYT) contains over 1.8 million

articles that were published between 1987 to 2007.

We randomly sample 55,635 sentences14 from arti-

cles published in 2004. Because NYT dataset does

not have AMR annotations, we run a pre-trained

AMR parser (Astudillo et al., 2020) to generate

system AMR parsing.

Besides taking the recent state-of-the-art event

extraction studies (Wadden et al., 2019; Du and

Cardie, 2020; Lin et al., 2020; Nguyen et al.,

2021; Zhang and Ji, 2021; Lu et al., 2021; Wang

et al., 2022; Hsu et al., 2022; Lu et al., 2022)15

as baselines, we also compare our proposed STF

with two other training strategies: (1) vanilla Self-

Training (Rosenberg et al., 2005) which consists of

two stages similar as STF but in the second stage

takes each new event prediction from the unlabeled

data with a probability higher than 0.9 based on

the base event extraction model as a pseudo label

and combines them with the labeled data to re-train

the event extraction model; and (2) Gradient Im-

itation Reinforcement Learning (GradLRE) (Hu

et al., 2021b). GradLRE encourages the gradients

computed on the pseudo-labeled data to imitate

the gradients computed on the labeled data by us-

ing the cosine distance between the two sources

of gradients as a reward to perform policy gradi-

13The detailed statistics of ACE05-E, ACE05-E+, and ERE-
EN are shown in Appendix B.

14To show the effect of unlabeled dataset vs labeled dataset,
we sample the same number of the unlabeled sentences as
AMR 3.0

15The scores reported in (Nguyen et al., 2022) are not com-
parable in the table 3, as their results are not averaged across
random seeds. We tried to report their averaged performance
by running their model ourselves by contacting the authors,
however, their code is publicly unavailable.
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ent reinforcement learning (Sutton et al., 1999).

GradLRE showed improvements over other self-

training methods on low-resource relation extrac-

tion which is a similar task to argument role classi-

fication. Appendix C describes the training details

for both baselines and our approach.

4 Results and Discussion

4.1 Evaluation of Scoring Model

We first evaluate the performance of the scoring

model by measuring how well it distinguishes

the correct and incorrect argument role predic-

tions from an event extraction model. Specifi-

cally, we compute event predictions by running

a fully trained event extraction model (i.e., OneIE

or AMR-IE) on the validation and test sets of the

three benchmark datasets. Based on the gold event

annotations, we create a gold binary label (cor-

rect or incorrect) for each argument role prediction

to indicate its correctness. For each event predic-

tion, we pass it along with the corresponding AMR

graph of the source sentence into the scoring model.

If the correctness16 predicted by the scoring model

agrees with the gold binary label, we treat it as a

true prediction for scoring model, otherwise, a false

prediction.

To examine the impact of leveraging AMR in

scoring model performance, we develop a baseline

scoring model that shares the same structure with

our proposed scoring model except that it does not

take an AMR graph as an input. Specifically, the

baseline scoring model just takes the event men-

tion (triggers, arguments and argument labels) in

order to measure the compatibility score. The base-

line scoring model is essentially an ablation of our

scoring model where the AMR path is absent. As

shown in Table 2, the performance of our scoring

model outperforms the baseline scoring model by

1.4-1.7 F-score on the test sets, demonstrating the

effectiveness of AMR graph in characterizing the

correctness of each event prediction.

In Table 1, we can observe that the semantics and

structure of AMR paths can be easily mapped to

argument role types. Sometimes, the even triggers

are far from their arguments in plain text, but the

AMR paths between them is short and informative.

Another observation is that the scoring model tends

to assign positive scores to argument roles that are

16When the correctness score c
ij

> 0.5 computed by the
scoring model, the predicted label is correct, otherwise, incor-
rect.

more compatible with the AMR paths, although

sometimes the scores for the gold argument roles

are not the highest.

4.2 Evaluation of STF on Event Extraction

Table 3 shows the event extraction results of both

our approach and strong baselines17. For clarity,

in the rest of the section, we refer to our pro-

posed framework as STFAMR and our proposed

framework with the baseline scoring model as

STFW/O_AMR. We can see that, both STFAMR and

STFW/O_AMR improve the performance of the event

extraction models on argument role classification

while the vanilla self-training and GradLRE barely

work, demonstrating the effectiveness of leverag-

ing the feedback to the pseudo labels during self-

training.

We further analyze the reasons in terms of why

the vanilla self-training and GradLRE do not work

and notice that: due to the data scarcity, the

base event extraction model (i.e., OneIE) performs

poorly on many argument roles (lower than 40%

F-score). Thus, the event predictions on unlabeled

corpora can be very noisy and inaccurate. The

model suffers from confirmation bias (Tarvainen

and Valpola, 2017; Arazo et al., 2020; Pham et al.,

2020): it accumulates errors and diverges when

it’s iteratively trained on such noisy pseudo labeled

examples during self-training. In addition, we also

notice that with self-training, the event extraction

model becomes overconfident about its predictions.

We check the averaged probability of all the ar-

gument role predictions on the unlabeled dataset

which is 0.93. In such case, it is clear that the

predicted probability can not faithfully reflect the

correctness of the predictions, which is referred as

the calibration error (Guo et al., 2017; Niculescu-

Mizil and Caruana, 2005). Thus, the self-training

process which relies on overconfident prediction

can become highly biased and diverge from the ini-

tial baseline model. In GradLRE, the quality of the

reward is highly depend on the averaged gradient

direction computed during the supervised training

process. However, due to the scarcity of the train-

ing data, the stored gradient direction can be unre-

liable. In addition, the gradient computed on the

pseudo-labeled dataset with high reward is used to

update the average gradient direction, which can

introduce noises into the reward function. As seen

17We show the variance of Base OneIE and +STFAMR on
three datasets in Appendix D.
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Tell that to the family of Margaret Hassan, the school teacher

who was brutally tortured and then slaughtered by these same

guys, they aren’t so bad are they Chris Matthews?

AMR Path: [slaughtered, ARG1, teacher, MODIFIER, Margaret Hassan]

Pred Arg: O; Compatibility Score: -0.99

Gold Arg: Victim; Compatibility Score: 0.99

It is irritating enough to get sued by Sam Sloan; imagine how

irritating it would be to get BEATEN by him because you have

done something so egregious that a court is forced to agree with him.

AMR Path: [sued, ARG0, Sam Sloan]

Pred Arg: Adjudicator; Compatibility Score: -0.99

Gold Arg: Plaintiff; Compatibility Score: 0.67

Protests against the action aimed at toppling Iraqi President Saddam

Hussein were held in cities across Libya, Egypt and Lebanon,

as well as in Amman, Damascus and the Gaza Strip.

AMR Path: [Protests, ARG0, held, ARG1, were, PLACE, Amman]

Pred Arg: O; Compatibility Score: -0.52

Gold Arg: Place; Compatibility Score: 0.74

Meanwhile Blair arrived in Washington late Wednesday for two

days of talks with Bush at the Camp David presidential retreat.

AMR Path: [arrived, OTHER, talks, PLACE, retreat]

Pred Arg: Destination; Compatibility Score: -0.94

Gold Arg: O; Compatibility Score: 0.31

Table 1: Qualitative Results of the compatibility scores.

ACE05-E ACE05-E+ ERE-EN

Dev Test Dev Test Dev Test

Scoring w/o AMR 87.4 85.9 87.9 86.9 82.8 83.1

Scoring w/ AMR 88.2 87.4 88.8 88.6 84.4 84.5

Table 2: The F-score (%) of the scoring models on vari-

ous datasets. Scoring w/o AMR is the baseline scoring

model without using AMR path. Scoring w/ AMR is

the scoring model we proposed.

in Table 3, the best models of self-training and

GradLRE are on par or worse than the baseline ap-

proach, and these approaches show the detrimental

effects as they show a continuous decline of the

performance as training proceeds.

By considering AMR structure, STFAMR en-

courages the event extraction models to predict

event structures that are more compatible with

AMR graphs. This claim is supported by Table 4,

which compares the compatibility scores between

the model without STF (OneIE baseline) and one

with STF (OneIE +STF) framework on the three

benchmark datasets. The compatibility scores are

measured by the AMR based scoring models. We

can clearly see that the compatibility scores mea-

sured on OneIE+STFAMR are much higher than the

scores measured on base OneIE.

Lastly, we observe that OneIE+STFAMR outper-

forms AMR-IE+STFAMR, even when AMR-IE per-

forms better than OneIE baseline without STF. We

argue the reason is that even though STFAMR does

not need AMR parsing at inference time, AMR-

IE does require AMR graphs at inference time

which causes it to suffer from potential errors in the

AMR parsing. On the other hand, OneIE trained

by STFAMR does not require AMR graphs at in-

ference time, making it free from potential error

propagation. Figure 2 shows more examples to il-

lustrate how the feedback from AMR structures in

STF helps to improve event predictions.

4.3 Effect of Confidence Threshold

Intuitively, STF can leverage both certain (includ-

ing compatible and incompatible) and uncertain

pseudo labeled examples, as when the example is

uncertain, the probability c predicted by the scor-

ing model is close to 0.5 and thus f c(c) is close to

0, making the gradients computed on this pseudo-

labeled example close to 0. To verify this claim,

we conduct experiments with STFAMR by using

the probability c predicted by the scoring model

to determine certain and uncertain pseudo labels

and analyzing their effect to STFAMR. Note that we

don’t use the probability from the base event extrac-

tion model due to its calibration error (Guo et al.,

2017) 18. Specifically, we first select a threshold

sst ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. For each pseudo ex-

ample, if the probability c predicted by the scoring

model is higher than sst (indicating a confident pos-

itive prediction) or lower than 1− sst (indicating

a confident negative prediction), we will add it for

STFAMR. The higher the threshold sst, the most

certain pseudo labels we can select for STFAMR.

As Figure 3 shows, STFAMR can even benefit from

the less-confident pseudo labeled examples with

threshold sst around 0.6, demonstrating that it can

make better use of most of the predicted events

from the unlabeled corpus for self-training.

4.4 Impact of AMR Parsing

AMR annotations are very expensive and hard to

obtain. To show the potential of STFAMR in the sce-

narios where gold AMR parsing is not available, we

conduct experiments by leveraging the NYT 2004

corpus as the external unlabeled corpus with sys-

tem generated AMR parsing for self-training. As

shown in Table 5, with system-based AMR, STF

can also improve the performance of base event

extraction models on all three benchmark datasets,

18See detailed explanations in Appendix ??
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ACE05-E ACE05-E+ ERE-EN

Tri-C Arg-C Tri-C Arg-C Tri-C Arg-C

DyGIE (Wadden et al., 2019) 69.7 48.8 67.3 42.7 - -

BERT_QA_Arg (Du and Cardie, 2020) 72.4 53.3 70.6 48.3 57.0 39.2

FourIE (Nguyen et al., 2021) 75.4 58.0 73.3 57.5 57.9 48.6

Text2Event (Lu et al., 2021) 71.9 53.8 71.8 54.4 59.4 48.3

DEGREE (Hsu et al., 2022) 73.3 55.8 70.9 56.3 57.1 49.6

Query_Extract (Wang et al., 2022) - - 73.6 55.1 60.4 50.4

UIE (Lu et al., 2022) 73.4 54.8 - - - -

Base OneIE (Lin et al., 2020) 74.0 57.4 73.4 57.2 60.2 49.8

+self-training∗ (Rosenberg et al., 2005) 74.0 57.2 73.8 57.3 60.1 49.4

+GradLRE∗ (Hu et al., 2021b) 74.6 57.4 73.5 57.4 60.5 50.3

+STFW/O_AMR 74.4 57.9 73.8 57.6 60.4 51.0

+STFAMR (ours) 75.0 58.9 73.4 59.0 60.6 52.0

Base AMR-IE (Zhang and Ji, 2021) 74.4 57.7 73.4 57.2 60.4 50.5

+self-training∗ (Rosenberg et al., 2005) 74.2 57.4 73.4 57.1 60.1 50.2

+GradLRE∗ (Hu et al., 2021b) 74.4 57.8 73.3 57.4 60.3 50.5

+STFW/O_AMR 74.3 58.0 73.5 57.6 60.5 51.1

+STFAMR (ours) 74.5 58.5 73.6 58.2 60.4 51.7

Table 3: Test F1 scores of event trigger classification (Tri-C), and argument role classification (Arg-C) on three

benchmark datasets. * denotes methods we re-implement to fit them into the event extraction task. Bold denotes the

best performance in each local section and underline denotes the best global performance.

Sentence & Gold Event Mentions AMR Path Base OneIE STF

deploying

ARG0

United States

replace

ARG2

and
Op

chairman

Medium

Unit

fine

ARG1
pay

ARG2

ordered

ARG0

judge

acquiring

Other

shareholders

In Paris, the French media group said parent company chairman Jean - Rene
Fourtou will replace Diller as chairman and chief executive of US unit.

Arg Role:Other 

Compatibility
Score: -1.0

With marathon talks at the top world body failing late Thursday to reconcile
French and Russian opposition to US-British war plans, the United States upped
its military presence, deploying more missile-firing warships to the Red Sea.

Arg Role:Agent 

Compatibility
Score: 1.0

In a verdict handed down on Saturday, the judge also ordered Ranjha to pay a fine
of 50,000 rupees ( about 870 US dollars ), they said.

Arg Role:Other 

Compatibility
Score: 0.22

Arg Role:Entity 

Compatibility
Score: 0.93

Arg Role:Entity 

Compatibility
Score: -0.98

Arg Role:Adjudicator 

Compatibility  
Score: 1.0

Arg Role:Buyer 

Compatibility
Score: -1.0

Arg Role:Other 

Compatibility
Score: 0.72

The Daily Planet raised 3.5 million dollars ( 2.2 million US ) in its initial public
offering with one of the new 600 shareholders acquiring 1.0 million dollars worth
of shares.

(Movement:Transport)  deploying -> (Agent) -> United States

(Personnel:Start-Position)  replace -> (Entity) -> unit

(Justice:Fine)  fine -> (Adjudicator) -> judge

(Transaction:Transfer-Money)  acquiring -> (Other) -> shareholders

Figure 2: Qualitative results of STF. Examples are taken from the development and test splits of ACE05-E. The

orange tokens denote event triggers and blue tokens denote arguments. The AMR paths are between event triggers

and arguments. The Base OneIE and STF fields show the predicted argument roles from two methods respectively.

All the predictions from STF are correct. The compatibility scores are computed by the same scoring model. Note

that OneIE and STF do not use AMR graph at inference time and AMR graph is shown just to provide intuitions.

ACE05-E ACE05-E+ ERE-EN

Dev Test Dev Test Dev Test

Base OneIE 70.1 68.4 76.9 61.9 76.4 69.2

+ STFAMR 72.2 70.8 80.2 64.0 78.0 75.1

Table 4: The compatibility scores computed by scoring

models on the development and test sets of the three

benchmark datasets.

and improve over the baseline scoring model with-

out using AMR. The gap between STF with gold

AMR and STF with system AMR is small, demon-

strating that STF is more robust to the potential

errors from AMR parsing.

ACE-E ACE-E+ ERE-EN

Base OneIE 57.4 57.2 49.8

+ STF w/o AMR 57.9 57.6 51.0

+ STF w/ sys_AMR 58.2 58.1 51.4

+ STF w/ gold_AMR 58.9 59.0 52.0

Table 5: Performance comparison between using gold

AMR, system-labeled AMR, and not using AMR.

5 Related Work

Most prior studies have been focusing on learning

supervised models (Ji and Grishman, 2008; Mc-

Closky et al., 2011; Li et al., 2013; Chen et al.,

2015; Feng et al., 2016; Nguyen et al., 2016; Wad-

den et al., 2019; Du and Cardie, 2020; Lin et al.,
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58.3

58.5

58.7

58.9

F1
-S

co
re

 %

STF_AMR_ACE
STF_AMR_ACE+
STF_AMR_ERE

0.5 0.6 0.7 0.8 0.9

Threshold sst
51.4

51.6

51.8

52.0

Figure 3: Performance change with different thresh-

olds to select certain pseudo labeled examples for self-

training.

2020; Zhang and Ji, 2021; Wang et al., 2022; wan;

Nguyen et al., 2021) based on manually annotated

event mentions. However, the performance of event

extraction has been barely improved in recent years,

and one of the main reasons lies in the data scarcity

and imbalance of the existing event annotations.

Several self-training and semi-supervised studies

have been proposed to automatically enrich the

event annotations. Huang and Riloff (2012) uses

extraction patterns based on nouns that, by defini-

tion, play a specific role in an event, to automat-

ically label more data. Li et al. (2014) proposes

various event inference mechanisms to reveal ad-

ditional missing event mentions. (Huang, 2020;

Huang and Ji, 2020) propose semi-supervised learn-

ing to automatically induce new event types and

their corresponding event mentions while the per-

formance of old types is also improved. (Liao and

Grishman, 2010, 2011b; Ferguson et al., 2018b)

propose techniques to select a more relevant and in-

formative corpus for self-training. All these studies

cannot handle the noise introduced by the automat-

ically labeled data properly. Compared with them,

our STF framework leverages a scoring model to

estimate the correctness of each pseudo-labeled ex-

ample, which further guides the gradient learning

of the event extraction model, thus it can efficiently

mitigate the impact of the noisy pseudo-labeled

examples.

Self-training has been studied for many

years (Yarowsky, 1995; Riloff and Wiebe, 2003;

Rosenberg et al., 2005) and widely adopted in

many tasks including speech recognition (Kahn

et al., 2020; Park et al., 2020), biomedical imag-

ing (You et al., 2022a,b), parsing (McClosky et al.,

2006; McClosky and Charniak, 2008), and pre-

training (Du et al., 2021). Self-Training suffers

from inaccurate pseudo labels (Arazo et al., 2020,

2019; Hu et al., 2021a) especially when the teacher

model is trained on insufficient and unbalanced

datasets. To address this problem, (Pham et al.,

2020; Wang et al., 2021a; Hu et al., 2021a) propose

to utilize the performance of the student model

on the held-out labeled data as a Meta-Learning

objective to update the teacher model or improve

the pseudo-label generation process. Hu et al.

(2021b) leverage the cosine distance between gradi-

ents computed on labeled data and pseudo-labeled

data as feedback to guide the self-training process.

(Mehta et al., 2018; Xu et al., 2021) leverage the

span of named entities as constraints to improve

semi-supervised semantic role labeling and syntac-

tic parsing, respectively.

6 Conclusion

We propose a self-training with feedback (STF)

framework to overcome the data scarcity issue of

the event extract task. The STF framework esti-

mates the correctness of each pseudo event pre-

diction based on its compatibility with the corre-

sponding AMR structure, and takes the compati-

bility score as feedback to guide the learning of

the event extraction model on each pseudo label

during self-training. We conduct experiments on

three public benchmark datasets, including ACE05-

E, ACE05-E+, and ERE, and prove that STF is

effective and general as it can improve any base

event extraction models with significant gains. We

further demonstrate that STF can improve event

extraction models on large-scale unlabeled corpora

even without high-quality AMR annotations.

Limitations

Our method utilizes the AMR annotations as addi-

tional training signals to alleviate the data scarcity

problem in the event extraction task. In this prob-

lem setup, generally speaking, AMR annotations

are more expensive than event extraction annota-

tions. Nonetheless, in reality, the AMR dataset

is much bigger than any existing event extraction

dataset, and AMR parsers usually have higher per-

formance than event extraction models. Leverag-

ing existing resources to improve event extraction

without requiring additional cost is a feasible and

practical direction. Our work has demonstrated

the effectiveness of leveraging the feedback from

AMR to improve event argument extraction. How-

ever, it’s still under-explored what additional infor-

mation and tasks can be leveraged as feedback to

improve trigger detection.
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We did not have quantitative results for the align-

ment between AMR and event graphs. The authors

randomly sampled 50 event graphs from ACE05-E

and found 41 are aligned with their AMR graphs

based on human judgment. In future work, more

systematic studies should be conducted to evaluate

the alignment.

There is a large gap between the validation and

testing datasets in terms of label distribution on

ACE05-E and ACE05-E+. We observe that per-

formance improvement on the validation set some-

times leads to performance decreasing on the test

set. Both the validation and test dataset miss cer-

tain labels for event trigger types and argument

role types. The annotations in the training set, val-

idation set, and test set are scarce and highly un-

balanced, which causes the low performance on

trained models. We argue that a large-scale more

balanced benchmark dataset in the event extrac-

tion domain can lead to more solid conclusions and

facilitate research.
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A Groups of AMR Relations

Table 7 shows the new categories and labels of

AMR relations.

B The Statistics of Datasets

Table 7 shows the statistics of the three public

benchmark datasets, including ACE05-E, ACE05-

E+ and ERE-EN.
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Group Label AMR Relations

ARG0 ARG0

ARG1 ARG1

ARG2 ARG2

ARG3 ARG3

ARG4 ARG4

Destination destination

Source source

Instrument instrument

Beneficiary beneficiary

Prep roles role starts with prep

Op roles role start with op

Entity role wiki, name

Arg-X role ARG5, ARG6, ARG7 ARG8, ARG9

Place role location, path, direction

Medium role manner, poss, medium, topic

Modifier role domain, mod, example

Part-whole role part, consist, subevent, subset

Time role

calendar, century, day, dayperiod, decade,

era, month, quarter, season, timezone,

weekday, year, year2, time

Others

purpose, li, quant, polarity,

condition, extent, degree, snt1,

snt2, ARG5, snt3, concession,

ord, unit, mode, value,

frequency, polite, age, accompanier,

snt4, snt10, snt5, snt6,

snt7, snt8, snt9, snt11,

scale, conj-as-if, rel

Table 6: The 19 groups of the AMR relations used in

our paper.

C Training Details

For all experiments, we use Roberta-large as the

language model which has 355M parameters. We

train all of our models on a single A100 GPU.

Base OneIE We follow the same training pro-

cess as (Lin et al., 2020) to train the OneIE model.

We use BertAdam as the optimizer and train the

model for 80 epochs with 1e-5 as learning rate and

weight decay for the language encoder and 1e-3 as

learning rate and weight decay for other parame-

ters. The batch size is set to 16. We keep all other

hyperparameters the same as (Lin et al., 2020). For

each dataset we train 3 OneIE models and report

the averaged performance.

Base AMR-IE We follow the same training pro-

cess as (Zhang and Ji, 2021) to train the AMR-IE

model. We use BertAdam as the optimizer and

train the model for 80 epochs with 1e-5 as learning

rate and weight decay for the language encoder and

1e-3 as learning rate and weight decay for other

parameters. The batch size is set to 16. We keep all

other hyperparameters exactly the same as (Zhang

and Ji, 2021). For each dataset we train 3 AMR-IE

models and report the averaged performance.

Scoring Model We use BertAdam as the opti-

mizer and train the score model for 60 epochs with

1e-5 as learning rate and weight decay for the lan-

guage encoder and 1e-4 as learning rate and weight

decay for other parameters. The batch size is set to

10. The scoring model contains two self-attention

layers. We train 3 scoring models and reported the

averaged performance.

Self-Training For self-training we use SGD as

optimizer and continue to train the converged base

OneIE model for 30 epochs with batch size 12,

learning rate 1e-4, weight decay for the language

encoder as 1e-5, and learning rate 1e-3 and weight

decay 5e-5 for all other parameters except the CRF

layers and global features which are frozen. For

self-training, we use 0.9 as the threshold to se-

lect the confident predictions as pseudo-labeled in-

stances. For all the experiments, we train 3 models

and report the averaged performance.

Gradient Imitation Reinforcement Learning

For GradLRE, we use the BertAdam as the op-

timizer with batch size 16, learning rate 1e-5 and

weight decay 1e-5 for the language encoder and

learning rate 1e-3 and weight decay 1e-3 for other

parameters to first train OneIE model for 60 epochs.

The standard gradient direction vector is computed

by averaging the gradient vector on each optimiza-

tion step. Then following the same training process

in the original paper, we perform 10 more epochs

of Gradient Imitation Reinforcement Learning, and

set the threshold for high reward as 0.5. For all

the experiments, we train 3 models and report the

averaged performance.

Self-Training with Feedback from Abstract

Meaning Representation For STF, we first train

the OneIE model on the labeled dataset for 10

epochs and continue to train it on the mixture of un-

labeled data and labeled dataset for 70 more epochs

with batch size 10, learning rate 1e-4, weight decay

for the language encoder as 1e-5, and learning rate

1e-3 and weight decay 5e-5 for all other parame-

ters. We leverage a linear scheduler to compute the

value for the loss combining ratio β. The value of

β is computed as
epoch
70

. For all the experiments,

we train 3 models and report the averaged perfor-

mance. For model selection, we propose a new

method called Compatibility-Score Based Model
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ACE05-E ACE05-E+ ERE-EN

Train Dev Test Train Dev Test Train Dev Test

# Sent 17,172 923 832 19,240 902 676 14,736 1,209 1,163

# Entities 29,006 2,451 3,017 47,525 3,422 3,673 38,864 3,320 3,291

# Events 4,202 450 403 4,419 468 424 6,208 525 551

Table 7: The statistics of the three benchmarks used in our paper.

Selection which is discussed in the following para-

graph.

Compatibility-Score Based Model Selection

The data scarcity problem not only appears in the

training data of ACE-05, ACE-05+ and ERE-EN

but appears in the development set. For example,

in ACE-05, the development set only contains only

603 labeled argument roles for 22 argument role

classes and 7 argument role classes have lees than

10 instances. To alleviate this problem, we pro-

pose to leverage part of the large-scale unlabeled

dataset as a held-out development set. At the end

of each epoch, instead of evaluating the event ex-

traction model on the development set, we run the

event extraction model on the unlabeled held-out

development set to make event predictions and run

the scoring model on the event predictions to com-

pute compatibility scores. We utilize the averaged

compatibility scores computed on all instances in

the unlabeled held-out development datasets as the

model selection criteria. We argue this is another

application of the scoring model since its goal is to

evaluate the correctness of event predictions. The

size of the unlabeled held-out development set is

2,000.

D Results of Base OneIE and +STFAMR

We show the F1 scores of Base OneIE and

+STFAMR on three benchmark datasets with vari-

ances denoted. As one can see that Base OneIE

and +STFAMR have similar variances on all three

datasets except ACE05-E+. We leave how to re-

duce the variance of argument role classification to

future work.

ACE05-E ACE05-E+ ERE-EN

Arg-C Arg-C Arg-C

Base OneIE 57.4 ±1.23 57.2 ±0.32 49.8 ±0.45

+STFAMR (ours) 58.9 ±1.28 59.0 ±1.03 52.0 ±0.40

Table 8: Test F1 scores of argument role classification

(Arg-C) on three benchmark datasets.
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