
Interleaving Static Analysis and LLM Prompting
Patrick J. Chapman

University of California, Davis
Davis, USA

pchapman@ucdavis.edu

Cindy Rubio-González
University of California, Davis

Davis, USA
crubio@ucdavis.edu

Aditya V. Thakur
University of California, Davis

Davis, USA
avthakur@ucdavis.edu

Abstract
This paper presents a new approach for using Large Lan-
guage Models (LLMs) to improve static program analysis.
Specifically, during program analysis, we interleave calls to
the static analyzer and queries to the LLM: the prompt used
to query the LLM is constructed using intermediate results
from the static analysis, and the result from the LLM query
is used for subsequent analysis of the program. We apply
this novel approach to the problem of error-specification
inference of functions in systems code written in C; i.e., in-
ferring the set of values returned by each function upon
error, which can aid in program understanding as well as
in finding error-handling bugs. We evaluate our approach
on real-world C programs, such as MbedTLS and zlib, by
incorporating LLMs into EESI, a state-of-the-art static analy-
sis for error-specification inference. Compared to EESI, our
approach achieves higher recall across all benchmarks (from
average of 52.55% to 77.83%) and higher F1-score (from av-
erage of 0.612 to 0.804) while maintaining precision (from
average of 86.67% to 85.12%).

CCS Concepts: • Software and its engineering → Au-
tomated static analysis; Error handling and recovery; •
Computing methodologies → Natural language pro-
cessing.

Keywords: static analysis, large language model, error han-
dling, error specifications

ACM Reference Format:
Patrick J. Chapman, Cindy Rubio-González, and Aditya V. Thakur.
2024. Interleaving Static Analysis and LLM Prompting. In Pro-
ceedings of the 13th ACM SIGPLAN International Workshop on the
State Of the Art in Program Analysis (SOAP ’24), June 25, 2024,
Copenhagen, Denmark. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3652588.3663317

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOAP ’24, June 25, 2024, Copenhagen, Denmark
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0621-9/24/06
https://doi.org/10.1145/3652588.3663317

1 Introduction
This paper presents a new approach for using Large Language
Models (LLMs) to improve static program analysis. LLMs [18,
25] have been shown to demonstrate impressive reasoning
abilities in natural and programming languages tasks via few-
shot [3] and chain-of-thought [28] prompting. The approach
presented in this paper utilizes this reasoning ability of LLMs
when the static analysis is unable to make progress; the
results of the query to the LLM are used for subsequent
analysis. Furthermore, the query (or prompt) to the LLM
incorporates the current results of the static analysis, which
enables it to provide more accurate results. In this way, our
approach interleaves calls to the static analyzer and the LLM,
with each utilizing the results of the other.

We apply this novel approach to the problem of error-
specification inference of functions in systems code written
in C, i.e., inferring the set of values returned by each function
upon error (Section 2). The C language does not have built-
in exception or error handling; thus, a common idiomatic
practice for error-handling is to check the return value of
a function on error, i.e., the return code idiom. These return
values indicate the functions’ error specifications, which can
aid in program understanding as well as in finding error-
handling bugs. EESI [6] has shown higher effectiveness and
performance at inferring error specifications compared to
prior approaches [1, 7, 14]. Our approach interleaves calls to
the EESI static analyzer and the LLM (Figure 1).

We evaluated our approach on six real-world C programs,
such as MbedTLS and zlib (Section 5). Our approach im-
proves recall and F1-score over EESI from 52.55% to 77.83%
and 0.612 to 0.804, respectively, while maintaining a high
precision of 85.12% compared to 86.67% in EESI. Our evalu-
ation demonstrates that by interleaving static analysis and
LLM prompting, we can significantly improve upon the error
specification inference capabilities of just a static analyzer.

The contributions of this paper are as follows:

• We propose a technique for interleaving a static anal-
ysis with LLM prompting.
• We designed a tool for error specification inference
of C programs using our approach of combining EESI
static analyzer and LLM prompts.
• We evaluate our approach on 6 real-world C programs
comparing it with prior state-of-the-art EESI. We pro-
vide an ablation study on the individual components
of our approach.

https://orcid.org/0009-0006-5645-5196
https://orcid.org/0000-0002-0861-3763
https://orcid.org/0000-0003-3166-1517
https://doi.org/10.1145/3652588.3663317
https://doi.org/10.1145/3652588.3663317
https://doi.org/10.1145/3652588.3663317

SOAP ’24, June 25, 2024, Copenhagen, Denmark Patrick J. Chapman, Cindy Rubio-González, and Aditya V. Thakur

EESI

LLM

Source Code

Domain
Knowledge

Error
Specifications

Figure 1. Our approach infers error specifications by inter-
leaving calls to the EESI static analyzer and the LLM.

2 Background

Error Specification Inference. The C language does not
feature programming constructs for exception handling. In-
stead, developers often use the return code idiom to indicate
error. An error specification refers to the set of values re-
turned by a function upon error. Because it is not possible to
enforce compile-time rules regarding error code propagation
and checking, the return code idiom often leads to bugs, e.g.,
developers may miss or incorrectly check the error return
values of functions.

A few approaches have presented techniques for infer-
ring error specifications [1, 6–8, 14, 30]. In this paper, we
consider a state-of-the-art static program analysis using ab-
stract interpretation for error specification inference named
EESI [6]. As input, EESI takes in multiple forms of optional
user-supplied initial domain knowledge: (1) initial error speci-
fications, (2) error codes, (3) success codes, and (4) error-only
functions (only called along error paths). With this initial
domain knowledge, EESI uses static analysis to infer new
error specifications.

While EESI has demonstrated success in error specification
inference, it has two inherent limitations that affect its recall
and precision: (1) incomplete program facts, and (2) third–
party functions. As EESI is a static program analyzer using
abstract interpretation to infer program semantics related
to idiomatic practices, it provides approximations that may
be insufficient in learning enough program facts for error
specification inference. One important source of incomplete
knowledge is third-party functions. Third-party functions are
called within a program, but defined elsewhere. Because the
analyzer does not have access to the source code, it cannot
reason about their error specifications.
Large Language Models (LLMs). LLMs are language mod-
els trained on large amounts of data for tasks such as text
generation and language understanding. These models have
been developed for both natural language [25] and program-
ming languages [23], while some models are trained for
both [18, 22, 26]. One of the key components of LLMs are the
prompts, i.e., the input to the LLM. There has been consider-
able research done in recent years related to the generation
of prompts that improve the performance of LLMs in various
tasks [2, 22, 27, 28]. These approaches include concepts such
as chain-of-thought [28], where LLMs are given question and
answer as examples with the associated chain-of-though

You are to determine the error specifications given
a list of functions. An error specification is...
...
MBEDTLS_ERR_X509_INV_NAME -0x2380

Common Context
Error codes
Success codes

Error-only functions

Initial
Error Specifications

Initial Domain Knowledge

mbedtls_asn1_get_tag: <0

Function Context

1 i n t x 5 0 9 _ g e t _ a t t r _ t y p e _ v a l u e (. . .) {
2 . . .
3 r e t = mbed t l s _ a sn1_ge t _ t a g (. . .) ;
4 i f (r e t != 0) {
5 r e t += MBEDTLS_ERR_X509_INV_NAME ;
6 r e t u r n r e t ;
7 }
8 . . .
9 r e t u r n 0 ;
10 }

Question

Prompt

Large Language ModelEESI [6]

x509_get_attr_type_value: <0. When

mbedtls_asn1_get_tag fails, an error code

is added to ‘ret’ and returned.

Output (LLM)

x509_get_attr_type_value: ⊥
Output (EESI)

Figure 2. Using EESI and the LLM to infer error specifica-
tions

reasoning, and self-consistency [27] prompting, where LLMs
are prompted with the same question multiple times, using
the most consistent answer given.

3 Overview Example
This section illustrates how our approach of interleaving calls
to the EESI static analyzer and the LLMs to infer error specifi-
cations. Consider the function x509_get_attr_type_value
in MbedTLS. EESI alone is unable to infer its error specifi-
cation; EESI infers ⊥ as the function error-specification as
shown in Figure 2.
The LLM alone is also unable to infer its error specifica-

tion. We can construct a prompt to the LLM that includes
the general description of the error specification inference
problem (Common Context in Figure 2) as well as the source
code of the function (Question in Figure 2). However, query-
ing the LLM with just this information is not sufficient to
give us the correct error specification. In particular, the LLM
infers that the error condition for mbedtls_asn1_get_tag
is ≠0 from the conditional check. Even when the value of
the error code MBEDTLS_ERR_X509_INV_NAME is included in
the Common Context, the incorrect assumption about the
called function leads the LLM to incorrectly infer that the
return value on the error-path is the negative error code
added with any non-zero value; that is, the LLM infers that
the error value could be anything, and the error specification
is ⊤, instead of <0.

Interleaving Static Analysis and LLM Prompting SOAP ’24, June 25, 2024, Copenhagen, Denmark

You are to determine the error spec-
ifications given a list of functions.
An error specification is...
...
OTRNG_ERROR 0

Common Context

Error codes
Success codes

Error-only functions

Initial
Error Specifications

Initial Domain Knowledge

otrng_global_state_generate_forging_key: 0

Function Context

otrng_global_state_instance_tags_read_from

Question

Prompt

Large Language ModelEESI [6]

otrng_global_state_instance_tags_read_

from: 0, OTR functions return 0 on

error and 1 on success.

Output (LLM)

otrng_global_state_instance_tags_read_from:⊥
Output (EESI)

Figure 3. Using the LLM to infer error spefication of a third-
party function

However, if we also include intermediate results from the
EESI static analyzer in the LLM prompt, then the LLM is able
to return the fact that x509_get_attr_type_value returns
a value <0 on error. In particular, the LLM prompt includes
the error specification of the function mbedtls_asn1_tag
that is called from x509_get_attr_type_value (Function
Context in Figure 2); this error specification is inferred by
the EESI static analyzer.

This example illustrates how our approach provides ben-
efits over purely static analysis or LLM approaches by in-
terleaving calls to the static analyzer and the LLM: the LLM
is used only when the static analyzer is unable to make
progress, and the LLM prompt includes intermediate infor-
mation gleaned by the static analyzer. Furthermore, the out-
put of the LLM is fed back into the EESI static analyzer. For
example, the LLM’s specification for x509_get_attr_type_
value would allow EESI to subsequently find the error spec-
ification (<0) for mbedtls_x509_get_name from analyzing
its implementation:

i f ((r e t = x 5 0 9 _ g e t _ a t t r _ t y p e _ v a l u e (. . .)) != 0)
r e t u r n (r e t)

The specifics about the LLM prompt construction; viz, Com-
mon Context, Function Context, and Question, are deferred
to Section 4.1.

Figure 3 illustrates another scenario illustrating the bene-
fits of incorporating calls to an LLM in the static analyzer.
The function otrng_global_state_instance_tags_read_
from is a third-party function called in Pidgin OTRv4. Be-
cause the source code of this function is not available, EESI
is unable to infer its error specification, and consequently,

it might not be able to infer the specifications of functions
that call it. However, constructing an LLM prompt that in-
cludes information from the user-provided domain knowl-
edge, the LLM is able to correctly infer the error specification
for otrng_global_state_instance_tags_read_from.

4 Approach
We illustrate our approach for interleaving static analysis and
LLMs in Figure 1. The input is the program source code and
optional domain knowledge, and the output are the function
error specifications inferred by the analysis.

4.1 Building Prompts
When interacting with the LLM, we construct a prompt that
consists of the Common Context, Function Context, and Ques-
tion, as mentioned in Section 3.

Common Context. The prompt Common Context used for
error specification inference consists of a problem descrip-
tion and an explanation of the abstract domain used by the
EESI static analyzer. We provide the explanation of the ab-
stract domain, because wewant the LLM to output its learned
error specifications using this domain. Relating to the pro-
gram under analysis, the Common Context also contains any
error codes, success codes, and error-only functions from the
domain knowledge input. We include additional observed
idiomatic practices related to the return code idiom:

1. Error specification values must be a subset of the re-
turned values of a function.

2. Unknown error specifications are ⊥.
3. Success values are not part of the error specification.
4. The NULL return value is equal to 0.
5. Error codes from standard library functions are posi-

tive integers.
6. Macros may check return values and return if failing.

We also provide multiple, basic chain-of-thought examples
that consist of a function definition and its associated error
specification, with a chain-of-thought explanation. We do so
to demonstrate the task of error specification inference and
so that the LLM generates parse-able output. We do this, in
addition to providing the explanation of the abstract domain,
in order to limit the LLM from generating output that is
unexpected. However, if the LLM output does not follow
the expected format, then the related error specification will
consist of the ⊥ element, i.e., unknown. For example, the
expected output for malloc would be malloc: 0.

Function Context. The Function Context of the prompt
relates to any relevant function error specifications for the
function that is being queried by the LLM. The Function Con-
text that is generated depends on the selected LLM query
function that will be explained further when introducing our
algorithm, Algorithm 1. In all cases, these error specifications
are provided as few-shot examples to the LLM, with the aim to

SOAP ’24, June 25, 2024, Copenhagen, Denmark Patrick J. Chapman, Cindy Rubio-González, and Aditya V. Thakur

generate parse-able output, as well as providing demonstra-
tive examples to the LLM. These error specifications provide
additional context that can assist the LLM when it comes to
understanding returned error values. This is especially true
when there are functions that exist in the same library as
demonstrated with Figure 2.

Question. The Question in all constructed prompts asks for
the LLM to return any error specification that it is confident
in using the abstract domain used by EESI.

4.2 Error Specification Inference
For the task of error specification inference, we present Al-
gorithm 1 to demonstrate how the static analyzer and LLM
are used. Our algorithm takes in the domain knowledge as
a map of program facts 𝑃 and the set of functions from the
source code 𝐹 . The algorithm returns the updated facts 𝑃
after performing analysis.

The analysis begins by iterating over the functions 𝑓 ∈ 𝐹
bottom-up in the Call Graph (𝐶𝐺) as demonstrated on Line 2.
This ensures that that called functions are inferred before
their caller, because called functions provide additional con-
text for error specification inference. Note, for brevity, we do
not include in the algorithm that we perform a fixpoint on the
Strongly Connected Components (SCC) in 𝐶𝐺 , as recursion
may exist in the call chains. The algorithm algorithm will
attempt to infer an error specification in one of three cases:
(1) queryLLMThirdParty (Line 4), (2) runAnalysis (Line 6),
or (3) queryLLMAnalysis (Line 8).

4.2.1 Third-Party Function Error Specifications. For
each function, we first check if it is a third-party function
(Line 3), and if it is, we perform queryLLMThirdParty as
demonstrated on Line 4. Because the source code definition
is not available for third-party functions, we cannot statically
analyze it. As Function Context for the prompt, we provide the
entire set of error specifications that are in 𝑃 on Line 22. The
Question in this case just simply lists the name of the function-
of-interest (Line 21). The LLM is then queried, where the
output is then parsed (Line 24) and if any error specification
is learned, the program facts are updated (Line 10).

4.2.2 Error SpecificationAnalysis. If the function is not
third-party, then the EESI static analyzer will perform its
own analysis. EESI will determine if the error specification
of the function is infallible (∅), unknown (⊥), or any other
value (e.g., <0) from runAnalysis on Line 6. If this result is ⊥
(Line 7), then we query the LLM once for the function under
analysis with queryLLMAnalysis on Line 8.

Unlike the Function Context provided in queryLLMThird-
Party, we only provide the known error specifications of
called functions contained in the function definition (Line 15).
We demonstrate an example of this in Figure 2, where error
specification mbedtls_asn1_get_tag is learned from EESI

Algorithm 1: InferErrorSpecification(𝑃 , 𝐹)
INPUT: Map of program facts 𝑃 , Set of functions 𝐹 .
OUTPUT: Updated 𝑃 with new error specifications.
1: 𝐶𝐺 ←CallGraph(𝐹)
2: for all 𝑓 ∈ reverseTopologicalSort(𝐶𝐺) do
3: if isThirdParty(𝑓) then
4: 𝑠𝑝𝑒𝑐 ←queryLLMThirdParty(𝑃, 𝑓)
5: else
6: 𝑠𝑝𝑒𝑐 ←runAnalysis(𝑃, 𝑓 ,EESI)
7: if 𝑠𝑝𝑒𝑐 = ⊥ then
8: 𝑠𝑝𝑒𝑐 ←queryLLMAnalysis(𝑃, 𝑓)
9: end if
10: end if

𝑃 ←updateFacts(𝑃, 𝑓 , 𝑠𝑝𝑒𝑐)
11: end for
12: return 𝑃

13: Function queryLLMAnalysis(𝑃 , 𝑓)
14: 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 ←getSourceCode(𝑓)
15: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ← getCalledErrorSpecifications(𝑃, 𝑓)
16: 𝑝𝑟𝑜𝑚𝑝𝑡 ←buildPrompt(𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛)
17: 𝑠𝑝𝑒𝑐 ←parseOutput(queryLLM(𝑝𝑟𝑜𝑚𝑝𝑡))
18: return spec
19: EndFunction
20: Function queryLLMThirdParty(𝑃 , 𝑓)
21: 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 ← 𝑔𝑒𝑡𝑁𝑎𝑚𝑒 (𝑓)
22: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ←getErrorSpecifications(𝑃)
23: 𝑝𝑟𝑜𝑚𝑝𝑡 ←buildPrompt(𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛)
24: 𝑠𝑝𝑒𝑐 ← parseOutput(queryLLM(𝑝𝑟𝑜𝑚𝑝𝑡))
25: return spec
26: EndFunction

and provided as Function Context to the LLM, correctly in-
ferring x509_get_attr_type_value.
The constructed Question as part of the prompt consists

of the source code of the function being analyzed (Line 14).
The resulting output from the LLM is then parsed (Line 17)

and any newly learned error specification is updated in the
program facts on Line 10.

4.2.3 Validating the LLM Response. We re-query the
LLM for every generated prompt to limit the side effects of
hallucination. Hallucination refers to when LLMs make up
information to satisfy a prompt, even if the provided chain-
of-thought reasoning is contradictory. We specifically ask the
LLM to ensure that the error specifications provided match
the given chain-of-thought description from itself. Addition-
ally, we also limit some of the imprecision by identifying two
inconsistencies with formal reasoning. First, we do not infer
error specifications if the resulting error value from the LLM
includes a known success value. Second, we do not infer an
error specification if the LLM states that the error specifi-
cation is an improper superset of the return range of the
function. As both of these program semantics are obtained
via an approximation during the analysis of EESI, we cannot

Interleaving Static Analysis and LLM Prompting SOAP ’24, June 25, 2024, Copenhagen, Denmark

Table 1. Selected benchmarks with their LOC and selected
domain knowledge — initial error specifications, error-only
(EO) functions, error codes, and success codes.

Domain Knowledge
Codes

Benchmark KLOC Ver. Init. Specs EO Error Success

Apache HTTPD 288 2.4.46 14 0 44 1
LittleFS 2 1.7.0 11 0 14 1
MbedTLS 255 2.21.0 21 1 221 1
Netdata 51 1.11.0 43 0 0 0
Pidgin OTRv4 15 4.0.2 34 0 0 0
zlib 18 1.2.11 7 0 6 1

guarantee that these inconsistencies are removed entirely,
but we can utilize these rules to limit low-hanging fruit.

5 Experimental Evaluation
For our experimental evaluation, we perform an ablation
study.We propose three research questions with one baseline
to target components of our approach:
RQ0 How well does the static analysis of EESI perform?

This is our baseline.
RQ1 What is the impact using the LLM to infer third-party

error specifications, i.e., queryLLMThirdParty?
RQ2 What is the impact of using the direct LLM analysis,

i.e., queryLLMAnalysis?
RQ3 What is the impact of interleaving EESI and the LLM?
Our code and data are publicly available at https://github.
com/ucd-plse/eesi-llm.

5.1 Experimental Setup

Benchmarks. We consider a data set of six benchmark
programs that represent a variety of error-handling patterns
and system types, as listed in Table 1.
Domain Knowledge. For all approaches, we supply the
same initial domain knowledge as input. Initial error specifi-
cations are identified via one of two strategies. The first is
that we select applicable error specifications from a list of
common andwell-known standard library functions. The sec-
ond is that we manually inspect a small subset of functions
based on the program’s call graph, supplying functions that
appear lower in the call graph as initial domain knowledge.
Success and error codes are mined automatically through pat-
tern matching header files for patterns such as ERR, err, and
SUCCESS. Error-only functions (only called on error paths) are
selected via manual inspection. The manual effort involved
in finding the above domain knowledge for all benchmarks
took a total of one hour.
Evaluation metrics and ground truth. We measure pre-
cision, recall, and F1 (F1-score) — where we only consider
a true positive (TP) to be a learned error specification that

Table 2. Total number of functions, functions in G, and
third-party functions in G.

Benchmark Total G Third Party ∈ G
Apache HTTPD 1210 600 (49.6%) 135 (22.5%)
Little FS 60 60 (100.0%) 9 (15.0%)
MbedTLS 1211 598 (49.4%) 15 (2.5%)
Netdata 720 338 (47.6%) 74 (21.9%)
Pidgin OTRv4 277 277 (100.0%) 200 (72.2%)
zlib 126 126 (100.0%) 10 (7.9%)

matches the ground truth exactly; for example, ≤0 and <0
are not equivalent and would be considered a false posi-
tive (FP). If the analysis determines an error specification is
unknown ⊥, then that is considered a false negative (FN).
As every function-under-analysis will have an error spec-
ification, even infallible ∅ functions, we do not have true
negatives (TN). For all metrics, we calculate based on a man-
ually inspected ground-truth G as depicted in Table 2. For
smaller benchmarks, we inspected all functions, but for larger
benchmarks we randomly sampled a subset. We did so, as
manual inspection over all functions is not feasible due to
time constraints, as some functions may consist of hundreds
or thousands of lines. Note, numbers represented in Table 2
do not count initial error specifications from the domain
knowledge.

Precision, recall, and F1 are defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃G

𝑇𝑃G + 𝐹𝑃G
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃G
𝑇𝑃G + 𝐹𝑁G

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

100 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
Implementation Details.

EESI is implemented using the LLVM infrastructure [15]
to analyze bitcode and our LLM error specification inference
uses GPT-4 [18] as the LLM. Our experiments were run on a
2.10 GHz Xeon Silver 4216 CPU with 384 GB of RAM.

5.2 Experimental Results

RQ0: How well does EESI perform in error specification

inference?

For this task, we simply supply the initial domain knowl-
edge and source code to the static analyzer of EESI and
receive its inferred error specifications. The number of in-
ferred error specifications are represented in Table 3. From
these, we can see that the most common error specification
inferred across all benchmarks is <0. Many standard library
functions indicate that they return a negative error code on
failure, which has been adopted by many other software pro-
grams. However, this cannot be assumed for all functions, as
indicated with benchmarks such as Apache HTTPD, which

https://github.com/ucd-plse/eesi-llm
https://github.com/ucd-plse/eesi-llm

SOAP ’24, June 25, 2024, Copenhagen, Denmark Patrick J. Chapman, Cindy Rubio-González, and Aditya V. Thakur

Table 3. Specification counts, precision, recall, and F1-score for EESI

Benchmark <0 >0 0 ≤0 ≥0 ≠0 ∅ Total Precision Recall F1

Apache HTTPD 16 42 16 0 1 27 183 285 94.16% 37.56% 0.537
Little FS 40 0 7 0 0 0 10 57 91.30% 75.00% 0.824
MbedTLS 723 10 48 3 0 1 246 1031 90.64% 84.55% 0.875
Netdata 17 35 108 0 1 1 116 278 64.60% 24.50% 0.355
Pidgin OTRv4 11 4 24 0 0 0 29 68 82.35% 10.33% 0.184
zlib 68 1 14 0 0 0 29 112 97.14% 83.33% 0.895

often can return <0, >0, and ≠0 on error. Additionally, some
programs may have a considerable number of infallible (∅)
functions, e.g., MbedTLS.
EESI achieves a precision ranging from 64.60% to 97.14%

as seen in Table 3, averaging at 86.67% per benchmark. How-
ever, the recall varies even more depending on the bench-
mark, ranging from 10.33% to 83.33%, averaging 52.55%. The
benchmark with the lowest recall, Pidgin OTRv4 (10.33%) is
also notably the benchmark with the highest percentage of
third-party functions at 72.2% as listed in Table 2.

RQ1: What is the impact of queryLLMThirdParty?

We measure the impact of queryLLMThirdParty by run-
ning it in the first step of our interleaved error specification
inference. We then run the static analysis of EESI through
runAnalysis, however, we do not call queryLLMAnalysis
when EESI infers ⊥.

As we can see demonstrated in Figure 4, we notice an
average recall of 62.20% (Figure 4c) and average increase
of 29.17% (Figure 4a) for inferred error specifications over
EESI. Our precision remained similar to EESI (Figure 4b). We
notice the largest impact for the benchmark Netdata, which
increased the most by 70.50%. This benchmark was impacted
significantly, as it refers to many well-known libraries such
as pthread. We do not see as much of an increase in the
Pidgin OTRv4, as many of the third-party libraries are for
niche purposes, e.g., the GTK library. However, this is not
the case for all library functions; for example, the error spec-
ification inference demonstrated in Figure 3 occurs through
queryLLMThirdParty.

RQ2:What is the impact of using queryLLMAnalysis?

To isolate the contributions of queryLLMAnalysis, we skip
queryLLMThirdParty in the workflow. Instead, we proceed
to running the static analysis of EESI, followed by querying
the LLM if the result is ⊥.
The results depicted in Figure 4 demonstrate an average

increase of 59.88% (Figure 4a) across all benchmarks, with
an average recall of 70.26% (Figure 4c). Our benchmark that
saw the largest percentage increase was Apache HTTPD
at 183.33%, which contains the second highest percentage
of third-party functions (Table 2). In Figure 2, we can see
that the direct LLM analysis allows the LLM to reason about

LLM𝑇ℎ𝑖𝑟𝑑𝑃𝑎𝑟𝑡𝑦 LLM𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 Combined

0

50

100

150

200

29.17

59.88

88.6

(a) Increase over EESI.

EESI LLM𝑇ℎ𝑖𝑟𝑑𝑃𝑎𝑟𝑡𝑦 LLM𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 Combined

60

70

80

90

100

86.67
84.7 85.5 85.12

(b) Precision.

EESI LLM𝑇ℎ𝑖𝑟𝑑𝑃𝑎𝑟𝑡𝑦 LLM𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 Combined

20

40

60

80

100

52.55
62.2

70.26
77.83

(c) Recall.

EESI LLM𝑇ℎ𝑖𝑟𝑑𝑃𝑎𝑟𝑡𝑦 LLM𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 Combined

0.2

0.4

0.6

0.8

1

0.61
0.68

0.74
0.8

(d) F1 scores.

Figure 4.Average increase, precision, recall, and F1-score for
approaches. The minimum and maximum benchmark results
are represented as error bars for their respective metric.

function bodies, even while the static analysis of EESI is
insufficient.

RQ3:What is the impact of interleavingEESIandLLM?

For our combined approach, we utilize the entire workflow,
calling both queryLLMThirdParty and queryLLMAnalysis.
We see in Table 4, that our combination of prompting strate-
gies is extremely beneficial in applications such as Pidgin
OTRv4, Netdata, and Apache HTTPD. Significantly improv-
ing the recall and F1 over EESI in Table 3. In fact, we see an
increase over the average F1 of EESI by +0.192 (Figure 4d).
We also see the precision Δ on newly learned error specifica-
tions that were not inferred strictly via static analysis. With
Netdata, we saw 144 new <0 error specifications inferred,
with our overall precision going up for the benchmark. We
make note that even when we do lose some precision, as
seen with Apache HTTPD, we have an increase of 188.07%
and still significantly improve our F1-score to 0.752.

Interleaving Static Analysis and LLM Prompting SOAP ’24, June 25, 2024, Copenhagen, Denmark

Table 4. Specification counts, precision, recall, and F1-score for our framework interleaving static analysis and LLMs.

Benchmark <0 >0 0 ≤0 ≥0 ≠0 ∅ Total Increase Precision Precision Δ Recall F1

Apache HTTPD 46 98 42 2 6 93 534 821 188.07 % 85.92% 75.20% 66.85% 0.752
Little FS 50 0 7 0 0 0 10 67 17.54% 92.86% 100.0% 92.86% 0.929
MbedTLS 818 15 64 4 0 1 272 1174 15.55% 90.34% 79.49% 96.68% 0.934
Netdata 161 72 222 2 4 1 234 696 150.36% 70.59% 75.40% 80.63% 0.753
Pidgin OTRv4 16 4 95 0 4 0 53 172 152.94% 73.68% 70.71% 40.50% 0.522
zlib 76 1 14 0 0 0 29 120 7.14% 97.35% 100.0% 89.43% 0.932

In Figure 4, our combination of prompting strategies to
the LLM only improved upon the total number of inferred
error specifications (Figure 4a), obtaining the highest re-
call (Figure 4c), and F1 (Figure 4d), while maintaining a simi-
lar precision (Figure 4b) to the analysis of EESI. We specif-
ically highlight the advantages that each component has
demonstrated, where queryLLMThirdParty demonstrated
great success in assisting analyze benchmarks with a sig-
nificant majority of third-party functions such as Pidgin
OTRv4; where queryLLMAnalysis has demonstrated great
success in analyzing function bodies directly, inferring error
specifications in scenarios such as their called context.

6 Related Work

Error Specification Inference. Acharya and Xie [1] intro-
duce techniques for mining error specifications for APIs
using static traces. APEx [14] uses path-sensitive symbolic
execution to find error-paths on the assumption that error
paths are shorter than normal paths. Several other works
[10, 20, 21, 24] find function error specifications via fault
injection. MLPEx [30] is a machine-learning based approach
that uses path-features to learn whether or not a program
path is an error path. EESI [6] is a static analysis of C pro-
grams for error specification inference that allows the use
of domain knowledge to bootstrap the analysis. Our task
improves EESI by interleaving it with LLM prompting.

Program Analysis and LLMs. Ahmed and Devanbu [2]
demonstrate that when a LLM is provided semantic infor-
mation produced by static analysis, then tasks such as code
summarization can be significantly improved. Li et al. [16]
demonstrate that by carefully crafting questions using function-
level behavior and summaries, LLMs can assist in removing
false positives from a bug finding tool. Li et al. [17] also
introduce a technique for combining static analysis using
symbolic execution with LLMs to find Use Before Initializa-
tion (UBI) bugs, demonstrating that the LLM can be used
to extract some program semantics and filter out false posi-
tives caused by the imprecision of the static analysis. Wen
et al. [29] also demonstrate success in removing false posi-
tive warnings by using customized questions with domain
knowledge from the Juliet [12] benchmark. LLMs have also

been recently used to generate program invariants [19], in-
cluding generating loop invariants [13] and subsequently
ranking them using zero-shot prompting [4]. In contrast to
all of the above, our work interleaves facts provided by both
a static analysis and a LLM to improve the precision of an
existing static analysis for error specification inference.
Program Analysis and Machine Learning. Seldon [5]
is a tool using semi-supervised learning through building
and solving a constraint system from information flow con-
straints for taint specification inference. InspectJS [9] is an
approach for taint specification inference that uses manual
modeling from CodeQL [11], inferred specifications using
an adaptation of Seldon, a ranking strategy using embed-
dings, and manual user feedback. As discussed previously in
relation to error specification inference, MLPEx [30] uses ma-
chine learning for error specification inference. While these
approaches combined machine learning and traditional pro-
gram analysis techniques to improve analysis results, our
technique differs in that we are using LLMs and that both
the static analysis and LLM-based inference results are in-
terleaved throughout the entire analysis.

7 Conclusion
We have presented an approach for interleaving static pro-
gram analysis and LLMs for the task of error specification
inference. We have demonstrated that by providing program
facts from the analysis of EESI to the LLM that it can infer
error specifications correctly and in-turn can assist EESI to
further learn new error specifications. We show this in our
evaluation (Section 5), where our average recall grows from
52.55% to 77.83% and our F1-score improves from 0.612 to
0.804. Our evaluation also demonstrates a similar precision to
the original static analysis, where the average only decreases
from 86.67% to 85.12%.

Acknowledgments
This workwas supported by the National Science Foundation
under awards CCF-1750983, CCF-2119348 and CCF-2107592.

References
[1] Mithun Acharya and Tao Xie. 2009. Mining API Error-Handling Spec-

ifications from Source Code. In Fundamental Approaches to Software

SOAP ’24, June 25, 2024, Copenhagen, Denmark Patrick J. Chapman, Cindy Rubio-González, and Aditya V. Thakur

Engineering, 12th International Conference, FASE 2009, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2009, York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Com-
puter Science, Vol. 5503), Marsha Chechik and Martin Wirsing (Eds.).
Springer, 370–384. https://doi.org/10.1007/978-3-642-00593-0_25

[2] Toufique Ahmed and Premkumar T. Devanbu. 2022. Few-shot train-
ing LLMs for project-specific code-summarization. In 37th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2022,
Rochester, MI, USA, October 10-14, 2022. ACM, 177:1–177:5. https:
//doi.org/10.1145/3551349.3559555

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, and Amanda Askell et al. 2020. Language Models are Few-
Shot Learners. In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[4] Saikat Chakraborty, Shuvendu K. Lahiri, Sarah Fakhoury, Akash Lal,
Madanlal Musuvathi, Aseem Rastogi, Aditya Senthilnathan, Rahul
Sharma, and Nikhil Swamy. 2023. Ranking LLM-Generated Loop
Invariants for Program Verification. In Findings of the Association
for Computational Linguistics: EMNLP 2023, Singapore, December 6-10,
2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association
for Computational Linguistics, 9164–9175. https://doi.org/10.18653/
V1/2023.FINDINGS-EMNLP.614

[5] Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, and Martin T.
Vechev. 2019. Scalable taint specification inference with big code. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA,
June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM,
760–774. https://doi.org/10.1145/3314221.3314648

[6] Daniel DeFreez, Haaken Martinson Baldwin, Cindy Rubio-González,
and Aditya V. Thakur. 2019. Effective error-specification inference
via domain-knowledge expansion. In ESEC/SIGSOFT FSE 2019, Tallinn,
Estonia, August 26-30, 2019. ACM, 466–476. https://doi.org/10.1145/
3338906.3338960

[7] Daniel DeFreez, Aditya V. Thakur, and Cindy Rubio-González. 2018.
Path-based function embedding and its application to error-handling
specification mining. In ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL,
USA, November 04-09, 2018. ACM, 423–433. https://doi.org/10.1145/
3236024.3236059

[8] Daniel DeFreez, Aditya V. Thakur, and Cindy Rubio-González. 2018.
Path-based function embeddings. In Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion Proceeedings,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chau-
dron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM,
430–431. https://doi.org/10.1145/3183440.3195042

[9] Saikat Dutta, Diego Garbervetsky, Shuvendu K. Lahiri, and Max
Schäfer. 2022. InspectJS: Leveraging Code Similarity and User-
Feedback for Effective Taint Specification Inference for JavaScript.
In 44th IEEE/ACM International Conference on Software Engineering:
Software Engineering in Practice, ICSE (SEIP) 2022, Pittsburgh, PA,
USA, May 22-24, 2022. IEEE, 165–174. https://doi.org/10.1109/ICSE-
SEIP55303.2022.9794015

[10] Christof Fetzer, Karin Högstedt, and Pascal Felber. 2003. Automatic
Detection and Masking of Non-Atomic Exception Handling. In 2003 In-
ternational Conference on Dependable Systems and Networks (DSN 2003),
22-25 June 2003, San Francisco, CA, USA, Proceedings. IEEE Computer
Society, 445–454. https://doi.org/10.1109/DSN.2003.1209955

[11] GitHub. 2021. CodeQL. https://codeql.github.com
[12] Frederick Boland Jr. and Paul Black. 2012. The Juliet 1.1 C/C++ and Java

Test Suite. 45 (October 2012). https://doi.org/10.1109/MC.2012.345

[13] Adharsh Kamath, Aditya Senthilnathan, Saikat Chakraborty, Pantazis
Deligiannis, Shuvendu K. Lahiri, Akash Lal, Aseem Rastogi, Subhajit
Roy, and Rahul Sharma. 2023. Finding Inductive Loop Invariants
using Large Language Models. CoRR abs/2311.07948 (2023). https:
//doi.org/10.48550/ARXIV.2311.07948 arXiv:2311.07948

[14] Yuan Jochen Kang, Baishakhi Ray, and Suman Jana. 2016. APEx:
automated inference of error specifications for C APIs. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, David Lo, Sven
Apel, and Sarfraz Khurshid (Eds.). ACM, 472–482. https://doi.org/10.
1145/2970276.2970354

[15] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In 2nd IEEE
/ ACM International Symposium on Code Generation and Optimiza-
tion (CGO 2004), 20-24 March 2004, San Jose, CA, USA. IEEE Computer
Society, 75–88. https://doi.org/10.1109/CGO.2004.1281665

[16] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2023. Assisting
Static Analysis with Large Language Models: A ChatGPT Experiment.
In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2023, San Francisco, CA, USA, December 3-9, 2023, Satish
Chandra, Kelly Blincoe, and Paolo Tonella (Eds.). ACM, 2107–2111.
https://doi.org/10.1145/3611643.3613078

[17] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2024. Enhanc-
ing Static Analysis for Practical Bug Detection: An LLM-Integrated
Approach. (2024).

[18] OpenAI. 2023. GPT-4 Technical Report. https://doi.org/10.48550/
ARXIV.2303.08774 arXiv:2303.08774

[19] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng
Yin. 2023. Can Large Language Models Reason about Program In-
variants?. In International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA (Proceedings of Machine Learn-
ing Research, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.).
PMLR, 27496–27520. https://proceedings.mlr.press/v202/pei23a.html

[20] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2005. Model-Based Failure Analysis of Journaling File Sys-
tems. In 2005 International Conference on Dependable Systems and Net-
works (DSN 2005), 28 June - 1 July 2005, Yokohama, Japan, Proceedings.
IEEE Computer Society, 802–811. https://doi.org/10.1109/DSN.2005.65

[21] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal,
Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2005. IRON file systems. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles 2005, SOSP 2005, Brighton,
UK, October 23-26, 2005, Andrew Herbert and Kenneth P. Birman (Eds.).
ACM, 206–220. https://doi.org/10.1145/1095810.1095830

[22] Alec Radford and Karthik Narasimhan. 2018. Improving Lan-
guage Understanding by Generative Pre-Training. (2018).
https://s3-us-west-2.amazonaws.com/openai-assets/research-
covers/language-unsupervised/language_understanding_paper.pdf

[23] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat,
Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt,
Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexan-
dre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin,
Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. 2023. Code
Llama: Open Foundation Models for Code. CoRR abs/2308.12950 (2023).
https://doi.org/10.48550/ARXIV.2308.12950 arXiv:2308.12950

[24] Martin Süßkraut and Christof Fetzer. 2006. Automatically Finding and
Patching Bad Error Handling. In Sixth European Dependable Computing
Conference, EDCC 2006, Coimbra, Portugal, 18-20 October 2006. IEEE
Computer Society, 13–22. https://doi.org/10.1109/EDCC.2006.3

[25] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal

https://doi.org/10.1007/978-3-642-00593-0_25
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1145/3551349.3559555
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.614
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.614
https://doi.org/10.1145/3314221.3314648
https://doi.org/10.1145/3338906.3338960
https://doi.org/10.1145/3338906.3338960
https://doi.org/10.1145/3236024.3236059
https://doi.org/10.1145/3236024.3236059
https://doi.org/10.1145/3183440.3195042
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794015
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794015
https://doi.org/10.1109/DSN.2003.1209955
https://codeql.github.com
https://doi.org/10.1109/MC.2012.345
https://doi.org/10.48550/ARXIV.2311.07948
https://doi.org/10.48550/ARXIV.2311.07948
https://arxiv.org/abs/2311.07948
https://doi.org/10.1145/2970276.2970354
https://doi.org/10.1145/2970276.2970354
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3611643.3613078
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://proceedings.mlr.press/v202/pei23a.html
https://doi.org/10.1109/DSN.2005.65
https://doi.org/10.1145/1095810.1095830
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.48550/ARXIV.2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1109/EDCC.2006.3

Interleaving Static Analysis and LLM Prompting SOAP ’24, June 25, 2024, Copenhagen, Denmark

Bhargava, and Shruti Bhosale et al. 2023. Llama 2: Open Foun-
dation and Fine-Tuned Chat Models. CoRR abs/2307.09288 (2023).
https://doi.org/10.48550/ARXIV.2307.09288 arXiv:2307.09288

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All you Need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Is-
abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wal-
lach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett
(Eds.). 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[27] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi,
Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. 2023. Self-
Consistency Improves Chain of Thought Reasoning in Language Mod-
els. In The Eleventh International Conference on Learning Representa-
tions. https://openreview.net/forum?id=1PL1NIMMrw

[28] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian
Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-
of-Thought Prompting Elicits Reasoning in Large Language Models.
https://doi.org/10.48550/arXiv.2201.11903 arXiv:2201.11903 [cs.CL]

[29] Cheng Wen, Yuandao Cai, Bin Zhang, Jie Su, Zhiwu Xu, Dugang Liu,
Shengchao Qin, Zhong Ming, and Cong Tian. 2024. Automatically
Inspecting Thousands of Static Bug Warnings with Large Language
Model: How Far Are We? ACM Trans. Knowl. Discov. Data (mar 2024).
https://doi.org/10.1145/3653718

[30] Baijun Wu, John Peter Campora III, Yi He, Alexander Schlecht, and
Sheng Chen. 2019. Generating precise error specifications for C: a
zero shot learning approach. Proc. ACM Program. Lang. 3, OOPSLA
(2019), 160:1–160:30. https://doi.org/10.1145/3360586

Received 2024-03-07; accepted 2024-04-19

https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.48550/arXiv.2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.1145/3653718
https://doi.org/10.1145/3360586

	Abstract
	1 Introduction
	2 Background
	3 Overview Example
	4 Approach
	4.1 Building Prompts
	4.2 Error Specification Inference

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	References

