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Abstract
This paper presents a new approach for using Large Lan-
guage Models (LLMs) to improve static program analysis.
Specifically, during program analysis, we interleave calls to
the static analyzer and queries to the LLM: the prompt used
to query the LLM is constructed using intermediate results
from the static analysis, and the result from the LLM query
is used for subsequent analysis of the program. We apply
this novel approach to the problem of error-specification
inference of functions in systems code written in C; i.e., in-
ferring the set of values returned by each function upon
error, which can aid in program understanding as well as
in finding error-handling bugs. We evaluate our approach
on real-world C programs, such as MbedTLS and zlib, by
incorporating LLMs into EESI, a state-of-the-art static analy-
sis for error-specification inference. Compared to EESI, our
approach achieves higher recall across all benchmarks (from
average of 52.55% to 77.83%) and higher F1-score (from av-
erage of 0.612 to 0.804) while maintaining precision (from
average of 86.67% to 85.12%).

CCS Concepts: • Software and its engineering → Au-
tomated static analysis; Error handling and recovery; •
Computing methodologies → Natural language pro-
cessing.

Keywords: static analysis, large language model, error han-
dling, error specifications
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1 Introduction
This paper presents a new approach for using Large Language
Models (LLMs) to improve static program analysis. LLMs [18,
25] have been shown to demonstrate impressive reasoning
abilities in natural and programming languages tasks via few-
shot [3] and chain-of-thought [28] prompting. The approach
presented in this paper utilizes this reasoning ability of LLMs
when the static analysis is unable to make progress; the
results of the query to the LLM are used for subsequent
analysis. Furthermore, the query (or prompt) to the LLM
incorporates the current results of the static analysis, which
enables it to provide more accurate results. In this way, our
approach interleaves calls to the static analyzer and the LLM,
with each utilizing the results of the other.

We apply this novel approach to the problem of error-
specification inference of functions in systems code written
in C, i.e., inferring the set of values returned by each function
upon error (Section 2). The C language does not have built-
in exception or error handling; thus, a common idiomatic
practice for error-handling is to check the return value of
a function on error, i.e., the return code idiom. These return
values indicate the functions’ error specifications, which can
aid in program understanding as well as in finding error-
handling bugs. EESI [6] has shown higher effectiveness and
performance at inferring error specifications compared to
prior approaches [1, 7, 14]. Our approach interleaves calls to
the EESI static analyzer and the LLM (Figure 1).

We evaluated our approach on six real-world C programs,
such as MbedTLS and zlib (Section 5). Our approach im-
proves recall and F1-score over EESI from 52.55% to 77.83%
and 0.612 to 0.804, respectively, while maintaining a high
precision of 85.12% compared to 86.67% in EESI. Our evalu-
ation demonstrates that by interleaving static analysis and
LLM prompting, we can significantly improve upon the error
specification inference capabilities of just a static analyzer.

The contributions of this paper are as follows:

• We propose a technique for interleaving a static anal-
ysis with LLM prompting.
• We designed a tool for error specification inference
of C programs using our approach of combining EESI
static analyzer and LLM prompts.
• We evaluate our approach on 6 real-world C programs
comparing it with prior state-of-the-art EESI. We pro-
vide an ablation study on the individual components
of our approach.
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Figure 1. Our approach infers error specifications by inter-
leaving calls to the EESI static analyzer and the LLM.

2 Background

Error Specification Inference. The C language does not
feature programming constructs for exception handling. In-
stead, developers often use the return code idiom to indicate
error. An error specification refers to the set of values re-
turned by a function upon error. Because it is not possible to
enforce compile-time rules regarding error code propagation
and checking, the return code idiom often leads to bugs, e.g.,
developers may miss or incorrectly check the error return
values of functions.

A few approaches have presented techniques for infer-
ring error specifications [1, 6–8, 14, 30]. In this paper, we
consider a state-of-the-art static program analysis using ab-
stract interpretation for error specification inference named
EESI [6]. As input, EESI takes in multiple forms of optional
user-supplied initial domain knowledge: (1) initial error speci-
fications, (2) error codes, (3) success codes, and (4) error-only
functions (only called along error paths). With this initial
domain knowledge, EESI uses static analysis to infer new
error specifications.

While EESI has demonstrated success in error specification
inference, it has two inherent limitations that affect its recall
and precision: (1) incomplete program facts, and (2) third–
party functions. As EESI is a static program analyzer using
abstract interpretation to infer program semantics related
to idiomatic practices, it provides approximations that may
be insufficient in learning enough program facts for error
specification inference. One important source of incomplete
knowledge is third-party functions. Third-party functions are
called within a program, but defined elsewhere. Because the
analyzer does not have access to the source code, it cannot
reason about their error specifications.
Large Language Models (LLMs). LLMs are language mod-
els trained on large amounts of data for tasks such as text
generation and language understanding. These models have
been developed for both natural language [25] and program-
ming languages [23], while some models are trained for
both [18, 22, 26]. One of the key components of LLMs are the
prompts, i.e., the input to the LLM. There has been consider-
able research done in recent years related to the generation
of prompts that improve the performance of LLMs in various
tasks [2, 22, 27, 28]. These approaches include concepts such
as chain-of-thought [28], where LLMs are given question and
answer as examples with the associated chain-of-though

You are to determine the error specifications given
a list of functions. An error specification is...
...
MBEDTLS_ERR_X509_INV_NAME -0x2380

Common Context
Error codes
Success codes

Error-only functions

Initial
Error Specifications

Initial Domain Knowledge

mbedtls_asn1_get_tag: <0

Function Context

1 i n t x 5 0 9 _ g e t _ a t t r _ t y p e _ v a l u e ( . . . ) {
2 . . .
3 r e t = mbed t l s _ a sn1_ge t _ t a g ( . . . ) ;
4 i f ( r e t != 0 ) {
5 r e t += MBEDTLS_ERR_X509_INV_NAME ;
6 r e t u r n r e t ;
7 }
8 . . .
9 r e t u r n 0 ;
10 }

Question

Prompt

Large Language ModelEESI [6]

x509_get_attr_type_value: <0. When

mbedtls_asn1_get_tag fails, an error code

is added to ‘ret’ and returned.

Output (LLM)

x509_get_attr_type_value: ⊥
Output (EESI)

Figure 2. Using EESI and the LLM to infer error specifica-
tions

reasoning, and self-consistency [27] prompting, where LLMs
are prompted with the same question multiple times, using
the most consistent answer given.

3 Overview Example
This section illustrates how our approach of interleaving calls
to the EESI static analyzer and the LLMs to infer error specifi-
cations. Consider the function x509_get_attr_type_value
in MbedTLS. EESI alone is unable to infer its error specifi-
cation; EESI infers ⊥ as the function error-specification as
shown in Figure 2.
The LLM alone is also unable to infer its error specifica-

tion. We can construct a prompt to the LLM that includes
the general description of the error specification inference
problem (Common Context in Figure 2) as well as the source
code of the function (Question in Figure 2). However, query-
ing the LLM with just this information is not sufficient to
give us the correct error specification. In particular, the LLM
infers that the error condition for mbedtls_asn1_get_tag
is ≠0 from the conditional check. Even when the value of
the error code MBEDTLS_ERR_X509_INV_NAME is included in
the Common Context, the incorrect assumption about the
called function leads the LLM to incorrectly infer that the
return value on the error-path is the negative error code
added with any non-zero value; that is, the LLM infers that
the error value could be anything, and the error specification
is ⊤, instead of <0.
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You are to determine the error spec-
ifications given a list of functions.
An error specification is...
...
OTRNG_ERROR 0

Common Context

Error codes
Success codes

Error-only functions

Initial
Error Specifications

Initial Domain Knowledge

otrng_global_state_generate_forging_key: 0

Function Context

otrng_global_state_instance_tags_read_from

Question

Prompt

Large Language ModelEESI [6]

otrng_global_state_instance_tags_read_

from: 0, OTR functions return 0 on

error and 1 on success.

Output (LLM)

otrng_global_state_instance_tags_read_from:⊥
Output (EESI)

Figure 3. Using the LLM to infer error spefication of a third-
party function

However, if we also include intermediate results from the
EESI static analyzer in the LLM prompt, then the LLM is able
to return the fact that x509_get_attr_type_value returns
a value <0 on error. In particular, the LLM prompt includes
the error specification of the function mbedtls_asn1_tag
that is called from x509_get_attr_type_value (Function
Context in Figure 2); this error specification is inferred by
the EESI static analyzer.

This example illustrates how our approach provides ben-
efits over purely static analysis or LLM approaches by in-
terleaving calls to the static analyzer and the LLM: the LLM
is used only when the static analyzer is unable to make
progress, and the LLM prompt includes intermediate infor-
mation gleaned by the static analyzer. Furthermore, the out-
put of the LLM is fed back into the EESI static analyzer. For
example, the LLM’s specification for x509_get_attr_type_
value would allow EESI to subsequently find the error spec-
ification (<0) for mbedtls_x509_get_name from analyzing
its implementation:

i f ( ( r e t = x 5 0 9 _ g e t _ a t t r _ t y p e _ v a l u e ( . . . ) ) != 0 )
r e t u r n ( r e t )

The specifics about the LLM prompt construction; viz, Com-
mon Context, Function Context, and Question, are deferred
to Section 4.1.

Figure 3 illustrates another scenario illustrating the bene-
fits of incorporating calls to an LLM in the static analyzer.
The function otrng_global_state_instance_tags_read_
from is a third-party function called in Pidgin OTRv4. Be-
cause the source code of this function is not available, EESI
is unable to infer its error specification, and consequently,

it might not be able to infer the specifications of functions
that call it. However, constructing an LLM prompt that in-
cludes information from the user-provided domain knowl-
edge, the LLM is able to correctly infer the error specification
for otrng_global_state_instance_tags_read_from.

4 Approach
We illustrate our approach for interleaving static analysis and
LLMs in Figure 1. The input is the program source code and
optional domain knowledge, and the output are the function
error specifications inferred by the analysis.

4.1 Building Prompts
When interacting with the LLM, we construct a prompt that
consists of the Common Context, Function Context, and Ques-
tion, as mentioned in Section 3.

Common Context. The prompt Common Context used for
error specification inference consists of a problem descrip-
tion and an explanation of the abstract domain used by the
EESI static analyzer. We provide the explanation of the ab-
stract domain, because wewant the LLM to output its learned
error specifications using this domain. Relating to the pro-
gram under analysis, the Common Context also contains any
error codes, success codes, and error-only functions from the
domain knowledge input. We include additional observed
idiomatic practices related to the return code idiom:

1. Error specification values must be a subset of the re-
turned values of a function.

2. Unknown error specifications are ⊥.
3. Success values are not part of the error specification.
4. The NULL return value is equal to 0.
5. Error codes from standard library functions are posi-

tive integers.
6. Macros may check return values and return if failing.

We also provide multiple, basic chain-of-thought examples
that consist of a function definition and its associated error
specification, with a chain-of-thought explanation. We do so
to demonstrate the task of error specification inference and
so that the LLM generates parse-able output. We do this, in
addition to providing the explanation of the abstract domain,
in order to limit the LLM from generating output that is
unexpected. However, if the LLM output does not follow
the expected format, then the related error specification will
consist of the ⊥ element, i.e., unknown. For example, the
expected output for malloc would be malloc: 0.

Function Context. The Function Context of the prompt
relates to any relevant function error specifications for the
function that is being queried by the LLM. The Function Con-
text that is generated depends on the selected LLM query
function that will be explained further when introducing our
algorithm, Algorithm 1. In all cases, these error specifications
are provided as few-shot examples to the LLM, with the aim to
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generate parse-able output, as well as providing demonstra-
tive examples to the LLM. These error specifications provide
additional context that can assist the LLM when it comes to
understanding returned error values. This is especially true
when there are functions that exist in the same library as
demonstrated with Figure 2.

Question. The Question in all constructed prompts asks for
the LLM to return any error specification that it is confident
in using the abstract domain used by EESI.

4.2 Error Specification Inference
For the task of error specification inference, we present Al-
gorithm 1 to demonstrate how the static analyzer and LLM
are used. Our algorithm takes in the domain knowledge as
a map of program facts 𝑃 and the set of functions from the
source code 𝐹 . The algorithm returns the updated facts 𝑃
after performing analysis.

The analysis begins by iterating over the functions 𝑓 ∈ 𝐹
bottom-up in the Call Graph (𝐶𝐺) as demonstrated on Line 2.
This ensures that that called functions are inferred before
their caller, because called functions provide additional con-
text for error specification inference. Note, for brevity, we do
not include in the algorithm that we perform a fixpoint on the
Strongly Connected Components (SCC) in 𝐶𝐺 , as recursion
may exist in the call chains. The algorithm algorithm will
attempt to infer an error specification in one of three cases:
(1) queryLLMThirdParty (Line 4), (2) runAnalysis (Line 6),
or (3) queryLLMAnalysis (Line 8).

4.2.1 Third-Party Function Error Specifications. For
each function, we first check if it is a third-party function
(Line 3), and if it is, we perform queryLLMThirdParty as
demonstrated on Line 4. Because the source code definition
is not available for third-party functions, we cannot statically
analyze it. As Function Context for the prompt, we provide the
entire set of error specifications that are in 𝑃 on Line 22. The
Question in this case just simply lists the name of the function-
of-interest (Line 21). The LLM is then queried, where the
output is then parsed (Line 24) and if any error specification
is learned, the program facts are updated (Line 10).

4.2.2 Error SpecificationAnalysis. If the function is not
third-party, then the EESI static analyzer will perform its
own analysis. EESI will determine if the error specification
of the function is infallible (∅), unknown (⊥), or any other
value (e.g., <0) from runAnalysis on Line 6. If this result is ⊥
(Line 7), then we query the LLM once for the function under
analysis with queryLLMAnalysis on Line 8.

Unlike the Function Context provided in queryLLMThird-
Party, we only provide the known error specifications of
called functions contained in the function definition (Line 15).
We demonstrate an example of this in Figure 2, where error
specification mbedtls_asn1_get_tag is learned from EESI

Algorithm 1: InferErrorSpecification(𝑃 , 𝐹 )
INPUT: Map of program facts 𝑃 , Set of functions 𝐹 .
OUTPUT: Updated 𝑃 with new error specifications.
1: 𝐶𝐺 ←CallGraph(𝐹 )
2: for all 𝑓 ∈ reverseTopologicalSort(𝐶𝐺) do
3: if isThirdParty(𝑓 ) then
4: 𝑠𝑝𝑒𝑐 ←queryLLMThirdParty(𝑃, 𝑓 )
5: else
6: 𝑠𝑝𝑒𝑐 ←runAnalysis(𝑃, 𝑓 ,EESI )
7: if 𝑠𝑝𝑒𝑐 = ⊥ then
8: 𝑠𝑝𝑒𝑐 ←queryLLMAnalysis(𝑃, 𝑓 )
9: end if
10: end if

𝑃 ←updateFacts(𝑃, 𝑓 , 𝑠𝑝𝑒𝑐)
11: end for
12: return 𝑃

13: Function queryLLMAnalysis(𝑃 , 𝑓 )
14: 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 ←getSourceCode(𝑓 )
15: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ← getCalledErrorSpecifications(𝑃, 𝑓 )
16: 𝑝𝑟𝑜𝑚𝑝𝑡 ←buildPrompt(𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛)
17: 𝑠𝑝𝑒𝑐 ←parseOutput(queryLLM(𝑝𝑟𝑜𝑚𝑝𝑡))
18: return spec
19: EndFunction
20: Function queryLLMThirdParty(𝑃 , 𝑓 )
21: 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 ← 𝑔𝑒𝑡𝑁𝑎𝑚𝑒 (𝑓 )
22: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ←getErrorSpecifications(𝑃 )
23: 𝑝𝑟𝑜𝑚𝑝𝑡 ←buildPrompt(𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛)
24: 𝑠𝑝𝑒𝑐 ← parseOutput(queryLLM(𝑝𝑟𝑜𝑚𝑝𝑡))
25: return spec
26: EndFunction

and provided as Function Context to the LLM, correctly in-
ferring x509_get_attr_type_value.
The constructed Question as part of the prompt consists

of the source code of the function being analyzed (Line 14).
The resulting output from the LLM is then parsed (Line 17)

and any newly learned error specification is updated in the
program facts on Line 10.

4.2.3 Validating the LLM Response. We re-query the
LLM for every generated prompt to limit the side effects of
hallucination. Hallucination refers to when LLMs make up
information to satisfy a prompt, even if the provided chain-
of-thought reasoning is contradictory. We specifically ask the
LLM to ensure that the error specifications provided match
the given chain-of-thought description from itself. Addition-
ally, we also limit some of the imprecision by identifying two
inconsistencies with formal reasoning. First, we do not infer
error specifications if the resulting error value from the LLM
includes a known success value. Second, we do not infer an
error specification if the LLM states that the error specifi-
cation is an improper superset of the return range of the
function. As both of these program semantics are obtained
via an approximation during the analysis of EESI, we cannot
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Table 1. Selected benchmarks with their LOC and selected
domain knowledge — initial error specifications, error-only
(EO) functions, error codes, and success codes.

Domain Knowledge
Codes

Benchmark KLOC Ver. Init. Specs EO Error Success

Apache HTTPD 288 2.4.46 14 0 44 1
LittleFS 2 1.7.0 11 0 14 1
MbedTLS 255 2.21.0 21 1 221 1
Netdata 51 1.11.0 43 0 0 0
Pidgin OTRv4 15 4.0.2 34 0 0 0
zlib 18 1.2.11 7 0 6 1

guarantee that these inconsistencies are removed entirely,
but we can utilize these rules to limit low-hanging fruit.

5 Experimental Evaluation
For our experimental evaluation, we perform an ablation
study.We propose three research questions with one baseline
to target components of our approach:
RQ0 How well does the static analysis of EESI perform?

This is our baseline.
RQ1 What is the impact using the LLM to infer third-party

error specifications, i.e., queryLLMThirdParty?
RQ2 What is the impact of using the direct LLM analysis,

i.e., queryLLMAnalysis?
RQ3 What is the impact of interleaving EESI and the LLM?
Our code and data are publicly available at https://github.
com/ucd-plse/eesi-llm.

5.1 Experimental Setup

Benchmarks. We consider a data set of six benchmark
programs that represent a variety of error-handling patterns
and system types, as listed in Table 1.
Domain Knowledge. For all approaches, we supply the
same initial domain knowledge as input. Initial error specifi-
cations are identified via one of two strategies. The first is
that we select applicable error specifications from a list of
common andwell-known standard library functions. The sec-
ond is that we manually inspect a small subset of functions
based on the program’s call graph, supplying functions that
appear lower in the call graph as initial domain knowledge.
Success and error codes are mined automatically through pat-
tern matching header files for patterns such as ERR, err, and
SUCCESS. Error-only functions (only called on error paths) are
selected via manual inspection. The manual effort involved
in finding the above domain knowledge for all benchmarks
took a total of one hour.
Evaluation metrics and ground truth. We measure pre-
cision, recall, and F1 (F1-score) — where we only consider
a true positive (TP) to be a learned error specification that

Table 2. Total number of functions, functions in G, and
third-party functions in G.

Benchmark Total G Third Party ∈ G
Apache HTTPD 1210 600 (49.6%) 135 (22.5%)
Little FS 60 60 (100.0%) 9 (15.0%)
MbedTLS 1211 598 (49.4%) 15 (2.5%)
Netdata 720 338 (47.6%) 74 (21.9%)
Pidgin OTRv4 277 277 (100.0%) 200 (72.2%)
zlib 126 126 (100.0%) 10 (7.9%)

matches the ground truth exactly; for example, ≤0 and <0
are not equivalent and would be considered a false posi-
tive (FP). If the analysis determines an error specification is
unknown ⊥, then that is considered a false negative (FN).
As every function-under-analysis will have an error spec-
ification, even infallible ∅ functions, we do not have true
negatives (TN). For all metrics, we calculate based on a man-
ually inspected ground-truth G as depicted in Table 2. For
smaller benchmarks, we inspected all functions, but for larger
benchmarks we randomly sampled a subset. We did so, as
manual inspection over all functions is not feasible due to
time constraints, as some functions may consist of hundreds
or thousands of lines. Note, numbers represented in Table 2
do not count initial error specifications from the domain
knowledge.

Precision, recall, and F1 are defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃G

𝑇𝑃G + 𝐹𝑃G
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃G
𝑇𝑃G + 𝐹𝑁G

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

100 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
Implementation Details.

EESI is implemented using the LLVM infrastructure [15]
to analyze bitcode and our LLM error specification inference
uses GPT-4 [18] as the LLM. Our experiments were run on a
2.10 GHz Xeon Silver 4216 CPU with 384 GB of RAM.

5.2 Experimental Results

RQ0: How well does EESI perform in error specification

inference?

For this task, we simply supply the initial domain knowl-
edge and source code to the static analyzer of EESI and
receive its inferred error specifications. The number of in-
ferred error specifications are represented in Table 3. From
these, we can see that the most common error specification
inferred across all benchmarks is <0. Many standard library
functions indicate that they return a negative error code on
failure, which has been adopted by many other software pro-
grams. However, this cannot be assumed for all functions, as
indicated with benchmarks such as Apache HTTPD, which

https://github.com/ucd-plse/eesi-llm
https://github.com/ucd-plse/eesi-llm
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Table 3. Specification counts, precision, recall, and F1-score for EESI

Benchmark <0 >0 0 ≤0 ≥0 ≠0 ∅ Total Precision Recall F1

Apache HTTPD 16 42 16 0 1 27 183 285 94.16% 37.56% 0.537
Little FS 40 0 7 0 0 0 10 57 91.30% 75.00% 0.824
MbedTLS 723 10 48 3 0 1 246 1031 90.64% 84.55% 0.875
Netdata 17 35 108 0 1 1 116 278 64.60% 24.50% 0.355
Pidgin OTRv4 11 4 24 0 0 0 29 68 82.35% 10.33% 0.184
zlib 68 1 14 0 0 0 29 112 97.14% 83.33% 0.895

often can return <0, >0, and ≠0 on error. Additionally, some
programs may have a considerable number of infallible (∅)
functions, e.g., MbedTLS.
EESI achieves a precision ranging from 64.60% to 97.14%

as seen in Table 3, averaging at 86.67% per benchmark. How-
ever, the recall varies even more depending on the bench-
mark, ranging from 10.33% to 83.33%, averaging 52.55%. The
benchmark with the lowest recall, Pidgin OTRv4 (10.33%) is
also notably the benchmark with the highest percentage of
third-party functions at 72.2% as listed in Table 2.

RQ1: What is the impact of queryLLMThirdParty?

We measure the impact of queryLLMThirdParty by run-
ning it in the first step of our interleaved error specification
inference. We then run the static analysis of EESI through
runAnalysis, however, we do not call queryLLMAnalysis
when EESI infers ⊥.

As we can see demonstrated in Figure 4, we notice an
average recall of 62.20% (Figure 4c) and average increase
of 29.17% (Figure 4a) for inferred error specifications over
EESI. Our precision remained similar to EESI (Figure 4b). We
notice the largest impact for the benchmark Netdata, which
increased the most by 70.50%. This benchmark was impacted
significantly, as it refers to many well-known libraries such
as pthread. We do not see as much of an increase in the
Pidgin OTRv4, as many of the third-party libraries are for
niche purposes, e.g., the GTK library. However, this is not
the case for all library functions; for example, the error spec-
ification inference demonstrated in Figure 3 occurs through
queryLLMThirdParty.

RQ2:What is the impact of using queryLLMAnalysis?

To isolate the contributions of queryLLMAnalysis, we skip
queryLLMThirdParty in the workflow. Instead, we proceed
to running the static analysis of EESI, followed by querying
the LLM if the result is ⊥.
The results depicted in Figure 4 demonstrate an average

increase of 59.88% (Figure 4a) across all benchmarks, with
an average recall of 70.26% (Figure 4c). Our benchmark that
saw the largest percentage increase was Apache HTTPD
at 183.33%, which contains the second highest percentage
of third-party functions (Table 2). In Figure 2, we can see
that the direct LLM analysis allows the LLM to reason about

LLM𝑇ℎ𝑖𝑟𝑑𝑃𝑎𝑟𝑡𝑦 LLM𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 Combined
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Figure 4.Average increase, precision, recall, and F1-score for
approaches. The minimum and maximum benchmark results
are represented as error bars for their respective metric.

function bodies, even while the static analysis of EESI is
insufficient.

RQ3:What is the impact of interleavingEESIandLLM?

For our combined approach, we utilize the entire workflow,
calling both queryLLMThirdParty and queryLLMAnalysis.
We see in Table 4, that our combination of prompting strate-
gies is extremely beneficial in applications such as Pidgin
OTRv4, Netdata, and Apache HTTPD. Significantly improv-
ing the recall and F1 over EESI in Table 3. In fact, we see an
increase over the average F1 of EESI by +0.192 (Figure 4d).
We also see the precision Δ on newly learned error specifica-
tions that were not inferred strictly via static analysis. With
Netdata, we saw 144 new <0 error specifications inferred,
with our overall precision going up for the benchmark. We
make note that even when we do lose some precision, as
seen with Apache HTTPD, we have an increase of 188.07%
and still significantly improve our F1-score to 0.752.
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Table 4. Specification counts, precision, recall, and F1-score for our framework interleaving static analysis and LLMs.

Benchmark <0 >0 0 ≤0 ≥0 ≠0 ∅ Total Increase Precision Precision Δ Recall F1

Apache HTTPD 46 98 42 2 6 93 534 821 188.07 % 85.92% 75.20% 66.85% 0.752
Little FS 50 0 7 0 0 0 10 67 17.54% 92.86% 100.0% 92.86% 0.929
MbedTLS 818 15 64 4 0 1 272 1174 15.55% 90.34% 79.49% 96.68% 0.934
Netdata 161 72 222 2 4 1 234 696 150.36% 70.59% 75.40% 80.63% 0.753
Pidgin OTRv4 16 4 95 0 4 0 53 172 152.94% 73.68% 70.71% 40.50% 0.522
zlib 76 1 14 0 0 0 29 120 7.14% 97.35% 100.0% 89.43% 0.932

In Figure 4, our combination of prompting strategies to
the LLM only improved upon the total number of inferred
error specifications (Figure 4a), obtaining the highest re-
call (Figure 4c), and F1 (Figure 4d), while maintaining a simi-
lar precision (Figure 4b) to the analysis of EESI. We specif-
ically highlight the advantages that each component has
demonstrated, where queryLLMThirdParty demonstrated
great success in assisting analyze benchmarks with a sig-
nificant majority of third-party functions such as Pidgin
OTRv4; where queryLLMAnalysis has demonstrated great
success in analyzing function bodies directly, inferring error
specifications in scenarios such as their called context.

6 Related Work

Error Specification Inference. Acharya and Xie [1] intro-
duce techniques for mining error specifications for APIs
using static traces. APEx [14] uses path-sensitive symbolic
execution to find error-paths on the assumption that error
paths are shorter than normal paths. Several other works
[10, 20, 21, 24] find function error specifications via fault
injection. MLPEx [30] is a machine-learning based approach
that uses path-features to learn whether or not a program
path is an error path. EESI [6] is a static analysis of C pro-
grams for error specification inference that allows the use
of domain knowledge to bootstrap the analysis. Our task
improves EESI by interleaving it with LLM prompting.

Program Analysis and LLMs. Ahmed and Devanbu [2]
demonstrate that when a LLM is provided semantic infor-
mation produced by static analysis, then tasks such as code
summarization can be significantly improved. Li et al. [16]
demonstrate that by carefully crafting questions using function-
level behavior and summaries, LLMs can assist in removing
false positives from a bug finding tool. Li et al. [17] also
introduce a technique for combining static analysis using
symbolic execution with LLMs to find Use Before Initializa-
tion (UBI) bugs, demonstrating that the LLM can be used
to extract some program semantics and filter out false posi-
tives caused by the imprecision of the static analysis. Wen
et al. [29] also demonstrate success in removing false posi-
tive warnings by using customized questions with domain
knowledge from the Juliet [12] benchmark. LLMs have also

been recently used to generate program invariants [19], in-
cluding generating loop invariants [13] and subsequently
ranking them using zero-shot prompting [4]. In contrast to
all of the above, our work interleaves facts provided by both
a static analysis and a LLM to improve the precision of an
existing static analysis for error specification inference.
Program Analysis and Machine Learning. Seldon [5]
is a tool using semi-supervised learning through building
and solving a constraint system from information flow con-
straints for taint specification inference. InspectJS [9] is an
approach for taint specification inference that uses manual
modeling from CodeQL [11], inferred specifications using
an adaptation of Seldon, a ranking strategy using embed-
dings, and manual user feedback. As discussed previously in
relation to error specification inference, MLPEx [30] uses ma-
chine learning for error specification inference. While these
approaches combined machine learning and traditional pro-
gram analysis techniques to improve analysis results, our
technique differs in that we are using LLMs and that both
the static analysis and LLM-based inference results are in-
terleaved throughout the entire analysis.

7 Conclusion
We have presented an approach for interleaving static pro-
gram analysis and LLMs for the task of error specification
inference. We have demonstrated that by providing program
facts from the analysis of EESI to the LLM that it can infer
error specifications correctly and in-turn can assist EESI to
further learn new error specifications. We show this in our
evaluation (Section 5), where our average recall grows from
52.55% to 77.83% and our F1-score improves from 0.612 to
0.804. Our evaluation also demonstrates a similar precision to
the original static analysis, where the average only decreases
from 86.67% to 85.12%.
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