MUPPET: Optimizing Performance in OpenMP via
Mutation Testing

Dolores Miao!, Ignacio Laguna?, Giorgis Georgakoudis?,
Konstantinos Parasyris?, Cindy Rubio-Gonzalez!
'University of California, Davis
Davis, CA, USA
{wjmiao,crubio}@ucdavis.edu
2Lawrence Livermore National Laboratory
Livermore, CA, USA
{ilaguna,georgakoudis1,parasyris1}@lInl.gov

Abstract

Performance optimization continues to be a challenge in
modern HPC software. Existing performance optimization
techniques, including profiling-based and auto-tuning tech-
niques, fail to indicate program modifications at the source
level thus preventing their portability across compilers. This
paper describes MUPPET, a new approach that identifies pro-
gram modifications called mutations aimed at improving
program performance. MUPPET s mutations help developers
reason about performance defects and missed opportunities
to improve performance at the source code level. In contrast
to compiler techniques that optimize code at intermediate
representations (IR), MUPPET uses the idea of source-level
mutation testing to relax correctness constraints and automat-
ically discover optimization opportunities that otherwise are
not feasible using the IR. We demonstrate the MUPPET’s con-
cept in the OpenMP programming model. MUPPET generates
a list of OpenMP mutations that alter the program paral-
lelism in various ways, and is capable of running a variety of
optimization algorithms such as Bayesian Optimization and
delta debugging to find a subset of mutations which, when
applied to the original program, cause the most speedup
while maintaining program correctness. When MUPPET is
evaluated against a diverse set of benchmark programs and
proxy applications, it is capable of finding sets of mutations
in 70% of the evaluated programs that induce speedup.

CCS Concepts: » Software and its engineering — Soft-
ware performance; - Computing methodologies — Par-
allel programming languages.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PMAM °24, March 3, 2024, Edinburgh, United Kingdom

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0599-1/24/03.
https://doi.org/10.1145/3649169.3649246

Keywords: mutation testing, OpenMP, performance opti-
mization, Bayesian optimization, delta-debugging algorithm,
dynamic program analysis

ACM Reference Format:

Dolores Miao!, Ignacio Laguna?, Giorgis Georgakoudis?,, Kon-
stantinos Parasyris?, Cindy Rubio-Gonzalez!. 2024. MUPPET: Op-
timizing Performance in OpenMP via Mutation Testing. In The
15th International Workshop on Programming Models and Appli-
cations for Multicores and Manycores (PMAM °24), March 3, 2024,
Edinburgh, United Kingdom. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3649169.3649246

1 Introduction

Performance optimization continues to be a challenge in
modern HPC software. The adoption of multi-core hetero-
geneous systems and the use of multi-process and multi-
threaded programming models to fully utilize modern ar-
chitectures are some of the factors that limit the ability of
developers to solve performance issues; these issues can re-
sult in poor user experience, lower system throughput, limit
scalability, and a waste of computational resources [5, 7, 53].

Problems with Existing Techniques. A large amount of
work has been proposed to identify performance issues and
a number of tools are used in the current HPC production
environment to analyze applications’ performance [3, 21, 32,
45]. However, the process of isolating performance problems
and/or generating tests to identify them is still mostly a
manual process.

Most performance optimization techniques focus on high-
lighting “hot spots” but ultimately rely on programmers to
identify code modifications that fix a performance problem
or improve overall performance. Other approaches are based
on the concept of quantifying hardware or runtime system
events [17, 35, 36], but do not explicitly inform the program-
mer how to modify the code to improve performance. Com-
piler optimizations improve performance usually at the inter-
mediate representation (IR) level; however, reasoning about
correctness at the IR level is much more difficult than at the
source level. As a result, compiler optimizations can leave

https://doi.org/10.1145/3649169.3649246
https://doi.org/10.1145/3649169.3649246

PMAM 24, March 3, 2024, Edinburgh, United Kingdom

optimization opportunities on the table. Moreover, IR-level
optimizations are not portable across compilers.

We could potentially solve performance problems given
accurate performance models for each available platform
and application. If performance models are available, we
could simply check if the application’s behavior falls into the
bounds of such models. However, such an ideal mechanism
is hard to realize in practice as performance models are noto-
riously difficult to build accurately, given the complexity of
the HPC software stack and underlying hardware. There are
solutions to build performance models for specific aspects of
the hardware and applications [12, 30, 51], but these models
are usually not composable and as a result of little practical
use in modeling an entire application and platform.

Our Contributions. We present an approach based on
mutation testing [25] to identify source code changes, or
mutations, that (1) improve performance, and (2) help devel-
opers reason about performance at the source-code level (in
contrast to IR- or assembly-level like in existing methods).
Since such an approach is based on source modifications, it
is portable across compilers.

Mutation testing has been proposed to identify correctness
faults [25], and assumes that a syntactic change (a mutant)
along with an exploration campaign of multiple mutants can
help discover programs’ defects faster than traditional meth-
ods. While some previous work has applied mutation testing
to solve performance defects [10], mutation testing for per-
formance has not been applied on parallel code and/or HPC
programs. We demonstrate our approach in the OpenMP
programming model, which is widely used in HPC.

We implement our approach in the framework named
MuprPET (Mutation-Utilized Parallel Performance Enhance-
ment Tester). First, MUPPET generates a list of OpenMP mu-
tations that could alter the program performance in vari-
ous ways. A mutation is defined as a change in an existing
OpenMP directive in the program that could change the per-
formance of the code block that the directive targets. MUPPET
considers only mutations that are not likely to change the
correctness of the code block. Next, MUPPET considers dif-
ferent optimization algorithms, such as Bayesian optimiza-
tion (BO) [34] and delta debugging [56], to find a subset
of mutations that, when applied to the original program,
cause the highest speedup. We implement MUPPET in the
clang/LLVM front-end and evaluate it in the NAS Parallel
Benchmarks [31] and three proxy applications (LULESH [26],
HPCG [14], CoMD [18]).

In summary, our contributions are:

e We present a source-level approach that uses mutation
testing to optimize HPC code. Our approach considers
four classes of source mutations and applies them in
OpenMP directives. To the best of our knowledge, we
are the first to explore using mutation testing to optimize
OpenMP code (Section 3).

Miao, et al.

e We design and implement our idea in the MUPPET
framework via the clang/LLVM front-end. Our ap-
proach integrates MUPPET with several optimization
algorithms, such as BO and delta debugging. The out-
put of MUPPET is a set of source modifications, or
mutations, that produce a maximum speedup among
the explored mutations, without affecting correctness
(Section 4).

e We evaluate MUPPET on several benchmarks and proxy
applications. We demonstrate that MUPPET is capable
of identifying mutations that improve performance in
70% of the evaluated programs, with the best speedup
in average running time of 15.64% (Section 5).

2 Overview

In this section, we describe the philosophy of our approach,
provide background information on mutation testing, and
provide a simple mutation example in a matrix multiply
kernel that improves performance.

2.1 Approach’s Philosophy

Existing approaches to isolate performance issues are diffi-
cult to use in practice. A number of performance problems
can be fixed by changes in the source code; however, ex-
isting methods do not directly point to developers’ source
modifications that fix such issues. Compilers optimize code
at the IR level but such solutions are not portable across
compilers and make it harder to reason about correctness
than solutions based on source modifications.

We believe that tools and techniques for performance
optimization should have the following features:

¢ Fine granularity detection: tools should pinpoint,
with fine granularity, the location (code line) of perfor-
mance issues or potential performance improvements.

e Guided fixes: the approach should help programmers
understand and reason about performance defects—
without a good understanding, it is hard to solve the
problem or avoid it in the future.

e Automatic recommendations: the approach should
automatically suggest code modifications that improve
performance or fix a performance problem.

We designed MUPPET using the above criteria to identify
changes in OpenMP directives that improve performance.

2.2 Mutation Testing for Performance

2.2.1 Challenges. The key idea of MUPPET is to perform
small changes in the code, called mutations, and use ex-
ploratory algorithms to search for cases where mutations
improve performance or fix a performance problem. Muta-
tion testing has been studied before to detect faulty programs
by injecting small syntactical changes that expose correct-
ness defects [25]. The idea of mutation testing is to generate
sufficient data to expose real software defects in the code.

MUPPET: Optimizing Performance in OpenMP via Mutation Testing

However, it is challenging to use traditional mutation test-
ing in isolating performance defects because the syntactic
changes could create faults, i.e., breaking the semantics of
the program and producing incorrect programs.

2.2.2 Our Solution. Inspired by the previous work on mu-
tation testing, we propose a different approach: to inject only
mutations that are semantically correct and do not yield an
incorrect program for the purpose of exposing performance de-
fects or speedup opportunities. Semantically correct mutants,
or equivalent mutants, are considered problematic for tradi-
tional mutation testing because by definition, they cannot
fail the test suite, so they should be avoided to increase the
effectiveness of mutation testing. In contrast, our approach
explores semantically correct mutations, or a weaker form of
mutations that successfully pass correctness tests, to identify
any mutations that increase performance, thus indicating
performance defects.

2.3 Mutation Example

Here, we present a synthetic matrix-multiplication example,
shown in Listing 1, that demonstrates MUPPET’s capabilities—
when we apply MUPPET, it can find a set of mutations that
yields faster code execution.

Listing 1. Example code with a mutation found by MuppET
that improves performance.

1 #define ARRAY_SIZE (2048)

2 double A[ARRAY_SIZE]1[ARRAY_SIZE];

3 double B[ARRAY_SIZE]1[ARRAY_SIZE];

4 double C[ARRAY_SIZE]1[ARRAY_SIZE];

5

6 int main(void) {

7 // initialize array and timer setup omitted
8 float var = 2.3f;

9 #pragma omp parallel for shared(var)

10 // mutation adds an OpenMP directive

11 #pragma omp tile sizes(16,16,16)

12 for (int i = 0; i < ARRAY_SIZE; ++i)

13 for (int j = 0; j < ARRAY_SIZE; ++j)

14 for(int k = 0; k < ARRAY_SIZE; ++k) {
15 CLilCj1 += var*xA[iJ[kI*B[kI[j1;

16 3}

17 // end processing omitted

18 3

Originally, the code has only the OpenMP parallel for
directive to parallelize the loop. Then, MUPPET applies mu-
tations to the existing OpenMP directives found in the code.
Note that while MUPPET only considers semantically cor-
rect mutations (and are likely to produce a correct program),
it relies on existing correctness checks of the program, as
shown in Section 5.1.1 for the evaluated programs. When
we run MUPPET on this example with delta debugging, after
20 tryouts, MUPPET reports a mutation that, when applied
to the program, improves performance. With BO, it takes

PMAM 24, March 3, 2024, Edinburgh, United Kingdom

66 tryouts to finish the optimization process; but the muta-
tion was reported with 11 tryouts. The identified mutation
is highlighted in the source code. In this simple example, the
mutation is the addition of the OpenMP tile construct, which
tiles one or more loops. In the end, MUPPET reports to the
developer that adding this construct to the loop introduces a
18.84x speedup, from 7.116801 seconds to 0.377674 seconds.

3 Approach
3.1 Problem Statement

Given an OpenMP program P with running time T, MUPPET
analyzes the program and generates a set of mutations, M =
{my, my, ..., my,}, which potentially could induce program
speedup. We define the program running time for the original
variant program as:

T = P(0)

We define the running time for a variant program as:

T = P(M’'),where M’ C M,and accurate(P,M’) = True.
We define the ideal minimum program running time as:
Tnin = P(Mmin),
where My, € M,
and accurate(P, Myin) = True,
and VM’ C M, T >= Tun

The goal of MuPPET is find a subset of M, My, with T
as close to T,,;, as possible.

3.2 Tool Workflow.

The overall workflow of MUPPET is illustrated in Figure 1.
The purposes of these modules are described below:

e Mutation generator analyses the program and finds a
set of source code mutations, which can potentially
be applied to change the OpenMP parallelism of the
program.

e Transformer generates a program variant with a subset
of mutations found in the Mutation generator module.

e Tester runs the mutated programs from Transformer
and tests the performance speedup and correctness of
the mutated variant.

e Optimizer applies a user-specified optimization algo-
rithm to find the minimum of the function T = P(M’).

Next, we delve into the details of these modules, following
the order as they appear in Figure 1.

3.3 Mutation Generator

The Mutation Generator module traverses the abstract syn-
tax tree (AST) of the program, looking for source code lo-
cations that potentially can be mutated so that program
parallelism is changed. The time complexity of this step is
O(n) where n is the number of statement nodes on the AST.

PMAM 24, March 3, 2024, Edinburgh, United Kingdom

main.c

funcl.c

[0] main.c:398,33:
add collapse (3)

[1] funcl.c:293,35:

Miao, et al.

[0] main.c:398,33:
add collapse (3)

[1] funcl.c:293,35:

add tiling sizes 16

func2.c
func3.c (1) Mutation Generator [2] func2.c:113,23:
funcé4.c add simd

add tiling sizes 16

[2] func2.c:113,23:
add simd

Terminate

(2) Optimizer
(BO, delta debugging)

Program Source

List of Mutations

Optimizer can
continue tryouts

Optimized Mutation Set

Function output is returned to Optimizer

main.c

funcl.c

func2.c
(4) Tester &——

func3.c

funcd.c

Mutated Program

(3) Transformer

[0] main.c:398,33:
add collapse (3)

[1] funcl.c:293,35:
F add tiling sizes 16
[2] func2.c:113,23:

add simd

Mutation Subset

Figure 1. The workflow of MUPPET. Red texts in italic indicates the mutation is applied, or the source file is changed.

The mutators in MUPPET focus on mutating parallel/loop
OpenMP constructs such as the parallel directive, for di-
rective, or the parallel for directive. All of these directives
specify a source code region to be executed in parallel, but
the parallelism may not be high enough to utilize all avail-
able cores for the OpenMP program. It also looks for the
beginning of for loops for SIMD mutations.

3.3.1 Mutation Classes. There are four types of muta-
tions possible to apply to certain source code locations:

1. Collapse Mutations add a collapse clause to a mul-
tiple dimension parallel for loop. Collapse clauses
may potentially improve parallelism by having more
iterations, thus higher hardware thread usage, at the
top level of the loop.

2. SIMD Mutations add a simd clause to an OpenMP
parallelism-related directive such as a parallel for
loop, or a omp for loop. SIMD clauses or directives
hint at the compiler to check if there is a possibility
to vectorize the loops and apply SIMD vectorization if
possible.

3. Tiling Mutations add tile directives at the top of a
multiple-dimension OpenMP loop. Tile directives split
the loop space into smaller-sized "tiles", and each tile
is ideally only accessed by one OpenMP thread. This
design can potentially improve cache locality depend-
ing on how the data within memory is accessed within
the loops, and thus may also introduce performance
speedup. Due to the difficulty in determining loop size
at compile time, MUPPET only supports setting a fixed
set of differently sized tiles as different mutations. For
example, we can only set the tile size as a power of

8, 16, or 32. Given the limitations, users can still see
from the optimization results whether using a smaller
or larger-sized tile can have a higher speedup.

4. Firstprivate Mutations put read-only shared vari-
ables into a firstprivate clause for an OpenMP par-
allel region, in order to reduce dependency between
parallel threads.

Once such language constructs (parallel for, for, etc.)
are detected, the Mutation Generator module will then check
the associated source code around the current language con-
struct. If the source code around it satisfies certain statically
defined criteria (see below), then unique information regard-
ing the current mutation, such as source location, the way
source code is modified (insert before, insert after, modify),
and the mutation type, is added to the list of mutations. The
algorithm for this process is shown in Algorithm 1.

3.3.2 Criteria Selection. The criteria for each type of
mutation simply follows the syntax of OpenMP language
specifications. These criteria can be customized for any new
type of mutations added. Here are some examples: "collapse”
mutations are identified by an OpenMP directive followed
by a rectangular, nested loop, within which there is no jump
statements such as break, continue or return; "simd" and
"tiling" mutations are identified by a serial or parallel loop
statement without OpenMP parallel constructs or jump state-
ments inside; lastly, every variable inside an OpenMP parallel
region is checked for eligibility to become firstprivate
variables. Some of the OpenMP mutations that can be ap-
plied to in the previously shown matmul example are shown
in Figure 2. The one that shows the highest speedup in mat-
mul is the tiling mutation.

MUPPET: Optimizing Performance in OpenMP via Mutation Testing

PMAM 24, March 3, 2024, Edinburgh, United Kingdom

#pragma omp parallel for shared(var)
for (int i = @; i < 2048; ++i)
for (int j = @; j < 2048; ++j)
for(int k = 0; k < 2048; ++k)
Cli1[3] += var*A[i][k]*B[k][]];

#pragma omp parallel for simd
shared(var)
for (int i = @; i < 2048; ++i)
for (int j = @; j < 2048; ++j)
for(int k = 0; k < 2048; ++k)
Cli][j]+=var*A[i][k]*B[Kk][j];

#pragma omp parallel for shared(var)
collapse(3)
for (int i = @; 1 < 2048; ++i)
for (int j = @; j < 2048; ++j)
for(int k = 0; k < 2048; ++k)
Cli][j]+=var*A[i][k]*B[Kk][F];

#pragma omp parallel for
firstprivate(var)
for (int i = @; i < 2048; ++i)
for (int j = @; j < 2048; ++j)
for(int k = @; k < 2048; ++k)
C[i][j]+=var*A[i][k]*B[Kk][j];

#pragma omp parallel for shared(var)
#pragma omp tiles size(16,16,16)
for (int i = @; i < 2048; ++i)
for (int j = @; j < 2048; ++j)
for(int k = 0; k < 2048; ++k)
C[i][j]1+=var*A[i][k]*B[Kk][j];

Collapse SIMD

Tiling Firstprivate

Figure 2. Classes of mutations in MUPPET.

Algorithm 1: The mutation generator algorithm.

1 Function GenerateMutations(StatementList):

2 M=0;

3 foreach Statement in StatementList do

4 if Statement is an OpenMP directive then

5 if can add collapse mutation then

6 L M = M U CollapseMutation(Statement);
7 if can add SIMD mutation then

| M= MUSIMDMutation(Statement);

9 if can add tiling mutation then

10 L M = M U TilingMutation(Statement);

11 if can add firstprifate mutation then

12 L M = M U FirstprivateMutation(Statement);
13 if Statement is a for loop then

14 if can add SIMD mutation then

15 | M= MUSIMDMutation(Statement);
16 return M

3.4 Optimizer

Once a list of mutations is generated, it is exported to the
Optimizer. This module runs an optimization algorithm speci-
fied by the end user to find the minimum point of T/ = P(M’).
During the optimization process, it finds specific points on
the T” = P(M’) function by selecting/deselecting a subset
of mutations, sending these mutations to the Transformer
and Tester module, and receiving T’ from the Transformer
and Tester module once the mutated program has finished
execution and running time statistics are collected.
MUPPET supports two optimization algorithms: Bayesian
Optimization (BO) [34] and delta debugging [56]. The goal of
these algorithms, albeit vastly different in implementation,
is the same: find the subset of source mutations that would
introduce maximum speedup. We selected BO because it is
a common optimization algorithm that does not have the
assumption of the function forms, which makes it an appro-
priate algorithm to use in MupPPET. Delta debugging, on the
other hand, was originally developed as a software testing
algorithm to isolate bugs inside a program, which is then
adapted into finding speedup in program variants in previous
work such as Precimonious [44] with regards to precision

tuning. The inclusion in MUPPET of both algorithms shows
how algorithms with vastly different original purposes can
solve the same problem in different ways. MUPPET can also
be extended to support other optimization algorithms such
as genetic algorithm or simulated annealing.

For BO, since the input parameter of the function to be
optimized, T’ = P(M’), is a subset of mutations, which does
not fit the function format of BO, we optimize T’ = P(Mb")
instead where:

MV’ = {mby, mb,, ...,mb,}

1, if m; € M

mb; = .
0, otherwise

In this way, we convert the subset parameter into a list
of binary parameters signaling whether a mutation is in-
cluded in the subset so that BO can accept this list as input
parameters for the function it optimizes.

As for delta debugging, we follow the LCCSEARCH algo-
rithm in [44], where a change set in our adaptation of the
algorithm is defined as the set of mutations that are applied to
the original program, and the outputs are a minimal change
set which causes speedup.

3.5 Transformer and Tester

The Transformer and Tester modules read the list of muta-
tions from the Optimizer module, mutate the program into
a variant, and run the variant to see if there is any speedup
while maintaining the correctness of the program.

3.5.1 Compilation and Conflicts Checks. Even though
there are already criteria placed in the Mutation Generator
module for each mutation type to ensure that all mutations
generated are syntactically correct, there are still situations
where different mutations, when applied to the same pro-
grams at the same time, cause conflicts between them. If
MupPPET lets these conflicts pass without checking during
the transformer phase, it will cause a large number of mu-
tated program variants that do not compile.

PMAM 24, March 3, 2024, Edinburgh, United Kingdom

In order to save execution time, when the module trans-
forms the program, it also statically checks and circum-
vents certain conflicts. These conflict checks can also be
customized in the case where new types of mutations are
implemented or new conflicts are discovered during testing.
Currently, the conflict checks include: no tiling directives
should be inside a SIMD region; and no SIMD directives or
clauses should be inside a tile or collapse region.

4 Implementation Details

MuPPET is implemented with a variety of programming
languages and toolsets. The Mutation Generator and the
Transformer modules are implemented via Clang plugins.
Clang plugin system is one of several systems in the Clang
compiler architecture that are capable of performing source-
to-source code transformation, along with libtooling and
libclang. Clang plugin is used so that our code transforma-
tion runs alongside the build environment of the evaluated
programs, with the same kind of dependency checks. Mup-
PET only requires minimal changes to the build scripts for it
to work on new programs. This is described in 4.3.

The Optimizer and Tester modules, and the overarching
framework managing the communication between modules,
on the other hand, are implemented in Python. This is done
to leverage the existence of a mature set of Python numerical
optimization modules such as scikit-optimize [24].

4.1 Language Support

MuPPET uses the modular approach; each of the three mod-
ules can be replaced in order to implement an analogous
functionality. Currently MUPPET targets C/C++ programs
with OpenMP language constructs, though it is possible to
target FORTRAN programs by rewriting the Mutation Gen-
erator and Transformer modules with a source-to-source
FORTRAN compiler such as ROSE [40].

4.2 Customizing MUPPET Runtime Parameters

MuppPET supports BO and delta debugging in our implemen-
tation. BO is implemented with scikit-optimize, while delta
debugging is implemented from scratch using the algorithm
described in Precimonious [44], since it has no publicly avail-
able Python implementations.

Since running time for each program run may have vari-
ations that should not be counted as speedup, in order to
suppress such variations, users can customize MUPPET pa-
rameters to change how it measures running time. The times
parameter specifies MUPPET to run a number of repetitions
for each variant, and collect running times for each run; the
shuffle switch, only available for delta debugging, randomly
shuffle the order of mutations so that delta debugging algo-
rithm partitions these mutations differently each time (users
can still specify the same random seed for the same shuffle
result). Lastly, users can choose between using the minimum

Miao, et al.

running time in all repetitions as program running time, or
use the average running time.

4.3 Integrating New Programs with MUPPET

For better management of programs in evaluation, MUPPET
calls a customized version of the FAROS build system [22].
MuPpET calls a variety of functionalities offered in FAROS
in order to analyze, transform, build and run the specified
program. With FAROS, it is easy to add new programs to be
mutated by simply adding new entries into the YAML config
file.

4.3.1 Entries and Correctness. An example entry for a
locally stored simple matrix multiplication program is shown
in Listing 2. It sets up commands for each step used in Mup-
PET, such as building, calling plugins for mutations, running
the program, extracting running time statistics from program
output, and cleaning. The only required change to the mat-
mul source code is (a) modify the build scripts (Makefile in
this case) so that it accepts parameters for calling the Clang
plugins; and (b) add correctness check code that parses pro-
gram output in order to determine if the mutated program
still runs correctly.

Listing 2. YAML config file for matmul.

1 matmul: fetch: 'cp -r ../../../extra/matmul .'
2 build_dir: 'matmul'

3 build: {

4 omp: ['make CC=clang++ OPT_LEVEL=3 OMP=1"'],
5 ¥

6 call_plugin: {

7 analysis: ['make func_analysis OMP=1'],

8 mutate: ['make trans_mutations OMP=1'],

9 ¥

10 copy: ['matmul']

11 bin: 'matmul'

12 run: './matmul'

13 input: "'

14 measure: 'Work consumed (\d+\.\d+) seconds'
15 clean: 'rm -r *.x; cp ../../../../extra/

matmul /*.

5 Experimental Evaluation

This experimental evaluation answers the following research
questions:

RQ1 Does MUPPET discover source code mutations that
induce speedup for OpenMP programs?

RQ2 What are the factors that may determine the efficacy
of MupPET in finding these source code mutations?

5.1 Evaluation Setup

5.1.1 Benchmarks. We use a set of 10 C/C++ OpenMP
programs to evaluate MuPPET. The programs include bench-
mark programs such as NPB-CPP [31] and HPCG [14], and
proxy applications such as LULESH [26] and CoMD [18]. We

MUPPET: Optimizing Performance in OpenMP via Mutation Testing

PMAM 24, March 3, 2024, Edinburgh, United Kingdom

Table 1. Mutation speedup discovered by delta debugging and Bayesian Optimization.

(a) Delta debugging
No. Possible Mutations No. Mutations in Best

P Original Min. Best Min. Speed: Original Avg. Best Avg. Avg. Speed:

rogram riginal Min est Min, peedup riginal Avg est Avg vg. Speedup (collapse/simd/firstprivate/tile)
LULESH 11.095s 10.644s 4.23% 11.161s 10.741s 3.91% 0/95/0/222 0/7/0/8
HPCG 15.598s 14.071s 10.85% 15.654s 15.231s 2.78% 0/63/13/81 0/1/0/0
CoMD 2.296s 2.210s 3.90% 2.304s 2.232s 3.22% 0/78/13/132 0/25/4/7
FT.A 1.288s 1.244s 3.54% 1.305s 1.267s 3.06% 1/42/5/45 0/3/1/1
LUA 4.933s 4.867s 1.35% 4.956s 4.890s 1.35% 3/100/6/186 0/1/0/1
MG.A 3.592s 3.124s 14.99% 3.603s 3.131s 15.07% 7/66/8/39 1/5/1/2
SP.A 31.534s 29.813s 5.77% 32.001s 30.948s 3.40% 64/267/3/396 0/6/0/4
BT.A 42.620s 42.344s 0.65% 42.686s 42.365s 0.75% 44/218/2/381 7/32/0/20
CG.B 22.432s 22.262s 0.76% 22.701s 22.376s 1.45% 0/18/11/27 0/1/1/1
EP.B 6.245s 6.238s 0.11% 6.251s 6.243s 0.13% 0/9/1/24 0/9/1/8
(b) Bayesian Optimization

No. Possible Mutations No. Mutations in Best

P iginal Min. Best Min. iginal Avg. Best Avg. Avg.

rogram Original Min est Min. Speedup Original Avg est Avg vg. Speedup (collapse/simd/firstprivate/tile)
LULESH 11.080s 10.790s 2.69% 11.136s 10.881s 2.34% 0/95/0/222 0/47/0/62
HPCG 15.577s 13.599s 14.54% 15.693s 14.584s 7.61% 0/63/13/81 0/26/4/26
CoMD 2.300s 2.225s 3.36% 2.310s 2.254s 2.47% 0/78/13/132 0/37/10/37
FTA 1.287s 1.261s 2.11% 1.295s 1.265s 2.37% 1/42/5/45 1/23/3/12
LUA 4.906s 4.812s 1.94% 4.940s 4.872s 1.40% 3/100/6/186 2/46/2/54
MG.A 3.593s 3.132s 14.74% 3.624s 3.134s 15.64% 7/66/8/39 6/35/3/10
SP.A 30.819s 32.563s -5.36% 31.330s 33.274s -5.84% 64/267/3/396 28/138/2/118
BTA 42.607s 43.370s -1.76% 42.709s 43.437s -1.68% 44/218/2/381 26/114/2/111
CG.B 22.504s 22.391s 0.51% 22.590s 22.466s 0.55% 0/18/11/27 0/9/6/9
EP.B 6.244s 6.237s 0.10% 6.247s 6.243s 0.07% 0/9/1/24 0/4/0/7

use these programs in order to evaluate the efficacy of Mup-
PET in finding speedup in different programs, on a reference
implementation or on manually optimized code.

On the benchmarks side, NPB-CPP is the C++ version
of NAS Parallel Benchmarks ported to various program-
ming frameworks on shared-memory architectures including
OpenMP. We use 7 benchmark programs in varying problem
sizes for evaluation: BT.A, CG.B, EP.B, FT.A, LUA, MG.A,
SP.A. HPCG is a benchmark program that performs multi-
grid preconditioned conjugate gradient iterations. We run it
with a grid size of 96x96%96. All benchmarks contain result
verification routines in their source code, so we use them in
order to determine program correctness.

On the proxy applications side, LULESH is a proxy ap-
plication simulating the Shock Hydrodynamics Challenge
Problem, while CoMD is a proxy application implementing
classical molecular dynamics algorithms and workloads as
used in materials science. Evaluating these programs may
show the efficacy of MUPPET in helping software developers
in scientific computing optimize the parallel performance of
their programs. LULESH is run with the parameter -i 1500
-s 35,and CoMD with-e -i 1 -j 1 -k 1 -x 20 -y 20
-z 20. We use the approach presented in [28] to determine
the correctness of the program. For LULESH, we consider

iteration count, final origin energy, and Total AbsDiff as the
output; for CoMD, we use the final energy as output.

5.1.2 Algorithm Parameters. We use both BO and delta
debugging in our experimental evaluation. Given the fact
that program running time varies across the programs being
evaluated, we put a tryout limit of 100 on both algorithms
instead of using a total time limit. Our parameters for BO
are n_calls = 100, n_initial_points = 10, and noise = 0.01.
5.1.3 Evaluation Environment. We use a workstation
computer with two 14-core Intel Xeon E5-2694v3 CPUs and
32GiB of RAM, running Ubuntu 22.04. We use Clang 16.0.6
with OpenMP 5.1 support as the compiler for both source-
to-source code transformation, and for building and running
the evaluated programs. Using OpenMP 5.1 enables us to
build programs with collapse clauses as well.

We also ensure that performance variation is minimized
between program runs. We avoid CPU context switching
by limiting the programs to run on hardware threads on
the second CPU by forcing the taskset -c 14-27 com-
mand in FAROS. Hardware quiescing, as defined by [1], is
also performed to reduce performance fluctuations, such as
turning off both simultaneous multithreading and dynamic
frequency scaling.

As for running time statistic collection, we run each mu-
tated variant 5 times and use the minimum running time

PMAM 24, March 3, 2024, Edinburgh, United Kingdom

as the program running time T. As a comparison, we also
record the average running time for each tryout and eval-
uate if there is any possible discrepancy between average
and minimum running time, but this statistic is not used
as the fitness function output for optimization algorithms.
We use the minimum running time for the fitness function
because as stated in [1] it is best at rejecting noise introduced
by the evaluation environment, since running time higher
than the minimum must be due to such noise. However, we
still calculate speedup for average running time to see how
performance variability affects running time.

5.2 Evaluation Results

Even though we have taken various measures to reduce
performance variability between each program run, it is
still a factor that is not completely removed. Therefore, to
determine if a program shows speedup when mutated, we
use the 1% threshold. If amongst the 5 runs, the speedup
between the minimum running time or between the average
running time is lower than 1%, then the current subset of
mutations is discarded.

The results of both algorithms can be found in Table 1. We
compare the minimum running time for the mutated pro-
gram against the minimum of the original (columns 2-4), and
its average running time against the average running time
of the original program (columns 5-7). Our evaluation shows
that there are 7 out of 10 evaluated programs in which delta
debugging can find a subset of mutations that, when applied,
can cause speedup while maintaining the correctness of the
program. The other 3 programs below the horizontal line
in Table 1 show no speedup.

The speedup with regards to the minimum time ranges
from 1.35% in LU to 14.99% in MG. Meanwhile, the speedup
with regards to average time is generally about the same or
smaller than the speedup with regards to the minimum time,
especially so in HPCG where the speedup in average time
is only 2.78% compared to the 10.85% speedup in minimum
time. Such a drop in speedup is likely from increased inherent
performance variability introduced by the sole mutation
discovered. Running these programs more than 5 times, or
further static program analysis, may be needed to determine
a more robust speedup result. BO on the other hand can
find mutation subsets that cause speedup in only 6 out of 10
programs, as it cannot find such a subset for SP. Furthermore,
the speedup discovered is not greater than delta debugging
except HPCG, which shows 7.61% in average running time
speedup and 14.54% in minimum running time speedup.

We have also recorded the number of mutations that are
applied in the subsets that cause the highest speedup with
both algorithms (column 9 in Table 1), compared to the total
number of possible mutations (column 8). The results in BO
all have more mutations in the subsets, except EP which
neither algorithm shows speedup. When we investigate all
tryouts and their running times in programs such as SP, we

Miao, et al.

deduce that a lot of mutations in these programs cause neg-
ative speedup, while only a few cause positive speedup. BO
works worse in programs like these compared to delta de-
bugging because it takes more tryouts than delta debugging
to remove mutations with negative speedups from consider-
ation. On the other hand, programs like HPCG likely have a
few mutations that cause large speedup, but most others do
not cause negative speedup. In these cases, BO works better
than delta debugging and can find a subset of mutations that
contain mutations with both large and small speedup.

6 Related Work

Mutation Testing. Mutation testing has been proposed to
identify correctness defects [25]. The assumption in muta-
tion testing is that a syntactic change (a mutant) can help
discover programs’ defects. Mutation testing, however, has
not been applied deeply in HPC programs and on perfor-
mance defects. Some attempts to build mutation testing for
cloud systems have been reported [8]. Mutation operators
(i.e., syntactic changes) have been proposed to reveal faults
in small-size MPI programs [46]. With the increased use of
LLVM, researchers are exploring the support of mutation
testing in LLVM [11]. To the best of our knowledge, the
only work that considers mutation testing for performance
s [10]. However, this work does not consider parallelism
and mutations in numerical (floating-point) code—these two
aspects are critical to HPC applications. To the best of our
knowledge, we are the first to explore using mutation testing
for performance in OpenMP scientific codes.

General Auto-tuning. There is a significant corpus of
past work on auto-tuning techniques. Typical examples in-
clude ATLAS [50], Active Harmony [48], FFTW [19], POET
[54], CHILL [9], GEIST [49], OpenTuner [4], CLTune [38],
Apollo [6, 52], and Dutta et al. [15, 16]. Their common theme
is that they tune compile-time, such as tiling, or runtime
parameters, such as the number of threads, presupposing
a given source code representation of a program. Typical
search algorithms for tuning they propose include random,
grid, or Bayesian search, or various machine learning-based
search models. By contrast, MUPPET mutates the source code
of the program, which exposes a large, combined set of both
source code modifications as compile-time parameters and
their possible configurations as runtime parameters to tune
for. Furthermore, MUPPET automates the generation of tuned
source code variants without user intervention and it is the
first to propose the delta debugging search algorithm for tun-
ing. Integrating machine-learning techniques for fast search-
ing in MUPPET is an interesting future extension.

A number of papers research domain-specific tuning using
code generation, alternate data layouts, or algorithmic pa-
rameters, such as [2, 13, 20, 27, 37] for linear algebra kernels
and [33, 41, 42, 55] for stencils. Those approaches require
users to express the programs in specialized domain-specific

MUPPET: Optimizing Performance in OpenMP via Mutation Testing

languages amenable to tuning, which limits their generality.
MUPPET tunes unaltered, user-provided, general OpenMP
code to generate tuning source code variants and optimizing
runtime parameters.

Auto-tuning OpenMP. Specifically on OpenMP, Adaptive
OpenMP [23, 29], Sreenivasan et al. [47] propose OpenMP
language extensions to support auto-tuning on OpenMP
regions, such as scheduling policies of parallel loops, number
of threads or teams. Those approaches require significant
refactoring of the code and domain-specific knowledge from
the programmer to successfully integrate tuning extensions
and their possible configuration parameters in their OpenMP
code. Instead, MUPPET treats source code modifications as a
tunable parameter and independently explores the runtime
configuration space.

Bliss [43] proposes probabilistic Bayesian optimization to
tune hardware (core frequency, hyperthreading) and soft-
ware execution parameters (OpenMP threads, algorithmic
alternatives) for the whole application, specified by the user.
Bliss does not modify the program’s source code and tunes all
regions in unison, by contrast, MUPPET both enables source
code modifications and specializes tuning to each region,
since mutations are region-specific.

Scalable Record-Replay [39] is a mechanism that extracts
the LLVM IR of OpenMP GPU target region kernels to tune
for each kernel in parallel the GPU launch bounds as compile-
time parameters, by modifying the IR to re-compile, and the
number of threads/teams as runtime parameters. Performing
the kind of mutations in MUPPET on LLVM IR is challenging
compared to source code, which motivates our choice of a
source code mutation tool. Nevertheless, the idea of extract-
ing OpenMP regions and tuning them independently is a
possible extension to MUPPET to speed up search time.

7 Conclusion

We presented MUPPET, a novel application of mutation test-
ing aimed at improving the performance of OpenMP pro-
grams. MUPPET uses different search algorithms to apply and
compose program mutations to reduce application execu-
tion time. Because program transformations are performed
at the source level, MUPPET’s mutations are transferable
across different OpenMP implementations and compilers.
We demonstrate that MUPPET is capable of identifying mu-
tations that improve performance in 70% of the evaluated
programs achieving a maximum average speedup of 15.64%.

In the future, we plan to extend MUPPET to automatically
update OpenMP code bases with the latest OpenMP features
that improve performance while maintaining correctness.
Currently, it is the responsibility of the code maintainer
to manually update their code base to use newly available
OpenMP features, which require significant manual efforts.
The source code and data of MUPPET are publicly available
at https://github.com/LLNL/MUPPET/.

PMAM 24, March 3, 2024, Edinburgh, United Kingdom

Acknowledgments

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-858593), the U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research, under
award DE-SC0022182, and the National Science Foundation
under award CCF-2119348.

References

[1] 2018.
https://ocw.mit.edu/courses/6-172-performance-engineering-
of-software-systems-fall-2018/

[2] Walid A. Abu-Sufah and Asma Abdel Karim. 2013. Auto-tuning of
Sparse Matrix-Vector Multiplication on Graphics Processors. In ISC
(Lecture Notes in Computer Science), Vol. 7905. Springer, 151-164.

[3] Laksono Adhianto, S. Banerjee, Michael W. Fagan, et al. 2010. HPC-
TOOLKIT: tools for performance analysis of optimized parallel pro-
grams. Concurr. Comput. Pract. Exp. 22, 6 (2010), 685-701.

[4] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, et al. 2014. Open-
Tuner: an extensible framework for program autotuning. In PACT.
ACM, 303-316.

[5] Md. Abul Kalam Azad, Nafees Igbal, Foyzul Hassan, et al. 2023. An
Empirical Study of High Performance Computing (HPC) Performance
Bugs. In MSR. IEEE, 194-206.

[6] David Beckingsale, Olga Pearce, Ignacio Laguna, et al. 2017. Apollo:
Reusable Models for Fast, Dynamic Tuning of Input-Dependent Code.
In IPDPS. IEEE Computer Society, 307-316.

[7] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, et al. 2013. Using
automated performance modeling to find scalability bugs in complex
codes. In SC. ACM, 45:1-45:12.

[8] Pablo C. Caiiizares, Alberto Nuilez, and Mercedes G. Merayo. 2018.
Mutomvo: Mutation testing framework for simulated cloud and HPC
environments. § Syst. Softw. 143 (2018), 187-207.

[9] Chun Chen, Jacqueline Chame, and Mary Hall. 2008. CHIiLL: A frame-
work for composing high-level loop transformations. Technical Report.
Citeseer.

[10] Pedro Delgado-Pérez, Ana Belén Sanchez, Sergio Segura, et al. 2020.
Performance mutation testing. Software Testing, Verification and Relia-
bility (2020), e1728.

[11] Alex Denisov and Stanislav Pankevich. 2018. Mull It Over: Mutation
Testing Based on LLVM. In ICST Workshops. IEEE Computer Society,
25-31.

[12] Nan Ding and Samuel Williams. 2019. An Instruction Roofline Model
for GPUs. In PMBS@SC. IEEE, 7-18.

[13] Jack J. Dongarra, Mark Gates, Jakub Kurzak, et al. 2018. Autotuning
Numerical Dense Linear Algebra for Batched Computation With GPU
Hardware Accelerators. Proc. IEEE 106, 11 (2018), 2040-2055.

[14] Jack J. Dongarra, Michael A. Heroux, and Piotr Luszczek. 2016. High-
performance conjugate-gradient benchmark: A new metric for ranking
high-performance computing systems. Int. J. High Perform. Comput.
Appl. 30, 1 (2016), 3-10.

[15] Akash Dutta, Jordi Alcaraz, Ali TehraniJamsaz, et al. 2023. Performance
Optimization using Multimodal Modeling and Heterogeneous GNN.
In HPDC. ACM, 45-57.

[16] Akash Dutta, Jordi Alcaraz, Ali TehraniJamsaz, et al. 2022. Pattern-
based Autotuning of OpenMP Loops using Graph Neural Networks.
In AI4S. IEEE, 26-31.

[17] Alexandre E Eichenberger, John Mellor-Crummey, Martin Schulz, et al.
2013. OMPT: An OpenMP tools application programming interface for
performance analysis. In International Workshop on OpenMP. Springer,
171-185.

Performance Engineering of Software Systems.

https://github.com/LLNL/MUPPET/
https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/
https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/

PMAM 24, March 3, 2024, Edinburgh, United Kingdom

[18] The Exascale Co-Design Center for Materials in Extreme Environ-
ments (ExMatEx). 2013. CoMD - Classical molecular dynamics proxy
application. https://github.com/ECP-copa/CoMD.

[19] Matteo Frigo and Steven G Johnson. 2005. The design and implemen-
tation of FFTW3. Proc. IEEE 93, 2 (2005), 216—231.

[20] Mark Gates, Jakub Kurzak, Piotr Luszczek, et al. 2017. Autotuning
Batch Cholesky Factorization in CUDA with Interleaved Layout of
Matrices. In IPDPS Workshops. IEEE Computer Society, 1408-1417.

[21] Markus Geimer, Felix Wolf, Brian JN Wylie, et al. 2010. The Scalasca
performance toolset architecture. Concurrency and Computation: Prac-
tice and Experience 22, 6 (2010), 702-719.

[22] Giorgis Georgakoudis, Johannes Doerfert, Ignacio Laguna, et al. 2020.
FAROS: A Framework to Analyze OpenMP Compilation Through
Benchmarking and Compiler Optimization Analysis. In IWOMP (Lec-
ture Notes in Computer Science), Vol. 12295. Springer, 3-17.

[23] Giorgis Georgakoudis, Konstantinos Parasyris, Chunhua Liao, et al.
2023. Machine Learning-Driven Adaptive OpenMP For Portable Per-
formance on Heterogeneous Systems. arXiv:cs.PL/2303.08873

[24] Tim Head, Manoj Kumar, Holger Nahrstaedt, et al. 2021. scikit-
optimize/scikit-optimize.

[25] Yue Jia and Mark Harman. 2010. An analysis and survey of the devel-
opment of mutation testing. IEEE transactions on software engineering
37, 5 (2010), 649—678.

[26] Ian Karlin, Abhinav Bhatele, Jeff Keasler, et al. 2013. Exploring Tra-
ditional and Emerging Parallel Programming Models Using a Proxy
Application. In IPDPS. IEEE Computer Society, 919-932.

[27] Jakub Kurzak, Hartwig Anzt, Mark Gates, et al. 2016. Implementation
and Tuning of Batched Cholesky Factorization and Solve for NVIDIA
GPUs. IEEE Trans. Parallel Distributed Syst. 27, 7 (2016), 2036-2048.

[28] Ignacio Laguna, Paul C. Wood, Ranvijay Singh, et al. 2019. GPUMixer:
Performance-Driven Floating-Point Tuning for GPU Scientific Appli-
cations. In ISC (Lecture Notes in Computer Science), Vol. 11501. Springer,
227-246.

[29] Chunhua Liao, Daniel J Quinlan, Richard Vuduc, et al. 2009. Effective
source-to-source outlining to support whole program empirical opti-
mization. In International Workshop on Languages and Compilers for
Parallel Computing. Springer, 308-322.

[30] Yu Jung Lo, Samuel Williams, Brian Van Straalen, et al. 2014. Roofline
model toolkit: A practical tool for architectural and program analysis.
In International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems. Springer, 129-148.

[31] Janior Loff, Dalvan Griebler, Gabriele Mencagli, et al. 2021. The NAS
Parallel Benchmarks for evaluating C++ parallel programming frame-
works on shared-memory architectures. Future Gener. Comput. Syst.
125 (2021), 743-757.

[32] Diogo Marques, Helder Duarte, Aleksandar Ilic, et al. 2017. Perfor-
mance Analysis with Cache-Aware Roofline Model in Intel Advisor.
In HPCS. IEEE, 898-907.

[33] Kazuaki Matsumura, Hamid Reza Zohouri, Mohamed Wahib, et al.
2020. AN5D: automated stencil framework for high-degree temporal
blocking on GPUs. In CGO. ACM, 199-211.

[34] Jonas Mockus. 1994. Application of Bayesian approach to numerical
methods of global and stochastic optimization. J. Glob. Optim. 4, 4
(1994), 347-365.

[35] Philip J Mucci, Shirley Browne, Christine Deane, et al. 1999. PAPL: A

portable interface to hardware performance counters. In Proceedings

of the department of defense HPCMP users group conference, Vol. 710.

Citeseer.

Hitoshi Nagasaka, Naoya Maruyama, Akira Nukada, et al. 2010. Sta-

tistical power modeling of GPU kernels using performance counters.

In International conference on green computing. IEEE, 115-122.

Rajib Nath, Stanimire Tomov, Jack Dongarra, et al. 2010. Autotuning

dense linear algebra libraries on gpus and overview of the magma

(36

—

(37

—

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Miao, et al.

library. In 6th International Workshop on Parallel Matrix Algorithms
and Applications (PMAA’10).

Cedric Nugteren and Valeriu Codreanu. 2015. CLTune: A generic auto-
tuner for OpenCL kernels. In 2015 IEEE 9th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip. IEEE, 195-202.
Konstantinos Parasyris, Giorgis Georgakoudis, Esteban Rangel, et al.
2023. Scalable Tuning of (OpenMP) GPU Applications via Kernel
Record and Replay. In SC. ACM, 28:1-28:14.

Dan Quinlan and Chunhua Liao. 2011. The ROSE source-to-source
compiler infrastructure. In Cetus users and compiler infrastructure work-
shop, in conjunction with PACT, Vol. 2011. Citeseer, 1.

Prashant Singh Rawat, Miheer Vaidya, Aravind Sukumaran-Rajam,
et al. 2018. Domain-Specific Optimization and Generation of High-
Performance GPU Code for Stencil Computations. Proc. IEEE 106, 11
(2018), 1902-1920. https://doi.org/10.1109/JPROC.2018.2862896
Prashant Singh Rawat, Miheer Vaidya, Aravind Sukumaran-Rajam,
et al. 2019. On Optimizing Complex Stencils on GPUs. In IPDPS. IEEE,
641-652.

Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, et al. 2021. Bliss:
auto-tuning complex applications using a pool of diverse lightweight
learning models. In PLDI. ACM, 1280-1295.

Cindy Rubio-Gonzalez, Cuong Nguyen, Hong Diep Nguyen, et al.
2013. Precimonious: tuning assistant for floating-point precision. In
SC, William Gropp and Satoshi Matsuoka (Eds.). ACM, 27.

Sameer S Shende and Allen D Malony. 2006. The TAU parallel perfor-
mance system. The International Journal of High Performance Comput-
ing Applications 20, 2 (2006), 287-311.

Rodolfo Adamshuk Silva, Simone do Rocio Senger de Souza, and Paulo
Sergio Lopes de Souza. 2012. Mutation operators for concurrent pro-
grams in MPL In 2012 13th Latin American Test Workshop (LATW).
IEEE, 1-6.

Vinu Sreenivasan, Rajath Javali, Mary Hall, et al. 2019. A framework for
enabling OpenMP autotuning. In International Workshop on OpenMP.
Springer, 50-60.

Cristian Tapus, I-Hsin Chung, and Jeffrey K. Hollingsworth. 2002.
Active Harmony: Towards Automated Performance Tuning. In Pro-
ceedings of the 2002 ACM/IEEE Conference on Supercomputing (SC *02).
IEEE Computer Society Press, Washington, DC, USA, 1-11.
Jayaraman J. Thiagarajan, Nikhil Jain, Rushil Anirudh, et al. 2018.
Bootstrapping Parameter Space Exploration for Fast Tuning. In ICS.
ACM, 385-395.

R Clinton Whaley and Jack J Dongarra. 1998. Automatically tuned
linear algebra software. In SC’98: Proceedings of the 1998 ACM/IEEE
conference on Supercomputing. IEEE, 38-38.

Samuel Williams, Andrew Waterman, and David Patterson. 2009.
Roofline: an insightful visual performance model for multicore ar-
chitectures. Commun. ACM 52, 4 (2009), 65-76.

Chad Wood, Giorgis Georgakoudis, David Beckingsale, et al. 2021.
Artemis: Automatic Runtime Tuning of Parallel Execution Parameters
Using Machine Learning. In ISC (Lecture Notes in Computer Science),
Vol. 12728. Springer, 453-472.

Yi Yang, Ping Xiang, Mike Mantor, et al. 2012. Fixing performance
bugs: An empirical study of open-source GPGPU programs. In 2012
41st International Conference on Parallel Processing. IEEE, 329-339.
Qing Yi, Keith Seymour, Haihang You, et al. 2007. POET: Parameterized
optimizations for empirical tuning. In 2007 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 1-8.

Xin You, Hailong Yang, Zhonghui Jiang, et al. 2021. DRStencil: Ex-
ploiting Data Reuse within Low-order Stencil on GPU. In HPCC/DSS/S-
martCity/DependSys. IEEE, 63-70.

Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating
Failure-Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183-200.

https://github.com/ECP-copa/CoMD
https://arxiv.org/abs/cs.PL/2303.08873
https://doi.org/10.1109/JPROC.2018.2862896

	Abstract
	1 Introduction
	2 Overview
	2.1 Approach's Philosophy
	2.2 Mutation Testing for Performance
	2.3 Mutation Example

	3 Approach
	3.1 Problem Statement
	3.2 Tool Workflow.
	3.3 Mutation Generator
	3.4 Optimizer
	3.5 Transformer and Tester

	4 Implementation Details
	4.1 Language Support
	4.2 Customizing Muppet Runtime Parameters
	4.3 Integrating New Programs with Muppet

	5 Experimental Evaluation
	5.1 Evaluation Setup
	5.2 Evaluation Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

