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Abstract—We consider some crucial problems related to the
secure and reliable operation of power systems with high renewable
penetrations: how much reserve should we procure, how should
reserve resources distribute among different locations, and how
should we price reserve and charge uncertainty sources. These
issues have so far been largely addressed empirically. In this paper,
we first develop a scenario-oriented energy-reserve co-optimization
model, which directly connects reserve procurement with possible
outages and load/renewable power fluctuations without the need
for empirical reserve requirements. Accordingly, reserve can be
optimally procured system-wide to handle all possible future un-
certainties with the minimum expected system total cost. Based on
the proposed model, marginal pricing approaches are developed
for energy and reserve, respectively. Locational uniform pricing is
established for energy, and the similar property is also established
for the combination of reserve and re-dispatch. In addition, prop-
erties of cost recovery for generators and revenue adequacy for
the system operator (SO) are also proven. Simulations validate the
effectiveness of the proposed mechanism.

Index Terms—Electricity market, reserve, energy-reserve co-
optimization, uncertainty pricing, locational marginal prices.

1. INTRODUCTION
A. Backgrounds

HE integration of more renewable generations in power
T systems is an important way to achieve carbon neutral-
ity. From 2019 to 2020, the worldwide cumulative installed
capacities of solar and wind have increased by 126.74GW and
111.03GW, respectively. While in China, these two numbers
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are 49.25GW and 72.46GW, respectively [2], [3]. However, the
increasing uncertainty brought by renewable generations also
brings challenges to the secure and reliable operation of power
systems. To handle this, the reserve is procured system-wide and
deployed for generation re-dispatch when contingencies happen,
or loads/renewable generations deviate from their predictions.
Reserve and energy are strongly coupled both in generation and
transmission capacity limits. A fair, efficient, and transparent
energy-reserve co-optimization model and the associated market
mechanism are hence of crucial importance.

B. Literature Review

Energy and reserve markets are cleared either sequentially
or jointly. Currently, most of the independent system operators
(ISOs) in the U.S. adopt the joint clearing process [4]-[6],
stylistically defined by:

O minimize cFg-+cFru +cBro W
subject to

(A,p):1Tg=17d,S(9—d) < f, @)
(47,v?) : 1%y = RV, 1%rp = AP, 3)

g+ <GG+rp<g0<ry <T7,0<rp <75 (4)

The objective function (1) aims to minimize the total bid-in
cost of energy g, upward reserve 1y, and downward reserve
rp. Constraints (2)-(4) represent energy balancing and trans-
mission capacity constraints, reserve requirement constraints,
and generator capacity and ramping-rate limits, respectively.
Reserve clearing prices are set as the Lagrange multipliers
(7Y, ~P), representing the marginal cost of one additional unit
of upward/downward reserve requirement.

Several important issues arise from model (I). First, the re-
serve requirements RV and RP are empirical and subjective,
sometimes specified as the capacity of the biggest online gen-
erator as in PIM [7] or a certain proportion of system loads as
in CAISO [8]. Their values, however, can significantly affect
the market clearing results and prices of both the energy and
reserve products. Second, the deliverability of reserve in non-
base scenarios with contingencies and load/renewable power
fluctuations is not considered in (I). A common solution is to
partition the entire system into different zones, each with zonal
reserve requirements and prices [9], which is again ad hoc. Third,
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the objective function (1) uses the base-case bid-in cost without
taking into account possible re-adjustment costs. Fourth, it is
not clear how the cost of procuring reserve should be afforded
among all consumers. Some ISOs let all load serving entities
share this cost proportionally [4], [5].

In light of these problems, many studies aim to improve the
traditional model (I). For reserve requirement selection, para-
metric and non-parametric probabilistic forecasting techniques
are incorporated in (I) by characterizing the underlying proba-
bility distribution of future situations [10]-[13]. Scenario-based
approaches are also proposed in [14], [15]. In addition, on the
deliverability of reserve, some statistical clustering methods are
proposed in [16]-[18] that partition the network into different
reserve zones. In [19], a generalized reserve disqualification
approach is developed.

Stochastic co-optimization models have also been studied.
In [20], a robust stochastic optimization model is adopted for the
co-optimization of energy and possible re-dispatch. Moreover,
the uncertainty marginal price is defined as the marginal cost
of immunizing the next unit increment of the worst point in
the uncertainty set. Such marginal cost is used to price both
reserve resources and uncertainty sources. In [21], a chance-
constrained stochastic optimization model is adopted, where
statistical moments of uncertainties are considered to generate
chance constraints, and an algorithm is proposed to transform
the original problem to a convex formulation. In [22]-[30],
the scenario-oriented stochastic optimization model structure
is adopted. Some non-base scenarios with occurrence prob-
abilities are modelled to represent possible load/renewable
power fluctuations and contingencies. The energy balancing and
transmission capacity constraints in all non-base scenarios are
considered to analyze the re-adjustment procedures. Among
those scenario-based solutions, some adopt the energy-only
model structure [22]-[25]; others consider the energy-reserve
co-optimization structure [26]-[30]. In [26], several possible
two-stage energy and reserve pricing structures are developed
and compared. In [27]-[30], locational marginal prices of energy
and reserve are derived.

On the design of a pricing approach, the revenue adequacy
for the SO and the cost recovery for market participants are
necessary. In [22], [23], [26], both properties are established in
expectation. In [24], cost recovery is established in expectation,
and revenue adequacy is established for every scenario. In [25],
an equilibrium model is adopted to achieve both revenue ade-
quacy and cost recovery for each scenario with increased system
costs and the reduction of social welfare.

C. Contributions, Organizations and Nomenclature

In this paper, a scenario-oriented energy-reserve joint pro-
curement model is proposed, the associated marginal pricing
approach and settlement process are developed, and many ele-
gant market properties are established. The main contributions
of this paper are listed as follows:

1) A scenario-oriented energy-reserve co-optimization model
is proposed. Reserve procured from a generator is modelled as
the maximum range of its power re-dispatch in all scenarios.
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TABLEI
L1SsT OF MAJOR SYMBOLS USED

€g,cy,cp: bid-in prices of energy, upward reserve
and downward reserve.

C,c,cr upward/downward generation re-dispatch
prices and load shedding prices.

d, T base load/load fluctuation in scenario k.

8dy: load shedding in scenario k.

d generation upward and downward
re-dispatches in scenario k.

€kt occurrence probability of scenario k.

7%, n%: energy marginal prices of generators and loads.
nY,nP: upward and downward reserve marginal prices.
Jo, fx: transmission capacify limit in the base case

and in scenario k.
F(-): objective function.
g,Ty,Tp:  generations, upward and downward reserve.
wo, Wk base-case/non-base component of energy prices.
S, Sk: shift factor matrices in the base case / scenario k

The proposed model no longer relies on empirical parameters
of (zonal) reserve requirements. The deliverability of all reserve
resources under all scenarios is ensured by incorporating the net-
work constraints in non-base scenarios into the co-optimization
model.

2) Marginal prices of energy and reserve are derived strictly
following the marginal pricing principle as by-products of the
co-optimization model. In addition, the associated settlement
process is also developed, which includes the ex-ante settlement
and the ex-post settlement after re-dispatch, and it can help
to overcome the double-compensation issue in current reserve
market practice. Moreover, we show that energy prices are
locational uniform, and a proportional uniform pricing property
can be established for reserve and re-dispatch.

3) Cost recovery for generators is established for every sce-
nario, and revenue adequacy for the system operator is estab-
lished in expectation. We show that revenue from load payments,
credits to generators including energy, reserve, and re-dispatch,
and congestion rent will reach their balance for both the base
case and each non-base scenario.

Compared with other existing scenario-based works [22]—
[30], the advantages of the proposed method are summarized
as follows:

1) For those scenario-based works with an energy-only
model [22]-[25]. they can solve the dispatch problem of the
reserve by incorporating the reserve capacity bids and several
additional constraints into their models [23]. However, they do
not consider the pricing problem of the reserve. In our paper, the
proposed method can solve the dispatch problem and the pricing
problem of reserve simultaneously.

For [26]-[30] and other existing energy-reserve co-
optimization works, to the best of our knowledge, they do not
focus on the ex-post settlement for the generation re-dispatch
(reserve deployment) and market properties as developed in this
paper. In [27]-[30], the ex-post settlement is not considered, and
market property issues are not discussed. Paper [26] establishes
revenue adequacy for the SO and cost recovery for generators
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Ancillary Service Optimizer (ASO): inflexible reserve
= Intermediate Term Secarity Constrained Econsmic Dispatch (IT SCED)
o ioms for energy and reserve
Real-Time Security Constrained Economic Dispatch (RT SCED)

price calculation
1 1
1 Hour 30 Min 15 Min Target
Prior Frior Prior Time

Fig. 1. PIM real-time schedules of operation reserve including ASO, IT
SCED, RT SCED and LPC [7].

both in expectation, while the proposed method can establish
revenue adequacy for the SO in expectation and cost recovery
for generators for each scenario.

The rest of this paper is organized as follows. The proposed
model is formulated in Section II. The pricing approach and the
settlement process are presented in Section III. Some properties
are established in Section IV. Some of the assumptions and
settings are further discussed in Section V. Case studies are
presented in Section V1. Section VII concludes this paper. Major
designated symbols are listed in Table L.

II. MODEL FORMULATION

We consider a scenario-oriented co-optimization model. In
the current market design, with PJM as an example, the reserve
market consists of several look-ahead stages to procure reserve
resources with different flexibility levels as shown in Fig. 1.
We abstract the real-time operations in Fig. 1 into a look-ahead
energy-reserve co-optimization model with the following as-
sumptions:

i) A shift factor-based lossless DCOPF model with linear cost
functions for energy and reserve is adopted, which is consistent
with the current electricity market design.

ii) A single-period problem is considered for simplicity.

iii) Renewable generations are modelled as negative loads.

iv) Non-base scenarios may have line outages, load or renew-
able power fluctuations, etc. Generator outages, however, are not
considered.

v) The objective of the proposed model is to guard against a
set of mutually exclusive non-base scenarios in addition to the
base case (assuming the probability of each scenario is given).

We will have further discussions on all assumptions in
Section V.

Based on assumptions (i)-(v), the proposed co-optimization
model is given by:

F(g’ TU,TD, JQ_E, 59]?1 5dk} o cEﬁ"‘%}*’U +CETD

+ > e(F8gY —cTogP +cFody), 5)
kekl

1 : - %% m}F (-)s

subject to

(A,p):1Tg=1"d,Sc-g—Sp-d< f, (6)

(,7):G+rp<g,9+1v <G, )]

(07, p7,p°,pP) : 0 <1y <T7,0 < rp < TP, ®)
forall k € K:
A : 17 (g+dgy —6g8) =17 (d+ m — 0di), ©)
px : Sc.k(g +0gx —gx) — Spx(d+ mi — ddx) < fi,
(10)
(ax, @) : 0 < dg) <y, (11)
(Bx Br) : 0 < dg <7, (12)
(1x,7x) : 0 < 0dp < d + m, (13)

where the objective function (5) is the expected system total
cost, including the base-case bid-in cost as in (1) and the ex-
pectation of re-adjustment costs in all scenarios.! If one gener-
ator’s downward reserve is deployed, its output will decrease,
so will its generation cost. Therefore, there is a negative sign
before the term (cTégP ) in (5). Constraints (6)-(8) are base-case
constraints in the same form as (2)-(4) in model (I), except for
the shift factor matrices used in network constraints. The two
matrices, S and Sp, are shift factor matrices associated with
generators and loads, respectively. Constraints (9)-(10) are the
energy balancing constraints and transmission capacity limits
in all non-base scenarios. Note that transmission capacities in
non-base scenarios fr may not be the same as the base-case
f- The impact of line outages on network topology is reflected
in Sgx and Sp i compared with the base-case S¢ and Sp.
Constraints (11)-(12) indicate that the procured reserve will be
modelled as the maximum range of generation re-dispatches in
all scenarios. In constraints (9)-(10) and (13), 7 is the vector
of load fluctuation parameter in non-base scenario k forecast by
the SO. Therefore, constraint (13) represents that load shedding
in each scenario & must be non-negative and cannot exceed load
power d + 7 in that scenario.”

In some market implementations, the one-step ramping con-
straint from the previous dispatch set point is considered as
g°F —7p < g < ¢5F + 717, where ¢5F represent actual gener-
ator outputs at the last interval from state estimation, and 77, T
are the maximum upward and downward ramping rates of gen-
erators [31]. Note that this constraint can be easily incorporated
into the generation capacity limit (7).

The proposed co-optimization model (II) is a standard linear
programming. In this paper, we do not go into its detailed
solution method, except mentioning that some distributed op-
timization techniques can be employed to solve it efficiently,
see [32], [33].

!t should be noted that coefficients € and ¢ in re-adjustment costs respectively
represent the true marginal cost of upward re-dispatch and the true marginal cost
reduce of generation downward re-dispatch. In some papers e.g. [23], € and c are
set as the energy bid-in prices cg. In this paper, in case some generators may incur
extra costs for fast ramping, we set T and c as independent coefficients from c,.
Note that no matter how we set these two coefficients, all the qualitative analyses
in this paper will always hold.

2We assume that d;. and d + 7, are non-negative. If they are negative for
some resources in scenario k, it means that these resources are uncontrollable re-
newable generations and dd}. represents renewable curtailment. To consider this,
we only need to add one more constraint d+ 3, < ddj <0 and one associated
dual variable, and all the qualitative analyses will still hold.
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Moreover, from the proposed model (II) we can derive
marginal prices of energy and reserve, and design the associated
market settlement process, as in the next section.

ITI. PRICING AND SETTLEMENT
A. Energy and Reserve Prices

The proposed pricing approach for energy and reserve is
based on their marginal contributions to the expected system
total cost in (5). Namely, consider any generator j, we first fix
9(j), 7o (j),7p(j) at their optimal values g*(7), 5, (), 7 ()
and consider them as parameters instead of decision variables.
Such a modified model is referred to as model (III)

minimize; Faloa);

where z_; represent all the decision variables of model (II)
except for g(j),7v(7) and rp(s7), F_;(-) is the overall cost
excluding the bid-in cost of generator 7, and A_; are constraints
(6)-(13) excluding the 4" row of all the constraints in (7)~(8),
which are the internal constraints of generator j. Subsequently,
we evaluate the sensitivity of the optimal objective function
of model (II) F_;(z* ;), which represents the sensitivity of
the expected cost of all other market participants except for
generator j, with respect to parameters g(7), 7 (7) and rp(7).
According to the envelope theorem, the marginal energy price
of generator j is

.\ OF_j(zX;)
)=~ dg(7)
=1 —Sg(-,m;) T + Z{li — Sex(-m;)Tur)
ke
= wo(my) + ) wk(my), (14)
kek

where m is the index of the bus where generator j is located. The
term (A* — Sg(-, m;)Tp*), denoted by wy(m;), corresponds to
the base-case contribution to the energy prices of generators. The
term (A} — Sg x (-, m;)Tu}), denoted by wi(m;), corresponds
to the contribution to the generator energy prices of scenario k.
They both follow the same form as the standard LMP, as the sum
of an energy component and a congestion component.

Similarly, the energy marginal price of load [ is

g (x>,
1) =2 =Sl

5 E Z(A; —SD__:;(-; mI)Tﬂ; _?k(t))

kek

= wo(my) + Y wi(mi) — Y _7i(D),

kek kek

(15)

which is consistent with the generator energy marginal price
in (14) except for the last term (—» 7x(l)). Here } 75(I)
are the multipliers associated with the upper bound limits of
load shedding in (13). 7(I) is non-zero only if load [ will be
totally shed in scenario k. If a load is completely shed for a
particular customer whereas other loads are not, then in fact these
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consumers have different reliability priorities. In other words,
electricity is no longer a homogeneous good for all customers.
Such cases rarely happen in general.

Although the energy prices of generators and loads are defined
separately in (14) and (15) at the resource level, the property of
locational uniform pricing can be established for energy with an
additional condition as follows:

Theorem 1 (Locational Uniform Pricing for Energy): Con-
sider any two generators i, j and any load [ at the same bus,
i.e., m;=m;=m,. Under assumptions (i)-(v) and that ) 7 (I)
is zero in (15), they have the same energy price, i.e., n9(i)=
n°(3)=n"(D).

Furthermore, for the upward reserve marginal price, accord-
ing to the envelop theorem, there is

vy () o~
n (J) = BG) =Y @)

kek

(16)

From (16) we can see that for each generator j, if its upward
generation re-dispatch reaches its procured reserve in scenario
k,ie.,dgf (j)=rv(j), thenthe corresponding multiplier &z * (5)
may be positive and contribute to its upward reserve marginal
price Y (7). The upward reserve marginal price in (16) is dis-
criminatory because reserve capacities procured from different
generators at the same bus may not be homogeneous good due
to their possible different re-dispatch prices.
Similarly, the downward reserve marginal price is
7°() =Y Bk (3),

kek

a7

which is also discriminatory.
Based on the proposed pricing approach, the market settle-
ment process will be presented in the next subsection.

B. Market Settlement Process

The proposed settlement process includes two stages: in the
ex-ante stage, without knowing which scenario will happen,
we solve the co-optimization problem (II) to guard against all
possible non-base scenarios; and in the ex-post stage, with the
realization of one specific scenario, re-adjustment strategies will
be deployed according to the results from model (II), and the
ex-post settlement depends on the realized scenario.

1) Ex-Ante Stage: Settlement in the ex-ante stage includes
the following credits and payments:

* Base-case contribution to generator j’s energy credit:

T§(5) = wo(m;)g(5); (18)

* Non-base contributions to generator j’s energy credit:

D TR6) =) wil(my)g(); (19)
kek kek
* Base-case contribution to load I’s energy payment:
T3(1) = wo(m)d(l); (20)
* Non-base contributions to load I’s energy payment:
YT = w(m)d(D); @1

kck kekl
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e Load [’s fluctuation payment, assuming » 7% ([) to be zero

in (15):

OF_;(z
Sro=% o) = S wntmym ),
kek ks

(22)

which is contributed from its possible load fluctuations in
all non-base scenarios;
® generator j’s upward and downward reserve credit:

IYG) =" G)rv(G) =) @& G)ru(G) = Y TR ().

kek kek

(23)

I2() = 1PG)yro() =Y Bx G)ro(i) =D TPG)-
kek kek

(24)

Remark 1: The co-optimization model (II) is proposed to
guard against all possible non-base scenarios. Although only
one scenario will be realized, other ones have also contributed to
the cost of procuring reserve. How to properly distribute the cost
of guarding against scenarios that do not actually materialize is
thus a key issue. In the proposed settlement process, consumers
pay for their possible fluctuations in all non-base scenarios as in
(22).

An alternative is letting consumers pay only for their actual
fluctuations in the realized scenario. In this case, the fluctuation
payment is ex-post and formulated as

k() = 7k(1),

and the SO will afford the cost of other hypothetical scenarios.
As shown in [23] and in this paper, both approaches can achieve
the revenue adequacy for the SO in expectation. However, we
argue that load payments and the merchandise surplus of the SO
are much more volatile in the approach in (25). The reason is
that the reserve cost in the co-optimization model (II) mainly
comes from some severe but rare scenarios. In most cases where
these extreme scenarios are not realized, the load payment will
be relatively low, and the net revenue of the SO will be negative.
However, if one of the extreme scenarios happens, load payment
will increase significantly, leading to large amounts of the SO’s
net revenue that can offset negative values in normal scenarios.
Such drastic increases in load payment under rare but extreme
scenarios, however, are sometimes unacceptable, as in the Texas
power crisis in early 2021. This is an important reason for us
to adopt the ex-ante settlement for possible load fluctuations.
Simulations in Section VI also verify our intuitions above.

2) Ex-Post Stage: In this stage, if the base case happens, no
adjustment is needed. Otherwise, assume non-base scenario k
happens, then the generation re-dispatch of each generator j will
be either dgY (7) or g () and will be settled with re-dispatch
prices T and ¢. Load shedding will be settled with shedding
prices cr,. Therefore, the ex-post stage includes the following
payments:

® upward re-dispatch credit:

oY (4) =<(4)dgk (3);

L‘ (1) (25)

(26)

® downward re-dispatch pay-back:

&% (7) = —c(i)dgr’ (3); @7)
* load shedding compensation:
(1) = cr (1)ddy (). (28)

It should be noted that with the above settlement mecha-
nism, the realized generation re-dispatch will be settled with
re-dispatch prices in (5) instead of energy marginal prices, which
makes the ex-post settlement pay-as-bid. This is quite different
from current reserve market practice, where the realized genera-
tion re-dispatch will be settled at the real-time energy prices plus
some premiums or adders, e.g., in ERCOT [34]. The problem
with these re-dispatch settlements is the false opportunity cost
payment. Namely, when one generator’s reserve is procured, its
reserve marginal price already includes its opportunity cost in
the energy market. However, if its procured reserve is deployed
as generation re-dispatch in real-time operation, this generator
will still receive energy credit for its re-dispatch under these
re-dispatch settlements. This double-compensation problem has
been mentioned by CAISO in one of its official document [35],
and it can be properly addressed by adopting the proposed
pay-as-bid re-dispatch settlement.

With the proposed model, the pricing approach and the set-
tlement process, some attractive properties can be established,
as in the next section.

IV. PROPERTIES

In this section, we investigate several key properties of the
proposed co-optimization and pricing scheme: proportional uni-
form pricing for re-dispatch, individual rationality, cost recovery
for generators for each scenario, and revenue adequacy for the
system operator in expectation.

A. Proportional Uniform Pricing for Re-Dispatch

In the proposed settlement process, the revenue of a generator
consists of three parts: (i) the ex-ante energy credit in (18) and
(19), (ii) the ex-ante upward reserve credit in (23) and downward
reserve credit in (24), and (iii) the ex-post upward re-dispatch
credit in (26) and downward re-dispatch pay-back in (27). With
Theorem 1 in Section III, the property of locational uniform
pricing has been established for the generator energy credit.
Next we consider establishing this property for the second and
third part of generator credit as a whole. For simplicity, we
only analyze the upward reserve and re-dispatch credit in this
subsection, and the analysis can be easily applied to downward
reserve and re-dispatch.

Note that the generator reserve revenue in (23) and the expec-
tation of the generator re-dispatch credit in (26) can be written
in a scenario-wise form as follows:

D TR0G) +e® () =) T{ ().

kek kek

(29)

Each term IIY (j) in (29) can be interpreted as the fractional
contribution of scenario & to the reserve and expected re-dispatch
revenue of generator j. Next, we show that such fractional
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revenues of different generators in the same scenario k are
proportional to their re-dispatch quantities, which are referred
to as the proportional locational uniform pricing property in this
paper:

Theorem 2 (Proportional Uniform Pricing for Re-dispatch):
For any given scenario k, consider any two generators
1,7 at the same bus. Under assumptions (i)-(v) and that

b9 (i), 69 (3) > 0.
myG) _ IY() _
dgy (i) dgy (4)

Please check the Appendix A for the proof. Note that neither
the reserve revenue in (23) nor the re-dispatch creditin (26) alone
has a similar uniform pricing property. Essentially, the property
of uniform pricing is a result of “the law of one price”: Under
certain conditions, identical goods should have the same price.

However, reserve procured from different generators at the same

bus may not be identical due to their different re-dispatch costs.

Such a property is only true if we consider the entire re-dispatch

process (23) and (26) as a whole.

wi(m;) = wi(m;),VE e K. (30)

B. Cost Recovery

We review properties of market participants in the proposed
co-optimization model and pricing mechanism. First, we estab-
lish the property of individual rationality as the following:

Theorem 3 (Individual Rationality): Under assumptions (i)-
(v) and that the lower bound of each generator’s energy output
G is zero, consider any generator j. We assume that its procured
quantities of energy and reserve (g*(j), 77, (7), 7 (7)) are solved
from model (II) and its settlement prices for energy and reserve
(n(5),n” (5),n"(4)) are calculated by (14), (16) and (17),
respectively. Then

9" (@) rv () ()

= argmax
{9(7).rv (7),rp(5)}

where
F{Y (g(G) ru(G)p(5)) = n°(3)9(3)+n"G)ruv (4)
+n5)rp(5) —cg(4)9(5)

—cy(F)rv(5) — en(F)rp(5)-
(32)

{F]V (9} ru () rp(G)I(7), (8)}, (B1)

In other words, if generator ; were able to freely ad-
just its supply of energy and reserve with given prices
(n9(4),n" (), 7 (5))- then the solution (" (3), 73, (). 7 (4))
to the co-optimization model (II) would have been maximized
its profit.

Please check the Appendix B for the proof. Although Theorem
3 is established for the ex-ante stage only, it is still valid consid-
ering the ex-post stage. This is because the ex-post settlement is
true-cost based and will not affect the profit of generators.

A natural corollary of Theorem 3 is the property of cost
recovery for generators:

Corollary 1 (Cost Recovery): Under assumptions (i)-(v) and
that the lower bound of each generator’s energy output G is
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zero, with the realization of any scenario, the total credit of any
generator j is no less than its total bid-in cost of energy, reserve,
and re-dispatch, i.e.,

7 (4)9(3)+n"(3)rv () +n"G)rp(5)
> ¢4(7)9(3)+cu(9)ru(3)+ep(d)rpld)-

The properties of individual rationality and cost recovery
for generators are established from the perspective of market
participants. Next we will take the system operator’s point of
view and establish the revenue adequacy property.

(33)

C. Revenue Adequacy

For the SO, its total congestion rent A from the proposed
model (II) is the sum of the contribution Ag from the base case
and the contributions ) . _ - A from all non-base scenarios. Ag
and Ay, are calculated by the following equations:

A0 — f & *1
Ak = fr iy
For the proposed settlement process, the following property
regarding the SO’s revenue adequacy can be established:
Theorem 4 (Revenue Adequacy): Under assumptions (i)-(v)
and that ) 74 (I) is zero in (15), in expectation, total load
payment is equal to the sum of total generator credit and total
congestion rent A.
Moreover, the property of revenue adequacy can be decom-
posed scenario-wise. Namely, the base-case load energy pay-

ment (20) is equal to the sum of the base-case generator energy
credit (18) and the base-case congestion rent (34):

17T§ =17T§ + Ao.

(34)
(35)

(36)

And for each non-base scenario k, the sum of its contribution to
load payment 1T(T'¢+T'T) in (21)~(22) is equal to the sum of its
contribution to generator ex-ante energy credit 1 TT'] in (19) and
reserve credit 1 T(T'Y +T'2) in (23)-(24), the expected generator
ex-post re-dispatch payment 17 (e, ®Y + €, ®7) in (26)-(27), the
expected load shedding compensation 1T (e, ®¢) in (28), and the
congestion rent Ay in (35):

1T(TE+T%)

= 1T (T{+TY +TP +ex®) +ex®p +exdP)+Ar, VE € K.
(37

Please refer to the Appendix C for the proof. With (37), it can
be observed that in expectation, ex-ante reserve procurement
cost and ex-post re-adjustment cost are allocated scenario-wise
to loads based on their load fluctuation severity.

V. DISCUSSIONS

In this section, we revisit all assumptions and discuss their
implications, as well as some extensions.

In assumption (i), we assume that a shift factor-based lossless
DCOPF model with linear cost functions for energy and reserve
is adopted. This assumption is standard and is consistent with
the current electricity market design.
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In assumption (ii), we assume that a single-period problem
is considered for simplicity, whereas practical reserve markets
may follow a multi-period setting. It should be noted that the
proposed single-period model (II) can be easily extended into a
one-shot multi-period model by incorporating the inter-temporal
ramping constraints between sequential intervals, and such ex-
tension is formulated in the Appendix D. Namely, consider any
generator j, assume that at period ¢ — 1, its energy procurement
is g;—1 and its upward reserve procurement is 7y ;3. During
the transition from period ¢ — 1 to period £, generator j not
only needs to ramp up its output from g; _; to g;, it also needs
to keep part of its ramping rate for the provision of upward
reserve ;1. Therefore, the sum of its upward ramping from
period t — 1 to period  (g; — g;_1) and its procured upward
reserve at period ¢ —1 ry;—; cannot exceed the maximum
upward ramping rate between sequential periods AgY, i.e.,
gt — gt-1 + Tv,t—1 < AgV as in (76). Similarly, for downward
reserve and ramping, we have —g; +g: 1 +7p1 < AgP in
(77). At the same time, we have also developed a multi-period
extension of the proposed pricing approach and settlement pro-
cess, and we have performed simulations of multi-period system
operation, see [36]. Moreover, note that the biggest challenge
in a multi-period problem is the coupling between reserve and
ramping, which is a highly complicated issue in a look-ahead
rolling-window dispatch, see [37] as an example. Since the main
purpose of this paper is to focus on the reserve issue, we will
leave the multi-period rolling-window dispatch problem to our
future works.

In assumption (iii), we assume that renewable generations
are modelled as negative loads. In essence, we assume that the
system always accommodates all renewable energy available in
the ex-ante energy procurement. Consequently, renewable gen-
erators will have the same effects as loads from the perspective of
the co-optimization model (II). In addition, renewables can also
be regarded as reserve resources with stochastic upper bounds,
but this is out of the scope of this paper.

In assumption (iv), we ignore generator outages in non-
base scenarios to establish the property of locational uniform
pricing for energy. If generator outages are considered, the
co-optimization model and prices can be obtained similarly. In
particular, the objective function (5) and base-case constraints
(6)-(8) will remain the same, while non-base constraints (9)-(12)
will be modified as

Aw 1 17 (gk + b9y, — bg7) =17(d + mi — 8dy),

pik  SGx(Gk + 09k — 8g’) — Sp x(d + mk — 0d) < fx,

(38)

(39)
(ax, @) : 0 < dg < Tyk, (40)
(Bk,Br) : 0 < 8gP <Tppy, 1)

where gk, Tv .k, T D, are the vectors of available generations and
reserve capacities in scenario k considering possible generator
outages in that scenario. With these modifications, the proposed
co-optimization can efficiently model generator outages and
optimally procure reserve to guard against them.

Moreover, considering the pricing in this case, for generator
j. its energy and reserve prices in (14) and (16)-(17) will be
modified as

N BF—J(I*—J) _ A%k T *
7 (j) = e A =Sc(-,m;) p
+ Y (Ai—Scx(-m;) ur)
ke, jEQ
=wo()+ Y, wk(d), 42)
ke, jEQk
Uy - :_BF_J(I*—J) . —_— - 43
n (3) B0 keém ax (5), (43)
. OF () e
nP() = ———=L = Be (4), (44
500) et

where (). is the set of generators that are shut down in scenario
k. Compared with the original pricing formulations in (14)
and (16)-(17), it can be observed that if generator j is shut
down in scenario k, then this scenario should be excluded from
the calculation of its energy and reserve prices, indicating the
complicated issue of non-uniform pricing brought by generator
outages. Namely, considering generators at the same bus but
with different outage probabilities, they will receive different
energy marginal prices because their generations are no longer
homogeneous goods. Similarly, reserve capacities from these
generators are not homogeneous goods either even if they have
the same re-dispatch price. These complicated issues cannot be
fully addressed as a part of this paper, therefore more efforts will
be made to them in our future studies.

In assumption (v), we assume that the probability of each
scenario is a given parameter, and we did not address how
such a parameter can be estimated and the costs of inaccurate
parameter estimation in our paper. This is a difficult problem
in general for all scenario-based approaches. We provide an
empirical evaluation of the impact of unforeseen scenarios with
the outage of the biggest online generator and some load fluctua-
tions. In particular, we study the relationship between the system
regret cost and the occurrence probabilities of these unforeseen
scenarios. The detailed result is presented in Section VI.B.

Some discussions on the absence of unit commitment are
also in order. The proposed co-optimization model and the
associated pricing approach apply primarily to the real-time
(or near real-time) electricity markets (See Fig. 1), where unit
commitment (UC) is rarely used. Therefore, we consider an
economic dispatch (ED) problem with fixed UC decisions in this
paper. This is also in line with many electricity market practices
in the U.S. For example, as shown in Fig. 1, the reserve market
in PJM consists of several real-time or near real-time look-ahead
ED modules, while UC decisions in PJM are determined in the
day-ahead market clearing [38].

VI. CASE STUDY

Case studies were performed both on a 2-bus system and
modified IEEE 118-bus system. Note that for all simulations

Authorized licensed use limited to: Comell University Library. Downloaded on July 29,2024 at 22:11:27 UTC from IEEE Xplore. Restnctions apply.



418

Bk
Gl @ ——» 12
1 2
Ll < L~ 63
— L3
Fig.2. One-Line Diagram of the 2-Bus System.

TABLEII
GENERATOR PARAMETERS OF THE 2-BUS CASE

Generator  G/G  7Tg/TD  co/cu/ep
Gl 16/0 4/ 8/2/2
G2 18/0 4/4 15/2/2
G3 12/0  4/4  20/25/25

TABLE III

NON-BASE SCENARIOS FOR THE 2-BUS CASE

NO. Line outage Load Probability
1 Yes (6,15.4) 0.06

213 Yes (8,21,3)(9,17,1)  0.02/0.02

4/5 No (8,21,3)/(9,17,1)  0.18/0.18

TABLE IV
CLEARING RESULTS AND PRICES OF THE 2-BUS CASE

Generator g Ty TD n? e
Gl 80 24 08 80 20 20
G2 164 16 00 200 7.0 20
G3 06 40 04 200 60 25

in this section, we set re-dispatch prices € and c as the energy
bid-in prices ¢4, and we have quantities in MW and prices in
$/MWh. For simplicity, the units are omitted hereafter.

A. Two-Bus System

First, a simple 2-bus system was adopted to illustrate the
proposed co-optimization and pricing mechanism, as well as
properties thereof. The one-line diagram was presented in Fig. 2.
There were two parallel and identical transmission lines, each
with a capacity of IMW. For non-base scenarios, one of the
two parallel lines may be cut off. In addition, in non-base
scenarios, the power flow limit on each transmission line was
set as 1.2MW. Furthermore, generator parameters of this 2-bus
case were presented in Table I1, and the base load vector for L1,
L2 and L3 was (6,15.4)MW. Moreover, all possible non-base
scenarios for this 2-bus case were given in Table III, and the
probability of the base case happening was 1 -5 ¢, =0.54.

Market clearing results and prices of the 2-bus case with the
proposed model (II) were presented in Table IV. For cleared
quantities, note that although G1 offers the cheapest upward
reserve and still has extra generation capacity and ramping rate,
the SO does not clear G1’s entire upward reserve. Instead, the
more expensive upward reserve resources G2 and G3 are cleared.
The reason is that the extra upward reserve from G1 will not be
deliverable in scenarios with line outages. In addition, from the
5th column of Table IV, it can be confirmed that the energy
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Optimal Reserve Provision of G2
under Different Reserve Prices
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Fig.3. Optimal Upward Reserve Provision of G2 with respect to the Increasing
Upward Reserve Price from the SO.

prices are locational uniform. Furthermore, from the 62" — 7t"
columns it can be observed that G2 receives a higher upward
reserve price but a lower downward reserve price compared with
G3 because G2’s upward and downward re-dispatch prices €, ¢
are both lower.

Different from the proposed discriminative reserve pricing,
in [27], while the energy pricing approach is the same as the pro-
posed one in (14), a locational uniform reserve pricing approach
is adopted. Specifically, in [27], the reserve clearing price of all
generators at bus m; is set as ), wi(m;), where wg(m;)
is the contribution to the generator energy prices of scenario k
as in (14). With such a pricing formulation, the upward reserve
price of G2 is 12.7 $/MWh. To compare these two different
reserve pricing methods, in this toy example, we consider the
individual rationality problem of G2, whose generation upper
bound constraint is binding: with different reserve price signals
from the SO, the optimal reserve provision of G2 can also be
different. In that sense, we inputted different reserve prices into
the profit maximization model of G2 presented in (31)-(32) to
calculate the optimal reserve provision of G2, and we presented
the optimal reserve provision of G2 as the red curve in Fig. 3.
In addition, in Fig. 3, G2’s reserve clearing price-quantity pair
under the proposed reserve pricing approach was presented
by the black spot, and its reserve clearing price-quantity pair
under the locational uniform reserve pricing approach in [27]
was presented by the blue spot. The overall trend of the red
curve is upward because, with a higher reserve price, G2 is
willing to provide more upward reserve. In addition, it can
be observed that the black dot lies on the red curve, meaning
that under the proposed reserve pricing approach, the reserve
clearing quantity can maximize G2’s profit. On the contrary,
the blue dot is not on the red curve, meaning that under the
locational uniform reserve pricing in [27], the reserve clearing
quantity cannot maximize G2’s profit. This small case validates
the advantage of the proposed reserve pricing approach over the
existing locational uniform reserve pricing approach.

Moreover, the proportional locational uniform pricing prop-
erty for re-dispatch was illustrated in Table V. We have

5g¥ (2),0gY (3) > 0 for G2 and G3 in scenarios 2 and 4, and
: . n(2) _ ml(3) _
in these two scenarios we have Ty%m_é_g?ﬁ =wg(ma)=

wg(m3), validating Theorem 2.
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TABLEV
PROPORTIONAL LOCATIONAL UNIFORM PRICING FOR RE-DISPATCH IN THE
2-Bus CASE
; ny
Scenario  Generator  dgY ny a% wi
i
Scenario 2 G2 1.60 1.92 1.20 1.20
G3 4.00 4.80 1.20 1.20
e, G2 1.60 17.08 8.80 880
G3 400 3520 880 8.80
TABLE VI

MONEY FLOW IN THE 2-BuUs CASE(S)

Base S1 S2 S3 S4 S5 Total
Y 4820 80 238 6.7 1874 374 7452
r~ 0 0 7.5 0.2 59.5 3.0 70.2
TY 4760 32 217 64 1765 374 7212
v 0 0 46 0 35.2 0.1 40.0
ro 0 1.7 0 0.1 0 0.8 2.6
edV 0 1.1 2.3 0.4 22.2 35 29.5
edD 0 -08 -01 -02 0 -14 =25
ed? 0 0 14 0 0 0 14
A 6.0 2.9 1.2 0.2 13.0 0 23.3

Furthermore, with the realization of any non-base scenario,
profits of G1, G2 and G3 are $101.60, $298.28, $21.62, respec-
tively, which confirms the property of cost recovery. In addition,
in Table VI, the money flow in this 2-bus case was presented.
We can see that in expectation, payments from loads, credits
to generators and congestion rent can reach their balance for
the base case as in the 2"% column, for each scenario as in the
3r¢ — 7th columns, and in total as in the last column, validating
the property of revenue adequacy.

B. IEEE 118-Bus System

Simulations on modified IEEE 118-bus system were also
recorded. The transmission capacities were modified as 1.5 times
of the DCOPF results of the original IEEE 118-bus system. In
addition, transmission capacities that were smaller than 10MW
would be set as 10MW. In non-base scenarios, power flow limits
on transmission lines were set as 1.3 times of the base-case
values. The generation cost of each generator was modified as a
linear term, and its upward and downward reserve bid-in prices
were both set as 1/5 of its energy bid-in price. Moreover, the
upward and downward ramping rates of each generator were
both set as 0.1 times of its generation capacity upper bound. In
addition, the original load 59 was equally separated into two
loads: new load 59 and load 119. Furthermore, minor modifica-
tions were also applied to some load capacities. We uploaded
our Matlab case file onto Github as in [39]. In addition, all
possible non-base scenarios in this case were given in Table VIL.
In this subsection, in-sample tests were performed based on the
in-sample scenarios in Table VII to illustrate properties of the
proposed co-optimization and pricing. We also performed the
out-of-sample test with some additional settings.

InFig. 4, with the Monte Carlo Simulation, the average system
cost of the proposed model was compared with that of the
traditional model under different reserve requirement settings,
with the following steps:

TABLE VII
NON-BASE SCENARIOS FOR THE 118-BUS CASE

NO. Outage Load Situation Probability
1 No outage  d119 1 by 3%, others | by 3% 0.07
2 No outage  d119 | by 3%, others T by 3% 0.07
3 Line 21 d119 1 by 3%, others | by 3% 0.01
4 Line 21 d119 | by 3%, others 1 by 3% 0.01
5 Line 21 basic load 0.08
6 Line 55 d119 1 by 3%, others | by 3% 0.01
7 Line 55 d119 | by 3%, others 1 by 3% 0.01
8 Line 55 basic load 0.08
9 Line 102 d119 | by 3%, others T by 3% 0.01
10 Line 102 d119 | by 3%, others 1 by 3% 0.01
11 Line 102 basic load 0.08

%10° Average System Cost

25 : - ]
2b i ! ]

The proposed model

@ The traditional model
15[ g
1k c
o 284 6 5 10 12 14 16 18

the Ratio of Reserve Requirement to Total Load %

Fig. 4. Average system costs from the proposed model (blue) and the tradi-
tional model under different reserve requirement settings (red).

(i) We selected different reserve requirements as different
ratios of the system total load for the traditional model;

(ii) We calculated the energy and reserve clearing results and
base-case procurement costs of the modified 118-bus case with
the traditional model under these different reserve requirement
settings from step (i);

(iii) We generated 50000 Monte Carlo Samples based on the
occurrence probabilities of non-base scenarios in Table VII;

(iv) We calculated the average re-adjustment costs of the
traditional model under different reserve requirement settings
in all Monte Carlo Samples. If the re-adjustment problem was
infeasible in one Monte Carlo Sample, then the re-adjustment
cost was set as 200000, whereas the expected system total cost
from the proposed model (II) was 89651.6 in this case.

(v) We obtained the average system costs of the traditional
model under different reserve requirement settings by adding
the base-case procurement costs from step (ii) to the average re-
adjustment costs from step (iv), and presented them in Fig. 4 as
the red curve. Note that with the increasing reserve requirement,
the red curve first goes down because of the decreasing load
shedding cost, and it then goes up because of the increasing
reserve procurement cost.

(vi) We repeated steps (ii)-(v) for the proposed model (II) and
presented the average system cost of the proposed model in Fig. 4
as the blue curve. The overall upward and downward reserve
procurement of the modified 118-bus case with the proposed
model 177}, and 177}, were both about 3% of system total
load, indicated by an arrow in Fig. 4. We can observe that the
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Fig.5. (a) Price of G7's upward reserve ry7(7) with respect to the increasing
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Fig.6. (a)Fluctuation payment from d59 (blue) and fluctuation credit to d119
(red) with respect to the increasing fluctuation level of d59; (b) Fluctuation
payment from d59 (blue) and fluctuation credit to d119 (red) with respect to the
increasing fluctuation level of d119.

proposed model could reduce reserve procurement and reduce
the average system cost by 10.99%-68.14% in this test compared
with the traditional model.

In addition, in Fig. 5, the relationships between reserve
marginal prices and re-dispatch prices were presented. In
Fig. 5(a), with the increasing upward re-dispatch price of G7,
the upward reserve price of G7 decreases. At the same time,
In Fig. 5(b), with the increasing downward re-dispatch price of
G8, the downward reserve price of G8 increases because of the
negative sign before the term ¢ §g/” in (5).

In addition, from Table VII, it can be observed that in non-base
scenarios with load fluctuations, the fluctuation levels of all loads
are 3%. We fixed the fluctuation levels of all other loads except
for d59 and d119, and showed how the fluctuation payment
from d59 and the fluctuation credit to d119 (the opposite of
the fluctuation payment from d119) in (22) change with the
increasing fluctuation level of d59 in Fig. 6(a), and how they
change with the increasing fluctuation level of d119 in Fig. 6(b),
where the blue curve represents the fluctuation payment from
d59, and the red curve represents the fluctuation credit to d119.
In both Fig. 6(a) and Fig. 6(b), the fluctuation credit to d119
is always positive because d119’s fluctuation can offset the
fluctuations of other loads in non-base scenarios as shown in
Table VII. In Fig. 6(a), with the rising fluctuation level of d59,
both the fluctuation payment from d59 and the fluctuation credit
to d119 increase: For d59, its rising fluctuation level brings
in more uncertainties to the system; At the same time, for
d119, considering the increasing uncertainty brought by d59,
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Fig. 7. (a) Fluctuation payment from loads in much Monte Carlo Samples

under the ex-ante scheme (blue) and the ex-post scheme (red); (b) Net revenue
of the SO in much Monte Carlo Samples under the ex-ante scheme (blue) and the
ex-post scheme (red): (c) Average accumulated net revenue of the SO in much
Monte Carlo Samples under the ex-ante scheme (blue) and the ex-post scheme
(red).

the value of its possible load fluctuation has become higher, so
the fluctuation credit to d119 increases. In Fig. 6(b), while the
fluctuation credit to d119 increases with its rising fluctuation
level because its rising fluctuation level can enhance the offset,
note that the fluctuation payment from d59 decreases because
the rising fluctuation level of d119 can reduce the impact of
d59’s fluctuation on system balance.

Furthermore, to validate what we have discussed in Remark
1, the fluctuation payment from loads and the net revenue of the
SO under the ex-ante scheme in (22) were compared with that
under the ex-post scheme in (25), with the following steps:

(i) We generated 500 Monte Carlo Samples based on the
occurrence probabilities of non-base scenarios in Table VII;

(ii) We calculated the fluctuation payment in each Monte
Carlo Sample under the ex-post scheme, and presented it with
the red curve in Fig. 7(a). At the same time, under the ex-ante
scheme, the fluctuation payment is fixed at $1081.67 in all
Monte Carlo Samples, and we presented it with the blue curve
in Fig. 7(a);

(iii) We calculated the net revenue of the SO in each Monte
Carlo Sample under the ex-post scheme, and we presented it with
the red curve in Fig. 7(b). At the same time, under the ex-ante
scheme, we calculated the net revenue of the SO in each Monte
Carlo Sample and presented it with the blue curve in Fig. 7(b);

(iv) We calculated the average accumulated net revenue of
the SO under the ex-post scheme among different numbers of
Monte Carlo samples from 1, 2.... to 500, and we presented
it with the red curve in Fig. 7(c). At the same time, under
the ex-ante scheme, we calculated the average accumulated
net revenue of the SO and presented it with the blue curve in
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Fig. 8. Average System Regret Cost with respect to the Increasing Occur-
rence Probabilities of Unforeseen Non-base Scenarios (Increasing Value of
Coefficient x).

Fig. 7(c). It can be observed that under the ex-ante scheme,
the fluctuation payment from loads is fixed at $1081.67. On
the contrary, under the ex-post scheme, the fluctuation payment
from loads is extremely high in some Monte Carlo Samples
where one of the extreme scenario happens. For example, in
the 151 Monte Carlo Sample, the fluctuation payment under
the ex-post scheme is $43178.64, which is about 40 times as
much as the fluctuation payment under the ex-ante scheme. This
reveals the financial risk of consumers under the ex-post scheme.
In addition, from Fig. 7(b), it can be observed that under the
ex-ante scheme, the net revenue of the SO is very closed to
zero in most Monte Carlo Samples. On the contrary, under the
ex-post scheme, the net revenue of the SO is negative in most
Monte Carlo Samples. In those Monte Carlo Samples where one
of the extreme scenario happens and the fluctuation payment is
large, the SO earns much money. This reveals the financial risk
of the SO under the ex-post scheme. Moreover, from Fig. 7(c).
it can be observed that with the increasing number of Monte
Carlo Samples, the average accumulated net revenue of the SO
converges to 0 under both the ex-ante scheme and the ex-post
scheme, but the convergence speed under the ex-ante scheme is
faster.

Furthermore, considering more numbers of Monte Carlo sam-
ples, i.e., 50000, the average accumulated net revenue of the SO
under the ex-ante scheme is $6.00, which is extremely small
considering the expected system total cost of this modified
118-bus case $89648.5. Therefore, we can further confirm the
property of revenue adequacy.

On top of that, to make the proposed method more general,
here we relaxed assumption (v) and tested the system regret
cost of the proposed model (II) with imperfect probability fore-
casts. Namely, we assumed there were 2 unforeseen non-base
scenarios with the outage of the biggest online generator G30:
unforeseen non-base scenario I with the outage of G30 and the
base load; unforeseen non-base scenario II with the outage of
G30 and all loads increased by 2%. The occurrence probabilities
of unforeseen scenarios I and I1 were set as 0.08+x and 0.01xx,
respectively, parameterized by a non-negative coefficient x: zero
value of x means that the forecast of non-base scenarios is
accurate, while a positive value of x means that the forecast
deviates from the true probability information. And a higher
value of x means that the forecast deviates farther from the true
probability information. In that sense, in Fig. 8, with the Monte

Carlo Simulation, the average system regret costs under different
values of x were calculated, with the following steps:

(i) We selected some different values of x between 0 and 1;

(ii) For each value of x, We generated 5000 Monte Carlo
Samples based on the occurrence probabilities of foreseen non-
base scenarios in Table VII and the occurrence probabilities of
unforeseen scenarios (0.08xx,0.01xx) with given x;

(iii) For each value of x, we calculated the corresponding
average system regret cost as the average system revenue deficit
in corresponding 5000 Monte Carlo Samples;

(iv) We presented the average system regret costs under dif-
ferent values of x in Fig. 8 as the red curve. It can be observed
that when the value of x is 0, the forecast is accurate and the
average system regret cost is very closed to 0. With the increasing
coefficient x, the forecast becomes more inaccurate and the
average system regret cost becomes higher.

In addition to those in-sample tests above, the out-of-sample
test was also performed based on previous publications [25]
and [40]. In this case, instead of adopting the setting of non-base
scenarios in Table VII, we considered possible variations of
six major loads in the system, i.e., d54, d59, d80, d90, d116,
and d119, and we assumed other loads to be constant. With
such settings, load power uncertainty in the system could be
properly approximated by countable scenarios. The forecast
errors of these variational loads were modelled using several
independent Gaussian distributions AV, X). For each of them,
the mean y; of its distribution \/; was set to be 0, and the variance
¥; was set to be 0.01d(l), where d(l) was its base-case load
power. We also considered possible outages of line 21, line 55
and line 102, and we modelled them using several independent
Bernoulli distributions. For each of them, its outage followed an
occurrence probability of 0.1. Then based on above probability
information, we used the Monte Carlo Simulation method to
generate 100000 samples to comprise the entire data pool, and
we divided the set of these samples into two parts. One part
with 90000 samples was considered as in-sample data and was
used to generate 400 representative non-base scenarios to drive
the proposed co-optimization. Another part with the remaining
10000 samples was used for the out-of-sample test.

The out-of-sample test for the system cost was performed viaa
similar process as the in-sample average system cost comparison
between the proposed model (II) and the traditional deterministic
model (I), with the following steps:

(i) We selected different reserve requirements for the tradi-
tional model, and calculated the energy and reserve clearing
results and base-case procurement costs with the traditional
model under different reserve requirement settings;

(ii) We calculated the average re-adjustment costs of the
traditional model under different reserve requirement settings
for all samples in the out-of-sample set. If the re-adjustment
problem was infeasible in any sample, then the re-adjustment
cost for that sample was set as 200000.

(iii) We obtained the average system costs of the traditional
deterministic model under different reserve requirement settings
by adding the base-case procurement costs from step (i) to the
average re-adjustment costs from step (ii), and we presented
them in Fig. 9 as the red curve.
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Fig. 9. Average system costs from the proposed model (blue) and the tradi-
tional model under different reserve requirement settings (red) in out-of-sample
scenarios.

(iv) We calculated the procurement results and base-case
procurement costs with the proposed model based on selected
representative in-sample scenarios. Then we repeated steps (ii)-
(iii) for the proposed model to obtain the average system cost
of the proposed model for all samples in the out-of-sample set,
and we presented the result in Fig. 9 as the blue curve. We can
observe that in the out-of-sample test, the proposed model could
still efficiently reduce the average system cost compared with
the traditional model, similar as the result from the in-sample
test in Fig. 4.

VII. CONCLUSION

Traditional energy-reserve co-optimization highly relies on
empirical reserve zones and zonal reserve requirements. In
this paper, a scenario-oriented energy-reserve co-optimization
model has been developed, considering congestions and re-
adjustment costs of all non-base scenarios. As a result, reserve
resources can be optimally procured system-wide to guard
against possible contingencies and load/renewable fluctuations.

In addition, prices of energy and reserve have been derived
based on their marginal costs/benefits to the joint clearing of
energy and reserve. A key question is that should energy, reserve,
and re-dispatch at the same bus be considered as homogeneous
goods. If they are, under given assumptions, they will be settled
at uniform prices. We have also established properties of cost
recovery for generators and revenue adequacy for the system
operator.

In future studies, more efforts will be made to the coupling of
reserve and ramping in multi-period operation and the modelling
and pricing of generator outages.

APPENDIX A

PROOF OF THEOREM 2 (PROPORTIONAL LOCATIONAL UNIFORM
PRICING FOR RE-DISPATCH)

According to the KKT conditions and ignoring 75 (I). with
the Lagrangian of model (II) denoted as £;7, we have:

oLt

m = exer, (1) —7* () —A5+Sp k(- my) Tpi =0,

(45)
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oL o *
W;Ej) = exe(j)—ax*(5)+ax" (7)) —Ai+Sc,k (-, m;) Tk
- (46)
L
35gPG) <) "B () +he ()i
bRt @)

With dd(1),dgY (7), 097 (j) respectively multiplied to both the
left-hand side and the right-hand side of (45)-(47), combined
with the complementary slackness of (11)-(13) we have:

ALddi (1) = excr(1)ddk(l)

+ Sp k(- mu) Tppdde (1), (48)
@ ()ru(d) = — e(5)dgx (4)

+ (A —Sc.x(-ms)Tpi)og (7),  (49)
B (4)rp(4) = exc(i)daf (4)

+ (Se.x(m;) "ui — A)dgx (3).  (50)

With (49), for generator j we have:

I (5) = @& (§)ru (4) + exT(4)dg (5) = we(m;)dgi (5)-
1

Similarly, for generator 7 we have:

I} (i) = wi(ma)dgy, (i) (52)

In addition, apparently we know that wg(m;) = wi(m;), then
along with (51)-(52), we can prove Theorem 2.

APPENDIX B
PROOF OF THEOREM 3 (INDIVIDUAL RATIONALITY)

We present the Lagrangian of the proposed model (II) in (53).
Furthermore, the Lagrangian of the profit maximization model
(IV) of each generator j is

Lv =—1°(3) x g(4) — 1" (3) x v (5) — n°(4) x rp(j)
+¢q(3) x 9(3) + cv(4) x ru(4) + en(4) x rp(4)
+9(3)(9() +7v(5) —G(5)) +u()(rp (i) —9(5))

+ 07 ()0 —1u(3) + 7 (3) (ru (G) — 7T (3))
+22()(0—rp(3)) + PP(5)(rp(4) — 7B (). (54)

With the formulations of (79(5), 7Y (5), 7P (4)) in (14), (16) and
(17), we can observe that the Lagrangian of model (IV) in (54)
is a part of the Lagrangian of model (II) in (53). Since these two
models are both LP models, according to the KKT conditions
we can conclude that, for each generator j, its optimal energy
and reserve procurement g*(j), 77 (7), 7 (7) solved from model
(II) is also the solution to its profit maximization model (IV),
which proves Theorem 3.
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APPENDIX C
PROOF OF THEOREM 4 (REVENUE ADEQUACY)

To prove revenue adequacy, the phase angle-based form of
the proposed co-optimization model is presented as follows:

(V) : FY (),

—
{g.,rv.rp,8gY bgP 8dx.0,61}
subject to

(7),(8),(11), (12), (13),

A:Ag-g— Ap-d= B#, (55)

p:Fo<f, (56)

forallk € K:

Ay : Ac(g+ gy —dgs’) — Ap(d+ mi — 6dy) = BBk,
(57)

ki Fibe < fi, (58)

where FV(-) represents the objective function of the phase
angle-based model (V), which is the same as F'//(-) in the shift
factor-based model (IT). Az and Ap are matrices that connect
generators and loads with nodes, respectively. Vectors € and 6
are the phase angle vectors in the base case and in scenario k,
respectively. Matrices B and By denote the coefficient matrices
of DC power flow equations in the base case and in scenario &,
respectively. Matrices F" and F}, are the branch-node admittance
matrices in the base case and in scenario k, respectively. With
the equivalence of the shift factor-based model (II) and the phase
angle-based model (V), for loads we have

ADQA =2 - Ly pu1 —Sp', ApAx = AL - Inpua —Sp khixo
(59
and for generators we have

AZA = 3" - Inex1—Sep*, AGAk = A; - Inex1— 56 xhik»

(60)
Where ND and NG are the numbers of loads and generators,
respectively. In addition, we denote the Lagrangian of model
(V) as Ly, with the KKT conditions we have:

QT% = (BO)TA* + (FO)Tu* =0, (61)
oL
"TW: = (Bifx)"Ax + (Fxbk)Tuz = 0. (62)

In addition, for the base case we have:

Ii-T8=(A" - Inpx1—Spp*)Td— (A" - Inex1—Sep’) g

(63)
and (fTp = Ap). To Consider revenue adequacy for the base
case, we have:

(A - Anpx1—Spp*)Td— (A* - Inex1—Sen*)Tg
= (ApA*)Td— (AEA) g
= (A)T(BO) = (FO)Tp* =" . (64)

These four equations are based on equations (59)-(60), the
complementary slackness of (55), equation (61), and the comple-
mentary slackness of (56), respectively. With above equations,
we have

T¢ =T + Ao, (65)

which proves revenue adequacy for the base case.
In addition, the congestion rent contributed from any non-base
scenario k (Ax = flug) is:

i Hx = (Fxbk) T i = —(Brbe) " A%
= (ADAL) T (d + mx — 6dx) — (AGAL) ™ (9 + bgy — bgi)
= (A% - InDx1—Sp xii) T (d + mx — i)

— (A% - Inex1—SG& xtiz) T (9 + 09 — 0g)
=(—5p xik) T (d+mk—0di) — (= SG xik) T (9+0gk —09K)
= (—Sp.xri) T (d+mk) + (Sp xmi) "ok + (SGeni) g

+ (SG.xrr)"0gr — (SExpx) " Ogk - (66)

These six equations are based on the complementary slackness
of (58), equation (62), the complementary slackness of (57),
equations (59)-(60), the complementary slackness of (9), and
some reorganizations, respectively. On top of that, with the
complementary slackness of (9) we have:

D 4i(9()+69x (1) —6gx (7)) =D i (d(V) +mk(1)-5dx(1))-
J 1

(67)
Moreover, with equation (48) we have:

Lir() =g+ chru+chro+ Y ex(cd0f — cTogP + cFodi +1 (Y d - Zg) +p(SZg— STd— f)

ke

+0(g+ 10 — G)+u(G+1p — 9)+pY (0 — 1) +p7 (rv —77)+p2(0 — ) +pP(rp — D)+ _ k(0 — gf)

kck

+Za_k(5gf —rg )+ Zlk (Z(d-i-‘n’k = 5dk)—z (9+dgx — 59’;?))+ZE(0 = §dk)+2ﬁ(5dk —d—m)

kek kek

+) Be(0gf —tp)+>_ Be(0—06g0) + > pr(SE 4 ((g+ gy — dg¢) — SP 4 (d+ m — 6di)) — fr)-

kek kck kek

kek kek

(33)
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> A(d(l) + me(l) — ddx(1))
')

=Y (A d(W A mi(l) —excr (5)0dx(D)—Sp k(- mu) " piddi (1)),
')
(68)

which can be reorganized according to (49)-(50) and (67) as

> Ak (d(@) + m(1) — (exer () + Sp k(- ma)Tpi)ddx (1)
1
= A909)
7
=Y (@ (j)rv (i) +ext(3)dgf (5) + Sc k(- m;) T uidgl (5))
Jj

—Z(—E};(j)ro(j)+ekg(j)6g£{j)+Sc,k(-,m;)wgfu)).
' (69)

If we add term (Y,Sp(m)Tup(dl)+m(D)+
> ;Sck(-,m;)"ug(j)) and its opposite to the right-hand
side of (69) and reorganize the equation, we have:

> (%= Sp k(- ma) i) (d(D) + T (1))
i
=Y " (4:90() — Sex(-m;) ura(5))
3
+> @) () + Y Br(@)ro()
J J

+3 " e(3)dg¥ ()= Y enc(i)dgf )+ exer(1)ddi (1)
7 J 1
+= Z Se k(s mj)TPZQU) + Z Sc k(- mj)Tﬂiégf (7)
J i

=" S i(-ms) T urdal (7) + > Spx(-mu) T urddi(l)
k] 1

— Y Spk(ym) T pi(d(l) + mi(D))- (70)
)

The term on the left-hand side of (70) is the contribution of sce-
nario k to load payment, including energy payment (21) and load
fluctuation payment (22). The right-hand side of equation (70)
include the contribution of scenario k to energy credit (19) in the
1% row, its contribution to upward and downward reserve credit
(23)-(24) in the 2™ row, its contribution to expected re-dispatch
payment (26)-(27) and expected load shedding compensation
(28) in the 3™ row, and its contribution to congestion rent in
the 4t"-6'" rows. Therefore, equation (70) can prove revenue
adequacy for any scenario k. Along with revenue adequacy for
the base case in (65), we can prove Theorem 4.
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APPENDIX D

MuLTI-PERIOD EXTENSION OF THE PROPOSED MODEL

FV(9t,70,4,TD 2, 09K 10911, 0. ) @)
— Z(ngt -+ CETU,s +F C}; TDt

teT
+ ) e(€ogr, — c"0gp; + cpody.y))

kek
SO P
subject to forallt € T
i g =14, (72)
Ht - SG?t sl SD,t -d; < ft, (73)
(ve,Tt) :G+7pt < e, Gt +TUe < G, 74)
(o pY. PP, PP) 0 <1y <T5,0<1ps <75, (75
Wigi—gi1+Tre1 < AgY, (76)
W =g+ g1 +71pe1 < Ag”, an

forall k € K:
Ak : 1T (ge + 09k, — 0ge,) =17 (d; + ke — Ody;), (78)

bkt Sc kit (g: +§g.[k{t —59;Et) —Sp kt(de+mr s —0dgt) < fr,

(79)
(o, @rz) : 0 < gk, < T s, (80)
(Br,t»Brt) 1 0 < 8gi: < Tpy, (81)
(Tht, Tier) = 0 < Oy < dip + T, (82)

which gives the multi-period extension of model (II).
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