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Machine learning methods, particularly neural networks trained on large datasets, are
transforming how scientists approach scientific discovery and experimental design.
However, current state-of-the-art neural networks are limited by their uninterpretabil-
ity: Despite their excellent accuracy, they cannot describe how they arrived at their
predictions. Here, using an “interpretable-by-design” approach, we present a neural
network model that provides insights into RNA splicing, a fundamental process in the
transfer of genomic information into functional biochemical products. Although we
designed our model to emphasize interpretability, its predictive accuracy is on par with
state-of-the-art models. To demonstrate the model’s interpretability, we introduce a
visualization that, for any given exon, allows us to trace and quantify the entire decision
process from input sequence to output splicing prediction. Importantly, the model
revealed uncharacterized components of the splicing logic, which we experimentally
validated. This study highlights how interpretable machine learning can advance
scientific discovery.

RNA splicing | interpretable machine learning | artificial intelligence

Machine learning algorithms, in particular neural networks, capture complex quantitative
relationships between input and output. However, as neural networks are typically black
boxes, it is difficult to extract post hoc insights into how they achieve their predictive
success. Furthermore, they easily capture artifacts or biases in the training data, often
fail to generalize beyond the datasets used for training and testing, and do not lead to
insights into the underlying processes (1).

In recent years, neural networks have been used to tackle challenging biological
questions. One outstanding question in genomics is understanding the regulatory logic of
RNA splicing, which plays a critical role in the fundamental transfer of information from
DNA to functional RNA and protein products. Splicing removes introns and ligates exons
together to form mature RNA transcripts. While some canonical sequence features are
necessary for exon definition (splice sites delimiting exons and branch points used during
intron removal), exon definition is also facilitated by exon sequence (2, 3). Despite recent
success using neural networks to predict splicing outcomes (4, 5), understanding how
exon sequence dictates inclusion or skipping remains an open challenge. The challenge is
further underscored by the sensitivity of splicing logic, where almost all single-nucleotide
changes along an exon can lead to dramatic changes in splicing outcomes (6, 7).

To enable scientific progress, machine learning models should not only accurately
predict outcomes but also describe how they arrive at their predictions. Here, we
demonstrate that an “interpretable-by-design” model achieves predictive accuracy with-
out sacrificing interpretability, captures a unifying decision-making logic, and reveals
previously uncharacterized splicing features.

Results

Generating a Synthetic Dataset for InterpretableMachine Learning. As neural network
performance and interpretability are inextricable from the data it is trained on, we began
by generating a large, high-quality synthetic splicing dataset. The use of synthetic datasets
offers several advantages over genomic data used in previous work. First, genomic datasets
are limited by the number of exons in the genome. In contrast, synthetic assays can
dramatically increase the number of data points by orders of magnitude (8, 9). Second,
genomic exons are flanked by varying sequences (splice sites, introns, promoters) that also
participate in splicing decisions (10), greatly complicating attempts at interpretability.
In contrast, synthetic datasets fix all but one variable region, allowing one to focus
on the region of interest. Third, genomic exons contain overlapping RNA codes (e.g.,
protein-coding sequences). In contrast, sequences in synthetic datasets are devoid of
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B

Fig. 1. Data generation and interpretable-by-design machine learning model. (A) All reporters in the assay share the same three-exon design and differ only
in their middle exon, which contains a random 70-nucleotide-long sequence. Depending on its sequence, an exon might be included, skipped, or a probabilistic
mix of the two. Each reporter includes a unique barcode at the end of the third exon so that exon identity can be inferred in exon-skipping products. (B) The
assay includes over 3×105 different reporters. The reporters were transfected into HeLa cells in a pooled fashion in three biological replicates. High-throughput
sequencing then provides a “percent spliced in” (PSI) value to each reporter. (C) The machine learning model consists of both short convolution filters (applied to
exon sequence only) and long convolution filters (applied to both exon sequence and predicted structure). The output of these filters (strength) can depend on
the position along the exon. Half of the filters are designated as inclusion filters, and the rest are skipping filters. Predicted PSI is computed from the difference
between the total strength of inclusion filters and the total strength of skipping filters, after adding an initial basal strength (B).

overlapping codes by design. In summary, from both a quantity
and quality perspective, synthetic datasets provide crucial advan-
tages for machine learning over genomic datasets.

The synthetic dataset we generated includes hundreds of
thousands of input–output data points. Each data point is a
different random 70-nucleotide exon sequence, paired with a
measured percent spliced in (PSI) output, which is a number
between 0 (always skipped) and 1 (always included) (Fig. 1A).
The dataset is generated by a massively parallel reporter assay
that allows for PSI quantification for hundreds of thousands of
unique sequences in a single biological experiment (Fig. 1B).
Splicing outcomes for the parallel reporter assay were measured
after transfection into human HeLa cells using high-throughput
sequencing. We confirmed that reporters are evenly represented
in the reporter assay (SI Appendix, Fig. S1A). The vast majority
of splicing products corresponded to exon inclusion or exon-
skipping products (SI Appendix, Fig. S1B), and we filtered
our data to exclude spurious splicing products. PSI values are
calculated as the number of inclusion reads divided by the
total number of inclusion and skipping reads. Three biological
replicates of the assay showed excellent agreement (SI Appendix,
Fig. S1C ), and their sequencing results were combined for all
downstream analyses. High-throughput sequencing measure-
ments were consistent with semiquantitative measurements of
individual reporters (SI Appendix, Fig. S1D).

An Interpretable-by-Design Model Accurately Predicts Splicing
Outcomes. We first compared the predictive accuracy of three
off-the-shelf machine learning algorithms on our dataset: a k-mer
splicing scoring algorithm (8) (SI Appendix, Fig. S2A), a gated
recurrent unit neural network (11) (SI Appendix, Fig. S2B), and
a transformer neural network (12) (SI Appendix, Fig. S2C ). We
found that the two neural networks outperformed the k-mer
scoring algorithm. This gap in predictive accuracy suggests that
the more complex neural networks capture additional features
affecting splicing outcomes. However, as these models are not
interpretable, we were unable to pinpoint which specific features
contribute to the improved predictions.

We therefore designed a neural network model with the
explicit goal of being interpretable (13). The predictive accuracy
of our interpretable-by-design model is comparable to that of
the two state-of-the-art neural networks (SI Appendix, Fig. S2D).
This suggests that interpretability need not come at the expense
of accuracy.

In addition to our own dataset, the model accurately predicts
splicing outcomes from other splicing datasets (7, 8, 14–17) (SI
Appendix, Table S1 and Fig. S3). Importantly, unlike our random
exons, these datasets were modeled on specific genomic exons,
with each dataset differing in splice sites, introns, and flanking
exons. Furthermore, these datasets were generated in different
immortalized cell lines. Encouragingly, despite these dramatic
differences in RNA architecture and cell types, our model
performed well on these datasets, suggesting that our model gen-
eralizes and captures critical aspects of splicing regulatory logic.

Model Architecture Reveals Unifying Decision-Making Pro-
cess. Our interpretable-by-design model incorporates domain
knowledge throughout its architecture (Fig. 1C ). Specifically,
we reasoned that short six-nucleotide sequence filters would
capture motifs previously demonstrated to play an important
role in splicing decisions (18, 19). We therefore introduced
one-dimensional convolutional filters applied to the input RNA
sequence. Next, since RNA secondary structure was previously
implicated in splicing outcomes (16, 20), we also provided the
network with predicted structure (21). We then introduced
longer (30-nucleotide) one-dimensional convolutional filters to
the structure-augmented sequence. Crucially, while we fixed filter
lengths using minimal domain knowledge, we did not explicitly
specify sequences and structures, allowing the network flexibility
to learn filters in an unbiased manner. Furthermore, our model
explicitly quantifies the strength (in network-defined arbitrary
units) of each activated filter to the inclusion or skipping decision.
Importantly, we allowed the strength of any filter to vary along
the length of an exon, providing the network the flexibility to
capture position-dependent effects of RNA features on splicing
outcomes.
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To arrive at its output, the network computes the difference in
the sum total of exon inclusion strengths and exon skipping
strengths (Δ strength), which is then converted to predicted
PSI. The greater the magnitude of this difference, the closer
the PSI is to 0 (difference � 0) or 1 (difference � 0). This
additive combinatorial behavior is consistent with the previous
literature (8, 22).

Model Extends Understanding of Splicing Regulatory Logic.
Even though our model was trained on a synthetic dataset,
it recapitulates and extends domain knowledge from previous
genomic and biochemical studies.

Many filters in the model match binding motifs of RNA-
binding proteins implicated in splicing regulation (splicing
factors) (23, 24) (Fig. 2 and SI Appendix, Fig. S4). Consistent
with previous studies, network inclusion filters match binding
sites for SR proteins known to promote exon inclusion (26, 27),
whereas network skipping filters match binding sites for hnRNP
proteins known to promote exon skipping (28).

However, while the directionality of these RNA features
toward splicing was established, their magnitude was not clear.
Importantly, the model addresses this issue by assigning a
quantitative strength to each filter. Moreover, some filters
exhibit striking position-dependent strengths, suggesting that the
position of an RNA feature along an exon affects its strength. This
is consistent with previous experimental reports demonstrating
position-dependent effects of RNA sequences within exons (8).

Surprisingly, our network accurately predicted splicing out-
comes using a concise list of filters (Fig. 2). This contrasts with
previous studies suggesting that splicing outcomes result from the
combinatorics of hundreds of unique RNA features (8, 29, 30).

Using the local interpretability of our model, we introduce a
visualization (balance plot) that enables explicit examination and
quantification of how multiple RNA features lead to splicing
outcomes for any given exon from our dataset (Fig. 3, SI
Appendix, Fig. S6) and other datasets (SI Appendix, Fig. S5).
For a given exon, the total strengths of activated filters are
represented as bars of the appropriate height. Total inclusion

Fig. 2. Model expands on known splicing logic. Splicing features detected
by the model’s filters, represented by their sequence logo (25). Filters either
contribute to inclusion (blue) or skipping (red). Plots show the average
strength in our dataset of each filter as a function of position along the
exon. The model also identified short stem loops and long G-poor stretches
as contributing to exon skipping.

Fig. 3. Model predictions can be interpreted using balance plots. Balance
plots used to visualize the logic leading to PSI prediction for five randomly
picked exons (V1–V5). Bar plot showing the total strength contributed by
each filter (Top). Bars are labeled by filter numbers from Fig. 2. The bar
labeled B represents a fixed initial basal strength. Labels are not shown
for smaller bars. The difference between total inclusion and total skipping
strengths (Δ strength) leads to predicted PSI (Middle). PSI as measured by
semiquantitative RT-PCR matches the machine learning predictions (Bottom).

strength (blue) and skipping strength (red) are then visible as
the height of the stacked bars. The Δ strength is represented
by the difference in heights between the stacked inclusion and
skipping filters. These visualizations provide an intuitive tool
to understand the contributions of individual sequence and
structure features leading to each exon’s predicted PSI. They
emphasize that splicing logic results from contributions of many
RNA features along the exon and that a single nucleotide can be
part of multiple overlapping filters (6, 8).

Identification and Validation of Uncharacterized Splicing Fea-
tures. Next, we asked whether our interpretable-by-design model
could identify uncharacterized splicing features. While most
network filters were consistent with previously described splicing
features, two uncharacterized long skipping filters with strong
influence on splicing predictions stood out (Fig. 2). We con-
firmed that these filters were robustly identified across multiple
initialization seeds and training/testing splits, suggesting that
they are not training artifacts. We then turned our attention
to characterizing and experimentally validating these features.

Examining the first uncharacterized filter revealed that it
identifies stem loop structures with short, GC-rich, 5-7 nu-
cleotide double-stranded regions (Fig. 4). Next, we experi-
mentally validated that these stem loops contribute to exon
skipping and are not artifacts. We introduced mutations that
disrupt double-stranded base pairing in an exon with such a
stem loop. First, we introduced single-nucleotide mutations
predicted to abolish the stem by disrupting base pairing. Notably,
these mutations were designed to minimize disruptions of other
filters, ensuring that prediction differences are mainly due to
altered secondary structure, and not due to the introduction or
disruption of other sequence features. In addition to two such
mutations, we also introduced both compensatory mutations
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A

B

Fig. 4. Validation of the stem loop feature. (A) The machine learning model
identifies a stem loop in an exon (S1) as having a strong skipping strength
(dark red bar; Top), leading to near-complete skipping prediction (Middle).
Single-nucleotide mutations disrupting a downstream or upstream stem
base pair are predicted to significantly reduce the skipping strength and
restore exon inclusion. Finally, including both single-nucleotide mutations is
predicted to restore the stem loop skipping strength and lead to skipping.
RT-PCR validation (Bottom) confirms the machine learning predictions. (B) The
stem loop identified in S1, with the individual contributions to its strength by
each nucleotide.

together, restoring the original stem loop structure (31). We
measured splicing outcomes for all four individual reporters
(original, upstream mutation, downstream mutation, and double
mutations) and observed that splicing outcomes matched our
predictions (Fig. 4). Namely, PSI increased dramatically in
both single-nucleotide mutants, in agreement with the predicted
decrease in filter strength. Furthermore, when both compensatory
mutations are present and structure is restored, measured PSI
was comparable to that of the original exon. We applied the
same experimental validation scheme to four other stem loop-
containing exons. In all cases, stem-disrupting single muta-
tions increased exon inclusion, and structure-restoring double
compensatory mutations had minimal effects (SI Appendix,
Fig. S7). Together, these experiments demonstrate that model-
identified stem loops, rather than sequence, contribute to exon
skipping.

In contrast, examining the second uncharacterized filter did
not reveal any secondary structure preference. Instead, the

filter exhibited a preference for long guanine-depleted (G-poor)
sequences (Fig. 5A). To validate that guanine depletion underlies
filter behavior, we selected an exon with a G-poor sequence
and introduced a single C>G mutation. As before, we ensured
that the predicted strengths of other filters are only minimally
disrupted (Fig. 5B). Strikingly, this single mutation led to a
marked increase in PSI. We applied the same validation scheme
to three other exons with G-poor sequences; in every instance,
a single C>G mutation increased exon inclusion (SI Appendix,
Fig. S8). To the best of our knowledge, a long G-poor sequence
has not been described in the literature.

Collectively, these experiments confirm that stem loops and G-
poor sequences identified by the model reflect bona fide splicing
features.

A

B

C

Fig. 5. Validation of the G-poor feature. (A) The G-poor filter, represented
by its enrichment-depletion logo (32). (B) The machine learning model
identifies a G-poor stretch in an exon (D1) as having a strong skipping
strength (dark red bar, Top), leading to skipping prediction (Middle). A single-
nucleotide C>G mutation is predicted to disrupt the G-poor stretch and
restore exon inclusion (Right bars). RT-PCR validation (Bottom) confirms the
machine learning predictions. (C) The G-poor stretch identified in D1, with
the individual contributions to its strength by each nucleotide.
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Discussion

In this study, we demonstrate that an interpretable-by-design
model advanced scientific discovery. Our model accurately
predicts splicing outcomes on both our assay and on previously
published assays, demonstrating that interpretability need not
come at the expense of accuracy or generalizability. Model
interpretability enabled a systematic understanding of RNA
splicing logic, including the identification of two candidate
exon-skipping features which were subsequently experimentally
validated. The model’s ability to quantify contributions of
specific features to splicing outcomes for individual exons has
considerable potential for a range of medical and biotechnology
applications, including genome- or RNA-editing of target exons
to correct splicing behavior or guiding rational design of RNA-
based therapeutics like antisense oligonucleotides (33).

In addition, model-identified features hint at novel biochemi-
cal mechanisms that warrant further study. For example, the fact
that splicing decisions are modeled well by an additive quantity
(Δ strength) supports a biochemical mechanism involving the
nuclear spatial organization of SR and hnRNP proteins (34).
Furthermore, our model identified two unusual exon-skipping
features. These features may be recognized by an uncharacterized
RNA-binding protein or complex. Alternatively, the introduc-
tion of highly structured or unstructured regions may change the
physical distance between splice sites, enhancing exon skipping.
These open questions further underscore how interpretable-
by-design models can advance scientific discovery by aiding
hypothesis generation.

Our model performs well on synthetic datasets from im-
mortalized cell lines, yet further work is needed to capture
the dynamics of developmentally regulated splicing logic (35–
37). Importantly, splicing outcomes change depending on the
expression level of cell type–specific RNA-binding proteins (38).
These questions can be addressed by generation of additional
synthetic splicing datasets in developmentally relevant cell types
paired with interpretable-by-design models that capture cell
type–specific regulatory features.

Beyond the context of splicing, the interpretable-by-design
framework can be used to decipher the multiple, complex,
and overlapping codes that dictate biomolecular processing.
Importantly, many rich synthetic datasets that address RNA un-
translated 5’ (39) and 3’ (40) region regulation, methylation (41),
and small RNA biogenesis (42) have already been generated.
We expect that additional data generation efforts paired with
the interpretable-by-design framework will stimulate advances in
understanding biological codes more broadly.

Materials and Methods
Reporter Assay Design and Cloning. The splicing reporter is based on a three-
exon beta globin minigene (43) under the control of a truncated mammalian
CAG promoter. The massively parallel splicing assay allows for high-throughput
characterization of exon variants on splicing outcomes (44) using Gibson
assembly and ligation cloning. The assay replaces the middle beta globin
exon with 70-nt random sequences flanked by weak splice sites [MaxEnt
scores (45): 3’ss 9.41, 5’ss 5.06]. Each 70-nt exon is coupled with a 20-nt
barcode downstream of the third exon, allowing for identification of middle
exon identity in exon-skipping products. Random exons and barcodes were
synthesized separately as degenerate single-stranded oligonucleotides (IDT)
and were joined using an anneal-extend procedure as follows. In a 100uL
reaction (Phusion®Hot Start Flex 2X Master Mix, NEB), 200nM exon and barcode
oligonucleotides were denatured at 98 ◦C for 10 min, cooled slowly to 60 ◦C
(0.1 ◦C/s), annealed at 60 ◦C for 5 min, and extended at 72 ◦C for 60 min.
Single-stranded products were removed from pooled double-stranded exon–

barcode using a silica column purification according to the manufacturer’s
specifications (ZymoPURE Plasmid Miniprep Kit). Pooled exon–barcode products
were cloned into a backbone digested with BsmBI and XbaI and expanded using
electrocompetent bacterial cells (ElectroMAX™DH10B Cells, ThermoFisher) on
large solid agar Bioassay plates (Nunc™Square BioAssay Dishes, ThermoFisher).
After resuspending pooled bacteria in 1X PBS, DNA was recovered using
silica column purification (ZymoPURE II Plasmid Maxiprep Kit, Zymo Research)
following the manufacturer’s specifications. The resulting pooled library (Lib1)
includes the truncated CAG promoter, followed by the first minigene exon and
intron, and the exon–barcode insertion. High-throughput amplicon sequencing
of Lib1 was used to match exon–barcodes pairs. To generate the final splicing
reporter assay (Lib2), a fixed sequence, containing the second intron and
third exon, was introduced to separate exons from their barcodes. Lib1 was
digested with Esp3I (NEB) to introduce overhangs between the exons and
barcodes; the digested product was gel-purified to facilitate downstream cloning
(Zymoclean Gel DNA Recovery Kits). A segment containing the second intron
and third exon was ligated into the digested Lib1 product (NEB Quick Ligation).
Lib2 library was expanded using electrocompetent bacteria cells resulting
in about 10 times as many colonies as Lib1 to ensure even representation
across reporters and recovered using silica column purification as described
for Lib1. DNA was quantified using a spectrophotometer (NanoDrop™OneC,
Fisher Scientific).

Individual Reporter Cloning. To validate consequences of point mutations
on splicing outcomes, individual exons were synthesized as two single-
stranded oligonucleotides (IDT DNA Technologies) and joined using an anneal-
extend procedure. Briefly, 200 nM of each oligonucleotide were joined in a
100 μL reaction with 5U DNA polymerase (NEB Klenow). Oligonucleotides were
denatured at 98 ◦C for 10 min, annealed after cooling slowly to 25 ◦C (1 ◦C/s),
and extended at 25 ◦C for at least 2 h. Reactions were heat inactivated at 75 ◦C
for 20 min and used directly for Gibson assembly into a digested receiving
plasmid with a fixed barcode.

Cell Culture. HeLa cells (ATCC) were grown in high-glucose DMEM sup-
plemented with 10% fetal bovine serum and penicillin and streptomycin
(ThermoFisher). All cells were grown at 37 ◦C, 5% CO2, and 95% relative
humidity.

Transfection, RNAExtraction, andReverse Transcription. Cells were trans-
fected at 60 to 80% confluence with FuGENE HD®according to the manufacturer’s
protocol at a 3:1 FuGENE HD®to DNA ratio. For high-throughput measurements
of splicing outcomes, 10 μg pooled reporter assay DNA was transfected in
three 100-mm plates. For biochemical analysis of individual reporters, 1 μg or
2.5 μg individual reporter DNA was transfected into each well of a 12- or 6-well
plate (respectively). Then, 24 h after transfection, total RNA was isolated from
detached cells (Accutase®, ThermoFisher). For amplicon sequencing, total RNA
was isolated using phenol-chloroform (Ambion) extraction (5PRIME Phase Lock
Gel, Quantabio) followed by DNase treatment (TURBO DNase). For biochemical
analysis, RNA was isolated using a silica column (illustra™RNAspin Mini RNA
Isolation Kit, GE Healthcare) with on-column DNase digestion following the
manufacturer’s automated protocol. DNase-treated RNA was reverse transcribed
using a reporter-specific primer following the manufacturer’s specifications
(SuperScript IV Reverse Transcriptase, Thermo Fisher) with RNase H treatment.
Reverse transcription primers included degenerate nucleotides to serve as
unique molecular identifiers (UMIs) during amplicon sequencing (46, 47).
cDNA products were used for amplicon sequencing or biochemical analysis.

Amplicon Sequencing. Amplicon sequencing was used to identify exon–
barcode pairings in Lib1 and to quantify splicing products from reverse-
transcribed cDNA. Second-strand synthesis added additional UMIs in a single
anneal-extend cycle of 98 ◦C for 10 min, cooled slowly to 60 ◦C (0.1 ◦C/s),
annealed at 60 ◦C for 5 min, and extended at 72 ◦C for 5 min (Phusion®Hot
Start Flex 2X Master Mix, NEB). Resulting double-stranded amplicons were
amplified using a two-stage procedure. In the first stage, targets were amplified
by PCR primers. PCR was performed using the following protocol: 98 ◦C for
30-s initial denaturation, then 16 cycles of 98 ◦C denaturation for 10 s, 60 ◦C
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annealing for 15 s, 72 ◦C extension for 1 min 45 s, and a final extension step at
72 ◦C for 5 min (Phusion®Hot Start Flex 2X Master Mix, NEB). Longer extension
times and a minimal number of PCR cycles were used to avoid recombination
across exons and barcodes. The number of cycles was determined for each
sample by first running 10 μL qPCR reactions (LightCycler®480 SYBR Green I
Master, Roche). In the second stage, index primers were added using 5 PCR
cycles. PCR was performed using the following protocol: 98 ◦C for 30 s initial
denaturation, then 5 cycles of 98 ◦C denaturation for 10 s, 71 ◦C annealing for
15 s, 72 ◦C extension for 1 min 45 s, and a final extension step at 72 ◦C for
5 min (Phusion®Hot Start Flex 2X Master Mix, NEB). Final DNA concentrations
were measured using fluorometric measurements (Qubit 1X dsDNA HS Assay,
Thermo Fisher) on a Qubit™ 3 Fluorometer. Paired-end sequencing was carried
out on an Illumina NextSeq 550 with 10% PhiX spiked in, with 54 cycles
in read 1 (reverse) and 106 in read 2 (forward). About 4M paired-end reads
(> 10X coverage) were acquired for Lib1 exon–barcode sequencing and an
average of 22M paired-end reads (> 50X coverage) for each PSI quantification
replicate.

Biochemical Analysis. PCR amplification reactions to determine splicing
products were carried out in 20 μL reactions containing 10 μL OneTaq®2X Master
Mix with Standard Buffer (NEB), 200 nM each forward and reverse primers (IDT),
and 1 μL cDNA. PCR was performed using the following protocol: 94 ◦C for
30-s initial denaturation, then 25 cycles of 94 ◦C denaturation for 10 s, 62 ◦C
annealing for 15 s, 68 ◦C extension for 20 s, and a final extension step at 68 ◦C
for 1 min. Then, 5 μL final PCR product was run out on 2.0% agarose (Denville
Scientific) Tris-acetate-EDTA (TAE) gel with ethidium bromide and visualized on
a Bio-Rad imager. Densitometry measurements to calculate PSI were measured
using Bio-Rad Image Lab (Windows v6.1).

Reporter Assay Preprocessing. The list of all exons in the reporter assay with
their corresponding barcodes was extracted from DNA sequencing of Lib1. To
ensure unique coupling of barcodes to exons, barcodes appearing with more
than one exon sequence were filtered out. This step ignored exon sequences
appearing only once, as those are likely due to sequencing errors. Barcodes with
fewer than two DNA reads in total were also filtered out.

Next, splicing outcomes were extracted from RNA sequencing of each of the
three replicate transfections of Lib2. For each replicate, each read was identified
by barcode and was assigned a splicing outcome (exon skipping, exon inclusion,
intron retention, splicing inside exon, or unknown splicing). Carryover from Lib1
was filtered out, as were reads for which exon 1 could not be identified. Using
unique molecular identifiers (UMIs), the fraction of duplicate reads in each
replicate was estimated to be below 23%. The counts from all three replicates
were merged for downstream analysis. Barcodes with fewer than 60 total reads,
barcodes that contained an Esp3I restriction site in either strand of the exon or
its barcode, and barcodes where inclusion and skipping made up less than 80%
of all reads were filtered out.

Finally, the dataset was generated by computing PSI for each barcode as

PSI =
ninclusion

nskipping + ninclusion
,

where ninclusion is the total number of exon inclusion reads, and nskipping is
the total number of exon skipping reads. In addition to the measured PSI, the
dataset includes for each barcode: 1) a 90-nucleotide sequence, containing the
70-nucleotide variable exon sequence plus the 10 fixed flanking nucleotides
on each side; 2) structure in dot-bracket notation predicted by RNAFold [Vienna
RNA (21), version 2.4.17], using default parameters; 3) an indicator vector
indicating which nucleotide participates in a predicted G-U wobble base pair.
The dataset was split randomly into a training set and a test set in an 80/20 split,
using a fixed seed for reproducibility.

Model Design. The model’s input is a triple of vectors (xseq, xstruct, xwobble),

xseq ∈ {A, C, G, U}d [4-category sequence input]
xstruct ∈ {( , · , )}d [3-category structure input]

xwobble ∈ {0, 1}d , [wobble pair indicator input],

where d = 90. The neural network contains four “strength-computation
modules” (SCM) defined as

fb
a : x 7→ Sum(Softplus(Position-Bias(Convolution(x; �b

a ); �b
a ))) [SCM]

�b
a ∈ Rwb

a×c
b
a×k

b
a , �b

a ∈ R(d−wb
a +1)×kb

a ,

where a ∈ {incl, skip}, and b ∈ {seq, struct}. The input is either x = [xseq]
(sequence SCM) or x = [xseq, xstruct, xwobble] (structure SCM), and the output
is a scalar. The 1D convolutional layer contains kb

a = 20 convolutional filters of
width wb

a = 6 for each sequence SCM (b = seq), and kb
a = 8 convolutional

filters of width wb
a = 30 for each structure SCM (b = struct). The number

of input channels is cb
a = 4 for sequence SCM (corresponding to the one-hot

encoded four nucleotides) and cb
a = 8 for structure SCM (corresponding to

sequence, structure, and wobble indicator). The output of the convolution layer
is a (d−wb

a + 1)× kb
a matrix z of “raw” strengths. The position bias layer maps

inputs z to z + �b
a , adjusting the raw strengths based on position along the

exon. Finally, each position-adjusted raw strength is passed through a softplus
activation, and the resulting strengths are all summed up to form the output of
the SCM fb

a .
The splicing prediction model m(xseq, xstruct, xwobble; �) is then defined as

m(xseq, xstruct, xwobble; �)

= Tuner
(
f seq
incl ([xseq]) + f struct

incl ([xseq, xstruct, xwobble])

− f seq
skip([xseq])− f struct

skip ([xseq, xstruct, xwobble]); 

)
. [1]

This model computes the total strength for inclusion and for skipping and uses
their difference to predict splicing outcomes. The function Tuner(·; 
) : R→
[0, 1] is a learned nonlinear activation function that maps this difference to a
PSI prediction. It consists of a 3-layer fully connected network with a residual
connection from the input to the output layer, followed by a sigmoid activation.
The parameter set � contains the parameters of all SCMs and the parameter 
 .

Model Training. The model was implemented in Python 3.8 (48) using
Tensorflow 2.6 (49) and Numpy 1.20 (50). Batched gradient descent was used to
optimize the model’s parameters using the Adam optimizer, with KL divergence
as the loss function. Hyperparameters such as regularization parameters were
tuned with grid search. Training the model took about 2 h on a mid-range 4-core
with 16 GB of RAM.

To improve interpretability, the model was trained in steps (custom training
schedule), progressively adding learnable parameters in each step. First, a
simplified model given by

Tuner’(f seq
incl ([xseq])− f seq

skip([xseq]); �, �)

was trained. Here, Tuner’(·; �, �) : R→ [0, 1] is a learned nonlinear activation
function defined by x 7→ �(�x + �), where � is the sigmoid function, and �
and � are two real parameters. This step ensures that short sequence motifs are
captured by the sequence SCMs and not the more complex structure SCMs. In
the second step, the structure SCMs were added, leading to a model identical to
the final one Eq. 1, except for the use of Tuner’ instead of Tuner. The sequence
SCM weights were initialized to those of the previous model. In the third and
last step, the Tuner function was introduced, leading to the final model Eq. 1.
SCM weights were initialized to those of the previous model.

To further improve the model’s interpretability, regularization terms were
added. First, to obtain a concise list of filters, an activity regularization loss term
was used. The term consists of the `1 norm of all the strengths. Second, a
smoothness regularization loss term was applied to position bias layer weights.
This term consists of the `2 norm of the discrete derivative of the weight vectors
(defined as the difference between the vector and itself shifted by one along
the sequence dimension). Each of the two loss terms was multiplied by a
hyperparameter.
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Hyperparameters were optimized based on two criteria: held-out KL
divergence and sparsity of activations. Sparsity was measured as the minimum
number of activations needed per exon to achieve KL below a threshold. Among
all hyperparameters leading to sufficiently high accuracy and sparsity, the one
with the highest smoothness regularization was chosen.

Prediction Accuracy on Other Assays. Exon sequences and PSI measure-
ments were obtained from previous publications. Exons including indel
mutations or differing from WT sequence in the first or last three nucleotides
were filtered out. In order to generalize the model to exons of varying lengths,
we applied Lanczos resampling (with parameter a = 3) to the position bias
weights. To account for differences in splice sites, flanking sequences, and cell
types, one scalar correction term was introduced per assay, effectively adjusting
the basal strength (B) (17).

Filter Visualization. To avoid reporting redundant sequence filters, hierarchical
clustering using SciPy (51) was applied. Each sequence filter was represented
by a vector containing its total strength for each of the exons in the dataset. The
strongest filter in each cluster was then used to generate a sequence logo (25).
The logo represents the set of 6-mers that lead to positive filter activation.

The structure filters included one G-poor filter and three stem loop filters.
Since enumerating all 30-mers is not tractable, the G-poor sequence logo was
computed by evaluating the filter on a subset of sequences from our dataset. As
the three stem loop filters differed in the length of the loop (short, medium, long)
but were otherwise very similar, they were considered as one cluster. Layer-wise
relevance propagation was used to visualize individual nucleotide contributions
to filter strength (52).

Ruling Out Sequencing Artifacts. Our model identified two uncharacterized
exon-skipping features (stem loop structures and G-poor sequences). As our
dataset was generated using multiple enzymatic reactions (from reverse
transcription to polymerase amplification), we were concerned that rather than
learning novel splicing features, our model instead learned artifacts introduced
during data generation. Indeed, previous work noted that both structured and
unstructured nucleic acid regions can impair enzymatic reactivity (53). If these
features impaired enzymatic reactivity, we would expect to observe distinct
biases in the absolute number of sequencing reads for such exons. Specifically,
for exons containing stem loop structures or G-poor sequences, we would expect
an undercounting of inclusion reads ninclusion (due to the inability to sequence
reads containing the feature in the included exon) and, crucially, no change in the
number of skipping reads nskipping (since such reads do not contain the exon).

In contrast, a bona fide exon skipping feature should appear as a reduction in
ninclusion accompanied by an increase innskipping. An analysis of our sequencing
data supports that the stem loops and G-poor sequences are bona fide exon-
skipping features rather than sequencing artifacts (SI Appendix, Fig. S9).

Design of Mutant Constructs. To validate the stem loop feature, candidate
exons with high medium-length stem loop filter strength (top percentile) but
with no other stem loop activations elsewhere in the exon were selected. Three
mutants of each such exon were then generated. To ensure these mutants do
not introduce or disrupt other features, exons where this mutation significantly
changed strengths of other filters were filtered out.

To validate the G-poor stretch feature, candidate exons that strongly activate
the G-poor filter exactly once along the exon were selected. For each candidate
exon, a C-to-G mutation in the middle of the activated filter’s window was
introduced. As before, to ensure this does not introduce or disrupt other features,
exons where this mutation significantly changed strengths of other filters were
filtered out.

Data, Materials, and Software Availability. Sequence data that support the
findings of this study have been deposited in the Gene Expression Omnibus
under accession number GSE200096 (54). Custom code, preprocessed datasets,
and trained model are available on GitHub (https://github.com/regev-lab/
interpretable-splicing-model) (55). Plasmids used in this study will be available
through AddGene.
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