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Fig. 1. The authentication problem over a myopic arbitrarily varying channel.

Abstract—We consider the problem of authenticated commu-
nication over a discrete arbitrarily varying channel where the
legitimate parties are unaware of whether or not an adversary
is present. When there is no adversary, the channel state always
takes a default value (. When the adversary is present, they may
choose the channel state sequence based on a non-causal noisy
view of the transmitted codewords and the encoding and decoding
scheme. We require that the decoder output the correct message
with a high probability when there is no adversary, and either
output the correct message or reject the transmission when the
adversary is present. Further, we allow the transmitter to employ
private randomness during encoding that is known neither to the
receiver nor the adversary. Our first result proves a dichotomy
property for the capacity for this problem — the capacity either
equals zero or it equals the non-adversarial capacity of the
channel. Next, we give a sufficient condition for the capacity
for this problem to be positive even when the non-adversarial
channel to the receiver is stochastically degraded with respect to
the channel to the adversary. Our proofs rely on a connection to
a standalone authentication problem, where the goal is to accept
or reject a candidate message that is already available to the
decoder. Finally, we give examples and compare our sufficient
condition with other related conditions known in the literature.

I. INTRODUCTION

Consider the problem of communication over a channel
where an adversary may or may not be present. Neither the
transmitter nor the receiver know a priori whether or not the
adversary is present. The goal for the transmission is to decode
the message with an authentication guarantee. In particular,
when the adversary is not present, it is desirable that the
message is decoded correctly with a high probability. On the
other hand, when the adversary is present, the decoding goal is
relaxed — the decoder may either output the correct message,
or it may declare that the adversary is present.

We study this problem in the setting of myopic arbitrarily
varying channels (myopic AVCs) (see Fig 1). The channel
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Fig. 2. In the authentication tag problem, the objective is to authenticate
a candidate message m that is already available to the decoder. When no
adversary is present, it is desirable that the decoder outputs a REJECT if and
only if the candidate message i is not equal to the true message m. When
there is an adversary present, the decoder may output a REJECT to either
denote that the 72 is not equal to m or to indicate that an adversary has been
detected.

between the transmitter and the receiver is an Arbitrarily
Varying Channel (AVC) Wy xs. When the adversary is absent,
the channel state assumes a default “no-adversary” state (). On
the other hand, when the adversary is present, they may choose
the state sequence arbitrarily over the entire transmission.
The adversary is myopic, i.e., they have a non-causal view
of the codeword passed through a memoryless channel Uzx
before they select the channel state sequence. The adversary’s
observation is conditionally independent of the receiver’s
observation given the transmitted codeword and the channel
state sequence.

A. Related work

The reliable communication problem over AVCs has a rich
history [1]-[3]. Myopic AVCs have been studied in [4]-[7].
The problem of authentication has been studied in several dif-
ferent frameworks. There is a long line of work that examines
the message authentication problem — both as a standalone
problem [8], [9] as well as over noisy channels [10], [11].
In recent years, considerable attention has focused on keyless
authentication over adversarial channels, which is the setting
of this paper [12]-[16]. Authentication over myopic AVCs has
previously been studied in [17], [18].

B. Our contribution

In the following, we summarize our main results. The proofs
of these results are detailed in later sections after formally
describing the problem and notation in Section II.

In this paper, we consider the capacity Cgiochaun for this
problem when the encoders are allowed to be stochastic of
the form Pxny, i.e., the transmitter may employ private ran-
domness while encoding. This randomness is neither available
to the receiver nor to the adversary.
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1) Connection to Authentication Tags: Consider the au-
thentication tag problem shown in Figure 2. This problem is
reminiscent of the problem of identification via channels [19],
and in a similar vein, supports the number of messages to
be doubly exponential in the blocklength. Our first result
draws a connection between the authentication problem and
the authentication tag problem. We show that authentication
tag capacity Cyyy equals Cyochaun Tor all myopic AVCs. Let Cy
denote the channel capacity (i.e., the non-adversarial capacity)
of the channel W(Y@&(-L) 2 Wyxs(-]- 0).

Theorem 1. Cy, = Cyochaun- Further, whenever these are
positive, they equal Cy.

While this result has been previously noted in settings where
the adversary is oblivious of the transmission (c.f, [15]),
to the best of our knowledge, this is the first extension of
this property to myopic adversaries. Thus, Theorem 1 shows
that, from a capacity viewpoint, it is sufficient to examine
authentication tags.

2) Overwritability condition: Theorem 1 alludes to a di-
chotomy property for the authentication problem with myopic
adversaries. Such dichotomies are well known in the AVC
literature for both the reliable communication problem as well
as the authentication problem. In the authentication setting,
this dichotomy is often characterized via an appropriate over-
writability criterion that specifies the condition under which
the adversary can confuse the receiver between legitimate
(non-adversarial) transmission a symbol x” at the channel input
and an adversarially influenced transmission.

Coming to authentication over myopic AVCs, [17] intro-
duces the notion of Uyx-overwritability (also see [20, Defi-
nition 9]). As noted in [17], whenever a channel Wyx s is Uzx-
overwritable, the authentication capacity equals zero. Further,
if encoding is restricted to deterministic codes, the authentica-
tion capacity is zero whenever the channel Wyx s is stochasti-
cally degraded with respect to Uy, i.e., there exists a channel
Vyz such that Wy s(ylx,0) = Yo Uzx(zx)Vyz(lz)Vy €
#,x € Z, and Wyjxs satisfies the [-overwritability con-
dition (see [20, Definition 10]). Going beyond deterministic
codes, [18] gives an example to show that the authentication
capacity may be non-zero even if the channel is /-overwritable
and Wyx s is stochastically degraded with respect to Uyx.

Our next result is motivated by this example to give a
general sufficient condition for positivity of authentication
capacity. We present a new overwritability condition that we
call Uzx-distribution overwritability. Intuitively, this condition
requires that the myopic adversary be able to overwrite the
channel output to mimic legitimate transmission of any symbol
x" of their choice when the true input to the channel is
drawn from any distribution that leads to a publicly known
distribution Pz for the adversary (see Definition 7 for a formal
statement).

Theorem 2. Cyoenaun > 0 if Wyxs is not Uzxx-distribution
overwritable.

On the way to proving positive rates for channels that are not

RRRRRNNNRRS
ARl .
N Cspochauth > 0
N

UZ‘X-overwritable (Cstoch,autn = 0)

N U, zix-distribution overwritable

Fig. 3. The hierarchy of overwritable channels is shown here. Theorem 2
shows that positive rates of authentication are supported with stochastic codes
by all channels that are in the shaded region.

Uz x-distribution overwritable, we first prove achievability for
a smaller class of channels that are not (Uyx, Z")-distribution
overwritable (see [20, Definition 11]). Our characterizations
of overwritability give rise a natural hierarchy among different
notions of overwritability for myopic AVCs. Figure 3 shows
the inclusion relationships between the overwritability notions
we touch upon in this paper. In Section V, we give examples to
show that these inclusions are, in fact, strict. In order to keep
the exposition here short, we present some of the technical
details in the extended version of this manuscript [20].

II. MODEL AND NOTATION

Notation: We follow standard notation for information
theoretic quantities (c.f. [21]). We denote sets by calligraphic
symbols (2% etc). P(<) denotes the set of all probabil-
ity distributions defined on a set <. V(P,Q) denotes the
variational distance between two probability distributions. All
logarithms are to base 2.

a) Channel: We consider myopic arbitrarily vary-
ing channels (AVCs) that consist of pairs of channels
(Wyx.s, Uzix). The transmitter and the receiver are connected
through the main channel Wyxs with input alphabet 2,
output alphabet %/, and state set .. The state set contains a
“no-adversary” state (), which is the default channel state when
there is no adversary. The adversary, if present, is connected to
the transmitter through the channel Uz with input alphabet
Z and output alphabet 2. As is standard in myopic AVCs,
we assume that conditioned on the channel input X and the
channel state S, the main channel output Y and the adversary’s
channel output Z are independent, i.e., the Markov chain
Y — (X, S) — Z holds. All channel alphabets and the state set
are finite sets.

b) Codes: We consider stochastic codes for two prob-
lems in this paper. The first problem we consider is that of
communicating a message in an authenticated manner over the
channel (Wyx s, Uzx) using authentication codes.

Definition 1 ((V,n)-Authentication Codes). An (N, n)-
authentication code for a channel (Wyxs, Uzx) consists of
a stochastic encoder Py that maps messages m € [N] to

codewords X" € Z™" ~ Pxny=pn and a deterministic decoder
$:%" — [NJU{REJECT} .

The second problem we consider is a standalone authentica-
tion problem, wherein, the goal is to authenticate a candidate
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message already available to the decoder by sending a tag over
the channel (Wyx s, Uzx) using authentication tags.

Definition 2 ((N,n)-Authentication Tags). An (N, n)-
authentication tag for a channel (Wyxs,Uzx) consists of
a stochastic encoder Pxn that maps messages m € [N]
to codewords X" € 2" ~ Pxuyy=n and a collection of
deterministic decoders ¢; : #" — {ACCEPT,REJECT} for
every m € [N].

c) Adversarial strategies: The adversary (if present) first
independently and non-causally observes 7", the output of the
channel Uzx when x" is the input. Next, the state sequence
s" is selected based on the knowledge of the code and the
observation z" using a strategy Qg z».

d) Error Probabilities: The error probability for an au-
thentication code is the larger of following two probabilities:
(i) the maximal probability of decoding to either REJECT or
to a message other than the true message m when there is no
adversary, and (ii) the probability of the decoding to neither
the true message m nor to REJECT when there is an adversary
present. Note that when there is an adversary, it is acceptable
to output a REJECT instead of the true message m.

Definition 3 (Error Probability for Authentication Codes). We
say that an (V, n)-authentication code (Px~yr, ®) achieves error
probability € if

A. No Adversary

Pr (®(Y" t,S" =0") < e, and
’%?A)](]Xn,gn(( ) # m|m sen ) <€, an

B. Adversary Present

max sup Pr Sn(<I>(Y”) ¢ {m, REJECT} m|m sent) < €.

me[N] Qgnyzn Xnynzn,

There are two kinds of error probabilities for authentication
tags: (i) the maximal probability of REJECT the true message
m when there is no adversary at all and (ii) the maximal
probability of accepting a wrong candidate message when
there is an adversary present. Note that when there is no
adversary, we don’t consider the event that a wrong candidate
message is accepted in our definition of error probabilities.

Definition 4 (Error Probabilities for Authentication Tags). We
say that an (N, n)-authentication tag (Pxsjs, {@n}ney)) achieves
error probabilities (4, Ap) if

A. False Alarm:

HIE.[%\)](] X%’l((pm(Y ) = REJECT|m sent, S" = 0") < 4;, and

B. Missed Detection

max su Pr (Y = ACCEPT|m sent) < A,.
me[N] Q5"|Zp" X”,Y”,Z”,S"(qsm( ) | ) 2
MmE[N]\{m}

Remark 1. When the channel Wyxs is non-adversarial, i.e.,
. = {0} an authentication tag for (Wyxs, Uzx) is equivalent
to be thought of as an identification code for the identification
problem [19] for the channel Wy s.

e) Capacity: The authentication capacity for stochastic
codes is defined as follows.

Definition 5 (Authentication capacity). The authentication
capacity Cspochauh for a channel (Wyx s, Uzx) with stochastic
codes is defined to be the supremum over all R such that given
any € > 0, there is a sequence of (N,, n)-authentication codes
achieving error probability €, and lim inf, e 1 log, N, > R.

Coming to authentication tags, it turns out that, similarly to
identification codes [19], the number of messages for authen-
tication tags grow doubly exponentially in the blocklength.

Definition 6 (Authentication tag capacity). The authentication
tag capacity Cy, for a channel (Wyxs, Uzx) is defined to be
the supremum over all R such that given any A;,4; € (0, 1),
there is a sequence of (N,,n)-authentication tags achieving
error probabilities (11, 4>), and liminf, e 1 log, log, N, > R.

ITII. EQUIVALENCE BETWEEN AUTHENTICATION CODE
AND AUTHENTICATION TAG CAPACITIES

In this section, we prove Theorem 1 and show that the ca-
pacities for the authentication problem and the authentication
tag problems are identical when stochastic codes are permitted.
Further, whenever these capacities are positive, they equal the
no-adversary capacity of the channel.

A. Proof of Theorem 1

The proof of this theorem relies on Lemmas 1 and 2 and by
noting that Cy,, is always upper bounded by the identification
capacity of the channel W®.

Lemma 1. Cyy > Ciocn,auin-

Proof sketch:

The proof proceeds along the lines of [15]. The key idea here
is to first construct an identification code [19] for a noiseless
channel and then transmit the codewords from the identifica-
tion code using an authentication code for this channel. We
furnish the details in the extended manuscript [20]. [ |

Lemma 2. Whenever Cig > 0, Cgiochauth = Co.

Proof:

We first note that Cgochaun 1S always bounded form above by
Cy as the latter is the capacity of the channel Wyxs when
there is no adversary.

In the following we prove that any rate smaller than Cy is
achievable whenever Cy, is positive. Our achievability relies
on a two-phase scheme. The first phase consists of a code for
the (non-adversarial) channel Wyxs(|-,0). The second phase
is a short phase used to verify that the message has been
decoded correctly in the first phase. This architecture has been
previously been shown to be capacity-achieveing in [15] for
channels with oblivious adversaries. In the following, we prove
that this property continues to hold even when the adversary
has a noisy view of the input codeword.

Suppose that Ci,e > 0. Let R < Cp. Let € > 0 be the target
probaility of error for the authentication code. For every n > 0,
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Let t, = [(lognR)/Cyys1. Choose n large enough such that the
following are ensured:

a) There exists a (2%, n — t,) channel code with encoder
f 2] - 27" and decoder g : & — [2"R] for
the (non-adversarial) channel Wyx s-p with maximal error
probability at most €/2.

b) There exists a (2"F, 1) authentication tag (ﬁxrnw, {p}) for
(Wyx.s, Uzx) achieving error probabilities (e/2, €/2).

We form a (2"F,n) authentication code (Px»m, ®) by con-
catenating the above codes as follows. The encoder transmits
the channel code followed by the authentication tag, i.e.,

Pyup(x_, , lm)  if X" = f(m),

0 otherwise.

Py (x"|m) = {

The decoder first decodes the message from the channel code
and then authenticates it using the authentication tag. Let /i1 =
g(y"™™). The decoder ® is defined as

i if ¢4y, ) = ACCEPT

dGH") =
o {REJECT otherwise.

We argue that the authentication code thus constructed
achieves an error probability of €. Consider the following two
cases.

a) Case 1. No adversary: When there is no adversary,
the error event is contained in the union of the event that the
channel code (f, g) decodes to an incorrect message and the
event that the authentication tag (f’xm M- (@) rejects a correct
message from the channel code. Thus, P < ¢/2+¢€/2 = €.

b) Case 2. Adversary present: In this case, the error
probability can be expressed as follows. In the following, let
[ = n—1t, for ease of notation.

max stus X",YE’,E",S"((I)(Y ) ¢ {M,REJECT} |m sent)
= max sup | Pr(®(Y") ¢ {m, REJECT}, g(Y') = m|m sent)
M Qengn

+ Pr(®(Y") ¢ {m, REJECT}, g(Y") # m|m sent)
< max sup Pr(®(Y") ¢ {m, REJECT}, g(Y') = mm sent) +
m - Qgngn

max sup Pr(®(Y") ¢ {m, REJECT}, g(Yl) # m|m sent) (1)

m - Qgnzn

The first term in (1) corresponds to the channel code decoding
to the correct message. In this case, the decoder ® outputs
either the correct message or REJECT, both of which are
acceptable outcomes when an adversary is present. Thus,

n I\ _ —
o PL, (@) ¢ (m, REJECT). g(") = mjm sent) = 0.

Next, we analyze the second term in (1).

max sup Pr(®(Y") ¢ {m, REJECT}, g(Y') # mlm sent)

QOgnn
< max sup Pr n(qﬁ,;,(Yl”H) = ACCEPT|m sent) 2)
m,m#Em Qgnyzn xnynzn.§
= max sup Z Pyxnp (X" [m)Uzx (2" 1x")
mEm Qgnizn TR

s.ta(y), )=ACCEPT

X Qenzn (8" YWy s 0" |x", 5™)

max sup

¥ Py (X}, [m)Uzix (2"1x™)
mnEm g, iz

Xy "
s.tx!=f(m)
#a(y},,)=ACCEPT

X Qsrzn (8" 12" ) Wyx s (" |x", s™)
Z PXm|M(x;’+l|m)
K V2"

s.tga(, )=ACCEPT

X Uz (@ f(m)Uzx (2], 11%7, 1) Qsrizn 50 (5"12")

X Wy, s 11X 15 8741 3
In the above, (2) follows from our design of the authentication
code as a two-phase code (see [20, Lemma 3] for details). Note
that (2) does not require a union bound over all 11 # m, rather,
only bounding in terms of the worst-case 7z suffices. Next,
defining

A !
Osnizn (s} l21 ) = ) Usx(@If () Qs ("),

st

max sup
m,i#Em Qsnizn

the expression in (3) may be rewritten as

2,

Mt Ve 1% 15T
s.t.gaGl )=ACCEPT

X WY|X,S(yln+1|xln+1’ Sln+1)
(¢ = ACCEPT|m sent) < /2.1

max  sup PX'"IM(x7+1 1) Qs |zt (S7+1 |Z7+1)

m,m A
’ n¢m Qsln \zin

= max sup Pr

mitn g - XY Z0 S
Remark 2. The proof of Lemma 2 suggests a natural two-
phase architecture for authentication. The the first phase may
be thought of as the “payload” which can be transmitted using
any reliable code for the channel W® without adversary. The
second phase is a short authentication phase. Our analysis
shows that the length of the second phase need be no larger
than logarithmic in the overall block length to achieve vanish-
ing probability of error at rates achieving the capacity. This
aspect of communication with authentication has been noted
in different adversarial models in prior work [15].

Remark 3. In the proof of Lemma 2, the no-adversary case
proceeds identically to the setting with an oblivious adver-
sary [15]. However, unlike in the oblivious setting, when
adversary is present, they can correlate the attack strategy in
the first and the second phases. Thus, it is not a priori clear if
the authentication tag phase can be analyzed separately from
the communication phase. Our proof shows that even though
the adversary may choose a strategy that depends on the entire
transmission Qgnz», such a strategy is not more powerful than
strategies Qstn|zrn that depend only on the authentication tag
phase and the knowledge of the message and the first phase
reconstruction.

IV. OVERWRITABILITY WITH STOCHASTIC CODES
We say that Py, P, € P(Z") are myopically indistinguishable
if
DL PIOUzxGlx) = ) Pax)Un(al) Yz € .

xeZ xeZ
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Let I'yyg be the partition of P(Z") into equivalence classes
formed by grouping indistinguishable distributions.

Definition 7 (Uzx-distribution overwritability). We say that
Wyxs is Ugzx-distribution overwritable if for every &2 € I'ipg
and x’ € 2, there is an adversarial strategy Qg such that,
for every Py € & and y e %,

Exzs [WyxsOlX, S)] = Wyx sOlx’, 0),

where, the expectation is with respect to the joint distribution
Pxzs = PxUzxQsiz.

Remark 4. It follows from the above definition that when
Wyxs is not Uy x-distribution overwritable, there exist & €
[ing and x” € 2 such that for all Qgy, there exists Py € &
with

V(Exzs [Wrixs¢1X, )], Wyx.s(x",0)) > 0.

Further, since we restrict our attention to finite alphabet

channels with finite state spaces, and since every & € Ijyq

is a compact subset of P(Z"), there exists v > 0 such that
max min max V(Exzs [WyxsC¢1X, )], WyxsClx',0)) > v.

Peling Osiz PxeP
X' e
4

Proof of Theorem 2:
We prove that Cgochaun > O for channels that are not Uzy-
distribution writable by showing the existence of authentica-
tion tags with positive rates for such channels and invoking
Theorem 1. Suppose that (Wyxs, Uzx) satisfy (4) for some
v > 0 and let (£, x) be a pair achieving the maxima in (4).
First, fix § > 0 and let &5 be a §-net covering &, i.e., for
all P € &, there is P’ € &5 such that V(P’, P) < 6. Note that
Ps may be chosen to have a finite number of elements. In
particular, we can always find &5 such that || < ﬁ Let
Ps = {P(l),P(z), .. .,P(K)}.
Let @, > 0 be small enough so as to satisfy

1+ ( a(l +,8))
— |4 +2 <
(1I-a)1-p) B 2
Pick B = {%,, : m € [N]} as per [20, Lemma 6]. For each
k € [K], let (ng)W, {#5]) be a (P, n, B, u/4)-authentication

tag as given in [20, Definition 12].

Our achievability relies on an authentication tag consisting
of several sub-blocks. Consider a (NN, nL)-authentication tag
(Pxnipr, {@m}) with encoder and decoder maps defined below.
For each / € [L], the encoder umformly picks k£ from [K] and

the sub-block X  according to PY  Thus,

(I-Dn XM -

L
(k) l
n fpxnm(x(?—l)nﬂ [m).

I=1 k=1

Pan|M(.x

The decoder first decodes each sub-block and outputs an
ACCEPT only if, for each block, the corresponding decoder
outputs ACCEPT. Note that, the decoder doesn’t know a
priori the value of k for each sub-block (since the value of
k is randomly and privately chosen by the transmitter). In

fact, the decoder { E,lf)} for any (P(k),n, B, u/4)-authentication

tag only needs the knowledge of ‘B and not of ch). Let
k0 = (P, x) (as defined in [20, Eq. (10)]). Note that, over
the uniform choice of k, Pr(k® > y1/2) > + as long as ¢ is
small enough. Thus, by [20, Lemma 5], with probability at
least 1/K, ¢#(-) = REJECT when m # m. We first let the
number of sub-blocks to be large enough and then the length
of each sub-block to be large enough to conclude that the error

probabilities can be made as small as desired. ]

V. EXAMPLES

Definition 8 ((r-overwritable BSC(p),BEC(1))). The (r-
overwritable BSC(p),BEC(u) is channel defined with 2~ =
% =1{0,1}, & = {0,1,E}, . = {0,0, 1}, and the transition
probabilities

l-p ify=xands=0
if y#Zxand s =0

if y=xand s =x

S

Wy sOlx,s) =41

l-r ify=xands=x&®1
r ifyZxand s=x&1
1—-u ifz=x
Uzx(zlx) £
2x (@) {u oo p
Example 1 (Ugzx-distribution overwritable but
not Uz x-overwritable). Consider (r-overwritable

BSC(p).BEC(1)) with p € (0,1/2), r € (p,1 — p) and
u > 0. First, we note that for such channels, al input
distributions are myopically distinguishable (since the
probability of observing a 0 (resp. 1) by the adversary is
proportional to the probability that the input is a 0 (resp.
1). Next, given any input distribution Py = (po,l — po),
one can show the adversary can find a Qg satisfying the
Uy x-distribution overwritability condition. Finally, to see
that the channel is not Ugzy-overwritable, suppose that
the adversary intends to overwrite with x* = 0. When the
adversary observes E, the adversarial strategy must work
regardless of the input symbol. It turns out that there is no
strategy that simultaneously works for x = 0 and x = 1.

Example 2 ((Uyy, Z)-distribution overwritable but not
Uz x-distribution overwritable). Consider the (r-overwritable
BSC(p),BEC(u)) channel with p € (0,1/2), r € (p,1 — p) and
u = 1. In this case, since Uzyx outputs an E with probability
1, all input distributions are myopically indistinguishable.
Following a similar reasoning as the previous example, we
conclude that there is no adversarial strategy that can work for
all input distributions simultaneously. On the other hand, when
the adversary knows the input distribution, they can find an
adversarial strategy that can lead to the right output distribution
for (Uzyx, & )-distribution overwritability.
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