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Abstract—We study universal compression of n i.i.d. copies
of a k−variate Gaussian random vector, when the mean is an
unknown vector in an Euclidean ball of Rk, and the covariance is
known. We adopt the high dimensional scaling k = Θ(n) to bring
out a compression perspective on the inadmissibility of unbiased
estimates of a k−variate Gaussian (when k ≥ 3), in particular
focusing on the optimal unbiased Maximum Likelihood estimate.
We use arguments based on the redundancy-capacity theorem
to show that the redundancy of a universal compressor in this
high dimensional setting must be lower bounded as Θ(n). We
show that natural compression schemes based on the Maximum
Likelihood estimate of the mean have suboptimal Θ(n log n)
redundancy, but a scheme based on the James-Stein biased
estimate of the mean incurs redundancy that is also Θ(n).

I. INTRODUCTION

The paper derives compression results on k−variate Gaus-
sian vectors in the context of Stein’s seminal result [1] showing
that maximum likelihood estimation (MLE) is inadmissible
when k ≥ 3. In this paper, we primarily deal with real valued
random variables described by probability measures absolutely
continuous with respect to the Lebesgue measure. Compres-
sion refers simply to an assignment of a probability density
function (pdf) on an appropriate set, a standard convention in
vogue, see for example [2], [3], [4].

We consider universally compressing n i.i.d. Gaussian vec-
tors X1, . . . ,Xn, where Xi ∈ Rk are distributed as k−variate
Gaussian random vectors with mean µ and covariance I . The
mean µ is not revealed to us, we only know µ ∈ A for some
A ⊂ Rk. Therefore, we choose a universal pdf (or a universal
scheme) q on X1, . . . ,Xn that is agnostic to µ. We will refer
to E log q(X1, . . . ,Xn) (the expectation is taken with respect
to the true distribution of X1, . . . ,Xn) as the description
length of q, in analogy with discrete random variables. Non-
negativity of the KL divergence implies that the universal pdf
q must have description length no smaller (usually longer)
than the description length of the actual pdf of X1, . . . ,Xn,
the excess description length of the universal q being termed
the redundancy of q.

The unknown mean is a k−coordinate vector. In the low-
dimensional setting where k is held fixed and n increases,
the redundancy of optimal universal schemes scales k

2 log n as
expected [4], [5]. We show this scaling can also be achieved by
a natural compressor based on the MLE, which describes the
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symbols X1, . . . ,Xn one by one. For any l ≥ 2, the scheme
describes Xl using a normal distribution with mean equal to
the the MLE of the mean using X1, . . . ,Xl−1.

However, in the high dimensional setting k = Θ(n), we
show that the redundancy of the best compressors scales as
Θ(n). The MLE based estimator is suboptimal here (and still
scales as k

2 log n). Instead we show that a similarly constructed
compressor, but one that describes symbols using the James-
Stein shrinkage estimate [1], [6] of the mean achieves the
correct Θ(n) scaling.

This suboptimality of the MLE based compressor in the
high dimensional setting is a reflection of the broader in-
admissibility result on MLE of the mean (when k ≥ 3)
under mean square risk. A few salient points about estimating
the unknown mean µ of a k−variate Gaussian with known
covariance (which we will take to be I), under mean square
risk, are in order.

Given a single observation X ∈ Rk from such a k−variate
Gaussian with unknown mean µ, the natural maximum like-
lihood estimator is simply X . This is the minimum variance
unbiased estimator under mean square risk, i.e., for all unbi-
ased estimators µ̂(X) and for every vector µ,

E||X − µ||2 ≤ E||µ̂(X)− µ||2,
and in addition, it is minimax and achieves the Cramer-Rao
bound [7], [8]. For k = 1, 2, the MLE is admissible, i.e., there
is no other estimator that has risk ≤ the MLE risk for every
µ, and in addition has risk strictly better than the MLE for at
least some choice of µ.

From a Bayesian perspective, if the mean is chosen from a
prior µ ∼ N (0,Σ) and X|µ ∼ N (µ, I), then the minimum
mean square estimator is

arg min
µ̂(X)

E||µ̂(X)− µ||2,

where the expectation is over the joint distribution of µ and
X . Finding the Bayes optimal estimator corresponds to ridge
regression and yields a biased linear estimate, µ̂Σ = (Σ−1 +
I)−1X .

In particular, the biased Bayes optimal estimator beats the
MLE when the mean square risk against the mean is averaged
over the prior on the mean, and it is not surprising that it
should be so. Furthermore, note that under the Bayes setting,
the different components of X (after marginalizing out µ using
its prior) are rendered dependent, and it makes sense that µ̂Σ

uses all components of the vector X to estimate any single
component of the vector µ.
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What is remarkable is that when k ≥ 3 we can throw out
the entire Bayes setup, but estimators conceptually related to
the Bayes optimal estimator will still beat the MLE for every
value of µ in the frequentist setup as well! Specifically, Stein
showed in [1] that the MLE is inadmissible when k ≥ 3, by
constructing an estimator that is strictly better than the MLE
for all choices of the parameter µ.

The estimator proposed by Stein can be surmised from
several angles—Stein’s argument in [1] or an empirical Bayes
argument [9] that starts off with the Bayesian perspective
described above. Formally, the James-Stein (JS) shrinkage
estimator estimates the mean using

µ̂JS =

(
1− k − 2

||X||2

)
X,

and for all µ and X ∼ N (µ, I), it can be shown that

E||µ̂JS − µ||2 = k − E
(
k − 2

||X||2

)
< k = E||X − µ||2.

Remarkably, the JS shrinkage does something similar to
the Bayes-optimal estimator: it uses every component of X
to estimate any single component of µ, even though the
components of X are independent in the frequentist setup
above, and this achieves better mean square risk than the MLE.

The improvement is not trivial either, indeed when µ =
0, the JS estimator has a mean square risk of 2 (no matter
what k is), in contrast to the MLE mean square risk of k. In
high dimensional settings where k is large, this is a substantial
improvement.

As is to be expected, this thoroughly counterintuitive defeat
of the MLE on its own turf shook the statistical world, and
the JS shrinkage estimator is now extensively used in high
dimensional settings where its gains can be substantial. See
for example, [10], [11], [12].

We outline the formulation and formal statements of the
main results in Section II, these involve some technical re-
finements of the standard formulations. One distraction that
arises here is that universally describing a single k−variate
Gaussian vector X whose unknown mean µ ∈ Rk incurs
infinite redundancy. This is however not a serious concern
and can be circumvented by either choosing µ ∈ A for a
compact subset A ⊂ Rk (reminiscent of the power constraint
in Gaussian channel capacities) or by conditioning on a single
training example. Regardless, our focus is the scaling of
redundancy when k = Θ(n), and we adopt whichever solution
highlights this aspect of the problem. The redundancy of the
JS derived estimate is in general hard to analyze, since it
depends on the expectation of the inverse of a non-central χ2

random variable that does not have a closed form. Therefore,
Section III develops a series of abstractions that reveal the
correct order of the redundancy of the JS based compressors.

II. PROBLEM SETUP AND MAIN RESULTS

Let n, k ∈ N. Let X1, , . . . ,Xn, Xi ∈ Rk be drawn i.i.d.
from pµ = N (µ, I) for an unknown µ ∈ A, where A ⊂ Rk.
We will use P(Rk) to denote the set of all possible pdfs (not
necessarily Gaussian) over the k−variate vectors, and P(Rkn)
for the set of all possible pdfs over Rkn. An Euclidean (`2)

ball of radius R centered around a vector m ∈ Rk is denoted
by B(m, R) (balls in other spaces will come into play, so
there is no k in the notation).

A universal length-n compressor for X1, . . . ,Xn is a pdf
q ∈ P(Rkn), where the interpretation is that this pdf q is
chosen to describe X1, . . . ,Xn no matter what µ is. We
characterize the performance of such universal schemes using
the (minimax, or average-case) redundancy, which has the
interpretation of excess codelength in the discrete case.

The redundancy associated with a length n-compressor
q(n) ∈ P(Rkn) against a source with mean µ is defined as

Rn(µ, q(n)) = Epµ ln
pµ(X1X2 . . . Xn)

q(n)(X1X2 . . . Xn)
.

Note that we do not normalize by n as is sometimes done.
For any subset A ⊂ Rk,

Rn(A, q(n)) = sup
µ∈A

Epµ ln
pµ(X1X2 . . . Xn)

q(n)(X1X2 . . . Xn)
,

and, the minimax redundancy of A is

Rn(A) = inf
q(n)∈P(Rkn)

sup
µ∈A

Rn(µ, q(n)).

It is well known [13] that the inf above can be replaced by a
min.

As mentioned in the introduction, we have to deal with one
distraction in this problem setting:

Proposition 1: For all n ≥ 1, Rn(Rk) =∞. �
While the above result seems negative, the situation is

not quite as dire. Even with a “training sample” of 1—the
universal compressor gets to observe X0 from the unknown
source, the infinity is no longer in play as we describe below.
Meaning that the infinity is simply an artifact of having to
describe the first sample. Similarly, if A is a compact set, say
B(0,

√
R) for a constant R > 0, the redundancy is again finite.

Either of these workarounds continues to retain focus on the
scaling of redundancy Rn when k = Θ(n).

A. Conditional redundancy

Let Xi ∈ Rk and let X0, X1, X2 . . . be iid pµ = N (µ, I),
where µ ∈ Rk. Consider the quantity for q ∈ P(Rkn)

Rn(µ, q|X0) = E
[
ln
pµ(X1, . . . ,Xn|X0)

q(X1, . . . ,Xn|X0)

]
= E

[
E
[
ln
pµ(X1, . . . ,Xn|X0)

q(X1, . . . ,Xn|X0)
| X0

]]
.

Similarly, for any subset A ⊂ Rk,

Rn(A|X0) = inf
q∈P(Rkn)

sup
µ∈A

Rn(µ, q|X0).

One can interpret the above as the redundancy if we are al-
lowed a training sample of size 1. Even though the redundancy
R1(Rk) = ∞, Proposition 2 below shows that for all n,
Rn(Rk, q

ML
|X0) <∞. We will often use analogously defined

R1(µ, q|X0, . . . ,Xn−1) and R1(A|X0, . . . ,Xn−1) as well.
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B. Estimation based compressors

Suppose we have an estimate f(X0, . . . ,Xn−1) of the mean.
If we take the universal qf to be the natural extension of
an estimator: i.e., qf (Xn|X0, . . . ,Xn−1) estimates the mean
vector as f(X0, . . . ,Xn−1) and then describes Xn using
N (f(X0, . . . ,Xn−1), I). Then

E
[
ln
pµ(Xn|X0, . . . ,Xn−1)

qf (Xn|X0, . . . ,Xn−1)

]
=

1

2
E[||f(X0, . . . ,Xn−1)−µ||2].

To see the above, note that

E
[
ln
pµ(Xn|X0, . . . ,Xn−1)

q(Xn|X1, . . . ,Xn−1)
| X0, . . . ,Xn−1

]
= −E1

2
||Xn − µ||2

+ E
[1
2
||Xn − f(X0, . . . ,Xn−1)||2 | X0, . . . ,Xn−1

]
,

Further simplifications are straightforward if a little
monotonous. Thus the conditional redundancy is closely
related to the regular mean square risk.

We will primarily deal with the Maximum Likelihood
(ML) estimator and the James Stein (JS) estimators. Given
X1, X2, . . . , Xn ∈ Rk, let

X̄n =
1

n

n∑
i=1

Xi

denote the sample mean, and this coincides with the Maxi-
mum Likelihood estimate.

Definition 1 (James-Stein shrinkage estimate): The James-
Stein estimator shrunk towards a point c ∈ Rk is

µ̂
(c)
JS = c +

(
1− k − 2

n||X̄ − c||2

)
(X − c). (1)

In the above, when c = 0, we drop the superscript for
simplicity.

Let q
ML

(q
JS

respectively) be compressors based on the
ML (JS shrunk to 0 respectively) estimator of the mean. The
compressors based on µ̂(c)

JS will be denoted by q(c)
JS

.
The following proposition follows immediately.
Proposition 2: For all n ≥ 1, and all µ ∈ Rk,

R1(µ, q
ML
|X0, . . . ,Xn−1) =

k

2n
,

and hence Rn(Rk, q
ML
|X0) ≤ k

2 log(n+ 1). �
This redundancy corresponds to the scaling k

2 lnn anticipated
in [4], since the distributions are parameterized by the k
coordinates of the unknown mean.

The connection with mean square risk immediately implies
the following corollary.

Corollary 1: [1] For all µ ∈ Rk and all n,

R1(µ, q
JS
|X0, . . . ,Xn−1) < R1(µ, q

ML
|X0, . . . ,Xn−1) =

k

2n
.

Thus, for all µ ∈ Rk and all n, Rn(µ, q
JS
|X0) <

Rn(µ, q
ML
|X0). �

We can do marginally better in the ML case. Consider
obtaining the distribution q

ML
(Xn|X0, . . . ,Xn−1) by first

estimating the mean using X̄n, but the follow-up encoding of
Xn is done using N (X̄n, σ

2I). In general σ2 can be chosen
to be a function of X1, . . . ,Xn. If we choose to only keep it
as a function of n, the optimal choice can be seen to be 1+ 1

n ;
however, this choice does not change the order of magnitude
of Rn(Rk, q

ML
|X0). In this conference version we disregard

this potential minor improvement for more transparency.
Let B(c,

√
R) be a `2 ball of radius

√
R. Our primary result

is a universal compressor based on James-Stein shrinkage that
achieves a redundancy of Θ(n).

Theorem 2: For all real r > 0, there exists a sequential
probability assignment on R∞ that achieves for all n ≥ 1,

Rn(B(0,
√
R), q)

≤ k

2
log

r + 1

r + 1
n

+
r

r + 1
n

log n+
k

2
log

2Rrn

k
+O(log n).

�

The compressor q noted in the Theorem above is a refinement
of q

JS
and the proof of the Theorem above is completed

in Section III-C. Note that the redundancy above scales as
Θ(n) when k = Θ(n). We have a lower bound of Θ(n) in
Section IV. We also note that the redundancy of q

ML
against

sources in B(0,
√
R) is still k2 log n+O(1), matching the order

of magnitude of the result in Proposition 2 for Rk.

III. JAMES-STEIN SHRINKAGE BASED COMPRESSORS

As noted earlier, in the low dimensional regime when k is
held fixed and n → ∞, both ML and JS based constructions
achieve the k

2 log n scaling. Indeed, the advantages of the JS
estimator are revealed in the high dimensional setting, and this
reflects the fact that it is in these settings that the estimator is
commonly used.

Lemma 3: [1] When X0, . . . ,Xn−1 ∼ µ (i.i.d.) and fJS
is the James-Stein estimator (shrunk to 0), then

E||fJS(X1, . . . ,Xn)− µ||2 =
k

n
− (k − 2)2

n2
E

1

||X̄n||2
.

�
Note that if µ = 0, n||X̄n||2 is a (central) χ2 distribution, and
the expectation of its inverse is known1:

E
1

n||X̄n||2
=

1

k − 2
.

Then the risk can be simplified to

k

n
− (k − 2)2

n2
E

1

||X̄n||2
=
k

n
− k − 2

n
=

2

n
,

which is independent of k altogether, as noted before in the
Introduction.

When µ 6= 0, n||X̄n||2 is a non-central χ2− variable with k
degrees of freedom and non-centrality parameter n||µ||2. The
expectation of its reciprocal is known, but not easily analyzed,
and generally expressed as a hypergeometric series.

We construct a sequential compression scheme that achieves
the right order of magnitude in the aforementioned high

1Note that the inverse chi-squared distribution with k degrees of freedom
is a special case of the inverse gamma (a, b) distribution (c.f. [14, pp 254])
with a = k/2 and b = 1/2.
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dimensional regime k = Θ(n). We do this in multiple steps:
We build the general estimator in three steps:
• Given a horizon n and any r > 0, we show that when
k = Θ(n), Rn(B(0,

√
k−2
nr ), q

JS
) = Θ(n) as well.

• Given a horizon n, we cover B(0,
√
R) with balls of

radius
√

k−2
nr , with the centers of the covering inM. We

then use q(c)
JS

, c ∈M, to construct an estimator qn. Again,
when k = Θ(n) and r is constant, Rn(B(0,

√
R), qn =

Θ(n)
• We then construct a horizon-free, sequential estimator

for B(0,
√
R) that also incurs Θ(n) redundancy when

compressing strings of length n, where k = Θ(n). This
will prove Theorem 2

A. Estimator for B
(
m,
√

k−2
nr

)
We evaluate the redundancy of sources in B(m,

√
k−2
nr )

(with m known) against the James-Stein estimator shrunk
towards m. The redundancy remains the same regardless of
what m is, therefore w.l.o.g., we assume µ = 0.

A note on the setting: since the collection implicitly contains
knowledge of n, we call this a known-horizon setup. However,
the estimator q

JS
does not use the knowledge of n, only our

analysis does.
Proposition 3: For all R > 0, R1(B(0,

√
R)) <∞. �

Therefore, in what follows, we assume that we describe the
first sample X1 using a fixed q∗, and that this step incurs
redundancy κ. The exact scheme is not pertinent, but we can
assume this is an optimal compressor for the single letter
redundancy, q∗.

Theorem 4: For all integers k ≥ 3 and n ≥ 1 and real
r > 0

Rn(B(0,

√
k − 2

nr
), q

JS
) ≤ k

2
log

r + 1

r + 1
n

+
r

r + 1
n

log n+ κ.

Therefore when k = Θ(n), Rn(B(0,
√

k−2
nr ), q

JS
) scales

linearly with n or k.
Proof Recall that for l ≥ 1, if X1, . . . ,Xl ∼ iid N (µ, I),
then

E||fJS(X1, . . . ,Xl)− µ||2 =
k

l
− (k − 2)2

l2
E

1

||X̄l||2

To bound the expectation of the inverse non-central χ2 random
variable, we note that if Z ∼ N (ν, I), then

E
1

||Z||2
=

exp
(
− ||ν||

2

2

)
k − 2

∑
j≥0

k − 2

k − 2 + 2j

||ν||2j

2jj!

A simple convexity argument yields that

E
1

||Z||2
≥ 1

E||Z||2
=

1

k + ||ν||2
.

This bound can be improved marginally as follows. Note
that for all j ≥ 0∫

t≥0

e−(k−2+2j)tdt =
1

k − 2 + 2j
,

so that

E
1

||Z||2
=

exp
(
− ||ν||

2

2

)
k − 2

∑
j≥0

k − 2

k − 2 + 2j

||ν||2j

2jj!

= exp

(
−||ν||

2

2

)∫
t≥0

e
−
(

(k−2)t− ||ν||
2

2 e−2t

)
dt

≥ exp

(
−||ν||

2

2

)∫
t≥0

e
−
(

(k−2)t− ||ν||
2

2 (1−2t)

)
dt

=
1

k − 2 + ||ν||2
. (2)

Therefore, when we are describing Xl+1 given X1, . . . ,Xl,

E||fJS(X1, . . . ,Xl)− µ||2 =
k

l
− (k − 2)2

l2
E

1

||X̄l||2

≤ k

l
− (k − 2)

l

k − 2

k − 2 + l||µ||2

where the second inequality notes that
√
l||X̄l|| ∼ N(

√
lµ, I),

and uses the bound from (2).
Now for any fixed r > 0, since ||µ||2 ≤ k−2

nr it follows that

E||fJS(X1, . . . ,Xl)− µ||2 <
k

l
− (k − 2)

l

k − 2

k − 2 + l||µ||2

≤ k

l
− (k − 2)r

l(r + l
n )

=
k

n(r + l
n )

+
2r

l(r + l
n )

Therefore

Rn(µ, q
JS

) = =
1

2

n∑
l=1

E||fJS(X1, . . . ,Xl)− µ||2

≤ k

2
log

r + 1

r + 1
n

+
r

r + 1
n

log n+ κ,

where the κ term accounts for the redundancy incurred in
describing X1. The theorem now follows. �

B. Redundancy of B(0,
√
R)

When the horizon n is known, universal compressors
for B(0,

√
R) can leverage the estimators we obtained for

B(0,
√

k−2
rn ).

Theorem 5: For all integers k ≥ 3 and n ≥ 1, all real
r > 0, there is qn ∈ P(Rkn) depending on n satisfying

Rn(B(0,
√
R), qn) ≤

k

2
log

r + 1

r + 1
n

+
r

r + 1
n

log n+
k

2
log

2Rrn

k
+ κ.

Proof We cover the ball B(0,
√
R) with balls of radius√

k−2
rn . Let M = {c1, c2, . . . , c|M|} be the set of centers

of the radius-
√

k−2
rn balls in the covering. Standard volume

based covering arguments imply that

|M| ≤

(√
2Rrn

k − 2
+ 1

)k
.
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Then we define for all c ∈M,

qc(X1, . . . ,Xn) = q∗
n−1∏
i=1

qc(Xi+1|X1, . . . ,Xi),

where q∗ is the optimal single letter encoder promised in
Proposition 3 and qc is the natural construction that uses the
JS estimator shrunk towards c. We define

qn(X1, . . . ,Xn)
def
=

1

|M|
∑
c∈M

qc(X1, . . . ,Xn)).

For µ ∈ B(0,
√
R), let c(µ) be any one of the elements of

M closest to µ in Euclidean distance. It follows that ||c(µ)−
µ||2 ≤ k−2

rn . To compute the redundancy of qn, note that for
any constant r,

Dn(pµ(X1, . . . ,Xn)||qn(X1, . . . ,Xn))

≤ Dn(pµ(X1, . . . ,Xn)||qc(µ)(X1, . . . ,Xn)) + log |M|

≤ k

2
log

r + 1

r + 1
n

+
r

r + 1
n

log n+ κ+
k

2
log

2Rrn

k
.

which is Θ(n) when k = Θ(n). Also, in the low dimensional
regime for any fixed k, and n → ∞, the redundancy here
scales asymptotically as k

2 log n as expected. �

C. Horizon-free schemes
If the horizon n is not known in advance, it is still possible

to achieve essentially the same redundany Rn(B(0,
√
R), qn)

as if the horizon were known, with an additional penalty of
roughly 2 log n.

Proof of Theorem 2: We first extend each condi-
tional probability density qn(X1, . . . ,Xn|X0) from Theorem 5
to a probability measure over semi-infinite real sequences
X0, X1, . . .. To do so, we assume a standard normal distribu-
tion over X0. The assignment of probability density function
values to sequences up to n+1 is settled by qn defined above
and its marginals. The density values for sequences longer than
n+ 1 extend the values assigned to length n sequences in an
arbitrary (but fixed) fashion. We will refer to this probability
measure also as qn.

Then, the universal measure q is the probability measure
that extends the density assignment

q(X1, . . . ,Xm) =
∑
n≥1

1

n(n+ 1)
qn(X1, . . . ,Xm)

over R∞. Clearly now, for all n,

Dn(pµ(X1, . . . ,Xn)||q(X1, . . . ,Xn)) ≤
Dn(pµ(X1, . . . ,Xn)||qn(X1, . . . ,Xn)) + log (n(n+ 1)),

and the theorem follows. �

IV. LOWER BOUND ON THE REDUNDANCY

When k = Θ(n), the James-Stein based estimators obtain a
redundancy of Θ(n) when compressing sequences X1, . . . ,Xn

with Xi drawn i.i.d. from N (0, I) distribution. This scaling is
optimal, and no estimator can yield a redundancy that is o(n).

To prove this, we use the following well known lower bound
on the redundancy, see for example [15].

Lemma 6: Let P be a collection of pdfs on R. For 1 ≤
i ≤ M , let Si ⊂ R, and assume that these sets are pairwise
disjoint. Suppose that for each i there exists pi ∈ P such that
pi(Si) ≥ δ. Then, for all pdfs q, we have

sup
p∈P

D(p||q) ≥ δ log(M)− 1. �

For any r, we use the fact that the B(0,
√
R) ball can be

packed with ≥
(√

Rrn
k−2 + 1

)k
balls with radius k−2

2nr . Let N
be the set of centers of this packing. Then, we have for each
c ∈ N ,

pc

(
X̄n ∈ B

(
c,

√
k − 2

2rn

))
≥ 1− γ,

whenever r ≤ 1

1+2

√
ln 1
γ
k +2

ln 1
δ
k

, and therefore the redundancy

of compressing length n sequences X1, . . . ,Xn generated i.i.d.
pµ, µ ∈ B(0,

√
R) is at least

(1− γ)k log
Rrn

k
,

which, when k = Θ(n) grows as Θ(n).

Comparison with Pinsker’s bound

The classical bound due to Pinker [16] establishes that the
biased linear estimator, fL(X̄l) = X̄l

l
nr
l
nr+1

, with risk

sup
||µ||2≤ k

rn

E||fL(X̄l)− µ||2 =
k

n(r + l
n )

is asymptotically minimax when µ ∈ B(0,
√

k
rn ) and k →∞,

i.e., for any l and n,

lim inf
k→∞

inf
f̂

sup
||µ||2≤ k

rn

1

k
E||f̂(X̄l)− µ||2 ≥

1

n(r + l
n )
.

Note that Pinsker’s result is asymptotic. Unlike the James-
Stein estimate, the biased linear estimator requires knowledge
of the radius k/rn of the sphere from which the unknown
mean is drawn. Indeed, one way to interpret the James-Stein
estimate is that it is essentially universal over all values of rn.
In addition, as we have seen, the bound suggested by Pinsker’s
bound is not just asymptotic, but holds for all lengths.

V. CONCLUSION

We showed how the classical result on inadmissibility of
the Maximum Likelihood (ML) estimate under mean square
risk applies to universal compression. We considered universal
compression of n i.i.d. copies k−variate Gaussian vectors
(mean unknown, covariance I). Focusing on the regime where
k = Θ(n) sheds light on the suboptimality of the ML mean
risk, wherein the ML based schemes achieve a worse order of
magnitude than the James Stein (JS) shrinkage compressors,
and where the latter are shown to be order optimal.
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