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ABSTRACT

Today’s cloud data centers are often distributed geographically to
provide robust data services. But these geo-distributed data centers
(GDDCs) have a significant associated environmental impact due
to their increasing carbon emissions and water usage, which needs
to be curtailed. Moreover, the energy costs of operating these data
centers continue to rise. This paper proposes a novel framework to
co-optimize carbon emissions, water footprint, and energy costs of
GDDCs, using a hybrid workload management framework called
SHIELD that integrates machine learning guided local search with
a decomposition-based evolutionary algorithm. Our framework
considers geographical factors and time-based differences in power
generation/use, costs, and environmental impacts to intelligently
manage workload distribution across GDDCs and data center op-
eration. Experimental results show that SHIELD can realize 34.4x
speedup and 2.1x improvement in Pareto Hypervolume while re-
ducing the carbon footprint by up to 3.7x, water footprint by up to
1.8%, energy costs by up to 1.3%, and a cumulative improvement
across all objectives (carbon, water, cost) of up to 4.8x compared to
the state-of-the-art.
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1 INTRODUCTION

In recent years, the emerging use of general-purpose chat-bots,
recommendation engines, and Internet-of-Things (IoT) devices [1]
has increased the reliance on cloud data centers. Cloud service
providers have been gradually distributing their data centers ge-
ographically across multiple locations. Such geo-distributed data
centers (GDDCs) have many advantages. Establishing data centers
closer to large customer bases offers better performance and lower
network costs for them [2]. Multiple data centers also provide better
resilience to catastrophic failures (e.g., environmental hazards).

However, thriving GDDCs are exacerbating the energy consump-
tion and environmental impacts of cloud computing all over the
world. Today, data centers account for 1% of worldwide electricity
usage [3] and 0.6% of global greenhouse gas emissions [4]. There
are over 2600 data centers in the United States and nearly 8000 data
centers across the world, and this number is projected to increase in
the coming decade [5]. These data centers consume large quantities
of water, e.g., Google’s 14 data centers consumed 4.3 billion gallons
of water in 2021 [6], which puts immense pressure on local water
supplies. Due to global climate change and the tightened energy
policies in many nations [7], [8], researchers have recognized the
need for realizing sustainable data centers.

Reducing the energy costs and environmental (water, carbon)
overheads of GDDCs has thus taken on great urgency. From the
perspective of minimizing energy costs, workloads should be as-
signed to data centers where there is cheap energy. Meanwhile,
from the perspective of improving sustainability, workloads should
be assigned to data centers that can provide cleaner (e.g., solar,
wind) energy sources. These two perspectives are usually in con-
flict, and it is the cloud service provider’s responsibility to manage
workloads judiciously, so that both energy cost and sustainability
goals can be met at the same time.

GDDCs provide compelling opportunities to better manage en-
ergy costs and environmental impacts [9]. For example, exploiting
time-of-use (TOU) electricity pricing [10] can allow workloads to be
executed at GDDC locations with lower TOU pricing (e.g., during
off-peak periods), to reduce energy costs. Another opportunity is to
utilize green energy techniques such as free air cooling [11] which
may be available at some locations with environmental conditions
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according to ASHRAE (American Society of Heating, Refrigerating
and Air-Conditioning Engineers) [12]. Thus, to optimize GDDC
operation, an effective GDDC management policy must consider
time- and geography-based differences across data centers.

Prior efforts on GDDC management problem have focused on
either minimizing energy costs (e.g., [13]) or an isolated sustainable
goal such as carbon minimization or water-use minimization (e.g.,
[14], [15]). However, from a cloud service provider’s perspective,
there is a need to simultaneously optimize for all of these goals.

To address these important challenges, in this work, we propose
a novel and efficient multi-objective optimization framework to
co-optimize carbon emissions, water footprint, and energy costs of
GDDCs. Our proposed Sustainable Hybrid Evolutionary Learning
Framework for Geo-Distributed Data Center Management (SHIELD)
performs intelligent design space exploration to generate efficient
Pareto-optimal solutions that minimize the energy costs and envi-
ronmental impact of GDDCs. The novel contributions of our work
can be summarized as follows:

o We comprehensively model the carbon emissions, water
profile, and energy use of GDDCs.

o We formulate a three-objective optimization problem for
sustainable GDDC operation which involves minimizing
carbon emissions, water footprint, and energy costs.

o We propose a new framework called SHIELD that combines
machine learning and evolutionary algorithmic techniques
to co-optimize the three objectives for GDDCs.

o We compare SHIELD with the state-of-the-art data center
management frameworks and show that SHIELD outper-
forms them in speed and solution quality.

2 RELATED WORK

Cloud resource management has been studied for many years [16].
Single-objective challenges in cloud management such as quality of
service [17], cost [18], [19], [20], resource utilization rate [21], per-
formance [22], and fault rate [23] have been addressed by different
methods. Several multi-objective optimization techniques have also
been applied to cloud management in recent years, including simu-
lated annealing (SA), genetic algorithm (GA), and non-dominated
sorting [13], [24], [25].

Liu et al. proposed a holistic optimization framework for mobile
cloud workload computing [24], aiming at triple-objective opti-
mization (TOO) of energy consumption, quality of service, and
system reliability. Their framework used SA, which was shown to
be effective in providing trade-offs across the three objectives.

Hogade et al. proposed the genetic algorithm load distribution
(GALD) approach to optimize energy costs in GDDCs [13]. This
framework explored the potential of GDDCs, such as TOU electric-
ity price, peak shaving, net metering, and local renewable energy
availability. Moreover, GALD can be extended to a multi-objective
problem [26] but can have slow convergence rates [27].

Bi et al. proposed a decomposition-based multi-objective algo-
rithm with Gaussian mutation and crowding distance (DMGC),
which co-optimized cost and revenue of workload scheduling in
data centers [25]. Compared with GA, they were able to preserve
more diverse designs in their solution set. The diversity in the pop-
ulation further benefited subsequent mutations and led to better
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Figure 1: Air/Water/Electricity flow in a data center. Top-of-
rack (ToR) switch, power supply unit (PSU), power distribu-
tion unit (PDU), and uninterrupted power supply (UPS) form
the power switching system.

final solutions. Furthermore, Gaussian mutation helped DMGC to
jump out of local optima and converge to better solutions. However,
our analysis indicates that the link between crowding distance and
solution quality is weak. Crowding distance can filter out some
high-quality designs and may select designs in unneeded directions.
Besides optimization, modeling performance factors and key
constraints are vital for datacenter management such as execution
deadline [28], thermal constraint [29], [30], co-location impacts
[31], [32]. Our proposed framework (SHIELD) combines machine
learning and evolutionary algorithms to overcome drawbacks of
state-of-the-art frameworks for data center management. Further,
we tackle a more complex multi-objective optimization problem
and use a more comprehensive system model than prior works.

3 SYSTEM MODEL

Our framework involves the mapping of each workload from its
origin to different geographic locations and then to different nodes
inside a data center. We further characterize energy costs and the
environmental impact triggered by each mapping. Meanwhile, our
framework can co-optimize the energy cost and environmental
impacts by adjusting mappings and corresponding energy payment
plans. Fig. 1illustrates a data center’s air/water/electricity flow that
is modeled in our framework. Each data center is comprehensively
modeled in terms of its power use, carbon emissions, water use,
energy costs, and workload, as discussed in the rest of this section.

3.1 Power Model

3.1.1 Datacenter Layout. Each data center consists of N computing
nodes, arranged in rows of racks [33]. The racks are arranged in a
standard hot-aisle/cold-aisle configuration [34]. We assume several
computing node types in data centers, whose number varies across
locations. These nodes have different energy profiles for different
computing workloads. Such heterogeneity in the GDDC node con-
figurations is becoming widespread due to diverse workloads and
service level agreements. Computer room air conditioning (CRAC)
units are used to cool the data center room. Besides CRAC, we
consider free air cooling availability in a subset of data centers.
Free air cooling pumps cold outdoor air directly into the data cen-
ter through direct air exchangers. We assume that these direct
air exchangers are equipped with high-performance filters [35] to
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resist air pollution. When the outdoor temperature and dew point
both allow, the data center will switch to free air cooling from
mechanical cooling [11].

3.1.2  Power Components. We divide power consumption of a data
center i into information technology load Prr,;, cooling Pcoojing, s
and Internal Power Conditioning System (IPCS) Prpcs ; [36].

IT load tracks the power consumption of servers in the data
center and is related to the executed workload. Consider ¢ different
workload types computed by a active nodes. We assume a fixed
p-state for each node. The power consumption of the IT load can
be calculated by Eq. (1) below, where AP represents active power
of workload type i assigned at node j, and IP is idle power of node

k a t N-a
Prr= "% AP+ Y 1P
i k

There are three components of cooling power: CRAC units,
chillers, and supporting equipment such as cooling tower, pumps,
etc. [37]. From [33], the coefficient of performance (CoP) is the
ratio of removed heat to the amount of necessary power to remove
the heat. The CRAC power consumption can be estimated as:

Pcrac = Prr/CoP @

From [37], the power consumption of chillers and the supporting
equipment is close to the power consumption of CRAC units. Hence,
we can estimate the whole cooling power as:

M

Pcooting =3 X Pcrac = 3 X Prr/CoP

®)

The IPCS comprises power management components such as
PDU, PSU, and UPS. The power consumption of IPCS correlates to
the IT load and can be estimated as [36]:

Prpcs = 0.13 X Prr

@
3.2 Water Model

We consider both site-based (from cooling) and source-based (from
electricity generation) water consumption for data centers. By
doing so, we can evaluate how geography-based differences impact
water consumption. The overall water footprint of D GDDCs can be
calculated by Eq. (5) below, in which Vg ;, Vg ;, and Vs ; are volumes
of evaporative, blowdown-to-wastewater-facility, and source water
consumption of data center i respectively:

D
= G+ Vs + Vs
Varr Z(VE +Vai +Vs,i)

1

©)

Direct water consumption is common in mechanical cooling
data centers, where the water is used as a coolant. Incoming water
to data centers is usually potable water from water plants, while
outgoing water from data centers is considered industrial wastew-
ater, which needs to be processed at a wastewater facility [38].
We estimate the volume of direct water consumption through all
means of water outflows, which are evaporative water through the
cooling tower and blowdown water to the wastewater facility. The
evaporative water consumption Vg through a cooling tower can be
calculated by Eq. (6) below. Ejr represents the heat generated by
IT infrastructure and H,,4;er is latent heat of the water.

Vg = EIT/Hwater (6)
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The second part of site-based water outflow is the volume of
blowdown water Vgto the wastewater treatment facilities. We
assume all data centers cycle potable water until the concentration
of dissolved solids is roughly C times the supplied water [39]. Hence,
we estimate the volume of blowdown water by Eq. (7):

Vg =Ve/(C—1) (7

Source-based water consumption Vg is primarily from electricity
generation which utilizes brown energy sources. Modern power
grids usually utilize different energy sources and their brown energy
ratios vary across locations. For example, the energy water intensity
factor (EWIF) in Maryland is 0 while in [llinois it is 3.97 L/kWh [40],
ie., 3.97 liters of water are used when generating 1 unit of electricity
in [llinois. We can calculate source-based water consumption based
on energy Econsumed at data center as:

Vs = EX EWIF (8)

3.3 Carbon Model

Carbon dioxide is one of the biggest sources of greenhouse gas
emissions [41]. Prior efforts on data center carbon emission reduc-
tion solely consider the minimization of electricity-based carbon
emissions and ignore water-use-based carbon emissions. In this
work, one of our novel contributions is to find correlations over
carbon, water, and energy use in data centers, and co-optimize
these. We thus analyze the carbon footprint from not just elec-
tricity generation but also potable water usage and wastewater
treatment. Our analysis reveals that data centers with mechanical
cooling may have a larger carbon footprint than expected. The over-
all carbon emission of D GDDCs can be calculated by Eq. 9) below,
where Mejectricity,iand Mayater,i are the mass of electricity-based
and water-based carbon emitted at the data center i respectively:

D
Mayr = Z (Melectricity,i + Mwater,i)

i

©

As geographical differences introduce energy source differences
when calculating the electricity-based carbon emission, Carbon
Factor CF measures the mass of emitted carbon during the process
of electricity generation. We use the geographical CF from [42], and
formulate the estimation function in Eq. (10), in which Mejecrricity
is the mass of electricity-based carbon emissions and Ep is the
amount of brown energy used in a data center:

Melectricity = Ep/CF (10)

We also characterize water-based carbon emissions due to the
production of potable water and the treatment of wastewater. The
water plant and wastewater treatment facility are assumed to use
electricity from the local power grid. By combining geographical
EWIF [43] and CF, we obtain the water-based carbon emission
from Eq. (11) below where Ip and Iyy are the energy intensities for
potable water production and wastewater treatment (representing
the energy consumption per unit of water treatment):

Myater = [(VB + VE) xIp + Vs ><IW] /CF (11)
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3.4 Energy Cost Model

We consider three price models that are relevant to the energy costs
associated with distributing workloads across GDDCs: (a) TOU
price, (b) clean premium, and (c) annual clean contract.

As discussed earlier, TOU price is a key factor that can help
determine when to shift workloads to off-peak periods at different
time zones, to reduce the energy cost of computing. However, this
can lead to high environmental impacts because cheap power may
not always be green power. For example, off-peak periods occur
usually at midnight when there is no solar energy available.

Clean premium is an extra fee that cloud service providers pay
for clean energy from the power grid. Once the extra fee is paid
over the original TOU electricity price, the power provider can
provide electricity from renewable energy sources. The premium
price model is already available in many local power markers such
as San Francisco and Denver where it allows cloud service providers
to balance energy costs and environmental impacts.

Another cheaper clean energy price model is the annual clean
contract, which exists in the Texas area in the United States. Several
power providers such as Gexa Energy in Texas provide 24-hour
all-year-around electricity from renewable sources. Compared with
a clean premium, an annual clean contract can be cheaper if the
annual energy can be estimated in advance.

3.5 Workload Model

We consider a rate-based workload management scheme [44],
where the workload arrival rate can be estimated over a decision
interval called an epoch [45]. In our work, epoch length is one hour,
and thus a 24-epoch period represents a full day. Within the short
duration of each epoch, workload arrival rates can be reasonably
approximated as constant [46]. As shown in Eq. (12), our GDDC
management framework needs to map the global arrival rate GAR;
of workload j into local arrival rates AR; ;4 across the D GDDCs:

D

GAR; = )" AR, (12)
i

4 PROBLEM FORMULATION

We consider a cloud service provider managing GDDCs across mul-
tiple locations inside USA. A GDDC management framework must
distribute the workload coming in from various locations to data
centers in the cloud service providers’ GDDC. In each epoch (hour),
the framework is responsible for providing distribution plans that
include two parts: (i) workloads assigned to each location, and
(i) the amount of clean energy used at each location. The goal of
the framework is to co-optimize three objectives: energy cost, car-
bon emissions, and water footprint. In our initial assumptions, the
GDDCs are under-subscribed in the sense that they are expected
to have enough computation resources to prevent any workload
from being dropped or terminated before completion. The work-
loads originate off-site from the data centers, and we consider only
workloads with negligible transfer time and costs. Once workloads
are assigned to a data center, the same local data center scheduling
policy is used to schedule local workloads no matter the location.
The local scheduling policy is primarily based on workload type
and node type. It builds on the list scheduling approach, where an
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Figure 2: SHIELD framework overview

ordered list of available heterogeneous nodes based on execution
times is maintained per workload type, to guide the mapping [47].

5 SHIELD FRAMEWORK

Our proposed SHIELD framework integrates a novel hybrid search
approach that utilizes Machine Learning (ML)-guided local search
with priorities and a Decomposition-based Evolutionary Algorithm
(EA) with Knowledge Propagation. As shown in Fig. 2, a randomly
generated population is input to an ML module for local search
starting point selection. Due to a lack of training data in early
iterations, the ML module randomly picks starting points in the
beginning. After some time, these points are locally searched by the
local search model based on improvement in their weighted sums.
After local search, the population is updated with local search
results and their trajectories are stored for ML module training.
Our EA model further explores the design space and helps the local
search model jump out of its local optima. After our EA updates the
population, a new iteration starts with the ML module selecting the
starting points. Algorithm 1 summarizes the pseudo-code of ML-
guided local search (lines 2-7) and decomposition-based EA with
knowledge propagation (lines 8-9). The input includes maximal
generations for optimization gen, population size N, number of
objectives M, number of early iterations for random local search
itereqriy, and ML module update frequency f;,pgase- The output
consists of N Pareto optimal designs for M objectives. The objective
values of each design p are calculated based on models in Section 3.

5.1 Decomposition-based EA with KP

Unlike decomposition-based EA such as [48] which performs
crossover and mutation only in a neighboring local space, our
EA model realizes knowledge propagation (KP) by performing
crossover across locally-searched points Psqr; and non-locally-
searched points Py.g; (line 8). Subsequently, our model mutates the
crossover offspring to further explore the design space. Thus, our
EA model guides crossover and mutation between locally-searched
points and non-locally-searched ones, with knowledge gained dur-
ing local search being propagated to non-locally-searched points,
which avoids performing a local search on the whole population
while still improving the overall population quality by expanding
the exploration space. The generated offspring are used to update
the population (line 9) via the function Update(P, p, W), where
each design point p in offspring P, ¢ fspring is randomly compared
with design points in P with the weighted sum function:

minimize g (x|w, z) = Z?ﬁl {w; |Obj; (x) — zi|}

(13)
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Algorithm 1 SHIELD framework

Input: gen, N, M, itereariy, fupdate
Qutput: Population P (Final N designs)
Initialization:

Evenly Distributed Weight Vector Set W = {wy,...,wn}
Randomly Generated Population P = {p1,...,pN}
Training Set for ML Module S;4i,, < 0

Ideal Point in M-objective Design Space z = [o1,..., op]

1: fori = 0to gen do

2: if i <iter,qyy : Pstare < Random(njocq), P)
3: else if (i — itereariy) % fupdate == 0

Eval « MLtrain(Strain)i Strain < 0
4: else

Pstart < MLguide(eval, W, P); Pstart = Pstart U Ppriority
5: Ppew < 0
6: for p, w in Pgsars do
Pnews Strsj = LocalsearCh(W)P)i Prew = Ppew U {Pnew}
Strain = Strain Y Straj

end for
7: P= (P_Pstart)upnew
8: Prest = P — Pstars; Poffspring = EA(Pstart; Prest)
9: for p in Py ¢pring do P < Update(P, p, W) end for
10: end for; return P

Unlike [49] which uses the Tchebycheff approach, this weighted
sum approach uses a set of N uniformly spread weight vectors
W = {wy,...,wn} in the following manner:

minimize g (x|w,z) = max {w; |Obj; (x) — z;|} (14)
1<i<M

where g is the scalar optimization problem, M is the number of
objectives, Obj;(x) is the i" objective value of input x, and Z =
{z1,...,2m} is the ideal point defined as the minimum value of all
the objectives. Given a weight vector w;, a lower Tchebycheff value
g(x|w, z) means a better design is found for the ith subproblem.
Instead of this approach, the weighted sum approach from Eq. (13)
is deployed in our update function (line 9), to help our EA explore
the design space. Compared with [49], our weighted sum approach
can provide more diverse and fine-grained optimization directions
(see results in Section 6) during design space traversal.

5.2 ML-guided Local Search with Priority

To boost the EA model both in speed and quality, a local search
model is introduced in our framework. We observed that a local
search model not only speeds up convergence, but also potentially
provides much better individuals for EA to select as parents and
then generate better offspring. Meanwhile, inspired by STAGE
[50] which selects local search starting points using an evaluation
function, an ML module is integrated into this framework to predict
local search results (weighted sum) by studying previous local
search trajectories (visited designs and weight vectors).

The local search model starts with a random local search (line
2) to create a training dataset Sy 4in, for subsequent ML module
training MLtrain(S¢rqin)- The dataset contains search trajectories
and is recreated at the frequency f, ,qqe after being used for ML
module training (line 3). By using f;,pdare - Dot only can we reduce
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the time redundancy introduced by ML module training, but we
also keep Strqin updated and compact. The ML module we use is
a random forest model, which is an ensemble model that uses the
average output from a collection of decision trees to help reduce
overfitting. The evaluation function eval of the module maps each
design’s parameters and weight to the result of the search (Eq. (13)).

After itere,ypy iterations, the local search model performs eval
on all design points in P and selects local search starting points
Pstar based on predicted weighted sum improvement over the
current weighted sums of P. This starting point selection process
is represented by MLguide(eval, W, P) in line 4. In this manner,
we select local search starting points with the most potential for
improvement. Meanwhile, a set of priority design points Ppriorityis
added to Pssqr+ even though they have a smaller predicted weighted
sum improvement than the original Ps;qr¢. Ppriority is an enhance-
ment to force local search in desired directions. These directions
are usually single objective-efficient and have less weighted sum
improvement in local searches. However, we find that searches on
single objective-efficient directions can better explore the design
space and improve the quality of non-locally-searched points Pres;
through the EA model.

At each generation, an empty set Pye,, is used to store all end-
points ppe+w from local search (line 5). Each point p in Ps;qrs is
then input to the local search function LocalSearch(w, p) and the
function returns search endpoint ppe., and search trajectory Sgrq;
which is recorded in the training set Ss4in that is aggregated over
generations (line 6). Lastly, all local search endpoints replace their
corresponding starting points in P (line 7) to create an enhanced
population that improves the outcomes from our EA approach.

6 EXPERIMENTS

6.1 Experiment Setup

We compare our proposed SHIELD with three state-of-the-art ap-
proaches: simulated annealing-based tri-objective optimization
(TOO) [24], genetic algorithm-based load distribution (GALD) [13],
and decomposition-based multi-objective evolutionary algorithm
with Gaussian mutation and crowding distance (DMGC) [25]. All
data centers use three different types of Intel server nodes: E3-
1225v3, E5649, and E5-2697v2. These three nodes differ in their
number of cores, frequency, power profile, and memory. These
three types of nodes constitute 4320 computing nodes in each data
center and their mix differs across locations. Due to the popularity
of data analytics workloads among cloud service providers, we
use 5 data-intensive workloads from the BigDataBench 5.0 [51],
which are LDA, K-means, Naive Bayes, image-to-text, and image-
to-image workloads. In the power model, we configure CoP to
be 3.75 ~ 5.72 [33]. In the water model, water latent heat and
EWIF are set as 0.66 kWh/L (at40°C) and 0 ~ 3.97 L/kWh [40]. In
the carbon model, Ip and Iy are 550kWh/ML and 640kWh/ML
[43]. The other parameters such as concentration cycle (C), CF,
TOU, clean premium, and annual clean contract are configured to
be 5, 99.7 ~ 775g/kWh [42], 1.8 ~ 48¢/kWh, 0.39 ~ 144¢/kWh,
and 15¢/kWh respectively. We consider 16 different data center
locations, with diverse characteristics, as shown in Fig. 3.



IGSC ’23, October 28-29, 2023, Toronto, ON, Canada

- Il Ot-Peak Price|
p B Peak Price
‘ Ch'c'afgoetroi'l
' _I . MNew York
J . - . Baltimore
".Las Vegas i
Los Angeles m

Figure 3: Data center power price map with different price
models: TOU price, clean premium, and annual clean con-
tract. The red/blue bars indicate the local off-peak/peak
power price, which is 1.8~48 ¢/kWh. Locations in green are
ones with clean premium projects available. The starred lo-
cations are equipped with air-free cooling techniques which
switch to air-free cooling in lower-than-75°F temperatures
and lower-than-63°F dew points.
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Figure 4: Three objective (energy cost, carbon, water) PHV
over time of SHIELD, GALD, DMGC, and TOO.

6.2 Experiment Results

6.2.1 PHV Improvement. To compare the quality of solutions gen-
erated by each framework, we first determined the PHV of gener-
ated solutions over time for a scenario with 16 data centers and
all three objectives (minimizing energy cost, carbon footprint, and
water footprint). PHV measures the size of the space enclosed
by all solutions on the Pareto front and a user-defined reference
point. A higher value of PHV is indicative of a more diverse and
higher-quality solution set.

From Fig. 4, we can observe that all frameworks converge within
~3 minutes. The PHV of SHIELD is 2.1x larger than that of the
second-best framework (GALD). Further, to reach the second-best
PHYV result, it takes SHIELD 34.4x less time than GALD. Based on
these results, we can see that SHIELD optimizes the PHV better
and faster than other design space exploration frameworks.

6.2.2 Solution Quality Improvement. We analyzed solution quality
across our three metrics for a scenario with 16 data centers and a
1-minute runtime constraint, to ensure real-time decision making
at the beginning of each epoch.

Fig. 5 shows results aggregated over a 24-hour interval, with the
y-axis showing improvements compared to the TOO framework.
The three best solutions are selected from each framework. The
most energy cost-efficient solution is depicted with the first three
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Figure 5: 24-hour aggregated results for cost-, carbon-, and
water-efficient solutions generated across four frameworks.

sets of bars that show the energy cost, carbon emissions, and water
use of the most energy cost-efficient solution selected from each of
the four compared frameworks. Similarly, the three middle sets of
bars characterize the most carbon-efficient solution, while the last
three sets of bars characterize the most water-efficient solution.

From Fig. 5, it can be observed that SHIELD is always the best in
cost/carbon/water reduction no matter which of the three metrics
is prioritized. For the most energy cost-efficient solution (first
three sets of bars), SHIELD has higher cost reduction as well as
lower carbon emission and water consumption compared to all
other frameworks. Similarly, for the most carbon-efficient solution
(middle three sets of bars) and the most water-efficient solution (last
three sets of bars), SHIELD generated higher quality solutions that
outperform those from other frameworks. SHIELD reduces energy
costs, carbon emissions, and water usage by up to 1.3x, 3.7%, and
1.8 respectively. We also determine a single best solution with the
lowest cumulative energy cost, carbon emission, and water usage
for each epoch, for each framework. Over a 24-hour interval, we
found that SHIELD improves cumulative solution quality by 4.8x,
2.4%, and 3.2X when compared to TOO, GALD, and DMGC.

7 CONCLUSION

In this work, we studied the problem of workload distribution across
geo-distributed data centers (GDDCs) to minimize energy cost,
carbon footprint, and water use, simultaneously. We developed
comprehensive models of energy consumption, energy price, water
consumption, carbon emission, and workload execution. We then
developed a novel framework called SHIELD for multi-objective
optimization of the cloud service providers’ workload distribution
problem.. In our experiments, SHIELD was able to realize 34.4x
speedup and 2.1x improvement in PHV while reducing the carbon
footprint by up to 3.7x, water footprint by up to 1.8X, energy costs
by up to 1.3%. and a cumulative improvement across all objectives
(carbon, water, cost) of up to 4.8X, compared to state-of-the-art
frameworks.
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