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Abstract— In recent years, cloud service providers have been
building and hosting datacenters across multiple geographical
locations to provide robust services. However, the geographical
distribution of datacenters introduces growing pressure to both
local and global environments, particularly when it comes to water
usage and carbon emissions. Unfortunately, efforts to reduce the
environmental impact of such datacenters oftenlead to an increase
in the cost of datacenter operations. To co-optimize the energy
cost, carbon emissions, and water footprint of datacenter
operation from a global perspective, we propose a novel
framework for  multi-objective  sustainable datacenter
management (MOSAIC) that integrates adaptive local search with
a collaborative decomposition-based evolutionary algorithm to
intelligently manage geographical workload distribution and
datacenter operations. Our framework sustainably allocates
workloads to datacenters while taking into account multiple
geography- and time-based factors including renewable energy
sources, variable energy costs, power usage efficiency, carbon
factors, and water intensity in energy. Our experimental results
show that, compared to the best-known prior work frameworks,
MOSAIC can achieve 27.45x speedup and 1.53x improvement in
Pareto Hypervolume while reducing the carbon footprint by up to
1.33%, water footprint by up to 3.09%, and energy costs by up to
1.40x. In the simultaneous three-objective co-optimization
scenario, MOSAIC achieves a cumulative improvement across all
objectives (carbon, water, cost) of up to 4.61x compared to the
state-of-the-arts.

Keywords—datacenter workload management, design space
exploration, energy cost, carbon emission, wastewater.

I. INTRODUCTION

In the last decade, more and more applications have been
deployed to cloud datacenters, such as scientific computing,
image processing, anomaly detection, recommendation engines,
etc. [1]. Today, cloud datacenters hosted by providers such as
Amazon and Google are built and operated across multiple
geographical sites to provide robust cloud services to users. The
geographical distribution of datacenters has many advantages,
including improved performance and lower costs by bringing
datacenters closer to consumers, and better resilience to
catastrophic datacenter failures (e.g., due to hurricanes and other
extreme weather events) by distributing workloads to different
geographical locations.

However, datacenters across all scales (small, medium,
large) have a significant energy consumption and also create
pressure on local and global environments. Today, 2% of
electricity use in the United States and 1% of worldwide
electricity usage can be attributed to datacenters [2]. Further,
0.6% of global greenhouse gas emissions come from datacenters
[3], which is the same as the entire worldwide airline industry
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[4]. Datacenters also consume large quantities of water for
cooling, e.g., a large datacenter can use up anywhere between 1
million and 5 million gallons of water a day — as much as a
town of 10,000 to 50,000 people [5], which creates a major
burden on local water supplies.

With global climate change becoming more of a reality
every day, many countries are starting to tighten their
environmental policies, which is forcing cloud service providers
to recognize the need for realizing sustainable datacenters that
have a lower environmental (water, carbon emission) footprint
[6], [7]. Therefore today, cloud service providers must not only
focus on minimizing their operating costs (to maximize profits),
but also consider the environmental impacts of their datacenters.
From the perspective of managing datacenter energy (electricity
use) costs, cloud workloads should be assigned to datacenter
locations where there are inexpensive energy sources. However,
from the perspective of improving sustainability, it is better to
migrate workloads to locations that can provide cleaner (e.g.,
solar or wind) energy sources. These two perspectives are vital
to datacenter management but are usually in conflict. For
instance, electricity costs may be the lowest at a datacenter
location that uses coal (brown energy) for electricity generation,
whereas a datacenter location with sufficient wind power may
have high (green energy) costs. Hence, mapping cloud
workloads to datacenters so that energy cost and sustainability
goals can be met simultaneously is a challenging problem.

The geographical distribution of datacenters provides many
new opportunities for cloud service providers to intelligently
manage datacenters, beyond decisions related to green and
brown energy use. For instance, many locations have time-of-
use (TOU) electricity pricing [8] to encourage moving
datacenter workloads to off-peak periods (e.g., during
nighttime), where electricity prices might be 10X lower than in
the peak period. Datacenters at many locations may also be
equipped with green energy based cooling techniques such as
free air cooling [9] and thermosyphons [10], which do not
require coolant pumping or mechanical refrigeration in
datacenters. Such mechanisms have compelling benefits, e.g.,
free air cooling can replace mechanical refrigeration
components (e.g., cooling room air conditioners) with direct air
exchangers to reduce both environmental and energy overheads
of datacenters [9], [11]. However, free air cooling has more
stringent requirements for outdoor temperature and dew point
according to ASHRAE [12]. Thus, to jointly optimize energy
costs and sustainability goals of datacenters, cloud service
providers must consider both time- and geographical-based
factors.

Prior works on energy-aware datacenter workload
management have usually formulated a single objective

2640-0316/23/$31.00 ©2023 IEEE 51
DOI 10.1109/HiPC58850.2023.00046
Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 05,2024 at 01:40:15 UTC from IEEE Xplore. Restrictions apply.



optimization problem that focuses on minimizing either
datacenter energy cost [13] or an isolated environmental impacts
such as carbon emissions or water usage (e.g., [14], [15]).
However, today we must consider diverse sustainability goals,
and, as discussed above, these are usually in conflict with
reducing energy costs. Hence, cloud service providers must
jointly optimize energy cost and environmental (water-use and
carbon emission) impacts. To address this new challenge in
datacenter management, we propose a novel framework for
multi-objective sustainable datacenter management (MOSAIC)
to co-optimize energy costs, carbon emissions, and water
footprint of datacenters. Our proposed framework performs
smart design space exploration to generate Pareto-optimal
solutions that co-optimize the energy costs and environmental
impacts of geographically distributed datacenter operations. Our
novel contributions can be summarized as follows:

¢ We comprehensively model the energy profile, carbon
emissions, and water usage of datacenters while
capturing their time- and geography-based differences.

e We propose a new multi-objective optimization
framework that combines self-guided local search and
collaborative ~ decomposition-based  evolutionary
algorithm to optimize the three objectives (energy costs,
carbon emissions, water use) simultaneously for
datacenters.

e We compare our framework with the state-of-the-art
datacenter management frameworks and find that
MOSAIC outperforms other frameworks in Pareto
Hypervolume, convergence speed, scalability, and
cumulative solution quality.

The rest of this paper is organized as follows. In Section II,
we review relevant prior works in both single objective and
multi-objective datacenter management. We describe our
models in Section III. Sections IV and V outline our problem
formulation and proposed framework for sustainable datacenter
management. The comparison methodology and experiment
results are presented in Section VI . Finally, we present
concluding remarks in Section VII.

II. RELATED WORK

Resource allocation and management in the cloud has been
studied for many years [16]. Researchers have recognized
objectives such as quality of service [17], cost [18], [19], [20],
performance [21], revenue [22], fault rate [23] and resource
utilization rate [24], for which single-objective optimization
techniques have been proposed.

Long et al. [25] proposed a game theory-based approach to
solve a task assignment problem in collaborative edge and cloud
environments. The game theory is formulated into a non-
cooperative game among multi-agents (multiple edge
datacenters) to minimize energy costs of task scheduling. The
game theory-based approach shows improved performance and
speedup for such problems by reaching Nash equilibrium, when
compared to state-of-art frameworks.

Yang et al. [26] proposed a deep reinforcement learning
enhanced greedy optimization algorithm for two-stage task
sequencing and task allocation, to maximize a system’s gain
which is defined as the value of completed tasks minus system
operation costs. The authors first deployed a deep reinforcement
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learning module to predict the best allocation sequence for each
arriving batch of tasks. Following the best allocation sequence,
the authors proposed a greedy strategy that allocates tasks to
datacenter servers one by one, in an online setting, to maximize
the total gain increase.

Hogade et al. [13] proposed the genetic algorithm load
distribution (GALD) approach to optimize energy costs in
datacenters. Techniques such as TOU pricing, peak shaving, net
metering, and utilizing on-site clean energy sources were all
considered in their framework to fully reduce the energy costs,
but these also created a complex design space. Genetic
algorithms (GAs) that were used in the GALD framework are
adaptive heuristic search algorithms inspired by natural
selection and have been shown to be efficient in complex design
space exploration including workload scheduling. GAs have
also been proven effective in multi-objective problems [27], but
are faced with slow convergence rates in many multi-objective
problems [28].

Besides single objective optimization approaches such as the
ones described above, multi-objective datacenter resource
management has also been receiving attention in recent years.
Various multi-objective optimization approaches have been
proposed using techniques such as simulated annealing (SA),
and non-dominated sorting [29], [30].

Liu et al. [29] proposed a holistic optimization framework
for mobile cloud workload computing. A triple-objective
optimization (TOO) problem is formulated in their mobile cloud
management scenario, which involves optimizing energy
consumption, system reliability, and quality of service. SA was
utilized in their framework to generate a Pareto optimal solution
set and was shown to be effective in providing trade-offs across
the three objectives. SA is a probabilistic approach to
approximate the global optimum by mimicking the slow cooling
of metal but it often experiences performance degradation and
slowdown in larger design space exploration problems
compared to GAs.

Bi et al. [30] proposed a decomposition-based multi-
objective evolutionary algorithm with Gaussian mutation and
crowding distance (DMGC), to jointly optimize energy cost and
revenue of workload scheduling in datacenters. Compared with
GA, the authors were able to converge faster during design space
exploration and provide a better Pareto optimal solution set.
Their speedup came from the Gaussian mutation in which
random offspring generation follows the Gaussian distribution
pattern, taking parent solutions as the center of the distribution.
In this manner, DMGC was able to explore the design space
faster than GAs. The quality improvement with their Pareto
optimal solution set is due to the fact that DMGC was able to
preserve more diverse designs in their solution set through a
crowding distance mechanism. Crowding distance measures a
solution’s degree of alienation compared to its neighboring
solutions. A solution set with higher crowding distance helps the
framework maintain a diverse solution set where solutions are
farther apart from each other in the design space. Such a diverse
solution set provides diverse parents for the later crossover
operator and hence prevents DMGC from falling into local
optima. Aided by the diverse solution set, DMGC was able to
more comprehensively explore the design space and generate a
better Pareto optimal set. However, our analysis indicates that
the crowding distance approach may experience performance
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degradation because such an approach may overvalue the
crowding distance while ignoring high quality designs. Low
quality designs with higher crowding distance can eliminate
high quality designs with lower crowding distance in DMGC. In
a large design space, crossover between high quality designs
with relatively low crowding distances will likely generate
better offspring, which DMGC often fails to guarantee.

At the same time, modeling key constraints and performance
factors are vital for datacenter management, for single-objective
optimization as well as multi-objective optimization, while
considering deadlines, thermal constraints, co-location, etc. In
[31], a deadline constrained task arriving model and utility gain
function associated with deadline overhead are introduced to
manage an oversubscribed heterogeneous datacenter. In [32],
[33], the authors predicted the thermal implications of task
allocation on different computing components, and utilized
thermal prediction models to avoid thermal constraint violations
in datacenters. In [34], [35], the authors studied execution time
degradation of tasks under co-location interference effects due
to computing and memory resource sharing. By combining both
thermal modeling and co-location interference modeling, a
novel framework was developed in [36] to maximize utilization
of servers in datacenter while easing hotspot phenomena.

In our work, we have investigated drawbacks of state-of-the-
art frameworks [13], [29], [30] in datacenter management such
as slow convergence speed and lack of scalability for a large
design space. To overcome these shortcomings, we propose a
novel multi-objective optimization framework called MOSAIC
which combines local search and evolutionary algorithm for
datacenter management. To the best of our knowledge,
MOSAIC is the first framework to co-optimize energy costs,
carbon emissions, and water use in datacenters.

III. SYSTEM MODEL

In our framework, workloads originate from different
locations and are propagated to a 2-tier distribution system. In
the first tier, a global manager assigns workloads from their
origin to different datacenters. In the second tier, a local
scheduler at each datacenter location assigns workloads at the
datacenter to different nodes inside the datacenter.
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Fig. 1. Electricity/water/workload flow in a 2-tier distribution. A
workload is assigned to a datacenter from its origin during tier 1
distribution. After arriving at a datacenter, a workload is assigned to a
computing node during tier 2 distribution.

Fig. 1 illustrates such a 2-tier distribution system. To co-
optimize the energy cost and environmental impacts of global
datacenter operation, our framework not only controls the
workload distributions across and within datacenters but also the
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corresponding energy payment plans (e.g., for annual clean
contracts, discussed in Section III.D). Each datacenter is
modeled in terms of its power use, carbon emissions, water use,
energy costs, and workload, as discussed in the rest of this
section.

A. Power Model

1) Datacenter Layout

Each datacenter has N computing nodes installed in racks
[37] and the racks are arranged in a standard hot-aisle/cold-aisle
configuration [38]. Computing nodes have different energy
profiles and performance according to their types, e.g., a 4-core
server node and a 12-core server node will differ in their
throughput/latency and energy consumption. Cooling room air
conditioning (CRAC) units are installed in datacenter rooms to
cool down computing nodes. Besides mechanical cooling
systems, free air cooling systems are installed in a subset of
datacenters and utilized when outdoor temperature and dew
point both allow for it. Free air cooling systems pump cold
outdoor air directly into the datacenter through direct air
exchangers. When the outdoor temperature and dew point are in
feasible regions, the datacenter will switch to free air cooling
from mechanical cooling [9]. We assume that high performance
filters [39] are installed in direct air exchangers to minimize
risks from air pollution.

2) Datacenter Power Components

The power consumption of a datacenter d contains three
components in our model: information technology (IT) load
Pira, cooling Peooiing.a» and Internal Power Conditioning
System (IPCS) Pjpc5 4 [40].

IT load represents the total power consumption of computing
nodes in datacenters and has a direct correlation on with
executed workloads. Consider L different workload types
executed by A active server nodes. We assume a fixed P-state
for each node, which determines the voltage and frequency of
the node during execution. The active power AP of a node
depends on workload type i and the type of node j. IP is idle
power of any node that is not active. Then the total power of the
IT load at a datacenter can be calculated as:

P = %{ 2] APy + Z§ 1Py M

Cooling power Pr,4ing has three components: CRAC units,

chillers, and supporting equipment such as cooling tower, fans,

etc. The power consumption of chillers and the supporting

equipment is estimated to be approximately equal to the power

consumption of CRAC units in[11]. Hence, we can estimate the
total cooling power at a datacenter as:

©)

To estimate the power consumption of CRAC units, we use
the coefficient of performance (CoP), which is defined in [11]
as the ratio of removed heat to the amount of necessary power
to remove such heat. The CRAC power consumption thus can
be estimated as:

Peooting = Perac + Penitter + Psupport = 3 X Perac

Pcrac = Pir / CoP 3

The IPCS comprises power management components such
as server-to-server connections, power supply units, power
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distribution units, and uninterrupted power supply units. The
total power consumption of IPCS correlates to the IT load and
can be estimated as [40]:

Pipes = 013 X Py 4

The total power consumption across all D datacenters
owned by a cloud service provider can then be calculated at any
instance by adding the power consumed at each datacenter.

B. Water Model

To comprehensively model the water usage of datacenters,
we consider both site-based (from cooling) and source-based
(from electricity generation) water consumption. As shown in
Eq. (5) below, Vg ;, Vg ;, and Vs ; denote volumes of evaporative,
blowdown-to-wastewater-facility, = and  source  water
consumption of datacenter i respectively. By adding together
Vg i, Vg i, and Vg ; we can estimate the global water usage across
all D datacenters (V,;;):

)

Direct water consumption is common in mechanical cooling
datacenters, where the water is an expendable coolant. Water
plants provide potable water to datacenters, while the
wastewater treatment facility is responsible for purifying
industrial wastewater from the datacenter [41]. We estimate the
volume of direct water consumption through all means of water
outflows, which are evaporative water through the cooling tower
and blowdown water to the wastewater facility.

Evaporative water consumption V; comes from water
evaporation through the water-cooling tower and can be
calculated as:

Vag = X2 (Viy + Vi + Vi)

Vg = Eir/Hwater (6)

where E; represents the heat generated by the IT infrastructure
and Hy, 40, 1S the latent heat of the water.

The volume of blowdown water V; to the wastewater
treatment facilities is another part of the site-based water
outflow. We assume that datacenters cycle potable water until
the concentration of dissolved solids is roughly C times the
supplied water [42]. Hence, we estimate the volume of
blowdown water as:

Vp =Ve/(C—1) @)

Lastly, source-based water consumption Vg primarily comes
from the electricity generation process when brown energy
sources such as coal are in use. Modern power grids usually
utilize different energy sources and their brown energy ratios
vary across locations. The water intensity in electricity
generation is represent by the energy water intensity factor
(EWIF) metric and its value depends on the local energy
infrastructure. For instance, EWIF in Florida is 0.53 L/kWh
while in Texas it is 1.67 L/kWh [43], i.e., 1.67 Liters of water
are used when generating 1 kWh of electricity in Texas. We
calculate source-based water consumption based on the
datacenter’s energy consumption E (computing, cooling, and
switching) as:

Vs = E X EWIF (8)
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C. Carbon Model

Carbon dioxide has become the biggest source of greenhouse
gas emissions [44]. To reduce carbon emissions in datacenters,
prior efforts consider electricity-based carbon emissions but
usually ignore water-use-based carbon emissions. Many
datacenters consume a large amount of potable water and
potable water generation involves industrial treatment which
creates extra carbon emissions. One of our novel contributions
in this work is to find correlations over carbon, water, and
energy use in datacenters. We thus analyze the carbon footprint
from not just electricity generation but also potable water usage
and wastewater treatment.

Our analysis reveals that mechanical cooling systems and
datacenter locations may introduce a larger extra carbon
footprint than expected. The overall carbon emission M,;; of D
datacenters can be calculated using Eq. (9) below, where
Meiectricity,: a0d Myyqeer; are the mass of electricity-based and
water-based carbon emitted at datacenter i respectively:

My = ZiD(MElectricity,i + MWater,i) (9)

The reason why we consider geographical difference i in
electricity-based carbon emission Mgjecericity, 1S that carbon
intensity in electricity generation is highly dependent on local
energy infrastructures. For instance, a location may offer cheap
electricity but heavily rely on carbon-intensive energy sources
such as coal. Meanwhile, another location may have a higher
electricity price but primarily rely on zero-carbon energy
sources such as wind power. Carbon Factor CF is a metric that
measures the mass of emitted carbon during the process of
electricity generation at different locations. From the
geographical CF in [45], we formulate Eq. (10) to estimate the
mass of electricity-based carbon emissions Mg;ec¢yicity, due to
the amount of brown energy E used in a datacenter:

MElectricity =Ey/CF (10)

Potable water production and wastewater treatment also
contribute to a datacenter’s carbon emissions, as discussed
earlier. We assume water plants and wastewater treatment
facilities use electricity from the local power grid. The potable
usage is the sum of blowdown water V and evaporative water
V. The amount of wastewater generation is the blowdown water
Vy from a datacenter to the wastewater facility. Considering the
energy intensities for potable water production I, and
wastewater treatment [, (representing the energy consumption
per unit of water treatment), we estimate the mass of water-
based carbon emissions My, ;. as:

Myqter = [(Vp + V) X Ip + Vp X Iy/]/CF

D. Energy Cost Model

We consider three price models that are relevant to
estimating the energy costs associated with distributing
workloads to datacenters at different locations: (a) TOU pricing,
(b) clean premium, and (c) annual clean contract.

Time-of-use (TOU) pricing is vital for our framework to
determine efficient workload distributions that can avoid peak
periods (of electricity pricing) at each location. We consider
TOU pricing from electricity providers at each datacenter

(D
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location. However, solely considering TOU pricing can result in
unexpected overheads in environmental impacts. This is because
a cheap energy source may not always be a green energy source.
For instance, off-peak periods usually occur at midnight when
there is no solar energy available.

To enable comprehensive and realistic trade-ofts between
energy cost and environmental impacts, we consider two
additional factors: clean premium and annual clean contract.

Power companies at many locations offer clean premium as
an extra charge model for users to purchase clean energy from
the power grid [46]. Once users pay the extra clean premium
over the original electricity price, the electricity provided to the
user from the power grid will include clean energy sources
instead of brown or mixed (green and brown) energy sources.
Besides promoting sustainability, the clean premium approach
enables better configurability for cloud service providers. For
instance, consider a datacenter that consumes two units of
energy at a local power market. Cloud service providers can
choose to pay a clean premium on one unit of energy and
therefore get one guaranteed unit of clean energy. Meanwhile,
the other unit of energy consumed by the datacenter can be
considered as being based on brown or mixed energy. By
selectively paying for clean premiums, cloud service providers
can balance energy costs and environmental impacts. Local
power markets in places such as San Francisco and Denver
already make clean premiums available to users. We consider
such location-specific clean premium costs for electricity usage
at a datacenter in our work.

Compared with clean premium, an annual clean contract is a
cheaper way for datacenters to access clean energy but so far it
only exists in the Texas area of the United States. Several power
providers such as Gexa Energy in Texas provide 24-hour all-
year-round electricity from green (renewable) sources.
However, the annual clean contract still offers an electricity
price that is higher than off-peak TOU price. Further, in order to
sign an unchangeable annual clean contract, annual energy use
of a datacenter needs to be estimated in advance. We consider
such an annual clean contract for datacenters in the Texas area.

Our MOSAIC framework has the ability to judiciously
balance TOU prices, clean premiums, and annual clean contracts
when distributing workloads across datacenters at different
locations. The geography- and time-based differences in TOU
pricing and annual clean contracts influence our framework’s
distribution plans on workloads. The design space not only
becomes complex due to TOU pricing and annual clean
contracts but also is expanded because of the need to self-decide
the amount of clean premiums at every datacenter location to co-
optimize the objectives of energy cost, water use, and carbon
emissions.

E. Workload Model

We consider a rate-based workload model, where the cloud
workload arrival rate can be estimated over a decision interval
called an epoch [47]. The epoch is assumed to be one hour in
our work, and 24 epochs equals a full day. Workload arrival
rates can be reasonably approximated as constant in an epoch
for cloud datacenters today [48]. As shown in Eq. (12), our
framework maps the global arrival rate GAR; of workload j into
local arrival rates AR;; across the D datacenters:

GAR; = Y7 AR; ; (12)
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The following sections present our problem formulation
and describe our MOSAIC framework in detail.

IV. PROBLEM FORMULATION AND ASSUMPTIONS

We consider a cloud service provider managing datacenters
at different locations across the United States. There are a large
number of datacenters outside of the United States, but for this
work, we only consider datacenters inside the United States to
maintain source consistency in geographical factors such as
EWIF. Besides, the United States covers a relatively large area
spanning multiple time zones. Therefore, datacenters across the
United States have diverse time- and geography-based factors,
creating a complex datacenter management problem.

Within the United States, our framework maps the
workloads coming in from various locations to datacenters and
then to specific computing nodes insider the datacenters. In each
epoch (hour), a global workload distribution plan should contain
two parts: (i) workloads to be distributed to each location, and
(ii) an estimate of the amount of clean premium at each location.
Such a distribution plan is expected to simultaneously co-

optimize three objectives for sustainable datacenter
management: (i) energy cost, (ij) carbon emissions, and (iii)
water usage.

We assume that datacenters are under-subscribed and that
they have enough computational resources to finish any
workloads assigned to them before deadlines. This is a realistic
assumption as cloud service providers today typically
overprovision datacenters to meet peak demand scenarios. The
global datacenter management approach is described in the next
section (Section V). Once workloads have been assigned to each
datacenter in an epoch, we use a local workload scheduling
policy (shared by all datacenters) to schedule workloads to
compute nodes in the datacenter. This policy primarily depends
on workload type and node type and derives from the list
scheduling approach, which in turn relies on an ordered list of
available heterogeneous compute nodes in a datacenter to guide
the mapping [49].
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Fig. 2 MOSAIC framework overview

V. MOSAIC FRAMEWORK

Our proposed MOSAIC framework for global workload
distribution utilizes a novel hybrid search approach that
combines self-guided local search and a collaborative
decomposition-based Evolutionary Algorithm (EA), as shown
in Fig. 2. Through the same objective decomposition
methodology, local search and EA in our framework share their
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knowledge during design space exploration and jointly optimize
the multi-objective datacenter management problem.

As illustrated in Fig. 2, a randomly generated population is
input to a Selection Module for local search starting point
filtering. The Selection Module randomly picks starting points
in the beginning due to lack of knowledge of local search
history. These starting points are locally searched in their
neighboring design space by the Local Search Model based on
improvement in their weighted sums. The weighted sum
calculation is further discussed in Section III.B, which
transforms multiple objective comparison to single objective
comparison. After that, the resulting local search endpoints
replace original starting points in the population but inherit the
same weight vectors for further weighted sum calculation. The
update frequency during local search of each starting point is
recorded in an update table, which is utilized by the Selection
Module to decide future local search starting points. After local
search, our EA Model further explores the design space and
helps the Local Search Model jump out of local optima in a
collaborative way. Hence, the population is further updated by
the EA Model based on the same set of weight vectors used in
local search. This process iteratively updates the population with
repeated invocations (each iteration results in a new
“generation” of population that have evolved from a previous
iteration’s “generation”), till a user-defined termination criteria
is reached.

[ Input: gen, N, M, iter,q;1y, L]

l
Initialization:
Evenly Distributed Weight Vector Set: W = {wy, ..., wy}
Randomly Generated Population: P = {p,, ..., py}
Update Table for Selection Module: T = {f, ..., fy}
Ideal Point in M-objective Design Space: z = {0y, ..., 0y}
Iteration count: i = 0

s| T e Trim(T, L)
Pyiare — Selection(T) @

Pstare < Random(P) @

i+=1

Prew < @

for p,w in Pgyy,¢ do
Pnew, [ = LocalSearch(w, p)
Brew = Paew U {Pnew}
T=TuU{f}

end for

P = (P = Poars) U Byow

Prest = P = Pstart
Paffsprmg - EA(Psmrr:P: est)
for p in PO/,SP, ing do

P,T « Update(P,p,W,T)

end for
Output: P

Fig. 3 MOSAIC multi-objective optimization algorithmic flow

[4)

Fig. 3 summarizes the algorithmic flow for our framework,
which includes self-guided local search (blocks 2-4) and
collaborative decomposition-based EA (block 5). The input
includes the maximum number of generations to consider for
iterative optimization gen, population size N, number of
objectives M, number of early iterations for random local search
[teTpqy1y, and maximal length L for the update table. Based on
the inputs, the initialization process (block 1) creates an evenly
distributed weight vector set W for our weighted sum objective
decomposition approach (discussed in Section V.B), a randomly
generated population P to start the optimization, an update table
T for local search starting point selection, and an ideal point z
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used during objective decomposition. The output consists of N
Pareto optimal designs for M objectives. The objective values of
each design p are calculated based on models introduced in
Section III. Details of self-guided local search and collaborative
decomposition-based EA in MOSAIC are discussed in the
following subsections.

A. Self-Guided Local Search

Local search is commonly used in design space exploration
where knowledge of the true Pareto front is lacking. However,
guiding the direction of local search is challenging for many
reasons. An aimless local search model will face performance
and speed overheads during exploration in large design spaces
(such as in our problem). Hence, a local search history update
table is embedded into the starting point selection module to
select starting design (solution) points for effective local search
that improves the quality of solutions.

The update table records each design point’s update
frequency during local search. The update frequency is
calculated by dividing the update time with local search time and
has a value between 0 and 1. A higher update frequency f; of a
starting design point i indicates that the local search model
found several good design points in i’s neighboring space in the
past. Thus, it may be easier for the local search model to find a
new good design point in i’s neighborhood in the design space
during the next round of local search.

The local search model starts with a random local search
(block 2) to create an update table T for subsequent access by
the selection module Selection(T). The selection module picks
a starting design point set Py, with higher average update
frequency than others, which includes the starting design points
with the most potential for effective local search. Additionally,
only the previous L time’s update frequency is preserved in the
update table to calculate the corresponding average update
frequency for a design point. Older update frequency data is
trimmed from the update table (block 3). This is done to
prioritize data only from recent local searches, which in our
experience is a more effective strategy than considering data
over a lengthy duration of exploration.

At each generation, the local search function
LocalSearch(w, p) evaluates each design point p from Py,
and its corresponding weight vector w (block 4). An empty set
P, o 1s created to store all endpoints p,.,, from the local search
function. The update table T then records the update frequency
f of each design point. Lastly, all local search design endpoints
replace their corresponding starting points in P to create an
enhanced population that improves the outcomes from our EA
approach, which is discussed next.

B. Collaborative Decomposition-Based EA

Evolutionary algorithms (EAs) have the desirable ability to
jump out of local optima, but they can suffer from slow
convergence speed due to biological evolution mechanisms used
in the algorithms. We decided to utilize EA to help our local
search model to jump out of its local optima during design space
exploration with our multi-objective datacenter management
problem. In recent years, decomposition-based EAs such as [50]
have shown promising results. Existing decomposition-based
EAs wusually utilize the Tchebycheff approach [51] to
decompose multiple objectives into a single artificial objective
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g using a set of N uniformly spread weight vectors W =
{wy, ..., wy } in the following manner:
g(xlw,z) = max {w;|0bj;(x) — 7} (13)

From Eq. (13), we know that artificial objective g will
always be the largest weighted objective and therefore a multi-
objective problem is decomposed into a single objective
problem. However, the Tchebycheff approach is a coarse
decomposition method that only optimizes a single objective
and ignores plenty of potential optimization directions in the
design space. Hence, we do not use this approach. Instead, a
weighted sum approach is used as the decomposition method in
our EA model to provide fine-grained optimization directions in
design space. As shown in Eq. (14), the weighted sum of all
objectives is considered an artificial objective for optimization
in our approach:

g(xlw,z) = Z{L (Wil 0bj; (x) — z} (14)

Our EA model realizes knowledge propagation by
purposefully distinguishing locally-searched points Py, and
non-locally-searched points P, . The crossover in our EA
model always occurs between Py, and P, so that local
search knowledge is propagated to locally-searched points
(block 5). Such crossover can produce more high quality design
points and update non-locally-searched design points.
Subsequently, our model mutates the crossover offspring to
further explore the design space. Thus, our EA model avoids
performing a local search on the whole population while still
improving the overall population quality by expanding the
exploration space. The generated offspring are used to update
the population via the function Update (P, p, W, T), where each
design point p in offspring Py¢rsyring 1S tandomly compared
with design points in P using the weighted sum function (Eq.
(14)). In addition to wupdating the population,
Update(P,p,W,T) also renew the update table T. This is
because a new neighboring space emerges once previous design
points are replaced by new design points from the EA model.
Hence, the previous entry in the update table for this design point
is not valid anymore and will be removed from the table. The
update frequency for the new design point is initially set as 1 in
the table to encourage the selection module to select new design
points for local search.

VI. EXPERIMENTS

A. Experiment Setup

We compared our proposed MOSAIC framework with three
state-of-the-art approaches: simulated annealing-based tri-
objective optimization (TOO) [29], genetic algorithm-based
load distribution (GALD) [13], and decomposition-based multi-
objective evolutionary algorithm with Gaussian mutation and
crowding distance (DMGC) [30]. We extended these
frameworks to our multi-objective problem to co-optimize
energy cost, carbon emissions, and water consumption, by
distributing workloads geographically and managing energy
payment plans subsequently. We evaluated all frameworks by
determining their energy costs, carbon emissions, and water
usage, as well as the Pareto Hypervolume (PHV) [28] of
solutions.
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For MOSAIC we make use of the following parameter
values in all experiments: N = 30, gen = <°, f,,45e = 50, and
iter,qry = 500. In each datacenter, we consider three different
types of Intel server nodes: E3-1225v3, E5649, and E5-2697v2,
which differ in their number of cores, frequency, power profile,
and memory. Each datacenter is assumed to have 4320
computing nodes (servers). The mix of server node types differs
across datacenter locations. We considered 16 different
datacenter locations across the United States, with diverse
energy and cost characteristics, as shown in Fig. 4.

Due to the popularity of data analytics workloads among
cloud service providers, we chose five data-intensive workloads
from the BigDataBench 5.0 [27]: Latent Dirichlet Allocation
(LDA), K-means, Naive Bayes, Image-to-Text, and Image-to-
Image. For our power model, we use CoP data from [37] which
varies between 3.74 and 5.73. For our water model, 0~3.97
L/kWh EWIF from [43] is adopted. We consider a temperature
of 40 Celsius at the water-cooling tower and the corresponding
water latent heat at this temperature is 0.66 kWh/L. In the water-
cooling tower, the concentration cycle of remaining water is
assumed to be 5. The energy intensity in potable water
generation and wastewater treatment is estimated to be 550
kWh/ML and 640 kWh/ML respectively according to [52]. We
determined pricing data from local power companies’ websites
across the United States. Based on our analysis, the TOU price
varies from 1.8~48¢/kWh, clean premium varies from
0.39~144¢/kWh and the annual clean contract cost is 15¢/kWh.

I TOU pricing only
) W Cleanpremium +TOU pricing
[l Annual clean contract only

Fig. 4. Datacenter power price map with different price models: TOU
price, clean premium, and annual clean contract. States with
blue/orange/green color host datacenters that we consider in our
studies. Locations in orange are ones with only TOU pricing available.
Locations in blue are ones with clean premium projects as well as TOU
pricing available. Location in green is the one with annual clean
contract available. Locations in gray are not considered in our
experiments.

B. Experimental Results

1) PHV Improvements

To compare the solution quality in multi-objective
optimization, we first determined the PHV over time for a
scenario with 16 datacenters and all three objectives
(minimizing energy cost, carbon emissions, and water usage).
PHYV is a metric that calculates the hyperspace volume which is
enclosed by all solutions on the Pareto front and a user-defined
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reference point. A higher value of PHV is indicative of a more
diverse and higher-quality solution set.

Fig. 5 shows the PHV for MOSAIC and the three
comparison frameworks. We can observe that all frameworks
converge within ~8 minutes. MOSAIC has a PHV that is 1.53x
larger than that of the second-best framework (GALD). Further,
to reach the second-best PHV result, it takes MOSAIC 27.45%
less time than GALD. Based on these results, we can see that
MOSAIC optimizes the PHV better and faster than other design
space exploration frameworks.

TOO GALD

—— DMGC  —— MOSAIC

200k

175k

150k

125k
; 100k
o

75k

50k

25k

0 100 200 300 400

Time (Seconds)

500 600

Fig. 5. Three objective (energy cost, carbon emissions, water usage)
PHV over time of MOSAIC, GALD, DMGC, and TOO.

To further analyze the differences within PHVs across
frameworks, we plot the corresponding 2D Pareto fronts of all
frameworks in Fig. 6. In Fig. 6(a), GALD and MOSAIC can be
observed to have more diverse Pareto fronts, for normalized
energy cost and normalized carbon emission. But MOSAIC’s
Pareto front dominates GALD’s. A similar trend can be
observed in Fig. 6(b) where GALD and MOSAIC have a more
diverse Pareto front in terms of normalized energy cost and
normalized water usage. But MOSAIC’s Pareto front is far more
dominant than GALD’s front. From these plots, we can
summarize that MOSAIC not only generates a more diverse
Pareto optimal solution set but also dominates Pareto fronts of
other frameworks.
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Fig. 6. Pareto front comparison of frameworks for: (a) carbon
emissions vs. energy cost; (b) water use vs energy cost

2) Scalability Analysis

To evaluate each framework’s performance scalability
across different design spaces and workload assumptions, we
further analyzed the frameworks across multiple scenarios. We
changed the size and complexity of the design space by
modifying the number of datacenters (Fig. 7(a)) and subscription
rate of datacenters (Fig. 7(b)). The average PHV of the TOO

60 80 100
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framework is used as the baseline, and we normalize the PHVs
of other frameworks to it.

In Fig. 7(a), we compare the PHV for three scenarios with 4,
8, and 16 datacenters considered in our optimization problem.
MOSAIC outperforms other frameworks and interestingly, does
not experience the same performance degradation as other
frameworks do in the 16 datacenter scenario. In such a scenario,
MOSAIC’s PHV is 2.21x higher than the second-best
framework (DMGC). This shows that MOSAIC has good
scalability with increasing datacenter size.

From Fig. 7(b), we can observe a similar phenomenon. As
the workload subscription rate changes from low (50%) to
medium (75%), and high (99%), MOSAIC shows the best PHV
improvement, and the differences between MOSAIC and other
frameworks enlarge with the subscription rate. For the high
subscription rate, MOSAIC’s PHV is 2.20x higher than the
second-best framework (DMGC).
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Fig. 7. Sensitivity analysis on: (a) number of datacenters and (b)
workload subscription rate of datacenters. All PHV values are
normalized w.r.t. the TOO framework.

After evaluating the frameworks’ scalability in terms of
design space, we further examine their scalability in terms of the
number of optimization objectives. We change the number of
objectives from one (10bj; energy cost) to two (20bj; energy cost
and carbon emissions), and three (30bj; energy cost, carbon
emissions, water use). Fig. 8 shows the results for these three
scenarios across all frameworks, with results normalized to the
PHV for the TOO framework. It can be observed that MOSAIC
again outperforms other frameworks and has good scalability
with the number of objectives. In the 3-obj scenario, MOSAIC’s
PHV is 2.20x higher than the second-best framework (DMGC).
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Fig. 8. Sensitivity analysis on number of optimization objectives. All
PHYV values are normalized w.r.t. the TOO framework.

3) Solution Quality Analysis

While PHV provides a proxy estimate of the quality of
solutions generated by a framework, it is important to also
analyze the actual solutions generated by the framework, across
metrics of interest. In our next experiment, we compared the
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performance of all frameworks across the three objective values
of energy cost, water use, and carbon emissions, for a problem
scenario with 16 datacenters and 10-minute runtime constraint
for all frameworks in each epoch.

Table I shows results aggregated over a 24-hour period, with
values normalized to the TOO framework. The results are
categorized into three sets: cost-efficient (the solution in the
output Pareto set of each framework with the lowest energy
cost), carbon-efficient (the solution in the output Pareto set of
each framework with the lowest carbon emissions), and water-
efficient (the solution in the output Pareto set of each framework
with the lowest water use).

TABLE L. 24-HOUR AGGREGATED RESULTS FOR ENERGY COST-,

CARBON-, AND WATER-EFFICIENT SOLUTIONS

Cost-Efficient Carbon-Efficient ‘Water-Efficient

Cost Carbon Water | Cost Carbon Water | Cost Carbon Water

ToO 100 1.00 1.00 | 115 057 093 | L1l 068 089
GALD 089 068 085 091 058 082 | 091 059 0382
DMGC | 079 086 091 | 1.01 056 081 | 098 061 077
MOSAIC | g75 123 101 [090 032 073 | 091 036 07]

We also determine a single best solution from the Pareto set
generated by each framework that has the lowest cumulative
energy cost, carbon emission, and water usage for each epoch.
Each framework’s single best solutions are aggregated, and we
calculate the overall cumulative results for a 24-hour period. We
normalize the overall results with respect to the TOO framework
as shown in Fig. 9. Over a 24-hour interval, we find that
MOSAIC improves cumulative solution quality by 4.61x%,
2.20%, and 3.16x when compared to TOO, GALD, and DMGC,
respectively. MOSAIC thus has the best optimization
performance for this three-objective problem compared to state-
of-the-art frameworks.

TOO GALD

w DMGC s MOSAIC

[C}

N w S

Cumulative Improvement
-

o

Fig. 9. 24-hour cumulative improvement of three objectives (energy
cost, carbon emission, and water usage) for the best solution generated
by a framework w.r.t. the TOO framework.

VII. CONCLUSION

In this work, for the first time, we have studied the multi-
objective sustainable datacenter management problem to
simultaneously minimize energy cost, carbon footprint, and
water use of datacenters. Comprehensive models of energy
consumption, energy price, water consumption, carbon
emissions, and workload execution were built to support
realistic sustainable datacenter management. We then developed
a novel framework called MOSAIC to manage workload
distribution and datacenter operation. In experiments, MOSAIC
was able to provide better quality solutions and arrive at these

solutions more quickly than other frameworks. MOSAIC was
able to realize 27.45% speedup and 1.53x improvement in PHV
while reducing the carbon footprint by up to 3.09x, water
footprint by up to 1.40%, energy costs by up to 1.33x. and a
cumulative improvement across all objectives (carbon, water,
cost) of up to 4.61%, compared to state-of-the-art frameworks.
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