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Nearest neighbor (NN) matching is widely used in observational studies for causal
effects. Abadie and Imbens (2006) provided the first large-sample analysis of NN
matching. Their theory focuses on the case with the number of NNs, M fixed. We re-
veal something new out of their study and show that once allowing M to diverge with
the sample size an intrinsic statistic in their analysis constitutes a consistent estimator
of the density ratio with regard to covariates across the treated and control groups.
Consequently, with a diverging M , the NN matching with Abadie and Imbens’ (2011)
bias correction yields a doubly robust estimator of the average treatment effect and
is semiparametrically efficient if the density functions are sufficiently smooth and the
outcome model is consistently estimated. It can thus be viewed as a precursor of the
double machine learning estimators.

KEYWORDS: Graph-based statistics, stochastic geometry, double robustness, double
machine learning, propensity score.

1. INTRODUCTION

MATCHING METHODS (Greenwood (1945), Chapin (1947), Cochran and Rubin (1973),
Rubin (2006), Rosenbaum (2010)) aim to balance observations from different groups
through minimizing group differences in observed covariates. Such methods have proven
their usefulness for causal inference in various disciplines, including economics (Imbens
(2004)), epidemiology (Brookhart, Schneeweiss, Rothman, Glynn, Avorn, and Stürmer
(2006)), political science (Ho, Imai, King, and Stuart (2007), Sekhon (2008)), and sociol-
ogy (Morgan and Harding (2006)).

Among all the matching methods, nearest neighbor (NN) matching (Rubin (1973))
is likely the most frequently used and easiest to implement approach. In the simplest
treatment-control study, NN matching assigns each treatment (control) individual to M
control (treatment) individuals with the smallest distance to it. In this regard, two ques-
tions arise. First, how do we select the number of matches, M? This is referred to in the
literature as ratio matching, and is both important and delicate, well known to be related
to the bias-variance trade-off in nonparametic statistics (Smith (1997), Rubin and Thomas
(2000), Imbens and Rubin (2015)). Second, how do we perform large-sample statistical
inference for NN matching estimators? Such an analysis is usually nonstandard and tech-
nically challenging. Indeed, it was long-lacking in the literature until Abadie and Imbens
(2006).
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To answer the above two questions, a series of papers (Abadie and Imbens (2006, 2008,
2011, 2012)) established large-sample properties of M-NN matching for estimating the
average treatment effect (ATE). These results are, however, only valid when in ratio
matching, M is fixed. The according message is then mixed. As a matter of fact, the ATE
estimator based on M-NN matching with a fixed M is asymptotically biased and ineffi-
cient. While bias correction is now feasible to alleviate the first issue (Abadie and Imbens
(2011)), the lack of efficiency seems fundamental.

This manuscript revisits the study of Abadie and Imbens (2006) from a new perspective,
bridging M-NN matching to density ratio estimation (Nguyen, Wainwright, and Jordan
(2010), Sugiyama, Suzuki, and Kanamori (2012)) as well as double robustness (Scharf-
stein, Rotnitzky, and Robins (1999), Bang and Robins (2005)). To this end, our analysis
stresses, in ratio matching, the benefits of forcing M to diverge with the sample size n
in order to achieve statistical efficiency. Our claim is thus aligned with observations in
the random graph-based inference literature (Wald and Wolfowitz (1940), Friedman and
Rafsky (1979), Henze (1988), Liu and Singh (1993), Henze and Penrose (1999), Berrett,
Samworth, and Yuan (2019), Bhattacharya (2019), Shi, Drton, and Han (2023, 2022), Lin
and Han (2023)).

The contributions of this manuscript are two-fold. First, we show that a statistic that
plays a pivotal role in the analysis of Abadie and Imbens (2006), KM (x) (Abadie and Im-
bens (2006, p. 240); to be defined in (2.2) of Section 2), which measures the number of
matched times of the covariate value x, actually gives rise to a consistent density ratio
estimator in the two-sample setting. Furthermore, from the angle of density ratio esti-
mation, this NN matching-based estimator is to our knowledge the first one that simul-
taneously satisfies being conceptually one step, computationally efficient, and statistically
rate-optimal. This estimator itself is thus an appealing alternative to existing density ratio
estimators.

Getting back to the original ATE estimation problem, our second contribution is to use
the above insights to bridge the bias-corrected matching estimator (Abadie and Imbens
(2011)), doubly robust estimators (Scharfstein, Rotnitzky, and Robins (1999), Bang and
Robins (2005), Farrell (2015)), and double machine learning estimators (Chernozhukov
et al. (2018)). In fact, Abadie and Imbens’ (2011) bias-corrected estimator can be formu-
lated as

τ̂bc
M = τ̂reg +

1

n

[
n∑

i=1�Di=1

(
1 +

KM (i)

M

)
R̂i −

n∑

i=1�Di=0

(
1 +

KM (i)

M

)
R̂i

]

(see Lemma 3.1, with notation introduced in Section 3 and KM (i) representing the num-
ber of times the unit i is matched), and then 1 + KM (i)/M converges to the inverses of
the propensity scores 1 − e(Xi) and e(Xi) for units with Di = 0 and 1, respectively. One
could then leverage the general double robustness and double machine learning theory
to validate the following two properties of τ̂bc

M :
(1) Consistency: τ̂bc

M converges in probability to the population ATE, if either the density
(propensity score) functions satisfy certain conditions or the outcome (regression)
model is consistently estimated, with M logn/n→ 0 and M → ∞ as n → ∞.

(2) Semiparametric efficiency: τ̂bc
M is an asymptotically Normal estimator of τ with the

asymptotic variance attaining the semiparametric efficiency lower bound (Hahn
(1998)), if the density functions are sufficiently smooth, the outcome model is con-
sistently estimated, and M scales with n at a proper rate. Furthermore, a simple
consistent estimator of the asymptotic variance is available.
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Although Abadie and Imbens (2006, Theorem 5) hints at the necessity of allowing M to
diverge for gaining efficiency, we provide rigorous theory for their conjecture. Our results
thus complement those made in Abadie and Imbens (2006, 2011) and provide additional
theoretical justifications for practitioners to use NN matching for inferring the ATE.

Technically, our analysis hinges on a diverging M that grows with n. In contrast, existing
results on NN matching for causal effects (Abadie and Imbens (2006, 2008, 2011, 2012))
all focused on a fixed M . Instead, we take a different route to establish nonasymptotic
moment bounds on KM (x) with more flexibility in specifying the rate of M with respect
to n (see Lin and Han (2023) for a similar idea in analyzing rank-based statistics).

Paper Organization. The rest of this manuscript proceeds as follows. Section 2 gives a
brief overview of the NN matching-based density ratio estimator. Section 3 revisits Abadie
and Imbens’ (2011) bias-corrected NN matching-based estimator of the ATE, τ̂bc

M . Sec-
tion 4 elaborates on the double robustness and semiparametric efficiency of τ̂bc

M as well
as its double machine learning version. Section 5 presents simulation studies to comple-
ment the theory. Section 6 includes some final remarks. We relegate technical details to
the Appendix as well as an Online Appendix in the Supplementary Material (Lin, Ding,
and Han (2023)). Appendices A and B introduce the algorithms and theory for the NN
matching-based density ratio estimator. Appendix C and the Online Appendix present
the proofs of results in the paper and in the Appendix, respectively.

Notation. For any integers n�d ≥ 1, let �n� = {1�2� � � � � n}, n! be the factorial of n,
and R

d be the d-dimensional real space. A set consisting of distinct elements x1� � � � � xn

is written as either {x1� � � � � xn} or {xi}
n
i=1, and its cardinality is written by |{xi}

n
i=1|. The

corresponding sequence is denoted by [x1� � � � � xn] or [xi]
n
i=1. Let 1(·) denote the indicator

function. For any a�b ∈ R, write a ∨ b = max{a�b} and a ∧ b = min{a�b}. We use
d−→

and
p−→ to denote convergence in distribution and in probability, respectively. For any

sequence of random variables {Xn}, write Xn = oP(1) if Xn

p−→ 0 and Xn = OP(1) if Xn is
bounded in probability. Let PZ represent the law of a random variable Z.

2. DENSITY RATIO ESTIMATION VIA NN-MATCHING

Consider two general random vectors X , Z in R
d that are defined on the same proba-

bility space, with d to be a fixed positive integer. Let ν0 and ν1 represent the probability
measures of X and Z, respectively. Assume ν0 and ν1 are absolutely continuous with re-
spect to the Lebesgue measure λ on R

d equipped with the Euclidean norm ‖·‖; denote
the corresponding densities (Radon–Nikodym derivatives) by f0 and f1. Assume further
that ν1 is absolutely continuous with respect to ν0 and write the corresponding density
ratio, f1/f0, as r; set 0/0 = 0 by default.

Assume X1� � � � �XN0
are N0 independent copies of X , Z1� � � � �ZN1

are N1 independent

copies of Z, and [Xi]
N0
i=1 and [Zj]

N1
j=1 are mutually independent. The problem of estimat-

ing the density ratio r based on {X1� � � � �XN0
�Z1� � � � �ZN1} is fundamental in economics

(Cunningham (2021)), information theory (Cover and Thomas (2006)), machine learn-
ing (Sugiyama, Suzuki, and Kanamori (2012)), statistics (Imbens and Rubin (2015)), and
other fields.

In density ratio estimation, NN-based estimators are advocated before due to its com-
putational efficiency; cf. Lima, Cunha, Oyaizu, Frieman, Lin, and Sheldon (2008), Póc-
zos and Schneider (2011), Kremer, Gieseke, Pedersen, and Igel (2015), Noshad, Moon,
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Sekeh, and Hero (2017), Berrett, Samworth, and Yuan (2019), Zhao and Lai (2020),
among many others. Based on Abadie and Imbens’ (2006, 2008, 2011, 2012) NN matching
framework, we propose a new density ratio estimator based on NN matching. To this end,
some necessary notation is introduced first.

DEFINITION 2.1—NN Matching: For any x�z ∈ R
d and M ∈ �N0 �:

(i) let X(M)(·) : Rd → {Xi}
N0
i=1 be the mapping that returns the value of the input z’s

Mth NN in {Xi}
N0
i=1, that is, the value of x ∈{Xi}

N0
i=1 such that

N0∑

i=1

1
(
‖Xi − z‖ ≤ ‖x− z‖

)
=M; (2.1)

(ii) let KM (·) : Rd → {0} ∪ �N1 � be the mapping that returns the number of matched
times of x, that is,

KM (x) =KM

(
x;{Xi}

N0
i=1�{Zj}

N1
j=1

)
=

N1∑

j=1

1
(
‖x−Zj‖ ≤

∥∥X(M)(Zj) −Zj

∥∥)
; (2.2)

(iii) let AM (·) : Rd → B(Rd) be the corresponding mapping from R
d to the class of all

Borel sets in R
d so that

AM (x) = AM

(
x;{Xi}

N0
i=1

)
=

{
z ∈ R

d : ‖x− z‖ ≤
∥∥X(M)(z) − z

∥∥}
(2.3)

returns the catchment area of x in the setting of (ii).

Because ν0 is absolutely continuous with respect to the Lebesgue measure, (2.1) has a
unique solution. Abadie and Imbens (2006, pp. 240 and 260) introduced the terms KM (·)
and AM (·) to analyze the asymptotic behavior of their NN matching-based ATE esti-
mator. We also adopt their terminology “catchment area” in Definition 2.1(iii). Proposi-
tion 2.1 below formally links KM (·) to AM (·). It was established in the proof of Abadie
and Imbens (2006, Lemma 3), and is stated here to aid understanding.

PROPOSITION 2.1: For any x ∈R
d , we have KM (x) =

∑N1
j=1 1(Zj ∈ AM (x)).

REMARK 2.1—Relation Between AM (Xi)’s and Voronoi Tessellation When M = 1: We

can verify that, due to the absolute continuity of ν0, [A1(Xi)]
N0
i=1 are almost surely disjoint

except for a Lebesgue measure zero area, and partition R
d into N0 polygons. Further-

more, we can also verify that {A1(Xi)}
N0
i=1 are exactly the Voronoi tessellation defined in

Voronoi (1908), which plays a vital role in stochastic and computational geometry. In this
case, each element A1(Xi) is a Voronoi cell from the definition of (2.3).

With these notation and concepts, we are now ready to introduce the following density
ratio estimator based on NN matching.

DEFINITION 2.2—NN Matching-Based Density Ratio Estimator: For any M ∈ �N0 �
and x ∈ R

d , we define the following estimator for r(x):

r̂M (x) = r̂M
(
x;{Xi}

N0
i=1�{Zj}

N1
j=1

)
=

N0

N1

KM (x)

M
� (2.4)
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The estimator r̂M (·) is by construction a one-step estimator, and satisfies the following
two properties simultaneously:

(P1) Computationally of low complexity: it is of a subquadratic (and nearly linear when
M is small) time complexity via a careful algorithmic formulation based on k-d
trees (see Algorithms 1–2 and Theorem A.1 in Appendix A), and thus in many sci-
entific applications is computationally more attractive than its optimization-based
alternatives (Lima et al. (2008), Kremer et al. (2015), Borgeaud et al. (2021)).

(P2) Statistically rate-optimal: it is information-theoretically efficient in terms of
achieving an upper bound of estimation accuracy that matches the corresponding
minimax lower bound over a class of Lipschitz density functions (see Appendix B).

3. REVISITING THE BIAS-CORRECTED MATCHING ESTIMATOR OF THE ATE

This section studies the bias-corrected NN matching-based estimator of the ATE,
proposed in Abadie and Imbens (2011) to correct the asymptotic bias of the original
matching-based estimator derived by Abadie and Imbens (2006). To this end, we lever-
age the new insights in Section 2 as well as the technical results in Appendices A–B, and
bridge the study to both the classic double robustness and the modern double machine
learning frameworks.

We first review the setup for the NN matching-based estimator and its bias-corrected
version. Following Abadie and Imbens (2006), let [(Xi�Di�Yi)]ni=1 be n independent
copies of (X�D�Y ), where D ∈ {0�1} is a binary treatment variable, let X ∈ R

d repre-
sent the individual covariates, assumed to be absolute continuous admitting a density fX ,
and let Y ∈ R stand for the outcome variable.

For each unit i ∈ �n�, we observe Di = 1 if in the treated group and Di = 0 if in
the control group. Let n0 =

∑n

i=1(1 − Di) and n1 =
∑n

i=1 Di be the numbers of con-
trol and treated units, respectively. Under the potential outcomes framework (Rubin
(1974)), the unit i has two potential outcomes, Yi(1) and Yi(0), but we observe only
one of them: Yi = DiYi(1) + (1 −Di)Yi(0). The goal is to estimate the population ATE,
τ = E[Yi(1) − Yi(0)], based on the observations {(Xi�Di�Yi)}

n
i=1. To estimate ATE, we

consider its empirical counterpart τ̂M = n−1
∑n

i=1[Ŷi(1) − Ŷi(0)], where Ŷi(0) and Ŷi(1)
are the imputed outcomes of Yi(0) and Yi(1). Following Abadie and Imbens (2006), we
focus on the matching-based estimator by imputing missing potential outcomes as

Ŷi(0) =

⎧
⎪«
⎪¬

Yi if Di = 0�
1

M

∑

j∈JM (i)

Yj if Di = 1 and Ŷi(1) =

⎧
⎪«
⎪¬

1

M

∑

j∈JM (i)

Yj if Di = 0�

Yi if Di = 1�

Here, JM (i) represents the index set of M-NNs of Xi in {Xj : Dj = 1 − Di}
n
j=1, that is,

the set of all indices j ∈ �n� such that Dj = 1 −Di and
∑n

�=1�D�=1−Di
1(‖X� −Xi‖ ≤ ‖Xj −

Xi‖) ≤ M . With a slight abuse of notation, let KM (i) represent the number of matched
times for unit i, that is, KM (i) =

∑n

j=1�Dj=1−Di
1(i ∈JM (j)). We can then rewrite the above

matching-based estimator as

τ̂M =
1

n

[
n∑

i=1�Di=1

(
1 +

KM (i)

M

)
Yi −

n∑

i=1�Di=0

(
1 +

KM (i)

M

)
Yi

]
� (3.1)

However, when d > 1, the bias of τ̂M is asymptotically nonnegligible (Abadie and Im-
bens (2006)). To fix this, Abadie and Imbens (2011) proposed the following bias-corrected
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version for τ̂M . In detail, let μ̂0(x) and μ̂1(x) be mappings from R
d to R that estimate the

conditional means of the outcomes μ0(x) = E[Y |X = x�D = 0] and μ1(x) = E[Y |X =
x�D = 1], respectively, with the corresponding residuals R̂i = Yi−μ̂Di

(Xi), i ∈ �n�. Define
the estimator based on outcome regressions as τ̂reg = n−1

∑n

i=1[μ̂1(Xi) − μ̂0(Xi)]. Con-
sider the bias-corrected matching-based estimator in Abadie and Imbens (2011):

τ̂bc
M =

1

n

n∑

i=1

[
Ŷ bc

i (1) − Ŷ bc
i (0)

]
� (3.2)

with

Ŷ bc
i (0) =

⎧
⎪«
⎪¬

Yi if Di = 0�
1

M

∑

j∈JM (i)

(
Yj + μ̂0(Xi) − μ̂0(Xj)

)
if Di = 1�

and

Ŷ bc
i (1) =

⎧
⎪«
⎪¬

1

M

∑

j∈JM (i)

(
Yj + μ̂1(Xi) − μ̂1(Xj)

)
if Di = 0�

Yi if Di = 1�

Lemma 3.1 below shows an equivalent form of τ̂bc
M .

LEMMA 3.1: The bias-corrected matching-based estimator in (3.2) can be rewritten in
terms of τ̂reg and the residuals R̂i’s as

τ̂bc
M = τ̂reg +

1

n

[
n∑

i=1�Di=1

(
1 +

KM (i)

M

)
R̂i −

n∑

i=1�Di=0

(
1 +

KM (i)

M

)
R̂i

]
� (3.3)

Otsu and Rai (2017) derived another linear form of τ̂bc
M to motivate a bootstrap pro-

cedure for variance estimation. The form in (3.3) is related to doubly robust estimators
reviewed shortly. In detail, we first have some outcome models and residuals defined in
the same way as above, and then let ê(x) : Rd → R be a generic estimator of the propen-
sity score (Rosenbaum and Rubin (1983)), e(x) = P(D = 1|X = x). The doubly robust
estimator in Scharfstein, Rotnitzky, and Robins (1999) and Bang and Robins (2005) could
then be formulated as

τ̂dr = τ̂reg +
1

n

[
n∑

i=1�Di=1

1

ê(Xi)
R̂i −

n∑

i=1�Di=0

1

1 − ê(Xi)
R̂i

]
� (3.4)

Conditional on (D1� � � � �Dn), [Xi : Di = ω]ni=1 are nω i.i.d. random variables sampled
from the distribution of X|D = ω, and the two groups of sample points, [Xi : Di =
0]ni=1 and [Xi : Di = 1]ni=1, are mutually independent. Let fX|D=ω denote the density of
X|D = ω. From the construction of KM (i) and results in Appendix B, once allowing M
to diverge to infinity, conditional on (D1� � � � �Dn), n0/n1 ·KM (i)/M and n1/n0 ·KM (i)/M
are consistent estimators of fX|D=1(Xi)/fX|D=0(Xi) and fX|D=0(Xi)/fX|D=1(Xi) for units
with Di = 0 and Di = 1, respectively. Because n1/n0 converges almost surely to P(D =
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1)/P(D = 0) by the law of large numbers, the statistic 1 + KM (i)/M is then a consistent
estimator of 1/(1 − e(Xi)) and 1/e(Xi) for units with Di = 0 and Di = 1, respectively.
Thus, in view of (3.4), the bias-corrected matching-based estimator τ̂bc

M in (3.3) is actually
a doubly robust estimator of τ, and accordingly, should also enjoy all the correspond-
ing desirable properties. This novel insight into τ̂bc

M allows us to establish its asymptotic
properties with a diverging M .

4. ASYMPTOTIC ANALYSIS WITH DIVERGING M

The theory for matching with a diverging M has been an important gap in the litera-
ture. With a univariate covariate, Abadie and Imbens (2006) provided a heuristic argu-
ment about the additional efficiency gain for τ̂M with larger M . With a general covariate,
Abadie and Imbens (2011) used simulation to evaluate the finite-sample properties of
τ̂bc
M and highlighted the importance of bias correction with large M . Nevertheless, exist-

ing theoretical results for NN matching estimators all focused on fixed M (Abadie and
Imbens (2006, 2008, 2011, 2016), Kallus (2020), Armstrong and Kolesár (2021), Ferman
(2021)). In this section, we will present the corresponding theory with a diverging M and
also make connections between τ̂bc

M and double robustness/double machine learning esti-
mators.

4.1. The Original Matching-Based Estimator

We first analyze the original bias-corrected matching-based estimator τ̂bc
M . Let Uω =

Y (ω) − μω(X) for ω ∈ {0�1} and X be the support of X . Let ‖·‖∞ denote the L∞ norm
of a function.

We need following assumptions to prove the consistency of τ̂bc
M .

ASSUMPTION 4.1: (i) For almost all x ∈ X, D is independent of (Y (0)�Y (1)) conditional
on X = x, and there exists a constant η> 0 such that η< P(D = 1|X = x) < 1 −η.

(ii) [(Xi�Di�Yi)]ni=1 are i.i.d. following the joint distribution of (X�D�Y ).
(iii) E[U2

ω|X = x] is uniformly bounded for almost all x ∈ X and ω ∈{0�1}.
(iv) E[μ2

ω(X)] is bounded for ω ∈{0�1}.

ASSUMPTION 4.2: For ω ∈{0�1}, there exists a deterministic function μ̄ω(·) :Rd → R such
that E[μ̄2

ω(X)] is bounded and the estimator μ̂ω(x) satisfies ‖μ̂ω − μ̄ω‖∞ = oP(1).

ASSUMPTION 4.3: For ω ∈{0�1}, the estimator μ̂ω(x) satisfies ‖μ̂ω −μω‖∞ = oP(1).

Assumption 4.1(i) is the unconfoundedness and overlap assumptions, and is often re-
ferred to as the strong ignorability condition (Rosenbaum and Rubin (1983)). Assump-
tion 4.2 allows for outcome model misspecification; for example, if μ̂ω = μ̄ω = 0, τ̂bc

M then
reduces to τ̂M . Assumption 4.3 assumes that the outcome models are consistently esti-
mated.

We need the following assumptions to prove the efficiency of τ̂bc
M .

ASSUMPTION 4.4: (i) E[U2
ω|X = x] is uniformly bounded away from zero for almost all

x ∈ X and ω ∈{0�1}.
(ii) There exists a constant κ > 0 such that E[|Uω|2+κ|X = x] is uniformly bounded for

almost all x ∈X and ω ∈{0�1}.
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(iii) maxt∈��d/2�+1
‖∂tμω‖∞ is bounded, where for any positive integer k, �k is the set of all

d-dimensional vectors of nonnegative integers t = (t1� � � � � td) such that
∑d

j=1 tj = k

and �·� stands for the floor function.

ASSUMPTION 4.5: For ω ∈{0�1}, the estimator μ̂ω(x) satisfies

max
t∈��d/2�+1

∥∥∂tμ̂ω

∥∥
∞ =OP(1) and max

t∈��

∥∥∂tμ̂ω − ∂tμω

∥∥
∞ =OP

(
n−γ�

)
for all � ∈

�
�d/2�

�
�

with some constants γ�’s satisfying γ� >
1
2
− �

d
for �= 1�2� � � � � �d/2�.

Assumption 4.4 is comparable to Assumption A.4 and the assumptions in Abadie and
Imbens (2011, Theorem 2). Compared with the assumptions in Abadie and Imbens (2011,
Theorem 2), Assumption 4.4(iii) is weaker in the sense that it only requires a finite order
of smoothness. Assumption 4.5 again assumes the approximation accuracy of the out-
come models, with lower convergence rates required for higher-order derivatives of the
outcome models. Under some smoothness conditions on the outcome model as made
in Abadie and Imbens (2011), Assumption 4.5 holds using power series approximation
(Abadie and Imbens (2011, Lemma A.1)). Lastly, compared with Chernozhukov et al.
(2018), we need approximation accuracy concerning derivatives of the outcome model
estimator, which is not required in Chernozhukov et al. (2018); see Section 4.2 for more
discussions.

Theorem 4.1 below presents the double robustness and semiparametric efficiency prop-
erties of τ̂bc

M . Recall the semiparametric efficiency lower bound for estimating ATE (see
Hahn (1998)):

σ2 = E

[
μ1(X) −μ0(X) +

D
(
Y −μ1(X)

)

e(X)
−

(1 −D)
(
Y −μ0(X)

)

1 − e(X)
− τ

]2

�

and introduce an estimator for σ2 based on NN matching:

σ̂2 =
1

n

n∑

i=1

[
μ̂1(Xi) − μ̂0(Xi) + (2Di − 1)

(
1 +

KM (i)

M

)
R̂i − τ̂bc

M

]2

�

THEOREM 4.1: (i) (Double robustness of τ̂bc
M) On one hand, if the distribution of

(X�D�Y ) satisfies Assumptions 4.1, 4.2, either (PX|D=0�PX|D=1) or (PX|D=1�PX|D=0)
satisfies Assumption B.1 in the Appendix, and M logn/n → 0 and M → ∞ as

n → ∞, then τ̂bc
M − τ

p−→ 0.
On the other hand, if the distribution of (X�D�Y ) satisfies Assumptions 4.1 and

4.3, then τ̂bc
M − τ

p−→ 0.
(ii) (Semiparametric efficiency of τ̂bc

M) Assume the distribution of (X�D�Y ) satisfies As-
sumptions 4.1, 4.4, 4.5, and either (PX|D=0�PX|D=1) or (PX|D=1�PX|D=0) satisfies As-
sumption B.1 in the Appendix. Define

γ =
{

min
�∈��d/2��

[
1 −

(
1

2
− γ�

)
d

�

]}
∧

[
1 −

1

2

d

�d/2� + 1

]
�

recalling that γ�’s were introduced in Assumption 4.5. Then, if M → ∞ and M/nγ →
0 as n → ∞, we have

√
n(̂τbc

M − τ)
d−→ N(0�σ2).

If in addition Assumption 4.3 holds, then σ̂2 p−→ σ2.
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REMARK 4.1: To be in line with the double robustness terminology, we can call As-
sumptions B.1 used in Theorem 4.1 the “density (or propensity) model assumptions” and
Assumptions 4.3–4.5 the “outcome (or regression) model assumptions.”

REMARK 4.2: The first part of Theorem 4.1(i) requires M → ∞ for achieving the con-
sistency of the propensity score model. When M is fixed and the outcome model is mis-
specified, τ̂bc

M is no longer doubly robust in the sense of Theorem 4.1. However, it does not
imply that τ̂bc

M is inconsistent for estimating τ. In fact, Abadie and Imbens (2006, Theo-
rem 3) showed that τ̂bc

M with a fixed M can still be consistent even if we choose μ̂w = 0 for
w = 0�1. They showed that τ̂bc

M with a fixed M is consistent as long as the outcome models
are smooth but misspecified since the matching discrepancy then converges to zero.

REMARK 4.3: Theorem 4.1 has implications for practical data analysis. We discuss two.
First, it highlights the importance of allowing M to diverge in asymptotic analysis. Nev-
ertheless, it is a challenging problem to choose M in finite samples. We use simulation
to illustrate the choice of M . Second, it gives an alternative variance estimator σ̂2 for the
bias-corrected matching estimator when M diverges. Abadie and Imbens (2006) gave an-
other variance estimator for fixed M . While it is challenging to compare the two variance
estimators in theory, we use simulation to compare them in finite samples. See Section 5
for the details of simulation.

If d = 1 and we pick μ̂ω = 0 for ω ∈{0�1}, then Assumption 4.5 automatically holds and
the bias-corrected estimator τ̂bc

M reduces to the original estimator τ̂M studied in Abadie
and Imbens (2006). Theorem 4.1(ii) then directly implies the following corollary that cor-
responds to Abadie and Imbens (2006, Corollary 1) with one key difference that M goes
to infinity here.

COROLLARY 4.1—Semiparametric efficiency of τ̂M when d = 1: Assume d = 1, the
distribution of (X�D�Y ) satisfies Assumptions 4.1, 4.4, and either (PX|D=0�PX|D=1) or

(PX|D=1�PX|D=0) satisfies Assumption B.1 in the Appendix. If M → ∞ and M/n
1
2 → 0 as

n → ∞, then
√
n(̂τM − τ)

d−→ N(0�σ2).

REMARK 4.4: By picking μ̂ω = 0 for τ̂M , Assumption 4.3 is in general no longer satis-
fied. Accordingly, in Corollary 4.1, σ̂2 may not be a consistent estimator of σ2 without ad-
ditional assumptions. However, by decomposing σ2 into the form of Theorem 1 in Hahn
(1998), one could still estimate σ2 via a similar and direct way as what is outlined in Sec-
tion 4 in Abadie and Imbens (2006). We do not pursue this track in detail here as the case
of d = 1 without Assumption 4.3 is beyond the main scope of this manuscript.

4.2. A Double Machine Learning Version of the Matching

Assumptions 4.4 and 4.5 enforce arguably strong requirements on the smoothness of
the outcome model. To weaken such assumptions, Chernozhukov et al. (2018) introduced
the idea of double machine learning. In this section, we consider the option to combine
NN matching with double machine learning.

Assume n is divisible by K for simplicity. Let [Ik]Kk=1 be a K-fold random partition of
�n�, with each of size equal to n′ = n/K. For each k ∈ �K� and ω ∈{0�1}, construct μ̂ω�k(·)
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using data [(Xj�Dj�Yj)]nj=1�j /∈Ik , and let KM�k(i) be the number of matched times for unit
i by adding (Xi�Di�Yi) into [(Xj�Dj�Yj)]nj=1�j /∈Ik . Define

qτbc
M�k =

1

n′

n∑

i=1�i∈Ik

[
μ̂1�k(Xi) − μ̂0�k(Xi)

]
+

1

n′

[
n∑

i=1�i∈Ik�Di=1

(
1 +

KM�k(i)

M

)(
Yi − μ̂1�k(Xi)

)

−
n∑

i=1�i∈Ik�Di=0

(
1 +

KM�k(i)

M

)(
Yi − μ̂0�k(Xi)

)
]

for k = 1� � � � �K, and then define τ̃bc
M�K = K−1

∑K

k=1 qτbc
M�k. We can use the same variance

estimator σ̂2 for τ̃bc
M�K .

To analyze τ̃bc
M�K instead of τ̂bc

M , we replace Assumptions 4.4 and 4.5 with the following
two assumptions.

ASSUMPTION 4.6: (i) E[U2
ω] is bounded away from zero for ω ∈{0�1}.

(ii) There exists a constant κ > 0 such that E[|Y |2+κ] is bounded.

ASSUMPTION 4.7: For ω ∈ {0�1}, the estimator μ̂ω(x) satisfies ‖μ̂ω − μω‖∞ =
oP(n−d/(4+2d)).

REMARK 4.5: Assumption 4.6 corresponds to Assumption 5.1 in Chernozhukov et al.
(2018), and is similar to Assumption 4 in Abadie and Imbens (2006). Assumption 4.7 as-
sumes approximation accuracy of the outcome model under the L∞ norm. Abadie and
Imbens (2011) used the power series approximation (Newey (1997)) to estimate the out-
come model, which under some classic nonparametric statistics assumptions automati-
cally satisfies Assumption 4.7 (cf. Lemma A.1 in Abadie and Imbens (2011)). The same
conclusion also applies to spline and wavelet regression estimators; cf. Chen and Chris-
tensen (2015).

REMARK 4.6: Assumption 4.7 assumes an approximation rate under L∞ norm. This is
different from the L2 norm put in Chernozhukov et al. (2018, Assumption 5.1), but can be
handled with some trivial modifications to the proof of Chernozhukov et al. (2018, The-
orem 5.1) since one can replace the Cauchy–Schwarz inequality by the L1–L∞ Hölder’s
inequality. An L1-norm bound on KM (i)/M , to be established in Theorem B.4 in the
Appendix, can then be applied directly.

THEOREM 4.2: (i) (Double robustness of τ̃bc
M�K) On one hand, if the distribution of

(X�D�Y ) satisfies Assumptions 4.1, 4.2, either (PX|D=0�PX|D=1) or (PX|D=1�PX|D=0)
satisfies Assumption B.1 in the Appendix, and M logn/n → 0 and M → ∞ as

n → ∞, then τ̃bc
M�K − τ

p−→ 0.
On the other hand, if the distribution of (X�D�Y ) satisfies Assumptions 4.1 and

4.3, then τ̃bc
M�K − τ

p−→ 0.

(ii) (Semiparametric efficiency of τ̃bc
M�K) Assume the distribution of (X�D�Y ) satisfies As-

sumptions 4.1, 4.6, 4.7 and either (PX|D=0�PX|D=1) or (PX|D=1�PX|D=0) satisfies As-

sumption B.3 in the Appendix. Then if we pick M = αn
2

2+d for some constant α > 0,

then
√
n(̃τbc

M�K − τ)
d−→ N(0�σ2).

In addition, we have σ̂2 p−→ σ2.
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REMARK 4.7: There are two parts where Theorem 4.2(ii) requires stronger conditions
than Theorem 4.1(ii). First, Theorem 4.2(ii) requires M to grow polynomially fast with
n, whereas Theorem 4.1(ii) only requires M to (i) diverge not so fast for controlling the
difference of matching units and (ii) diverge to infinity (no matter how slowly it is) for
achieving semiparametric efficiency. The assumptions in Theorems 4.1(ii) and 4.2(ii) both
ensure semiparametric efficiency for bias-corrected matching-based estimators. Second,
Theorem 4.1(ii) only requires Assumption B.1 for the density model. This is again weaker
than the Lipschitz-type conditions (Assumption B.3) assumed in Theorem 4.2(ii) but is
in line with the observations made in Abadie and Imbens (2006) and Abadie and Imbens
(2011). Of note, these relaxations are possible due to adding more smoothness assump-
tions on the outcome model (Assumptions 4.4–4.5 versus Assumptions 4.6–4.7).

REMARK 4.8: Technically, to use Chernozhukov et al.’s (2018) Theorem 5.1 to estab-
lish Theorem 4.2, we need some modifications due to a reparametrization of the nui-
sance parameters. This is because Chernozhukov et al. (2018) considered estimating
1/e(X) and 1/(1 − e(X)) via plugging in an estimate of e(X), whereas τ̃bc

M�K directly uses
1 + KM (X)/M to estimate 1/e(X) and 1/(1 − e(X)) for units with D = 1 and D = 0,
respectively. We elaborate the modifications in the proof of Theorem 4.2(ii).

5. SIMULATION

This section uses simulation to complement the theory. We consider bias-corrected
matching estimators with either a fixed or diverging M , with the asymptotic variance esti-
mated by either σ̂2 or the estimator introduced in Abadie and Imbens (2006, Section 4).

The first data are from the National Supported Work (LaLonde (1986)). We use the
specific sample studied in Dehejia and Wahba (1999). The data contain 185 treated and
260 control units. To simulate data from this study, we follow the Monte Carlo simula-
tion design of Athey, Imbens, Metzger, and Munro (2023), and use the same pretreat-
ment variables that include “age,” “education,” “black,” ‘Hispanic,” “married,” “node-
gree,” “re74,” and “re75.” By using the conditional Wasserstein Generative Adversarial
Networks (WGAN), one could then create a large population of observations similar to
the real data, and have access to both potential outcomes for evaluating the treatment
effect. Specifically, we directly use the conditional WGAN generated data available on
the repository of Athey et al. (2023). There the population size is 1,000,000. For a given
sample size n, we set n1 = n ∗ 185/(185 + 260) and n0 = n ∗ 260/(185 + 260), and draw
samples from the generated data separately for treated and control groups. We consider
n ∈{600�1200�4800�9600}.

The second data are from Shadish, Clark, and Steiner (2008), which evaluated the ef-
fects of mathematical training on mathematics test performance. We use the data from the
nonrandomized arm. The data contain 79 treated and 131 control units. We use nine pre-
treatment covariates including “vocabulary pretest,”, “mathematics pretest,”, “number of
prior mathematics courses,” ‘Caucasian,” “age,” “male,” “mother education,” “father ed-
ucation,” and “high school GPA.” We follow the Monte Carlo simulation design of Athey
et al. (2023) to generate new data with population size 1,000,000. For a given sample size
n, we set n1 = n ∗ 79/(79 + 131) and n0 = n ∗ 131/(79 + 131). Other settings are the same
as those of the first data.

We consider the estimator τ̂bc
M with both fixed M ∈ {1�4�16} and diverging M =

�αn2/(2+d)� of d = 4 for the first data and d = 7 for the second data; here, the diverg-
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ing rate is suggested by Theorem B.4. In this study, we pick α ∈ {0�5�1�2�5�10}. Notice
that here we choose d = 4 for the first data since in the eight pretreatment variables there
are only four continuous variables; it is straightforward to check that the rest four binary
variables will not affect the asymptotic properties established in this manuscript as well as
those in Abadie and Imbens (2006). We choose d = 7 for the second data based on the
same reason. For the outcome models, we consider the second-order power series. The
estimator’s asymptotic variance is estimated using either σ̂ in Theorem 4.1(ii) (SE) or
Abadie and Imbens’s (2006) (AISE). We implement 2000 repetitions and Tables I and II
report the calculated root-mean-squared-error (RMSE), bias, standard deviation (SD),
mean-absolute-error (MAE), and the empirical coverage rate for nominal 95% and 90%
confidence intervals. Tables I and II also provide inside the parentheses the root-n scaled
RMSE, bias, SD, and MAE divided by σ∗, with σ∗ computed as the sample size-scaled
standard deviation of τ̂bc

M with the sample size chosen to be 100�000, α = 1, and 2000

TABLE I

SIMULATION RESULTS, LALONDE (1986), σ∗ = 9�55.

n M RMSE Bias SD MAE

95% Coverage 90% Coverage

SE AISE SE AISE

600 M = 1 1�055 (2�71) −0�039 (−0�10) 1�054 (2�70) 0�469 (1�20) 0�930 0�913 0�868 0�858
M = 4 1�043 (2�68) −0�038 (−0�10) 1�042 (2�67) 0�442 (1�13) 0�926 0�911 0�862 0�847
M = 16 1�037 (2�66) −0�027 (−0�07) 1�036 (2�66) 0�435 (1�12) 0�931 0�913 0�873 0�858
α = 0�5 1�043 (2�68) −0�038 (−0�10) 1�042 (2�67) 0�442 (1�13) 0�926 0�911 0�862 0�847
α = 1 1�039 (2�67) −0�034 (−0�09) 1�039 (2�67) 0�437 (1�12) 0�928 0�911 0�864 0�845
α = 2 1�037 (2�66) −0�027 (−0�07) 1�036 (2�66) 0�435 (1�12) 0�931 0�913 0�873 0�858
α = 5 1�037 (2�66) −0�022 (−0�06) 1�037 (2�66) 0�434 (1�11) 0�948 0�927 0�891 0�869
α = 10 1�037 (2�66) −0�058 (−0�15) 1�036 (2�66) 0�433 (1�11) 0�947 0�926 0�901 0�882

1200 M = 1 0�341 (1�24) −0�001 (−0�00) 0�341 (1�24) 0�272 (0�99) 0�939 0�941 0�886 0�890
M = 4 0�310 (1�12) 0�002 (0�01) 0�310 (1�12) 0�248 (0�90) 0�934 0�936 0�884 0�887
M = 16 0�305 (1�11) 0�014 (0�05) 0�305 (1�11) 0�244 (0�88) 0�939 0�940 0�887 0�889
α = 0�5 0�309 (1�12) 0�003 (0�01) 0�309 (1�12) 0�247 (0�90) 0�940 0�942 0�882 0�883
α = 1 0�305 (1�11) 0�008 (0�03) 0�305 (1�11) 0�244 (0�89) 0�941 0�943 0�882 0�884
α = 2 0�306 (1�11) 0�018 (0�06) 0�305 (1�11) 0�244 (0�89) 0�939 0�939 0�886 0�887
α = 5 0�307 (1�11) 0�029 (0�10) 0�306 (1�11) 0�246 (0�89) 0�950 0�950 0�898 0�895
α = 10 0�307 (1�11) 0�020 (0�07) 0�306 (1�11) 0�245 (0�89) 0�955 0�956 0�908 0�907

4800 M = 1 0�163 (1�18) −0�001 (−0�01) 0�163 (1�18) 0�129 (0�94) 0�949 0�948 0�900 0�901
M = 4 0�149 (1�08) −0�000 (−0�00) 0�149 (1�08) 0�118 (0�86) 0�951 0�951 0�897 0�897
M = 16 0�145 (1�05) 0�001 (0�01) 0�145 (1�05) 0�116 (0�84) 0�952 0�950 0�903 0�903
α = 0�5 0�146 (1�06) −0�000 (−0�00) 0�146 (1�06) 0�117 (0�85) 0�949 0�948 0�899 0�899
α = 1 0�145 (1�05) 0�001 (0�01) 0�145 (1�05) 0�116 (0�84) 0�952 0�950 0�903 0�903
α = 2 0�145 (1�05) 0�006 (0�04) 0�144 (1�05) 0�116 (0�84) 0�953 0�953 0�906 0�907
α = 5 0�145 (1�05) 0�017 (0�12) 0�144 (1�05) 0�116 (0�84) 0�957 0�957 0�906 0�903
α = 10 0�147 (1�06) 0�027 (0�19) 0�144 (1�05) 0�117 (0�85) 0�958 0�958 0�909 0�910

9600 M = 1 0�115 (1�18) −0�003 (−0�03) 0�115 (1�18) 0�092 (0�94) 0�951 0�952 0�897 0�896
M = 4 0�106 (1�08) −0�002 (−0�02) 0�105 (1�08) 0�084 (0�86) 0�950 0�950 0�901 0�901
M = 16 0�103 (1�06) −0�001 (−0�01) 0�103 (1�06) 0�082 (0�84) 0�948 0�948 0�902 0�902
α = 0�5 0�104 (1�07) −0�001 (−0�01) 0�104 (1�07) 0�082 (0�85) 0�953 0�951 0�904 0�905
α = 1 0�103 (1�06) −0�001 (−0�01) 0�103 (1�06) 0�082 (0�84) 0�950 0�950 0�904 0�903
α = 2 0�103 (1�05) 0�001 (0�02) 0�103 (1�05) 0�082 (0�84) 0�954 0�953 0�906 0�906
α = 5 0�104 (1�07) 0�010 (0�11) 0�103 (1�06) 0�083 (0�85) 0�951 0�950 0�899 0�898
α = 10 0�106 (1�09) 0�020 (0�20) 0�104 (1�07) 0�084 (0�87) 0�951 0�951 0�899 0�900
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TABLE II

SIMULATION RESULTS, SHADISH, CLARK, AND STEINER (2008), σ∗ = 3�85.

n M RMSE Bias SD MAE

95% Coverage 90% Coverage

SE AISE SE AISE

600 M = 1 0�190 (1�21) 0�005 (0�03) 0�190 (1�21) 0�152 (0�97) 0�879 0�942 0�806 0�888
M = 4 0�182 (1�16) 0�007 (0�04) 0�182 (1�16) 0�144 (0�92) 0�879 0�926 0�799 0�875
M = 16 0�180 (1�14) 0�011 (0�07) 0�179 (1�14) 0�143 (0�91) 0�865 0�921 0�785 0�866
α = 0�5 0�185 (1�18) 0�006 (0�04) 0�185 (1�18) 0�147 (0�94) 0�875 0�932 0�799 0�880
α = 1 0�182 (1�16) 0�007 (0�04) 0�182 (1�16) 0�144 (0�92) 0�879 0�926 0�799 0�875
α = 2 0�180 (1�15) 0�009 (0�06) 0�180 (1�14) 0�143 (0�91) 0�870 0�922 0�798 0�866
α = 5 0�179 (1�14) 0�012 (0�07) 0�179 (1�14) 0�143 (0�91) 0�863 0�922 0�780 0�863
α = 10 0�179 (1�14) 0�012 (0�08) 0�179 (1�14) 0�142 (0�91) 0�856 0�924 0�780 0�864

1200 M = 1 0�130 (1�17) 0�006 (0�05) 0�129 (1�16) 0�103 (0�93) 0�905 0�948 0�840 0�893
M = 4 0�123 (1�11) 0�008 (0�07) 0�123 (1�11) 0�098 (0�88) 0�898 0�934 0�822 0�879
M = 16 0�122 (1�09) 0�013 (0�12) 0�121 (0�19) 0�097 (0�87) 0�892 0�931 0�818 0�878
α = 0�5 0�125 (1�13) 0�008 (0�07) 0�125 (1�13) 0�100 (0�90) 0�898 0�943 0�836 0�885
α = 1 0�123 (1�11) 0�008 (0�07) 0�123 (1�11) 0�098 (0�88) 0�898 0�934 0�822 0�879
α = 2 0�122 (1�10) 0�011 (0�10) 0�121 (1�09) 0�097 (0�87) 0�896 0�934 0�819 0�877
α = 5 0�122 (1�10) 0�015 (0�13) 0�121 (1�09) 0�097 (0�87) 0�889 0�932 0�816 0�875
α = 10 0�121 (1�09) 0�017 (0�16) 0�120 (1�08) 0�097 (0�87) 0�880 0�930 0�799 0�876

4800 M = 1 0�064 (1�15) 0�006 (0�11) 0�063 (1�14) 0�051 (0�91) 0�918 0�943 0�858 0�890
M = 4 0�060 (1�09) 0�007 (0�12) 0�060 (1�08) 0�048 (0�87) 0�912 0�939 0�839 0�877
M = 16 0�060 (1�08) 0�009 (0�17) 0�059 (1�07) 0�048 (0�86) 0�902 0�926 0�825 0�865
α = 0�5 0�061 (1�09) 0�006 (0�12) 0�060 (1�09) 0�048 (0�87) 0�918 0�941 0�844 0�876
α = 1 0�060 (1�08) 0�007 (0�13) 0�060 (1�07) 0�048 (0�86) 0�908 0�933 0�838 0�870
α = 2 0�060 (1�08) 0�009 (0�16) 0�059 (1�07) 0�048 (0�86) 0�902 0�930 0�829 0�865
α = 5 0�060 (1�08) 0�012 (0�21) 0�059 (1�06) 0�048 (0�86) 0�895 0�920 0�824 0�861
α = 10 0�060 (1�09) 0�015 (0�26) 0�059 (1�05) 0�048 (0�87) 0�891 0�916 0�819 0�858

9600 M = 1 0�045 (1�14) 0�005 (0�14) 0�044 (1�13) 0�036 (0�91) 0�923 0�940 0�864 0�886
M = 4 0�042 (1�07) 0�006 (0�15) 0�042 (1�06) 0�034 (0�86) 0�920 0�933 0�853 0�881
M = 16 0�042 (1�06) 0�008 (0�20) 0�041 (1�04) 0�033 (0�85) 0�910 0�928 0�847 0�869
α = 0�5 0�042 (1�08) 0�006 (0�15) 0�042 (1�06) 0�034 (0�86) 0�922 0�938 0�856 0�882
α = 1 0�042 (1�06) 0�006 (0�16) 0�041 (1�05) 0�033 (0�85) 0�916 0�934 0�851 0�872
α = 2 0�042 (1�06) 0�008 (0�20) 0�041 (1�04) 0�033 (0�85) 0�912 0�929 0�847 0�869
α = 5 0�042 (1�07) 0�010 (0�25) 0�041 (1�04) 0�034 (0�86) 0�902 0�922 0�842 0�862
α = 10 0�042 (1�08) 0�012 (0�31) 0�041 (1�03) 0�034 (0�86) 0�897 0�916 0�829 0�860

Monte Carlo repetitions. Here, we use the value (σ∗)2 to approximate the semiparamet-
ric efficiency lower bound if the assumptions in Theorem 4.1 hold.

For the first data, two observations are in line:
1. Regardless of which n is chosen, picking M = �αn2/(2+d)� with α set to be 1 nearly

always achieves the smallest SD, RMSE, and MAE. The simulation results thus sup-
port our recommendation to increase M for achieving better statistical performance.

2. Although consistency is established under different requirements for M , the two
considered asymptotic variance estimators (SE and AISE) both yield good empirical
coverage rates. The coverage rates are both very close to the nominal ones when n
is large and there is not much difference between the two.

Some similar observations can be found for the second data. Notably, although picking
M = �αn2/(2+d)� with α= 1 is not achieving the smallest RMSE this time, its RMSE is very
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close to the smallest. However, for the second data, AISE yields generally better coverage
rates than SE, although SE’s coverage rates are improving as n increases.

To conclude, the simulation results generally support (a) increasing M with the sample
size n for minimizing the RMSE and (b) exploiting Abadie and Imbens’s (2006) approach
to estimating the asymptotic variance of τ̂bc

M . For choosing the M , the simulation results
favor M = �αn2/(2+d)� with α selected to be 1, while calculating the theoretically optimal
α is believed to be difficult and also is beyond the scope of this manuscript.

6. SOME FINAL REMARKS

Some alternative matching estimators can also achieve double robustness or semipara-
metric efficiency. Yang and Zhang (2023) proposed to use the NN matching based on
the propensity score (Rosenbaum and Rubin (1983), Abadie and Imbens (2016)) and the
prognostic score (Hansen (2008)) simultaneously, and established the double robustness
of the resulting matching estimator. They focused on fixed M , and consequently, their
estimator did not achieve semiparametric efficiency. Wang and Zubizarreta (2023) pro-
posed a matching method based on integer programming to ensure global balance of the
covariates, and established the efficiency of the resulting difference-in-means estimator.
They focused on fixed M , and even with fixed M , their integer programming problem was
computationally challenging compared with NN matching.

There are three additional questions addressed in Abadie and Imbens (2006, 2012).
First, estimation of the average treatment effect on the treated (ATT) can be incorpo-
rated in the double robustness and double machine learning framework (Theorem 4.2)
and matching framework (Theorem 4.1(ii)) in a similar way. Second, asymptotic Normal-
ity (with an additional asymptotic bias term) of τ̂M in general d can be established as
Theorem 4.1(ii). Third, unbalanced designs with n0 much larger than n1 cannot be incor-
porated in the double robustness and double machine learning framework, but can be
studied in the same way as Theorem 4.1(ii).

APPENDIX A: DENSITY RATIO ESTIMATION I: COMPUTATION

Additional Notation. For any two real sequences {an}
∞
n=1 and {bn}

∞
n=1, write an � bn (or

equivalently, bn � an) if there exists a universal constant C > 0 such that an/bn ≤ C for all
sufficiently large n, and write an ≺ bn (or equivalently, bn � an) if an/bn → 0 as n goes to
infinity. We write an � bn if both an � bn and bn � an hold. We write an =O(bn) if |an| � bn

and an = o(bn) if |an| ≺ bn. Denote the closed ball in R
d centered at x with radius δ by

Bx�δ. In the sequel, let c, C, C ′, C ′′, C ′′′� � � � be generic positive constants whose actual
values may change at different locations.

This section discusses implementation and establishes Property (P1) for the proposed
estimator r̂M (·). To this end, we separately discuss two cases:

Case I: estimating only the values of r̂M (·) at the observed data points X1� � � � �XN0
.

Case II: estimating the values of r̂M (·) at both the observed data points X1� � � � �XN0

and n new points x1� � � � � xn ∈ R
d .

Case I. In many applications, we are only interested in a functional of density ratios

at observed sample points, that is, the values of �({r(Xi)}
N0
i=1) for some given functions

� defined on R
N0 . Check, for example, in a slightly different but symmetric form—(3.3)

for such an example on ATE estimation. To this end, it is natural to consider the plug-in

estimator �({̂rM (Xi)}
N0
i=1), for which it suffices to compute the values of {̂rM (Xi)}

N0
i=1.
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Algorithm 1: Density ratio estimators at sample points.

Input: {Xi}
N0
i=1, {Zj}

N1
j=1, and M .

Output: {̂rM (Xi)}
N0
i=1.

Build a k-d tree using {Xi}
N0
i=1;

for j = 1 :N1 do

Search the M-NNs of Zj in {Xi}
N0
i=1 using the k-d tree;

Store the indices of the M-NNs of Zj as Sj ;

Count and store the number of occurrence in
⋃N1

j=1 Sj for each element in �N0 �, which

is then {KM (Xi)}
N0
i=1;

Obtain {̂rM (Xi)}
N0
i=1 based on (2.4).

Built on the k-d tree structure (Bentley (1975)) for tracking NNs, Algorithm 1 outlines

an easy to implement algorithm to simultaneously compute all the values of {̂rM (Xi)}
N0
i=1.

This algorithm could be regarded as a direct extension of the celebrated Friedman–
Bentley–Finkel algorithm (Friedman, Bentley, and Finkel (1977)) to the NN matching
setting.

Case II. Suppose we are interested in estimating density ratios at both the observed
and n new points in R

d . A naive algorithm is then to insert each new point into observed
points and perform Algorithm 1 in order. However, this algorithm is not ideal as the
corresponding time complexity would be n times the complexity of Algorithm 1, which
could be computationally heavy with a large number of new points.

Instead, we develop a more sophisticated implementation. Let the new points be {xi}
n
i=1.

Algorithm 2 computes all the values of {̂rM (xi)}
n
i=1 as well as {̂rM (Xi)}

N0
i=1. The key message

delivered here is that, compared with the aforementioned naive implementation, in Al-
gorithm 2 we only need to construct one single k-d tree; the matching elements are then
categorized to two different sets, corresponding to those with regard to Xi’s and xi’s,
separately. Such an implementation is thus intuitively much more efficient.

Theorem A.1 below elaborates on the computational advantage of the proposed esti-
mator.

THEOREM A.1: (1) The average time complexity of Algorithm 1 to compute all the values

of {̂rM (Xi)}
N0
i=1 is O((d +N1M/N0)N0 logN0).

(2) Assume [xi]
n
i=1 are independent and identically distributed (i.i.d.) following ν0 and are

independent of [Xi]
N0
i=1. Then the average time complexity of Algorithm 2 to compute all

the values of {̂rM (xi)}
n
i=1 and {̂rM (Xi)}

N0
i=1 is O((d +N1M/N0)(N0 + n) log(N0 + n)).

REMARK A.1—Comparison to Non-NN-Based Estimators: Assuming N0 � N1 � N ,
it is worth noting that optimization-based methods are commonly of a time complexity
O(N2) if not worse (Noshad et al. (2017)). They are thus less appealing in terms of han-
dling gigantic data as was argued in, for example, astronomy (Lima et al. (2008), Kremer
et al. (2015)) and big text analysis (Borgeaud et al. (2021)) applications.

REMARK A.2—Comparison to the Two-Step NN-Based Density Ratio Estimator: Re-
garding Case I, a direct calculation yields that the time complexity of the simple two-
step NN-based method, which separately estimates f1 and f0 based on individual M-NN
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Algorithm 2: Density ratio estimators at both sample and new points.

Input: {Xi}
N0
i=1, {Zj}

N1
j=1, M , and new points {xi}

n
i=1.

Output: {̂rM (Xi)}
N0
i=1 and {̂rM (xi)}

n
i=1.

Build a k-d tree using {Xi}
N0
i=1 ∪{xi}

n
i=1;

for j = 1 :N1 do

Set Sj and S′
j be two empty sets;

m ← 1;
while |Sj|<M do

Search the mth NN of Zj in {Xi}
N0
i=1 ∪{xi}

n
i=1;

if the mth NN of Zj is in {Xi}
N0
i=1 then

add the index into Sj ;
else

add the index into S′
j ;

m ←m+ 1;

Store the indices sets Sj and S′
j ;

Count and store the number of occurrence in
⋃N1

j=1 Sj for each element in �N0 �, which

is then {KM (Xi)}
N0
i=1. Count and store the number of occurrence in

⋃N1
j=1 S

′
j for each

element in �n�, which is then {KM (xi)}
n
i=1;

Obtain {̂rM (Xi)}
N0
i=1 and {̂rM (xi)}

n
i=1 based on (2.4).

density estimators, is O(dN0 logN0 + dN1 logN1 + N0M logN0 + N0M logN1). It is thus
of the same order as Algorithm 1 when N1 � N0, while computationally heavier when
N1 ≺N0. Regarding Case II, the time complexity of the simple two-step NN-based method
is O(dN0 logN0 +dN1 logN1 + (N0 +n)M logN0 + (N0 +n)M logN1). Thus, if n is of less
or equal order of N0, it is of the same order when N1 � N0, while computationally heavier
than Algorithm 2 when N1 ≺ N0.

REMARK A.3—Comparison to the one-step NN-based density ratio estimator in
Noshad et al. (2017): To estimate f -divergence measures, Noshad et al. (2017) con-
structed another one-step NN-based estimator admitting the simple form: r̂ ′

M (x) =
(N0/N1)(Mi/(Ni + 1)), where Ni and Mi are the numbers of points in {Xi}

N0
i=1 and

{Zi}
N1
i=1 among the M NNs of x; cf. Noshad et al. (2017, equation (20)). For Case I, its

time complexity is O(d(N0 + N1) log(N0 + N1) + N0M log(N0 + N1)); while for Case II,
it is O(d(N0 +N1) log(N0 +N1) + (N0 + n)M log(N0 +N1)). Both are at the same order
as the naive NN-based one, but unlike the naive approach, this estimator is indeed one-
step. However, it is still theoretically unclear if this estimator is statistically efficient; see
Remark B.4 ahead for more details.

APPENDIX B: DENSITY RATIO ESTIMATION II: THEORY

This section introduces the theory for density ratio estimation based on NN matching.
To this end, before establishing detailed theoretical properties (e.g., consistency and the
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rate of convergence) for r̂M (·), we first exhibit a lemma elaborating on the asymptotic Lp

moments of ν1(AM (x)), the ν1-measure of the catchment area. This novel result did not
appear in Abadie and Imbens’s analysis. It is also of independent interest in stochastic
and computational geometry in light of Remark 2.1.

LEMMA B.1—Asymptotic Lp Moments of Catchment Areas’s ν1-Measure: Assuming
M logN0/N0 → 0 as N0 → ∞, we have limN0→∞(N0/M)E[ν1(AM (x))] = r(x) holds for
ν0-almost all x. If we further assume M → ∞, then for any positive integer p, we have
limN0→∞(N0/M)pE[νp1 (AM (x))] = [r(x)]p holds for ν0-almost all x.

REMARK B.1—Relation to the Measure of Voronoi Cells: When M = 1 and ν0 = ν1,
the measure of catchment areas reduces to the measure of Voronoi cells as pointed out in
Remark 2.1. Interestingly, in the stochastic geometry literature, Devroye, Györfi, Lugosi,
and Walk (2017) studied a related problem of bounding the moments of the measure of
Voronoi cells (cf. Theorem 2.1 therein). Setting M = 1 and ν0 = ν1 in the first part of
Lemma B.1 and recalling Remark 2.1, we can derive their Theorem 2.1(i). On the other
hand, Devroye et al. (2017, Theorem 2.1(ii)) showed that when ν0 = ν1, p = 2, and d ≤ 3,
(M−1N0)2E[ν2

1 (AM (x))] converges to 1 whereas N2
0 E[ν2

1 (A1(x))] does not; cf. Devroye
et al. (2017, Section 4.2). This supports the necessity of forcing M → ∞ for stabilizing the
moments of r̂M (·).

B.1. Consistency

We first establish the pointwise consistency of the estimator r̂M (x) for r(x). This re-
quires nearly no assumption on ν0, ν1 except for those made at the beginning of Section 2,
in line with similar observations made in NN-based density estimation (Biau and Devroye
(2015, Theorem 3.1)).

THEOREM B.1—Pointwise Consistency: Assume M logN0/N0 → 0 as N0 → ∞.
(i) (Asymptotic unbiasedness) For ν0-almost all x, we have limN0→∞ E[̂rM (x)] = r(x).

(ii) (Pointwise Lp consistency) Let p be any positive integer and assume further that
MN1/N0 → ∞ and M → ∞ as N0 → ∞. Then for ν0-almost all x, we have
limN0→∞ E[|̂rM (x) − r(x)|p] = 0.

For evaluating the global consistency of the estimator, it is necessary to introduce the
following (global) Lp risk:

Lp risk = E
[∣∣̂rM (X) − r(X)

∣∣p | X1� � � � �XN0
�Z1� � � � �ZN1

]
=

∫

Rd

∣∣̂rM (x) − r(x)
∣∣pf0(x) dx�

where X is a copy drawn from ν0 that is independent of the data. For the Lp risk consis-
tency of the estimator, we impose conditions on ν0 and ν1 further as follows.

Define the supports of ν0 and ν1 as S0 and S1, respectively. For any set S ⊂ R
d , define

the diameter of S as diam(S) = supx�z∈S‖x− z‖.

ASSUMPTION B.1: (i) ν0, ν1 are two probability measures on R
d , both are absolutely con-

tinuous with respect to λ, and ν1 is absolutely continuous with respect to ν0.
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(ii) There exists a constant R> 0 such that diam(S0) ≤R.
(iii) There exist two constants fL� fU > 0 such that for any x ∈ S0 and z ∈ S1, fL ≤ f0(x) ≤

fU and f1(z) ≤ fU .
(iv) There exists a constant a ∈ (0�1) such that for any δ ∈ (0�diam(S0)] and z ∈ S1,

λ(Bz�δ ∩ S0) ≥ aλ(Bz�δ), recalling that Bz�δ represents the closed ball in R
d with center

at z and radius δ.

REMARK B.2: Assumption B.1 is standard in the literature for establishing the global
consistency of density ratio estimators. The regularity conditions on the support ensure
that the angle of the support is not too sharp, which trivially hold for any d-dimensional
cube. These conditions were also enforced in Nguyen, Wainwright, and Jordan (2010,
Theorem 1), Sugiyama, Suzuki, Nakajima, Kashima, von Bünau, and Kawanabe (2008,
Assumption 1), Kpotufe (2017, Definition 1), among many others.

We then establish the Lp risk consistency of the estimator via the Hardy–Littlewood
maximal inequality (Stein (2016)); cf. Lemma S3.2 in the Online Appendix. Of note, this
inequality was used in Han, Jiao, Weissman, and Wu (2020) in a relative manner in order
to study the information-theoretic limit of entropy estimation.

THEOREM B.2—Lp Risk Consistency: Assume the pair of ν0, ν1 satisfies Assumption B.1.
Let p be any positive integer. Assume further that M logN0/N0 → 0, MN1/N0 → ∞, and
M → ∞ as N0 → ∞. We then have

lim
N0→∞

E

[∫

Rd

∣∣̂rM (x) − r(x)
∣∣pf0(x) dx

]
= 0�

As a direct corollary of Theorem B.2, one can obtain the limit of any finite mo-
ment of ν1(AM (·)) with a random center. This can be regarded as a global extension
to Lemma B.1.

COROLLARY B.1: Assume the same conditions as in Theorem B.2. We then have
limN0→∞(N0/M)pE[νp1 (AM (W ))] = E([r(W )]p), where W follows an arbitrary distribution
that is absolutely continuous with respect to ν0 and has density bounded above and below by
two positive constants. In particular, it holds when W is drawn from ν0.

B.2. Rates of Convergence

In this section, we establish the rates of convergence for r̂(x) under both pointwise and
global measures. We first consider the pointwise mean square error (MSE) convergence
rate and show that r̂M (·) is minimax optimal in that regard. In the sequel, we fix an x ∈R

d

and consider the following local assumption on (ν0� ν1).

ASSUMPTION B.2—Local Assumption: (i) ν0, ν1 are two probability measures on R
d ,

both are absolutely continuous with respect to λ, and ν1 is absolutely continuous with
respect to ν0.

(ii) There exist two constants fL� fU > 0 such that f0(x) ≥ fL and f1(x) ≤ fU .
(iii) There exists a constant δ > 0 such that for any z ∈ Bx�δ, |f0(x) − f0(z)| ∨ |f1(x) −

f1(z)| ≤L‖x− z‖ for some constants L> 0.
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Define the following probability class:

Px�p(fL� fU�L�d�δ) =
{

(ν0� ν1) : Assumption B.2 holds
}
�

The following theorem establishes the uniform pointwise convergence rate of r̂M (·).

THEOREM B.3—Pointwise Rates of Convergence: Assume M logN0/N0 → 0 and
M/ logN0 → ∞ as N0 → ∞. Consider a sufficiently large N0.

(i) Asymptotic bias:

sup
(ν0�ν1)∈Px�p(fL�fU �L�d�δ)

∣∣E
[
r̂M (x)

]
− r(x)

∣∣ ≤ C

(
M

N0

)1/d

�

where C > 0 is a constant only depending on fL, fU , L, d.
Further assume MN1/N0 → ∞ as N0 → ∞.

(ii) Asymptotic variance:

sup
(ν0�ν1)∈Px�p(fL�fU �L�d�δ)

Var
[
r̂M (x)

]
≤ C ′

[(
1

M

)
+

(
N0

MN1

)]
�

where C ′ > 0 is a constant only depending on fL, fU .
(iii) Asymptotic MSE:

sup
(ν0�ν1)∈Px�p(fL�fU �L�d�δ)

E
[
r̂M (x) − r(x)

]2 ≤ C ′′
[(

M

N0

)2/d

+
(

1

M

)
+

(
N0

MN1

)]
�

where C ′′ > 0 is a constant only depending on fL, fU , L, d.

Further assume N
− d

2+d

1 logN0 → 0 as N0 → ∞.

(iv) Fix α> 0 and take M = α ·{N
2

2+d

0 ∨ (N0N
− d

2+d

1 )}. We have

sup
(ν0�ν1)∈Px�p(fL�fU �L�d�δ)

E
[
r̂M (x) − r(x)

]2 ≤ C ′′′(N0 ∧N1)− 2
2+d � (B.1)

where C ′′′ > 0 is a constant only depending on fL, fU , L, d, α.

The rate of convergence in (B.1) matches the established minimax lower bound in Lip-
schitz density function estimation (Tsybakov (2009, Section 2)). By some simple manip-
ulation, the argument in Tsybakov (2009, Exercise 2.8) directly extends to density ratio
as the latter is a harder statistical problem (Kpotufe (2017, Remark 3)). This is formally
stated in the following proposition.

PROPOSITION B.1—Pointwise MSE minimax lower bound: For sufficiently large N0 and
N1,

inf
r̃

sup
(ν0�ν1)∈Px�p(fL�fU �L�d�δ)

E
[
r̃(x) − r(x)

]2 ≥ c(N0 ∧N1)− 2
2+d �

where c > 0 is a constant only depending on fL, fU , L, d, and the infimum is taken over all
measurable functions.
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We then move on to the global risk and study the rates of convergence. To this end, a
global assumption on (ν0� ν1) is given below.

ASSUMPTION B.3—Global Assumption: (i) ν0, ν1 are two probability measures on R
d ,

both are absolutely continuous with respect to λ, and ν1 is absolutely continuous with
respect to ν0.

(ii) There exists a constant R> 0 such that diam(S0) ≤R.
(iii) There exist two constants fL� fU > 0 such that for any x ∈ S0 and z ∈ S1, fL ≤ f0(x) ≤

fU and f1(z) ≤ fU .
(iv) There exists a constant a ∈ (0�1) such that for any δ ∈ (0�diam(S0)] and any z ∈ S1,

λ(Bz�δ ∩ S0) ≥ aλ(Bz�δ).
(v) There exists a constant H > 0 such that the surface area (Hausdorff measure, Evans

and Garzepy (2018, Section 3.3)) of S1 is bounded by H.
(vi) There exists a constant L > 0 such that for any x�z ∈ S1, |f0(x) − f0(z)| ∨ |f1(x) −

f1(z)| ≤L‖x− z‖.

REMARK B.3: Assumption B.3 is standard in the literature for establishing the global
risk of density ratio estimators; similar assumptions were made in Zhao and Lai (2022,
Assumption 1) and Zhao and Lai (2020, Assumption 1). Note that the regularity condi-
tions on the support automatically hold for d-dimensional cubes, and the restriction on
the surface area is added to control the boundary effect on NN-based methods.

Define the following probability class:

Pg(fL� fU�L�d�a�H�R) =
{

(ν0� ν1) : Assumption B.3 holds
}
� (B.2)

The next theorem establishes the uniform rate of convergence of r̂(·) within the above
probability class under the L1 risk. This rate is further matched by a minimax lower bound
derived in Theorem 1 of Zhao and Lai (2022) using similar arguments as in the pointwise
case.

THEOREM B.4—Global rates of convergence under the L1 risk: Assume M logN0/
N0 → 0, M/ logN0 → ∞, MN1/N0 → ∞ as N0 → ∞. Consider a sufficiently large N0.

(i) We have the following uniform upper bound:

sup
(ν0�ν1)∈Pg(fL�fU �L�d�a�H�R)

E

[∫

Rd

∣∣̂rM (x) − r(x)
∣∣f0(x) dx

]

≤ C

[(
M

N0

)1/d

+
(

1

M

)1/2

+
(

N0

MN1

)1/2]
�

where C > 0 is a constant only depending on fL, fU , a, H, L, d.

(ii) Further assume N
− d

2+d

1 logN0 → 0 as N0 → ∞, fix α > 0, and take M = α · {N
2

2+d

0 ∨
(N0N

− d
2+d

1 )}. We then have

sup
(ν0�ν1)∈Pg(fL�fU �L�d�a�H�R)

E

[∫

Rd

∣∣̂rM (x) − r(x)
∣∣f0(x) dx

]
≤ C ′(N0 ∧N1)− 1

2+d �

where C ′ > 0 is a constant only depending on fL, fU , a, H, L, d, α.
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PROPOSITION B.2—Global Minimax Lower Bound Under the L1 Risk: If a is suffi-
ciently small and H, R are sufficiently large, then for sufficiently large N0 and N1,

inf
r̃

sup
(ν0�ν1)∈Pg(fL�fU �L�d�a�H�R)

E

[∫

Rd

∣∣̃r(x) − r(x)
∣∣f0(x) dx

]
≥ c(N0 ∧N1)− 1

2+d �

where c > 0 is a constant only depending on fL, fU , L, d, and the infimum is taken over all
measurable functions.

REMARK B.4—Comparison to the One-Step Estimator in Noshad et al. (2017): The
estimator introduced in Remark A.3 by Noshad et al. (2017) is to our knowledge the
only alternative density ratio estimator in the literature that is able to attain both the
property (P1) and being one step. However, the arguments in Noshad et al. (2017, Sec-
tion III) can only yield the bound E[̂r ′

M (x) − r(x)]2 � (M/N0)1/d + M−1 for (ν0� ν1) ∈
Px�p(fL� fU�L�d�δ). This is via equation (21) therein, de-Poissonizing the estimator, and
further assuming N1/N0 converges to a positive constant. The above bound is strictly
looser than the bound (M/N0)2/d + M−1 for r̂M (·) shown in Theorem B.3. However, it
seems mathematically challenging to improve their analysis and accordingly, unlike r̂M (·),
it is still theoretically unclear if the estimator r̂ ′

M (x) is a statistically efficient density ratio
estimator.

APPENDIX C: PROOFS OF THE RESULTS IN SECTIONS 3 AND 4

C.1. Proof of Lemma 3.1

PROOF OF LEMMA 3.1: By simple algebra, we have

τ̂bc
M =

1

n

n∑

i=1

[
Ŷ bc

i (1) − Ŷ bc
i (0)

]

=
1

n

n∑

i=1�Di=1

[
Yi −

1

M

∑

j∈JM (i)

(
Yj + μ̂0(Xi) − μ̂0(Xj)

)]

+
1

n

n∑

i=1�Di=0

[
1

M

∑

j∈JM (i)

(
Yj + μ̂1(Xi) − μ̂1(Xj)

)
−Yi

]

=
1

n

n∑

i=1�Di=1

[
R̂i + μ̂1(Xi) − μ̂0(Xi) −

1

M

∑

j∈JM (i)

R̂j

]

+
1

n

n∑

i=1�Di=0

[
1

M

∑

j∈JM (i)

R̂j − R̂i + μ̂1(Xi) − μ̂0(Xi)

]

=
1

n

n∑

i=1

[
μ̂1(Xi) − μ̂0(Xi)

]
+

1

n

[
n∑

i=1�Di=1

(
1 +

KM (i)

M

)
R̂i −

n∑

i=1�Di=0

(
1 +

KM (i)

M

)
R̂i

]
�

This completes the proof. Q.E.D.
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C.2. Proof of Theorem 4.1

PROOF OF THEOREM 4.1(i): Part I. Suppose the density function is sufficiently smooth.
For any i ∈ �n�, let R̄i = Yi − μ̄Di

(Xi). From (3.3),

τ̂bc
M = τ̂reg +

1

n

[
n∑

i=1

Di

(
1 +

KM (i)

M

)
R̂i −

n∑

i=1

(1 −Di)

(
1 +

KM (i)

M

)
R̂i

]

=
1

n

n∑

i=1

[
μ̂1(Xi) − μ̄1(Xi)

]
−

1

n

n∑

i=1

[
μ̂0(Xi) − μ̄0(Xi)

]

+
1

n

[
n∑

i=1

(2Di − 1)

(
1 +

KM (i)

M

)(
μ̄Di

(Xi) − μ̂Di
(Xi)

)
]

+
1

n

[
n∑

i=1

Di

(
1 +

KM (i)

M
−

1

e(Xi)

)
R̄i

−
n∑

i=1

(1 −Di)

(
1 +

KM (i)

M
−

1

1 − e(Xi)

)
R̄i

]

+
1

n

[
n∑

i=1

(
1 −

Di

e(Xi)

)
μ̄1(Xi) −

n∑

i=1

(
1 −

1 −Di

1 − e(Xi)

)
μ̄0(Xi)

]

+
1

n

[
n∑

i=1

Di

e(Xi)
Yi −

n∑

i=1

1 −Di

1 − e(Xi)
Yi

]
� (C.1)

For each pair of terms, we only establish the first half part under treatment, and the
second half under control can be established in the same way.

For the first term in (C.1),

∣∣∣∣∣
1

n

n∑

i=1

[
μ̂1(Xi) − μ̄1(Xi)

]
∣∣∣∣∣ ≤ ‖μ̂1 − μ̄1‖∞ = oP(1)� (C.2)

For the second term in (C.1),

∣∣∣∣∣
1

n

n∑

i=1

Di

(
1 +

KM (i)

M

)(
μ̄1(Xi) − μ̂1(Xi)

)
∣∣∣∣∣

≤ ‖μ̂1 − μ̄1‖∞
1

n

n∑

i=1

Di

(
1 +

KM (i)

M

)
= ‖μ̂1 − μ̄1‖∞ = oP(1)� (C.3)

where the last step is due to
∑n

i=1 DiKM (i) = n0M .
Notice that from Assumption 4.1(i), PX|D=0 and PX|D=1 share the same support, and

their densities are both bounded and bounded away from zero as long as one is. Then
(PX|D=0�PX|D=1) and (PX|D=1�PX|D=0) both satisfy Assumption B.1 as long as one satisfies.
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For the third term in (C.1), by Theorem B.2,

{
E

[∣∣∣∣∣
1

n

n∑

i=1

Di

(
1 +

KM (i)

M
−

1

e(Xi)

)
R̄i

∣∣∣∣∣

]}2

≤
{

E

[∣∣∣∣Di

(
1 +

KM (i)

M
−

1

e(Xi)

)
R̄i

∣∣∣∣
]}2

≤ E

[
1 +

KM (i)

M
−

1

e(Xi)

]2

E[DiR̄i]
2

= E

[
1 +

KM (i)

M
−

1

e(Xi)

]2

E
[
Di

(
Yi(1) − μ̄1(Xi)

)2]

≤ E

[
1 +

KM (i)

M
−

1

e(Xi)

]2

E
[
σ2

1 (Xi) +
(
μ1(Xi) − μ̄1(Xi)

)2] = o(1)� (C.4)

where σ2
1 (x) = E[U2

1 |X = x] for x ∈ X.
For the fourth term in (C.1), notice that

E

[
1

n

n∑

i=1

(
1 −

Di

e(Xi)

)
μ̄1(Xi)

∣∣∣∣X1� � � � �Xn

]
= 0�

and

Var

[
1

n

n∑

i=1

(
1 −

Di

e(Xi)

)
μ̄1(Xi)

]

= E

[
Var

[
1

n

n∑

i=1

(
1 −

Di

e(Xi)

)
μ̄1(Xi)

∣∣∣∣X1� � � � �Xn

]]

=
1

n
E

[
μ̄2

1(Xi)

(
1

e(Xi)
− 1

)]
=O

(
n−1

)
�

Then

1

n

n∑

i=1

(
1 −

Di

e(Xi)

)
μ̄1(Xi) = oP(1)� (C.5)

For the fifth term in (C.1), notice that E[Y 2] are bounded and [(Xi�Di�Yi)]ni=1 are i.i.d.
Using the weak law of large numbers yields

1

n

[
n∑

i=1

Di

e(Xi)
Yi −

n∑

i=1

1 −Di

1 − e(Xi)
Yi

]
p−→ E

[
Yi(1) −Yi(0)

]
= τ� (C.6)

Plugging (C.2), (C.3), (C.4), (C.5), (C.6) into (C.1) completes the proof.
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Part II. Suppose the outcome model is correct. By (3.3),

τ̂bc
M = τ̂reg +

1

n

[
n∑

i=1

Di

(
1 +

KM (i)

M

)
R̂i −

n∑

i=1

(1 −Di)

(
1 +

KM (i)

M

)
R̂i

]

=
1

n

n∑

i=1

[
μ̂1(Xi) −μ1(Xi)

]
−

1

n

n∑

i=1

[
μ̂0(Xi) −μ0(Xi)

]

+
1

n

[
n∑

i=1

(2Di − 1)

(
1 +

KM (i)

M

)(
μDi

(Xi) − μ̂Di
(Xi)

)
]

+
1

n

[
n∑

i=1

Di

(
1 +

KM (i)

M

)(
Yi −μ1(Xi)

)

−
n∑

i=1

(1 −Di)

(
1 +

KM (i)

M

)(
Yi −μ0(Xi)

)
]

+
1

n

n∑

i=1

[
μ1(Xi) −μ0(Xi)

]
� (C.7)

For the first term in (C.7),

∣∣∣∣∣
1

n

n∑

i=1

[
μ̂1(Xi) −μ1(Xi)

]
∣∣∣∣∣ ≤ ‖μ̂1 −μ1‖∞ = oP(1)� (C.8)

For the second term in (C.7),

∣∣∣∣∣
1

n

n∑

i=1

Di

(
1 +

KM (i)

M

)(
μ1(Xi) − μ̂1(Xi)

)
∣∣∣∣∣

≤ ‖μ̂1 −μ1‖∞
1

n

n∑

i=1

Di

(
1 +

KM (i)

M

)
= ‖μ̂1 −μ1‖∞ = oP(1)� (C.9)

For the third term in (C.7), noticing that KM (·) is a function of (X1� � � � �Xn) and
(D1� � � � �Dn), we can obtain

E

[
1

n

n∑

i=1

Di

(
1 +

KM (i)

M

)(
Yi −μ1(Xi)

) ∣∣∣∣X1� � � � �Xn�D1� � � � �Dn

]
= 0�

By a martingale representation (Abadie and Imbens (2012)) and then the martingale
convergence theorem (which holds for both fixed and diverging M), we obtain

1

n

n∑

i=1

Di

(
1 +

KM (i)

M

)(
Yi −μ1(Xi)

)
= oP(1)� (C.10)
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For the fourth term in (C.7), notice that E[μ2
ω(X)] is bounded for ω ∈{0�1}. Using the

weak law of large numbers, we obtain

1

n

n∑

i=1

[
μ1(Xi) −μ0(Xi)

] p−→ E
[
μ1(Xi) −μ0(Xi)

]
= τ� (C.11)

Plugging (C.8), (C.9), (C.10), (C.11) into (C.7) completes the proof. Q.E.D.

PROOF OF THEOREM 4.1(ii): For ω ∈{0�1} and m ∈ �M�, let jm(i) represent the index
of mth-NN of Xi in {Xj : Dj = 1 −Di}

n
j=1, that is, the index j ∈ �n� such that Dj = 1 −Di

and
∑n

�=1�D�=1−Di
1(‖X� − Xi‖ ≤ ‖Xj − Xi‖) = m. With a little abuse of notation, let

εi = Yi − μDi
(Xi) for any i ∈ �n�. By the definition of τ̂bc

M in (3.3), we can verify the de-

composition τ̂bc
M = τ̄(X) +EM +BM − B̂M , where

τ̄(X) =
1

n

n∑

i=1

[
μ1(Xi) −μ0(Xi)

]
�

EM =
1

n

n∑

i=1

(2Di − 1)

(
1 +

KM (i)

M

)
εi�

BM =
1

n

n∑

i=1

(2Di − 1)

[
1

M

M∑

m=1

(
μ1−Di

(Xi) −μ1−Di
(Xjm(i))

)
]
�

B̂M =
1

n

n∑

i=1

(2Di − 1)

[
1

M

M∑

m=1

(
μ̂1−Di

(Xi) − μ̂1−Di
(Xjm(i))

)
]
�

We have the following central limit theorem on τ̄(X) +EM .

LEMMA C.1:
√
nσ−1/2(τ̄(X) +EM − τ)

d−→ N(0�1).

For the bias term BM − B̂M , define Um�i = Xjm(i) −Xi for any i ∈ �n� and m ∈ �M�. We
then have the following lemma bounding the moments of UM�i.

LEMMA C.2: Let p be any positive integer. Then there exists a constant Cp > 0 only de-
pending on p such that for any i ∈ �n� and M ∈ �n1−Di

�,

E
[
‖UM�i‖p|D1� � � � �Dn

]
≤ Cp(M/n1−Di

)p/d�

In light of the smoothness conditions on μω and approximation conditions on μ̂ω for
ω ∈{0�1}, we can establish the following lemma using Lemma C.2.

LEMMA C.3:
√
n(BM − B̂M)

p−→ 0.

Combining Lemma C.1 and Lemma C.3 completes the proof. Q.E.D.
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PROOF OF THEOREM 4.1(ii), CONSISTENCY OF σ̂2: By definition, we can verify the de-
composition σ̂2 − σ2 = T1 + T2 + T3 + T4, where

T1 =
1

n

n∑

i=1

[
μ̂1(Xi) − μ̂0(Xi) +Di

(
1 +

KM (i)

M

)
R̂i − (1 −Di)

(
1 +

KM (i)

M

)
R̂i − τ̂bc

M

]2

−
1

n

n∑

i=1

[
μ1(Xi) −μ0(Xi) +Di

(
1 +

KM (i)

M

)(
Yi −μ1(Xi)

)

− (1 −Di)

(
1 +

KM (i)

M

)(
Yi −μ0(Xi)

)
− τ̂bc

M

]2

�

T2 =
1

n

n∑

i=1

[
μ1(Xi) −μ0(Xi) +Di

(
1 +

KM (i)

M

)(
Yi −μ1(Xi)

)

− (1 −Di)

(
1 +

KM (i)

M

)(
Yi −μ0(Xi)

)
− τ̂bc

M

]2

−
1

n

n∑

i=1

[
μ1(Xi) −μ0(Xi) +

Di

e(Xi)

(
Yi −μ1(Xi)

)

−
1 −Di

1 − e(Xi)

(
Yi −μ0(Xi)

)
− τ̂bc

M

]2

�

T3 =
1

n

n∑

i=1

[
μ1(Xi) −μ0(Xi) +

Di

e(Xi)

(
Yi −μ1(Xi)

)
−

1 −Di

1 − e(Xi)

(
Yi −μ0(Xi)

)
− τ̂bc

M

]2

−
1

n

n∑

i=1

[
μ1(Xi) −μ0(Xi) +

Di

e(Xi)

(
Yi −μ1(Xi)

)
−

1 −Di

1 − e(Xi)

(
Yi −μ0(Xi)

)
− τ

]2

�

T4 =
1

n

n∑

i=1

[
μ1(Xi) −μ0(Xi) +

Di

e(Xi)

(
Yi −μ1(Xi)

)
−

1 −Di

1 − e(Xi)

(
Yi −μ0(Xi)

)
− τ

]2

− σ2�

By Assumption 4.3, Assumption 4.1, Theorem B.2, and the fact that τ̂bc
M = OP(1), we

have T1 = oP(1). By Assumption 4.1, Theorem B.2, and τ̂bc
M = OP(1), we have T2 =

oP(1). By Assumption 4.1 and τ̂bc
M − τ = oP(1), we have T3 = oP(1). By the fact that

[(Xi�Di�Yi)]ni=1 are i.i.d., Assumption 4.1 and the weak law of large numbers, we have
T4 = oP(1). Combining the above four facts together then completes the proof. Q.E.D.

C.3. Proof of Theorem 4.2

PROOF OF THEOREM 4.2: For Theorem 4.2(i), analysis analogous to the proof of The-
orem 4.1(i) can be performed on qτbc

M�k for any k ∈ �K�. Then the results apply to τ̃bc
M�K

automatically since K is fixed.
For Theorem 4.2(ii), from Definition 3.1 in Chernozhukov et al. (2018), τ̃bc

M�K is the
double machine learning estimator. We then follow the proof of Theorem 5.1 (recalling
Remark 4.8) and use the notation in Chernozhukov et al. (2018), essentially checking
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Assumptions 3.1 and 3.2 therein. In the following, we adopt the notation in Chernozhukov
et al. (2018).

For estimating the ATE, from equation (5.3) in Chernozhukov et al. (2018), the score
(or the efficient influence function (Tsiatis (2006, Section 3.4))) is

ψ(X�D�Y ; τ̃� ζ̃) = μ̃1(X) − μ̃0(X) +
D

(
Y − μ̃1(X)

)

ẽ(X)
−

(1 −D)
(
Y − μ̃0(X)

)

1 − ẽ(X)
− τ̃�

where ζ̃(x) = (μ̃0(x)� μ̃1(x)� ρ̃0(x)� ρ̃1(x)) are the nuisance parameters by letting ρ̃0(x) =
1/(1 − ẽ(x)) and ρ̃1(x) = 1/̃e(x). Let ρ0(x) = 1/(1 − e(x)) and ρ1(x) = 1/e(x). Then the
true value is ζ(x) = (μ0(x)�μ1(x)�ρ0(x)�ρ1(x)).

We can then write the score as

ψ(X�D�Y ; τ̃� ζ̃) = μ̃1(X) − μ̃0(X) +D
(
Y − μ̃1(X)

)
ρ̃1(X)

− (1 −D)
(
Y − μ̃0(X)

)
ρ̃0(X) − τ̃�

For any p > 0, let ‖f‖p = ‖f (X�D�Y )‖p = (
∫
|f (ω)|p dP(X�D�Y )(ω))1/p. For the κ in

Assumption 4.1, let q = 2 + κ/2, q1 = 2 + κ, and q2 such that q−1 = q−1
1 + q−1

2 . Let Tn be
the set consisting of all ζ̃ such that for ω ∈{0�1},

‖μ̃ω −μω‖∞ = o
(
n−d/(4+2d)

)
� ‖ρ̃ω − ρω‖1 =O

(
n−1/(d+2)

)
� ‖ρ̃ω − ρω‖q2

= o(1)�

Then the selection of Tn satisfies Assumption 3.2(a) in Chernozhukov et al. (2018) from
Assumption 4.7, Theorem B.4, and Theorem B.2, respectively.

For step 1 in the proof of Theorem 5.1 in Chernozhukov et al. (2018), we verify the Ney-
man orthogonality. We can show that Eψ(X�D�Y ;τ�ζ) = 0. For any ζ̃ ∈ Tn, the Gateaux
derivative in the direction ζ̃ − ζ is

∂ζ̃Eψ(X�D�Y ;τ�ζ)[̃ζ − ζ]

= E
[
μ̃1(X) −μ1(X)

]
− E

[
μ̃0(X) −μ0(X)

]

− E
[
D

(
μ̃1(X) −μ1(X)

)
ρ1(X)

]
+ E

[
(1 −D)

(
μ̃0(X) −μ0(X)

)
ρ0(X)

]

+ E
[
D

(
Y −μ1(X)

)(
ρ̃1(X) − ρ1(X)

)]
− E

[
(1 −D)

(
Y −μ0(X)

)(
ρ̃0(X) − ρ0(X)

)]
�

We can check that the above quantity is zero, which completes this step.
Step 2 and step 3 therein can be directly applied.
For step 4 therein, we can establish in the same way that for ω ∈ {0�1}, ‖μω‖q1

= O(1)
from ‖Y‖q1

= O(1), and τ = O(1). Then from Hölder’s inequality and ‖ρω‖∞ is bounded
for ω ∈{0�1}, for any ζ̃ ∈ Tn,
∥∥ψ(X�D�Y ;τ� ζ̃)

∥∥
q

=
∥∥μ̃1(X) − μ̃0(X) + (2D− 1)

(
Y − μ̃D(X)

)
ρ̃D(X) − τ

∥∥
q

≤
∥∥μ̃1(X)

∥∥
q
+

∥∥μ̃0(X)
∥∥
q
+

∥∥(
Y − μ̃1(X)

)
ρ̃1(X)

∥∥
q
+

∥∥(
Y − μ̃0(X)

)
ρ̃0(X)

∥∥
q
+ τ

≤ ‖μ1‖q + ‖μ̃1 −μ1‖∞ + ‖μ0‖q + ‖μ̃0 −μ0‖∞ +
(
‖Y‖q1

+ ‖μ1‖q1
+ ‖μ̃1 −μ1‖∞

)
‖ρ̃1‖q2

+
(
‖Y‖q1

+ ‖μ0‖q1
+ ‖μ̃0 −μ0‖∞

)
‖ρ̃0‖q2

+ τ =O(1)�

The last step is from the definition of Tn. Then we complete this step.
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For step 5 therein, by Hölder’s inequality, for any ζ̃ ∈ Tn,
∥∥ψ(X�D�Y ;τ� ζ̃) −ψ(X�D�Y ;τ�ζ)

∥∥
2

≤ ‖μ̃1 −μ1‖2 + ‖μ̃0 −μ0‖2 +
∥∥D

(
Y − μ̃1(X)

)
ρ̃1(X) −D

(
Y −μ1(X)

)
ρ1(X)

∥∥
2

+
∥∥(1 −D)

(
Y − μ̃0(X)

)
ρ̃0(X) − (1 −D)

(
Y −μ0(X)

)
ρ0(X)

∥∥
2

≤ ‖μ̃1 −μ1‖∞ + ‖μ̃0 −μ0‖∞ +
(
‖Y‖q1

+
∥∥μ1(X)

∥∥
q1

)
‖ρ̃1 − ρ1‖q2

+ ‖μ̃1 −μ1‖∞‖ρ̃1‖2

+
(
‖Y‖q1

+
∥∥μ0(X)

∥∥
q1

)
‖ρ̃0 − ρ0‖q2

+ ‖μ̃0 −μ0‖∞‖ρ̃0‖2 = o(1)�

The last step is due to the definition of Tn.
Notice that for any t ∈ (0�1),

∂2
t Eψ

(
X�D�Y ;τ�ζ + t (̃ζ − ζ)

)
= −2E

[
(2D− 1)

(
μ̃D(X) −μD(X)

)(
ρ̃D(X) − ρD(X)

)]
�

Then by the definition of Tn, for any ζ̃ ∈ Tn,

∣∣∂2
t Eψ

(
X�D�Y ;τ�ζ + t (̃ζ − ζ)

)∣∣ ≤ 2
∑

w∈{0�1}

‖μ̃w −μw‖∞‖ρ̃w − ρw‖1 = o
(
n−1/2

)
�

We then complete this step, and thus complete the proof.
The consistency of the variance estimator can be established in the same way as Theo-

rem 4.1(ii). Q.E.D.
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S1. PROOFS OF THE RESULTS IN SECTIONS 3 AND 4

Additional Notation. WE USE X and Z to represent (X1�X2� � � � �XN0
) and (Z1�Z2� � � � �

ZN1
), respectively. Let U (0�1) denote the uniform distribution on [0�1]. Let U ∼U (0�1)

and U(M) be the Mth order statistic of N0 independent random variables from U (0�1),
assumed to be mutually independent and both independent of (X�Z). It is well known
that U(M) ∼ Beta(M�N0 + 1 − M). Let Bin(·� ·) denote the binomial distribution. Let
L1(Rd) denote the space of all functions f : Rd → R such that

∫

|f (x)|dx < ∞. For any
x ∈ R

d and function f :Rd → R, we say x is a Lebesgue point (Bogachev and Ruas (2007,
Theorem 5.6.2)) of f if

lim
δ→0+

1

λ(Bx�δ)

∫

Bx�δ

∣

∣f (x) − f (z)
∣

∣dz = 0�

S2. PROOFS OF THE RESULTS IN APPENDIX A

S2.1. Proof of Theorem A.1

PROOF OF THEOREM A.1: We consider the complexities of two algorithms separately.
Algorithm 1.

The worst-case computation complexity of building a balancedk-d tree is O(dN0 logN0)
(cf. Brown (2015)) since the size of the k-d tree is N0.

The average computation complexity of searching a NN is O(logN0) from Friedman,
Bentley, and Finkel (1977), and then the average computation complexity of search M-

NNs in {Xi}
N0
i=1 for all {Zj}

N1
j=1 is O(MN1 logN0).

Notice that |Sj| = M for any j ∈ �N1 � and then |
⋃N1

j=1 Sj| ≤ N1M . Since the elements of

each Sj are in �N0 �, the largest integer in
⋃N1

j=1 Sj is N0. Then the computation complexity
of counting step is O(N1M +N0) due to the counting sort algorithm (Cormen, Leiserson,
Rivest, and Stein (2009, Section 8.2)).

Combining the above three steps completes the proof for Algorithm 1.
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Peng Ding: pengdingpku@berkeley.edu
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Algorithm 2.
The computation complexity of building a k-d tree is O(d(N0 + n) log(N0 + n)) from

Algorithm 1 since the size of the k-d tree is N0 + n.
For the searching step, for each j ∈ �N1 �, the number of NNs to be searched is

M +
∑n

i=1 1(‖xi − Zj‖ ≤ ‖X(M)(Zj) − Zj‖). Then from (2.2), the total number of NNs

searched for all j ∈ �N1 � is
∑N1

j=1(M +
∑n

i=1 1(‖xi − Zj‖ ≤ ‖X(M)(Zj) − Zj‖)) = N1M +
∑n

i=1 KM (xi). Let X , Z be two independent copies from ν0, ν1, respectively, and are

independent of the data. Since [Zj]
N1
j=1 are i.i.d. and [Xi]

N0
i=1 ∪ [xi]

n
i=1 are i.i.d, we have

E[
∑n

i=1 KM (xi)] = nE[KM (X)] = N1nE[ν1(AM (X))] = N1n
M

N0+1
since E[ν1(AM (X))] =

P(‖X − Z‖ ≤ ‖X(M)(Z) − Z‖) = P(U ≤ U(M)) = M

N0+1
by using the probability inte-

gral transform. Then the average computation complexity for the searching step is
O(N−1

0 N1M(N0 + n) log(N0 + n)).

For the counting step, the computation complexity for counting
⋃N1

j=1 Sj is O(N0 +N1M)

since the cardinality of
⋃N1

j=1 Sj is at most N1M and the largest integer is N0. The average

computation complexity for counting
⋃N1

j=1 S
′
j is O(N−1

0 N1Mn + n) since the average car-

dinality of
⋃N1

j=1 S
′
j is at most N−1

0 N1Mn and the largest integer is n.
Combining the above three steps completes the proof for Algorithm 2. Q.E.D.

S3. PROOFS OF THE RESULTS IN APPENDIX B

S3.1. Proof of Lemma B.1

PROOF OF LEMMA B.1: From the Lebesgue differentiation theorem, for any f ∈

L1(Rd), x is a Lebesgue point of f for λ-almost all x. Then for ν0-almost all x, we have
f0(x) > 0 and x is a Lebesgue point of f0 and f1 from the absolute continuity of ν0 and ν1.
We then only need to consider those x ∈R

d such that f0(x) > 0 and x is a Lebesgue point
of f0 and f1.

We first introduce a lemma about the Lebesgue point.

LEMMA S3.1: Let ν be a probability measure on R
d admitting a density f with respect to

the Lebesgue measure. Let x ∈ R
d be a Lebesgue point of f . Then for any ε ∈ (0�1), there

exists δ= δx > 0 such that for any z ∈R
d satisfying ‖z − x‖ ≤ δ, we have

∣

∣

∣

∣

ν(Bx�‖z−x‖)

λ(Bx�‖z−x‖)
− f (x)

∣

∣

∣

∣

≤ ε�

∣

∣

∣

∣

ν(Bz�‖z−x‖)

λ(Bz�‖z−x‖)
− f (x)

∣

∣

∣

∣

≤ ε�

Part I. This part proves the first claim. We separate the proof of Part I into two cases
based on the value of f1(x).

Case I.1. f1(x) > 0. Since x is a Lebesgue point of ν0 and ν1, by Lemma S3.1, for any
ε ∈ (0�1), there exists some δ= δx > 0 such that for any z ∈R

d with ‖z − x‖ ≤ δ, we have
for w ∈{0�1},

∣

∣

∣

∣

νw(Bx�‖z−x‖)

λ(Bx�‖z−x‖)
− fw(x)

∣

∣

∣

∣

≤ εfw(x)�

∣

∣

∣

∣

νw(Bz�‖z−x‖)

λ(Bz�‖z−x‖)
− fw(x)

∣

∣

∣

∣

≤ εfw(x)�

Accordingly, if ‖z − x‖ ≤ δ, by λ(Bz�‖x−z‖) = λ(Bx�‖x−z‖), we have

1 − ε

1 + ε

f0(x)

f1(x)
≤

ν0(Bz�‖x−z‖)

λ(Bz�‖x−z‖)

λ(Bx�‖x−z‖)

ν1(Bx�‖x−z‖)
=

ν0(Bz�‖x−z‖)

ν1(Bx�‖x−z‖)
≤

1 + ε

1 − ε

f0(x)

f1(x)
� (S3.1)
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On the other hand, for any z ∈ R
d such that ‖z − x‖ > δ, ν0(Bz�‖z−x‖) ≥ ν0(Bz∗�δ) ≥

(1−ε)f0(x)λ(Bz∗�δ) = (1−ε)f0(x)λ(B0�δ), where z∗ is the intersection point of the surface
of Bx�δ and the line connecting z and x.

Let ηN = 4 log(N0/M). Since M logN0/N0 → 0, we can take N0 large enough so that

ηN
M

N0
= 4 M

N0
log(N0

M
) < (1 − ε)f0(x)λ(B0�δ). Then for any z ∈ R

d such that ν0(Bz�‖z−x‖) ≤

ηNM/N0, we have ‖z − x‖ ≤ δ since otherwise it would contradict the selection of N0.
Let Z be a copy from ν1 independent of the data. Then

E
[

ν1

(

AM (x)
)]

= P
(

Z ∈AM (x)
)

= P
(

ν0(BZ�‖x−Z‖) ≤ ν0(BZ�‖X(M) (Z)−Z‖)
)

� (S3.2)

For any given z ∈ R
d , [ν0(Bz�‖Xi−z‖)]

N0
i=1 are i.i.d. from U (0�1) since [Xi]

N0
i=1 are i.i.d. from

ν0 and we use the probability integral transform. Then ν0(BZ�‖X(M) (Z)−Z‖) has the same

distribution as U(M) and is independent of Z.
Upper bound. With a slight abuse of notation, we define W = ν0(BZ�‖x−Z‖). We then

have, from (S3.1) and (S3.2),

E
[

ν1

(

AM (x)
)]

= P
(

W ≤ ν0(BZ�‖X(M) (Z)−Z‖)
)

≤ P

(

W ≤ ν0(BZ�‖X(M) (Z)−Z‖) ≤ ηN

M

N0

)

+ P

(

ν0(BZ�‖X(M) (Z)−Z‖) >ηN

M

N0

)

= P

(

W ≤ ν0(BZ�‖X(M) (Z)−Z‖) ≤ ηN

M

N0

�‖Z − x‖ ≤ δ

)

+ P

(

U(M) >ηN

M

N0

)

≤ P
(

ν0(BZ�‖x−Z‖) ≤ ν0(BZ�‖X(M) (Z)−Z‖)�‖Z − x‖ ≤ δ
)

+ P

(

U(M) >ηN

M

N0

)

≤ P

(

1 − ε

1 + ε

f0(x)

f1(x)
ν1(Bx�‖x−Z‖) ≤ ν0(BZ�‖X(M) (Z)−Z‖)�‖Z − x‖ ≤ δ

)

+ P

(

U(M) >ηN

M

N0

)

≤ P

(

1 − ε

1 + ε

f0(x)

f1(x)
ν1(Bx�‖x−Z‖) ≤ ν0(BZ�‖X(M) (Z)−Z‖)

)

+ P

(

U(M) >ηN

M

N0

)

= P

(

1 − ε

1 + ε

f0(x)

f1(x)
U ≤ U(M)

)

+ P

(

U(M) >ηN

M

N0

)

� (S3.3)

For the second term in (S3.3), notice that ηN → ∞ as N0 → ∞. Then from the Chernoff
bound and for N0 sufficiently large, we have

N0

M
P

(

U(M) >ηN

M

N0

)

=
N0

M
P

(

Bin

(

N0�ηN

M

N0

)

<M

)

≤
N0

M
exp

(

(1 + logηN −ηN)M
)

≤
N0

M
exp

(

−
1

2
ηNM

)

=

(

N0

M

)1−2M

�
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Since M/N0 → 0 and M ≥ 1, we then obtain

lim
N0→∞

N0

M
P

(

U(M) >ηN

M

N0

)

= 0� (S3.4)

For the first term in (S3.3), we have

N0

M
P

(

1 − ε

1 + ε

f0(x)

f1(x)
U ≤U(M)

)

=
N0

M

∫ 1

0

P

(

U(M) ≥
1 − ε

1 + ε

f0(x)

f1(x)
t

)

dt

=
1 + ε

1 − ε

f1(x)

f0(x)

∫ 1−ε
1+ε

f0(x)

f1(x)

N0
M

0

P

(

U(M) ≥
M

N0

t

)

dt ≤
1 + ε

1 − ε

f1(x)

f0(x)

∫ ∞

0

P

(

N0

M
U(M) ≥ t

)

dt

=
1 + ε

1 − ε

f1(x)

f0(x)

N0

M
E[U(M)] =

1 + ε

1 − ε

f1(x)

f0(x)

N0

N0 + 1
� (S3.5)

We then obtain

lim sup
N0→∞

N0

M
P

(

1 − ε

1 + ε

f0(x)

f1(x)
U ≤U(M)

)

≤
1 + ε

1 − ε

f1(x)

f0(x)
� (S3.6)

Plugging (S3.4) and (S3.6) to (S3.3) then yields

lim sup
N0→∞

N0

M
E

[

ν1

(

AM (x)
)]

≤
1 + ε

1 − ε

f1(x)

f0(x)
� (S3.7)

Lower bound. We have, from (S3.1) and (S3.2),

E
[

ν1

(

AM (x)
)]

= P
(

W ≤ ν0(BZ�‖X(M) (Z)−Z‖)
)

≥ P

(

W ≤ ν0(BZ�‖X(M) (Z)−Z‖) ≤ ηN

M

N0

)

= P

(

W ≤ ν0(BZ�‖X(M) (Z)−Z‖) ≤ ηN

M

N0

�‖Z − x‖ ≤ δ

)

≥ P

(

1 + ε

1 − ε

f0(x)

f1(x)
ν1(Bx�‖x−Z‖) ≤ ν0(BZ�‖X(M) (Z)−Z‖) ≤ ηN

M

N0

�‖Z − x‖ ≤ δ

)

= P

(

1 + ε

1 − ε

f0(x)

f1(x)
ν1(Bx�‖x−Z‖) ≤ ν0(BZ�‖X(M) (Z)−Z‖) ≤ ηN

M

N0

)

≥ P

(

1 + ε

1 − ε

f0(x)

f1(x)
ν1(Bx�‖x−Z‖) ≤ ν0(BZ�‖X(M) (Z)−Z‖)

)

− P

(

ν0(BZ�‖X(M) (Z)−Z‖) >ηN

M

N0

)

= P

(

1 + ε

1 − ε

f0(x)

f1(x)
U ≤U(M)

)

− P

(

U(M) >ηN

M

N0

)

� (S3.8)
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The second last equality is from the fact that for ‖Z − x‖ > δ,

1 + ε

1 − ε

f0(x)

f1(x)
ν1(Bx�‖x−Z‖) ≥

1 + ε

1 − ε

f0(x)

f1(x)
ν1(Bx�δ) ≥

1 + ε

1 − ε

f0(x)

f1(x)
f1(x)(1 − ε)λ(B0�δ) >ηN

M

N0

�

and then that 1+ε

1−ε

f0(x)

f1(x)
ν1(Bx�‖x−Z‖) ≤ ηN

M

N0
implies ‖Z − x‖ ≤ δ.

For the first term in (S3.8), we have

N0

M
P

(

1 + ε

1 − ε

f0(x)

f1(x)
U ≤ U(M)

)

=
1 − ε

1 + ε

f1(x)

f0(x)

∫ 1+ε
1−ε

f0(x)

f1(x)

N0
M

0

P

(

U(M) ≥
M

N0

t

)

dt�

If 1+ε

1−ε

f0(x)

f1(x)
≥ 1, then by U(M) ∈ [0�1], we have

N0

M
P

(

1 + ε

1 − ε

f0(x)

f1(x)
U ≤U(M)

)

=
1 − ε

1 + ε

f1(x)

f0(x)

N0

M
E[U(M)] =

1 − ε

1 + ε

f1(x)

f0(x)

N0

N0 + 1
�

If 1+ε

1−ε

f0(x)

f1(x)
< 1, from the Chernoff bound,

∫

N0
M

1+ε
1−ε

f0(x)

f1(x)

N0
M

P

(

U(M) ≥
M

N0

t

)

dt

≤

[

1 −
1 + ε

1 − ε

f0(x)

f1(x)

]

N0

M
P

(

U(M) ≥
1 + ε

1 − ε

f0(x)

f1(x)

)

≤

[

1 −
1 + ε

1 − ε

f0(x)

f1(x)

]

N0

M
exp

[

M −
1 + ε

1 − ε

f0(x)

f1(x)
N0

−M logM +M log

(

1 + ε

1 − ε

f0(x)

f1(x)
N0

)]

�

Since f0(x) > 0 and M logN0/N0 → 0, we obtain

lim
N0→∞

∫

N0
M

1+ε
1−ε

f0(x)

f1(x)

N0
M

P

(

U(M) ≥
M

N0

t

)

dt = 0�

Then we always have

lim
N0→∞

N0

M
P

(

1 + ε

1 − ε

f0(x)

f1(x)
U ≤U(M)

)

=
1 − ε

1 + ε

f1(x)

f0(x)
�

Using the above identity along with (S3.4) to (S3.8) yields

lim inf
N0→∞

N0

M
E

[

ν1

(

AM (x)
)]

≥
1 − ε

1 + ε

f1(x)

f0(x)
� (S3.9)

Lastly, combining (S3.7) with (S3.9) and noticing that ε is arbitrary, we obtain

lim
N0→∞

N0

M
E

[

ν1

(

AM (x)
)]

=
f1(x)

f0(x)
= r(x)� (S3.10)
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Case I.2. f1(x) = 0. Again, for any ε ∈ (0�1), by Lemma S3.1, there exists some δ =

δx > 0 such that for any z ∈R
d with ‖z − x‖ ≤ δ, we have

∣∣∣∣
ν0(Bz�‖z−x‖)

λ(Bz�‖z−x‖)
− f0(x)

∣∣∣∣ ≤ εf0(x)�

∣∣∣∣
ν1(Bx�‖z−x‖)

λ(Bx�‖z−x‖)

∣∣∣∣ ≤ ε�

Recall that W = ν0(BZ�‖x−Z‖). Then if ‖Z − x‖ ≤ δ, we have

W ≥ (1 − ε)f0(x)λ(BZ�‖x−Z‖) = (1 − ε)f0(x)λ(Bx�‖x−Z‖) ≥ ε−1(1 − ε)f0(x)ν1(Bx�‖x−Z‖)�

Proceeding in the same way as (S3.3), we obtain

E
[
ν1

(
AM (x)

)]
≤ P

(
W ≤ ν0(BZ�‖X(M) (Z)−Z‖)ηN

M

N0

�‖Z − x‖ ≤ δ

)
+ P

(
U(M) >ηN

M

N0

)

≤ P

(
1 − ε

ε
f0(x)U ≤U(M)

)
+ P

(
U(M) >ηN

M

N0

)
�

For the first term above,

N0

M
P

(
1 − ε

ε
f0(x)U ≤ U(M)

)
=

ε

1 − ε

1

f0(x)

∫ 1−ε
ε f0(x)

N0
M

0

P

(
U(M) ≥

M

N0

t

)
dt

≤
ε

1 − ε

1

f0(x)

∫ ∞

0

P

(
N0

M
U(M) ≥ t

)
dt

=
ε

1 − ε

1

f0(x)

N0

M
E[U(M)] =

ε

1 − ε

1

f0(x)

N0

N0 + 1
�

By (S3.4) and noticing ε is arbitrary, we have

lim
N0→∞

N0

M
E

[
ν1

(
AM (x)

)]
= 0 = r(x)� (S3.11)

Combining (S3.10) and (S3.11) completes the proof of the first claim.

Part II. This part proves the second claim. We also separate the proof of Part II into
two cases based on the value of f1(x).

Case II.1. f1(x) > 0. Again, for any ε ∈ (0�1), we take δ in the same way as in
Case I.1. Let ηN = ηN�p = 4p log(N0/M). We also take N0 sufficiently large so that

ηN
M

N0
= 4p M

N0
log(N0

M
) < (1 − ε)f0(x)λ(B0�δ).

Let Z̃1� � � � � Z̃p be p independent copies that are drawn from ν1 independent of the
data. Then

E
[
ν
p

1

(
AM (x)

)]

= P
(
Z̃1� � � � � Z̃p ∈ AM (x)

)

= P
(
ν0(BZ̃1�‖x−Z̃1‖) ≤ ν0(BZ̃1�‖X(M) (Z̃1)−Z̃1‖)� � � � � ν0(BZ̃p�‖x−Z̃p‖) ≤ ν0(BZ̃p�‖X(M) (Z̃p)−Z̃p‖)

)
�

Let Wk = ν0(BZ̃k�‖x−Z̃k‖) and Vk = ν0(BZ̃k�‖X(M) (Z̃k)−Z̃k‖) for any k ∈ �p�. Then [Wk]pk=1

are i.i.d. since [Z̃k]pk=1 are i.i.d. For any k ∈ �p� and Z̃k ∈ R
d given, Vk|Z̃k has the same
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distribution as U(M). Then for any k ∈ �p�, Vk has the same distribution as U(M), and Vk is

independent of Z̃k.
Let Wmax = maxk∈�p� Wk and Vmax = maxk∈�p� Vk. Then

E
[
ν
p

1

(
AM (x)

)]
≤ P(Wmax ≤ Vmax)

≤ P

(
Wmax ≤ Vmax ≤ ηN

M

N0

)
+ P

(
Vmax >ηN

M

N0

)
� (S3.12)

For the second term in (S3.12),

P

(
Vmax >ηN

M

N0

)
≤

p∑

k=1

P

(
Vk >ηN

M

N0

)
= pP

(
U(M) >ηN

M

N0

)
�

Proceeding as (S3.4),

(
N0

M

)p

P

(
U(M) >ηN

M

N0

)
≤

(
N0

M

)p

exp

(
−

1

2
ηNM

)
=

(
N0

M

)p(1−2M)

�

We then obtain

lim
N0→∞

(
N0

M

)p

P

(
Vmax >ηN

M

N0

)
= 0� (S3.13)

For the first term in (S3.12), notice that [ν1(Bx�‖Z̃k−x‖)]
p

k=1 are i.i.d. from U (0�1) since

[Z̃k]
p

k=1 are i.i.d. We then have

(
N0

M

)p

P

(
Wmax ≤ Vmax ≤ ηN

M

N0

)

=

(
N0

M

)p

P

(
Wmax ≤ Vmax ≤ ηN

M

N0

� max
k∈�p�

‖Z̃k − x‖ ≤ δ

)

≤

(
N0

M

)p

P

(
1 − ε

1 + ε

f0(x)

f1(x)
max
k∈�p�

ν1(Bx�‖Z̃k−x‖) ≤ Vmax ≤ ηN

M

N0

� max
k∈�p�

‖Z̃k − x‖ ≤ δ

)

≤

(
N0

M

)p

P

(
1 − ε

1 + ε

f0(x)

f1(x)
max
k∈�p�

ν1(Bx�‖Z̃k−x‖) ≤ Vmax

)

=

(
N0

M

)p ∫ 1

0

ptp−1P

(
Vmax ≥

1 − ε

1 + ε

f0(x)

f1(x)
t
∣∣∣ max
k∈�p�

ν1(Bx�‖Z̃k−x‖) = t

)
dt

= p

(
1 + ε

1 − ε

f1(x)

f0(x)

)p

×

∫ 1−ε
1+ε

f0(x)

f1(x)

N0
M

0

tp−1P

(
Vmax ≥

M

N0

t
∣∣∣ max
k∈�p�

ν1(Bx�‖Z̃k−x‖) =
1 + ε

1 − ε

f1(x)

f0(x)

M

N0

t

)
dt
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= p

(
1 + ε

1 − ε

f1(x)

f0(x)

)p[∫ 1

0

tp−1P

(
Vmax ≥

M

N0

t
∣∣∣ max
k∈�p�

ν1(Bx�‖Z̃k−x‖) =
1 + ε

1 − ε

f1(x)

f0(x)

M

N0

t

)
dt

+
∫ 1−ε

1+ε

f0(x)

f1(x)

N0
M

1

tp−1P

(
Vmax ≥

M

N0

t
∣∣∣ max
k∈�p�

ν1(Bx�‖Z̃k−x‖) =
1 + ε

1 − ε

f1(x)

f0(x)

M

N0

t

)
dt

]
�

For the first term,

∫ 1

0

tp−1P

(
Vmax ≥

M

N0

t
∣∣∣ max
k∈�p�

ν1(Bx�‖Z̃k−x‖) =
1 + ε

1 − ε

f1(x)

f0(x)

M

N0

t

)
dt ≤

∫ 1

0

tp−1 dt =
1

p
�

For the second term, using the Chernoff bound, conditional on Z̃= (Z̃1� � � � � Z̃p),

∫ 1−ε
1+ε

f0(x)

f1(x)

N0
M

1

tp−1P

(
Vmax ≥

M

N0

t
∣∣∣ Z̃

)
dt

≤
∫ ∞

0

(1 + t)p−1P

(
Vmax ≥

M

N0

(1 + t)
∣∣∣ Z̃

)
dt

≤
∫ ∞

0

(1 + t)p−1

[
p∑

k=1

P

(
Vk ≥

M

N0

(1 + t)
∣∣∣ Z̃

)]
dt

= p

∫ ∞

0

(1 + t)p−1P

(
U(M) ≥

M

N0

(1 + t)

)
dt

≤ p

∫ ∞

0

(1 + t)p−1(1 + t)M exp(−tM) dt ≤
√

2πpM−1/2

(
1 +

1

M

)p−1(
1 + o(1)

)
�

where the last step follows from Stirling’s approximation with M → ∞.
Then we obtain

lim sup
N0→∞

(
N0

M

)p

P

(
Wmax ≤ Vmax� Vmax ≤ ηN

M

N0

)
≤

(
1 + ε

1 − ε

f1(x)

f0(x)

)p

� (S3.14)

Plugging (S3.13) and (S3.14) into (S3.12) yields

lim sup
N0→∞

(
N0

M

)p

E
[
ν
p

1

(
AM (x)

)]
≤

(
1 + ε

1 − ε

f1(x)

f0(x)

)p

=
(

1 + ε

1 − ε
r(x)

)p

� (S3.15)

Lastly, using Hölder’s inequality,

(
N0

M

)p

E
[
ν
p

1

(
AM (x)

)]
≥

[
N0

M
E

[
ν1

(
AM (x)

)]]p

�

Employing the first claim, we have

lim inf
N0→∞

(
N0

M

)p

E
[
ν
p

1

(
AM (x)

)]
≥

[
r(x)

]p
� (S3.16)
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Combining (S3.15) with (S3.16) and noting that ε is arbitrary, we obtain

lim
N0→∞

(
N0

M

)p

E
[
ν
p

1

(
AM (x)

)]
=

[
r(x)

]p
� (S3.17)

Case II.2. f1(x) = 0. For any ε ∈ (0�1), we take δ in the same way as in the proof of
Case I.2 and take ηN as in the proof of Case II.1.

By (S3.12),

(
N0

M

)p

E
[
ν
p

1

(
AM (x)

)]
≤

(
N0

M

)p

P

(
Wmax ≤ Vmax ≤ ηN

M

N0

)
+

(
N0

M

)p

P

(
Vmax >ηN

M

N0

)
�

For the first term,

(
N0

M

)p

P

(
Wmax ≤ Vmax ≤ ηN

M

N0

)

≤

(
N0

M

)p

P

(
1 − ε

ε
f0(x) max

k∈�p�
ν1(Bx�‖Z̃k−x‖) ≤ Vmax

)

=

(
N0

M

)p ∫ 1

0

ptp−1P

(
Vmax ≥

1 − ε

ε
f0(x)t

∣∣∣ max
k∈�p�

ν1(Bx�‖Z̃k−x‖) = t

)
dt

= p

(
ε

1 − ε

1

f0(x)

)p ∫ 1−ε
ε f0(x)

N0
M

0

tp−1P

(
Vmax ≥

M

N0

t
∣∣∣ max
k∈�p�

ν1(Bx�‖Z̃k−x‖) = t

)
dt�

Then proceeding in the same way as (S3.14), we have

lim sup
N0→∞

(
N0

M

)p

P

(
Wmax ≤ Vmax ≤ ηN

M

N0

)
≤

(
ε

1 − ε

1

f0(x)

)p

�

Lastly, using (S3.13) and noting again that ε is arbitrary, we obtain

lim
N0→∞

(
N0

M

)p

E
[
ν
p

1

(
AM (x)

)]
= 0 =

[
r(x)

]p
� (S3.18)

Combining (S3.17) and (S3.18) then completes the proof of the second claim. Q.E.D.

S3.2. Proof of Theorem B.1

PROOF OF THEOREM B.1(i): By (2.4) and that [Zj]
N1
j=1 are i.i.d,

E
[
r̂M (x)

]
= E

[
N0

N1

KM (x)

M

]
=

N0

N1M
E

[
N1∑

j=1

1
(
Zj ∈ AM (x)

)
]

=
N0

M
E

[
ν1

(
AM (x)

)]
�

Employing Lemma B.1 then completes the proof. Q.E.D.
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PROOF OF THEOREM B.1(ii): By Hölder’s inequality, it suffices to consider the case
when p is even. Because xp is convex for p> 1 and x > 0, we have

E
[∣∣̂rM (x) − r(x)

∣∣p]

≤ 2p−1
(
E

[∣∣̂rM (x) − E
[
r̂M (x)|X

]∣∣p] + E
[∣∣E

[
r̂M (x)|X

]
− r(x)

∣∣p])� (S3.19)

For the second term in (S3.19), Lemma B.1 implies

lim
N0→∞

E
[∣∣E

[
r̂M (x)|X

]
− r(x)

∣∣p] = lim
N0→∞

E

[∣∣∣∣
N0

M
ν1

(
AM (x)

)
− r(x)

∣∣∣∣
p]

= 0 (S3.20)

by expanding the product term.

For the first term in (S3.19), noticing that [Zj]
N1
j=1 are i.i.d, we have KM (x)|X ∼

Bin(N1� ν1(AM (x))). Using Lemma B.1 and MN1/N0 → ∞, for any positive integers p
and q, we have

lim
N0→∞

(
N0

N1M

)p

E
[
N

p

1 ν
p

1

(
AM (x)

)]
=

[
r(x)

]p
�

lim
N0→∞

(
N0

N1M

)p(
N0

M

)q

E
[
N

p

1 ν
p+q

1

(
AM (x)

)]
=

[
r(x)

]p+q
�

and then E[Np

1 ν
p

1 (AM (x))] is the dominated term among [E[Nk
1 ν

k+q

1 (AM (x))]]k≤p�q≥0.
To complete the proof, for any positive integer c and Z ∼ Bin(n�p′), let μc = E[(Z −

E[Z])c] be the cth central moment. By Romanovsky (1923), we have

μc+1 = p′
(
1 −p′

)(
ncμc−1 +

dμc

dp′

)
�

Then for even p, we obtain

E
[(
KM (x) −N1ν1

(
AM (x)

))p]
� E

[
N1ν1

(
AM (x)

)]p/2
�

(
N1M

N0

)p/2

�

The first term in (S3.19) then satisfies

E
[∣∣̂rM (x) − E

[
r̂M (x)|X

]∣∣p] =

(
N0

N1M

)p

E
[(
KM (x) −N1ν1

(
AM (x)

))p]
�

(
N0

N1M

)p/2

�

Since MN1/N0 → ∞, we obtain

lim
N0→∞

E
[∣∣̂rM (x) − E

[
r̂M (x)|X

]∣∣p] = 0� (S3.21)

Plugging (S3.20) and (S3.21) into (S3.19) then completes the proof. Q.E.D.

S3.3. Proof of Theorem B.2

PROOF OF THEOREM B.2: We first cite the Hardy–Littlewood maximal inequality.
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LEMMA S3.2—Hardy–Littlewood Maximal Inequality (Stein (2016)): For any locally
integrable function f :Rd →R, define

Mf (x) = sup
δ>0

1

λ(Bx�δ)

∫

Bx�δ

∣

∣f (z)
∣

∣dz�

Then for d ≥ 1, there exists a constant Cd > 0 only depending on d such that for all t > 0 and
f ∈ L1(Rd), we have

λ
({

x : Mf (x) > t
})

<
Cd

t
‖f‖L1

�

where ‖·‖L1
stands for the function L1 norm.

Let ε > 0 be given. We assume ε ≤ fL. From Assumption B.1, S0 and S1 are bounded,
then ν0 and ν1 are compactly supported. Since f0� f1 ∈ L1, and the class of continuous
functions are dense in the class of compactly supported L1 functions from simple use of
Lusin’s theorem, we can find g0, g1 such that g0, g1 are continuous and ‖f0 − g0‖L1

≤ ε3

and ‖f1 − g1‖L1
≤ ε3.

Since g0, g1 are continuous with compact supports, they are uniformly continuous, that
is, there exists δ > 0 such that for any x�z ∈ R

d and ‖z−x‖ ≤ δ, we have |g0(x) −g0(z)| ≤
ε2

3
and |g1(x) − g1(z)| ≤ ε2

3
.

For any x ∈ R
d , we have

1

λ(Bx�δ)

∫

Bx�δ

∣

∣f0(x) − f0(z)
∣

∣dz

≤
1

λ(Bx�δ)

∫

Bx�δ

[∣

∣f0(x) − g0(x)
∣

∣ +
∣

∣g0(x) − g0(z)
∣

∣ +
∣

∣f0(z) − g0(z)
∣

∣

]

dz

=
∣

∣f0(x) − g0(x)
∣

∣ +
1

λ(Bx�δ)

∫

Bx�δ

∣

∣g0(x) − g0(z)
∣

∣dz

+
1

λ(Bx�δ)

∫

Bx�δ

∣

∣f0(z) − g0(z)
∣

∣dz� (S3.22)

For the first term in (S3.22), using Markov’s inequality, we have

λ
({

x :
∣

∣f0(x) − g0(x)
∣

∣> ε2/3
})

≤ 3ε−2‖f0 − g0‖L1
≤ 3ε� (S3.23)

For the second term in (S3.22), by the selection of δ,

1

λ(Bx�δ)

∫

Bx�δ

∣

∣g0(x) − g0(z)
∣

∣dz ≤ max
z∈Bx�δ

∣

∣g0(x) − g0(z)
∣

∣ ≤
ε2

3
� (S3.24)

For the third term,

1

λ(Bx�δ)

∫

Bx�δ

∣

∣f0(z) − g0(z)
∣

∣dz ≤ sup
δ>0

1

λ(Bx�δ)

∫

Bx�δ

∣

∣f0(z) − g0(z)
∣

∣dz = M(f0 − g0)(x)�
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Lemma S3.2 then yields

λ
({
x : M(f0 − g0)(x) > ε2/3

})
< 3Cdε

−2‖f0 − g0‖L1
≤ 3Cdε� (S3.25)

We can establish similar results for f1, g1.
Let

A1 =
{
x :

∣∣f0(x) − g0(x)
∣∣ > ε2/3

}
∪

{
x :

∣∣f1(x) − g1(x)
∣∣> ε2/3

}

∪
{
x : M(f0 − g0)(x) > ε2/3

}
∪

{
x : M(f1 − g1)(x) > ε2/3

}
�

Plugging (S3.23), (S3.24), (S3.25) into (S3.22), for any x /∈ A1 and ‖z − x‖ ≤ δ, we have

1

λ(Bx�δ)

∫

Bx�δ

∣∣f0(x) − f0(z)
∣∣dz ≤ ε2�

1

λ(Bx�δ)

∫

Bx�δ

∣∣f1(x) − f1(z)
∣∣dz ≤ ε2�

and λ(A1) ≤ 6(Cd + 1)ε.
Let A2 = {x : f1(x) ≤ ε}. We then separate the proof into three cases. In the following,

it suffices to consider f0(x) > 0 due to the definition of Lp risk.
Case I. x /∈ A1 ∪ A2. By ε ≤ fL and the definition of A2, for any x /∈ A1 ∪ A2 and ‖z −

x‖ ≤ δ,

1

λ(Bx�δ)

∫

Bx�δ

∣∣f0(x) − f0(z)
∣∣dz ≤ ε2 ≤ εfL ≤ εf0(x)�

1

λ(Bx�δ)

∫

Bx�δ

∣∣f1(x) − f1(z)
∣∣dz ≤ ε2 ≤ εf1(x)�

We then obtain for w ∈{0�1},

∣∣∣∣
νw(Bx�‖z−x‖)

λ(Bx�‖z−x‖)
− fw(x)

∣∣∣∣ ≤ εfw(x)�

∣∣∣∣
νw(Bz�‖z−x‖)

λ(Bz�‖z−x‖)
− fw(x)

∣∣∣∣ ≤ εfw(x)�

Let ηN = ηN�p = 4p log(N0/M). We also take N0 large enough so that ηN
M

N0
=

4p M

N0
log(N0

M
) < (1 − ε)fLλ(B0�δ). Then for any x ∈ R

d such that f0(x) > 0, we have

ηN
M

N0
< (1 − ε)f0(x)λ(B0�δ).

Proceeding as in the proof of Case II.1 of Lemma B.1 and also Theorem B.1 by using
Fubini’s theorem, since ε is arbitrary, we obtain

lim
N0→∞

E

[∫

Rd

∣∣̂rM (x) − r(x)
∣∣pf0(x)1(x /∈A1 ∪A2) dx

]
= 0� (S3.26)

Case II. x ∈A2 \A1. In this case, we have

∣∣∣∣
ν0(Bx�‖z−x‖)

λ(Bx�‖z−x‖)
− f0(x)

∣∣∣∣ ≤ εf0(x)�

∣∣∣∣
ν0(Bz�‖z−x‖)

λ(Bz�‖z−x‖)
− f0(x)

∣∣∣∣ ≤ εf0(x)�

∣∣∣∣
ν1(Bx�‖z−x‖)

λ(Bx�‖z−x‖)
− f1(x)

∣∣∣∣ ≤ ε2�

∣∣∣∣
ν1(Bz�‖z−x‖)

λ(Bz�‖z−x‖)
− f1(x)

∣∣∣∣ ≤ ε2�
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Take ηN and take N0 sufficiently large as in Case I above. Proceeding as the proof
of Case II.2 of Lemma B.1 and also Theorem B.1 by using Fubini’s theorem, since ε is
arbitrary, we obtain

lim
N0→∞

E

[∫

Rd

∣∣̂rM (x) − r(x)
∣∣pf0(x)1(x ∈A2 \A1) dx

]
= 0� (S3.27)

Case III. x ∈ A1. In this case, for any x ∈ A1 and z ∈ S1, ν0(Bz�‖z−x‖) ≥ fLλ(Bz�‖z−x‖ ∩

S0) ≥ afLλ(Bz�‖z−x‖) ≥
afL
fU
ν1(Bx�‖z−x‖). Then for any x ∈ A1, from (S3.12) and in the same

way as (S3.14),

(
N0

M

)p

E
[
ν
p

1

(
AM (x)

)]
≤

(
N0

M

)p

P(Wmax ≤ Vmax)

≤

(
N0

M

)p

P

(
afL

fU
max
k∈�p�

ν1(Bx�‖Z̃k−x‖) ≤ Vmax

)

≤

(
fU

afL

)p(
1 + o(1)

)
=O(1)�

Proceeding as in the proof of Theorem B.1, and due to the boundedness assumptions
on f0 and f1, for any x ∈ A1 and p even,

E
[∣∣̂rM (x) − r(x)

∣∣p]� E
[∣∣̂rM (x) − E

[
r̂M (x)|X

]∣∣p] + E
[(

E
[
r̂M (x)|X

])p]
+

∣∣r(x)
∣∣p � 1�

Then

E

[∫

Rd

∣∣̂rM (x) − r(x)
∣∣pf0(x)1(x ∈ A1) dx

]
� fUλ(A1) � ε�

Since ε is arbitrary, we have

lim
N0→∞

E

[∫

Rd

∣∣̂rM (x) − r(x)
∣∣pf0(x)1(x ∈ A1) dx

]
= 0� (S3.28)

Combining (S3.26), (S3.27), and (S3.28) completes the proof. Q.E.D.

S3.4. Proof of Corollary B.1

PROOF OF COROLLARY B.1: Corollary B.1 can be established following the same way
as that of Theorem B.2 but with less effort since we only have to show

lim
N0→∞

E

[∫

Rd

∣∣E
[
r̂M (x)|X

]
− r(x)

∣∣pf0(x) dx

]
= 0�

In detail, denote the Radon–Nikodym derivative of the probability measure of W with
respect to ν0 by rW . We then have

lim sup
N0→∞

E

[∣∣∣∣
N0

M
ν1

(
AM (W )

)
− r(W )

∣∣∣∣
p]

= lim sup
N0→∞

E

[∫

Rd

∣∣∣∣
N0

M
ν1

(
AM (x)

)
− r(x)

∣∣∣∣
p

rW (x)f0(x) dx

]
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� lim sup
N0→∞

E

[∫

Rd

∣∣∣∣
N0

M
ν1

(
AM (x)

)
− r(x)

∣∣∣∣
p

f0(x) dx

]

= lim sup
N0→∞

E

[∫

Rd

∣∣E
[
r̂M (x)|X

]
− r(x)

∣∣pf0(x) dx

]
= 0�

where the last line has been established in the proof of Theorem B.2. Noticing that
E[r(W )]p is bounded under Assumption B.1, the proof is thus complete. Q.E.D.

S3.5. Proof of Theorem B.3

We only have to prove the first two claims as the rest are trivial.

PROOF OF THEOREM B.3(i): For any z ∈ R
d such that ‖z − x‖ ≤ δ/2, since Bz�‖z−x‖ ⊂

Bx�2‖z−x‖ ⊂ Bx�δ, we have

∣∣∣∣
ν0(Bz�‖z−x‖)

λ(Bz�‖z−x‖)
− f0(x)

∣∣∣∣ ≤
1

λ(Bz�‖z−x‖)

∫

Bz�‖z−x‖

∣∣f0(y) − f0(x)
∣∣dy ≤ 2L‖z − x‖�

∣∣∣∣
ν1(Bx�‖z−x‖)

λ(Bx�‖z−x‖)
− f1(x)

∣∣∣∣ ≤
1

λ(Bx�‖z−x‖)

∫

Bx�‖z−x‖

∣∣f1(y) − f1(x)
∣∣dy ≤L‖z − x‖�

Consider any δN > 0 such that δN ≤ δ/2. If ‖z − x‖ ≤ δN and f0(x) > 2LδN , then

f0(x) − 2LδN

f1(x) +LδN

≤
ν0(Bz�‖x−z‖)

λ(Bz�‖x−z‖)

λ(Bx�‖x−z‖)

ν1(Bx�‖x−z‖)
�

If further f1(x) >LδN , then

ν0(Bz�‖x−z‖)

λ(Bz�‖x−z‖)

λ(Bx�‖x−z‖)

ν1(Bx�‖x−z‖)
≤

f0(x) + 2LδN

f1(x) −LδN

�

On the other hand, if ‖z − x‖ ≥ δN and f0(x) > 2LδN , ν0(Bz�‖z−x‖) ≥ (f0(x) − 2LδN) ×

λ(B0�δN ) = (f0(x) − 2LδN)Vdδ
d
N , where Vd is the Lebesgue measure of the unit ball on

R
d .
Let δN = ( 4

fLVd
)1/d( M

N0
)1/d . Since M/N0 → 0, we have δN → 0 as N0 → ∞. Taking N0

large enough so that δN < fL/(4L) and δN ≤ δ/2, then 2LVdδ
d+1
N = M

N0

8L
fL
δN < 2 M

N0
. Then

for any (ν0� ν1) ∈Px�p(fL� fU�L�d�δ),

(
f0(x) − 2LδN

)
Vdδ

d
N > 4

f0(x)

fL

M

N0

− 2
M

N0

≥ 2
M

N0

�

With a slight abuse of notation, let W = ν0(BZ�‖x−Z‖). Then W ≤ 2 M

N0
implies that ‖Z −

x‖ ≤ δN .
Depending on the value of f1(x), the proof is separated into two cases.
Case I. f1(x) >LδN .
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Upper bound. Proceeding similar to (S3.3), we have

E
[
r̂M (x)

]
=

N0

M
E

[
ν1

(
AM (x)

)]
=

N0

M
P
(
W ≤ ν0(BZ�‖X(M) (Z)−Z‖)

)

≤
N0

M
P

(
W ≤ ν0(BZ�‖X(M) (Z)−Z‖) ≤ 2

M

N0

)
+

N0

M
P

(
U(M) > 2

M

N0

)

≤
N0

M
P
(
W ≤ ν0(BZ�‖X(M) (Z)−Z‖)�‖Z − x‖ ≤ δN

)
+

N0

M
P

(
U(M) > 2

M

N0

)

≤
N0

M
P

(
f0(x) − 2LδN

f1(x) +LδN

ν1(Bx�‖x−Z‖) ≤ ν0(BZ�‖X(M) (Z)−Z‖)�‖Z − x‖ ≤ δN

)

+
N0

M
P

(
U(M) > 2

M

N0

)

≤
N0

M
P

(
f0(x) − 2LδN

f1(x) +LδN

U ≤U(M)

)
+

N0

M
P

(
U(M) > 2

M

N0

)
� (S3.29)

For the second term in (S3.29), since M/ logN0 → ∞, for any γ > 0,

N0

M
P

(
U(M) > 2

M

N0

)
=

N0

M
P

(
Bin

(
N0�2

M

N0

)
≤M

)

≤
N0

M
N

−(1−log 2)M/ logN0
0 ≺N

−γ

0 � (S3.30)

For the first term in (S3.29), proceeding as (S3.5), we obtain

N0

M
P

(
f0(x) − 2LδN

f1(x) +LδN

U ≤ U(M)

)
≤

f1(x) +LδN

f0(x) − 2LδN

N0

N0 + 1
�

Then we obtain

E
[
r̂M (x)

]
≤

f1(x) +LδN

f0(x) − 2LδN

N0

N0 + 1
+ o

(
N

−γ

0

)
� (S3.31)

Lower bound. Proceeding similar to (S3.8), we have

E
[
r̂M (x)

]
=

N0

M
E

[
ν1

(
AM (x)

)]
=

N0

M
P
(
W ≤ ν0(BZ�‖X(M) (Z)−Z‖)

)

≥
N0

M
P

(
W ≤ ν0(BZ�‖X(M) (Z)−Z‖) ≤ 2

M

N0

)

=
N0

M
P

(
W ≤ ν0(BZ�‖X(M) (Z)−Z‖) ≤ 2

M

N0

�‖Z − x‖ ≤ δN

)

≥
N0

M
P

(
f0(x) + 2LδN

f1(x) −LδN

ν1(Bx�‖x−Z‖) ≤ ν0(BZ�‖X(M) (Z)−Z‖) ≤ 2
M

N0

�‖Z − x‖ ≤ δN

)

=
N0

M
P

(
f0(x) + 2LδN

f1(x) −LδN

ν1(Bx�‖x−Z‖) ≤ ν0(BZ�‖X(M) (Z)−Z‖) ≤ 2
M

N0

)
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≥
N0

M
P

(
f0(x) + 2LδN

f1(x) −LδN

U ≤ U(M)

)
−

N0

M
P

(
U(M) > 2

M

N0

)

=
f1(x) −LδN

f0(x) + 2LδN

∫ f0(x)+2LδN
f1(x)−LδN

N0
M

0

P

(
U(M) ≥

M

N0

t

)
dt −

N0

M
P

(
U(M) > 2

M

N0

)
�

Consider the first term. If f0(x)+2LδN
f1(x)−LδN

≥ 1, then

f1(x) −LδN

f0(x) + 2LδN

∫ f0(x)+2LδN
f1(x)−LδN

N0
M

0

P

(
U(M) ≥

M

N0

t

)
dt =

f1(x) −LδN

f0(x) + 2LδN

N0

N0 + 1
�

If f0(x)+2LδN
f1(x)−LδN

< 1, using the Chernoff bound, for any γ > 0,

∫ N0
M

f0(x)+2LδN
f1(x)−LδN

N0
M

P

(
U(M) ≥

M

N0

t

)
dt

≤

∫ N0
M

fL
fU

N0
M

P

(
U(M) ≥

M

N0

t

)
dt ≤

[
1 −

fL

fU

]
N0

M
P

(
U(M) ≥

fL

fU

)

≤

[
1 −

fL

fU

]
N0

M
exp

[
M −

fL

fU
N0 −M logM +M log

(
fL

fU
N0

)]
≺ N

−γ

0 �

The last step is due to M logN0/N0 → 0. Recalling (S3.30), we then obtain

E
[
r̂M (x)

]
≥

f1(x) −LδN

f0(x) + 2LδN

N0

N0 + 1
− o

(
N

−γ

0

)
� (S3.32)

Combining (S3.31) and (S3.32), and taking N0 large enough so that LδN ≤ fU ' (fL/4),
we obtain

∣∣E
[
r̂M (x)

]
− r(x)

∣∣

≤

∣∣∣∣
f1(x) +LδN

f0(x) − 2LδN

N0

N0 + 1
−

f1(x)

f0(x)

∣∣∣∣ (

∣∣∣∣
f1(x) −LδN

f0(x) + 2LδN

N0

N0 + 1
−

f1(x)

f0(x)

∣∣∣∣

+ o
(
N

−γ

0

)
≤

f0(x)LδN + 2f1(x)LδN

f0(x)
(
f0(x) − 2LδN

) +
1

N0 + 1

f1(x) +LδN

f0(x) − 2LδN

+ o
(
N

−γ

0

)

≤

(
2

fL
+

4fU

f 2
L

)
LδN +

4fU

fL

1

N0 + 1
+ o

(
N

−γ

0

)
�

By the selection of δN and that the right-hand side does not depend on x, we complete
the proof for this case.

Case II. f1(x) ≤ LδN . The upper bound (S3.31) in Case I still holds for this case. Ac-
cordingly, taking N0 large enough so that LδN ≤ fL/4, we have

∣∣E
[
r̂M (x)

]
− r(x)

∣∣ ≤ E
[
r̂M (x)

]
+ r(x)

≤
f1(x) +LδN

f0(x) − 2LδN

N0

N0 + 1
+

f1(x)

f0(x)
+ o

(
N

−γ

0

)
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≤
4

fL
LδN +

1

fL
LδN + o

(
N

−γ

0

)
�

We thus complete the whole proof. Q.E.D.

PROOF OF THEOREM B.3(ii): By the law of total variance,

Var
[
r̂M (x)

]
= E

[
Var

[
r̂M (x)|X

]]
+ Var

[
E

[
r̂M (x)|X

]]
� (S3.33)

For the first term in (S3.33), let Z be a copy drawn from ν1 independently of the data.

Then, since [Zj]
N1
j=1 are i.i.d,

E
[
Var

[
r̂M (x)|X

]]
= E

[
Var

[
N0

N1M
KM (x)

∣∣∣X
]]

=

(
N0

N1M

)2

E

[
Var

[
N1∑

j=1

1
(
Zj ∈ AM (x)

) ∣∣∣∣X
]]

=
N2

0

N1M
2
E

[
Var

[
1
(
Z ∈ AM (x)

)
|X

]]

=
N2

0

N1M
2
E

[
ν1

(
AM (x)

)
− ν2

1

(
AM (x)

)]
≤

N2
0

N1M
2
E

[
ν1

(
AM (x)

)]

=
N0

N1M
E

[
r̂M (x)

]
� C

N0

N1M
� (S3.34)

where C > 0 is a constant only depending on fL, fU . The last step is due to (S3.31).
For the second term in (S3.33), notice that

Var
[
E

[
r̂M (x)|X

]]
= Var

[
E

[
N0

N1M
KM (x)

∣∣∣X
]]

=

(
N0

M

)2

Var
[
ν1

(
AM (x)

)]
�

Recalling that W = ν0(BZ�‖x−Z‖), we have the following lemma about the density of W
near 0.

LEMMA S3.3: Denote the density of W by fW . Then for any (ν0� ν1) ∈Px�p(fL� fU�L�d�δ),

fW (0) = r(x)�

Furthermore, for any ε > 0 and N0 sufficiently large, we have for all 0 ≤ w ≤ 2M/N0,

sup
(ν0�ν1)∈Px�p(fL�fU �δ�L�d)

fW (w) ≤ (1 + ε)
fU

fL
�

Due to Lemma S3.3, we can take N0 sufficiently large so that for any 0 ≤w ≤ 2M/N0,

sup
(ν0�ν1)∈Px�p(fL�fU �δ�L�d)

fW (w) ≤ 2
fU

fL
�
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Let Z, Z̃ be two independent copies from ν1 that are further independent of the
data. Let W = ν0(BZ�‖x−Z‖) and W̃ = ν0(BZ̃�‖x−Z̃‖). Let V = ν0(BZ�‖X(M) (Z)−Z‖) and Ṽ =

ν0(BZ̃�‖X(M) (Z̃)−Z̃‖). We then have

Var
[
ν1

(
AM (x)

)]
= E

[
ν2

1

(
AM (x)

)]
−

(
E

[
ν1

(
AM (x)

)])2

= P
(
Z ∈ AM (x)� Z̃ ∈ AM (x)

)
− P

(
Z ∈ AM (x)

)
P
(
Z̃ ∈ AM (x)

)

= P(W ≤ V � W̃ ≤ Ṽ ) − P(W ≤ V )P(W̃ ≤ Ṽ )�

Due to the independence between Z and Z̃, W and W̃ are independent. Notice that
V |Z have the same distribution as U(M) for any Z ∈ R

d , then V and Z are independent,

so are Ṽ and Z̃.
Let us expand the variance further as

Var
[
ν1

(
AM (x)

)]

=

[
P

(
W ≤ V � W̃ ≤ Ṽ �W ≤ 2

M

N0

� W̃ ≤ 2
M

N0

)

− P

(
W ≤ V �W ≤ 2

M

N0

)
P

(
W̃ ≤ Ṽ � W̃ ≤ 2

M

N0

)]

+

[
P(W ≤ V � W̃ ≤ Ṽ ) − P

(
W ≤ V � W̃ ≤ Ṽ �W ≤ 2

M

N0

� W̃ ≤ 2
M

N0

)]

−

[
P(W ≤ V )P(W̃ ≤ Ṽ )

− P

(
W ≤ V �W ≤ 2

M

N0

)
P

(
W̃ ≤ Ṽ � W̃ ≤ 2

M

N0

)]
� (S3.35)

For the first term in (S3.35), we have the following lemma.

LEMMA S3.4: We have

(
N0

M

)2[
P

(
W ≤ V � W̃ ≤ Ṽ �W ≤ 2

M

N0

� W̃ ≤ 2
M

N0

)

− P

(
W ≤ V �W ≤ 2

M

N0

)
P

(
W̃ ≤ Ṽ � W̃ ≤ 2

M

N0

)]
≤ C

1

M
�

where C > 0 is a constant only depending on fL, fU .

For the second term in (S3.35),

P(W ≤ V � W̃ ≤ Ṽ ) − P

(
W ≤ V � W̃ ≤ Ṽ �W ≤ 2

M

N0

� W̃ ≤ 2
M

N0

)

≤ P

(
W ≤ V � W̃ ≤ Ṽ �W > 2

M

N0

)
+ P

(
W ≤ V � W̃ ≤ Ṽ � W̃ > 2

M

N0

)
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≤ P

(
V > 2

M

N0

)
+ P

(
Ṽ > 2

M

N0

)
= 2P

(
U(M) > 2

M

N0

)
�

Using the Chernoff bound and M/ logN0 → ∞, for any γ > 0,

(
N0

M

)2

P

(
U(M) > 2

M

N0

)
≤

(
N0

M

)2

exp
[
−(1 − log 2)M

]
≺N

−γ

0 �

We then have

(
N0

M

)2[
P(W ≤ V � W̃ ≤ Ṽ ) − P

(
W ≤ V � W̃ ≤ Ṽ �W ≤ 2

M

N0

� W̃ ≤ 2
M

N0

)]

≤ 2

(
N0

M

)2

P

(
U(M) > 2

M

N0

)
≺N

−γ

0 � (S3.36)

For the third term in (S3.35), we can check

[
P(W ≤ V )P(W̃ ≤ Ṽ ) − P

(
W ≤ V �W ≤ 2

M

N0

)
P

(
W̃ ≤ Ṽ � W̃ ≤ 2

M

N0

)]
≥ 0�

Plugging Lemma S3.4 and (S3.36) into (S3.35) by taking γ > 1, we obtain

(
N0

M

)2

Var
[
ν1

(
AM (x)

)]
� C

1

M
� (S3.37)

where C > 0 is a constant only depending on fL, fU .
Plugging (S3.34) and (S3.37) into (S3.33) completes the proof. Q.E.D.

S3.6. Proof of Proposition B.1

PROOF OF PROPOSITION B.1: We take ν0 and ν1 to share the same support, and assume
x to be the origin of Rd without loss of generality.

When N1 � N0, we take ν0 to be the uniform distribution with density fL on

[−f
−1/d
L /2� f

−1/d
L /2]d . Then the MSE is lower bounded by the density estimation over

Lipchitz class with N1 samples.
When N0 � N1, we take ν1 to be the uniform distribution with density fU on

[−f
−1/d
U /2� f−1/d

U /2]d . Notice that 1/f0 is also local Lipchitz from the lower boundness
condition and local Lipchitz condition on f0. Then the MSE is lower bounded by the
density estimation over Lipchitz class with N0 samples.

We then complete the proof by combining the above two lower bounds and then us-
ing the famous minimax lower bound in Lipschitz density estimation (Tsybakov (2009,
Exercise 2.8)), Q.E.D.

S3.7. Proof of Theorem B.4

PROOF OF THEOREM B.4: We only have to prove the first claim as the second is trivial.
Take δN = ( 4

fLVd
)1/d( M

N0
)1/d as in the proof of Theorem B.3(i). Take δ′

N = ( 2
afLVd

)1/d ×

( M

N0
)1/d . For any x ∈ R

d , denote the distance of x to the boundary of S1 by �(x), that is,

�(x) = infz∈∂S1
‖z − x‖.
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Depending on the position of x and the value of �(x), we separate the proof into three
cases.

Case I. x ∈ S1 and �(x) > 2δN . In this case, since �(x) > 2δN , for any ‖z − x‖ ≤ δN , we
have Bz�‖z−x‖ ⊂ S1. From the smoothness conditions on f0 and f1, similar to the proof of
Theorem B.3, we have

E

[∫

Rd

∣∣̂rM (x) − r(x)
∣∣f0(x)1

(
x ∈ S1��(x) > 2δN

)
dx

]

≤

∫

Rd

(
E

[
r̂M (x) − r(x)

]2)1/2
f0(x)1

(
x ∈ S1��(x) > 2δN

)
dx

≤ C

[(
M

N0

)1/d

+

(
1

M

)1/2

+

(
N0

MN1

)1/2]∫

Rd

f0(x)1
(
x ∈ S1��(x) > 2δN

)
dx

≤ C

[(
M

N0

)1/d

+

(
1

M

)1/2

+

(
N0

MN1

)1/2]
� (S3.38)

where the constant C > 0 only depends on fL, fU , L, d.
Case II. x ∈ S0 \ S1 and �(x) > δ′

N . In this case, r(x) = 0 and for any z ∈ S1,

ν0(Bz�‖z−x‖) ≥ fLλ(Bz�‖z−x‖ ∩ S0) ≥ afLλ(Bz�‖z−x‖) > afLVdδ
′d
N ≥ 2

M

N0

�

Then for any γ > 0,

E
[∣∣̂rM (x) − r(x)

∣∣] = E
[
r̂M (x)

]
=

N0

M
E

[
ν1

(
AM (x)

)]

=
N0

M
P
(
W ≤ ν0(BZ�‖X(M) (Z)−Z‖)

)
≤

N0

M
P

(
U(M) > 2

M

N0

)
≺N

−γ

0 �

We then obtain

E

[∫

Rd

∣∣̂rM (x) − r(x)
∣∣f0(x)1

(
x /∈ S1��(x) > δ′

N

)
dx

]

≺N
−γ

0

∫

Rd

f0(x)1
(
x ∈ S0 \ S1��(x) > δ′

N

)
dx ≤N

−γ

0 � (S3.39)

Case III. x ∈ S0 and �(x) ≤ (2δN) ( δ′
N . In this case, for any z ∈ S1,

ν0(Bz�‖z−x‖) ≥ fLλ(Bz�‖z−x‖ ∩ S0) ≥ afLλ(Bz�‖z−x‖) ≥
afL

fU
ν1(Bx�‖z−x‖)�

Accordingly,

E
[∣∣̂rM (x) − r(x)

∣∣] ≤ E
[
r̂M (x)

]
+ r(x) =

N0

M
P
(
W ≤ ν0(BZ�‖X(M) (Z)−Z‖)

)
+ r(x)

≤
N0

M
P

(
afL

fU
ν1(Bx�‖x−Z‖) ≤ ν0(BZ�‖X(M) (Z)−Z‖)

)
+ r(x)

≤
N0

M
P

(
afL

fU
U ≤ U(M)

)
+ r(x) =

fU

afL

(
1 + o(1)

)
+

fU

fL
�
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From the definition of δN , δ′
N , and M/N0 → 0, we have δN� δ

′
N → 0 as N0 → ∞. Since

the surface area of S1 is bounded by H, we have λ({x : �(x) ≤ (2δN) ( δ′
N}) �H{(2δN) (

δ′
N}. Then we obtain

E

[∫

Rd

∣∣̂rM (x) − r(x)
∣∣f0(x)1

(
�(x) ≤ (2δN) ( δ′

N

)
dx

]

≤
(
fU

afL

(
1 + o(1)

)
+

fU

fL

)∫

Rd

f0(x)1
(
�(x) ≤ (2δN) ( δ′

N

)
dx

≤
(
fU

afL

(
1 + o(1)

)
+

fU

fL

)
fUλ

({
x : �(x) ≤ (2δN) ( δ′

N

})

�

(
fU

afL
+

fU

fL

)
fUH

(
δN + δ′

N

)
≤ C

(
M

N0

)1/d

� (S3.40)

where the constant C > 0 only depends on fL, fU , a, H, d.
Combining (S3.38), (S3.39), (S3.40) completes the proof. Q.E.D.

S3.8. Proof of Proposition B.2

PROOF OF PROPOSITION B.2: We take ν0 and ν1 to be of the same support.
When N1 � N0, we take ν0 to be the uniform distribution with density fL on

[−f
−1/d
L /2� f−1/d

L /2]d . Then the L1 risk is lower bounded by the L1 risk over support of
density estimation over Lipchitz class with N1 samples.

When N0 � N1, we take ν1 to be the uniform distribution with density fU on
[−f

−1/d
U /2� f−1/d

U /2]d . Notice 1/f0 is also Lipchitz from the lower boundness condition
and Lipchitz condition on f0. From the lower boundness condition on f0, the L1 risk is
lower bounded by the L1 risk over support of density estimation over Lipchitz class with
N0 samples.

We then complete the proof by combining the above two lower bounds and then using
then the minimax lower bound of L1 risk for density estimation over Lipchitz class (Zhao
and Lai (2022, Theorem 1)). Q.E.D.

S4. PROOFS OF THE RESULTS IN APPENDIX C

S4.1. Proof of Lemma C.1

PROOF OF LEMMA C.1: For any x ∈ X, define σ2
ω(x) = E[U2

ω|X = x] = E[[Y (ω) −
μω(X)]2|X = x] for ω ∈{0�1}. Let

V τ = E
[
μ1(X) −μ0(X) − τ

]2
and V E =

1

n

n∑

i=1

(
1 +

KM (i)

M

)2

σ2
Di

(Xi)�

From the central limit theorem (Billingsley (2008, Theorem 27.1)), we have

√
n
(
τ̄(X) − τ

) d−→N
(
0� V τ

)
� (S4.1)

Let EM�i = (2Di −1)(1+KM (i)/M)εi for any i ∈ �n�. Conditional on X, D, [EM�i]
n
i=1 are

independent. Notice that E[EM�i|X�D] = 0 and
∑n

i=1 Var[EM�i|X�D] = nV E . To apply the
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Lindeberg–Feller central limit theorem (Billingsley (2008, Theorem 27.2)), it suffices to
verify that: for a given (X�D),

1

nV E

n
∑

i=1

E
[

(EM�i)
2
1
(

|EM�i| > δ
√
nV E

)

|X�D
]

→ 0�

for all δ > 0.
Let Cσ = supx∈X�ω∈{0�1}{E[|Uω|2+κ|X = x] ∨ E[U2

ω|X = x]}< ∞. Let p1 = 1 + κ/2 and

p2 be the constant such that p−1
1 +p−1

2 = 1. By Hölder’s inequality and Markov’s inequal-
ity,

1

nV E

n
∑

i=1

E
[

(EM�i)
2
1
(

|EM�i| > δ
√
nV E

)

|X�D
]

≤
1

nV E

n
∑

i=1

(

E
[

|EM�i|2+κ|X�D
])1/p1

(

P
(

|EM�i|> δ
√
nV E|X�D

))1/p2

≤
1

nV E

n
∑

i=1

(

E
[

|EM�i|2+κ|X�D
])1/p1

(

1

δ2nV E
E

[

(EM�i)
2|X�D

]

)1/p2

≤
Cσ

nV E

(

1

δ2nV E

)1/p2 n
∑

i=1

(

1 +
KM (i)

M

)2(1+1/p2)

�

Notice that E[1 +KM (i)/M]2(1+1/p2) < ∞ from Theorem B.2. Let cσ = infx∈X�ω∈{0�1} E[U2
ω|

X = x] > 0. From the definition of V E , we have V E ≥ cσ for almost all X, D. Then

E

[

1

nV E

n
∑

i=1

E
[

(EM�i)
2
1
(

|EM�i|> δ
√
nV E

)

|X�D
]

]

= O
(

n−1/p2
)

= o(1)�

We thus obtain

1

nV E

n
∑

i=1

E
[

(EM�i)
2
1
(

|EM�i|> δ
√
nV E

)

|X�D
]

= oP(1)�

Applying the Lindeberg–Feller central limit theorem then yields

√
n
(

V E
)−1/2

EM =
(

nV E
)−1/2

n
∑

i=1

EM�i

d−→ N(0�1)� (S4.2)

Noticing that
√
n(τ̄(X) − τ) and

√
n(V E)−1/2EM are asymptotically independent, lever-

aging the same argument as made in Abadie and Imbens (2006, Proof of Theorem 4, p.
267) and then combining (S4.1) and (S4.2) reaches

√
n
(

V τ + V E
)−1/2(

τ̄(X) +EM − τ
) d−→ N(0�1)� (S4.3)
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We decompose V E as

V E
=

1

n

n
∑

i=1�Di=1

(

1 +
KM (i)

M

)2

σ2
1 (Xi) +

1

n

n
∑

i=1�Di=0

(

1 +
KM (i)

M

)2

σ2
0 (Xi)

=

[

1

n

n
∑

i=1�Di=1

(

1

e(Xi)

)2

σ2
1 (Xi) +

1

n

n
∑

i=1�Di=0

(

1

1 − e(Xi)

)2

σ2
0 (Xi)

]

+
1

n

n
∑

i=1�Di=1

[(

1 +
KM (i)

M

)2

−

(

1

e(Xi)

)2]

σ2
1 (Xi)

+
1

n

n
∑

i=1�Di=0

[(

1

1 − e(Xi)

)2

−

(

1 +
KM (i)

M

)2]

σ2
0 (Xi)� (S4.4)

For the first term in (S4.4), notice that [(Xi�Di�Yi)]ni=1 are i.i.d. and E[Di(e(Xi))−2
×

σ2
1 (Xi)]�E[(1 −Di)(1 − e(Xi))−2σ2

0 (Xi)] < ∞. Using the weak law of large numbers, we
have

1

n

n
∑

i=1�Di=1

(

1

e(Xi)

)2

σ2
1 (Xi) +

1

n

n
∑

i=1�Di=0

(

1

1 − e(Xi)

)2

σ2
0 (Xi)

p

−→ E

[

σ2
1 (X)

e(X)
+

σ2
0 (X)

1 − e(X)

]

�

For the second term in (S4.4), using the Cauchy–Schwarz inequality,

E

∣

∣

∣

∣

∣

1

n

n
∑

i=1�Di=1

[(

1 +
KM (i)

M

)2

−

(

1

e(Xi)

)2]

σ2
1 (Xi)

∣

∣

∣

∣

∣

≤ CσE

[

Di

∣

∣

∣

∣

(

1 +
KM (i)

M

)2

−

(

1

e(Xi)

)2∣
∣

∣

∣

]

= CσE

[

DiE

[
∣

∣

∣

∣

(

1 +
KM (i)

M

)2

−

(

1

e(Xi)

)2∣
∣

∣

∣

∣

∣

∣
D

]]

≤ CσE

[

Di

(

E

[(

KM (i)

M
−

1 − e(Xi)

e(Xi)

)2
∣

∣

∣
D

]

E

[(

2 +
KM (i)

M
+

1 − e(Xi)

e(Xi)

)2
∣

∣

∣
D

])1/2]

= o(1)�

where the last step is due to Theorem B.2. Then we obtain

1

n

n
∑

i=1�Di=1

[(

1 +
KM (i)

M

)2

−

(

1

e(Xi)

)2]

σ2
1 (Xi)

p

−→ 0�

For the third term in (S4.4), we can establish in the same way that

1

n

n
∑

i=1�Di=0

[(

1

1 − e(Xi)

)2

−

(

1 +
KM (i)

M

)2]

σ2
0 (Xi)

p

−→ 0�
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Then from (S4.4),

V E p

−→ E

[

σ2
1 (X)

e(X)
+

σ2
0 (X)

1 − e(X)

]

�

By (S4.3), Slutsky’s lemma (van der Vaart (1998, Theorem 2.8)), and the definition of
σ2, we complete the proof. Q.E.D.

S4.2. Proof of Lemma C.2

PROOF OF LEMMA C.2: From Assumption B.1 and Assumption 4.1, let R = diam(X) <
∞ and fL = infx∈X�ω∈{0�1} fω(x) > 0. For any x ∈ X, ω ∈ {0�1}, and u ≤ R, from Assump-
tion B.1, νω(Bx�u ∩X) ≥ fLλ(Bx�u ∩X) ≥ fLaλ(Bx�u) = fLaVdu

d , where Vd is the Lebesgue
measure of the unit ball on R

d .
Let c0 = fLaVd . For any i ∈ �n�, x ∈X, M ≤ n1−Di

, if 0 ≤ u≤Rn
1/d
1−Di

, we have

P
(

‖Xj −Xi‖ ≥ un
−1/d
1−Di

|D�Xi = x� j = jM (i)
)

≤ P
(

Bin
(

n1−Di
� ν1−Di

(B
x�un

−1/d
1−Di

∩X)
)

≤M|D
)

≤ P
(

Bin
(

n1−Di
� c0u

dn−1
1−Di

)

≤M|D
)

�

Using the Chernoff bound, if M < c0u
d , then

P
(

Bin
(

n1−Di
� c0u

dn−1
1−Di

)

≤M|D
)

≤ exp

(

M − c0u
d +M log

(

c0u
d

M

))

�

Notice that the above upper bound does not depend on x. We then obtain

P
(

‖Xj −Xi‖ ≥ un
−1/d
1−Di

|D� j = jM (i)
)

≤ 1
(

M < c0u
d
)

exp

(

M − c0u
d +M log

(

c0u
d

M

))

+ 1
(

M ≥ c0u
d
)

�

On the other hand, if u > Rn
1/d
1−Di

, then the probability is zero from the definition of R.
Accordingly, the above bound holds for any u≥ 0.

For any i ∈ �n�, we thus have

n
p/d

1−Di
E

[

‖UM�i‖
p|D

]

= p

∫ ∞

0

P
(

‖Xj −Xi‖ ≥ un
−1/d
1−Di

|D� j = jM (i)
)

up−1 du

≤ p

∫ ∞

0

[

1
(

M < c0u
d
)

exp

(

M − c0u
d +M log

(

c0u
d

M

))

+ 1
(

M ≥ c0u
d
)

]

up−1 du

= pc
−p/d

0 d−1

[∫ ∞

M

(

e

M

)M

tM+
p
d

−1e−t dt +

∫ M

0

t
p
d

−1 dt

]

� (S4.5)

where the last step is through taking t = c0u
d .
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For the first term in (S4.5), from Stirling’s formula and M → ∞,

∫ ∞

M

(
e

M

)M

tM+ p
d

−1e−t dt ≤
∫ ∞

0

(
e

M

)M

tM+ p
d

−1e−t dt ∼
√

2πM
p
d

− 1
2 �

where ∼ means asymptotic convergence.

For the second term in (S4.5),
∫ M

0
t
p
d

−1 dt = d

p
M

p
d . Combining the above two terms then

completes the proof. Q.E.D.

S4.3. Proof of Lemma C.3

PROOF OF LEMMA C.3: We bound BM − B̂M by

|BM − B̂M |

=

∣∣∣∣∣
1

n

n∑

i=1

(2Di − 1)

[
1

M

M∑

m=1

(
μ1−Di

(Xi) −μ1−Di
(Xjm(i)) − μ̂1−Di

(Xi) + μ̂1−Di
(Xjm(i))

)
]∣∣∣∣∣

≤
1

n

n∑

i=1

max
m∈�M�

∣∣μ1−Di
(Xi) −μ1−Di

(Xjm(i)) − μ̂1−Di
(Xi) + μ̂1−Di

(Xjm(i))
∣∣

≤
1

n

n∑

i=1

max
m∈�M��ω∈{0�1}

∣∣μω(Xi) −μω(Xjm(i)) − μ̂ω(Xi) + μ̂ω(Xjm(i))
∣∣� (S4.6)

Let k= �d/2� + 1. For any ω ∈{0�1}, by Taylor expansion to kth order,

∣∣∣∣∣μω(Xjm(i)) −μω(Xi) −
k−1∑

�=1

1

�!
∑

t∈��

∂tμω(Xi)U
t
m�i

∣∣∣∣∣ ≤ max
t∈�k

∥∥∂tμω

∥∥
∞

1

k!
∑

t∈�k

‖Um�i‖k� (S4.7)

In the same way,

∣∣∣∣∣μ̂ω(Xjm(i)) − μ̂ω(Xi) −
k−1∑

�=1

1

�!
∑

t∈��

∂tμ̂ω(Xi)U
t
m�i

∣∣∣∣∣ ≤ max
t∈�k

∥∥∂tμ̂ω

∥∥
∞

1

k!
∑

t∈�k

‖Um�i‖k� (S4.8)

We also have
∣∣∣∣∣

k−1∑

�=1

1

�!
∑

t∈��

(
∂tμ̂ω(Xi) − ∂tμω(Xi)

)
U t

m�i

∣∣∣∣∣ ≤
k−1∑

�=1

max
t∈��

∥∥∂tμ̂ω − ∂tμω

∥∥
∞

1

�!
∑

t∈��

‖Um�i‖�� (S4.9)

Notice that ‖UM�i‖ = maxm∈�M�‖Um�i‖ for any i ∈ �n�, ω ∈{0�1}. Then for any ω ∈{0�1},
plugging (S4.7), (S4.8), (S4.9) into (S4.6), we obtain

|BM − B̂M |�
(

max
ω∈{0�1}

max
t∈�k

∥∥∂tμω

∥∥
∞ + max

ω∈{0�1}
max
t∈�k

∥∥∂tμ̂ω

∥∥
∞

)(
1

n

n∑

i=1

‖UM�i‖k

)

+
k−1∑

�=1

(
max
ω∈{0�1}

max
t∈��

∥∥∂tμ̂ω − ∂tμω

∥∥
∞

)(
1

n

n∑

i=1

‖UM�i‖�

)
�
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From Lemma C.2, all moments of (n/M)p/d‖UM�i‖
p are bounded. Then for any positive

integer p, using Markov’s inequality, we have

1

n

n∑

i=1

‖UM�i‖
p =OP

((
M

n

)p/d)
�

By Assumption 4.4 and Assumption 4.5, we then obtain

BM − B̂M =OP(1)OP

((
M

n

)k/d)
+ max

�∈�k−1�
OP

(
n−γ�

)
OP

((
M

n

)�/d)

=OP

((
M

n

)k/d)
+ max

�∈�k−1�
OP

(
n−γ�

(
M

n

)�/d)
�

The proof is thus complete by noticing the definition of γ and M ≺ nγ . Q.E.D.

S5. PROOFS OF RESULTS IN SUPPLEMENT

S5.1. Proof of Lemma S3.1

PROOF OF LEMMA S3.1: The first inequality is directly from the definition of Lebesgue
points. The second inequality follows by

∣∣∣∣
ν(Bz�‖z−x‖)

λ(Bz�‖z−x‖)
− f (x)

∣∣∣∣ ≤
1

λ(Bz�‖z−x‖)

∫

Bz�‖z−x‖

∣∣f (y) − f (x)
∣∣dy

≤
1

λ(Bz�‖z−x‖)

∫

Bx�2‖z−x‖

∣∣f (y) − f (x)
∣∣dy

=
λ(Bx�2‖z−x‖)

λ(Bz�‖z−x‖)

1

λ(Bx�2‖z−x‖)

∫

Bx�2‖z−x‖

∣∣f (y) − f (x)
∣∣dy

= 2d 1

λ(Bx�2‖z−x‖)

∫

Bx�2‖z−x‖

∣∣f (y) − f (x)
∣∣dy�

and then the definition of Lebesgue points. Q.E.D.

S5.2. Proof of Lemma S3.3

PROOF OF LEMMA S3.3: Fix any (ν0� ν1) ∈Px�p(fL� fU�L�d�δ).
We first prove the first claim. First, consider f1(x) > 0. For any ε > 0, there exists δ′ > 0

such that for any z ∈ R
d satisfying ‖z − x‖ ≤ 2δ′, we have |f0(z) − f0(x)| ≤ εf0(x) and

|f1(z) − f1(x)| ≤ εf1(x) from the local Lipschitz assumption. We take w > 0 sufficiently
small such that w < (1 − ε)f0(x)λ(B0�δ′). Then W ≤ w implies ‖x − Z‖ ≤ δ′. Then for
w> 0 sufficiently small,

P(W ≤w) = P
(
W ≤w�‖x−Z‖ ≤ δ′

)
≤ P

(
1 − ε

1 + ε

f0(x)

f1(x)
ν1(Bx�‖x−Z‖) ≤w

)
=

1 + ε

1 − ε

f1(x)

f0(x)
w�
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and

P(W ≤w) = P
(
W ≤w�‖x−Z‖ ≤ δ′

)
≥ P

(
1 + ε

1 − ε

f0(x)

f1(x)
ν1(Bx�‖x−Z‖) ≤w�‖x−Z‖ ≤ δ′

)

= P

(
1 + ε

1 − ε

f0(x)

f1(x)
ν1(Bx�‖x−Z‖) ≤w

)
=

1 − ε

1 + ε

f1(x)

f0(x)
w�

Then we have

1 − ε

1 + ε

f1(x)

f0(x)
≤ lim inf

w→0
w−1P(W ≤w) ≤ lim sup

w→0

w−1P(W ≤ w) ≤
1 + ε

1 − ε

f1(x)

f0(x)
�

Since ε is arbitrary, we obtain

fW (0) = lim
w→0

w−1P(W ≤w) =
f1(x)

f0(x)
= r(x)�

The case for f1(x) = 0 can be established in the same way. This completes the proof of
the first claim.

For the second claim, for any 0 < ε < fL, there exists δ′ > 0 such that for any z ∈ R
d

satisfying ‖z − x‖ ≤ 2δ′, we have |f0(z) − f0(x)| ≤ ε and |f1(z) − f1(x)| ≤ ε from the
local Lipschitz assumption. We take N0 sufficiently large such that 2 M

N0
< (fL − ε)λ(B0�δ′).

Then for any 0 <w ≤ 2 M

N0
, we have w< (fL − ε)λ(B0�δ′). We take t > 0 such that w + t <

(fL − ε)λ(B0�δ′). Then for any (ν0� ν1) ∈Px�p(fL� fU�L�d�δ),

P(w ≤W ≤w + t) = ν1

({
z ∈R

d : ν0(Bz�‖x−z‖) ∈ [w�w+ t]
})

≤
f1(x) + ε

f0(x) − ε
ν0

({
z ∈R

d : ν0(Bz�‖x−z‖) ∈ [w�w+ t]
})
�

Notice that f0 is lower bounded by fL. Then for N0 sufficiently large,

lim sup
t→0

t−1P(w ≤W ≤w + t) ≤
f1(x) + ε

f0(x) − ε
(1 + ε)�

This then completes the proof. Q.E.D.

S5.3. Proof of Lemma S3.4

PROOF OF LEMMA S3.4: Due to the i.i.d.-ness of Z and Z̃,

(
N0

M

)2[
P

(
W ≤ V � W̃ ≤ Ṽ �W ≤ 2

M

N0

� W̃ ≤ 2
M

N0

)

− P

(
W ≤ V �W ≤ 2

M

N0

)
P

(
W̃ ≤ Ṽ � W̃ ≤ 2

M

N0

)]

=

(
N0

M

)2 ∫ 2 M
N0

0

∫ 2 M
N0

0

[
P(V ≥ w1� Ṽ ≥ w2) − P(V ≥w1)P(Ṽ ≥ w2)

]

× fW (w1)fW (w2) dw1 dw2
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≤ 4

(
fU

fL

)2(
N0

M

)2 ∫ 2 M
N0

0

∫ 2 M
N0

0

∣∣P(V ≥ w1� Ṽ ≥ w2) − P(V ≥w1)P(Ṽ ≥ w2)
∣∣dw1 dw2

= 4

(
fU

fL

)2 ∫ 1

−1

∫ 1

−1

∣∣∣∣P
(
V ≥

M

N0

(1 + t1)� Ṽ ≥
M

N0

(1 + t2)

)

− P

(
V ≥

M

N0

(1 + t1)

)
P

(
Ṽ ≥

M

N0

(1 + t2)

)∣∣∣∣dt1 dt2�

where the last step is from taking w1 =
M

N0
(1 + t1) and w2 =

M

N0
(1 + t2).

Let

S(t1� t2) =

∣∣∣∣P
(
V ≥

M

N0

(1 + t1)� Ṽ ≥
M

N0

(1 + t2)

)

− P

(
V ≥

M

N0

(1 + t1)

)
P

(
Ṽ ≥

M

N0

(1 + t2)

)∣∣∣∣�

If t1 ≥ t2 ≥ 0, S(t1� t2) ≤ P(V ≥
M

N0
(1 + t1)) = P(U(M) ≥

M

N0
(1 + t1)). If t2 ≥ t1 ≥ 0, S(t1� t2) ≤

P(Ṽ ≥
M

N0
(1 + t2)) = P(U(M) ≥

M

N0
(1 + t2)). Then for t1� t2 ≥ 0,

S(t1� t2) ≤ P

(
U(M) ≥

M

N0

(1 + t1 ∨ t2)

)
�

If t1 ≤ t2 ≤ 0 and P(V ≥
M

N0
(1 + t1)� Ṽ ≥

M

N0
(1 + t2)) ≥ P(V ≥

M

N0
(1 + t1))P(Ṽ ≥

M

N0
(1 + t2)),

S(t1� t2) ≤ P

(
Ṽ ≥

M

N0

(1 + t2)

)
− P

(
V ≥

M

N0

(1 + t1)

)
P

(
Ṽ ≥

M

N0

(1 + t2)

)

= P

(
V ≤

M

N0

(1 + t1)

)
P

(
Ṽ ≥

M

N0

(1 + t2)

)
≤ P

(
V ≤

M

N0

(1 + t1)

)

= P

(
U(M) ≤

M

N0

(1 + t1)

)
�

If t1 ≤ t2 ≤ 0 and P(V ≥
M

N0
(1 + t1)� Ṽ ≥

M

N0
(1 + t2)) ≤ P(V ≥

M

N0
(1 + t1))P(Ṽ ≥

M

N0
(1 + t2)),

S(t1� t2) ≤ P

(
Ṽ ≥

M

N0

(1 + t2)

)
− P

(
V ≥

M

N0

(1 + t1)� Ṽ ≥
M

N0

(1 + t2)

)

= P

(
V ≤

M

N0

(1 + t1)� Ṽ ≥
M

N0

(1 + t2)

)
≤ P

(
V ≤

M

N0

(1 + t1)

)

= P

(
U(M) ≤

M

N0

(1 + t1)

)
�

If t2 ≤ t1 ≤ 0, we can establish in the same way that

S(t1� t2) ≤ P

(
U(M) ≤

M

N0

(1 + t2)

)
�
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Then for t1� t2 ≤ 0,

S(t1� t2) ≤ P

(
U(M) ≤

M

N0

(1 + t1 ∧ t2)

)
�

For t1 ≥ 0 ≥ t2, if t1 + t2 ≥ 0, S(t1� t2) ≤ P(U(M) ≥
M

N0
(1 + t1)), and if t1 + t2 ≤ 0, S(t1� t2) ≤

P(U(M) ≤
M

N0
(1 + t2)). Then

(
N0

M

)2[
P

(
W ≤ V � W̃ ≤ Ṽ �W ≤ 2

M

N0

� W̃ ≤ 2
M

N0

)

− P

(
W ≤ V �W ≤ 2

M

N0

)
P

(
W̃ ≤ Ṽ � W̃ ≤ 2

M

N0

)]

≤ 4

(
fU

fL

)2 ∫ 1

−1

∫ 1

−1

S(t1� t2) dt1 dt2

= 4

(
fU

fL

)2[∫ 1

0

∫ 1

0

S(t1� t2) dt1 dt2 +

∫ 0

−1

∫ 0

−1

S(t1� t2) dt1 dt2

+ 2

∫ 1

0

∫ 0

−1

S(t1� t2) dt1 dt2

]
� (S5.1)

where the last step is from the symmetry of S(t1� t2).
For the first term in (S5.1), by the symmetry of S(t1� t2) and the Chernoff bound,

∫ 1

0

∫ 1

0

S(t1� t2) dt1 dt2

≤

∫
∞

0

∫
∞

0

S(t1� t2) dt1 dt2 = 2

∫
∞

0

∫
∞

0

S(t1� t2)1(t1 ≥ t2) dt1 dt2

≤ 2

∫
∞

0

∫
∞

0

P

(
U(M) ≥

M

N0

(1 + t1 ∨ t2)

)
1(t1 ≥ t2) dt1 dt2

= 2

∫
∞

0

tP

(
U(M) ≥

M

N0

(1 + t)

)
dt ≤ 2

∫
∞

0

t(1 + t)Me−Mt dt�

Notice that since M → ∞, by Stirling’s approximation,

∫
∞

0

t(1 + t)Me−Mt dt =
1

M
+

eM

M

∫
∞

1

tMe−Mt dt ≤
1

M

(
1 + o(1)

)
� (S5.2)

We then obtain

∫ 1

0

∫ 1

0

S(t1� t2) dt1 dt2 ≤
2

M

(
1 + o(1)

)
� (S5.3)
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For the second term in (S5.1),

∫ 0

−1

∫ 0

−1

S(t1� t2) dt1 dt2 = 2

∫ 0

−1

∫ 0

−1

S(t1� t2)1(t1 ≤ t2) dt1 dt2

≤ 2

∫ 0

−1

∫ 0

−1

P

(
U(M) ≤

M

N0

(1 + t1 ∧ t2)

)
1(t1 ≤ t2) dt1 dt2

= 2

∫ 1

0

tP

(
U(M) ≤

M

N0

(1 − t)

)
dt ≤ 2

∫ 1

0

t(1 − t)MeMt dt�

Notice that
∫ 1

0

t(1 − t)MeMt dt ≤
1

M
� (S5.4)

We then obtain
∫ 0

−1

∫ 0

−1

S(t1� t2) dt1 dt2 ≤
2

M
� (S5.5)

For the third term in (S5.1),

∫ 1

0

∫ 0

−1

S(t1� t2) dt1 dt2

=

∫ 1

0

∫ 0

−t1

P

(
U(M) ≥

M

N0

(1 + t1)

)
dt1 dt2 +

∫ 1

0

∫
−t1

−1

P

(
U(M) ≤

M

N0

(1 + t2)

)
dt1 dt2

=

∫ 1

0

tP

(
U(M) ≥

M

N0

(1 + t)

)
dt +

∫ 0

−1

(−t)P

(
U(M) ≤

M

N0

(1 + t)

)
dt

≤

∫
∞

0

tP

(
U(M) ≥

M

N0

(1 + t)

)
dt +

∫ 0

−1

(−t)P

(
U(M) ≤

M

N0

(1 + t)

)
dt

≤
1

M

(
1 + o(1)

)
+

1

M
=

2

M

(
1 + o(1)

)
�

where the last step is from (S5.2) and (S5.4).
We then obtain

∫ 1

0

∫ 0

−1

S(t1� t2) dt1 dt2 ≤
2

M

(
1 + o(1)

)
� (S5.6)

Plugging (S5.3), (S5.5), (S5.6) into (S5.1) yields

(
N0

M

)2[
P

(
W ≤ V � W̃ ≤ Ṽ �W ≤ 2

M

N0

� W̃ ≤ 2
M

N0

)

− P

(
W ≤ V �W ≤ 2

M

N0

)
P

(
W̃ ≤ Ṽ � W̃ ≤ 2

M

N0

)]
≤ 32

(
fU

fL

)2
1

M

(
1 + o(1)

)
�

and thus completes the proof. Q.E.D.
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