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Nearest neighbor (NN) matching is widely used in observational studies for causal
effects. Abadie and Imbens (2006) provided the first large-sample analysis of NN
matching. Their theory focuses on the case with the number of NNs, M fixed. We re-
veal something new out of their study and show that once allowing M to diverge with
the sample size an intrinsic statistic in their analysis constitutes a consistent estimator
of the density ratio with regard to covariates across the treated and control groups.
Consequently, with a diverging M, the NN matching with Abadie and Imbens’ (2011)
bias correction yields a doubly robust estimator of the average treatment effect and
is semiparametrically efficient if the density functions are sufficiently smooth and the
outcome model is consistently estimated. It can thus be viewed as a precursor of the
double machine learning estimators.

KEYWORDS: Graph-based statistics, stochastic geometry, double robustness, double
machine learning, propensity score.

1. INTRODUCTION

MATCHING METHODS (Greenwood (1945), Chapin (1947), Cochran and Rubin (1973),
Rubin (2006), Rosenbaum (2010)) aim to balance observations from different groups
through minimizing group differences in observed covariates. Such methods have proven
their usefulness for causal inference in various disciplines, including economics (Imbens
(2004)), epidemiology (Brookhart, Schneeweiss, Rothman, Glynn, Avorn, and Stiirmer
(2006)), political science (Ho, Imai, King, and Stuart (2007), Sekhon (2008)), and sociol-
ogy (Morgan and Harding (2006)).

Among all the matching methods, nearest neighbor (NN) matching (Rubin (1973))
is likely the most frequently used and easiest to implement approach. In the simplest
treatment-control study, NN matching assigns each treatment (control) individual to M
control (treatment) individuals with the smallest distance to it. In this regard, two ques-
tions arise. First, how do we select the number of matches, M ? This is referred to in the
literature as ratio matching, and is both important and delicate, well known to be related
to the bias-variance trade-off in nonparametic statistics (Smith (1997), Rubin and Thomas
(2000), Imbens and Rubin (2015)). Second, how do we perform large-sample statistical
inference for NN matching estimators? Such an analysis is usually nonstandard and tech-
nically challenging. Indeed, it was long-lacking in the literature until Abadie and Imbens
(2006).
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To answer the above two questions, a series of papers (Abadie and Imbens (2006, 2008,
2011, 2012)) established large-sample properties of M-NN matching for estimating the
average treatment effect (ATE). These results are, however, only valid when in ratio
matching, M is fixed. The according message is then mixed. As a matter of fact, the ATE
estimator based on M-NN matching with a fixed M is asymptotically biased and ineffi-
cient. While bias correction is now feasible to alleviate the first issue (Abadie and Imbens
(2011)), the lack of efficiency seems fundamental.

This manuscript revisits the study of Abadie and Imbens (2006) from a new perspective,
bridging M-NN matching to density ratio estimation (Nguyen, Wainwright, and Jordan
(2010), Sugiyama, Suzuki, and Kanamori (2012)) as well as double robustness (Scharf-
stein, Rotnitzky, and Robins (1999), Bang and Robins (2005)). To this end, our analysis
stresses, in ratio matching, the benefits of forcing M to diverge with the sample size n
in order to achieve statistical efficiency. Our claim is thus aligned with observations in
the random graph-based inference literature (Wald and Wolfowitz (1940), Friedman and
Rafsky (1979), Henze (1988), Liu and Singh (1993), Henze and Penrose (1999), Berrett,
Samworth, and Yuan (2019), Bhattacharya (2019), Shi, Drton, and Han (2023, 2022), Lin
and Han (2023)).

The contributions of this manuscript are two-fold. First, we show that a statistic that
plays a pivotal role in the analysis of Abadie and Imbens (2006), K)/(x) (Abadie and Im-
bens (2006, p. 240); to be defined in (2.2) of Section 2), which measures the number of
matched times of the covariate value x, actually gives rise to a consistent density ratio
estimator in the two-sample setting. Furthermore, from the angle of density ratio esti-
mation, this NN matching-based estimator is to our knowledge the first one that simul-
taneously satisfies being conceptually one step, computationally efficient, and statistically
rate-optimal. This estimator itself is thus an appealing alternative to existing density ratio
estimators.

Getting back to the original ATE estimation problem, our second contribution is to use
the above insights to bridge the bias-corrected matching estimator (Abadie and Imbens
(2011)), doubly robust estimators (Scharfstein, Rotnitzky, and Robins (1999), Bang and
Robins (2005), Farrell (2015)), and double machine learning estimators (Chernozhukov
et al. (2018)). In fact, Abadie and Imbens’ (2011) bias-corrected estimator can be formu-

lated as
1 Z” Ku()\ 4 = Ky()\ =
—bc __ ~veg - M L § .

i=1,D;=1 i=1,D;=0

(see Lemma 3.1, with notation introduced in Section 3 and K, (i) representing the num-
ber of times the unit i is matched), and then 1 + K;,(i)/M converges to the inverses of
the propensity scores 1 — e(X;) and e(X;) for units with D; = 0 and 1, respectively. One
could then leverage the general double robustness and double machine learning theory
to validate the following two properties of 75:

(1) Consistency: 75 converges in probability to the population ATE, if either the density
(propensity score) functions satisfy certain conditions or the outcome (regression)
model is consistently estimated, with M logn/n — 0 and M — oo as n — oo.

(2) Semiparametric efficiency: 75 is an asymptotically Normal estimator of 7 with the
asymptotic variance attaining the semiparametric efficiency lower bound (Hahn
(1998)), if the density functions are sufficiently smooth, the outcome model is con-
sistently estimated, and M scales with n at a proper rate. Furthermore, a simple
consistent estimator of the asymptotic variance is available.
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Although Abadie and Imbens (2006, Theorem 5) hints at the necessity of allowing M to
diverge for gaining efficiency, we provide rigorous theory for their conjecture. Our results
thus complement those made in Abadie and Imbens (2006, 2011) and provide additional
theoretical justifications for practitioners to use NN matching for inferring the ATE.

Technically, our analysis hinges on a diverging M that grows with n. In contrast, existing
results on NN matching for causal effects (Abadie and Imbens (2006, 2008, 2011, 2012))
all focused on a fixed M. Instead, we take a different route to establish nonasymptotic
moment bounds on K,,(x) with more flexibility in specifying the rate of M with respect
to n (see Lin and Han (2023) for a similar idea in analyzing rank-based statistics).

Paper Organization. The rest of this manuscript proceeds as follows. Section 2 gives a
brief overview of the NN matching-based density ratio estimator. Section 3 revisits Abadie
and Imbens’ (2011) bias-corrected NN matching-based estimator of the ATE, 75. Sec-
tion 4 elaborates on the double robustness and semiparametric efficiency of 75¢ as well
as its double machine learning version. Section 5 presents simulation studies to comple-
ment the theory. Section 6 includes some final remarks. We relegate technical details to
the Appendix as well as an Online Appendix in the Supplementary Material (Lin, Ding,
and Han (2023)). Appendices A and B introduce the algorithms and theory for the NN
matching-based density ratio estimator. Appendix C and the Online Appendix present
the proofs of results in the paper and in the Appendix, respectively.

Notation. For any integers n,d > 1, let [n] ={1,2,...,n}, n! be the factorial of n,
and R? be the d-dimensional real space. A set consisting of distinct elements x, ..., x,
is written as either {xi,..., x,} or {x;},, and its cardinality is written by [{x;},|. The
corresponding sequence is denoted by [x, ..., x,] or [x;]",. Let 1(-) denote the indicator

function. For any a, b € R, write a vV b = max{a, b} and a A b = min{a, b}. We use LN
and —> to denote convergence in distribution and in probability, respectively. For any

sequence of random variables {X,}, write X,, = op(1) if X, s 0and X, = Op(1)if X, is
bounded in probability. Let P, represent the law of a random variable Z.

2. DENSITY RATIO ESTIMATION VIA NN-MATCHING

Consider two general random vectors X, Z in R? that are defined on the same proba-
bility space, with d to be a fixed positive integer. Let v, and v; represent the probability
measures of X and Z, respectively. Assume », and v, are absolutely continuous with re-
spect to the Lebesgue measure A on R equipped with the Euclidean norm ||-||; denote
the corresponding densities (Radon—-Nikodym derivatives) by f, and f;. Assume further
that v, is absolutely continuous with respect to v, and write the corresponding density
ratio, fi/fy, as r; set 0/0 = 0 by default.

Assume X, ..., Xy, are N, independent copies of X, Z,, ..., Zy, are N; independent
copies of Z, and [ X, i]fi’l and [Z j]?/:ll are mutually independent. The problem of estimat-
ing the density ratio r based on {X}, ..., Xy,, Zi, ..., Zy,} is fundamental in economics
(Cunningham (2021)), information theory (Cover and Thomas (2006)), machine learn-
ing (Sugiyama, Suzuki, and Kanamori (2012)), statistics (Imbens and Rubin (2015)), and
other fields.

In density ratio estimation, NN-based estimators are advocated before due to its com-
putational efficiency; cf. Lima, Cunha, Oyaizu, Frieman, Lin, and Sheldon (2008), Pdc-
zos and Schneider (2011), Kremer, Gieseke, Pedersen, and Igel (2015), Noshad, Moon,
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Sekeh, and Hero (2017), Berrett, Samworth, and Yuan (2019), Zhao and Lai (2020),
among many others. Based on Abadie and Imbens’ (2006, 2008, 2011, 2012) NN matching
framework, we propose a new density ratio estimator based on NN matching. To this end,
some necessary notation is introduced first.

DEFINITION 2.1—NN Matching: For any x, z € R and M € [N,]:
(i) let Xon(-) i RY - {X i}ﬁi’l be the mapping that returns the value of the input z’s
Mth NN in {X, ,»}fi’l, that is, the value of x € {X i}fﬁ’l such that

D 1(I1X; — 2l < lx — zll) = M: (2.1)

i=1

(ii) let Ky (+) : RY — {0} U [N,] be the mapping that returns the number of matched
times of x, that is,

Ny
Ky (x) = Ky (x: {30 AZ30) = Y 1(Ilx = Z4) < [ Xon(Z) — Z;

j=1

) @2)

(i) let Ay (-) : RY — B(RY) be the corresponding mapping from R? to the class of all
Borel sets in R? so that

Au(x) = Ay (X320 ={zeR Ix — z| < | Xon(2) — 2|} (23)
returns the catchment area of x in the setting of (ii).

Because v is absolutely continuous with respect to the Lebesgue measure, (2.1) has a
unique solution. Abadie and Imbens (2006, pp. 240 and 260) introduced the terms K, (-)
and Ay (-) to analyze the asymptotic behavior of their NN matching-based ATE esti-
mator. We also adopt their terminology “catchment area” in Definition 2.1(iii). Proposi-
tion 2.1 below formally links K,/ (-) to Ay (+). It was established in the proof of Abadie
and Imbens (2006, Lemma 3), and is stated here to aid understanding.

PROPOSITION 2.1: For any x € R, we have Ky (x) = Zjvzll 1(Z; € Au(x)).

REMARK 2.1—Relation Between A4, (X;)’s and Voronoi Tessellation When M = 1: We
can verify that, due to the absolute continuity of vy, [ 4; (X i)]fi’l are almost surely disjoint
except for a Lebesgue measure zero area, and partition R? into N, polygons. Further-

more, we can also verify that {4,(X;)}, are exactly the Voronoi tessellation defined in
Voronoi (1908), which plays a vital role in stochastic and computational geometry. In this
case, each element A4,(X;) is a Voronoi cell from the definition of (2.3).

With these notation and concepts, we are now ready to introduce the following density
ratio estimator based on NN matching.

DEFINITION 2.2—NN Matching-Based Density Ratio Estimator: For any M € [N,]
and x € R, we define the following estimator for r(x):

%KM(X)

P (x) =Tar (G AX R AZNL ) = N M
1

(2.4)
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The estimator 7, () is by construction a one-step estimator, and satisfies the following

two properties simultaneously:

(P1) Computationally of low complexity: it is of a subquadratic (and nearly linear when
M is small) time complexity via a careful algorithmic formulation based on k-d
trees (see Algorithms 1-2 and Theorem A.1 in Appendix A), and thus in many sci-
entific applications is computationally more attractive than its optimization-based
alternatives (Lima et al. (2008), Kremer et al. (2015), Borgeaud et al. (2021)).

(P2) Statistically rate-optimal: it is information-theoretically efficient in terms of
achieving an upper bound of estimation accuracy that matches the corresponding
minimax lower bound over a class of Lipschitz density functions (see Appendix B).

3. REVISITING THE BIAS-CORRECTED MATCHING ESTIMATOR OF THE ATE

This section studies the bias-corrected NN matching-based estimator of the ATE,
proposed in Abadie and Imbens (2011) to correct the asymptotic bias of the original
matching-based estimator derived by Abadie and Imbens (2006). To this end, we lever-
age the new insights in Section 2 as well as the technical results in Appendices A-B, and
bridge the study to both the classic double robustness and the modern double machine
learning frameworks.

We first review the setup for the NN matching-based estimator and its bias-corrected
version. Following Abadie and Imbens (2006), let [(X;, D;, Y;)]", be n independent
copies of (X, D, Y), where D € {0, 1} is a binary treatment variable, let X € R? repre-
sent the individual covariates, assumed to be absolute continuous admitting a density fy,
and let Y € R stand for the outcome variable.

For each unit i € [n], we observe D; =1 if in the treated group and D; = 0 if in
the control group. Let ny =Y, (1 — D;) and n; = Y, D; be the numbers of con-
trol and treated units, respectively. Under the potential outcomes framework (Rubin
(1974)), the unit i has two potential outcomes, Y;(1) and Y;(0), but we observe only
one of them: Y; = D;Y;(1) + (1 — D,)Y;(0). The goal is to estimate the population ATE,

E[Yi(1) — Y;(0)], based on the observations {(X;, D;, Y;)}i_,. To estimate ATE, we
con31der its empirical counterpart 7y =n='y " Y(l) Y(O)] where Y(O) and Y(l)
are the imputed outcomes of Y;(0) and Y;(1). Following Abadie and Imbens (2006), we
focus on the matching-based estimator by imputing missing potential outcomes as

. i ;= 1
R Y1, lfDl_O’ . M Z }]j lfD,ZO,
YO=12 3y itp=1 and YO=1M50

e Y, iED;i=1.

Here, Jy (i) represents the index set of M-NNs of X; in {X;: D; =1 — D;};_,, that is,
the set of all indices j € [n] such that D; =1~ D;and 37, , _, , 1(I X, — Xill < || X; —
X;|l) <M. With a slight abuse of notation, let K, (i) represent the number of matched
times for unit i, that is, K, (i) = 27:1,01-:171)[ 1(i € Ju(j)). We can then rewrite the above

matching-based estimator as

= %[ 3 (1 . Kﬁi))x - Z(l i K“;}"))Y,-]. (3.0)

i=1,D;=1

However, when d > 1, the bias of 7, is asymptotically nonnegligible (Abadie and Im-
bens (2006)). To fix this, Abadie and Imbens (2011) proposed the following bias-corrected
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version for 7. In detail, let 1y (x) and 1, (x) be mappings from R to R that estimate the
conditional means of the outcomes po(x) =E[Y | X =x, D =0] and u,(x) =E[Y | X =
x, D = 1], respectively, with the corresponding residuals R; = Y; — ip,(X), i € [n]. Define
the estimator based on outcome regressions as 7€ = n~' > "7 [ (X;) — o(X;)]. Con-
sider the bias-corrected matching-based estimator in Abadie and Imbens (2011):

n

1 - ~
= T - VO, (32)
i=1
with
Y it D, =0,
$7be _J1 R R .
o= M Do (Y +R(X) — (X)) ifD;=1,
jeTm (i)
and
1
% — > (Y +m(X) - (X)) if D=0,
Yibc(l) = M jEJM(i)
Y it D, =1.

Lemma 3.1 below shows an equivalent form of 75.

LEMMA 3.1: The bias-corrected matching-based estimator in (3.2) can be rewritten in
terms of 7¢ and the residuals R;’s as

?‘;;:?“hr%[ Z <1+K’X/[(i)>§,-— Z <1+K]X4(l.)>§ij|- (3.3)

i=1,D;=1 i=1,D;=0

Otsu and Rai (2017) derived another linear form of 75 to motivate a bootstrap pro-
cedure for variance estimation. The form in (3.3) is related to doubly robust estimators
reviewed shortly. In detail, we first have some outcome models and residuals defined in
the same way as above, and then let e(x) : R? — R be a generic estimator of the propen-
sity score (Rosenbaum and Rubin (1983)), e(x) = P(D = 1| X = x). The doubly robust
estimator in Scharfstein, Rotnitzky, and Robins (1999) and Bang and Robins (2005) could
then be formulated as

Il - 1 5 ¢ 1 -~
=T = R; — ——Ri | (3.4)
n i_lz,);_l 2(X) i_LXD;_Ol—e(Xi)
Conditional on (Dy, ..., D,), [X;: D; = »]_, are n, i.i.d. random variables sampled

from the distribution of X | D = w, and the two groups of sample points, [X;: D; =
0], and [X; : D; = 1]7,, are mutually independent. Let fx p—, denote the density of
X | D = w. From the construction of K, (7) and results in Appendix B, once allowing M
to diverge to infinity, conditional on (D, ..., D,), ny/n, - Ky (i)/M and n;/ny - Ky (i) /M
are consistent estimators of fx|p=i(X;)/fx|p=0(X;) and fx|p=o(X;)/fx|p=1(X;) for units
with D; =0 and D; = 1, respectively. Because n,/n, converges almost surely to P(D =



ESTIMATION BASED ON NEAREST NEIGHBOR MATCHING 2193

1)/P(D = 0) by the law of large numbers, the statistic 1 + K, (i)/M is then a consistent
estimator of 1/(1 — e(X;)) and 1/e(X;) for units with D, = 0 and D, = 1, respectively.
Thus, in view of (3.4), the bias-corrected matching-based estimator 75 in (3.3) is actually
a doubly robust estimator of 7, and accordingly, should also enjoy all the correspond-
ing desirable properties. This novel insight into 7 allows us to establish its asymptotic
properties with a diverging M.

4. ASYMPTOTIC ANALYSIS WITH DIVERGING M

The theory for matching with a diverging M has been an important gap in the litera-
ture. With a univariate covariate, Abadie and Imbens (2006) provided a heuristic argu-
ment about the additional efficiency gain for 7, with larger M. With a general covariate,
Abadie and Imbens (2011) used simulation to evaluate the finite-sample properties of
7% and highlighted the importance of bias correction with large M. Nevertheless, exist-
ing theoretical results for NN matching estimators all focused on fixed M (Abadie and
Imbens (2006, 2008, 2011, 2016), Kallus (2020), Armstrong and Kolesar (2021), Ferman
(2021)). In this section, we will present the corresponding theory with a diverging M and
also make connections between 75 and double robustness/double machine learning esti-
mators.

4.1. The Original Matching-Based Estimator

We first analyze the original bias-corrected matching-based estimator 75%. Let U,, =
Y(w) — pno(X) for o € {0, 1} and X be the support of X. Let ||-||., denote the L, norm
of a function.

We need following assumptions to prove the consistency of 75.

ASSUMPTION 4.1: (i) Foralmost all x € X, D is independent of (Y (0), Y (1)) conditional
on X = x, and there exists a constant n > 0 such that n <P(D=1|X =x) <1—n.

(ii) [(X;, Dy, V)], arei.i.d. following the joint distribution of (X, D, Y).

(iii) E[U? | X = x] is uniformly bounded for almost all x € X and o € {0, 1}.

(iv) E[u? (X)]is bounded for » € {0, 1}.

ASSUMPTION 4.2: For w € {0, 1}, there exists a deterministic function i, (-) : R? — R such
that E[@% (X)] is bounded and the estimator [x,,(x) satisfies | Lo — flolloo = 0p(1).

ASSUMPTION 4.3: For w € {0, 1}, the estimator [, (x) satisfies |ty — Moo = 0p(1).

Assumption 4.1(i) is the unconfoundedness and overlap assumptions, and is often re-
ferred to as the strong ignorability condition (Rosenbaum and Rubin (1983)). Assump-
tion 4.2 allows for outcome model misspecification; for example, if &, = 1, =0, ?;’; then
reduces to 7). Assumption 4.3 assumes that the outcome models are consistently esti-
mated.

We need the following assumptions to prove the efficiency of 755.

ASSUMPTION 4.4: (i) E[U?| X = x] is uniformly bounded away from zero for almost all
x e Xand w €{0, 1}.

(ii) There exists a constant k > 0 such that E[|U,|*** | X = x] is uniformly bounded for
almost all x e X and w € {0, 1}.
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(iii)) max,. At 10 ol s bounded, where for any positive integer k, A, is the set of all

d-dimensional vectors of nonnegative integers t = (ty, ..., t;) such that Z;l:l ti=k
and | -] stands for the floor function.

ASSUMPTION 4.5: For w € {0, 1}, the estimator i, (x) satisfies

max |, | =O0p(1) and max”ﬁ,u — ' wo| =0p(n") forall te[ld/2]],

teA 1 4/2)+1
with some constants vy,’s satisfying y, > 1 — £ for £ =1,2,...,d/2].

Assumption 4.4 is comparable to Assumption A.4 and the assumptions in Abadie and
Imbens (2011, Theorem 2). Compared with the assumptions in Abadie and Imbens (2011,
Theorem 2), Assumption 4.4(iii) is weaker in the sense that it only requires a finite order
of smoothness. Assumption 4.5 again assumes the approximation accuracy of the out-
come models, with lower convergence rates required for higher-order derivatives of the
outcome models. Under some smoothness conditions on the outcome model as made
in Abadie and Imbens (2011), Assumption 4.5 holds using power series approximation
(Abadie and Imbens (2011, Lemma A.1)). Lastly, compared with Chernozhukov et al.
(2018), we need approx1mat10n accuracy concerning derivatives of the outcome model
estimator, which is not required in Chernozhukov et al. (2018); see Section 4.2 for more
discussions.

Theorem 4.1 below presents the double robustness and semiparametric efficiency prop-
erties of 75¢. Recall the semiparametric efficiency lower bound for estimating ATE (see
Hahn (1998))

DY —m (X)) (A-D)(Y-po(X)) 7T
_E[,LL1(X)—M0(X)+ e(X) N 1—e(X) _T:| ’

and introduce an estimator for o based on NN matching:

5 = % é[ﬁl(x,.) (X)) + (2D — 1) (1 + Kﬁ”)ﬁi -?Q;T.

THEOREM 4.1: (i) (Double robustness of %) On one hand, if the distribution of
(X, D, Y) satisfies Assumptions 4.1, 4.2, elther (Px|p=0, Px D_l) or (Px|p=1, Px|p=0)
satisﬁes Assumption B.1 in the Appendix, and Mlogn/n — 0 and M — oo as

n— oo, then 7 — 7 25 0.
On the other hand, if the distribution of (X, D, Y) satisfies Assumptions 4.1 and

4.3, then 7% — 7 — 0.

(i1) (Semzpammetrzc efficiency of T5%) Assume the distribution of (X, D, Y) satisfies As-
sumptions 4.1, 4.4, 4.5, and ezther (Px|p=0, Px|p=1) or (Px|p=1, PX|D_0) satisfies As-
sumption B.1 in the Appendllx. Define

Y R (1 )é N
V—LE?E;}LH[ VIS 6]} [_ZLd/2J+1]’

recalling that y,’s were introduced in Assumption 4.5. Then, if M — oo and M /n” —
0 as n — oo, we have /a(7 — 1) — N(0, o).
2

If in addition Assumption 4.3 holds, then 3> —> o2
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REMARK 4.1: To be in line with the double robustness terminology, we can call As-
sumptions B.1 used in Theorem 4.1 the “density (or propensity) model assumptions” and
Assumptions 4.3-4.5 the “outcome (or regression) model assumptions.”

REMARK 4.2: The first part of Theorem 4.1(i) requires M — oo for achieving the con-
sistency of the propensity score model. When M is fixed and the outcome model is mis-
specified, 7% is no longer doubly robust in the sense of Theorem 4.1. However, it does not
imply that 7% is inconsistent for estimating 7. In fact, Abadie and Imbens (2006, Theo-
rem 3) showed that 70 with a fixed M can still be consistent even if we choose i, = 0 for
w =0, 1. They showed that 7% with a fixed M is consistent as long as the outcome models
are smooth but misspecified since the matching discrepancy then converges to zero.

REMARK 4.3: Theorem 4.1 has implications for practical data analysis. We discuss two.
First, it highlights the importance of allowing M to diverge in asymptotic analysis. Nev-
ertheless, it is a challenging problem to choose M in finite samples. We use simulation
to illustrate the choice of M. Second, it gives an alternative variance estimator o for the
bias-corrected matching estimator when M diverges. Abadie and Imbens (2006) gave an-
other variance estimator for fixed M. While it is challenging to compare the two variance
estimators in theory, we use simulation to compare them in finite samples. See Section 5
for the details of simulation.

If d = 1 and we pick i, = 0 for w € {0, 1}, then Assumption 4.5 automatically holds and
the bias-corrected estimator 75 reduces to the original estimator 7, studied in Abadie
and Imbens (2006). Theorem 4.1(ii) then directly implies the following corollary that cor-
responds to Abadie and Imbens (2006, Corollary 1) with one key difference that M goes
to infinity here.

COROLLARY 4.1—Semiparametric efficiency of 7, when d = 1: Assume d = 1, the
distribution of (X, D,Y) satisfies Assumptions 4.1, 4.4, and either (Px|p=o,Px|p=1) or
(Px|p=1, Px|p=0) satisfies Assumption B.1 in the Appendix. If M — oo and M/n?* — 0 as

n — 0o, then /n(Ty — 7) —> N(0, 0?).

REMARK 4.4: By picking &, = 0 for 7;, Assumption 4.3 is in general no longer satis-
fied. Accordingly, in Corollary 4.1, % may not be a consistent estimator of o without ad-
ditional assumptions. However, by decomposing o into the form of Theorem 1 in Hahn
(1998), one could still estimate o via a similar and direct way as what is outlined in Sec-
tion 4 in Abadie and Imbens (2006). We do not pursue this track in detail here as the case
of d = 1 without Assumption 4.3 is beyond the main scope of this manuscript.

4.2. A Double Machine Learning Version of the Matching

Assumptions 4.4 and 4.5 enforce arguably strong requirements on the smoothness of
the outcome model. To weaken such assumptions, Chernozhukov et al. (2018) introduced
the idea of double machine learning. In this section, we consider the option to combine
NN matching with double machine learning.

Assume n is divisible by K for simplicity. Let [I;]5_, be a K-fold random partition of
[n], with each of size equal to n’ = n/K. For each k € [K] and w € {0, 1}, construct i, «(-)
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using data [(X}, D;, Y))]i_, ;. , and let Ky« (i) be the number of matched times for unit
i by adding (X;, D;, Y;) into [(X}, Dj, Y))]i_; 4, - Define

“be 1 < ~ —~ 1 . Koy i (i n
Bie= 2 [Ml,k(x,-)—m,k(x,-)]Jr;[ > <1+ M(l)>(y,-—m,k(Xi))

i=1,iel}, i=1,iel;,Di=1

. (1 252 - ﬁ””‘(X"))}

i=1,iel,D;=0

- K .
for k =1,...,K, and then define 7} , = K~' Y, 7} .. We can use the same variance
estimator 0 for TV K"

To analyze 73 « instead of 7y;, we replace Assumptions 4.4 and 4.5 with the following
two assumptions.

ASSUMPTION 4.6: (i) E[U2]is bounded away from zero for o € {0, 1}.
(i) There exists a constant k > 0 such that E[|Y |***] is bounded.

ASSUMPTION 4.7: For o € {0,1}, the estimator wm,(x) satisfies ||[to — Molloo =
op (/2D

REMARK 4.5: Assumption 4.6 corresponds to Assumption 5.1 in Chernozhukov et al.
(2018), and is similar to Assumption 4 in Abadie and Imbens (2006). Assumption 4.7 as-
sumes approximation accuracy of the outcome model under the L., norm. Abadie and
Imbens (2011) used the power series approximation (Newey (1997)) to estimate the out-
come model, which under some classic nonparametric statistics assumptions automati-
cally satisfies Assumption 4.7 (cf. Lemma A.1 in Abadie and Imbens (2011)). The same
conclusion also applies to spline and wavelet regression estimators; cf. Chen and Chris-
tensen (2015).

REMARK 4.6: Assumption 4.7 assumes an approximation rate under L., norm. This is
different from the L, norm put in Chernozhukov et al. (2018, Assumption 5.1), but can be
handled with some trivial modifications to the proof of Chernozhukov et al. (2018, The-
orem 5.1) since one can replace the Cauchy-Schwarz inequality by the L,—L,, Holder’s
inequality. An L;-norm bound on Ky (i)/M, to be established in Theorem B.4 in the
Appendix, can then be applied directly.

THEOREM 4.2: (i) (Double robustness of 7% ) On one hand, if the distribution of
(X,D,Y) satzsﬁesAssumptlons 4.1,4.2, either (Px|p=0, Px|p=1) or (Px|p=1, Px|p=0)
satlsﬁes Assumption B.1 in the Appendlx and Mlogn/n — 0 and M — oo as

n— oo, thenTMK—7—>O
On the other hand, if the distribution of (X, D, Y) satisfies Assumptions 4.1 and
43, thenTMK—T—>O
(ii) (Semiparametric efficiency of Ty ) Assume the distribution of (X, D, Y) satisfies As-
sumptions 4.1, 4.6, 4.7 and either (Px|p=0, Px|p=1) or (PX|D L PX|D 0) satisfies As-
sumption B.3 in the Appendix. Then if we pick M = an i for some constant o > 0,

then /(7% « — 1) = N(0, o).

~> P
In addition, we have 6> — o°.
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REMARK 4.7: There are two parts where Theorem 4.2(ii) requires stronger conditions
than Theorem 4.1(ii). First, Theorem 4.2(ii) requires M to grow polynomially fast with
n, whereas Theorem 4.1(ii) only requires M to (i) diverge not so fast for controlling the
difference of matching units and (ii) diverge to infinity (no matter how slowly it is) for
achieving semiparametric efficiency. The assumptions in Theorems 4.1(ii) and 4.2(ii) both
ensure semiparametric efficiency for bias-corrected matching-based estimators. Second,
Theorem 4.1(ii) only requires Assumption B.1 for the density model. This is again weaker
than the Lipschitz-type conditions (Assumption B.3) assumed in Theorem 4.2(ii) but is
in line with the observations made in Abadie and Imbens (2006) and Abadie and Imbens
(2011). Of note, these relaxations are possible due to adding more smoothness assump-
tions on the outcome model (Assumptions 4.4—4.5 versus Assumptions 4.6-4.7).

REMARK 4.8: Technically, to use Chernozhukov et al.’s (2018) Theorem 5.1 to estab-
lish Theorem 4.2, we need some modifications due to a reparametrization of the nui-
sance parameters. This is because Chernozhukov et al. (2018) considered estimating
1/e(X) and 1/(1 — e(X)) via plugging in an estimate of e(X), whereas 7y; . directly uses
1+ Ky(X)/M to estimate 1/e(X) and 1/(1 — e(X)) for units with D =1 and D =0,
respectively. We elaborate the modifications in the proof of Theorem 4.2(ii).

5. SIMULATION

This section uses simulation to complement the theory. We consider bias-corrected
matching estimators with either a fixed or diverging M, with the asymptotic variance esti-
mated by either & or the estimator introduced in Abadie and Imbens (2006, Section 4).

The first data are from the National Supported Work (LaLonde (1986)). We use the
specific sample studied in Dehejia and Wahba (1999). The data contain 185 treated and
260 control units. To simulate data from this study, we follow the Monte Carlo simula-
tion design of Athey, Imbens, Metzger, and Munro (2023), and use the same pretreat-
ment variables that include “age,” “education,” “black,” ‘Hispanic,” “married,” “node-
gree,” “re74,” and “re75.” By using the conditional Wasserstein Generative Adversarial
Networks (WGAN), one could then create a large population of observations similar to
the real data, and have access to both potential outcomes for evaluating the treatment
effect. Specifically, we directly use the conditional WGAN generated data available on
the repository of Athey et al. (2023). There the population size is 1,000,000. For a given
sample size n, we set n; = n * 185/(185 + 260) and ny = n % 260/(185 + 260), and draw
samples from the generated data separately for treated and control groups. We consider
n € {600, 1200, 4800, 9600}.

The second data are from Shadish, Clark, and Steiner (2008), which evaluated the ef-
fects of mathematical training on mathematics test performance. We use the data from the
nonrandomized arm. The data contain 79 treated and 131 control units. We use nine pre-
treatment covariates including “vocabulary pretest,”, “mathematics pretest,”, “number of
prior mathematics courses,” ‘Caucasian,” “age,” “male,” “mother education,” “father ed-
ucation,” and “high school GPA.” We follow the Monte Carlo simulation design of Athey
et al. (2023) to generate new data with population size 1,000,000. For a given sample size
n,weset ny =nx79/(79+ 131) and ny = n % 131/(79 + 131). Other settings are the same
as those of the first data.

We consider the estimator 75 with both fixed M € {1,4,16} and diverging M =
lan¥ @] of d = 4 for the first data and d = 7 for the second data; here, the diverg-
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ing rate is suggested by Theorem B.4. In this study, we pick « € {0.5, 1,2, 5, 10}. Notice
that here we choose d = 4 for the first data since in the eight pretreatment variables there
are only four continuous variables; it is straightforward to check that the rest four binary
variables will not affect the asymptotic properties established in this manuscript as well as
those in Abadie and Imbens (2006). We choose d = 7 for the second data based on the
same reason. For the outcome models, we consider the second-order power series. The
estimator’s asymptotic variance is estimated using either o in Theorem 4.1(ii) (SE) or
Abadie and Imbens’s (2006) (AISE). We implement 2000 repetitions and Tables I and II
report the calculated root-mean-squared-error (RMSE), bias, standard deviation (SD),
mean-absolute-error (MAE), and the empirical coverage rate for nominal 95% and 90%
confidence intervals. Tables I and II also provide inside the parentheses the root-n scaled
RMSE, bias, SD, and MAE divided by o*, with ¢* computed as the sample size-scaled
standard deviation of 7% with the sample size chosen to be 100,000, « = 1, and 2000

TABLE I
SIMULATION RESULTS, LALONDE (1986), o* =9.55.

95% Coverage 90% Coverage
n M RMSE Bias SD MAE SE AISE SE AISE

600 M=1 1.055(2.71) —0.039 (~0.10) 1.054 (2.70) 0.469 (1.20) 0.930 0.913 0.868 0.858
M=4 1.043(2.68) —0.038 (—0.10) 1.042(2.67) 0.442(1.13) 0926 0911 0.862 0.847
M =16 1.037 (2.66) —0.027 (—0.07) 1.036(2.66) 0.435(1.12) 0.931 0913 0.873 0.858
a=05 1.043(2.68) —0.038 (—0.10) 1.042(2.67) 0.442(1.13) 0.926 0911 0.862 0.847
a=1 1.039(2.67) —0.034 (-0.09) 1.039(2.67) 0.437(1.12) 0.928 0.911 0.864 0.845
a=2 1.037(2.66) —0.027 (-0.07) 1.036(2.66) 0.435(1.12) 0.931 0913 0.873 0.858
a=5 1.037(2.66) —0.022(~0.06) 1.037 (2.66) 0.434 (1.11) 0.948 0.927 0.891 0.869
a=10 1.037(2.66) —0.058 (~0.15) 1.036(2.66) 0.433 (1.11) 0.947 0926 0.901 0.882

1200 M=1 0341 (1.24) —0.001 (=0.00) 0.341 (1.24) 0.272(0.99) 0.939 0.941 0.886 0.890
M=4 0310(1.12) 0.002(0.01) 0310 (1.12) 0.248(0.90) 0934 0.936 0.8%4 0.887
M =16 0.305(1.11)  0.014 (0.05)  0.305 (1.11) 0.244 (0.88) 0.939 0.940 0.887 0.889
a=05 0309 (1.12)  0.003 (0.01)  0.309 (1.12) 0.247 (0.90) 0.940 0.942 0.882 0.883
a=1 0305(L.11) 0.008 (0.03) 0.305(1.11) 0.244 (0.89) 0.941 0.943 0.882 0.884
a=2 0306(1.11) 0018 (0.06) 0.305(1.11) 0.244 (0.89) 0.939 0.939 0.886 0.887
a=5 0307(L11) 0.029(0.10) 0.306 (1.11) 0.246 (0.89) 0.950 0.950 0.898 0.895
a=10 0307 (1.11)  0.020 (0.07)  0.306 (1.11) 0.245 (0.89) 0.955 0.956 0.908 0.907

4800 M =1 0.163 (1.18) —0.001 (—0.01) 0.163 (1.18) 0.129 (0.94) 0.949 0.948 0.900 0.901
M =4 0.149 (1.08) —0.000 (—0.00) 0.149 (1.08) 0.118 (0.86) 0.951 0.951 0.897 0.897
M =16 0.145 (1.05)  0.001 (0.01)  0.145 (1.05) 0.116 (0.84) 0.952 0.950 0.903  0.903
a=05 0.146 (1.06) —0.000 (—0.00) 0.146 (1.06) 0.117 (0.85) 0.949 0.948 0.899 0.899
a=1 0.145(1.05) 0.001(0.01) 0.145(1.05) 0.116 (0.84) 0.952 0.950 0.903  0.903
a=2 0.145(1.05) 0.006 (0.04) 0.144 (1.05) 0.116 (0.84) 0.953 0.953 0.906 0.907
a=5 0.145(1.05) 0017 (0.12) 0.144 (1.05) 0.116 (0.84) 0.957 0.957 0.906 0.903
a=10 0.147(1.06)  0.027 (0.19)  0.144 (1.05) 0.117 (0.85) 0.958 0.958 0.909 0.910

9600 M =1 0.115(1.18) —0.003 (—0.03) 0.115 (1.18) 0.092 (0.94) 0.951 0.952 0.897 0.896
M =4 0.106(1.08) —0.002 (—0.02) 0.105(1.08) 0.084 (0.86) 0.950 0.950 0.901 0.901
M =16 0.103 (1.06) —0.001 (—0.01) 0.103 (1.06) 0.082 (0.84) 0.948 0.948 0.902 0.902
a=05 0.104 (1.07) —0.001 (—0.01) 0.104 (1.07) 0.082(0.85) 0.953 0.951 0.904  0.905
a=1 0.103(1.06) —0.001(~0.01) 0.103 (1.06) 0.082(0.84) 0.950 0.950 0.904 0.903
a=2 0.103(1.05) 0.001(0.02) 0.103 (1.05) 0.082(0.84) 0.954 0.953 0.906 0.906
a=5 0.104(1.07) 0.010(0.11) 0.103 (1.06) 0.083 (0.85) 0.951 0.950 0.899 0.898
a=10 0.106 (1.09)  0.020 (0.20)  0.104 (1.07) 0.084 (0.87) 0.951 0.951 0.899  0.900
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SIMULATION RESULTS, SHADISH, CLARK, AND STEINER (2008), o* = 3.85.

TABLE II

2199

95% Coverage 90% Coverage
n M RMSE Bias SD MAE SE AISE SE AISE
600 M=1 0.190(1.21) 0.005(0.03) 0.190 (1.21) 0.152(0.97) 0.879 0.942 0.806 0.888
M=4 0.182(1.16) 0.007 (0.04) 0.182(1.16) 0.144(0.92) 0.879 0.926 0.799 0.875
M =16 0.180 (1.14) 0.011 (0.07) 0.179 (1.14) 0.143 (0.91) 0.865 0.921 0.785 0.866
a=0.5 0.185(1.18) 0.006 (0.04) 0.185(1.18) 0.147 (0.94) 0.875 0.932 0.799 0.880
a=1 0.182(1.16) 0.007 (0.04) 0.182(1.16) 0.144 (0.92) 0.879 0.926 0.799 0.875
a=2 0.180 (1.15) 0.009 (0.06) 0.180 (1.14) 0.143(0.91) 0.870 0.922 0.798 0.866
a=5 0179 (1.14) 0.012(0.07) 0.179 (1.14) 0.143(0.91) 0.863 0.922 0.780 0.863
a=10 0.179 (1.14) 0.012 (0.08) 0.179 (1.14) 0.142(0.91) 0.856 0.924 0.780 0.864
1200 M =1 0.130 (1.17)  0.006 (0.05) 0.129 (1.16) 0.103 (0.93) 0.905 0.948 0.840 0.893
M=4 0.123(1.11) 0.008 (0.07) 0.123 (1.11) 0.098 (0.88) 0.898 0.934 0.822 0.879
M =16 0.122 (1.09) 0.013 (0.12) 0.121 (0.19) 0.097 (0.87) 0.892 0.931 0.818 0.878
a=0.5 0.125(1.13) 0.008 (0.07) 0.125(1.13) 0.100 (0.90) 0.898 0.943 0.836 0.885
a=1 0.123(1.11) 0.008 (0.07) 0.123 (1.11) 0.098 (0.88) 0.898 0.934 0.822 0.879
a=2 0.122(1.10) 0.011(0.10) 0.121 (1.09) 0.097 (0.87) 0.896 0.934 0.819 0.877
a=5 0.122(1.10) 0.015(0.13) 0.121(1.09) 0.097 (0.87) 0.889 0.932 0.816 0.875
a=10 0.121 (1.09) 0.017 (0.16) 0.120 (1.08) 0.097 (0.87) 0.880 0.930 0.799 0.876
4800 M =1 0.064 (1.15) 0.006 (0.11) 0.063 (1.14) 0.051 (0.91) 0.918 0.943 0.858 0.890
M =4 0.060(1.09) 0.007(0.12) 0.060 (1.08) 0.048 (0.87) 0.912 0.939 0.839 0.877
M =16 0.060 (1.08) 0.009 (0.17) 0.059 (1.07) 0.048 (0.86) 0.902 0.926 0.825 0.865
a=0.5 0.061(1.09) 0.006(0.12) 0.060 (1.09) 0.048 (0.87) 0.918 0.941 0.844 0.876
a=1 0.060 (1.08) 0.007 (0.13) 0.060 (1.07) 0.048 (0.86) 0.908 0.933 0.838 0.870
a=2 0.060(1.08) 0.009 (0.16) 0.059 (1.07) 0.048 (0.86) 0.902 0.930 0.829 0.865
a=5 0.060 (1.08) 0.012(0.21) 0.059 (1.06) 0.048 (0.86) 0.895 0.920 0.824 0.861
a=10 0.060 (1.09) 0.015(0.26) 0.059 (1.05) 0.048 (0.87) 0.891 0.916 0.819 0.858
9600 M =1 0.045(1.14) 0.005 (0.14) 0.044 (1.13) 0.036 (0.91) 0.923 0.940 0.864 0.886
M =4 0.042 (1.07) 0.006 (0.15) 0.042 (1.06) 0.034 (0.86) 0.920 0.933 0.853 0.881
M =16 0.042 (1.06) 0.008 (0.20) 0.041 (1.04) 0.033 (0.85) 0.910 0.928 0.847 0.869
a=0.5 0.042 (1.08) 0.006 (0.15) 0.042 (1.06) 0.034 (0.86) 0.922 0.938 0.856 0.882
a=1 0.042 (1.06) 0.006 (0.16) 0.041 (1.05) 0.033 (0.85) 0.916 0.934 0.851 0.872
a=2 0.042 (1.06) 0.008 (0.20) 0.041 (1.04) 0.033 (0.85) 0912 0.929 0.847 0.869
a=5 0.042(1.07) 0.010(0.25) 0.041(1.04) 0.034 (0.86) 0.902 0.922 0.842 0.862
a=10 0.042(1.08) 0.012(0.31) 0.041 (1.03) 0.034 (0.86) 0.897 0916 0.829 0.860

Monte Carlo repetitions. Here, we use the value (o*)? to approximate the semiparamet-

ric efficiency lower bound if the assumptions in Theorem 4.1 hold.

For the first data, two observations are in line:

1. Regardless of which n is chosen, picking M = |an*?*®] with « set to be 1 nearly
always achieves the smallest SD, RMSE, and MAE. The simulation results thus sup-

port our recommendation to increase M for achieving better statistical performance.

2. Although consistency is established under different requirements for M, the two
considered asymptotic variance estimators (SE and AISE) both yield good empirical
coverage rates. The coverage rates are both very close to the nominal ones when n

is large and there is not much difference between the two.
Some similar observations can be found for the second data. Notably, although picking
M = |an¥ D] with a = 1 is not achieving the smallest RMSE this time, its RMSE is very
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close to the smallest. However, for the second data, AISE yields generally better coverage
rates than SE, although SE’s coverage rates are improving as n increases.

To conclude, the simulation results generally support (a) increasing M with the sample
size n for minimizing the RMSE and (b) exploiting Abadie and Imbens’s (2006) approach
to estimating the asymptotic variance of 755. For choosing the M, the simulation results
favor M = |an¥?*9 | with « selected to be 1, while calculating the theoretically optimal
«a is believed to be difficult and also is beyond the scope of this manuscript.

6. SOME FINAL REMARKS

Some alternative matching estimators can also achieve double robustness or semipara-
metric efficiency. Yang and Zhang (2023) proposed to use the NN matching based on
the propensity score (Rosenbaum and Rubin (1983), Abadie and Imbens (2016)) and the
prognostic score (Hansen (2008)) simultaneously, and established the double robustness
of the resulting matching estimator. They focused on fixed M, and consequently, their
estimator did not achieve semiparametric efficiency. Wang and Zubizarreta (2023) pro-
posed a matching method based on integer programming to ensure global balance of the
covariates, and established the efficiency of the resulting difference-in-means estimator.
They focused on fixed M, and even with fixed M, their integer programming problem was
computationally challenging compared with NN matching.

There are three additional questions addressed in Abadie and Imbens (2006, 2012).
First, estimation of the average treatment effect on the treated (ATT) can be incorpo-
rated in the double robustness and double machine learning framework (Theorem 4.2)
and matching framework (Theorem 4.1(ii)) in a similar way. Second, asymptotic Normal-
ity (with an additional asymptotic bias term) of 7, in general d can be established as
Theorem 4.1(ii). Third, unbalanced designs with n, much larger than n; cannot be incor-
porated in the double robustness and double machine learning framework, but can be
studied in the same way as Theorem 4.1(ii).

APPENDIX A: DENSITY RATIO ESTIMATION I: COMPUTATION

Additional Notation. For any two real sequences {a,}>°, and {b,}%2,, write a, < b, (or
equivalently, b, 2 a,) if there exists a universal constant C > 0 such that a, /b, < C for all
sufficiently large n, and write a, < b, (or equivalently, b, > a,) if a,/b, — 0 as n goes to
infinity. We write a, < b, if both a,, < b, and b, < a,, hold. We write a,, = O(b,) if |a,| < b,
and a, = o(b,) if |a,| < b,. Denote the closed ball in R? centered at x with radius § by
B, 5. In the sequel, let ¢, C, C’, C”, C", ... be generic positive constants whose actual
values may change at different locations.

This section discusses implementation and establishes Property (P1) for the proposed
estimator 7y, (+). To this end, we separately discuss two cases:

Case I: estimating only the values of 7, (-) at the observed data points X7, ..., Xy,.
Case II: estimating the values of 7, (+) at both the observed data points X7, ..., Xy,
and n new points x, ..., x, € R%

Case 1. In many applications, we are only interested in a functional of density ratios
at observed sample points, that is, the values of ®({r(X;)}.,) for some given functions
® defined on RM. Check, for example, in a slightly different but symmetric form—(3.3)
for such an example on ATE estimation. To this end, it is natural to consider the plug-in
estimator ® ({7, (X;)}~")), for which it suffices to compute the values of {7y, (X;)}\",.
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Algorithm 1: Density ratio estimators at sample points.
Input: {Xi}fi’l, {Z,-}N1 and M.

j=1
Output: {7 (X)},.

Build a k-d tree using {X i}ffl;
forj=1: N, do

L Search the M-NNs of Z; in {X,-}?fl using the k-d tree;

Store the indices of the M-NNs of Z; as S;;
Count and store the number of occurrence in U;V:ll S; for each element in [N,], which
is then {K/ (X i)}ffl;
Obtain {7, (X;)}~, based on (2.4).

Built on the k-d tree structure (Bentley (1975)) for tracking NNs, Algorithm 1 outlines
an easy to implement algorithm to simultaneously compute all the values of {7y, (X ,-)}fi’l.
This algorithm could be regarded as a direct extension of the celebrated Friedman—
Bentley-Finkel algorithm (Friedman, Bentley, and Finkel (1977)) to the NN matching
setting.

Case II. Suppose we are interested in estimating density ratios at both the observed
and n new points in RY. A naive algorithm is then to insert each new point into observed
points and perform Algorithm 1 in order. However, this algorithm is not ideal as the
corresponding time complexity would be n times the complexity of Algorithm 1, which
could be computationally heavy with a large number of new points.

Instead, we develop a more sophisticated implementation. Let the new points be {x,} ;.
Algorithm 2 computes all the values of {7, (x;)}"_, as well as {F; (X;)}.,. The key message
delivered here is that, compared with the aforementioned naive implementation, in Al-
gorithm 2 we only need to construct one single k-d tree; the matching elements are then
categorized to two different sets, corresponding to those with regard to X;’s and x;’s,
separately. Such an implementation is thus intuitively much more efficient.

Theorem A.1 below elaborates on the computational advantage of the proposed esti-
mator.

THEOREM A.1: (1) The average time complexity of Algorithm 1 to compute all the values
of P (X))}, is O((d + N\M/Ny)Nylog Ny).
(2) Assume [x;]"_, are independent and identically distributed (i.i.d.) following v, and are
independent of [X;]%,. Then the average time complexity of Algorithm 2 to compute all
the values of {F (x;)YL, and {7y (X))}, is O((d + N\M/Ny)(Ny + n)log(Ny + n)).
REMARK A.1—Comparison to Non-NN-Based Estimators: Assuming Ny =< N; < N,
it is worth noting that optimization-based methods are commonly of a time complexity
O(N?) if not worse (Noshad et al. (2017)). They are thus less appealing in terms of han-
dling gigantic data as was argued in, for example, astronomy (Lima et al. (2008), Kremer
et al. (2015)) and big text analysis (Borgeaud et al. (2021)) applications.

REMARK A.2—Comparison to the Two-Step NN-Based Density Ratio Estimator: Re-
garding Case I, a direct calculation yields that the time complexity of the simple two-
step NN-based method, which separately estimates f; and f; based on individual M-NN
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Algorithm 2: Density ratio estimators at both sample and new points.
Input: {X, ,«}fﬁ’l, {Z j}j.vz'l, M, and new points {x;}},.
Output: {7, (X))}, and {7y (x,)},.
Build a k-d tree using {X, ,«}fi‘l U{x s
for j=1:N, do
Set S; and S} be two empty sets;
m < 1;
while |S;| < M do
Search the mth NN of Z; in {X;}2, U {x.}/_;
if the mth NN of Z; is in {X Y then
| add the index into S;

else
| add the index into Sj;

m<«—m-+1;

Store the indices sets S; and S};

Count and store the number of occurrence in Uj,\]:'] S; for each element in [N,], which
is then {K/ (X, i)}?i)l. Count and store the number of occurrence in Uj.vz‘l §’ for each
element in [n], which is then {K,,(x;)}";

Obtain {7 (X)), and {7y (x;)}, based on (2.4).

density estimators, is O(dNylog Ny + dN;log Ny + NoM log Ny + NoM log N;). It is thus
of the same order as Algorithm 1 when N; < N,, while computationally heavier when
N; < Ny. Regarding Case I, the time complexity of the simple two-step NN-based method
is O(dNylog Ny + dN;log N, + (No+n)M log Ny + (No + n)M log Ny). Thus, if 7 is of less
or equal order of N, it is of the same order when N; < N,, while computationally heavier
than Algorithm 2 when N; < N,.

REMARK A.3—Comparison to the one-step NN-based density ratio estimator in
Noshad et al. (2017): To estimate f-divergence measures, Noshad et al. (2017) con-
structed another one-step NN-based estimator admitting the simple form: 7},(x) =
(No/N1)(M;/(N; + 1)), where N; and M, are the numbers of points in {X, ,«}fi’l and
{Z}Y, among the M NN of x; cf. Noshad et al. (2017, equation (20)). For Case 1, its
time complexity is O(d (N, + Ny)log(Ny + Ny) + NoM log(N, + N,)); while for Case II,
itis O(d(Ny + N1)log(Ny + Ny) + (N + n)M log(Ny + N,)). Both are at the same order
as the naive NN-based one, but unlike the naive approach, this estimator is indeed one-
step. However, it is still theoretically unclear if this estimator is statistically efficient; see
Remark B.4 ahead for more details.

APPENDIX B: DENSITY RATIO ESTIMATION II: THEORY

This section introduces the theory for density ratio estimation based on NN matching.
To this end, before establishing detailed theoretical properties (e.g., consistency and the
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rate of convergence) for 73, (+), we first exhibit a lemma elaborating on the asymptotic L?
moments of »;( A (x)), the v;-measure of the catchment area. This novel result did not
appear in Abadie and Imbens’s analysis. It is also of independent interest in stochastic
and computational geometry in light of Remark 2.1.

LEMMA B.1—Asymptotic L” Moments of Catchment Areas’s v,-Measure: Assuming
M1logNy/Ny — 0 as Ny — oo, we have limy,_...(No/M)E[v:(An(x))] = r(x) holds for
vo-almost all x. If we further assume M — oo, then for any positive integer p, we have
limy, oo (No/M)PE[v] (Au(x))] = [r(x)]? holds for vy-almost all x.

REMARK B.1—Relation to the Measure of Voronoi Cells: When M =1 and vy = vy,
the measure of catchment areas reduces to the measure of Voronoi cells as pointed out in
Remark 2.1. Interestingly, in the stochastic geometry literature, Devroye, Gyorfi, Lugosi,
and Walk (2017) studied a related problem of bounding the moments of the measure of
Voronoi cells (cf. Theorem 2.1 therein). Setting M = 1 and vy = v; in the first part of
Lemma B.1 and recalling Remark 2.1, we can derive their Theorem 2.1(i). On the other
hand, Devroye et al. (2017, Theorem 2.1(ii)) showed that when vy =v,, p=2,and d <3,
(M~'No)’E[v{(Am(x))] converges to 1 whereas NjE[vi(A4(x))] does not; cf. Devroye
et al. (2017, Section 4.2). This supports the necessity of forcing M — oo for stabilizing the
moments of 7, (+).

B.1. Consistency

We first establish the pointwise consistency of the estimator 7),(x) for r(x). This re-
quires nearly no assumption on v, v; except for those made at the beginning of Section 2,
in line with similar observations made in NN-based density estimation (Biau and Devroye
(2015, Theorem 3.1)).

THEOREM B.1—Pointwise Consistency: Assume M log No/ Ny — 0 as Ny — oo.

(i) (Asymptotic unbiasedness) For vy-almost all x, we have limy, _, . E[7y (x)] = r(x).

(ii) (Pointwise L, consistency) Let p be any positive integer and assume further that
MN,/Ny — 0o and M — oo as Ny — oo. Then for vy-almost all x, we have
limy,_ o E[[7) (x) — r(x)|?]=0.

For evaluating the global consistency of the estimator, it is necessary to introduce the
following (global) L, risk:

L, tisk=E[[Fu(X) —r(X)|" | X1, ..., Xngs Z1s oo, Zny | = /Rd [Far(x) = r(x)]” fo(x) dx,

where X is a copy drawn from v, that is independent of the data. For the L, risk consis-
tency of the estimator, we impose conditions on v, and v, further as follows.

Define the supports of v, and »; as S, and S, respectively. For any set S C R¢, define
the diameter of S as diam(S) = sup, _¢lx — z||.

ASSUMPTION B.1: (i) vy, v| are two probability measures on RY, both are absolutely con-
tinuous with respect to A, and v, is absolutely continuous with respect to v,.
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(ii) There exists a constant R > 0 such that diam(S,) < R.

(iii) There exist two constants fy, fu > 0 such that for any x € Sy and z € Sy, f1 < fo(x) <
fvand fi(z) < fu.

(iv) There exists a constant a € (0, 1) such that for any 6 € (0, diam(S)] and z € S,
A(B..sNSy) > aA(B,.s), recalling that B, s represents the closed ball in R with center
at z and radius 6.

REMARK B.2: Assumption B.1 is standard in the literature for establishing the global
consistency of density ratio estimators. The regularity conditions on the support ensure
that the angle of the support is not too sharp, which trivially hold for any d-dimensional
cube. These conditions were also enforced in Nguyen, Wainwright, and Jordan (2010,
Theorem 1), Sugiyama, Suzuki, Nakajima, Kashima, von Biinau, and Kawanabe (2008,
Assumption 1), Kpotufe (2017, Definition 1), among many others.

We then establish the L, risk consistency of the estimator via the Hardy-Littlewood
maximal inequality (Stein (2016)); cf. Lemma S3.2 in the Online Appendix. Of note, this
inequality was used in Han, Jiao, Weissman, and Wu (2020) in a relative manner in order
to study the information-theoretic limit of entropy estimation.

THEOREM B.2—L , Risk Consistency: Assume the pair of vy, v, satisfies Assumption B.1.
Let p be any positive integer. Assume further that M log Ny/Ny — 0, MN;/Ny — oo, and
M — oo as Ny — o0o. We then have

NloiglooE[ /}R ) Far(x) = r(x)|” fo(x) dx} =0.

As a direct corollary of Theorem B.2, one can obtain the limit of any finite mo-
ment of »;(Ay(-)) with a random center. This can be regarded as a global extension
to Lemma B.1.

COROLLARY B.1: Assume the same conditions as in Theorem B.2. We then have
limy, oo (No/M)PE[v] (Au(W))] = E([r(W)]?), where W follows an arbitrary distribution
that is absolutely continuous with respect to vy and has density bounded above and below by
two positive constants. In particular, it holds when W is drawn from v,.

B.2. Rates of Convergence

In this section, we establish the rates of convergence for 7(x) under both pointwise and
global measures. We first consider the pointwise mean square error (MSE) convergence
rate and show that 7, (+) is minimax optimal in that regard. In the sequel, we fix an x € R?
and consider the following local assumption on (v, v;).

ASSUMPTION B.2—Local Assumption: (i) vy, v, are two probability measures on R?,
both are absolutely continuous with respect to A, and v is absolutely continuous with
respect to v.

(ii) There exist two constants fi, fy > 0 such that fy(x) > f; and f,(x) < fu.

(iii) There exists a constant & > 0 such that for any z € B, 5, |fo(x) — fo(2)| V |fi(x) —

fi(2)| < L||x — z|| for some constants L > 0.
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Define the following probability class:
Peo(fr, fu, L, d, 8) = {(vo, v1) : Assumption B.2 holds}.
The following theorem establishes the uniform pointwise convergence rate of 7, ().

THEOREM B.3—Pointwise Rates of Convergence: Assume M logNy/Ny — 0 and
M /log Ny — oo as Ny — oco. Consider a sufficiently large Nj.
(i) Asymptotic bias:

M\
sup |E[fu (x)] —r(x)| < C(V) ,
(vo,v1)€Px,p(fL.fu,L.d,5) 0

where C > 0 is a constant only depending on fi, fy, L, d.
Further assume MN,/Ny — 00 as Ny — o0.
(ii) Asymptotic variance:

A 1 Ny
sup Var|ry(x)] < C’|:<_) + ( >:|’
(v0.1)€Pxp(fr.fu . L.d.8) [ ] M MN,

where C' > 0 is a constant only depending on fi, fv.
(iii) Asymptotic MSE:

2/d
—~ 2 M 1 NO

B =l = () + (5) + (5w
(0,71 €Px,p(fL., fU> L d, ) [ ] Ny M MN,

where C" > 0 is a constant only depending on f;, fu, L, d.

_d
Further assume N, *** log Ny — 0 as Ny — oc.
2 _d
(iv) Fix @ > 0 and take M = a - {N;** v (NoN, ***)}. We have

sup E[fu(x) — r(x)]" < C"(No A Ny) 754, (B.1)

(»0,71)€Pux,p(fL.fu.L.d,8)

where C” > 0 is a constant only depending on f1, fy, L, d, «.

The rate of convergence in (B.1) matches the established minimax lower bound in Lip-
schitz density function estimation (Tsybakov (2009, Section 2)). By some simple manip-
ulation, the argument in Tsybakov (2009, Exercise 2.8) directly extends to density ratio
as the latter is a harder statistical problem (Kpotufe (2017, Remark 3)). This is formally
stated in the following proposition.

PROPOSITION B.1—Pointwise MSE minimax lower bound: For sufficiently large Ny and
Nl )

inf sup E[F(x) — r(x)]2 > c¢(Ny A Nl)*z%d,

" (vo,v1)€Prp(fLofUsL.d,9)

where ¢ > 0 is a constant only depending on f;, fu, L, d, and the infimum is taken over all
measurable functions.
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We then move on to the global risk and study the rates of convergence. To this end, a
global assumption on (v, ;) is given below.

ASSUMPTION B.3—Global Assumption: (i) vy, v, are two probability measures on R¢,
both are absolutely continuous with respect to A, and v is absolutely continuous with
respect to v.

(ii) There exists a constant R > 0 such that diam(S,) < R.

(iii) There exist two constants fy, fu > 0 such that forany x € Sy and z € S, f1 < fo(x) <
fuand fi(z) < fu.

(iv) There exists a constant a € (0, 1) such that for any 6 € (0, diam(S,)] and any z € S,
)\(Bz,ﬁ N S()) > a)\(BZ,S).

(V) There exists a constant H > 0 such that the surface area (Hausdorff measure, Evans
and Garzepy (2018, Section 3.3)) of S, is bounded by H.

(vi) There exists a constant L > 0 such that for any x, z € Sy, |fo(x) — fo(2)| V |fi(x) —

fi(2)l < Lilx — 2.

REMARK B.3: Assumption B.3 is standard in the literature for establishing the global
risk of density ratio estimators; similar assumptions were made in Zhao and Lai (2022,
Assumption 1) and Zhao and Lai (2020, Assumption 1). Note that the regularity condi-
tions on the support automatically hold for d-dimensional cubes, and the restriction on
the surface area is added to control the boundary effect on NN-based methods.

Define the following probability class:
Po(fr, fu, L,d,a, H,R) = {(v, v1) : Assumption B.3 holds}. (B.2)

The next theorem establishes the uniform rate of convergence of 7(-) within the above
probability class under the L risk. This rate is further matched by a minimax lower bound
derived in Theorem 1 of Zhao and Lai (2022) using similar arguments as in the pointwise
case.

THEOREM B.4—Global rates of convergence under the L; risk: Assume M logN,/
Ny — 0, M/log Ny — 0o, MN; /Ny — oo as Ny — oco. Consider a sufficiently large N,.
(i) We have the following uniform upper bound:

sup E|:/Rd v (x) — r(x)|f0(x) dx:|

(v0-»1)€Pg(fL-fu.L.d.a,H,R)

e M 1/d+ 1 1/2+ N, 172
- Ny M MN, ’

where C > 0 is a constant only depending on f;, fuv,a, H, L, d.

_ 2
(ii) Further assume N, *** log Ny — 0 as Ny — oo, fix a > 0, and take M = o - {N;** v
d

(NoN, ***)}. We then have

sup EURd\?M(x) — ()| fo(x) dx] <C'(NgAN,) 7,

(vo.v1)€Pe(fL.fu,L.d,a,H,R)

where C' > 0 is a constant only depending on fi, fy, a, H, L, d, .
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PROPOSITION B.2—Global Minimax Lower Bound Under the L; Risk: If a is suffi-
ciently small and H, R are sufficiently large, then for sufficiently large Ny and Ny,

inf sup E[/Rd F(x) — r(x)|fo(x) dxi| > c¢(Ny A Nl)‘z%z ,

" (wo.v1)ePy(fL fusL.d,a,H,R)

where ¢ > 0 is a constant only depending on fi, fu, L, d, and the infimum is taken over all
measurable functions.

REMARK B.4—Comparison to the One-Step Estimator in Noshad et al. (2017): The
estimator introduced in Remark A.3 by Noshad et al. (2017) is to our knowledge the
only alternative density ratio estimator in the literature that is able to attain both the
property (P1) and being one step. However, the arguments in Noshad et al. (2017, Sec-
tion IIT) can only yield the bound E[7},(x) — r(x)]* < (M/No)V4 + M~ for (v, 1)) €
P.p(fr, fu, L, d, 8). This is via equation (21) therein, de-Poissonizing the estimator, and
further assuming N,/N, converges to a positive constant. The above bound is strictly
looser than the bound (M/N,)*¢ + M~ for 7y (-) shown in Theorem B.3. However, it
seems mathematically challenging to improve their analysis and accordingly, unlike 7y, (-),
it is still theoretically unclear if the estimator 7},(x) is a statistically efficient density ratio
estimator.

APPENDIX C: PROOFS OF THE RESULTS IN SECTIONS 3 AND 4
C.1. Proof of Lemma 3.1

PROOF OF LEMMA 3.1: By simple algebra, we have

A= LY [T - FEO)]

i=1

- [y,. Y (R - mx,-))]

JjeTm (@)

w22 [ X @ meo -men) - v

n i=1,D;=0 jeTm (i)
1 <& o . 1 ~
== Ri+mi(X)-m(X)—— Y R
n. M~
i=1,D;=1 jeTm(i)
1 <& 1 ~ o~ N
p [— Z Rj_Ri+/-L1(Xi)_/*L0(Xi)i|
i=1,D;=0 jeTm (i)

This completes the proof. Q.E.D.



2208 Z. LIN, P. DING, AND F. HAN

C.2. Proof of Theorem 4.1

PROOF OF THEOREM 4.1(i): Part L. Suppose the density function is sufficiently smooth.
For any i € [n], let R, =Y; — fup,(X;). From (3.3),

e S5

n

= % Z[ﬁl(Xi) — (X)) - %Z[ﬁO(Xt) — fio(X))]

i=1

[Z(zD (1 502 G, (X0 - (X;-))}
[ZD( + 55 o R

Ky (i) 1 -
_Z(I—D)<1—|— 1—e(X,»)>Ri:|

+ 1[2(1 o) -2 (1- %)’”’(X)}

i=1 i=1
1| D; . 1-D;
- —L vy, -y — vy | C.1
+n|:;:e(X,ﬂ) ;1—e(X,~) :| €1

For each pair of terms, we only establish the first half part under treatment, and the
second half under control can be established in the same way.
For the first term in (C.1),

n

% Z[ﬁl (X)) — (X))

i=1

<l — fallee = 0p(1). (C2)

For the second term in (C.1),

i(l + Kﬁﬁi))(ﬁl()ﬁ) - ﬁl(Xi))|

o 1< Ky (i ~
<1 = oy D (14 500 ) < 1B~ = on(), (€
i=1

where the last step is due to Y| D;Ky (i) = ngM.

Notice that from Assumption 4.1(i), Px|p—o and Py|p_, share the same support, and
their densities are both bounded and bounded away from zero as long as one is. Then
(Px|p=0, Px|p=1) and (Px|p=1, Px|p=o) both satisfy Assumption B.1 as long as one satisfies.
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For the third term in (C.1), by Theorem B.2,

o050 )]

o650 el)

N DR SYTC R S

_E_1+ M o) ] E[D:R]

T Ku(i) 1 7 _ 2

=E| 1+ =5~ o | E[D,(Yi(1) — (X)) ]

<g[14 K@ _ ] ZE[az(X-) + (1 (X)) — (X)) ] =o(1), (C4)
= i M e(Xi)_ 1 i 1 i 1 i s .

where o7 (x) = E[U7 | X = x] for x e X.
For the fourth term in (C.1), notice that

1 3 (1- s w0 3 <0

i=1

and
VFZ( e&))ﬁ”")}
=E|:Var|:%i2:(l—e(D7ii))ﬁ1 ..,Xn:|:|
= B0 (g 1) =00
Then

—Z( (X))m(X) op(1). (C5)

For the fifth term in (C.1), notice that E[Y?] are bounded and [(X;, D;, Y;)]\, are i.i.d.
Using the weak law of large numbers yields

1| D "\ 1-D; 0
n [Z TIORD T(X)Y} S EXM-YO)=r (€6

Plugging (C.2), (C.3), (C.4), (C.5), (C.6) into (C.1) completes the proof.
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Part I1. Suppose the outcome model is correct. By (3.3),

[ o+ )R- T on(i )]

n

= %Z[ﬁl (Xi) — (X)) - %Z[ﬁO(Xt) — mo(X7)]

i=1

[Z(w - 1)(1+ Kt ))(mx,-) —wm}

[ZD ( KM(’))(K - (X))

- ;(1 - D) (1 + KMM(i))(K - Mo(Xi))j|

1> [ (X)X ()

For the first term in (C.7),

‘% Y[ (X) = m(X)]| < 17 = pallo = 0p(1). (C8)

i=1

For the second term in (C.7),

ZD < KM(Z))(M(X:') - ﬁ1(Xi))'

R 1< Ky (i .
=< [l —,Uv1||oo; ZDi(l + ]X/[( )) = |1 — pille = 0p(1). (C.9)

i=1

For the third term in (C.7), noticing that K, (-) is a function of (X,...,X,) and
(D, ..., D,), we can obtain

[ ZD( KM()>(Y,-—,u,1(X,~))'Xl,...,X,,,Dl,...,D,,} =0.

By a martingale representation (Abadie and Imbens (2012)) and then the martingale
convergence theorem (which holds for both fixed and diverging M), we obtain

ZD < KM( )>(Y,- — (X)) = op(1). (C.10)
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For the fourth term in (C.7), notice that E[u? (X)] is bounded for w € {0, 1}. Using the
weak law of large numbers, we obtain
1 n
= [ (X0) = ma(X)] > Bl (X)) = po(X)] = . (C11)
i=1

Plugging (C.8), (C.9), (C.10), (C.11) into (C.7) completes the proof. Q.E.D.
PROOF OF THEOREM 4.1(ii): For w € {0, 1} and m € [M], let j,, (i) represent the index
of mth-NN of X; in {X;: D; =1— D;}}_,, that is, the index j € [n] such that D; =1 - D;
and ) )_ 1o=1-p; LUIXe — Xill < I1X; — Xill) = m. With a little abuse of notation, let

=Y, — up, (X ) for any i € [n]. By the definition of 75¢ in (3.3), we can verify the de-
composmon =7(X)+Ew+ By — BM, where

n

T(X) = %Z[Ml(Xi) - Mo(Xi)],

i=1

Z(ZD _ 1)(1 v KMM(Z)>
By = % ;(ZDi —-1) [% ;(Ml—ni (Xi) — pip; (ijn(i))):|’
PO 1 ¢
By = . ;(ZD,- -1) |:Mm2_: i-p, (Xi) = H-p, (X m(’)))j|

We have the following central limit theorem on 7(X) + Ey,.
LEMMA C.1: /o~ A(7(X) + Ey — 7) —> N(0, 1).

For the bias term By, — By, define U,,; = in(y — X; for any i € [n] and m € [M]. We
then have the following lemma bounding the moments of Uy, ;.

LEMMA C.2: Let p be any positive integer. Then there exists a constant C, > 0 only de-
pending on p such that for any i € [n] and M € [n,_p,],

E[|UsiI? | Dy, ..., D,] < C,(M/ny_p,)"".

In light of the smoothness conditions on u,, and approximation conditions on g, for
w € {0, 1}, we can establish the following lemma using Lemma C.2.

LEMMA C.3: /n(By — By) = 0.

Combining Lemma C.1 and Lemma C.3 completes the proof. Q.E.D.
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PROOF OF THEOREM 4.1(ii), CONSISTENCY OF ¢*: By definition, we can verify the de-
composition 62 — o2 =Ty + T» + T; + T,, where

leii[ﬁl(Xi)—ﬁo(X,-HD,-(l M(’)) -—(1—D)<1+ M(’)>R AbcT

i=1

_ —Z[“l(X) — (X)) + D; (1 1 Kl )>(Y,- — m (X))

-(1- D,»)(l - KMM(i))(Y po(X1)) — TMT’

7= 300 — a) + 0,1+ 242 ) (3, - 0)

i=1

~a-p)(1+ KX}”)(K — (X)) —ﬂ

——Z[Ml(X)

( )(Y Ml(X))

1-D, :
1_ (X)(Y /-LO(X)) ]’

T3:%Z|:M1(Xi) po(X:) + (l;()(y (X)) = 1 8()

i=1

(Y: — mo(X)) — i|2

—D; 2
[ = 0 G = (0) = TG ) =]
T4=%Z[M1(Xi)— i e(?(ii) (Y — (X)) — 1_8()(1/ po(Xy)) — }

i=1

-0’

By Assumption 4.3, Assumption 4.1, Theorem B.2, and the fact that 7% = Op(1), we
have T, = op(1). By Assumptlon 4.1, Theorem B.2, and 75 = Op(1), we have T, =
op(1). By Assumption 4.1 and 7% — 7 = 0p(1), we have T; = op(1). By the fact that
[(X:, D;, Y))]L, are i.id., Assumption 4.1 and the weak law of large numbers, we have
T, = op(1). Combining the above four facts together then completes the proof. Q.E.D.

C.3. Proof of Theorem 4.2

PROOF OF THEOREM 4.2: For Theorem 4.2(i), analysis analogous to the proof of The-
orem 4.1(i) can be performed on 7, for any k € [K]. Then the results apply to 75 .
automatically since K is fixed.

For Theorem 4.2(ii), from Definition 3.1 in Chernozhukov et al. (2018), 7}; , is the
double machine learning estimator. We then follow the proof of Theorem 5.1 (recalling
Remark 4.8) and use the notation in Chernozhukov et al. (2018), essentially checking
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Assumptions 3.1 and 3.2 therein. In the following, we adopt the notation in Chernozhukov
et al. (2018).

For estimating the ATE, from equation (5.3) in Chernozhukov et al. (2018), the score
(or the efficient influence function (Tsiatis (2006, Section 3.4))) is

D(Y (X)) (A-D)(Y-FX)) .

VOCD, YT D) = Fa(X) = oK) + =4 1 —2(X) i

where Z(x) = (fo(x), f11(x), Po(x), p1(x)) are the nuisance parameters by letting py(x) =
1/(1 —"2¢(x)) and p;(x) = 1/€(x). Let po(x) =1/(1 — e(x)) and p;(x) = 1/e(x). Then the

true value is £(x) = (no(x), p1(x), po(x), p1(x)).
We can then write the score as

$(X,D,Y;7,0) =f(X) — fio(X) + D(Y — i (X)) 51(X)
— (1= D)(Y — fio(X))po(X) - 7.

For any p >0, let |fll, = If(X, D, Y)l, = (/I (@)|” dPex.p.y,())""”. For the  in
Assumption 4.1, let g =2 + x/2, ¢ =2 + k, and ¢, such that ¢! = ¢;' + ¢;'. Let 7, be
the set consisting of all ¢ such that for w € {0, 1},

”ﬁw - /J“w”oc = O(H_d/(4+2d))a ”50) - pw”I = O(n_l/(d+2))7 ”Z;w - pw||q2 = 0(1)

Then the selection of 7, satisfies Assumption 3.2(a) in Chernozhukov et al. (2018) from
Assumption 4.7, Theorem B.4, and Theorem B.2, respectively.

For step 1 in the proof of Theorem 5.1 in Chernozhukov et al. (2018), we verify the Ney-
man orthogonality. We can show that E¢s(X, D, Y’; 7, {) = 0. For any { € 7, the Gateaux
derivative in the direction { — { is

FEY(X,D, Y7, [ - ¢]
=E[@i(X) — i (X)] = E[0(X) — po(X)]
—E[D(fi(X) — m (X)) p1(X) ]+ E[(1 = D) (fo(X) — po(X)) po(X)]
+E[D(Y — (X)) (P1(X) = p1(X))] = E[(1 = D)(Y — o (X)) (Bo(X) — po(X))].

We can check that the above quantity is zero, which completes this step.

Step 2 and step 3 therein can be directly applied.

For step 4 therein, we can establish in the same way that for w € {0, 1}, ||u.ll,, = O(1)
from ||Yl,, = O(1), and 7 = O(1). Then from Hdlder’s inequality and ||p,, ||~ is bounded
for w €40, 1}, for any leT,

l¢(x,D, Y70,
= [ (X) = Bo(X) + (2D = D)(Y — fin(X))pp(X) — 7,
< IBEO], + [RCOL,+ 1 =B, + I = REOWREO, +7
< Npeally + 17— alloo + Nptolly + 10 — prolloe & (1Y gy + Nataly + s — oallc) 15l

+ (1Y llg, + ltollg, + 10 — mollo) 1B0llg, + 7= O(1).

The last step is from the definition of 7,. Then we complete this step.
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For step 5 therein, by Hoélder’s inequality, for any Z €T,
|w(X,D,Y;7.0) - (X, D, Y7, 0)],
<l — il + 180 = molla + | D(Y = 21(X))51(X) = D(Y — i (X)) pr (X)) |,
+ (1= D) (Y = 1£0(X))5o(X) = (1 = D)(Y — po(X)) po(X) |,
<18 = silloe + 10 = Bolloo + (1Y llgy + [ 11 (O, ) 1BT = pillgy + 17 = palloo Bl
+ (1Y llg, + [ (XD [, )10 = pollay + 110 — pollcliBoll2 = (D).

The last step is due to the definition of 7,,.
Notice that for any ¢ € (0, 1),

&?E‘P(X,D, Yir,{+ t(?— 5)) = _2E[(2D - 1)(ﬁD(X) - MD(X))(KN’D(X) - PD(X))]~
Then by the definition of 7, for any Z €T,

|PEW(X,D,Yir, {+t(T—0)] <2 Y 1w — tullwllPu — puli = o(n™7?).

we{0,1}

We then complete this step, and thus complete the proof.
The consistency of the variance estimator can be established in the same way as Theo-
rem 4.1(ii). Q.E.D.

REFERENCES

ABADIE, ALBERTO, AND GUIDO W. IMBENS (2006): “Large Sample Properties of Matching Estimators for
Average Treatment Effects,” Econometrica, 74, 235-267. [2187-2191,2193,2195-2198,2200]

(2008): “On the Failure of the Bootstrap for Matching Estimators,” Econometrica, 76 (6), 1537-1557.

[2188-2190,2193]

(2011): “Bias-Corrected Matching Estimators for Average Treatment Effects,” Journal of Business

and Economic Statistics, 29, 1-11. [2187-2194,2196,2197]

(2012): “A Martingale Representation for Matching Estimators,” Journal of the American Statistical

Association, 107 (498), 833-843. [2188-2190,2200,2210]

(2016): “Matching on the Estimated Propensity Score,” Econometrica, 84, 781-807. [2193,2200]

ARMSTRONG, TIMOTHY B., AND MICHAL KOLESAR (2021): “Finite-Sample Optimal Estimation and Inference
on Average Treatment Effects Under Unconfoundedness,” Econometrica, 89, 1141-1177. [2193]

ATHEY, SUSAN, GUIDO W. IMBENS, JONAS METZGER, AND EVAN MUNRO (2023): “Using Wasserstein Gen-
erative Adversarial Networks for the Design of Monte Carlo Simulations,” Journal of Econometrics (forth-
coming). [2197]

BANG, HEEJUNG, AND JAMES M. ROBINS (2005): “Doubly Robust Estimation in Missing Data and Causal
Inference Models,” Biometrics, 61 (4), 962-973. [2188,2192]

BENTLEY, JON L. (1975): “Multidimensional Binary Search Trees Used for Associative Searching,” Communi-
cations of the ACM, 18 (9), 509-517. [2201]

BERRETT, THOMAS B., RICHARD J. SAMWORTH, AND MING YUAN (2019): “Efficient Multivariate Entropy
Estimation via k-Nearest Neighbour Distances,” The Annals of Statistics, 47 (1), 288-318. [2188,2190]

BHATTACHARYA, BHASWAR B. (2019): “A General Asymptotic Framework for Distribution-Free Graph-Based
Two-Sample Tests,” Journal of the Royal Statistical Society. Series B, 81 (3), 575-602. [2188]

BIAU, GERARD, AND LUC DEVROYE (2015): Lectures on the Nearest Neighbor Method. Springer. [2203]

BORGEAUD, SEBASTIAN, ARTHUR MENSCH, JORDAN HOFFMANN, TREVOR CAI, ELIZA RUTHERFORD, KATIE
MILLICAN, GEORGE VAN DEN DRIESSCHE, JEAN-BAPTISTE LESPIAU, BOGDAN DAMOC, AIDAN CLARK et
al. (2021): “Improving Language Models by Retrieving From Trillions of Tokens,” in Proceedings of the 39th
International Conference on Machine Learning, Vol. 162. Proceedings of Machine Learning Research, 2206—
2240. [2191,2201]




ESTIMATION BASED ON NEAREST NEIGHBOR MATCHING 2215

BROOKHART, M. ALAN, SEBASTIAN SCHNEEWEISS, KENNETH J. ROTHMAN, ROBERT J. GLYNN, JERRY
AVORN, AND TIL STURMER (2006): “Variable Selection for Propensity Score Models,” American Journal
of Epidemiology, 163 (12), 1149-1156. [2187]

CHAPIN, F. STUART (1947): Experimental Designs in Sociological Research. Harper and Brothers. [2187]

CHEN, XIAOHONG, AND TIMOTHY M. CHRISTENSEN (2015): “Optimal Uniform Convergence Rates and
Asymptotic Normality for Series Estimators Under Weak Dependence and Weak Conditions,” Journal of
Econometrics, 188 (2), 447-465. [2196]

CHERNOZHUKOV, VICTOR, DENIS CHETVERIKOV, MERT DEMIRER, ESTHER DUFLO, CHRISTIAN HANSEN,
WHITNEY NEWEY, AND JAMES ROBINS (2018): “Double/Debiased Machine Learning for Treatment and
Structural Parameters,” The Econometrics Journal, 21 (1), C1-C68. [2188,2194-2197,2212,2213]

COCHRAN, WILLIAM G., AND DONALD B. RUBIN (1973): “Controlling Bias in Observational Studies: A Re-
view,” Sankhya, Series A, 35 (4), 417-446. [2187]

COVER, THOMAS M., AND JOY THOMAS (2006): Elements of Information Theory (Second Ed.). John Wiley and
Sons. [2189]

CUNNINGHAM, SCOTT (2021): Causal Inference: The Mixtape. Yale University Press. [2189]

DEHEJIA, RAJEEV H., AND SADEK WAHBA (1999): “Causal Effects in Nonexperimental Studies: Reevaluating
the Evaluation of Training Programs,” Journal of the American Statistical Association, 94 (448), 1053-1062.
[2197]

DEVROYE, LUC, LASZLO GYORFI, GABOR LUGOSI, AND HARRO WALK (2017): “On the Measure of Voronoi
Cells,” Journal of Applied Probability, 54 (2), 394-408. [2203]

EVANS, LAWRENCE C., AND RONALD F. GARZEPY (2018): Measure Theory and Fine Properties of Functions.
Routledge. [2206]

FARRELL, MAX H. (2015): “Robust Inference on Average Treatment Effects With Possibly More Covariates
Than Observations,” Journal of Econometrics, 189 (1), 1-23. [2188]

FERMAN, BRUNO (2021): “Matching Estimators With few Treated and Many Control Observations,” Journal
of Econometrics, 225, 295-307. [2193]

FRIEDMAN, JEROME H., AND LAWRENCE C. RAFSKY (1979): “Multivariate Generalizations of the Wald-
Wolfowitz and Smirnov Two-Sample Tests,” The Annals of Statistics, 7 (4), 697-717. [2188]

FRIEDMAN, JEROME H., JON L. BENTLEY, AND RAPHAEL A. FINKEL (1977): “An Algorithm for Finding Best
Matches in Logarithmic Expected Time,” ACM Transactions on Mathematical Software, 3 (3),209-226. [2201]

GREENWOOD, ERNEST (1945): Experimental Sociology. Columbia University Press. [2187]

HAHN, JINYONG (1998): “On the Role of the Propensity Score in Efficient Semiparametric Estimation of
Average Treatment Effects,” Econometrica, 66 (2), 315-331. [2188,2194,2195]

HAN, YANJUN, JIANTAO JIAO, TSACHY WEISSMAN, AND YIHONG WU (2020): “Optimal Rates of Entropy
Estimation Over Lipschitz Balls,” The Annals of Statistics, 48 (6), 3228-3250. [2204]

HANSEN, BEN B. (2008): “The Prognostic Analogue of the Propensity Score,” Biometrika, 95 (2), 481-488.
[2200]

HENZE, NORBERT (1988): “A Multivariate Two-Sample Test Based on the Number of Nearest Neighbor Type
Coincidences,” The Annals of Statistics, 16 (2), 772-783. [2188]

HENZE, NORBERT, AND MATHEW D. PENROSE (1999): “On the Multivariate Runs Test,” The Annals of Statis-
tics, 27 (1), 290-298. [2188]

Ho, DANIEL E., KOSUKE IMAI, GARY KING, AND ELIZABETH A. STUART (2007): “Matching as Nonparametric
Preprocessing for Reducing Model Dependence in Parametric Causal Inference,” Political Analysis, 15 (3),
199-236. [2187]

IMBENS, GUIDO W. (2004): “Nonparametric Estimation of Average Treatment Effects Under Exogeneity:
A Review,” Review of Economics and Statistics, 86 (1), 4-29. [2187]

IMBENS, GUIDO W., AND DONALD B. RUBIN (2015): Causal Inference in Statistics, Social, and Biomedical Sci-
ences. Cambridge University Press. [2187,2189]

KALLUS, NATHAN (2020): “Generalized Optimal Matching Methods for Causal Inference,” Journal of Machine
Learning Research, 21, 1-54. [2193]

KPOTUFE, SAMORY (2017): “Lipschitz Density-Ratios, Structured Data, and Data-Driven Tuning,” in 2017
International Conference on Artificial Intelligence and Statistics. PMLR, 1320-1328. [2204,2205]

KREMER, JAN, FABIAN GIESEKE, K. STEENSTRUP PEDERSEN, AND CHRISTIAN IGEL (2015): “Nearest Neighbor
Density Ratio Estimation for Large-Scale Applications in Astronomy,” Astronomy and Computing, 12, 67—
72.[2189,2191,2201]

LALONDE, ROBERT J. (1986): “Evaluating the Econometric Evaluations of Training Programs With Experi-
mental Data,” The American Economic Review, 76 (4), 604-620. [2197,2198]

LiMA, MARCOS, CARLOS E. CUNHA, HIROAKI OYAIZU, JOSHUA FRIEMAN, HUAN LIN, AND ERIN S. SHELDON
(2008): “Estimating the Redshift Distribution of Photometric Galaxy Samples,” Monthly Notices of the Royal
Astronomical Society, 390 (1), 118-130. [2189,2191,2201]



2216 Z. LIN, P. DING, AND F. HAN

LIN, ZHEXIAO, AND FANG HAN (2023): “On Boosting the Power of Chatterjee’s Rank Correlation,”
Biometrika, 110 (2), 283-299. [2188,2189]

LIN, ZHEXIAO, PENG DING, AND FANG HAN (2023): “Supplement to ‘Estimation Based on Nearest Neigh-
bor Matching: From Density Ratio to Average Treatment Effect’,” Econometrica Supplemental Material, 91,
https://doi.org/10.3982/ECTA20598. [2189]

Liu, REGINA Y., AND KESAR SINGH (1993): “A Quality Index Based on Data Depth and Multivariate Rank
Tests,” Journal of the American Statistical Association, 88 (421), 252-260. [2188]

MORGAN, STEPHEN L., AND DAVID J. HARDING (2006): “Matching Estimators of Causal Effects: Prospects
and Pitfalls in Theory and Practice,” Sociological Methods and Research, 35 (1), 3-60. [2187]

NEWEY, WHITNEY K. (1997): “Convergence Rates and Asymptotic Normality for Series Estimators,” Journal
of Econometrics, 79 (1), 147-168. [2196]

NGUYEN, XUANLONG, MARTIN J. WAINWRIGHT, AND MICHAEL I. JORDAN (2010): “Estimating Divergence
Functionals and the Likelihood Ratio by Convex Risk Minimization,” IEEE Transactions on Information
Theory, 56 (11), 5847-5861. [2188,2204]

NOSHAD, MORTEZA, KEVIN R. MOON, SALIMEH Y. SEKEH, AND ALFRED O. HERO (2017): “Direct Estima-
tion of Information Divergence Using Nearest Neighbor Ratios,” in 2017 IEEE International Symposium on
Information Theory (ISIT), 903-907. [2190,2201,2202,2207]

OTSU, TAISUKE, AND YOSHIYASU RAI (2017): “Bootstrap Inference of Matching Estimators for Average Treat-
ment Effects,” Journal of the American Statistical Association, 112 (520), 1720-1732. [2192]

POCZOS, BARNABAS, AND JEFF SCHNEIDER (2011): “On the Estimation of Alpha-Divergences,” in 2011 Inter-
national Conference on Artificial Intelligence and Statistics, 609-617. [2189]

ROSENBAUM, PAUL R. (2010): Design of Observational Studies. Springer. [2187]

ROSENBAUM, PAUL R., AND DONALD B. RUBIN (1983): “The Central Role of the Propensity Score in Obser-
vational Studies for Causal Effects,” Biometrika, 70 (1), 41-55. [2192,2193,2200]

RUBIN, DONALD B. (1973): “Matching to Remove Bias in Observational Studies,” Biometrics, 29 (1), 159-183.
[2187]

(1974): “Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies,”

Journal of Educational Psychology, 66 (5), 688-701. [2191]

(2006): Matched Sampling for Causal Effects. Cambridge University Press. [2187]

RUBIN, DONALD B., AND NEAL THOMAS (2000): “Combining Propensity Score Matching With Additional
Adjustments for Prognostic Covariates,” Journal of the American Statistical Association, 95 (450), 573-585.
[2187]

SCHARFSTEIN, DANIEL O., ANDREA ROTNITZKY, AND JAMES M. ROBINS (1999): “Adjusting for Nonignorable
Drop-out Using Semiparametric Nonresponse Models,” Journal of the American Statistical Association, 94
(448), 1096-1120. [2188,2192]

SEKHON, JASJEET S. (2008): “Multivariate and Propensity Score Matching Software With Automated Balance
Optimization: The Matching Package for R,” Journal of Statistical Software, 42 (7), 1-52. [2187]

SHADISH, WILLIAM R., MARGARET H. CLARK, AND PETER M. STEINER (2008): “Can Nonrandomized Exper-
iments Yield Accurate Answers? A Randomized Experiment Comparing Random and Nonrandom Assign-
ments,” Journal of the American Statistical Association, 103 (484), 1334-1344. [2197,2199]

SHI, HONGIJIAN, MATHIAS DRTON, AND FANG HAN (2022): “On the Power of Chatterjee’s Rank Correlation,”
Biometrika, 109 (2), 317-333. [2188]

(2023): “On Azadkia-Chatterjee’s Conditional Dependence Coefficient,” Bernoulli (forthcoming).

[2188]

SMITH, HERBERT L. (1997): “Matching With Multiple Controls to Estimate Treatment Effects in Observational
Studies,” Sociological Methodology, 27 (1), 325-353. [2187]

STEIN, ELIAS M. (2016): Singular Integrals and Differentiability Properties of Functions. Princeton University
Press. [2204]

SUGIYAMA, MASASHI, TAIT SUZUKI, AND TAKAFUMI KANAMORI (2012): Density Ratio Estimation in Machine
Learning. Cambridge University Press. [2188,2189]

SUGIYAMA, MASASHI, TAIJT SUZUKI, SHINICHI NAKAJIMA, HISASHI KASHIMA, PAUL VON BUNAU, AND MO-
TOAKI KAWANABE (2008): “Direct Importance Estimation for Covariate Shift Adaptation,” Annals of the
Institute of Statistical Mathematics, 60 (4), 699-746. [2204]

TSIATIS, ANASTASIOS A. (2006): Semiparametric Theory and Missing Data. Springer. [2213]

TSYBAKOV, ALEXANDRE B. (2009): Introduction to Nonparametric Estimation. Springer. [2205]

VORONOI, GEORGES (1908): “Nouvelles Applications des Parametres Continus a la Théorie des Formes
Quadratiques. Deuxieme Mémoire. Recherches sur les Parallélloedres Primitifs,” Journal fiir die reine und
angewandte Mathematik (Crelles Journal), 1908 (134), 198-287. [2190]



ESTIMATION BASED ON NEAREST NEIGHBOR MATCHING 2217

WALD, ABRAHAM, AND JACOB WOLFOWITZ (1940): “On a Test Whether Two Samples Are From the Same
Population,” Annals of Mathematical Statistics, 11 (2), 147-162. [2188]

WANG, YIXIN, AND JOSE R. ZUBIZARRETA (2023): “Large Sample Properties of Matching for Balance,” Sta-
tistica Sinica, 33, 1789-1808. [2200]

YANG, SHU, AND YUNSHU ZHANG (2023): “Multiply Robust Matching Estimators of Average and Quantile
Treatment Effects,” Scandinavian Journal of Statistics, 50, 235-265. [2200]

ZHAO, PUNING, AND LIFENG LAI (2020): “Minimax Optimal Estimation of KL Divergence for Continuous
Distributions,” IEEE Transactions on Information Theory, 66 (12), 7787-7811. [2190,2206]

(2022): “Analysis of KNN Density Estimation,” IEEE Tiansactions on Information Theory, 68 (12),

7971-7995. [2206]

Co-editor Guido Imbens handled this manuscript.

Manuscript received 22 February, 2022; final version accepted 7 September, 2023; available online 7 September,
2023.

The replication package for this paper is available at https://doi.org/10.5281/zenodo.8322609. The authors were
granted an exemption to publish parts of their data because either access to these data is restricted or the authors do
not have the right to republish them. Therefore, the replication package only includes the codes and the parts of the
data that are not subject to the exemption. However, the authors provided the Journal with (or assisted the Journal
to obtain) temporary access to the restricted data. The Journal checked the provided and restricted data and the
codes for their ability to reproduce the results in the paper and approved online appendices.



Econometrica Supplementary Material

SUPPLEMENT TO “ESTIMATION BASED ON NEAREST NEIGHBOR
MATCHING: FROM DENSITY RATIO TO AVERAGE TREATMENT EFFECT”
(Econometrica, Vol. 91, No. 6, November 2023, 2187-2217)

ZHEXIAO LIN
Department of Statistics, University of California, Berkeley

PENG DING
Department of Statistics, University of California, Berkeley

FANG HAN
Department of Statistics, University of Washington

S1. PROOFS OF THE RESULTS IN SECTIONS 3 AND 4

Additional Notation. WE USE X and Z to represent (X, X, ..., Xy,) and (Z,, Z,, ...,
Zy,), respectively. Let U(0, 1) denote the uniform distribution on [0, 1]. Let U ~ U (0, 1)
and Uy, be the Mth order statistic of N, independent random variables from U(0, 1),
assumed to be mutually independent and both independent of (X, Z). It is well known
that Uy ~ Beta(M, Ny + 1 — M). Let Bin(., -) denote the binomial distribution. Let
L,(R?) denote the space of all functions f : R? — R such that [ |f(x)|dx < oco. For any
x € R? and function f: R — R, we say x is a Lebesgue point (Bogachev and Ruas (2007,
Theorem 5.6.2)) of f if

) 1
lim
5—0+t A(By5)

/B |f(x) = f(z)|dz=0.

S2. PROOFS OF THE RESULTS IN APPENDIX A
S2.1. Proof of Theorem A.1

PROOF OF THEOREM A.1: We consider the complexities of two algorithms separately.

Algorithm 1.

The worst-case computation complexity of building a balanced k-d tree is O(d Ny log Ny)
(cf. Brown (2015)) since the size of the k-d tree is Nj.

The average computation complexity of searching a NN is O(log Ny) from Friedman,
Bentley, and Finkel (1977), and then the average computation complexity of search M-
NNs in {X;}", for all {Z;}}"!; is O(MN, log Ny).

Notice that |S;| = M for any j € [N,] and then |U;V:11 S;| < NiM. Since the elements of

each §; are in [N,], the largest integer in U;V:ll S; is Ny. Then the computation complexity

of counting step is O(N;M + N,) due to the counting sort algorithm (Cormen, Leiserson,
Rivest, and Stein (2009, Section 8.2)).
Combining the above three steps completes the proof for Algorithm 1.
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Peng Ding: pengdingpku@berkeley.edu
Fang Han: fanghan@uw.edu
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Algorithm 2.

The computation complexity of building a k-d tree is O(d(Ny + n)log(Ny + n)) from
Algorithm 1 since the size of the k-d tree is Ny + n.

For the searching step, for each j € [N,], the number of NNs to be searched is
M+ Y 1(lx: — Zi| < 1Xan(Z;) — Z;1). Then from (2.2), the total number of NNs
searched for all j € [NV,] is Z]N;l M+ 1(lx; — Zi|l < 11X (Z)) — Zi1l)) = NiM +
Y Ku(x:). Let X, Z be two independent copies from v, vy, respectively, and are
independent of the data. Since [Z]-]j.v:l1 are ii.d. and [X,-]j\f1 U [x;], are i.i.d, we have
E[>"L, Ku(x;)] = nE[Ky(X)] = NinE[v(Au(X))] = Nln% since E[v;(An(X))] =
P(IX — Z| < 1Xun(2) — ZI) = P(U = U)) = 57 by using the probability inte-
gral transform. Then the average computation complexity for the searching step is
O(N;'N,M (N, + n)log(Ny + n)).

For the counting step, the computation complexity for counting U;ill S;is O(Ny+ N M)
since the cardinality of UjV:'] S; is at most Ny M and the largest integer is N,. The average

computation complexity for counting U;\’:ll S is O(Ny 'N:Mn + n) since the average car-
dinality of U?Ql §’ is at most Ny 'N,Mn and the largest integer is .

Combining the above three steps completes the proof for Algorithm 2. Q.E.D.

S3. PROOFS OF THE RESULTS IN APPENDIX B
S3.1. Proof of Lemma B.1

PROOF OF LEMMA B.1: From the Lebesgue differentiation theorem, for any f €
Li(RY), x is a Lebesgue point of f for A-almost all x. Then for v,-almost all x, we have
fo(x) > 0 and x is a Lebesgue point of f; and f; from the absolute continuity of v, and ;.
We then only need to consider those x € R? such that f;(x) > 0 and x is a Lebesgue point
of fy and f;.

We first introduce a lemma about the Lebesgue point.

LEMMA S3.1: Let v be a probability measure on R¢ admitting a density f with respect to
the Lebesgue measure. Let x € R? be a Lebesgue point of f. Then for any € € (0, 1), there
exists § = 8, > 0 such that for any z € RY satisfying ||z — x| < 8, we have

V(B ) V(B. . x))
A(Byjjz—x1) A(B: jz—x1)

Part 1. This part proves the first claim. We separate the proof of Part I into two cases
based on the value of f(x).

Case L.1. fi(x) > 0. Since x is a Lebesgue point of v, and v;, by Lemma S3.1, for any
€ € (0, 1), there exists some & = §, > 0 such that for any z € R? with ||z — x| < §, we have
for w e {0, 1},

Vy(Byjz—x)) Vi (B jz—x))
A(Byjz—x1) A(B.jz—x1)

Accordingly, if ||z — x|| <8, by A(B.,jx_z) = A(By,jx_z), We have

=€ fo(x) _ w(Beixzi) ABrjr—at) _ W(Beixar) _ 1+€ fo(x)
1+e€fi(x) = A(Boje—z) vi(Brjs—z)  vi(Brjs—z) ~ 1—€ fi(x)’

—f(x)

=§€

—f)|<e

- fw(x) = 6fw(x)'

- fw(x)

< ¢€fu(x),

(S3.1)
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On the other hand, for any z € R? such that ||z — x|| > 8, vo(B..j.—x) = vo(Bss) >
(1—=e€)fo(x)A(B.<5) = (1—€) fo(x)A(By5), where z* is the intersection point of the surface
of B, s and the line connecting z and x.

Let ny = 4log(Ny/M). Since M log Ny/N, — 0, we can take N, large enough so that
L No 4M log(N") < (1 — €)fo(x)A(By5)- Then for any z € R? such that vy(B, ,_) <

nvM /Ny, We have ||z — x|| < & since otherwise it would contradict the selection of N.

Let Z be a copy from »; independent of the data. Then

E[v1(Au(x))] =P(Z € Au(x)) =P@o(Bzix-21) < vo(Bzix 0, 2)-21))- (83.2)

For any given z € RY, [vy(B.,x, _)I, are iid. from U(0, 1) since [X;]Y are i.i.d. from
vo and we use the probability integral transform. Then vy(Bz,x,,,z)-z) has the same
distribution as Uy, and is independent of Z.

Upper bound. With a slight abuse of notation, we define W = v,(Bz ;—z). We then
have, from (S3.1) and (S3.2),

E[Vl (AM(X))]
=P(W < (Bzxp,2-21))

(
(

M
P(VO(BZ 1v-z1) = vo(Bzjxyy2)-21)5 12 — x| < 5) + P<U(M) > 77NN )

P

IA

M M
W <vo(Bz,xy2)-21) < nNM) + P<Vo(Bz,|X<M>(Z)Z|) > 77Nﬁ())

P

M M
W = v (Bzixyy2)-21) = vy IIZ x|l < 5) +P<U(M) >Ny )
0

: M
P<1 n Z; Ex; Vi(By,jx-21) <0 (Bz,jxpp2)-21)5 1 Z — x| < 5) + P<U(M) > nNE)
M
P(l +z§02x; 1By je-z1) < vo(Bz, 12 2)- z|)> +P<U(M) > nNN())
— — € fo(x) - M
_P(l e fin S U(M’) +P<U<M> g "NNO)- (S3.3)

For the second term in (S3.3), notice that 1y — oo as Ny — oco. Then from the Chernoff
bound and for N, sufficiently large, we have

N, M\ No_(.. M
M0P<U(M) > nNﬁo) = M0P<B1n<No, nNﬁ() < M>

N,
= HO exp((l +logny — TIN)M)

N, 1 N, 1-2M
Sen{- o))
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Since M/Ny — 0 and M > 1, we then obtain

Ny M

No—o0

For the first term in (S3.3), we have

1+e€ fi(x)
_ N(] ! — € f()(X)
=3 [ P(veo= 5 ¢
e fo(x) N
_1+efi(x) I o M - M 1+efi(x) [~ No -
STk b (Vo= ) o= 125G [Pt =)o
1+€f1(X)N() 1+€f1()€) N(]
Tl-efy(x) M Ellan] =12 €fo(x) Ng+1° (83.5)
We then obtain
Ny €fo®),; _ _l+efix)
lljlvloljlolcp —P(1 e h(x) U< U(M)) ST Te o) (S3.6)
Plugging (S3.4) and (S3.6) to (S3.3) then yields
N, 1 1
li[{]njtlop MO [v1(An(x))] < : J_“ i ;08 (S3.7)

Lower bound. We have, from (S3.1) and (S3.2),

M
E[v1(Ay(x))] = P(W < w(Bzyxy2-21)) = P<W < w(Bzjxpy@)-21) <M Fo)

= P( v (Bz.xu2)-21) < 77NM7 I1Z — x| < 3)
> P( — : Jf?gx; 1(Bris-21) = V0 Bzaxuy@-21) = My i x 1Z — x|l < 5)
= P(i J_r z pr(l)gx; Vi(Buje-z1) < vo(Bzixy2)-21) < nN]]:,/IO>
> P(i t z Jf?gc; V(B ix-z1) < v(Bz, |X(M)(Z)—Z))
- P(VO(BZa|X(M)(Z)Z) > 77N%>
_ PG - ;‘;8 U< U(M)) - P(U(M) > W%). (S3.8)
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The second last equality is from the fact that for || Z — x|| > 6,

1+e fo(x) 1 +€f0(x) 1+ € fo(x) M
T—e ity Brina) 2 Ty 1 Bro) = T ey i = 9MBoa) > ma g,

and then that {*¢ ;08 vi(By,jx-21) < vy, implies | Z — x| < 8.

For the first term in (83.8), we have

Nop(1+efox),, _ _l-efi(x) [Fenma M
(i V=) = 15 PV = ) o

If £ ;08 > 1, then by Uy € [0, 1], we have

No_(1+€ fo(x) - efl(x)No _1—€fi(x) Np
_P(l—efl()oU U”“) Tre oo MVl = TR o N T

If 1 o® 1 from the Chernoff bound,

1= f1(x)
W M
M
PlU,py > —t ) de
(ton= 3¢)

1te 0
I-€ fi(x) M

e (e = )
ARl LA TR

— MlogM+M10g(1 j_L : ch?ggNo)}

Since fy(x) > 0 and M log Ny/N, — 0, we obtain

IA

No

. M M
bim Lie for) No (U(M) = ﬁol‘) dt=0.

Ny— o0
—€ f1(x) ™

Then we always have

Ny (1+4€ fo(x) 1—¢€fi(x)
m MP<1 “ehmY S U““) [T e fox)’

Using the above identity along with (S3.4) to (S3.8) yields

— € fi(x)
- 1 +€ fo(x) (83.9)

Lastly, combining (S3.7) with (S3.9) and noticing that e is arbitrary, we obtain

N
lim inf B[ (Ay ()] =

Ny fi(x)
11m ME[VI(AM(X))] e =r(x). (S3.10)
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Case L.2. fi(x) = 0. Again, for any € € (0, 1), by Lemma S3.1, there exists some & =
8, > 0 such that for any z € RY with ||z — x|| < 8, we have

vo(B.j:—x)) Vi(Byjz—x) e
A(Bjz—x1) ABejz—a) |~

Recall that W =vy(Bz,._z;)- Thenif || Z — x|| < §, we have
W= (1-€)fo(x)A(Bz-z1) = (1 = €) fo(x)A(Byx-z1) = €' (1 = €) fo(x)1(Br1x-2))-

Proceeding in the same way as (S3.3), we obtain

— fo(x)

= efO(x):

M M
E[n(An(x))] < P(W = VO(BZ,HX(M)(Z)—ZH)"’]Nﬁy 1Z — x|l < 5) + P<U(M) > ﬂNﬁ)
0 0

M

1—¢€
fP( fQ(X)UfU(M)>+P(U(M)>T]N—)
€ N(]

For the first term above,

—e Ny
N() 1—¢€ € 1 leO(x)ﬁ M
ﬁP< c fo(n)U < U(M)) 1 e /0 P<U(M) > mt) dt

fo(x)
€ 1 o NO
< Pl —U;py >t )de
—1—efo<x>/o (M ““—)
€ 1 N, € 1 Ny

T 1-€fo(x) o Elonl =1 € fo(x) No+1°

By (S3.4) and noticing € is arbitrary, we have

lim %E[w (A ()] =0 = r(x). (S3.11)

Ny— o0

Combining (S3.10) and (S3.11) completes the proof of the first claim.

Part II. This part proves the second claim. We also separate the proof of Part II into
two cases based on the value of f;(x).

Case IL1. fi(x) > 0. Again, for any € € (0,1), we take & in the same way as in
Case I.1. Let ny = mn,, = 4plog(No/M). We also take N, sufficiently large so that

"TNNMO =~4PNMO 10~g(%) < (1 =€) fo(x)A(Bo,s).

Let Zi,...,Z, be p independent copies that are drawn from », independent of the
data. Then
E[le(AM(X))]

= P(Zl, ey Zp € AM()C))
=P(o(Bz,.15-2,1) = (B2, 1200 Z0)-211)5 - - » 0Bz, 15-2,1) < W0(BZ, 1300, Z0)-Z,1)) -

Let Wi = v(Bz 1x-7,) and Vi = vo(B7, 1x,,Z)-7) for any k € [p]. Then (Wilr_,
are i.i.d. since [Z;];_, are i.i.d. For any k € [p] and Z; € R? given, V| Z; has the same
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distribution as U ). Then for any k € [p], Vi has the same distribution as Uy, and V} is

independent of Z.
Let Wiax = maXecp,) Wi and Ve = maxgc,p Vi. Then

E[Vf(AM(X))] < P( max — max)

M M
<P Woax < Voax < v — Pl Viux — ). S3.12
< ( ”fINN)‘i‘ < >TINNO> ( )

0

For the second term in (S3.12),

M i M M
(Vmax > nNﬁ) =< £ 1P<I/k > nNM) PP<U(M) > nNNO>

0

Proceeding as (S3.4),

N, M N, 1 N\ P42
(3) P( =) = (5¢) eo(5mn0)=(5)

We then obtain

Ny—o0 0

_(No\’ M
lim <MO> P(Vmax > nNﬁ) =0. (S3.13)

For the first term in (S3.12), notice that [v (B, z,-.)];_, are i.i.d. from U(0, 1) since
[Z]7_, arei.i.d. We then have

P

M
( N )

7N
<=
SN———"

<%) (W = Vs =10y max -1 <)
= () (B a5, ) = Vo = 1 a7, 1 =)
= (51) P maxms.n x)<Vmax)
(Y [ 8 -
-r(E5G)

e 0 3y

+e fi(x) M

1+ef1(x)Mt> ds

M
PP Ve = —t _= el
( - N, 1 —é'fo(X) NO

0

X
o\.,

ma B, 7 _.)=
ke[[;](]Vl( %1 Zg xu)



8 Z.LIN, P. DING, AND F. HAN

~(r=ei) [ (=5

kelpl EfO(x) Ny
1—e fo®) No

e o) M M 1—|—ef1(x) M
t? 1P dex > 1 Bx X de|.
+ 1 < =N, ‘ I?l[idx vi(Byz-x) = T—¢fo(®) No

1+e x) M
max v (B, 7, _.) = [i(x) t) dt

For the first term,

1
M
tP]P<VmaX > _—t
fo Ny

For the second term, using the Chernoff bound, conditional on 7= (Z, cees Z »)
1—e fU(x) Ny

e 1(®) M - ]P< )dt
5/ (1+t)”1P(VmXZ—(1—|—t)‘2> dt
0 NU

< /Om(1+t)p1[2p:P(Vk > %(Mrt) ‘2)} dr

o M
:p/ (1 + l)p]P(U(M) > _(1 +t)> dt
0 NO

1+efi(x) M /l - :
B —t)dt< | #dr=—
l{n[[aP](]Vl( X1 Z XH) —efo(x) Ny o d

max —
1

p—1

< p/ooo(l + )7 N1+ )M exp(—tM) dt < V2w pM~'7 (1 + %) (14 0(1)),

where the last step follows from Stirling’s approximation with M — oo.
Then we obtain

. No\’ M 1+efi(x))”
1 s P Wmax =< Vmax; Vmax — | =< 3.14
msun (57 ) P( w)=(Tekm) - S

Plugging (S3.13) and (S3.14) into (S3.12) yields

oo () o= (H200) < (2200 s

Lastly, using Holder’s inequality,

(%)pE[y{’(AM(x))] > []AV; [”1(AM(X))]Y

Employing the first claim, we have

liminf(%) E[! (Au ()] = [r)]. (53.16)

Ny—o0
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Combining (S3.15) with (S3.16) and noting that € is arbitrary, we obtain

lim (%) E[v] (Au(x))] = [r(x)]". (S3.17)

No— o0

Case IL.2. fi(x) =0. For any € € (0, 1), we take 6 in the same way as in the proof of
Case 1.2 and take ny as in the proof of Case II.1.
By (S3.12),

(%)pE[vf’(AM(x))] < (%)%(Wm < Vax < an:fO) + (%)%(Vmax > m%})

For the first term,

No\’ M
Fva P Wmax = Vmax 5
(3¢) (o Vo2 )

N\’ [1—¢€
< <MO> P( fo(x) max vy (BiiZ—x1) < VmaX>
No\? [ 1—
= — tp71P Vmax >
(M) / P ( T e
PR
= p(LL) / ' N tp_1P<Vmax Z Mt
1—efix)) J Ny

Then proceeding in the same way as (S3.14), we have

msun(7) P )= (iZerm)
limsup( — | Pl Whax < Vinax <
Nmp(M> w 1— e fo(x)

Lastly, using (S3.13) and noting again that € is arbitrary, we obtain

€
fo(x)t‘ max vy (B, 7, ) = t> dt
ke[ p]

gﬁ vi(By7—x)) = )dt-

lim (%) E[v/(Au(x))]=0=[r(x)]". (S3.18)

No—o0

Combining (S3.17) and (S3.18) then completes the proof of the second claim. Q.E.D.

S3.2. Proof of Theorem B.1

PROOF OF THEOREM B.1(i): By (2.4) and that [Z ] _, areii.d,

E[?M(x)] - E[%?KA;\;X)} No |:Z]l (Z; e AM(x)):| [VI(AM(x))]

Employing Lemma B.1 then completes the proof. Q.E.D.
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PROOF OF THEOREM B.1(ii): By Hoélder’s inequality, it suffices to consider the case
when p is even. Because x? is convex for p > 1 and x > 0, we have

E[[Pu(x) — r(x)|"]
<271 (E[[fu () — E[f(0) [ X]|"] + E[[E[Fu ()| X] = r(0)|"]). - (83.19)

For the second term in (S3.19), Lemma B.1 implies

NloiinooEHE[?M(x) | X] - r(x)|p] = NloiinooEH%Vl(AM(x)) —r(x)

,,] =0  (S3.20)

by expanding the product term.

For the first term in (S3.19), noticing that [Z,]jvz‘1 are ii.d, we have Ky (x)|X ~
Bin(Ny, v1(Ay(x))). Using Lemma B.1 and M N,/N, — oo, for any positive integers p
and g, we have

im (o )"E[vaf(AMu))] ~[r@)]".

No—o0 NlM
. No \' [ No\!
]\llglinoo<N1[(;4) (ﬁo) E[nyf“’(AM(x))] = [’(x)]p+q,

and then E[N/v” (A (x))] is the dominated term among [E[N*¥}" (A (x))]]k<p.q=0-
To complete the proof, for any positive integer ¢ and Z ~ Bin(n, p’), let u. = E[(Z —
E[Z])¢] be the cth central moment. By Romanovsky (1923), we have

du
Met1 = p’(l —_ p/) (nC/-Lcl + d—/:;,)

Then for even p, we obtain
p/2
E[(Kn(2) = N (a4 (0))"] S E[Non (A )] 5 ()
0

The first term in (S3.19) then satisfies

p p/2
E[[7(x) — E[Fu(x) | X]|"] = (szfgd) E[(Ku (x) = Ny (Au(%)))"] S <N1:]]O\/I> :

Since MN/Ny — oo, we obtain

NloiinooEH?M(x) —E[fu(x) | X] |p] =0. (S3.21)
Plugging (S3.20) and (S3.21) into (S3.19) then completes the proof. Q.E.D.

S3.3. Proof of Theorem B.2
PROOF OF THEOREM B.2: We first cite the Hardy-Littlewood maximal inequality.
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LEMMA S3.2—Hardy-Littlewood Maximal Inequality (Stein (2016)): For any locally
integrable function f : R? — R, define

Mf(x) = sup |f(2)|dz.

1
5-0 A(By5) Bys

Then for d > 1, there exists a constant C; > 0 only depending on d such that for all t > 0 and
f € Li(RY), we have

Afx:Mf(x) > 1}) < %||f||L1,

where ||-||., stands for the function L norm.

Let € > 0 be given. We assume € < f;. From Assumption B.1, S, and §; are bounded,
then v, and v, are compactly supported. Since fy, fi € L;, and the class of continuous
functions are dense in the class of compactly supported L, functions from simple use of
Lusin’s theorem, we can find gy, g; such that gy, g, are continuous and || fy — gollr, < €
and || fi — gill, < €.

Since gy, g1 are continuous with compact supports, they are uniformly continuous, that
is, there exists § > 0 such that for any x, z € R? and ||z — x|| < 8, we have |go(x) — go(2)| <
% and |g1(x) — g1(2)| < %

For any x € R, we have

1
s, 1A= A

< /\(le’s) /BX’BHJCO(X) - go(X)| + |go(x) - go(z)| + |f0(z) - go(Z)|]dZ

= /o) — g0(0)| + ﬁ [ st a2 dz

+ A(;x,a) Bx15|f0(z) — 8o(2)|dz. (83.22)

For the first term in (S3.22), using Markov’s inequality, we have
A({x : |f0(x) — go(x)| > 62/3}) <3e?|fo— goll, <3e. (S3.23)

For the second term in (S3.22), by the selection of &,

2

€
[80(x) = 80(2)] dz = max|gy(x) — go(2)| = 5. (S3.24)

1
A(BX,S) Bys

For the third term,

1
_)\(le,a) ., [fo@ 8@ dz <sup T /Bx,Jfo(z) — 80(2)|dz =M(fo — 80) (¥)-
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Lemma S3.2 then yields
)\({X . M(fo — go)(X) > 62/3}) < 3Cd€_2||f0 — gOHLl < 3Cd6. (8325)

We can establish similar results for fi, g;.
Let

Ay = {x:[f) = go()] > €73} U [x: |fi(x) — gu(w)| > €/3)
U{x :M(fo — g0)(x) > €/3} U {x : M(fi — g1)(x) > €°/3}.
Plugging (S3.23), (S3.24), (S3.25) into (S3.22), for any x ¢ A; and ||z — x|| < §, we have

1
A(B.s)

1
A(B.5)

[ 1560 - o) dz < [ 150 -p@lde=e,
By.s Bys
and A(A;) <6(C,;+ 1)e.

Let A, ={x: fi(x) < €}. We then separate the proof into three cases. In the following,
it suffices to consider f;(x) > 0 due to the definition of L, risk.

Casel. x ¢ A U A,. By € < f; and the definition of A,, for any x ¢ 4; U A, and |z —
x| =6,

1
/\(Bx,é) Bx’g

1 .
A(B..s5) /Bx,5|f1 (¥) = f1(2)|dz = €* = €fi (x).

|f0(x) - f0(2)| dz<é <ef, < efo(x),

We then obtain for w € {0, 1},

Vi (B jz—x))
AByjjz—x1)

V(B2 jz—x)

- fw(x) )\(Bz,uzfxu)

< efu(x), — fu(¥)| = €fu(x).

Let ny = mn,, = 4plog(Ny/M). We also take N, large enough so that nNNMU =
4p-log(5) < (1 — €)fiA(Bys). Then for any x € R such that fy(x) > 0, we have
TINNﬂO < (1 =€) fo(x)A(Bo,s).

Proceeding as in the proof of Case II.1 of Lemma B.1 and also Theorem B.1 by using
Fubini’s theorem, since € is arbitrary, we obtain

lim E[ / 7 (x) — ()" fo(X)1(x ¢ A, U Ay) dx:| =0. (S3.26)

Ny—o0

CaseIl. x € A, \ A;. In this case, we have

M - <e€e M _ <e
A(Byjz—x1) fo(x)| = efo(x), A(B. 1. ) fo(x)| < €fo(x),
m - <€ M _ < 2
A(Bx.jz-x1) h)| =< A(B:,jz-x1) hw)] =€
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Take ny and take N, sufficiently large as in Case I above. Proceeding as the proof
of Case I1.2 of Lemma B.1 and also Theorem B.1 by using Fubini’s theorem, since € is
arbitrary, we obtain

NliinocE[ / [Far(x) = r(x)|" fo(x)L(x € 4>\ Ay) dx} =0. (S3.27)

Case III. x € A4,. In this case, for any x € 4; and z € Sy, vo(B. j.—x)) = fLA(B. jz—x) N
So) = af  A(B. j—x)) = %V] (By,)z—x)- Then for any x € Ay, from (S3.12) and in the same
way as (53.14),

(5) Bt (anN = (57 ) PO 1)

No\’ (@
< (MO) P(% max Vl(Bx,sz—XH) = Vmax)

v kelp]
fu

< (E)p(l +o(1)) = 0(1).

Proceeding as in the proof of Theorem B.1, and due to the boundedness assumptions
on f; and f;, for any x € 4; and p even,

E[[7y (x) — r(x)|"] SE[[7u (x) — E[Fu (x) | X]|"] + E[(E[Fu (x) | X])"] + |r(x)|" S 1.
Then
E[/]Rd |?M(x) — r(x)|pf0(x)]l(x € Al)dx] < fud(A4)) Se.

Since € is arbitrary, we have

Jim E[[ [Far(x) = r(x)|” fo(x)L(x € A)) dx:| =0. (S3.28)
0 —00 Rd
Combining (S3.26), (S3.27), and (S3.28) completes the proof. Q.E.D.

S3.4. Proof of Corollary B.1

PROOF OF COROLLARY B.1: Corollary B.1 can be established following the same way
as that of Theorem B.2 but with less effort since we only have to show

NIOiLnOOE[/RJE[?M(x) | X] —r(x)|" fo(x) dx] =0.

In detail, denote the Radon—-Nikodym derivative of the probability measure of W with
respect to v, by ry. We then have
]

%vl (Ap(x)) = r(x)

lim sup EH %vl (Au(W)) —r(w)

No—o0

=limsupE [/
Ny—o00 R4

p

o (2)fo(x) dx]
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glimsupE[/Rd‘%vl(AM(x)) —r(x)

No—o0

pfo (x) dx:|

=limsupE[/]Rd|E[?M(x) |X] — r(x)|1’f0(x) dx} =0,

No—o0
where the last line has been established in the proof of Theorem B.2. Noticing that
E[r(W)]? is bounded under Assumption B.1, the proof is thus complete. Q.E.D.

S3.5. Proof of Theorem B.3

We only have to prove the first two claims as the rest are trivial.

PROOF OF THEOREM B.3(i): For any z € R such that ||z — x|| < §/2, since B, |, C
Bx,ZHz—xH C Bx,5> we have

Vo (B jz-x1) 1

By N =TE v(y) = fo(x)|dy <2L|z — x|,
/\(Bz’ HZ—xH) f (X) /\(Bz, \Iz—xll) /BZA,ZX |f (y) f (X)| Y ”Z X”
V1(By,jz-x1) 1

MB. ._.) ! N7 Y 1Y) — fi dy<L|z-x]|.

)\(BX,HZ—XH) f (x) = /\(Bx,l\z—xH) v/Bx,zx |f (y) f (X)| Y= ”Z x”

Consider any 6y > 0 such that 6y < /2. If ||z — x|| < 6y and fy(x) > 2L &y, then

fo(x) =2LSx _ vo(Beje—zy) MBrjx—ai)
fi(x) + Loy = AMB.je—z) vi(Brje—z)

If further f;(x) > Ldy, then

Vo(Bzjeat) ABun—zr) _ folx) +2L8y
A(B.jx—z) vi(Byjx—zy) — fi(x) = Léy .

On the other hand, if ||z — x|| > 6y and fy(x) > 2L6y, vo(B.,j.—x) = (fo(x) —2L6y) %
A(Bosy) = (fo(x) — 2L8y)V,84, where V) is the Lebesgue measure of the unit ball on
R,

Let 6y = (ﬁ)”d(%)“d. Since M /N, — 0, we have 6y — 0 as N, — oo. Taking N,
large enough so that §y < f./(4L) and 8y < §/2, then 2LV, 8% = o 7 On <247. Then
for any (Vo, Vl) < ,Px,p(fL, fU, L7 d7 6)7

)M M M

—2L8)V,8% > 4 .
(fo() Vadyy = 4720 =20 2 24

With a slight abuse of notation, let W = vy(Bz,,—z;). Then W < ZNMO implies that || Z —
x| < oy.

Depending on the value of f;(x), the proof is separated into two cases.

Casel. fi(x) > Léy.
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Upper bound. Proceeding similar to (S3.3), we have

B (0] = S B[ (Aw ()] = 5P = (B -)

IA

M N(] M
PIW =vo(Bzxp2)-21) < 2ﬁ0> o <U(M) > 2N )

IA

ERSSENEENE
"U

Ny M
P(W < vo(Bz,jxp2)-21)s 1 Z — x| < ) + MP<U(M) > 2ﬁ0>

_ Ny folx) —2Lay

N, M
+ —OP<U(M) > 2—)

VI(BX,foZH) = VO(BZ,HX(M)(Z)—ZH): 1Z — x|l < 5N)

M

0 fo(x) — 2L8N NO M
—P|—— —P 2— ). 3.29
=M (fl(x) T Loy, =V )P\ Ve =2 (53.29)

For the second term in (S3.29), since M /log Ny — oo, for any y > 0,

N, M\ N, M
M“P(U(M) > 2ﬁ> ﬁP(Bm(NOJﬁO) §M>

- %No—(l—log%M/lOgNo <N;”. (S3.30)

For the first term in (S3.29), proceeding as (S3.5), we obtain

fo(x) —2Lby - _ filx)+Léy N
M ( A T Loy © = U““) = fo(x) —2Léy No+ 1’

Then we obtain

fl(X)+L6N N()
Eff ()] = fo(x) — 2Ly N+ 1

o(N;7). (S3.31)

Lower bound. Proceeding similar to (S3.8), we have

E[7y(x)] = —E[n(Au(x))] = %P(W < (Bz, 12 (2)-21))
> —P| W =v(Bzixp@-21) = 25:2)

M
’p < (Bz x4 2)-21) < Zﬁo’ |Z — x|| < én

E_\UZ ilz <= 23

M
N (Bx,jx-z1) =0 (Bz, x4y (2)-21) = 2—, I1Z—x| < 5N)

(
(v
( (x) +2L8y
- (Fo oo

fo(x) +2L5 M
“ 01 (Buje-z1) < 0 (Bzjxyy2)-21) < Zﬁo

fi(x) — Léy
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N() fo(X)+2L8N NO M
> 0p( TV TN ) — 20Uy > 20
=M (fl(x)—LSN =Hon ) T\ Voo = Sy

fow+2Lsy Ny

f] (X) — L8N / fi-Loy M M N() M
= S0 T SON P(U, > ——t)di — 2P U, > 22 ).
fo(x) +2Lax J; 0 =N, I L A

fo(x)+2LéN

Consider the first term. If P oyLox

> 1, then

fo(x)+2L3 N No

fl(X) — L8N / fi)-Léy ™M P(U(M) > Mt) dr — fl(x) —L(SN N()
0

fQ(X)+2L5N N(] fo(X)+2L6N N(]+1
If % < 1, using the Chernoff bound, for any y > 0,

No
™

Pl Uqy > —M dt
fo)+2L8N Ny (M) = Not
Fi@—Loy M

/l(x)—LBN

No

E M fr 1Ny fr
< PlUpyy=>—t)dt<|1——=|—=P(Uyp > =
“ Iy (”“‘No) —[ fU]M ( (M)_fa)

U

< |:1 — %}%exp[M — ;—;NO — MlogM+M10g(;—;No)] <N,".

The last step is due to M log Ny/N, — 0. Recalling (S3.30), we then obtain

_ fx)—Ldy N .
E[rM(x)]ZfO(x)+2L8N N1 o). (S3.32)

Combining (S3.31) and (S3.32), and taking N, large enough so that Léy < fy A (f./4),

we obtain
|E[Fu(x)] — r(x)|
fitx)+ Loy Ny fi(x) filx)=Loy Ny fi(x)
fO(X) —2L6N N0+1 fo(X) fo(X)+2L6N N0+1 fo(X)
< fQ(X)LSN +2f](X)L5N 1 f](X) +L5N O(No_y)
fox)(fo(x) —2L8y)  No+1 fo(x) —2Ldy

- 2 Afy 4fy 1 -
=< (f_L+f_z>L6N+f_LN0+1 +0(N0 )

By the selection of 6, and that the right-hand side does not depend on x, we complete
the proof for this case.

Case II. fi(x) < L&y. The upper bound (S3.31) in Case I still holds for this case. Ac-
cordingly, taking N, large enough so that Léy < f; /4, we have

|E[Fy (x)] = r(x)| <E[fu(x)] +r(x)

_A@+Ley Ny fil)
T fo(x) =2L6y No+1  fo(x)

\%

+0o(Ny”)

+o(Ny”)
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4 1
<—Léy+ —Léy+ O(No_y)
fr fr

We thus complete the whole proof. Q.E.D.
PROOF OF THEOREM B.3(ii): By the law of total variance,
Var[Fy(x)] = E[Var[7y (x) | X]] + Var[E[F (x) | X]]. (S3.33)

For the first term in (S3.33), let Z be a copy drawn from »; independently of the data.
Then, since [Zj]j.vzl1 are i.i.d,

E[Var[fy (x) | X]] = E[Var[NJ:];VIKM(x) ) X]]

(ol

_ M SE[Var[1(Z € Ay (x)) | X]]

N.M
0 ) N;
= NleE[Vl (Am(x)) = Vl(AM(x))] < NIMZE[Vl(AM(x))]
- NIY](;/IE[?M(X)] SC N]YL (S3.34)

where C > 0 is a constant only depending on f;, fi;. The last step is due to (S3.31).
For the second term in (S3.33), notice that

Var[E[Fy(x) | X]] = Var[E[NIY;/IKM(x) ‘X:H = (%>2Var[v1 (Au(x))].

Recalling that W = v»y(Bz,.—z), we have the following lemma about the density of W
near 0.

LEMMA S3.3: Denote the density of W by fy . Then for any (vo, v1) € Py, (fr, fu, L, d, ),

fw(0) =r(x).

Furthermore, for any € > 0 and N, sufficiently large, we have for all 0 < w < 2M /N,,

wp ) = +olt

(v0,v1)€Px,p(fL.fU,0,L,d) f
Due to Lemma S3.3, we can take N, sufficiently large so that for any 0 < w <2M/N,,

sup fw(w) < 2%.

(»0:71)€Pux,p(fL.fu»8,L.d)
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Let Z, Z be two independent copies from v, that are further independent of the
data. Let W = V(J(BZ Jlx— ZH) and W = V()(BZ flx— ZH) Let V = V()(BZ 1% (Z)— ZH) and V =
V()(BZ’”X(M)(Z) 71)- We then have

Var[vy (Ay (x))] = E[v2(Au (x))] = (E[m1(A4u (x))])°
=P(Z € Ay(x), Z € Au(x)) —P(Z € Ay (x))P(Z € Ay(x))
=PW <V, W <V)—P(W <V)P(W <V).

Due to the independence between Z and Z, W and W are independent. Notice that
V| Z have the same distribution as Uy, for any Z € R?, then } and Z are independent,

so are I/ and Z.
Let us expand the variance further as

Var[v; (A (x))]

-{HWSWHWSW

M ~ o~ o~ M
—P(WsV,Wszﬁ)P(WsV,Wsz—)] (83.35)

0

For the first term in (S3.35), we have the following lemma.

LEMMA S3.4: We have

No\? ~ o~ M ~ M
— | ([PIW<V, W<V, W<2—,W<2—
(M>[ ( N B Ny No)

M ~ o~ M
—-PIW<V,W<2—|PIW<V,W<2—
( 7 TN ( - T No)]

0

where C > 0 is a constant only depending on f;, fu.

For the second term in (S3.35),
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M ~ M M
PV >2— PV >2— ) =2P( U, 2— ).
( g No)+ ( g N0> ( o0 > No)

Using the Chernoff bound and M/log Ny — oo, for any y > 0,

No\’ M ?
0

We then have

M

No\’ M _
< 2<M°) P<U(M) > 2ﬁ0> <N,". (S3.36)

For the third term in (S3.35), we can check

N ~ M ~ M
( “) [P(W<V W<V)— P(W<V,W§V,W§ N W < F)}
0

o M\ ([~ ~ o~ M
[P(Wf VYP(W <7) —P<W§ v, W§2ﬁ>P<W§ V, Wgz—ﬂ > 0.

0

Plugging Lemma S3.4 and (S3.36) into (S3.35) by taking y > 1, we obtain

(;"4‘]) Var (A ()] £ € (5337)

where C > 0 is a constant only depending on f;, fu.
Plugging (S3.34) and (S3.37) into (S3.33) completes the proof. Q.E.D.

S3.6. Proof of Proposition B.1

PROOF OF PROPOSITION B.1: We take vy and v, to share the same support, and assume
x to be the origin of R¢ without loss of generality.
When N; < N,, we take v, to be the uniform distribution with density f; on

~

[—f,"4/2, f;"%/2]¢. Then the MSE is lower bounded by the density estimation over
Lipchitz class with N; samples.

When N, < N, we take v; to be the uniform distribution with density fy on
[—f;"¢/2, f;"¢/2]¢. Notice that 1/f, is also local Lipchitz from the lower boundness
condition and local Lipchitz condition on f;. Then the MSE is lower bounded by the
density estimation over Lipchitz class with N, samples.

We then complete the proof by combining the above two lower bounds and then us-
ing the famous minimax lower bound in Lipschitz density estimation (Tsybakov (2009,
Exercise 2.8)), Q.E.D.

S3.7. Proof of Theorem B.4

PROOF OF THEOREM B.4: We only have to prove the first claim as the second is trivial.

Take 8y = (73-)"“(5)"* as in the proof of Theorem B.3(i). Take &), = (;5-)"

(NMO)W . For any x € R?, denote the distance of x to the boundary of S; by A(x), that is,
A(x) =inf.css 1z — x|
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Depending on the position of x and the value of A(x), we separate the proof into three
cases.

Case L. x € §; and A(x) > 26y. In this case, since A(x) > 28y, for any ||z — x|| < 6y, we

have B, ._, C S;. From the smoothness conditions on f; and f;, similar to the proof of
Theorem B.3, we have

E[/Rd Far(x) — r(x) | fo(x)L(x € S1, A(x) > 28y) dx}

= /R (EFu@ = r(]) 001 (x €S, AGx) > 28y) dx

< C[(%)W + (%)m + (AZ”W)UZ] /Rd fo()1(x € 81, Ax) > 28y) dx
< C[(%)W + <%)m + (ijsfl)l/z], (S3.38)

where the constant C > 0 only depends on f;, fy, L, d.
CaselIl. x € Sy \ S and A(x) > &),. In this case, r(x) =0 and for any z € S,

M
W0 (Bzjz—v1) = fLA(B: 2= N So) = afL A(B.z—y)) > af Va8 = Zﬁ-
0
Then for any y > 0,
- . Ny
E[|rM(x) — r(x)|] = E[rM(x)] = ME[Vl(AM(x))]
N, Ny _
= MOP(W < V()(BZ 1%ary (2)— Zl\)) = MP<U(M) > 2N ) < NO Y,
We then obtain
E[/d|?M(x) — r(x)|f0(x)]l(x ¢S, A(x) > 6;\,) dxi|
R
<N07/ fo(x)L(x €85\ Si, A(x) > &y)dx <N, . (S3.39)
Rd

CaseIIL. x € §) and A(x) < (26y) V 8} . In this case, for any z € S,

. —V1(Byjz-x))-

Vo(Bejz—xi) = fLA(Bz,jz—x N So) = af L A(B. ) = f

Accordingly,
E[|?M(X) - r(x)|] = E[?M(x)] +r(x) = %P(W = VU(BZ’”X(M)(Z)—ZH)) +7(x)

= (afL Vi(Buix-z1) = v0(Bzjxu 2)- Zu)) +r(x)

f
fu fu

afr
SM (f U<U(M)>+I”(X) f(1+0(1)) fL.
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From the definition of 8y, &), and M /N, — 0, we have dy, 8, — 0 as Ny — oo. Since
the surface area of S, is bounded by H, we have A({x : A(x) < (28N) v oy S H{(26y) VvV
o} Then we obtain

E[/d [Far(x) — r(x) | fo(x)L(A(x) < (28x) Vv 5}\,)dx}

(fU (1+o(1) + )/ Jo(@)L(AR) = (28y) v 8y) dx

fi

fU fU . 7

af, (1 + 0(1)) f fuA ({x tA(x) < (28y) V 8N})

i) (%)
< dy+6y)<Cl—) , S3.40
N(aﬁ ) ot (on +3) = € 3¢ (53.40)

where the constant C > 0 only depends on f;, fy, a, H, d.
Combining (S3.38), (S3.39), (S3.40) completes the proof. Q.E.D.

S3.8. Proof of Proposition B.2

PROOF OF PROPOSITION B.2: We take v, and », to be of the same support.

When N; < N,, we take vy to be the uniform distribution with density f; on
[—f;"¢/2, f;"%/2]%. Then the L, risk is lower bounded by the L, risk over support of
density estimation over Lipchitz class with N; samples.

When Ny < N;, we take »; to be the uniform distribution with density fy; on
[—f,"4/2, f;"¢/2]¢. Notice 1/f, is also Lipchitz from the lower boundness condition
and Lipchitz condition on f;. From the lower boundness condition on f;, the L, risk is
lower bounded by the L, risk over support of density estimation over Lipchitz class with
N, samples.

We then complete the proof by combining the above two lower bounds and then using
then the minimax lower bound of L, risk for density estimation over Lipchitz class (Zhao

and Lai (2022, Theorem 1)). Q.E.D.

S4. PROOFS OF THE RESULTS IN APPENDIX C
S4.1. Proof of Lemma C.1
PROOF OF LEMMA C.1: For any x € X, define o2(x) = E[U2|X = x] = E[[Y(w) —
Lo (X)) | X = x] for €0, 1}. Let

. 2 e_ 1y Ku()Y
V' =E[m(X) — po(X) — 7] and V ‘EZ(HT) op (X0).

i=1

From the central limit theorem (Billingsley (2008, Theorem 27.1)), we have
Jn(F(X) —7) =5 N(0, V7). (S4.1)

Let Ey ;= (2D; —1)(1+ Ky (i)/M)e; for any i € [n]. Conditional on X, D, [Ey ;]\, are
mdependent Notice that E[Ey ;| X, D] =0and }_;_, Var[Ey ;| X, D] = —nVE To apply the
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Lindeberg-Feller central limit theorem (Billingsley (2008, Theorem 27.2)), it suffices to
verify that: for a given (X, D),

11/5 > E[(Ew.)’1(|Eu .| > 8¥/nVE) | X, D] - 0,
n i=1

for all 6 > 0.

Let C, =sup, ¢ 0. {E[|1Uol"™| X = x] VE[U. | X = x]} < 00. Let p; =1+ «/2 and
P> be the constant such that p;' + p;' = 1. By Holder’s inequality and Markov’s inequal-
ity,

1 n
WVE > E[(Ew.)’1(|Eml > 8v/nVE) | X, D]
i=1

n

> (E[1Ew. | X, D))" (P(IEu.| > 5V/nVE| X, D))"

i=1

= —F
nV

1 ! 1 1/p2
=< nVE Z(E[|EM,,'|2+K |X, D])I/Pl (aznVEE[(EM,i)Z | X, D]>

i=1

- C, 1 1/P22": 1+KM(1) 2(1+1/p2)
~ nVE\ 8t : M '

i=1

Notice that E[1 + K ({)/M]**1/P2) < 0o from Theorem B.2. Let ¢, = inf,cx yeq0.1y E[U2 |
X = x] > 0. From the definition of V£, we have V£ > ¢, for almost all X, D. Then

E[# ;E[(EM,,-)ZHOEM,A > 6W) |X’ D]j| — O(H—l/pz) —o(1).

We thus obtain

nll/E ZE[(EM,i)Z]l(|EM,i| > OV HVE) | X, D] =op(1).

i=1

Applying the Lindeberg—Feller central limit theorem then yields
Va(VE) PEy = (nVE) " Eyy =5 N(O, 1). (S4.2)
i=1
Noticing that /n(7(X) — 1) and /n(V'*)~'2E,, are asymptotically independent, lever-

aging the same argument as made in Abadie and Imbens (2006, Proof of Theorem 4, p.
267) and then combining (S4.1) and (S4.2) reaches

(Ve + VE)*I/Z(,;(X) +Ey—1) LN N(O,1). (54.3)
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We decompose V- as

n

pe_1 Z <1+KM(i)>2012(Xi)+% > <1+Kz]v‘1/[(i)>zgg(xi)

. M .
i=1,D;=1 i=1,D;=0

5 a0 55 it 0]

i=1,D;=1 i=1,D;=0

o 20 [0 50) - () Jrew

i=1,D;=1

+ %H;FOK%)Z — (1 + Kﬁi))z] ay (X)). (S4.4)

For the first term in (S4.4), notice that [(X;, D;, Y;)]~, are i.i.d. and E[D;(e(X;))™* x
ot (X)], E[(1 — D;)(1 — e(X:))?03(X:)] < oo. Using the weak law of large numbers, we
have

B3 (e&,-))ZU?(XiH% > (%(X,-))Z“‘?(X")—F”E[f(%)+1(102(e)(())f)]'

i=1,D;=1 i=1,D;=0

For the second term in (S4.4), using the Cauchy—Schwarz inequality,

L3 (1 50) () T
(+50) - ()]
o (1 K50y - (Y]]

<o (<[ (542 - 202 Jo]e] (2552 L0 ) ]
e st do o e 2 T e

5 (50 i o=

i=1,D;=1

E

= CrrE Di

For the third term in (S4.4), we can establish in the same way that

5 i) - (52 oo =

i=1,D;=0
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Then from (S4.4),

e(X) 1—e(X)]
By (S4.3), Slutsky’s lemma (van der Vaart (1998, Theorem 2.8)), and the definition of
o?, we complete the proof. Q.E.D.

S4.2. Proof of Lemma C.2

PROOF OF LEMMA C.2: From Assumption B.1 and Assumption 4.1, let R = diam(X) <
oo and f; = infiex wep.y fu(x) > 0. For any x € X, w € {0, 1}, and u < R, from Assump-
tion B.1, v, (B,., N X) > fLA(B,..NX) > fraA(B,,) = fraVyu’, where V, is the Lebesgue
measure of the unit ball on R,

Letcy=fraV,. Foranyie[n],xeX, M <ny_p,if0<u< Rn}ﬁdDi, we have

P(I1X; — Xill = un ' | D, Xi = x, j = ju(i))
< P(Bin(nl_Di, Vi-p; (Bx =\ N X)) < M | D)
UMy _p;
<P(Bin(n_p,, coudn[_lD[_) <M|D).
Using the Chernoff bound, if M < ¢,u?, then

d
P(Bin(ni_p,, coudnf_lDl_) <M|D) < exp(M —cou + Mlog(%)).

Notice that the above upper bound does not depend on x. We then obtain

P(I1X; — Xill = uni')y | D, j = ju(i))
d

< ]l(M < coud) exp(M — cou? +M10g(%)) + ]l(M > coud).

On the other hand, if u > Rn,” dD,» then the probability is zero from the definition of R.
Accordingly, the above bound holds for any u > 0.
For any i € [n], we thus have
n!"% E[IUp.i11” | D]
=p / P(I1X; — Xl = uni | D, j = ju (i) u”~" du
0

d

< p/ |:]1(M < cou’) exp(M —cou? +M10g<%)) +1(M > coud)}u’”du
0

o) M M
=pc0_p/dd1|: / (i) Mralet dr + / ta! dtj|, (S4.5)
M M 0

where the last step is through taking ¢ = ¢yu.
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For the first term in (S4.5), from Stirling’s formula and M — oo,

00 M 00 M
[ () vieras [ () woiea Ve
M 0

where ~ means asymptotic convergence.
For the second term in (S4.5), fOM ri-'de = %M . Combining the above two terms then
completes the proof. Q.E.D.

S4.3. Proof of Lemma C.3
PROOF OF LEMMA C.3: We bound By, — By, by

|By — Bul
1< 1 & _ .
=\ Z(ZDi -1 M Z(M]—Di(Xi) — ti-p; (X)) — H1-p; (X)) + i-p, (ij(i)))
i=1 m=1

1 n

== m[[aj\fﬂh’vl (X)) = 10, (X)) — Boi-p, (X)) + Biop, (X )|
i=1
1< ~ ~
= stm o 1}|Mw( D) = o (X)) — Bo (X)) + o (X)) |- (54.6)

Let k =|d/2] + 1. For any w € {0, 1}, by Taylor expansion to kth order,

P (X)) — o (Xi) — i: % Y (X))

(=1 " tely

Upi| < max| o o ZnUm,n. (S4.7)

tEAk

In the same way,

k-1
—~ ~ 1 i~
B (X)) — B (Xi) —ZEZﬁ o(X0)

(=1 " tehy

Upi| < max| 7| o ZnUm,n. (54.8)

tEAk

We also have

Z ' Bo(Xi) = ' ma(X)U,

' tely

< Zmax”ﬁ’uw = 7 2 Uil (84.9)

tehg

Notice that || Uy ;|| = maxX,cpuy | U |l for any i € [n], w € {0, 1}. Then for any w € {0, 1},
plugging (54.7), (54.8), (S§4.9) into (S4.6), we obtain

€{0,1} teAg we{0,1} teAy

~ RS
|BM—BM|<<max max|d'w, | + max max]||d'd, | )(;Z||UM,i||k)

1 n
+ Z(ﬂ}lél{gul(}lgilxua Bo— ' 1ol )(; ;”UMJ”[)'



26 Z. LIN, P. DING, AND F. HAN

From Lemma C.2, all moments of (n/M)?/¢||U,, ;||* are bounded. Then for any positive
integer p, using Markov’s inequality, we have

1 M p/d
—ZMUMJHP:OP((—) )
n — n

By Assumption 4.4 and Assumption 4.5, we then obtain

N M\ M\
BM—BMZOP(1)0P<(—) >+ max OP(n_W)OP<<_) )
n telk—1] n

MK M\
=o((5) )+ o (5) )
n tek-1] n

The proof is thus complete by noticing the definition of y and M < n”. Q.E.D.

S5. PROOFS OF RESULTS IN SUPPLEMENT
S5.1. Proof of Lemma S3.1

PROOF OF LEMMA S3.1: The first inequality is directly from the definition of Lebesgue
points. The second inequality follows by

VBejew) |1 )
/\(Bz,uz_xu) f(x)‘ - )\(BZ’”Z_)(H) /t; ’f()’) f(x)‘ dy

2z, [lz—xll

1
-’ / FO) — £(0)]dy

X201 z—x||
_ A(B. 2jz—xp) 1
A(B:jz—x1) A(Brojz—xy) Ja

|f(») = f(x)|dy

x,2llz—x|

1 )
=2 A(B21z-x1) /B |f(y) — f(x)|dy,

x,2)z—x||

and then the definition of Lebesgue points. Q.E.D.

S5.2. Proof of Lemma S3.3

PROOF OF LEMMA S3.3: Fix any (vy, v1) € P, ,(f1, fu, L, d, d).

We first prove the first claim. First, consider f;(x) > 0. For any € > 0, there exists §' > 0
such that for any z € R? satisfying ||z — x|| < 28', we have |fy(z) — fo(x)| < €fo(x) and
Ifi(z) — fi(x)| < efi(x) from the local Lipschitz assumption. We take w > 0 sufficiently
small such that w < (1 — €)fo(x)A(Bo,s). Then W < w implies ||x — Z| < &'. Then for
w > 0 sufficiently small,

- e ho _1+efilx)
— m1/1(3x,ux—zu) = w) T 1—€fy(x) s

P(W <w)=P(W <w, |x—Z| <¥) <P<
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and

P(W <w)=PW <w, |lx—Z| <§)=> PG J_r : ;“8 Vi(Byjx-z)) Sw, |x — Z|| < 8’)
o (1+efo(x) - —eh(®)
(T e =) = e

Then we have

i :Q)EX; <limipfw™P(¥ < w) < limsupw PV < w) < = 28

Since € is arbitrary, we obtain

1(0)
fo(x)

The case for fi(x) = 0 can be established in the same way. This completes the proof of
the first claim.

For the second claim, for any 0 < € < f;, there exists & > 0 such that for any z € R?
satisfying ||z — x|| < 2§, we have |fy(z) — fo(x)| < € and |fi(z) — fl(x)| < € from the
local Lipschitz assumption. We take N, sufficiently large such that 220 < (f, — €)A(By,5).
Then for any 0 < w < ZNU ,we have w < (fL — €)A(Bos). We take ¢ > 0 such that w+ ¢ <

(fL — €)A(By,»). Then for any (v, v1) € Py p(f1, fu, L, d, d),

fw(0) = hm w*IP(W <w)=

=r(x).

Pw=W <w+1)=v({zeR :vy(B. js—z) € [w,w+1]})

- Ji(x) +€
~ fo(x) —€

Notice that f; is lower bounded by f; . Then for N, sufficiently large,

. + €
limsupt 'P(w<W <w+t 5&
nsup P )= =<

This then completes the proof. Q.E.D.

v({z € R :vy(Bejasy) € [w, w+1]}).
(I+e).

S5.3. Proof of Lemma S3.4
PROOF OF LEMMA S3.4: Due to the i.i.d.-ness of Z and Z,

2
M ~ M
(ﬂ) |:P<W<VW <V,W<2— W§2—>

M Ny’ Ny
(W<V W < ﬁ) (VT/§I7 VT/szM)]
0 NO

:<ﬂ>2/02%/0 [P/ 2w, 7 2 w3) = PV = w))P(V = w)]

x fw (wy) fw (w2) dwy dw,
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A

f 2/ N2 ZNMU 2Nﬂ0 - ~
4(7) (M) / f [PV zwi, V' z wz) = P(V zw))P(V = wn) | dwy dw
L 0 0

() 11,

M ~ M
—PlV>>—>04+1))PlV>—(N+t dt, de,,
( ZNo( +l)> ( _No( +2))‘ e

M ~ M
Pl[V>—0+4),V>—0+t¢
( _No( +4) _No( +2)>

where the last step is from taking w; = £ (1 +) and w, = (1 +1).
Let

S(t, 1) = 'P(Vz %(Htl)ﬁz %( + z))

—P(V>—(1+t1)> ( %(1—1—;‘2))‘

I, >6>0,8(t,6) <PV =g (1+4) =PUuy =y (1+4)).l>420,8(t, 1) <
P(V = 2(1+ 1)) =P(Uw) = (1 + 1)). Then for 1, 1, > 0,

2

M
S(t|, fz) < P<U(M) > ﬁ(l +4HV t2)>
0

Ifty <, <0and P(V = £ (1+1), V> w(1+8) =PV = Nﬂo(l+tl))P(I7 > (1+10)),

S(t, ) < P(V > Vo(l + zz)) (V > M(1 + tl)) (V > Vo(l + tz)>

P( <—(1+t1)< %1“2)) (Vf%(l—l-t]))
)

—P(U(M) < —(1 + tl

~

Ifh < <0andP(V = 3£ (1+1),V = Nﬂ(l+tz))<P(V>M(1+t1))P(V w(1+10)),

S(ty, ) <P< —(1+t2)> (Vz %(1 +4),V> %(1 +f2)>

EZ

= ( _N0(1+t1) V>—(1+t2)>§P(VS%(1+f1))

=Pl U, < —(14+¢ .
( o = No( + 1))
If £, <1, <0, we can establish in the same way that

M
S(t, 1) < P(U(M) <—(1+ tz)).
Ny
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Then for tl, fz < 0,
M
S(t, ) <P Uy < ﬁ(l +HAL)).
0

For t > 0 > b, if Hh+6L> O, S(t], tz) < P(U(M) > Mo(l + t])), and if Hh+6=< O, S(t], tz) <
P(U(M) < %(1+tz))Then

No\ N o M ~ M
— PIW<V,W<V,W<2— W<2—
( >[ ( - T TN T No)

f 2 sl pl
< 4(—”) / S(t, ) dt, dt
fL -1J-1

:4(%)2[/01/015(t1,zz)dtldtz-i—/(:/:)S(tl,tz)dtldtz

1 0
+2/ / S(tl,tz)dtldt2:|, (S5.1)
0 -1

where the last step is from the symmetry of S(¢, £,).
For the first term in (S5.1), by the symmetry of S(#, #,) and the Chernoff bound,

1 1
/ / S(t, ) dt, dt,
0 Jo

S / / S(tl, tz) dtl dtz == 2/ / S(tl, tz)ﬂ(tl Z tz) dtl dtz
0 0
< 2/ / (U(M) > —(1 Y tz))]l(tl > t)dt ds

= 2/ tP(U(M) > —(1 + t)) dr < 2/ t(1+)Me ™ dt.
0
Notice that since M — oo, by Stirling’s approximation,

o) 1 eM 00 1
M ,—Mt _ M ,—Mt
fo t(1+0)Me ™ dt = vt /1 Me M dr < M—(l +0(1)). (S5.2)

We then obtain

/01 /Ols(tl, ) dt; dt, < %(1 + o(1)). (S5.3)
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For the second term in (S5.1),

0 0 0 0
/ S(t], tg) dtI dtz == 2/ S(tl, tz)]].(tl S tz) dtl dtz
—1J-1 —

1J-1

0 0 M
< 2/ / P(U(M) < ﬁ(l +HA t2)>]1(t1 < t)ds ds
-1J-1 0

1 M 1
:2/ tP(U(M)g—(l—t)) dt§2/ t(1—0)MeM dr.
0 NO 0

Notice that

1
1
1 — M M: —. 4
/Ot( HYetdt < (S5.4)

We then obtain

0 0 2
f] /] S(t1, &) dnydiy < - (S5.5)

For the third term in (S5.1),

1 0
/ / S(ty, t,) dt, dt,
M
/ / (U(M) > —(1+t1 )dtldt2+/ / <U(M) < ﬁ(1+t2)) dr dr,

=/0 tP(U(M)>—(1+t)) dH—/ (— t)P(U(M)<—(1+t)) dt
< /()ootP(U(M) > ﬁo(1+t)> dt+/_l(—t)P<U(M) < F0(1 +t)) dr

< %(Ho(l)) + % = %(Ho(l)),

where the last step is from (S5.2) and (S5.4).
We then obtain

/01 /jS(n, L)dt dt, < %(1 +0(1)). (S5.6)

Plugging (S5.3), (S5.5), (S5.6) into (S5.1) yields

2
(ﬂ) |:P<W§V,VT/§I7,W§2M,W§2

and thus completes the proof. Q.E.D.
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