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One dominant approach to evaluate the causal effect of a treatment is through panel
data analysis, whereby the behaviors of multiple units are observed over time. The in-
formation across time and units motivates two general approaches: (i) horizontal re-
gression (i.e., unconfoundedness), which exploits time series patterns, and (ii) vertical
regression (e.g., synthetic controls), which exploits cross-sectional patterns. Conven-
tional wisdom often considers the two approaches to be different. We establish this
position to be partly false for estimation but generally true for inference. In the ab-
sence of any assumptions, we show that both approaches yield algebraically equivalent
point estimates for several standard estimators. However, the source of randomness as-
sumed by each approach leads to a distinct estimand and quantification of uncertainty
even for the same point estimate. This emphasizes that researchers should carefully
consider where the randomness stems from in their data, as it has direct implications
for the accuracy of inference.

KEYWORDS: Horizontal regression, vertical regression, unconfoundedness, synthetic
controls, causal inference, minimum norm estimators.

1. INTRODUCTION

IN A SEMINAL PAPER, Abadie and Gardeazabal (2003) set out to investigate the economic
impact of terrorism in Basque Country. To estimate this effect, Abadie and Gardeaza-
bal (2003) introduced the synthetic controls framework. At its core, synthetic controls
constructs a synthetic Basque Country from a weighted composition of control regions
that are unaffected by the instability to estimate Basque Country’s economic evolution in
the absence of terrorism. This novel concept has inspired an entire subliterature within
econometrics that is “arguably the most important innovation in the policy evaluation
literature in the last 15 years” (Athey and Imbens (2017)).

Researchers have historically tackled problems of this flavor using repeated observa-
tions of units across time, that is, panel data, where a subset of units are exposed to a
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treatment during some time periods while the other units are unaffected. In the study
above, the per capita gross domestic product (GDP) of 17 Spanish regions are measured
from 1955 to 1998. Basque Country is the sole treated unit and the remaining regions are
the control units; the pre- and post-treatment periods are defined as the time horizons
before and after the first wave of terrorist activity in 1970, respectively.

Synthetic controls has become a cornerstone for panel studies in recent years and across
numerous fields. Beforehand, the unconfoundedness approach (Rosenbaum and Rubin
(1983), Imbens and Wooldridge (2009)) served as a common workhorse. Whereas syn-
thetic controls posits a relation between treated and control units that is stable across
time, unconfoundedness posits a relation between treated and pretreatment periods that
is stable across units. Accordingly, synthetic controls exploits cross-sectional correlation
patterns while unconfoundedness exploits time series correlation patterns. Following the
terminology introduced in Athey, Bayati, Doudchenko, Imbens, and Khosravi (2021), we
refer to unconfoundedness and synthetic controls based methods as horizontal (HZ) and
vertical (VT) regressions, respectively. Given their conceptual and computational distinc-
tions, the two approaches are often considered to be different from one another (Athey
et al. (2021)).

Yet, contrary to conventional wisdom, it turns out that HZ and VT regressions can
yield identical point estimates. As Figure 1(a) shows, when the regression models are
learned via ordinary least squares (OLS) with the minimum �2-norm solution, then the
two approaches produce the same economic evolution for Basque Country in the absence
of terrorism. Figure 1(b), by contrast, shows that when the regression models are en-
forced to lie within the simplex—as proposed by Abadie and Gardeazabal (2003) for VT

regression—then the two approaches output contrasting economic trajectories. To make
matters more intriguing, Figure 2 indicates that even when the two regressions arrive at
the same point estimate, the corresponding confidence intervals can be markedly differ-
ent under different sources of randomness. The juxtaposition of these figures begs two
questions:

Q1: “When are HZ and VT point estimates identical?”
Q2: “How does the source of randomness impact inference?”

FIGURE 1.—1(a): Estimates of OLS with minimum �2-norm; see Section 3.1.1. 1(b): Estimates of simplex
regression. HZ and VT estimates correspond to colored solid and dashed-dotted lines, respectively. The outset
of terrorism is the vertical line and Basque Country’s observed GDP is in solid black.
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FIGURE 2.—Confidence intervals for OLS with minimum �2-norm constructed from HZ-based (left) and
VT-based (right) generative models; see Section 4.1.1. The VT-based confidence intervals are degenerate.

Contribution. This article provides a technical contribution to Q1 and a conceptual
contribution to Q2. For Q1, we classify various widely studied regression formulations
into (i) a symmetric class that yields algebraically identical point estimates and (ii) an
asymmetric class that yields algebraically contrasting point estimates. These results hold
without any assumptions on the data generating process or data configuration.

With this result in place, we proceed to tackle Q2 by staying within the symmetric class
and studying properties of the estimator with randomness stemming from (i) time series
patterns, (ii) cross-sectional patterns, and (iii) both patterns simultaneously. We conduct
our analysis from a model-based perspective, which attributes randomness to the potential
outcomes, and a design-based perspective, which attributes randomness to the mechanism
assignment of treatment. Even under the most stylized assumptions within each frame-
work, we demonstrate that each source of randomness leads to a distinct estimand and
variance for the same point estimate.

While the specific estimands and variances may vary with the underlying assumptions,
the general message remains invariant. In this spirit, we construct distinct confidence in-
tervals for each source of randomness based on our model-based assumptions and asymp-
totic analysis. Though these intervals are unlikely to be practical for real-world settings,
they are a useful device to conduct data-inspired simulations and empirical applications
in illustrating our key concept. Indeed, our findings highlight that the confidence inter-
val developed for one estimand often has incorrect coverage for another. Altogether, our
results emphasize that the source of randomness that researchers assume has direct im-
plications for the accuracy of inference that can be conducted. This further motivates
the need for a principled framework to check researchers’ assumptions, which is left as
important future work.

Organization. Section 2 overviews the panel data framework. Section 3 provides a
technical answer to Q1 and Section 4 provides a conceptual answer to Q2. Section 5 il-
lustrates key concepts developed in this article. Section 6 summarizes our findings. We
relegate mathematical proofs to Appendices A and B.

Notation. Let I be the identity matrix. Let 1 and 0 be the vectors of ones and zeros,
respectively. All vectors are stated as column vectors. The curled inequality � denotes the
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generalized inequality, that is, componentwise inequality between vectors and matrix in-
equality between symmetric matrices. Let ◦ denote the elementwise product. For vectors
a and b, let 〈a�b〉 = a′b denote the inner product. Let tr(A) denote the trace of A. We
define 0/0 = 0 when applicable.

2. THE PANEL DATA FRAMEWORK

Panel data contain observations of N units over T time periods. The Basque study, for
instance, consists of per capita GDP across N = 17 Spanish regions over T = 43 years.
In each time period t, each unit i is characterized by two potential outcomes, Yit (0) and
Yit (1), which correspond to its outcome in the absence and presence of a binary treat-
ment, respectively. The potential outcomes framework posits that each region possesses
two possible levels of economic activity each year, one that is immune to terrorism and
one that is affected by terrorism. This implicitly assumes that there are no spillover effects
between regions, otherwise known as the stable unit value treatment assumption (Imbens
and Rubin (2015)).

Let Ai ∈{0�1} and Bt ∈{0�1} be the indicator variables for whether the ith unit and tth
period are treated. We write the observed outcome as

Yit =AiBt ·Yit (1) + (1 −AiBt) ·Yit (0)� (1)

Often, we observe all N units without treatment (control) for T0 time periods, that is.,
Ai = Bt = 0 for all i fN and t f T0. For the remaining T1 = T −T0 time periods, N1 units
receive treatment while the remaining N0 = N − N1 units remain under control; that is,
if we label the first N0 units as the control group, then Ai = Bt = 0 for all i f N0 and
t > T0, and Ai = Bt = 1 for all i > N0 and t > T0. In the study of Abadie and Gardeazabal
(2003), Basque Country is the single treated unit; thus, N1 = 1 and N0 = 16. The first
wave of terrorist activity partitions the time horizon into pre- and post-treatment periods
of lengths T0 = 15 and T1 = 28 years, respectively.

For ease of exposition, this article considers a single treated unit and single treated
period indexed by the Nth unit and T th time period, respectively, that is, AN = BT = 1
and Ai = Bt = 0 for all other i fN0 and t f T . However, our results hold for any (i� t) pair
where i > N0 is a treated unit and t > T0 is a treated period. We organize our observed
control data into an N × T matrix, Y = [Yit], as shown in Figure 3. In our example, yN =
[YNt : t f T0] ∈ R

T0 represents Basque Country’s economic evolution prior to the outset
of terrorism; Y 0 = [Yit : i f N0� t f T0] ∈ R

N0×T0 represents the control regions’ economic
evolution prior to the outset of terrorism; and yT = [YiT : i f N0] ∈ R

N0 represents the
control regions’ economic evolution after the outset of terrorism. Our object of interest
is Basque Country’s counterfactual GDP in the absence of terrorism, YNT (0).

FIGURE 3.—Panel data format with rows and columns indexed by units and time, respectively.
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2.1. Time Series versus Cross-Sectional Based Regressions

The information across time and units motivates two natural ways to estimate the miss-
ing (N�T )th entry. These perspectives are explored in two large and mostly separate
bodies of work (Athey et al. (2021)).

2.1.1. Horizontal Regression and Unconfoundedness

The unconfoundedness literature operates on the concept that “history is a guide to the
future.” As such, unconfoundedness methods express outcomes in the treated period as
a weighted composition of outcomes in the pretreatment periods. Among the myriad of
approaches, one special case is carried out by regressing the control units’ treated period
outcomes yT on its lagged outcomes Y 0 and applying the learned regression coefficients to
the treated unit’s lagged outcomes yN to predict the missing (N�T )th outcome. Following
Athey et al. (2021), we refer to such methods as horizontal (HZ) regression.

2.1.2. Vertical Regression and Synthetic Controls

The synthetic controls literature is built on the concept that “similar units behave sim-
ilarly.” Therefore, synthetic controls methods express the treated unit’s outcomes as a
weighted composition of control units’ outcomes. This is carried out by regressing the
treated unit’s lagged outcomes yN on the control units’ lagged outcomes Y ′

0 and apply-
ing the learned regression coefficients to the control units’ treated period outcomes yT

to predict the missing (N�T )th outcome. Following Athey et al. (2021), we refer to such
methods as vertical (VT) regression.

2.1.3. Conventional Wisdom

The dimensions of the data often guide the choice of estimator. In fact, the unregu-
larized forms of HZ and VT regressions are cautioned against when T > N and N > T ,
respectively, due to overfitting (Abadie, Diamond, and Hainmueller (2015), Doudchenko
and Imbens (2016), Li and Bell (2017), Athey et al. (2021)). With regularization, how-
ever, Athey et al. (2021) argued the two approaches can be applied to the same setting.
This allows HZ and VT regressions to be systematically compared through methods such
as cross-validation.

3. POINT ESTIMATION

We tackle Q1 by studying algebraic properties of the HZ and VT point estimates.

Additional Notation. We denote the singular value decomposition (SVD) of Y 0 as Y 0 =∑R

�=1 s�u�v
′
� = USV ′, where u� ∈ R

N0 and v� ∈ R
T0 are the left and right singular vectors,

respectively, s� ∈ R are the ordered singular values, and R= rank(Y 0) f min{N0�T0}. Let
U ∈ R

N0×R and V ∈ R
T0×R be the matrices formed by the left and right singular vectors,

respectively, and S ∈ R
R×R be the diagonal matrix of singular values. The pseudoinverse

is given by Y †
0 =

∑R

�=1(1/s�)v�u
′
� = V S−1U ′.

3.1. Classifying Notable Least Squares Formulations

We present several of the most widely studied regression formulations in the HZ and VT

literatures. This list is far from exhaustive given the vastness of these literatures.
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3.1.1. Description of Least Squares Formulations

Penalized Least Squares. A large class of formulations are expressed as follows:

(a) HZ regression: for λ1�λ2 g 0,

³̂ = argmin
³

‖yT − Y 0³‖2
2 + λ1‖³‖1 + λ2‖³‖2

2� with Ŷ hz
NT (0) = 〈yN� ³̂〉� (2)

(b) VT regression: for λ1�λ2 g 0,

̂́ = argmin
´

∥∥yN − Y ′
0´

∥∥2

2
+ λ1‖´‖1 + λ2‖´‖2

2� with Ŷ vt
NT (0) = 〈yT �̂́〉� (3)

We overview common choices for (λ1�λ2) and describe the corresponding strategy.
I: Ordinary least squares (OLS). Arguably, the mother of all regressions is OLS, where

λ1 = λ2 = 0. OLS is an unconstrained problem with possibly infinitely many solutions.
In such settings, one particular solution is the vector with minimum �2-norm; this mini-
mizer is unique and described through the pseudoinverse. OLS has been analyzed in nu-
merous panel study works, including Hsiao, Ching, and Wan (2012), Li and Bell (2017),
and Li (2020). Recent works have also shown OLS to be a benign overfitter in the high-
dimensional regime (Bartlett, Long, Lugosi, and Tsigler (2020), Spiess, Imbens, and Venu-
gopal (2023)), that is, OLS can predict well despite interpolating the in-sample data (zero
in-sample residuals).

II: Principal component regression (PCR). To formalize PCR, let Y
(k)
0 =

∑k

�=1 s�u�v
′
� de-

note the rank k<R approximation of Y 0 that retains the top k principal components. HZ

and VT PCR corresponds to replacing Y 0 with Y
(k)
0 within (2) and (3), respectively, with

λ1 = λ2 = 0. In words, PCR first finds a k-dimensional representation of the covariate
matrix via principal component analysis; then, PCR performs OLS with the compressed
k-dimensional covariates. Within the synthetic controls literature, Amjad, Shah, and Shen
(2018), Amjad, Misra, Shah, and Shen (2019) and Agarwal, Shah, and Shen (2021) uti-
lized PCR.

III: Ridge regression. Ridge considers λ1 = 0 and λ2 > 0. When Y 0 is rank deficient, the
gram matrix, that is, Y ′

0Y 0 for HZ regression and Y 0Y
′
0 for VT regression, is ill-conditioned.

This can discourage the usage of OLS. Ridge provides a remedy by adding a ridge on
the diagonal of the gram matrix, which increases all eigenvalues by λ2, thus removing the
singularity problem. Ben-Michael, Feller, and Rothstein (2021) explored properties of a
doubly robust estimator that utilizes HZ ridge regression.

IV: Lasso regression. Lasso considers λ1 > 0 and λ2 = 0. Lasso is a popular tool for es-
timating sparse linear coefficients in high-dimensional regimes. Because the criterion is
not strictly convex, there are possibly infinitely many solutions. Thus, for our analysis of
lasso only, we make the mild assumption that the entries of Y 0 are drawn from a con-
tinuous distribution. This guarantees the lasso solution to be unique (Tibshirani (2013)).
Several notable works in the synthetic controls literature, for example, Li and Bell (2017),
Carvalho, Masini, and Medeiros (2018), and Chernozhukov, Wüthrich, and Zhu (2021),
analyze the lasso.

V: Elastic net regression. Elastic net considers λ1�λ2 > 0. At a high level, elastic net se-
lects variables similarly to the lasso, but deals with correlated variables more gracefully as
with ridge. When λ2 > 0, the criterion is strictly convex so the solution is unique. Doud-
chenko and Imbens (2016) proposed an elastic net synthetic controls variant.
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Constrained Least Squares. VI: Simplex regression. The next formulation constrains the
regression weights to lie within the simplex, that is, the weights are nonnegative and sum
to one:

(a) HZ regression: for λ g 0,

³̂= argmin
³:³′1=1�³�0

‖yT − Y 0³‖2
2 + λ‖³‖2

2� with Ŷ hz
NT (0) = 〈yN� ³̂〉� (4)

(b) VT regression: for λg 0,

̂́ = argmin
´:´′1=1�´�0

∥∥yN − Y ′
0´

∥∥2

2
+ λ‖´‖2

2� with Ŷ vt
NT (0) = 〈yT �̂́〉� (5)

We consider a vanishing �2 penalty since λ = 0 (standard formulation) can induce multiple
minima (Abadie and L’Hour (2021)). When λ > 0, the criterion becomes strictly convex
and the solution is unique. Simplex regression is the original formulation set forth in the
pioneering works of Abadie and Gardeazabal (2003), Abadie, Diamond, and Hainmueller
(2010), and Abadie, Diamond, and Hainmueller (2015), and its properties continue to be
actively studied today. Beyond avoiding extrapolation, other attractive aspects of VT sim-
plex regression include interpretability, sparsity, and transparency (Abadie (2021)). How-
ever, while VT simplex regression is heavily studied and utilized in practice, HZ simplex
regression is considerably less commonplace.

3.1.2. Classification Results

To answer Q1, we classify the regression formulations into (i) a symmetric class and
(ii) an asymmetric class. We use the shorthand HZ = VT if the two approaches produce
algebraically identical point estimates and HZ �= VT otherwise.

I: Symmetric class. We first state the symmetric formulations.

THEOREM 1: HZ = VT for (i) OLS with (³̂�̂́) as the minimum �2-norm solutions:

Ŷ hz
NT (0) = Ŷ vt

NT (0) =
〈
yN�Y

†
0yT

〉
=

R∑

�=1

(1/s�)〈yN�v�〉〈u��yT 〉;

(ii) PCR with the same choice of k<R:

Ŷ hz
NT (0) = Ŷ vt

NT (0) =
〈
yN�

(
Y

(k)
0

)†
yT

〉
=

k∑

�=1

(1/s�)〈yN�v�〉〈u��yT 〉;

(iii) ridge regression with the same choice of λ2 > 0:

Ŷ hz
NT (0) = Ŷ vt

NT (0) =
〈
yN�

(
Y ′

0Y 0 + λ2I
)−1

Y ′
0yT

〉
=

R∑

�=1

s�

s2
� + λ2

〈yN�v�〉〈u��yT 〉�

Theorem 1 might seem familiar at first glance. As observed in Abadie, Diamond, and
Hainmueller (2015) and Ben-Michael, Feller, and Rothstein (2021, Lemma 2), the point
estimates associated with HZ OLS and HZ ridge can be written as linear combinations
of the elements in yT , which take the same linear forms as the corresponding VT point
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estimates. However, their results stop short of establishing algebraic equivalence as in
Theorem 1. In this view, Theorem 1 is perhaps surprising. It demonstrates that the HZ

and VT perspectives—while appearing to be different—are, in fact, two equivalent ways
of approaching the same problem when the regression model belongs to the symmetric
class. Notably, this equivalence holds without any assumptions on the data generating
process.

Additionally, Theorem 1 holds for any data configuration. Thus, it clarifies that HZ and
VT OLS are not invalid when T > N and N > T , respectively. In fact, the OLS estimate
can even be written as 〈³̂�Y ′

0
̂́〉, which incorporates both regression models. Prior mis-

conceptions likely arose from the fact that infinitely many solutions can exist depending
on the dimensions of the data and chosen approach. Among these solutions, however, is
the one with minimum �2-norm, which is the arrived-upon solution when the objective is
optimized via gradient descent. This phenomenon is known as “implicit regularization,”
where the optimization algorithm is biased towards a particular solution even though the
bias is not explicit in the objective function (Neyshabur, Tomioka, and Srebro (2015),
Gunasekar, Woodworth, Bhojanapalli, Neyshabur, and Srebro (2017)).

Through its connection to the �2-penalty, the minimum �2-norm also offers a high-
level intuition for the root of symmetry. More specifically, observe that the ridge model
converges to the OLS model with minimum �2-norm as λ2 → 0. Since the PCR model is
precisely the OLS minimum �2-norm model that is restricted to the space spanned by the
top k principal components, we conjecture that the geometry of the �2-ball is the likely
source of symmetry for HZ and VT point estimation.

II: Asymmetric class. Next, we state the class of asymmetric formulations.

THEOREM 2: HZ �= VT for (i) lasso, (ii) elastic net, and (iii) simplex regression.

A common thread of the objective functions in the asymmetric class is a penalty or
constraint that promotes sparse models. Such regularizers are noticeably absent in the
symmetric formulations. This suggests that geometries of the �1-ball and simplex that
encourage sparsity are likely sources of asymmetry for HZ and VT point estimation.

3.2. Doubly Robust Regression

These recent years have seen a surge of interest in doubly robust (DR) estimators.
Within panel data, we discuss two prominent works that are rising in popularity.

3.2.1. Synthetic Difference-in-Differences

An important approach that continues to dominate empirical work in panel data is the
difference-in-differences (DID) estimator (Ashenfelter (1978)). In essence, DID posits an
additive outcome model with unit- and time-specific fixed effects, known colloquially as
the “parallel trends” assumption. Arkhangelsky, Athey, Hirshberg, Imbens, and Wager
(2021) anchored on the DID principle and leveraged concepts from unconfoundedness
and synthetic controls to derive a DR estimator called synthetic difference-in-differences
(SDID). In our setting, the SDID prediction for the missing (N�T )th potential outcome is

Ŷ sdid
NT (0) =

∑

ifN0

β̂iYiT +
∑

tfT0

α̂tYNt −
∑

ifN0

∑

tfT0

β̂iα̂tYit

= 〈yT �̂́〉 + 〈yN� ³̂〉 − 〈̂́�Y 0³̂〉� (6)
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where ³̂ and ̂́ represent general HZ and VT models, respectively. Observe that ³̂ =
(1/T0)1 and ̂́ = (1/N0)1 recovers DID. Moving beyond simple DID to performing a
weighted two-way bias removal, Arkhangelsky et al. (2021) proposed to learn ³̂ via sim-
plex regression and ̂́ via simplex regression with an �2-penalty.

3.2.2. Augmented Synthetic Controls

Ben-Michael, Feller, and Rothstein (2021) introduced the augmented synthetic control
(ASC) estimator, which uses an outcome model to correct the bias induced by the classical
synthetic controls estimator.1 Concretely, the ASC estimator predicts the missing (N�T )th
potential outcome as

Ŷ asc
NT (0) = M̂NT (0) +

∑

ifN0

β̂i

(
YiT − M̂iT (0)

)
� (7)

where M̂iT (0) is the estimator for the (i�T )th entry. Ben-Michael, Feller, and Rothstein
(2021) instantiated M̂iT (0) =

∑
tfT0

α̂tYit . Plugging this HZ outcome model into (7) then
gives

Ŷ asc
NT (0) = 〈yN� ³̂〉 + 〈yT �̂́〉 − 〈̂́�Y 0³̂〉� (8)

We consider this particular variant of ASC since it takes the same form as SDID, as seen in
(6). In contrast to Arkhangelsky et al. (2021), Ben-Michael, Feller, and Rothstein (2021)
learned ³̂ via ridge regression and ̂́ via simplex regression.

3.2.3. Connecting DR Regression to HZ and VT Regressions

We refer to SDID (6) and ASC (8) as DR regression. To complement the existing re-
sults on DR regression for panel data, we leverage Theorem 1 to study properties of DR

regression when (³̂�̂́) come from the symmetric class.

COROLLARY 1: DR = HZ = VT for (i) (³̂�̂́) as the OLS minimum �2-norm solutions and

(ii) (³̂�̂́) as the PCR solutions with the same choice of k<R.

Corollary 1 affirms that when HZ and VT regressions are algebraically equivalent—
namely, when (³̂�̂́) are implicitly regularized or learned via PCR—then they are each
a DR estimator. Hence, even though the formulas for HZ and VT regressions suggest that
they only use one pattern, their numerical equivalence to DR regression suggests that
they implicitly exploit both patterns in the data. This result is similar in spirit to the OLS
case discussed in Robins, Sued, Lei-Gomez, and Rotnitzky (2007) with a linear propensity
score model. Of course, one may not consider this setting to be a useful case of DR regres-
sion, just as in the OLS and linear propensity score case, but this equivalence between the
three regressions remains an interesting observation.

3.3. Intercepts

Intercepts can be included in the HZ regression model by modifying the �2-errors in (2)
and (4) as ‖yT −Y 0³−α01‖2

2; similarly, they can be included in the VT regression model by
modifying �2-errors in (3) and (5) as ‖yN −Y ′

0´−β01‖2
2. We discuss the role of intercepts

for point estimation below.

1See Abadie and L’Hour (2021) for a bias correction of synthetic controls through regression.
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COROLLARY 2: HZ �= VT for (i) OLS, (ii) PCR, and (iii) ridge with intercepts.

We develop an intuition for Proposition 2 by interpreting intercepts in panel studies.
A nonzero time intercept, α0, allows for a permanent constant difference between the
treated and pretreatment periods; a nonzero unit intercept, β0, allows for a permanent
constant difference between the treated and control units. These systematic structures
then create an asymmetry between the two regressions. Below, we propose a methodology
based on centering the data that allows for intercepts yet retains symmetry.

3.3.1. Including Intercepts and Retaining Symmetry Through Data Centering

Let Ÿ 0 denote the twice centered version of Y 0, that is, the rows and columns of Ÿ 0 are
mean zero. This can be satisfied by multiplying I − (1/N0)11

′ and I − (1/T0)11
′ to the left

and right, respectively, of Y 0. Consider the following modified formulations:

(a) HZ regression: for λg 0,

(̂α0� α̂1� ³̂) = argmin
(α0�α1�³)

‖yT − Ÿ 0³− α01‖2
2 + ‖yN − α11‖2

2 + λ‖³‖2
2� (9)

Ŷ hz
NT (0) = 〈yN� ³̂〉 + α̂0 + α̂1� (10)

(b) VT regression: for λg 0,

(β̂0� β̂1�̂́) = argmin
(β0�β1�´)

∥∥yN − Ÿ
′
0´−β01

∥∥2

2
+ ‖yT −β11‖2

2 + λ‖´‖2
2� (11)

Ŷ vt
NT (0) = 〈yT �̂́〉 + β̂0 + β̂1� (12)

Similarly to before, OLS corresponds to λ = 0, PCR corresponds to OLS with Ÿ
(k)

0 for
k<R in place of Ÿ 0, and ridge regression corresponds to any λ > 0.

COROLLARY 3: HZ = VT for the symmetric estimators in Theorem 1 under the formula-
tions set in (9) and (11) with Ÿ 0 being twice centered.

We inspect (10) and (12) to understand the implications of Corollary 3. First, we recall
Theorem 1, which establishes that the HZ and VT estimates share the same “base” esti-
mate, that is, 〈yN� ³̂〉 = 〈yT �̂́〉. Next, we note that α̂0 = β̂1 = (1/N0)1

′yT and β̂0 = α̂1 =
(1/T0)1

′yN , which correspond to the time and unit fixed effects, respectively. Intuitively,
the modified point estimates in (10) and (12) include both fixed effect models to com-
pensate for Ÿ 0 being twice centered. Putting everything together, the modified HZ and VT

point estimates are algebraically identical.

4. INFERENCE

To answer Q2, we study the inferential properties of the counterfactual prediction. For-
mal discussions for classical inference require an explicit postulation on the source of
randomness. This article takes both a model-based approach, which makes assumptions
about the distribution of the potential outcomes, and a design-based approach, which
makes assumptions about the assignment mechanism of treatment. Within each setting,
we consider a natural notion of randomness stemming from (i) time series patterns, (ii)
cross-sectional patterns, and (iii) both patterns simultaneously.
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Before we formalize these notions, we emphasize that the goal of this section is not to
accurately model reality and propose novel confidence intervals for practice. The goal is to
provide a simple example that illustrates the role of randomness in conducting inference;
namely, that each source of randomness leads to a unique uncertainty quantification even
for the same point estimate.

Setting. To isolate the role of randomness, we focus on OLS and its minimum �2-norm
solutions: ³̂ = Y †

0yT and ̂́ = (Y ′
0)†yN . Recall that Theorem 1 and Corollary 1 establish

that the HZ, VT, and DR approaches yield algebraically equivalent point estimates for this
setting. As such, we denote the point estimate as ŶNT (0) without any superscripts.

4.1. Model-Based Inference

Recall (1). The model-based perspective views the potential outcomes, {Yit (0)�Yit(1)},
as stochastic and treatment assignments, {Ai�Bt}, as fixed. Within this framework, we
consider a classical regression model.

4.1.1. Three Generative Models

I: HZ model. The HZ model considers time series patterns as the source of randomness.

ASSUMPTION 1: We have

YiT =
∑

tfT0

α∗
tYit + εiT � i = 1� � � � �N0� (13)

Here, ³∗ is a vector of unknown coefficients and {εiT}
N0
i=1 are zero mean idiosyncratic

errors that are independent over i = 1� � � � �N0, conditional on (yN�Y 0).

Assumption 1 implies that the regressors, that is, lagged outcomes, are uncorrelated
with the errors; this is also known as strict exogeneity. This motivates the HZ approach,
whereby the statistical uncertainty of ŶNT (0) is governed by the construction of ³̂ from
(yT �Y 0), that is, the in-sample uncertainty.

II: VT model. The VT model considers cross-sectional patterns as the source of ran-
domness.

ASSUMPTION 2: We have

YNt =
∑

ifN0

β∗
iYit + εNt� t = 1� � � � �T0� (14)

Here, ´∗ is a vector of unknown coefficients and {εNt}
T0
t=1 are zero mean idiosyncratic

errors that are independent over t = 1� � � � �T0, conditional on (yT �Y 0).

Assumption 2 is analogous to Assumption 1. Hence, the statistical uncertainty of
ŶNT (0) under the VT model is governed by the construction of ̂́ from (yN�Y 0).

III: DR model. We introduce a new model, the DR model, that considers aspects of the
previous HZ and VT models. At a high level, the DR model considers time series
and cross-sectional patterns as two distinct sources of randomness.
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ASSUMPTION 3: We have (13) and (14). Here, {εiT}
N0
i=1 and {εNt}

T0
t=1 have zero mean and

are independent over i = 1� � � � �N0 and t = 1� � � � �T0, conditional on Y 0.

Assumption 3 posits that Y 0 contains all measured confounders and the errors are inde-
pendent across both time and units. As a result, the statistical uncertainty of ŶNT (0) under
the DR model is governed by the constructions of both ³̂ and ̂́.

4.1.2. Model-Based Asymptotic Results on Inference

Equipped with our three models, we offer a model-based response to Q2.

Notation. Let �
hz

T = Cov(εT|yN�Y 0), �
vt

N = Cov(εN|yT �Y 0), �
dr

T = Cov(εT|Y 0), and

�
dr

N = Cov(εN|Y 0), where εT = [εiT : i f N0] and εN = [εNt : t f T0]. Let (σhz
iT )2 =

Var(εiT|yN�Y 0) for i = 1 f N0. We define {(σ vt
Nt)

2� (σdr
iT )2� (σdr

Nt)
2} for i = 1 f N0 and

t = 1 f T0 with respect to (�
vt

N��
dr

T ��
dr

N ) analogously.
Recalling the SVD of Y 0 from Section 3, we denote Hu = UU ′ and Hv = V V ′ as the

projections onto the columnspace and rowspace of Y 0, respectively.

THEOREM 3:
(i) [HZ model] Suppose Assumption 1 holds and

(∑

ifN0

E
[
|β̂iεiT |3|yN�Y 0

])2

= o

((∑

ifN0

β̂2
i

(
σhz

iT

)2
)3)

� (15)

Then as N0 → ∞, we have

(
vhz

0

)−1/2 ·
(
ŶNT (0) −μhz

0

) d−→N (0�1)�

where μhz
0 = 〈yN�H

v³∗〉 and vhz
0 = ̂́′

�
hz

T
̂́.

(ii) [VT model] Suppose Assumption 2 holds and

(∑

tfT0

E
[
|̂αtεNt |3|yT �Y 0

])2

= o

((∑

tfT0

α̂2
t

(
σ vt

Nt

)2
)3)

� (16)

Then as T0 → ∞, we have

(
vvt

0

)−1/2 ·
(
ŶNT (0) −μvt

0

) d−→N (0�1)�

where μvt
0 = 〈yT �H

u´∗〉 and vvt
0 = ³̂′�

vt

N³̂.

(iii) [DR model] Suppose Assumption 3 holds and

(∑

ifN0

∑

tfT0

E
[∣∣(Y †

0

)
it

{
E[YiT|Y 0]εNt +E[YNt|Y 0]εiT + εiTεNt

}∣∣3
|Y 0

])2

= o

((∑

ifN0

∑

tfT0

(
Y †

0

)2

it

{
E[YiT|Y 0]2

(
σdr

Nt

)2 +E[YNt|Y 0]2
(
σdr

iT

)2

+
(
σdr

iT

)2(
σdr

Nt

)2}
)3)

� (17)
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Then as N0�T0 → ∞, we have

(
vdr

0

)−1/2 ·
(
ŶNT (0) −μdr

0

) d−→N (0�1)�

where μdr
0 = 〈³∗�Y ′

0´
∗〉 and

vdr
0 =

(
Hu´∗)′

�
dr

T

(
Hu´∗) +

(
Hv³∗)′

�
dr

N

(
Hv³∗) + tr

(
Y †

0�
dr

T

(
Y ′

0

)†
�

dr

N

)
�

Technical Interpretation. If {εiT � (σhz
iT )2} are bounded, then (15) translates to∑

ifN0
|β̂i|

3 = o(‖̂́‖3
2), which rules out outlier coefficients; an analogous interpretation

is derived for (16). Similarly, if (εiT � εNt) and (σ2
iT �σ

2
Nt) are bounded for all (i� t), then

(17) loosely translates to

∑

ifN0

|β̂i|3 +
∑

tfT0

|̂αt |3 +
∑

ifN0

∑

tfT0

∣∣(Y †
0

)
it

∣∣3 = o
(
‖̂́‖3

2 + ‖³̂‖3
2 +

∥∥Y †
0

∥∥3

F

)
�

where ‖ · ‖F denotes the Frobenius norm. In effect, this bounds the magnitudes of the HZ

and VT OLS coefficients and pseudoinverse matrix entries.

Conceptual Interpretation. Theorem 3 shows that the estimand and variance are con-
trolled by time series patterns under the HZ model, cross-sectional patterns under the
VT model, and both patterns under the DR model. Therefore, the emphasis is this: each
model measures uncertainty with respect to a distinct estimand. This clarifies that the as-
sumed source of randomness has substantive implications for conducting inference.

4.1.3. Model-Based Confidence Intervals Under Homoskedastic Errors

In Section 5, we study the trade-offs of conducting inference under different sources of
randomness through data-inspired simulations and empirical applications. To this end, we
construct separate HZ, VT, and DR confidence intervals based on the results in Theorem 3.
Since the focus of Theorem 3 is conceptual, we consider homoskedastic errors to simplify
our exposition.

Formally, let �
hz

T have identical diagonal elements, that is, �
hz

T = (σhz
T )2 · I; we define

(�
vt

N��
dr

T ��
dr

N ) analogously with respect to (σ vt
N �σ

dr
T �σdr

N ). Motivated by Theorem 3, we
construct the three confidence intervals as follows: for θ ∈ (0�1), we have

CI
hz(θ) :=

[
ŶNT (0) ± z θ

2

√
v̂hz

0

]
�

CI
vt(θ) :=

[
ŶNT (0) ± z θ

2

√
v̂vt

0

]
�

CI
dr(θ) :=

[
ŶNT (0) ± z θ

2

√
v̂dr

0

]
� (18)

where z θ
2

is the upper θ/2 quantile of N (0�1) and (̂vhz
0 � v̂vt

0 � v̂
dr
0 ) are the estimators of

(vhz
0 � vvt

0 � v
dr
0 ). We define

v̂hz
0 = ̂́′

�̂T
̂́� v̂vt

0 = ³̂′�̂N³̂� v̂dr
0 = v̂hz

0 + v̂vt
0 − tr

(
Y †

0�̂T

(
Y ′

0

)†
�̂N

)
� (19)



2138 SHEN, DING, SEKHON, AND YU

where �̂T and �̂N are standard estimators of (�
hz

T ��
dr

T ) and (�
vt

N��
dr

N ), respectively:

�̂T =
1

N0 −R

∥∥(
I −Hu

)
yT

∥∥2

2
· I�

�̂N =
1

T0 −R

∥∥(
I −Hv

)
yN

∥∥2

2
· I;

recall that R= rank(Y 0) = tr(Hu) = tr(Hv).
It is clear from (19) that (̂vhz

0 � v̂vt
0 ) are plug-in estimators for (vhz

0 � vvt
0 ). For this reason, we

discuss v̂dr
0 with respect to vdr

0 . Recall ³̂ =Hv³̂ and ̂́ = Hû́ by construction. To justify the
negative trace in v̂dr

0 , note that v̂hz
0 is a quadratic involving (yN�yT ). Since both quantities

are random, the expectation of v̂hz
0 induces an additional term that precisely corresponds

to the trace term in vdr
0 . The same property holds for v̂vt

0 . Thus, v̂dr
0 corrects for this bias via

the negative trace.

LEMMA 1:
(i) [HZ model] Suppose Assumption 1 holds. Then we have

E[�̂T|yN�Y 0] = �
hz

T and E
[
v̂hz

0 |yN�Y 0

]
= vhz

0 �

(ii) [VT model] Suppose Assumption 2 holds. Then we have

E[�̂N|yT �Y 0] =�
vt

N and E
[
v̂vt

0 |yT �Y 0

]
= vvt

0 �

(iii) [DR model] Suppose Assumption 3 holds. Then we have

E[�̂T|Y 0] =�
dr

T � E[�̂N|Y 0] =�
dr

N � and E
[
v̂dr

0 |Y 0

]
= vdr

0 �

Lemma 1 states that the HZ, VT, and DR variance estimators are unbiased. This is a well-
known result within the OLS literature, albeit it is typically formalized under the stricter
full column rank assumption.

REMARK 1: We discuss heteroskedastic variance estimators in the Supplemental Ma-
terial (Shen, Ding, Sekhon, and Yu (2023)).

4.2. Design-Based Inference

The design-based perspective views the potential outcomes, {Yit (0)�Yit (1)}, as fixed
and treatment assignments, {Ai�Bt}, as stochastic. Within this framework, we consider the
assignment mechanisms introduced in Bottmer, Imbens, Spiess, and Warnick (2021). As
Bottmer et al. (2021) noted, these assumptions are not always plausible, but they underlie
the placebo tests that are commonly used in synthetic controls analyses.

4.2.1. Three Designs

Let A ∈ {0�1}N with 1
′A = 1 and B ∈ {0�1}T with 1

′B = 1 be the indicator vectors for
the treated unit and treated time period, respectively.

I: HZ design. The HZ design considers the treated period to be randomly selected.
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ASSUMPTION 4: We have

P(B= b) =
{

1/T� if bt ∈{0�1}∀t and 1
′b = 1�

0� otherwise�
(20)

II: VT design. The VT design considers the treated unit to be randomly selected.

ASSUMPTION 5: We have

P(A= a) =
{

1/N� if ai ∈{0�1}∀i and 1
′a = 1�

0� otherwise�
(21)

III: DR design. The DR design considers both the treated period and treated unit to be
randomly selected.

ASSUMPTION 6: We have (20) and (21), where A and B are independent.

4.2.2. Design-Based Estimator

To conduct design-based analysis, we consider all possible treatment assignments, not
only the realized assignment. Let Y ∗

it (0) be the OLS fit of Yit (0) using outcomes up to and
including time t, but not thereafter, that is, Y ∗

it (0) = 〈x�W †z〉, where W = [Yjτ : j �= i� τ <
t], x= [Yiτ : τ < t], and z= [Yjt : j �= i]. The design-based estimator is

Ŷ (0) =
∑

ifN

∑

tfT

AiBt ·Y ∗
it (0)�

Again, the stochasticity of Ŷ (0) stems from the assignments since Y ∗
it (0) is fixed. Hence,

the model-based and design-based estimators share the same point estimate for the real-
ized assignment, but differ in their formulations and attributions of randomness.

4.2.3. Connecting Model-Based and Design-Based Perspectives

In Table I, we summarize the estimands associated with the model-based and design-
based estimators for the three sources of randomness in consideration. We examine the
realized (N�T )th assignment for concreteness.

Since the model-based and design-based frameworks attribute randomness differently,
their expectations are taken over different probability measures. Nevertheless, the two

TABLE I

MODEL-BASED AND DESIGN-BASED ESTIMANDS UNDER DIFFERENT SOURCES OF RANDOMNESS.

Source of Randomness Model-Based Estimand Design-Based Estimand

Time E[ŶNT (0)|yN �Y 0] =
∑

tfT0
α̃∗
tYNt E[Ŷ (0)|A] = 1

T

∑
tfT Y

∗
Nt (0)

Unit E[ŶNT (0)|yT �Y 0] =
∑

ifN0
β̃∗

iYiT E[Ŷ (0)|B] = 1
N

∑
ifN Y ∗

iT (0)

Time and Unit E[ŶNT (0)|Y 0] =
∑

ifN0

∑
tfT0

α∗
tβ

∗
iYit E[Ŷ (0)] = 1

NT

∑
ifN

∑
tfT Y

∗
it (0)

Note: We use the shorthand ³̃∗ =Hv³∗ and ˜́ ∗ =Hu´∗ and consider the realized (N�T )th assignment.
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estimators recover similar estimands for each source of randomness. With time sourced
randomness, both estimands are weighted compositions of outcomes across time, which
Bottmer et al. (2021) called the “HZ” effect. With unit sourced randomness, both esti-
mands are weighted compositions of outcomes across units, also called the “VT” effect.
Finally, with time and unit sourced randomness, both estimands are weighted composi-
tions of outcomes across time and units, which we coin the “DR” effect.

4.3. From Insights to Practice

Theorem 3 and Table I illustrate that different sources of randomness lead to dif-
ferent estimands and different quantifications of uncertainty even for the same point
estimate. The connection between assumptions of randomness and resulting estimands
has also been highlighted in related contexts, for example, Abadie, Athey, Imbens, and
Wooldridge (2020), Bottmer et al. (2021), and Sekhon and Shem-Tov (2021). Translated
to practice, these results stress that researchers’ assumptions on the source of randomness
matter for inference, as they usually do in observational research. As we demonstrate in
the next section, these choices are substantively important in the three applications we
consider.

5. ILLUSTRATIONS

This section illustrates key concepts developed in this article using three canonical stud-
ies from the synthetic controls literature: (i) terrorism in Basque Country, (ii) California’s
Proposition 99 (Abadie, Diamond, and Hainmueller (2010)), and (iii) reunification of
West Germany (Abadie, Diamond, and Hainmueller (2015)).

5.1. Background on Case Studies

(i) Basque study. See Sections 1–2 for details.

(ii) California study. This study examines the effect of California’s Proposition 99, an
anti-tobacco legislation, on its tobacco consumption. The panel data contain per
capita cigarette sales of N = 39 U.S. states over T = 31 years. There are T0 =
18 pretreatment observations and N0 = 38 control units. The aim is to estimate
California’s cigarette sales in the absence of Proposition 99.

(iii) West Germany study. This study examines the economic impact of the 1990 re-
unification in West Germany. The panel data contain per capita GDP of N = 17
countries over T = 44 years. There are T0 = 30 pretreatment observations and
N0 = 16 control units. The aim is to estimate West Germany’s GDP in the absence
of reunification.

5.2. Data-Inspired Simulation Studies

In an attempt to document our analysis in a realistic environment, we calibrate our
simulations to our three studies. As previewed in Section 4.1.3, we conduct a model-
based analysis using the confidence intervals derived from Theorem 3. We reiterate that
these intervals may not be practical for many real-world settings as they are rooted in
our stylized assumptions and asymptotic analysis. Hence, the purpose of this section is
not to advocate for their usage. Instead, these intervals are simply a device to better
understand the trade-offs in conducting inference under different sources of random-
ness.
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5.2.1. Data Generating Process

We consider the single treated unit and time period setting. Specifically, we consider the
actual treated unit, for example, Basque Country, and focus on the first post-treatment
period, for example, one year after the outset of terrorism; hence, T = T0 + 1. Using the
actual data, we generate the underlying regression models as

³∗ = argmin
³

∥∥y∗
T − Y ∗

0³
∥∥2

2
and ´∗ = argmin

´

∥∥y∗
N −

(
Y ∗

0

)′
´

∥∥2

2
�

where y∗
N = [YNt : t f T0], y∗

T = [YiT : i f N0], and Y ∗
0 = [Yit : i fN0� t f T0].

Observationally, we have access to (yN�yT �Y 0), which are defined as follows: Let
Y 0 be the rank-r approximation of Y ∗

0, where r is chosen as the minimum number of
singular values needed to capture at least 99�9% of Y ∗

0’s spectral energy. We sample
yT ∼N (Y 0³

∗� (N0 − r)−1‖y∗
T −Y ∗

0³
∗‖2

2I) and yN ∼N (Y ′
0´

∗� (T0 − r)−1‖y∗
N − (Y ∗

0)′´∗‖2
2I).

We then define three (latent) estimands: (i) μhz
0 = 〈yN�H

v³∗〉, (ii) μvt
0 = 〈yT �H

u´∗〉, and
(iii) μdr

0 = 〈³∗�Y ′
0´

∗〉, where (Hu�Hv) are computed from Y 0. These estimands corre-
spond to Theorem 3 and Table I.

5.2.2. Simulation Results

For the purposes of stability, we conduct 5000 replications of the above DGP for each
study. In the �th simulation repeat, we learn the regression coefficients as

³̂(�) = argmin
³

∥∥y(�)
T − Y 0³

∥∥2

2
and ̂́(�) = argmin

´

∥∥y(�)
N − Y ′

0´
∥∥2

2
�

The point estimate is Ŷ
(�)
NT (0) = 〈y(�)

N � ³̂(�)〉 = 〈y(�)
T �̂́(�)〉. We construct separate HZ, VT, and

DR (homoskedastic) confidence intervals, denoted as (̂v
hz(�)
0 � v̂

vt(�)
0 � v̂

dr(�)
0 ), centered around

the point estimate. The estimands do not change in our replications.
In Tables II and III, we report the coverage probabilities (CP) and average lengths

(AL), respectively, for each confidence interval with respect to each estimand at the 95%
nominal mark across all simulation repeats; see Figure 4 for an illustration of one repeat.
Across all three studies and with respect to μhz

0 , the coverage of the HZ interval is closer
to the nominal coverage than that of the VT and DR intervals as the latter two can sub-
stantially under- or overcover. This storyline is consistent for the VT interval with respect
to μvt

0 and the DR interval with respect to μdr
0 .

Collectively, our formal results and simulations demonstrate that (i) the choice of es-
timand directly affects the accuracy of inference; and (ii) the variance formulas devel-

TABLE II

COVERAGE PROBABILITY FOR NOMINAL 95% CONFIDENCE INTERVALS ACROSS 5000 REPLICATIONS.

v̂hz
0 v̂vt

0 v̂dr
0

Case study μhz
0 μvt

0 μdr
0 μhz

0 μvt
0 μdr

0 μhz
0 μvt

0 μdr
0

Basque 0�93 0�75 0�67 0�99 0�93 0�88 1�00 0�97 0�94

California 0�94 1�00 0�91 0�66 0�94 0�61 0�97 1�00 0�95

W. Germany 0�94 1�00 0�91 0�49 0�94 0�47 0�95 1�00 0�94
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TABLE III

AVERAGE COVERAGE LENGTH FOR NOMINAL 95% CONFIDENCE INTERVALS ACROSS 5000 REPLICATIONS.

Case study v̂hz
0 v̂vt

0 v̂dr
0

Basque 0�02 0�03 0�04
California 0�07 0�03 0�08
W. Germany 0�03 0�01 0�03

Note: The length is normalized by the magnitude of the corresponding point estimate.

oped for one estimand may not have the correct coverage for another. Therefore, re-
searchers should carefully consider the source of randomness in their data as it can
have a significant influence over their ability to conduct valid inference. These conclu-
sions are in line with those drawn in Sekhon and Shem-Tov (2021), which analyzes the
classical difference-in-means estimator for standard estimands in randomized experi-
ments.

5.3. Empirical Applications

Next, we analyze our three case studies of interest. All estimators are trained on pre-
treatment data only, and the point and variance estimation formulas are separately ap-
plied for the treated unit at each post-treatment period t > T0. We continue to use the
confidence intervals in (18) from Section 4.1.3.

5.3.1. Implementation Details

For ridge, lasso, and elastic net regressions, we use the default scikit-learn hyper-
parameters (λ1, λ2). For PCR, we choose the number of principal components k via the
approach described in Section 5.2. This yields k = 2 for the Basque study, k = 3 for the
California study, and k = 4 for the West Germany study. We implement simplex regres-
sion using the code made available at https://matheusfacure.github.io/python-causality-
handbook/15-Synthetic-Control.html.

5.3.2. Point Estimation

Figure 5 visualizes the counterfactual trajectories generated by the estimators in Sec-
tion 3.1. Our findings reinforce Theorems 1 and 2. On a separate note, we observe that
within the Basque study, the OLS estimates are wildly different from the others—likely
due to overfitting—and HZ simplex regression reduces to the last observation carried for-
ward (LOCF) estimator. In the California and West Germany studies, the estimates are

FIGURE 4.—Example illustration of Section 5.2.2 for one simulation repeat. Here, the HZ interval (blue)
covers the HZ estimand but undercovers the VT and DR estimands. The VT interval (orange) covers the HZ and
VT estimands but undercovers the DR estimand; however, relative to the HZ interval, the VT interval overcovers
the HZ estimand. The DR interval (green) covers all estimands but overcovers the HZ and VT estimands relative
to their respective intervals.
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FIGURE 5.—Top and bottom figures correspond to symmetric and asymmetric estimators, respectively. From
left to right, the figures are indexed by the Basque, California, and West Germany studies. Across all figures,
the treated year is the dotted vertical line; the observed trajectory is in solid black; and the HZ and VT counter-
factual trajectories are colored solid and dashed-dotted lines, respectively.

all qualitatively similar with the exception of the HZ simplex regression, which again re-
duces to LOCF. In fact, the OLS and ridge estimates appear to overlap, as well as the
lasso and elastic net estimates.

5.3.3. Inference

We present the OLS-based confidence intervals in Figure 6.2 As a final reminder,
the emphasis of Figure 6 is that the intervals associated with each model can vary in
width; we do not put any stock in the specific magnitudes of these widths. With this
in mind, consider the Basque study. The top row of plots shows that μvt

0 is more accu-
rately estimated than both μhz

0 and μdr
0 . Put differently, there is less uncertainty about

conducting inference on μvt
0 relative to the other estimands. At the same time, these

plots indicate that if μhz
0 or μdr

0 are the estimands of interest, then the VT confidence
interval will undercover in both settings. Analogous statements apply to the remain-
ing subfigures. As with our simulations, the large potential differences in coverage re-
inforce the importance of properly reasoning through the source of randomness in the
data.

6. CONCLUSION

This article contributes to panel data analysis in two primary ways: (i) we prove that HZ,
VT, and DR approaches—while seemingly very different—all yield algebraically identical
point estimates for several standard estimators, that is, these approaches can be equiva-

2As Figure 6 shows, OLS-based confidence intervals can be degenerate due to zero in-sample residuals
(interpolation). One rectification is to substitute OLS with PCR. In the Supplemental Material, we discuss
advantages of PCR over OLS and present inferential results for PCR.
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FIGURE 6.—OLS estimates with confidence intervals from Section 4.1.3. From top to bottom, the rows are
indexed by the Basque, California, and West Germany studies. From left to right, the columns are indexed by
the HZ, VT, and DR models. The VT intervals for Basque and California, and HZ interval for West Germany,
are degenerate due to zero in-sample residuals from interpolation.

lent ways of looking at the same problem in the absence of any additional considerations;
(ii) further, we demonstrate that even though these approaches may share the same point
estimate, the source of randomness assumed by each approach leads to different esti-
mands and different quantifications of uncertainty.

Our results show that assumptions made by researchers that may appear arbitrary about
the source of randomness result in different inferences. This is expected in observational
work because no randomization was actually implemented. Nevertheless, it is important
to check the sensitivity of reported results to these randomness source assumptions. A po-
tentially fruitful path forward is to build upon the principles of predictability, computabil-
ity, and stability (PCS) (Yu and Kumbier (2020)) to create measures that incorporate our
uncertainty over randomness source assumptions. We leave it to future work to formalize
a treatment of this problem.
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APPENDIX A: PROOFS FOR SECTION 3

This section provides the proofs for the formal results in Section 3.

A.1. Proof of Theorem 1

PROOF: (i) [OLS] Consider HZ regression. The optimality conditions state

∇³‖yT − Y 0³‖2
2 = 0�

Solving for ³, we derive Y ′
0Y 0³ = Y ′

0yT . Using the pseudoinverse, we obtain ³̂ =
(Y ′

0Y 0)†Y ′
0yT = Y †

0yT . Thus, the HZ prediction is given by Ŷ hz
NT (0) = 〈yN�Y

†
0yT 〉.

Following the arguments above for VT regression, we obtain ̂́ = (Y ′
0)†yN and Ŷ vt

NT (0) =
〈yT � (Y ′

0)†yN〉. Given that (Y ′
0)† = (Y †

0)′, the proof for OLS is complete.

(ii) [PCR] The proof follows that of OLS with Y
(k)
0 in place of Y 0.

(iii) [Ridge] Following the proof for OLS, we obtain Ŷ hz
NT (0) = 〈yN� (Y ′

0Y 0 +λ2I)−1Y ′
0yT 〉

and Ŷ vt
NT (0) = 〈yT � (Y 0Y

′
0 + λ2I)−1Y 0yN〉. Observing (Y ′

0Y 0 + λI)−1Y ′
0 = Y ′

0(Y 0Y
′
0 + λI)−1

completes the proof. Q.E.D.

A.2. Proof of Theorem 2

To prove Theorem 2, we first establish our results for lasso and elastic net in Ap-
pendix A.2.1 and simplex regression in Appendix A.2.2, and then assemble them together
in Appendix A.2.3.

A.2.1. Lasso and Elastic Net Regressions

We first establish a general result in Lemma 2 for �p-penalties, where p = 2/K and K
is an integer g 1, based on the contributions of Hoff (2017). More formally, consider the
following:

(a) HZ regression: for K g 1 and λ > 0,

³̂ = argmin
³

‖yT − Y 0³‖2
2 + λ‖³‖p

p� with Ŷ hz
NT (0) = 〈yN� ³̂〉� (22)

(b) VT regression: for K g 1 and λ > 0,

̂́ = argmin
´

∥∥yN − Y ′
0´

∥∥2

2
+ λ‖´‖p

p� with Ŷ vt
NT (0) = 〈yT �̂́〉� (23)

Note that K = 2 yields lasso regression while K > 2 yields non-convex penalties. As such,
we will use Lemma 2 to establish our results for lasso and elastic net regressions. We
relegate the proof of Lemma 2 to Appendix A.2.4.

LEMMA 2: For any K g 1 and λ > 0, a HZ and VT regression solution is

Ŷ hz
NT (0) = 〈yN� ³̂1 ◦ · · · ◦ ³̂K〉� and Ŷ vt

NT (0) = 〈yT �̂́1 ◦ · · · ◦ ̂́
K〉�

where for every kfK,

³̂k =
(
D(³̂∼k)Y ′

0Y 0D(³̂∼k) +
λ

K
I

)−1

D(³̂∼k)Y ′
0yT �
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̂́
k =

(
D(̂́∼k)Y 0Y

′
0D(̂́∼k) +

λ

K
I

)−1

D(̂́∼k)Y 0yN�

³̂∼k = ³̂1 ◦ · · · ◦ ³̂k−1 ◦ ³̂k+1 ◦ · · · ◦ ³̂K , ̂́
∼k = ̂́

1 ◦ · · · ◦ ̂́
k−1 ◦ ̂́

k+1 ◦ · · · ◦ ̂́
K , and D(³̂∼k)

and D(̂́∼ k) are diagonal matrices formed from ³̂∼k and ̂́
∼k, respectively.

LEMMA 3—Lasso and Elastic Net Regressions: HZ �= VT for (i) lasso and (ii) elastic net.

PROOF: (i) [Lasso] By Lemma 2 for K = 2 and λ= λ1 > 0, a HZ regression solution is

Ŷ hz
NT (0) = 〈yN� ³̂1 ◦ ³̂2〉� (24)

where ³̂1+k = (D(³̂2−k)Y ′
0Y 0D(³̂2−k) + (λ1/2)I)−1D(³̂2−k)Y ′

0yT for k ∈{0�1}.
Similarly, a VT regression solution is given by

Ŷ vt
NT (0) = 〈yT �̂́1 ◦ ̂́

2〉� (25)

where ̂́
1+k = (D(̂́2−k)Y 0Y

′
0D(̂́2−k) + (λ1/2)I)−1D(̂́2−k)Y 0yN for k ∈{0�1}.

From (24), we see that the HZ regression solution can be linear in yN and at least
quadratic in yT . On the other hand, (25) reveals that the VT regression solution can be
linear in yT and at least quadratic in yN . Since the lasso solution is unique under the as-
sumption the entries of Y 0 are drawn from a continuous distribution, this implies that HZ

and VT regressions do not yield matching estimates in general.
(ii) [Elastic net] Consider HZ regression. We rewrite (2) in a lasso formulation:

³̂∗ = argmin
³∗

∥∥y∗
T − Y ∗

0³
∗
∥∥2

2
+ λ∗

∥∥³∗
∥∥

1
� (26)

where q∗ = (y′
T �0

′)′, Y ∗
0 = (1 + λ2)−1/2(Y ′

0�
√
λ2I)′, λ∗ = (1 + λ2)−1/2λ1, and ³∗ = (1 +

λ2)1/2³. We apply Lemma 2 to (26) with K = 2 and λ= λ∗ > 0 to obtain

Ŷ hz
NT (0) =

〈
yN� ³̂

∗
1 ◦ ³̂∗

2

〉
√

1 + λ2

� (27)

where ³̂∗
1+k = ((1 + λ2)−1/2D(³̂∗

2−k)(Y ′
0Y 0 + λ2I)D(³̂∗

2−k) + λ1

2
I)−1D(³̂∗

2−k)Y ′
0yT for k ∈

{0�1}.
Similarly, for VT regression, we proceed as above to obtain

Ŷ vt
NT (0) =

〈
yT �̂́

∗
1 ◦ ̂́∗

2

〉
√

1 + λ2

� (28)

where ̂́∗
1+k = ((1 + λ2)−1/2D(̂́∗

2−k)(Y 0Y
′
0 + λ2I)D(̂́∗

2−k) + λ1

2
I)−1D(̂́∗

2−k)Y 0yN for k ∈
{0�1}.

From (27), we see that the HZ solution can be linear in yN and at least quadratic in
yT . On the other hand, (28) reveals that the VT solution can be linear in yT and at least
quadratic in yN . Since the elastic net regression solution is unique, this implies that HZ

and VT regressions do not yield matching estimates in general. Q.E.D.
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A.2.2. Simplex Regression

LEMMA 4—Simplex regression: HZ �= VT for simplex regression.

PROOF: Consider HZ regression. We write the Lagrangian of (4) as

³̂ = argmin
³

‖yT − Y 0³‖2
2 + λ‖³‖2

2 −
(
θhz

)′
³+ νhz

(
1

′³− 1
)
�

where θhz ∈ R
T0 and νhz ∈ R. By the Karush-Kuhn-Tucker (KKT) conditions, optimality is

achieved if the following are satisfied: (i) ³̂ � 0 and 1
′³̂ = 1; (ii) θ̂

hz � 0; (iii) θ̂hz
i α̂i = 0 for

i = 1� � � � � T0; (iv) ³̂= (Y ′
0Y 0 +λI)−1(Y ′

0yT + (1/2)θ̂
hz − (̂νhz/2)1). Thus, given primal and

dual feasible variables (³̂� θ̂
hz
� ν̂hz), we can write the final HZ prediction as

Ŷ hz
NT (0) = Ŷ

hz�ols
NT (0) + (1/2)y′

N

(
Y ′

0Y 0 + λI
)−1(̂

θ
hz − ν̂hz1

)
�

where Ŷ
hz�ols
NT (0) = y′

N (Y ′
0Y 0 +λI)−1Y ′

0yT converges to the prediction corresponding to the
OLS solution with minimum �2-norm as λ → 0+. Similarly, for VT regression, the KKT

conditions are (i) ̂́ � 0 and 1
′̂́ = 1; (ii) θ̂

vt � 0; (iii) θ̂vt
i β̂i = 0 for i = 1� � � � �N0; (iv)

̂́ = (Y 0Y
′
0 + λI)−1(Y 0yN + (1/2)θ̂

vt − (̂νvt/2)1). For primal and dual feasible variables

(̂́� θ̂
vt
� ν̂vt), this yields

Ŷ vt
NT (0) = Ŷ

vt�ols
NT (0) + (1/2)y′

T

(
Y 0Y

′
0 + λI

)−1(̂
θ

vt − ν̂vt1
)
�

where Ŷ
vt�ols
NT (0) = y′

T (Y 0Y
′
0 +λI)−1Y 0yN converges to the prediction corresponding to the

OLS solution with minimum �2-norm as λ → 0+. Notably, as per Theorem 1, Ŷ hz�ols
NT (0) =

Ŷ
vt�ols
NT (0) = Ŷ ols

NT (0) for any λ g 0. As a result,

Ŷ hz
NT (0) = Ŷ ols

NT (0) + (1/2)y′
N

(
Y ′

0Y 0 + λI
)−1(̂

θ
hz − ν̂hz1

)
� (29)

Ŷ vt
NT (0) = Ŷ ols

NT (0) + (1/2)y′
T

(
Y 0Y

′
0 + λI

)−1(̂
θ

vt − ν̂vt1
)
� (30)

As seen from (29) and (30), the leading terms in the HZ and VT simplex regression pre-
dictions are identical. The remaining terms, however, can differ from one another. As an

example, consider N = T with Y 0 = I , yN = 0, yT = (1 + λ)(̂θ
vt − ν̂vt1). By construction,

observe that ̂́ = (2(1 + λ))−1 (̂θ
vt − ν̂vt1). Recall from the KKT conditions for VT regres-

sion that ̂́ � 0 and 1
′̂́ = 1. Therefore, at least one entry of (̂θ

vt − ν̂vt1) must be strictly
positive. This yields

(1 + λ)−1y′
T

(̂
θ

vt − ν̂vt1
)
=

(̂
θ

vt − ν̂vt1
)′(̂

θ
vt − ν̂vt1

)
> 0�

Combining the above, we obtain Ŷ hz
NT (0) = 0 and Ŷ vt

NT (0) > 0. Q.E.D.

A.2.3. Putting Everything Together—Proof of Theorem 2

PROOF: The proof is immediate from Lemmas 3 and 4. Q.E.D.
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A.2.4. Proof of Lemma 2: �p-Penalties

PROOF: We recall the Hadamard product parameterization (HPP): for any vector z

and integer K g 1, ‖z‖p
p = minz1◦···◦zK=z(1/K)

∑K

k=1 ‖zk‖2
2, where ◦ denotes the Hadamard

(componentwise) product. We rewrite our subclass of �p-penalties, that is, (22) and (23),
as sums of �2-penalties via the HPP technique:

(³̂1� � � � � ³̂K) = argmin
³1�����³K

∥∥yT − Y 0(³1 ◦ · · · ◦³K)
∥∥2

2
+

λ

K

K∑

k=1

‖³k‖2
2� (31)

(̂́1� � � � �̂́K) = argmin
´1�����´K

∥∥yN − Y ′
0(´1 ◦ · · · ◦´K)

∥∥2

2
+

λ

K

K∑

k=1

‖´k‖2
2� (32)

where ³̂ = ³̂1 ◦ · · · ◦ ³̂K and ̂́ = ̂́
1 ◦ · · · ◦ ̂́

K . Below, we leverage the results of Hoff
(2017), which provides an alternating ridge regression algorithm to solve for (31)–(32).

Consider HZ regression. Let us solve for ³k by fixing ³k′ for k′ �= k. To begin, observe
that (³1 ◦ · · · ◦³K)′Y ′

0Y 0(³1 ◦ · · · ◦³K) =³′
k(Y ′

0Y 0 ◦³∼k³
′
∼k)³k and (³1 ◦ · · · ◦³K)′Y ′

0yT =
³′

k(³∼k ◦ Y ′
0yT ), where ³∼k = ³1 ◦ · · · ◦ ³k−1 ◦ ³k+1 ◦ · · · ◦ ³K . This allows us to write the

optimality conditions as

∇³k

{
³′

k

(
Y ′

0Y 0 ◦³∼k³
′
∼k + (λ/K)I

)
³k − 2³′

k

(
³∼k ◦ Y ′

0yT

)}
= 0�

This is quadratic in ³k for fixed ³∼k. Thus, the unique minimizer at convergence is

³̂k =
(
Y ′

0Y 0 ◦ ³̂∼k³̂
′
∼k + (λ/K)I

)−1(
³̂∼k ◦ Y ′

0yT

)
�

where ³̂∼k = ³̂1 ◦ · · · ◦ ³̂k−1 ◦ ³̂k+1 ◦ · · · ◦ ³̂K . Leveraging properties of the Hadamard
product in Styan (1973), we rewrite Y ′

0Y 0 ◦ ³̂∼k³̂
′
∼k = D(³̂∼k)Y ′

0Y 0D(³̂∼k) and Y ′
0yT ◦

³̂∼k = D(³̂∼k)Y ′
0yT , where D(³̂∼k) is the diagonal matrix formed from ³̂∼k. Thus, ³̂k =

(D(³̂∼k)Y ′
0Y 0D(³̂∼k) + (λ/K)I)−1D(³̂∼k)Y ′

0yT . Turning to VT regression, we have ̂́
k =

(D(̂́∼k)Y 0Y
′
0D(̂́∼k)+ (λ/K)I)−1D(̂́∼k)Y 0yN , where ̂́

∼k = ̂́
1 ◦· · ·◦̂́

k−1 ◦̂́
k+1 ◦· · ·◦̂́

K

and D(̂́∼k) is the diagonal matrix formed from ̂́
∼k. This completes the proof. Q.E.D.

A.3. Proof of Corollary 1

PROOF: Consider OLS. Recall that Ŷ hz
NT (0) = 〈yN� ³̂〉 with ³̂ = Y †

0yT and Ŷ vt
NT (0) =

〈yT �̂́〉 with ̂́ = (Y ′
0)†yN . By Theorem 1, Ŷ hz

NT (0) = Ŷ vt
NT (0). Thus,

Ŷ dr
NT (0) = 〈yT �̂́〉 + 〈yN� ³̂〉 −

〈
³̂�Y ′

0
̂́〉

= 2〈yT �̂́〉 −
〈
³̂�Y ′

0
̂́〉
� (33)

Since (Y ′
0)† = (Y †

0)′, we have

〈
³̂�Y ′

0
̂́〉

= y′
T

(
Y ′

0

)†
Y ′

0

(
Y ′

0

)†
yN = y′

T

(
Y ′

0

)†
yN = y′

T
̂́� (34)

Plugging (34) into (33), we conclude Ŷ dr
NT (0) = 2〈yT �̂́〉 − 〈yT �̂́〉 = Ŷ vt

NT (0) = Ŷ hz
NT (0).

Now, observe that the same arguments above hold when Y
(k)
0 takes the place of Y 0 for any

k<R. Therefore, the same reduction can be derived for PCR. Q.E.D.
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A.4. Proof of Corollary 2

PROOF: Let Y hz
0 = [1�Y 0] and Y vt

0 = [1�Y ′
0]. The proof is immediate from Theorem 1 by

noting that (Y hz
0 )′ �= Y vt

0 . Q.E.D.

A.5. Proof of Corollary 3

PROOF: Consider HZ ridge regression. The optimality conditions give

∇(α0�α1�³)

{
‖yT − Y 0³− α01‖2

2 + ‖yN −³11‖2
2 + λ‖³‖2

2

}
= 0�

Solving for α0, we have α̂0 = (1/N0)〈yT �1〉, which uses Y ′
01 = 0. Solving for α1, we have

α̂1 = (1/T0)〈yN�1〉. Finally, solving for ³, we have ³̂= (Y ′
0Y 0 + λI)−1Y ′

0yT .
Identical arguments for VT regression yield β̂0 = (1/T0)〈yN�1〉, β̂1 = (1/N0)〈yT �1〉, and

̂́ = (Y 0Y
′
0 + λI)Y 0yN .

Further, Theorem 1 gives 〈yN� ³̂〉 = 〈yT �̂́〉. Observing that α̂0 = β̂1 and β̂0 = α̂1 proves
our ridge result. Setting λ = 0 and using the pseudoinverse, we have our OLS result. The

result for PCR is established from OLS by substituting Y
(k)
0 for Y 0. This completes the

proof. Q.E.D.

APPENDIX B: PROOFS FOR SECTION 4

This section provides the proofs for the formal results in Section 4.

B.1. Proof of Theorem 3

To establish Theorem 3, we first state a few useful results.

LEMMA 5—Theorem 2.7.1 of Lehmann (2000): Let Xi for i = 1� � � � � n be independently

distributed with means E[Xi] = ζi and variances σ2
i , and with finite third moments. Let X̄ =

(1/n)
∑n

i=1 Xi. Then Var(X̄)−1/2 · (X̄ −E[X̄])
d−→N (0�1), provided

(
n∑

i=1

E
[
|Xi − ζi|3

]
)2

= o

((
n∑

i=1

σ2
i

)3)
�

LEMMA 6: Consider a random vector x and random matrix A. Let E[x|A] = 0 and
Cov(x|A) = �. Then E[x′Ax|A] = tr(A�).

FINISHING PROOF OF THEOREM 3: (i) [HZ model] Let Assumption 1 hold. By (15),
Lemma 5 yields

Var
(
ŶNT (0)|yN�Y 0

)−1/2 ·
(
ŶNT (0) −E

[
ŶNT (0)|yN�Y 0

]) d−→N (0�1)�

To evaluate E[ŶNT (0)|yN�Y 0], we first observe that

E
[
ŶNT (0)|yN�Y 0

]
= E

[〈
yN�Y

†
0yT

〉
|yN�Y 0

]
= y′

NY
†
0Y 0³

∗ = y′
NH

v³∗� (35)

Moving to the variance term, we note that

Var
(
ŶNT (0)|yN�Y 0

)
= y′

N Cov(³̂|yN�Y 0)yN � (36)
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Towards evaluating the above, we note that

Cov(³̂|yN�Y 0) = Y †
0 Cov(εT|yN�Y 0)

(
Y ′

0

)† = Y †
0�

hz

T

(
Y ′

0

)†
� (37)

Plugging (37) into (36), we obtain

Var
(
ŶNT (0)|yN�Y 0

)
= y′

NY
†
0�

hz

T

(
Y ′

0

)†
yN = ̂́′

�
hz

T
̂́� (38)

where we recall that ̂́ = (Y ′
0)†yN . Putting it all together, we conclude

(̂́′
�

hz

T
̂́)−1/2 ·

(
ŶNT (0) −

〈
yN�H

v³∗〉) d−→N (0�1)�

(ii) [VT model] Let Assumption 2 hold. Following the arguments above, we have

(
³̂′�

vt

N³̂
)−1/2 ·

(
ŶNT (0) −

〈
yT �H

u´∗〉) d−→N (0�1)�

(iii) [DR model] Let Assumption 3 hold. We write

ŶNT (0) = y′
NY

†
0yT =

∑

ifN0

∑

tfT0

(
Y †

0

)
it
YiTYNt � (39)

Observe that (39) is a sum of independent random variables with E[YiTYNt|Y 0] =
E[YiT|Y 0]E[YNt|Y 0] and Var(YiTYNt|Y 0) = E[YiT|Y 0]2σ2

Nt +E[YNt|Y 0]2σ2
iT +σ2

iTσ
2
Nt . Lem-

ma 5 then establishes that

Var
(
ŶNT (0)|Y 0

)−1/2 ·
(
ŶNT (0) −E

[
ŶNT (0)|Y 0

]) d−→N (0�1)�

Our aim is to evaluate E[ŶNT (0)|Y 0] and Var(ŶNT (0)|Y 0). Towards the former, we use
Assumption 3 with the law of total expectation to obtain

E
[
ŶNT (0)|Y 0

]
= E

[
E
[
y′
NY

†
0

(
Y 0³

∗ + εT

)
|εN�Y 0

]
|Y 0

]

= E
[(
Y ′

0´
∗ + εN

)′
Y †

0Y 0³
∗|Y 0

]
=

〈
´∗�Y 0³

∗〉�

Note that we have used the fact that yN is deterministic given (εN�Y 0). Similarly, by the
law of total variance,

Var
(
ŶNT (0)|Y 0

)
= E

[
Var

(
ŶNT (0)|εN�Y 0

)
|Y 0

]
+ Var

(
E
[
ŶNT (0)|εN�Y 0

]
|Y 0

)
� (40)

Following the derivation of (38), we have

E
[
Var

(
ŶNT (0)|εN�Y 0

)
|Y 0

]
=

(
Y ′

0´
∗)′
A

(
Y ′

0´
∗) +E

[
ε′
NAεN|Y 0

]

+ 2E
[
ε′
NY

′
0´

∗|Y 0

]
� (41)

where A = Y †
0�

dr

T (Y ′
0)†. Notice that Assumption 3 gives E[ε′

NY
′
0´

∗|Y 0] = 0. Since A is de-
terministic given Y 0, Lemma 6 yields

E
[
ε′
NAεN|Y 0

]
= tr

(
A�

dr

N

)
� (42)
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Following the arguments that led to the derivation of (35), we have

Var
(
E
[
ŶNT (0)|εN�Y 0

]
|Y 0

)
= Var

(
y′
NH

v³∗|Y 0

)
=

(
Hv³∗)′

�
dr

N

(
Hv³∗)� (43)

Plugging (41), (42), and (43) into (40), we arrive at our desired result. Q.E.D.

B.2. Proof of Lemma 1

We first state a useful lemma to prove Lemma 1.

LEMMA 7—DR model: Let Assumption 3 hold. Then,

E
[
v̂dr

0 |Y 0

]
=

(
Hu´∗)′

E[�̂T|Y 0]
(
Hu´∗) + tr

(
Y †

0E[�̂T|Y 0]
(
Y ′

0

)†
�

dr

N

)

+
(
Hv³∗)′

E[�̂N|Y 0]
(
Hv³∗) + tr

(
Y †

0�
dr

T

(
Y ′

0

)†
E[�̂N|Y 0]

)

− tr
(
Y †

0E[�̂T|Y 0]
(
Y ′

0

)†
E[�̂N|Y 0]

)
�

FINISHING PROOF OF LEMMA 1: Let Hu
⊥ = I −Hu and Hv

⊥ = I −Hv.
(i) [HZ model] Let Assumption 1 hold. Taking note that Hu

⊥Y 0 = 0,

∥∥Hu
⊥yT

∥∥2

2
= y′

TH
u
⊥yT

= (Y 0³+ εT )′Hu
⊥(Y 0³+ εT )

= ε′
TH

u
⊥εT �

Applying Lemma 6 then gives

E
[
ε′
TH

u
⊥εT|yN�Y 0

]
= tr

(
Hu

⊥
)(
σhz

T

)2 = (N0 −R)
(
σhz

T

)2
� (44)

where the final equality follows because the trace of a projection matrix equals its rank.

Taken altogether, we have E[�̂T|yN�Y 0] = �
hz

T . Therefore,

E
[
v̂hz

0 |yN�Y 0

]
= ̂́′

E[�̂T|yN�Y 0]̂́ = vhz
0 �

(ii) [VT model] Let Assumption 2 hold. Following the arguments above, we conclude

that E[�̂N|yT �Y 0] =�
vt

N and E[̂vvt
0 |yT �Y 0] = vvt

0 .
(iii) [DR model] Let Assumption 3 hold. Following the arguments that led to (44), we

obtain E[�̂T|Y 0] = �
dr

T and E[�̂N|Y 0] =�
dr

N . Applying Lemma 7 then gives E[̂vdr
0 |Y 0] = vdr

0 .
The proof is complete. Q.E.D.

B.2.1. Proof of Lemma 7

PROOF: By linearity of expectations,

E
[
v̂dr

0 |Y 0

]
= E

[
v̂hz

0 |Y 0

]
+E

[
v̂vt

0 |Y 0

]
−E

[
tr

(
Y †

0�̂T

(
Y ′

0

)†
�̂N

)
|Y 0

]
� (45)

We evaluate each term in (45).



2152 SHEN, DING, SEKHON, AND YU

Beginning with the first term, note that the randomness in �̂T stems from εT and ̂́ is
deterministic given (εN�Y 0). As such, Assumption 3 with Lemma 6 gives

E
[
v̂hz

0 |Y 0

]
= E

[̂́′
�̂T

̂́|Y 0

]

= E
[
E
[̂́′

�̂T
̂́|εN�Y 0

]
|Y 0

]

= E
[
y′
NY

†
0E[�̂T|Y 0]

(
Y ′

0

)†
yN|Y 0

]

= E
[(
Y ′

0´
∗ + εN

)
Y †

0E[�̂T|Y 0]
(
Y ′

0

)†(
Y ′

0´
∗ + εN

)
|Y 0

]

=
(
Hu´∗)′

E[�̂T|Y 0]
(
Hu´∗) + tr

(
Y †

0E[�̂T|Y 0]
(
Y ′

0

)†
�

dr

N

)
�

By an analogous argument, we derive

E
[
v̂vt

0 |Y 0

]
=

(
Hv³∗)′

E[�̂N|Y 0]
(
Hv³∗) + tr

(
Y †

0�
dr

T

(
Y ′

0

)†
E[�̂N|Y 0]

)
�

Finally, we use the linearity of the trace operator with Assumption 3 to obtain

E
[
tr

(
Y †

0�̂T

(
Y ′

0

)†
�̂N

)
|Y 0

]
= E

[
E
[
tr

(
Y †

0�̂T

(
Y ′

0

)†
�̂N

)
|εN�Y 0

]
|Y 0

]

= E
[
tr

(
Y †

0E[�̂T|Y 0]
(
Y ′

0

)†
�̂N

)
|Y 0

]

= tr
(
Y †

0E[�̂T|Y 0]
(
Y ′

0

)†
E[�̂N|Y 0]

)
�

Putting everything together completes the proof. Q.E.D.
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THIS SUPPLEMENT IS STRUCTURED as follows. Appendix C complements Section 4.1.3
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APPENDIX C: CONFIDENCE INTERVALS FOR HETEROSKEDASTIC NOISE

In Section 4.1.3, we presented confidence intervals under homoskedastic noise. Here,
we present confidence intervals that are also motivated by Theorem 3 but for the het-

eroskedastic noise setting, that is, (�
hz

T
��

vt

N
��

dr

T
��

dr

N
) are diagonal matrices whose nonzero

entries are not necessarily identical. We construct our confidence intervals as in (18)
and (19) of Section 4.1.3 using two popular strategies to estimate the covariance ma-
trix.

Additional Notation. Recall Hu
= UU ′ and Hv

= V V ′. We define Hu

⊥
= I − Hu and

Hv

⊥
= I−Hv. With this notation, the HZ and VT in-sample errors can be written as Hu

⊥
yT =

yT − Y 0³̂ and Hv

⊥
yN = yN − Y ′

0
̂́, respectively.

C.1. Jackknife Variance Estimation

The first estimator is based on the jackknife. Traditionally, the jackknife estimates the
covariance of the regression coefficients (³̂�̂́). By analyzing said estimates, we derive
the following:

�̂
jack

T
= diag

([
Hu

⊥
◦Hu

⊥
◦ I

]†[
Hu

⊥
yT ◦Hu

⊥
yT

])
� (46)

�̂
jack

N
= diag

([
Hv

⊥
◦Hv

⊥
◦ I

]†[
Hv

⊥
yN ◦Hv

⊥
yN

])
� (47)
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LEMMA 8:
(i) [HZ model] Suppose Assumption 1 holds. If (Hu

⊥
◦ Hu

⊥
◦ I) is nonsingular, then we

have

E
[
�̂

jack

T |yN�Y 0

]
=�

hz

T +�hz
and E

[
v̂

hz�jack
0 |yN�Y 0

]
= vhz

0 + ³̂′�hz³̂�

where �hz
�� =

∑
j �=�(σ

hz
jT )2(Hu

�j)
2(1 −Hu

��)
−2 for �= 1� � � � �N0.

(ii) [VT model] Suppose Assumption 2 holds. If (Hv
⊥ ◦ Hv

⊥ ◦ I) is nonsingular, then we
have

E
[
�̂

jack

N |yT �Y 0

]
=�

vt

N + � vt and E
[
v̂

vt�jack
0 |yT �Y 0

]
= vvt

0 + ̂́′
� vt̂́�

where �vt
�� =

∑
j �=�(σ

vt
Nj)

2(Hv
�j)

2(1 −Hv
��)

−2 for �= 1� � � � �T0.

(iii) [DR model] Suppose Assumption 3 holds. If (Hu
⊥ ◦ Hu

⊥ ◦ I) and (Hv
⊥ ◦ Hv

⊥ ◦ I) are
nonsingular, then we have

E
[
�̂

jack

T |Y 0

]
= �

dr

T +�dr
�

E
[
�̂

jack

N |Y 0

]
= �

dr

N + � dr�

E
[
v̂dr�jack(Y 0)|Y 0

]
= vdr

0 +
(
Hu´∗

)′
�dr

(
Hu´∗

)
+

(
Hv³∗

)′
� dr

(
Hv³∗

)

+ tr
(
Y †

0�
dr
(
Y ′

0

)†
� dr

)
�

where �dr
�� and �dr

�� are defined analogously to �hz
�� and �vt

��, respectively, with (σdr
jT )2 and

(σdr
Nj)

2 in place of (σhz
jT )2 and (σ vt

Nj)
2, respectively.

Lemma 8 establishes that the jackknife is conservative, provided (Hu
⊥ ◦ Hu

⊥ ◦ I) and
(Hv

⊥ ◦ Hv
⊥ ◦ I) are nonsingular. Strictly speaking, the jackknife is well defined if these

quantities are singular, as seen through the pseudoinverse in (46) and (47). Lemma 8 con-
siders the nonsingular case for simplicity. We remark that max�H

u
�� < 1 and max�H

v
�� < 1

are sufficient conditions for invertibility.

C.2. Hartley–Rao–Kiefer (HRK) Variance Estimation

Next, we consider the covariance estimator proposed by Hartley, Rao, and Kiefer
(1969). We index this estimator by the authors, Hartley–Rao–Kiefer (HRK):

�̂
HRK

T = diag
([
Hu

⊥
◦Hu

⊥

]−1[
Hu

⊥
yT ◦Hu

⊥
yT

])
�

�̂
HRK

N = diag
([
Hv

⊥
◦Hv

⊥

]−1[
Hv

⊥
yN ◦Hv

⊥
yN

])
�

LEMMA 9:
(i) [HZ model] Suppose Assumption 1 holds. If (Hu

⊥ ◦Hu
⊥) is nonsingular, then we have

E
[
�̂

HRK

T |yN�Y 0

]
= �

hz

T and E
[
v̂

hz�HRK
0 |yN�Y 0

]
= vhz

0 �
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(ii) [VT model] Suppose Assumption 2 holds. If (Hv
⊥

◦Hv
⊥

) is nonsingular, then we have

E
[
�̂

HRK

N |yT �Y 0

]
=�

vt

N and E
[
v̂

vt�HRK
0 |yT �Y 0

]
= vvt

0 �

(iii) [DR model] Suppose Assumption 3 holds. If (Hu
⊥ ◦Hu

⊥) and (Hv
⊥ ◦Hv

⊥) are nonsin-
gular, then we have

E
[
�̂

HRK

T |Y 0

]
= �

dr

T � E
[
�̂

HRK

N |Y 0

]
=�

dr

N � and E
[
v̂

dr�HRK
0 |Y 0

]
= vdr

0 �

Lemma 9 establishes that the HRK estimator is unbiased, provided (Hu
⊥ ◦ Hu

⊥) and
(Hv

⊥ ◦ Hv
⊥) are invertible. To discuss sufficient conditions for invertibility, consider

(Hu ◦Hu). A sufficient condition is strict diagonal dominance (Varga, 1962): (1 −Hu
��)

2 >∑
j �=�(H

u
�j)

2. Notice that Hu is an orthogonal projector and is thus idempotent, that is,

(Hu)2 =Hu, and symmetric. Therefore,

Hu
�� =

(
Hu

��

)2
+

∑

j �=�

(
Hu

�j

)2
=⇒

∑

j �=�

(
Hu

�j

)2
=Hu

��

(
1 −Hu

��

)
�

which allows us to simplify the condition as (1 − Hu
��)

2 >Hu
�� − (Hu

��)
2. Thus, max�H

u
�� <

1/2 is a sufficient condition for invertibility. Since tr(Hu) = R, this restricts R < N0/2.
The same arguments apply for (Hv ◦Hv).

C.3. Discussion

We highlight that Lemmas 1 (from Section 4.1.3), 8, and 9 only hold in expectation.
For any particular realization, v̂dr

0 may exhibit unexpected properties. For instance, if

tr(Y †
0�̂T (Y ′

0)†�̂N) > max{̂vhz
0 � v̂vt

0 }, then v̂dr
0 < min{̂vhz

0 � v̂vt
0 }; thus, the mixed coverage will be

smaller than both HZ and VT coverages. In fact, v̂dr
0 can be negative if tr(Y †

0�̂T (Y ′

0)†�̂N) >
v̂hz

0 + v̂vt
0 , which may occur if both HZ and VT in-sample errors are “too large.” For these

scenarios, one naïve solution is to modify v̂dr
0 as v̂dr

0 = v̂hz
0 + v̂vt

0 , which is conservative by
Lemmas 1, 8, and 9. However, this case is arguably better resolved with a different point
estimator altogether.

C.4. Empirical Applications—Extended

We extend our analysis in Section 5.3.3 to include results with the heteroskedastic confi-
dence intervals. Figure C.1 presents the jackknife-based confidence intervals for our three
case studies. We underscore that the conclusions drawn in Section 5.3.3 hold here as well.
We remark that the conditions necessary for the HRK-based confidence intervals do not
hold for OLS.

C.5. Deferred Proofs From This Section

We present the proofs for this section.

C.5.1. Proof of Lemma 8

PROOF: Before we establish the biases of (�̂
jack

T � �̂
jack

N ), we first justify their forms. Jack-
knife is a popular approach to estimate the covariances of (³̂�̂́). Below, we follow the
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FIGURE C.1.—OLS estimates with jackknife confidence intervals. From top to bottom, the rows are indexed
by the Basque, California, and West Germany studies. From left to right, the columns are indexed by the HZ,
VT, and DR models.

standard techniques to derive the jackknife estimate of these objects, which will then be

used to derive (�̂
jack

T
� �̂

jack

N
). Without loss of generality, we begin with ³̂. Notably, while

standard derivations consider Y 0 with full column rank, we consider a general matrix Y 0

that may be rank deficient. This difference is subtle so the following proof is by no means
novel. We provide it simply for completeness.

To describe the jackknife, we define ³̂∼i as the minimum �2-norm solution to (2), where
λ1 = λ2 = 0, without the ith observation, that is,

³̂∼i =
(
Y ′

0�∼i
Y 0�∼i

)†
Y ′

0�∼i
yT�∼i� (48)

where Y 0�∼i and yT�∼i correspond to Y 0 and yT without the ith observation. We define the
pseudo-estimator as ³̃i = T0³̂ − (T0 − 1)³̂∼i. With these quantities defined, we write the
jackknife variance estimator as

V̂
jack

=
1

(T0 − 1)2

∑

ifN0

(³̃i − ³̂)(³̃i − ³̂)′� (49)
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To evaluate this quantity, we will rewrite ³̂∼i in a more convenient form. In particular,

Y ′

0�∼iY 0�∼i = Y ′

0Y
′

0 − yiy
′

i�

Y ′

0�∼iyT�∼i = Y ′

0yT − yiYiT �

where yi = [Yit : t f T0] is the ith row of Y 0. We do not assume that Y ′

0Y 0 is nonsingular. As
such, we use a generalized form of the Sherman–Morrison formula (Cline, 1965, Meyer,
1973) to obtain

(
Y ′

0�∼iY 0�∼i

)†
=

(
Y ′

0Y 0

)†
+

(
1 −Hu

ii

)−1(
Y ′

0Y 0

)†
yiy

′

i

(
Y ′

0Y 0

)†
� (50)

Recall ³̂= (Y ′

0Y 0)†Y ′

0yT and note YiT − y′
i³̂ is the ith element of ε̂T = Hu

⊥
yT . Using these

facts, we plug (50) into (48) to yield

³̂∼i =
[(
Y ′

0Y 0

)†
+

(
1 −Hu

ii

)−1(
Y ′

0Y 0

)†
yiy

′

i

(
Y ′

0Y 0

)†](
Y ′

0yT − yiYiT

)

= ³̂−
(
Y ′

0Y 0

)†
yiYiT +

(
1 −Hu

ii

)−1(
Y ′

0Y 0

)†
yiy

′

i³̂

−Hu

ii

(
1 −Hu

ii

)−1(
Y ′

0Y 0

)†
yiYiT

= ³̂−
(
1 −Hu

ii

)−1(
Y ′

0Y 0

)†
yîεiT � (51)

Inserting (51) into our pseudo-estimate, we have

³̃i = T0³̂− (T0 − 1)
(
³̂−

(
1 −Hu

ii

)−1(
Y ′

0Y 0

)†
yîεiT

)

= ³̂+ (T0 − 1)
(
1 −Hu

ii

)−1(
Y ′

0Y 0

)†
yîεiT � (52)

Inserting (52) into (49), we have

V̂
jack

=
(
Y ′

0Y 0

)†
(∑

ifN0

ε̂2
iT(

1 −Hu

ii

)2
yiy

′

i

)(
Y ′

0Y 0

)†

=
(
Y ′

0Y 0

)†
Y ′

0�Y 0

(
Y ′

0Y 0

)†
�

where � is a diagonal matrix with 
ii = ε̂2
iT (1−Hu

ii)
−2. Equivalently, � = diag([Hu

⊥
◦Hu

⊥
◦

I]†[̂εT ◦ ε̂T ]). It then follows that

y′

N V̂
jack

yN = ̂́′

�̂́�

To arrive at (46), we define �̂
jack

T = �. This corresponds to the EHW estimator with the
jackknife correction. We derive (47) for ̂́ by applying the same arguments above. Now,

we will evaluate the biases of (�̂
jack

T � �̂
jack

N ).
(i) [HZ model] Let Assumption 1 hold. We define (σhz

iT )2 = Var(εiT|yN�Y 0) for i =

1� � � � �N0. Observe that

E
[(
Hu

⊥
◦Hu

⊥
◦ I

)†
(̂εT ◦ ε̂T )|yN�Y 0

]
=

(
Hu

⊥
◦Hu

⊥
◦ I

)†
E[̂εT ◦ ε̂T|yN�Y 0]� (53)
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To evaluate (53), we follow the derivations of (35) and (37) to obtain

E[̂εT|yN�Y 0] =Hu
⊥Y 0³

∗ = 0� (54)

Cov(̂εT|yN�Y 0) =Hu
⊥�

hz

T H
u
⊥� (55)

Recall that E[X2] = Var(X) + E[X]2 for any random variable X . Thus, combining (54)
with (55) gives

E[̂εT ◦ ε̂T|yN�Y 0] =
(
Hu

⊥�
hz

T H
u
⊥ ◦ I

)
1� (56)

Let γ̂ = E[̂εT ◦ ε̂T|yN�Y 0]. By (56), the �th entry of γ̂ can be written as

γ̂� =
∑

j �=�

(
Hu

j�

)2(
σhz

jT

)2
+

(
1 −Hu

��

)2(
σhz

�T

)2
�

where Hu
j� is the (j� �)th entry of Hu. In turn, this allows us to rewrite (56) as

γ̂ =
(
Hu

⊥
◦Hu

⊥

)
�

hz

T 1� (57)

Next, let ζ̂ = (Hu
⊥ ◦Hu

⊥ ◦ I)−1γ̂ . Notice that the �th entry of ζ̂ is given by

ζ̂� =
(
σhz

�T

)2
+

∑

j �=�

(
Hu

�j

)2

(
1 −Hu

��

)2

(
σhz

jT

)2
�

Therefore, diag(̂ζ) = �
hz

T + �hz, where �hz
�� =

∑
j �=�(σ

hz
jT )2(Hu

�j)
2(1 − Hu

��)
−2 for � =

1� � � � �N0. Notice if max�H
u
�� < 1, then (Hu

⊥ ◦ Hu
⊥ ◦ I) is nonsingular, that is, the

pseudo-inverse is precisely the inverse. In this situation, plugging the above into (53)
gives

E
[
�̂

jack

T |yN�Y 0

]
= diag

((
Hu

⊥ ◦Hu
⊥ ◦ I

)−1
E[̂εT ◦ ε̂T|yN�Y 0]

)

= diag
((
Hu

⊥
◦Hu

⊥
◦ I

)−1
γ̂
)

= diag(̂ζ)

=�
hz

T +�hz
� (58)

From this, we conclude that

E
[
v̂

hz�jack
0 |yN�Y 0

]
= ̂́′

E
[
�̂

jack

T |yN�Y 0

]̂́

= ̂́′(
�

hz

T +�hz
)̂́

= vhz
0 + ̂́′

�hẑ́�

where we note that ̂́′
�hẑ́ g 0.

(ii) [VT model] Let Assumption 2 hold. Following the arguments above, we conclude

E[�̂
jack

N |yT �Y 0] = �
vt

N + � vt, where �vt
�� =

∑
j �=�(σ

vt
Nj)

2(Hv
�j)

2(1 − Hv
��)

−2 for � = 1� � � � �T0.

Thus, E[̂v
vt�jack
0 |yT �Y 0] = vvt

0 + ³̂′� vt³̂, where we note that ³̂′� vt³̂g 0.
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(iii) [DR model] Let Assumption 3 hold. We define (σdr
iT )2 = Var(εiT|Y 0) for i =

1� � � � �N0 and (σdr
Nt)

2 = Var(εNt|Y 0) for t = 1� � � � �T0. Following the arguments that led to

(58), we obtain E[�̂
jack

T |Y 0] = �
dr

T +�dr, where �dr
�� =

∑
j �=�(σ

dr
jT )2(Hu

�j)
2(1 −Hu

��)
−2 for � =

1� � � � �N0. Similarly, we obtain E[�̂
jack

N |Y 0] = �
dr

N + � dr, where �dr
�� =

∑
j �=�(σ

dr
Nj)

2(Hv
�j)

2(1 −

Hv
��)

−2 for �= 1� � � � �T0. Applying Lemma 7 then gives

E
[
v̂

dr�jack
0 |Y 0

]
= vdr

0 +
(
Hu´∗

)′
�dr

(
Hu´∗

)
+

(
Hv³∗

)′
� dr

(
Hv³∗

)
+ tr

(
Y †

0�
dr
(
Y ′

0

)†
� dr

)
�

The proof is complete. Q.E.D.

C.5.2. Proof of Lemma 9

PROOF: We adopt the strategy of Hartley, Rao, and Kiefer (1969) to prove our desired
result.

(i) [HZ model] Let Assumption 1 hold. As in the proof of Lemma 8, we define ε̂T =

Hu
⊥yT . Observe

E
[(
Hu

⊥ ◦Hu
⊥

)−1
(̂εT ◦ ε̂T )|yN�Y 0

]
=

(
Hu

⊥ ◦Hu
⊥

)−1
E[̂εT ◦ ε̂T|yN�Y 0]� (59)

To evaluate (59), we plug in (57) to obtain

E
[(
Hu

⊥ ◦Hu
⊥

)−1
(̂εT ◦ ε̂T )|yN�Y 0

]
=

(
Hu

⊥ ◦Hu
⊥

)−1(
Hu

⊥ ◦Hu
⊥

)
�

hz

T 1 = �
hz

T 1� (60)

Plugging (60) into (59) yields

E
[
�̂

HRK

T |yN�Y 0

]
= diag

((
Hu

⊥ ◦Hu
⊥

)−1
E[̂εT ◦ ε̂T|yN�Y 0]

)
=�

hz

T � (61)

It then follows that E[̂vhz�HRK
0 |yN�Y 0] = vhz

0 .

(ii) [VT model] Let Assumption 2 hold. Following the same arguments as above, we

conclude E[�̂
HRK

N |yT �Y 0] = �
vt

N and E[̂vvt�HRK
0 |yT �Y 0] = vvt

0 .

(iii) [DR model] Let Assumption 3 hold. Following the arguments that led to (61),

we obtain E[�̂
HRK

T |Y 0] = �
dr

T and E[�̂
HRK

N |Y 0] = �
dr

N . Applying Lemma 7 then gives

E[̂vdr�HRK
0 |Y 0] = vdr

0 . The proof is complete. Q.E.D.

APPENDIX D: PRINCIPAL COMPONENT REGRESSION

The results in Section 4, which are stated for OLS, immediately extend to PCR by

replacing Y 0 with Y
(k)
0 for any k<R. See Section 3 for details of the PCR method.

D.1. Comparing PCR to OLS

Intuitively, PCR-based models postulate that the data are inherently low-dimensional.
We comment on several benefits of PCR over OLS. To begin, the HZ and VT OLS vari-
ance estimators constructed in Section 4.1.3 can suffer from degeneracy when N and T
are of different sizes. That is, if N <T , then the HZ in-sample error is zero (assuming full
column rank), which causes the HZ coverage to collapse on the point estimate; analogous
statements hold for the VT coverage when N > T . The PCR-based variance estimators,
on the other hand, can avoid degeneracy through the number of chosen principal compo-
nents k (regularization). On a related note, the nonsingularity conditions required for the
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FIGURE D.1.—PCR estimates with jackknife confidence intervals. From top to bottom, the rows are indexed
by the Basque, California, and West Germany studies. From left to right, the columns are indexed by the HZ,
VT, and DR models.

jackknife and HRK variance estimators can also be controlled by k. See Agarwal, Shah,
and Shen (2021) for various methods on choosing k.

D.2. Empirical Applications—Extended

Here, we extend our analysis in Section 5.3.3 to include results for PCR. We present the
PCR-based confidence intervals for our three case studies in Figure D.1. For visualization
ease, we only plot the jackknife intervals. Notably, the same conclusions drawn for OLS
hold for PCR as well.
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