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Measuring the effect of peers on individuals’ outcomes is a challenging problem,
in part because individuals often select peers who are similar in both observable and
unobservable ways. Group formation experiments avoid this problem by randomly as-
signing individuals to groups and observing their responses; for example, do first-year
students have better grades when they are randomly assigned roommates who have
stronger academic backgrounds? In this paper, we propose randomization-based per-
mutation tests for group formation experiments, extending classical Fisher Random-
ization Tests to this setting. The proposed tests are justified by the randomization itself,
require relatively few assumptions, and are exact in finite samples. This approach can
also complement existing strategies, such as linear-in-means models, by using a regres-
sion coefficient as the test statistic. We apply the proposed tests to two recent group
formation experiments.

KEYWORDS: Causal inference, conditional randomization test, equivariance, exact
p-value, non-sharp null hypothesis.

1. INTRODUCTION

PEERS INFLUENCE A BROAD RANGE of individual outcomes, from health to education
to co-authoring papers.! However, studying these peer effects in practice is challenging
in part because individuals typically select peers who are similar in both observed and
unobserved ways (Sacerdote (2014)). Randomized group formation, also known as exoge-
nous link formation, avoids this problem by randomly assigning individuals to groups and
observing their responses. Among its many applications, this approach has been used
to assess the effect of dorm-room composition on student grade point average (GPA;
Sacerdote (2001), Bhattacharya (2009), Li, Ding, Lin, Yang, and Liu (2019)), the effect
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of squadron composition on individual performance at military academies (Lyle (2009),
Carrell, Sacerdote, and West (2013)), the effect of business groups on the diffusion of
management practices (Fafchamps and Quinn (2018), Cai and Szeidl (2017)), the effect
of group or team assignments on the performance of professional athletes (Guryan, Kroft,
and Notowidigdo (2009)), and the effect of co-workers on productivity (Herbst and Mas
(2015), Cornelissen, Dustmann, and Schonberg (2017)). A typical substantive question is
then, for example: what is the effect of randomly assigning an incoming first-year student
to a roommate with high academic preparation (the “exposure”) on the student’s own
end-of-year GPA?

In this paper, we propose analyzing randomized group formation designs from the per-
spective of “randomization inference,” in the spirit of Fisher (1935). Like the classic
Fisher Randomization Test (FRT), our ultimate proposal is a straightforward permuta-
tion test that (conditionally) permutes each individual’s exposure. This test is exact in
finite samples, requires relatively few assumptions, and is justified by the randomiza-
tion itself. Thus, we argue that our approach is a natural benchmark for analyzing ran-
domized group formation designs, building on a growing literature within economics and
econometrics (see Lehmann and Romano (2005), Imbens and Rubin (2015), Canay, Ro-
mano, and Shaikh (2017), Young (2019)) that seeks to use the randomization itself as
the source of uncertainty when analyzing randomized trials. Moreover, we can combine
this approach with popular model-based frameworks, such as the linear-in-means model
(Manski (1993)), by using a model to generate the test statistics for subsequent random-
ization tests. When such models are correctly specified, the corresponding randomization
tests are likely to have higher power. Even when the models are incorrectly specified, our
proposed randomization tests can still ensure that the p-values are finite-sample valid.

To develop this procedure, we have to overcome several technical and computational
hurdles. First, a key challenge for randomization tests under interference is that the null
hypotheses of interest are not typically “sharp,” in the sense of specifying all potential
outcomes for all units (Rosenbaum (2007), Hudgens and Halloran (2008)). For example,
the null hypothesis of no difference between having 0 or 1 students with high academic
preparation in a dorm room does not have any information about dorm rooms that have 2
students of that type. An important innovation for causal inference under interference is
to restrict the randomization test to a subset of units, known as focal units, which “makes
the null hypothesis sharp” and allows for otherwise standard conditional randomization
tests (Aronow (2012), Athey, Eckles, and Imbens (2018), Basse, Feller, and Toulis (2019)).
Our first contribution is to extend these results to randomized group formation designs,
and show that restricting our attention to focal units indeed enables valid randomization-
based tests, at least in principle.

In practice, however, it is difficult to obtain draws from the appropriate null distribu-
tion in group formation designs. The computationally straightforward approach of naively
permuting the exposure of interest (e.g., permuting the number of students in a room of
a specific type) is not typically valid, since permuted exposures can be incompatible with
the original group formation design. Conversely, the conceptually valid approach of re-
peatedly assigning groups can be computationally prohibitive for testing non-sharp null
hypotheses that require conditioning on a specific set of focal units.

Our second main contribution is therefore to develop computationally efficient ran-
domization tests that can be implemented easily via permutations. For a broad class of
designs, we show that permuting exposures separately for each level of individuals’ own
attributes (e.g., high academic preparation) leads to valid randomization tests. Using alge-
braic group theory, we prove that a key property in all these designs is equivariance, which,
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roughly speaking, ensures that an invariance in the design translates into an invariance on
peer exposure. Our paper thus provides one of the first, general theoretical results on
efficient implementation of randomization tests of peer effects via permutations.

We apply our results to two studies based on randomized group formation designs: first-
year students randomly assigned to dorms (Li et al. (2019)) and chief executive officers
(CEOs) randomly assigned to group meetings (Cai and Szeidl (2017)). We describe styl-
ized versions of these examples in the next section and discuss the applications in more
detail in Section 6. In the Supplemental Material (Basse, Ding, Feller, and Toulis (2024)),
we also include extensive simulation studies showing the validity of the method under a
range of scenarios.

Our approach combines two recent threads in the literature on causal inference un-
der interference. In the first thread, Aronow (2012), Athey, Eckles, and Imbens (2018),
and Basse, Feller, and Toulis (2019) developed conditional randomization tests that are
valid under interference; we discuss this further in Section 3.2. In that setup, the groups
are fixed and the intervention itself is randomized. In the second thread, Li et al. (2019)
explicitly considered group formation designs and defined peer effects using the poten-
tial outcomes framework. Their paper mainly considered the Neymanian perspective that
focuses on randomization-based point and interval estimation based on normal approx-
imations (Imbens and Rubin (2015), Abadie, Athey, Imbens, and Wooldridge (2020)).
By contrast, our paper chiefly considers the Fisherian perspective that instead focuses
on finite-sample exact p-values via randomization-based testing. This allows us to exam-
ine hypotheses for smaller subpopulations, including those in our motivating examples.
Moreover, our approach is valid for arbitrary outcome distributions, including possibly
heavy-tailed sales revenue in the second example (Rosenbaum (2002), Lehmann and Ro-
mano (2005)).

2. SETUP AND FRAMEWORK
2.1. From Regression to Randomization Inference for Peer Effects

To illustrate the notation and the key concepts, we introduce two running examples.
Example 1 presents an idealized version of Sacerdote (2001) and Li et al. (2019), in which
incoming college first-year students are randomly assigned to dorm rooms. Example 2
presents an idealized version of Cai and Szeidl (2017), in which CEOs of Chinese firms
are randomly assigned to attend monthly group meetings. Both examples have a common
structure in which individuals are randomly assigned to groups. We observe attribute A4
and outcome Y for each individual, and the attributes of peer individuals in the group, .
The goal is to estimate the “effect” of W on Y. We make these statements more precise
in the next section and analyze the original data from both examples in Section 6.

EXAMPLE 1: Suppose that N incoming first-year students are paired into N /2 dorm
rooms of size 2. We classify incoming first-year students as having high (4 = 1) or low
(A =0) incoming level of academic preparation (e.g., based on standardized test scores
and high school grades). We want to understand whether a first-year student’s end-of-
year GPA varies based on the academic preparation of their roommate (W). Specifically,
is there an effect on end-of-year GPA (Y) of being assigned a roommate with ‘high’ in-
coming preparation (W = 1) relative to being assigned to a roommate with ‘low’” incoming
preparation (W =0)?
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EXAMPLE 2: Suppose that N firm CEOs are assigned to N/3 monthly meeting groups
of size 3 where they discuss business and management practices. Each CEO is classified
as leading a ‘large firm’ (4 = 1) or ‘small firm’ (A = 0). We want to assess whether the
revenue of a CEO’s company (Y) is affected by the composition of the meeting group
(W). Specifically, is there an impact on the firm’s revenue of assigning that firm’s CEO to
a group with two CEOs from large firms (W = 2) relative to assigning that firm’s CEO to
a group with one (W = 1) or no CEOs (W = 0) from large firms?

These examples capture the notion of a peer effect as the idea that a given unit’s out-
come may be affected by their peers’ attributes. A vast literature in economics formal-
izes these ideas; see, among others, Manski (1993), Brock and Durlauf (2001), Sacerdote
(2011), Goldsmith-Pinkham and Imbens (2013), and Angrist (2014). We now briefly re-
view common existing approaches and discuss recent work that motivates the use of linear
regression from the randomization perspective (Li et al. (2019)). Since our eventual goal
is a fully randomization-based framework for analyzing randomized group formation de-
signs, our discussion here necessarily focuses on reduced-form approaches, setting aside
a vibrant literature on more structural models of peer effects and social interactions (see
Bramoullé, Djebbari, and Fortin (2020)).

Linear-in-Means Model

We begin with the workhorse linear-in-means model, described in detail in a seminal
paper from Manski (1993), which regresses Y on A, the average attribute in the group.
Following a long literature (see Sacerdote (2011)), we initially consider the leave-one-out
form of this model, which separates out A, a unit’s own attribute, and W, (a transforma-
tion of) the leave-own-unit-out average attribute:

Y =a+ BA; + Wi + &,

where Y™ is the observed outcome for unit i. For Example 1, both 4 and W are bi-
nary; for Example 2, A4 is binary and W takes on three values, {0, 1, 2}. The coefficient
7 is referred to as the exogenous peer effect (Manski (1993)) or the social return (Angrist
(2014)). Standard errors are typically clustered at the group level. Importantly, we do not
include specifications with Y on the right-hand side and therefore do not consider so-
called endogenous peer effects. While this avoids a range of thorny econometric questions
(see Manski (1993), Angrist (2014)), this choice necessarily restricts the type of substan-
tive questions we can address. Similarly, since we focus on experiments in which individ-
uals are randomly assigned to groups, we also exclude correlated effects, which could arise
if individuals self-select into groups.

Heterogeneous Treatment Effect Model

Even when we focus exclusively on exogenous peer effects, there are many challenges
with the linear-in-means model. Most immediately, as Sacerdote (2011) noted: “from an
empirical point of view, researchers have found that peer effects are not in fact linear-in-
means.” This has led researchers to instead consider interacted specifications that allow
for possible nonlinearities (Sacerdote (2001), Duncan, Boisjoly, Kremer, Levy, and Eccles
(2005), Cai and Szeidl (2017)). In the context of our examples these are specifications of
the form

YiobS:a_{_BAi_{_TI/I/i—{—’)/Ai-m—i-gi. (1)
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Here, the relevant effects are appropriate combinations of the coefficients 7 and v, and, as
above, the standard errors are typically clustered at the group level. Again, this interacted
model is typically motivated by the desire to estimate a more flexible specification for the
(sometimes implicit) underlying model of social interactions.

Motivating Regression From Randomization

Somewhat surprisingly, Li et al. (2019) showed that randomization fully justifies the in-
teracted specification (1) above for a broad class of randomized group formation designs.
Moreover, Li et al. (2019) argued that the randomization-based perspective justifies the
use of non-clustered robust standard errors, suggesting that the common practice of clus-
tering standard errors is overly conservative for such designs, analogous to arguments
from Abadie, Athey, Imbens, and Wooldridge (2023). In this case, failing to include the
interaction (i.e., simply running the regression of Y on A4 and W) leads to a precision-
weighted average of the subgroup effects.

From Regression to Randomization-Based esting

As we show below, the regression-based approach from Li et al. (2019), while con-
ceptually elegant, can have poor finite-sample performance. In particular, the asymptotic
theory in that paper assumes that both 4 and W have very few levels, and that the number
of individuals within each A x W group is large. This is not a reasonable approximation
in our applications, however; for instance, in the roommates application we analyze in
Section 6, the size of an 4 x W subgroup can be as small as 4 students.

Our main contribution is to justify and implement randomization-based tests for ex-
ogenous peer effects, building on recent proposals for randomization tests under interfer-
ence (Aronow (2012), Athey, Eckles, and Imbens (2018), Basse, Feller, and Toulis (2019),
Puelz, Basse, Feller, and Toulis (2022)). At a high level, we propose the permutation-
based analog of the fully interacted regression model discussed above. The primary tech-
nical obstacle is justifying this approach from the randomized group formation design
itself. As we will see, this requires substantial technical overhead, even if the final pro-
cedure is itself straightforward. To demonstrate this, we also develop theory for general
randomization-based tests for non-sharp nulls.

2.2. Notation and Setup

We now formalize the problem setup outlined above. Consider N units to be assigned
to K different groups; both numbers are fixed. Let U ={1, ..., N} denote the set of units.
Let L;e L={1,..., K} denote the labeled group to which unit i is assigned, and define
L = (L;)Y, as the full group-label assignment vector. Also, let P(L) € [0, 1] denote the
probability distribution of L, which is known from the experimental design. In a group
formation design, the individual i’s treatment assignment can be defined as

Z;={jeU:j#iand L,=L;}. (2

Assignment Z; is therefore the set of individuals assigned to the same group as individual
i. Let Z = (Z;,)Y, be the full assignment vector.

As we discuss above, a key feature of our setting is that each individual i exhibits a
salient attribute, A;; for example, A; = 1 if individual i has high academic preparation
entering college. This attribute often plays a special role in group formation designs; for
example, in the stratified group formation design we consider in Section 5.1, a room must
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have a fixed, pre-defined number of students with A; = 1. Formally, attribute A; takes
values in a set A, which could be a transformation (e.g., coarsened version) of covariates
X;. We let 4= (A;)Y, and X = (X;)¥, be the full vector of attributes and matrix of
covariates, respectively.

The goal of this paper is to understand how peers’ attributes affect unit outcomes, and
so we define the exposure for each unit i as

Wi=wi(Z)={A4;:j€ Z}, 3

that is, the exposure of unit i is the multiset of attributes of its neighbors, where a multiset
is a set with possibly repeated values. Define W = w(Z) = (w;(Z2))Y, as the full vector of
exposures, and denote by W = {w, ..., w,,} the finite set of possible exposure values in
the experiment. Finally, we let Y;(Z) denote the real-valued potential outcome of unit i
under assignment Z.

While this formulation is general, it is often useful to define exposures as simple func-
tions of the attribute vector 4. For example, when A is binary, a natural choice is to
define

VVi=wi(Z)=ZAj’ 4)

JEZ;

the number of “neighbors” of unit i with attribute A4 = 1. All results in the paper hold for
general exposure mappings as in (3); we use the simpler formulation in (4) in the running
examples for simplicity.

Notation

These definitions are nested, so that L determines Z, and Z determines W. As such,
any function on one domain is also a function on a ‘finer’ domain. To ease notation, we will
use ‘f(Z)’ to denote a function defined on the domain of Z that is implied by f* (W), and,
similarly, use ‘f“(L)’ to denote the function on the domain of L that is implied by either
fe(W) or f(Z), noting that these all map to the same value: f*(W) = f(Z) = f*(L). For
instance, we write W = w*(L) to express the exposures in (3) as a function of L.

2.3. Assumptions and Exclusion Restrictions

The primary goal of our analysis is to estimate the causal effect of exposing a unit to a
mix of peers with one set of attributes versus another, known as the exogenous peer effect
(Manski (1993)) or the social return (Angrist (2014)). Formalizing such effects is non-
trivial, however, with a substantial literature defining estimands in terms of coefficients
in a linear model. Following a more recent set of papers, we instead formalize these ef-
fects via exposure mappings based on potential outcomes (Toulis and Kao (2013), Manski
(2013), Aronow, Samii et al. (2017), Li et al. (2019)), which capture the summary of Z
that is sufficient to define potential outcomes on the unit level.

To do so, we make the critical assumption that the exposure is properly specified in the
sense defined below (Aronow, Samii et al. (2017)):

ASSUMPTION 1: Forall i € U and forall Z, Z', we have

wi(Z)=w(Z) = Y(Z)=Yi(Z).
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Under Assumption 1, each unit i has |W| = m potential outcomes, one for each level
of exposure, and we may write

Y(Z) =Y} (wi(Z)) = Y (W)

to indicate that potential outcomes depend only on the exposure level and not the partic-
ular group assignment.

EXAMPLE 1—continued: With dorm rooms of size 2, the exposure W; of student i is
then the attribute A; of student i’s roommate. More generally, under the exposure map-
ping in (4), each unit has only two possible exposures, since W; € W = {0, 1}, and thus
each unit has two potential outcomes {Y*(0), Y*(1)}.

EXAMPLE 2—continued: Here, each group has size 3 and the assignment Z; of unit i
is the unordered pair of indices of the other two CEOs in the group. CEO i’s exposure is
then the number of the other CEOs from large firms. In this case, each unit has three pos-
sible exposures, since W; € W = {0, 1, 2} under (4), and thus each unit has three potential
outcomes {Y*(0), Y*(1), Y (2)}.

Discussion of Assumption 1

Assumption 1, which is not justified by the randomization, is the key substantive as-
sumption in our setup and merits further discussion. At its core, this assumption is an
exclusion restriction: the only impact of the randomization on an individual’s outcome is
by changing the salient attributes A—and only the salient attributes—of the other indi-
viduals in the group. For instance in Example 1, Assumption 1 implies that room assign-
ment affects unit i’s GPA only by changing i’s roommate’s academic ability, excluding
other possible channels of peer influence. This necessarily reduces otherwise complex in-
dividual and social interactions to a scalar quantity; for discussion, see Sacerdote (2011).
2 Assumption 1 also plays a role analogous to the stable unit treatment value assumption
(SUTVA) by ruling out effects from changing other groups. Thus, when combined with the
exposure mapping of (3), this assumption implies both a form of partial interference and
a form of stratified interference (Hudgens and Halloran (2008)). Finally, beyond assuming
that attribute A is the relevant quantity, Assumption 1 also assumes that the functional
form is correctly specified, though we typically allow W to be fully flexible with respect
to A.

As we discuss in Appendix A.1 of the Supplemental Material, the procedure we outline
below will still lead to a valid test without imposing Assumption 1—though interpreting
that rejection is challenging. In particular, the test might reject even if the null hypothesis
is indeed correct but Assumption 1 does not hold, for instance if an individual’s outcome
depends on attributes other than 4. At present, there is limited guidance for applied re-
searchers on specifying exposure mappings, in part because these mappings can be highly
context-dependent. For point estimation, violating Assumption 1 complicates the implied
estimand, which will typically correspond to a particular weighted average of treatment
effects. See Li et al. (2019, Section 7) for a discussion in the context of peer effects, Savje
(2023) for a more general discussion of inference with misspecified exposure mappings,
and Leung (2022) for an alternative approach that considers approximate exposures. For
testing, the situation is more complicated, since it is difficult to interpret a rejection in the
absence of Assumption 1. This remains an open research area.

2Similar challenges arise in other econometric applications, such as ‘judge fixed effects’, where the choice of
attribute (e.g., conviction rate) is important in the overall analysis (e.g., Frandsen, Lefgren, and Leslie (2023)).
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2.4. Sharp and Non-Sharp Null Hypotheses

Following the literature on FRTs, we focus on hypotheses defined at the unit level,
unlike the regression-based approaches in Section 2.1, which focus on so-called weak null
hypotheses that average over units. A key technical challenge is that many unit-level null
hypotheses of interest are non-sharp; a primary goal in this paper is to develop procedures
that are both theoretically valid (Section 3) and computationally tractable (Section 4) for
such hypotheses.

To illustrate the distinction between sharp and non-sharp null hypotheses, let Z°%,
Wobs = (Z°%), and Y = Y (Z°*) be, respectively, the observed assignment, exposure,
and outcome vectors. We say a null hypothesis is sharp if, given the null and the observed

data, the potential outcomes {Y*(w;), Y*(w,), ..., Y*(w,)} are imputable for all units
ieU.
First, consider the global null hypothesis:
Hy: Y’ (w) =Y (W) =---=Y"(w,) foralliel. 5)

The null hypothesis in (5) is sharp. As we show in Section 3.1, we can test this hypothesis
using a standard FRT; Li et al. (2019, Section 7.1) briefly considered this approach as well.
This global sharp null is analogous to the omnibus null hypothesis in a classical analysis of
variance (Ding and Dasgupta (2018)) and is a useful starting point for analyses: if there
is no evidence of any effect at all, then further analyses are likely less interesting. See
Lehmann and Romano (2005, Chapter 15).

At the same time, many substantively interesting causal hypotheses for peer effects are
not sharp. One important example is the pairwise null hypothesis of the type

HY Y () = Y () foralli €U, ©

where wy, w, € W. To illustrate, Example 2 has three possible exposures W = {0, 1, 2}, and
the sharp null hypothesis of (5) can be written as: H,: Y*(0) = Y*(1) = Y,*(2) for all
i € U. This contains strictly more information about the missing potential outcomes than
a pairwise null hypothesis (6), such as H)” : Y*(1) = Y*(2) for all i € U. Substantively,
the global sharp null hypothesis assumes that changing the number of peer CEOs from
large firms has no effect whatsoever on a firm’s revenue. By contrast, the pairwise non-
sharp null hypothesis instead imposes that there is no impact on firm revenue of having
one versus two peer CEOs from large firms, without imposing any restrictions on revenue
in the absence of any peer CEOs from large firms. Thus, the ability to test pairwise null
hypotheses is critical for learning more from the experiment than the initial conclusion
that the experiment indeed had some effect somewhere.

Finally, we are often interested in null hypotheses for the subset of units with a given
attribute A4; = a. As we discuss in our applications below, we frequently believe that the
exposure will have differential effects depending on an individual’s own attribute. Specif-
ically, we can modify both (5) and (6) to only consider units with 4; = a:

Hy(a): Y?(wy) =Y (wWp) =---=Y"(w,,) forallieUsuchthat A;=a (7)
and
Hy""(a): Y (w;) = Y”(w,) forallieUsuchthat 4; =a. 8)

The results below immediately carry over to these subgroup null hypotheses by condition-
ing on the set of units with A; = a. We therefore focus on the simpler null hypotheses of
(5) and (6), returning to subgroup null hypotheses in Section 6.
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We note that this framework does not require formally specifying an alternative hypoth-
esis; see Athey, Eckles, and Imbens (2018) for a discussion in the context of randomization
tests under network interference. In our applications, the choice of the test statistic is mo-
tivated by having power against two-sided alternative hypotheses on coefficients from a
linear regression model, such as the coefficient on W in the regression of Y on A4 and W.

2.5. Toy Example and Sketch of Key Ideas

Before turning to the theoretical results, we first illustrate the key challenges through a
toy example, shown in Figure 1. For this example, individuals possess a binary attribute,
represented by squares (A; = 1) and circles (A4; = 0), and are assigned to one of three
dorm rooms, one with size 3 (Room I, a “triple”) and two with size 2 (Rooms II and III,
“doubles”), shown as large rectangles.” Rooms are assigned via a completely randomized
group formation design (see Section 5.2), which means that the sizes of the three rooms
are fixed, but that the number of square roommates in each room can vary. Here, the
exposure mapping is the number of roommates with 4; = 1 as defined in (4), so that
W = {0, 1, 2}. Figure 1 shows the realized assignment Z° and induced exposure W°b,

In this toy example, we are interested in testing two null hypotheses. First, the global
sharp null hypothesis is that individuals’ outcomes are the same regardless of the number
of “square” roommates. Written in terms of unit-level outcomes, this is H, : Y*(0) =
Y~(1) = Y(2) for all i € U. Second, a non-sharp, pairwise null hypothesis is whether
there is an effect of having zero versus one “square” roommate, Hy'' : Y (0) = Y*(1) for
allieU.

Our starting place for testing these null hypotheses is a permutation test based on per-
muting the exposure vector, W, The right-hand columns of Figure 1 show three possible
permutations, swapping the observed exposure for unit 5, W2, with, respectively, the ex-
posures for units 4, 3, and 2 (W, Wb, Wobs),

permute
exposure
vector

Room | Room Il Room Il

[EE] [OF [0 —

- — =

@@HOSR
@OHOSH]
@OFOO:
@@EOSHM

/

=
=

D D VA Zobs - 5 Wobs . —_ 1" W///
Q Q @ (4 < 5) (8« 5) (2 5)

Wi=0 Wi=1 W=2 invalid invalid valid

FIGURE 1.—Example of a group formation design. Squares represent units with attribute 4; = 1 and circles
units with attribute 4; = 0. Units with exposure W; =0 (i.e., zero “square” roommates) are shaded gray; units
with exposure W; = 1 have no color; and units with exposure W; = 2 (only unit 3) have a patterned background.

3The sizes of the rooms themselves are not central here, and merely restrict the set of possible exposures. We
also mean no disrespect to any of our former roommates, several of whom could be described as “squares.”.
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Naive Permutation Tests Can Fail

While seemingly natural, the first two permutations in Figure 1, W’ and W”, are invalid.
The first permutation W', which swaps the exposures of units 4 and 5, leads to invalid tests
for both Hy and H_"' because it is incompatible with the group formation design; that is,
there are no assignments Z’ such that w(Z’) = W’. To see this, note that under W', units
1,2, and 5—the only “square” units in the set—would each need to have exactly one other
“square” roommate. But this configuration is impossible as it requires an even number of
“square” units.

The second permutation W”, which swaps the exposures of units 3 and 5, leads to an
invalid test for Hy''. In particular, we observe Y = Y (2) for unit 3; under H,'', we have

no information about either Y (0) or Y*(1), since Hy'' is only about treatment exposures
0 and 1. And since W," = 0, we cannot construct a valid test statistic under W”.

Randomization Tests Based on Draws From the Assignment Distribution Are Valid but
Computationally Prohibitive

An alternative to naively permuting W™ is to instead re-draw room assignments di-
rectly, Z' ~ P(Z'), and compute the induced exposures for each assignment, W' = w(Z’).
This will always lead to valid, direct randomization-based tests for the sharp global null
hypothesis, Hy, though these are not always permutation tests.

However, extending this to non-sharp null hypotheses like Hg’l is non-trivial. In Fig-
ure 1, for instance, we need to sample from all room assignments such that unit 3 has
exposure W; = 2. Enumerating all such room assignments becomes exponentially hard
(increasing in the sample size), and is especially challenging when w(-) is complex. As
such, exact or approximate sampling (e.g., rejection sampling) from the conditional treat-
ment assignment distribution is prohibitive.*

Permutation Tests Stratified by Attribute Are Valid and Tractable for Both Sharp and
Non-Sharp Null Hypotheses

Remarkably, we can generate valid, computationally tractable randomization tests for
both null hypotheses by simply stratifying the permutations based on attribute A. In Fig-
ure 1, this is the set of permutations that separately permute the exposures for circles and
squares. The rightmost column of Figure 1 shows one such permutation W, which swaps
the exposures for units 2 and 5; this is valid because both units 2 and 5 are “squares.”

While the final procedure is straightforward, the mathematical justification is intricate
and stems from a key property called equivariance. As we formalize in Theorem 1, equiv-
ariance guarantees that, under some technical restrictions on the design and the exposure
function, permuting room assignment stratified by attribute is equivalent to permuting the
exposure directly, and these permutations lead to a valid test. These technical conditions
are satisfied for many common designs, including those in the applications we re-analyze
in Section 6. The final permutation in Figure 1 illustrates this idea: due to equivariance,
swapping the room assignments Z for units 2 and 5 is equivalent to swapping their implied
exposures. Thus, W could form the basis of a valid permutation test for H;"'.

*To illustrate, consider Example 1 with N = 32 units in K = 8 rooms of 4 students. Drawing 1,000 samples
from the conditional exposure distribution via rejection sampling requires over 400 hours on a conventional
laptop, though this can be parallelized. By contrast, the actual roommates application in Section 6 has N = 156
units in K = 39 groups. Since computation time increases exponentially in the number of groups, a practical
test based on rejection sampling is infeasible.
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3. VALID TESTS IN ARBITRARY GROUP FORMATION DESIGNS

In this section, we introduce conceptually general—albeit possibly infeasible—
procedures for constructing valid tests for sharp and non-sharp null hypotheses for ar-
bitrary group formation designs. For sharp null hypotheses, the procedure is a straight-
forward application of the standard FRT to our setting. For non-sharp null hypotheses,
however, the procedure requires greater care to ensure validity. We turn to constructing
feasible randomization tests in the next section.

3.1. Randomization Test for the Sharp Null

We start with a brief review of the classical FRT for sharp null hypotheses (Fisher
(1935), Lehmann and Romano (2005), Imbens and Rubin (2015)), as a stepping stone
to the more challenging non-sharp null hypotheses discussed in Section 3.2. Consider a
test statistic T(z; Y) as a function of the observed treatment and outcome vectors; any
choice will lead to a valid test, but certain statistics will lead to more power. One reason-
able choice, for example, is the coefficient of W in the regression of Y on (W, A) and
other covariates; see also Section 6.2 for an applied example. We can test the sharp null
hypothesis H, with Procedure 1 below.

PROCEDURE 1: Consider observed assignment Z°* ~ P(Z°).

1. Observe outcomes, Y = Y (Z°%).

2. Compute test statistic 7°% = T'(Z°%; Y°%).

3. For Z' ~ P(Z)), let T' = T(Z'; Y°*) and define pval(Z°*®) = P(T’ > T°*), where
T°% is fixed and the randomization distribution is with respect to P(Z’).

This procedure is computationally straightforward if the analyst has access to the as-
signment mechanism P(Z), which is necessary for Step 3.

PROPOSITION 1: The p-value obtained in Procedure 1 is valid, in the sense that if H, is
true, then P{pval(Z°*) < a} < a for any « € [0, 1].

In general, it is difficult to compute pval(Z°*) exactly, and we must rely on Monte Carlo
approximation. This can be done by replacing the third step above by:
3. Forr=1,...R, draw Z") ~ P(Z®) and compute T") = T(Z"; Y°*). Then com-
pute the approximation pval(Z°») ~ R-' Y% 1(T® > T°%).
In practice, the test statistic T used in Procedure 1 is chosen to depend on Z only
through the exposures W = w(Z). Following our convention in Section 2.2, we can rewrite
this test statistic as 7(Z; Y°*) = T*(W; Y°*). Procedure 1 can then be reformulated as:

PROCEDURE 1b—special case: Consider observed assignment Z° ~ P(Z°%).

1. Observe outcomes, Y = Y (W),

2. Compute test statistic 7°% = T (W°s; Yo%),

3. For W'~ P(W’),let T' = T*(W'; Y°*) and define pval(Z°*) = P(T’ > T°"), where
T° is fixed and the randomization distribution is with respect to P(W").

The distribution P(W’) used above is directly induced by P(Z"), as P(W’) = P{w(Z")},
and the validity of Procedure 1b follows from that of Procedure 1, as established by Propo-
sition 1.
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3.2. Randomization Tests for Non-Sharp Nulls

We now turn to the more challenging problem of testing non-sharp pairwise hypotheses
such as H,"""*. In general, Procedure 1 can only be valid if the test statistic is imputable
under H, (Basse, Feller, and Toulis (2019)); that is, T(Z; Y (Z)) = T(Z; Y°*) under H,,
for all Z for which P(Z) > 0. This property holds because H, is sharp, which implies that
Y(Z) = Y°* under H,. In contrast, pairwise null hypotheses like H,""** are not sharp,
and the FRT methodology does not apply directly.

3.2.1. Focal Units

One popular technical tool for randomization tests under interference is to restrict
the test statistic to use only outcomes from a subpopulation of units, known as focal units
(Aronow (2012), Athey, Eckles, and Imbens (2018), Basse, Feller, and Toulis (2019), Puelz
et al. (2022)). Here, we use this device to construct valid tests: we effectively “make the
null hypothesis sharp” by restricting the test to the set of focal units. We formalize this
next.

Let a binary variable U; indicate whether unit i is selected as a focal unit. To test H,"""?,
we can define U as follows:

U=u(Z)=(Uy,...,Uy) €{0,1}", with U; =1 if and only if w;(Z) € {w;, w,}. (9)

That is, we select as focal units the set of units that receive either exposure w; or exposure
w, under assignment Z. The realized set of focal units, U™ = u(Z°™), therefore denotes
the set of all units with observed exposure w; or w,, the null exposures of interest. To
illustrate, for testing the pairwise null hypothesis Hé’z in Example 2, the focal units are all
CEOs who have W =1 or W =2 peer CEOs from large firms. So long as we restrict
testing to this subset of units—and under some restrictions on the possible assignment
vectors—the null hypothesis H;""? behaves like a sharp null hypothesis. Basse, Feller, and
Toulis (2019) built on this intuition and developed a valid conditional testing procedure.

Adapting the formulation from Basse, Feller, and Toulis (2019) to the peer effects set-
ting requires two changes to Procedure 1. First, we need to resample assignments (Step 3
of Procedure 1) with respect to the conditional distribution of treatment assignment,

P{Zu(Z) = U™} 1{u(Z') = U™} P(Z)), (10)

rather than with respect to the unconditional distribution. In the terminology of Basse,
Feller, and Toulis (2019), U°™ is the conditioning event of the test, and its (degenerate)
conditional distribution P(U|Z) = 1{u(Z) = U} is the conditioning mechanism. Second,
to ensure that the potential outcomes used by the test are imputable, we need to restrict
the test statistic to the units in the focal set; we denote this new test statistic as 7(z; Y, U).

3.2.2. Valid Tests

The following procedure leads to a valid test of the pairwise non-sharp hypothesis
Hy"™.

PROCEDURE 2: Consider observed assignment Z°* ~ P(Z°).
1. Observe outcomes, Y = Y (Z°%).
2. Let U = u(Z°*) and compute T°% = T'(Z°; Y, U°).
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3. For Z' ~ P(Z'|U%), let T' = T(Z';Y°,U") and define the p-value as
pval(Z°») = P(T' > T°*|U°*), where T°* is fixed and the randomization distri-
bution is with respect to P(Z'|U°) as defined in (10).

As in Section 3.1, we generally consider test statistics that depend on Z only through
the exposure vector W = w(Z). In addition, notice that the focal indicator U = u(Z)
in (9) also depends on Z only through . Following our convention in Section 2.2, this
allows us to redefine the focal indicator as U = u(Z) = u® (W), and rewrite Procedure 2
as follows:

PROCEDURE 2b—special case: Consider observed assignment Z° ~ P(Z°%).

1. Observe outcomes, Y = Y« ().

2. Compute U =y (W°) and T = T« (W°; Y, U°).

3. For W' ~ P(W'|U°™), let T' = T*(W'’; Y°, U°) and define the p-value as
pval(Z°®) = P(T' > T°*), where T° is fixed and the randomization distribution is
with respect to P(W'|U°™). Note again that the distribution P(W’'|U°™) is induced
by that of P(Z'|u(Z') = U°™).

PROPOSITION 2: Procedure 2 and its special case, Procedure 2b, lead to valid p-values con-
ditionally and marginally for Hy"". That is, if Hy""** is true, then P{pval(Z°*) < a|U°*} <
a for any U™ and any « € [0, 1], and thus P{pval(Z°*) < a} < a as well.

The proof for Proposition 2 uses Theorem 1 of Basse, Feller, and Toulis (2019). For the
rest of this paper, we only consider test statistics that depend on Z through W = w(Z2)
alone. All statements in subsequent sections will thus be in terms of Procedures 1b and
2b instead of 1 and 2.

The conditional randomization tests described in this section differ from standard con-
ditional tests in several important ways. First, the goal of standard conditional tests is
typically to make the test more powerful (Lehmann and Romano (2005), Hennessy, Das-
gupta, Miratrix, Pattanayak, and Sarkar (2016)), rather than to ensure validity. The con-
ditioning in Procedures 2 and 2b, by contrast, is necessary to ensure that the test is valid.
Second, the procedure depends strongly on the non-sharp null hypothesis being tested.
Indeed, conditional randomization tests can only test certain non-sharp null hypotheses,
such as H,""**, which typically dictate the conditioning mechanism.

Computational Challenges With Testing Non-Sharp Nulls. As discussed in Section 2.5,
testing non-sharp null hypotheses is computationally intractable in realistic settings. In-
deed, while we can easily draw samples from the unconditional distribution P (W) through
w(Z), where Z ~ P(Z), Step 3 of Procedure 2b requires draws from the unwieldy con-
ditional distribution P(W|U°"). Our main proposal in the next section directly addresses
this computational issue.

4. USING DESIGN SYMMETRY TO CONSTRUCT COMPUTATIONALLY TRACTABLE
PERMUTATION TESTS

In this section, we show that certain designs can lead to computationally tractable con-
ditional distributions P(W|U), which are crucial in the randomization tests discussed
above. Our analysis relies on results from algebraic group theory; readers interested in
the concrete consequences of these results on the design of randomization tests in our
setting may skip ahead to Section 5.
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4.1. Equivariant Maps and Stabilizers

This subsection introduces three key algebraic concepts for our main theoretical result.
Let Sy be the symmetric group containing all permutations of N elements, that is, bijec-
tions of {1, ..., N} onto itself. For any permutation 7 € Sy and a real-valued N-length
vector X e XC RN, let mX = (X ,-1(;)Y, be the vector obtained by permuting the indices
of X according to .

DEFINITION 1—Stabilizer: X is closed under Sy in the sense that 7X € X for all = € Sy
and X € X. Fix X € X. The set Sy(X) ={m € Sy : 7X = X} also forms a group and is
called the stabilizer of X in Sy.

A stabilizer Sy (X) captures all possible ways of permuting X without changing X . For
instance, if X is a binary vector, then a permutation 7 € Sy (X)) separately permutes ele-
ments with X; = 0 and X; = 1, respectively. This formalizes the argument we sketched out
in Section 2.5: the operations that “permute units with the same attribute” are precisely
the elements of Sy (A), the stabilizer of the attribute vector A = (A4;)¥, in the symmetric

group.

DEFINITION 2—Orbits and partitions: Fix a subgroup of the symmetric group I1 C Sy.
Fix X € X, where X is closed under II. Then, the set {7 X : 7 € I1} is called the orbit of X
with respect to I1. These orbits define a unique partition of X, denoted by O(X; II).

An orbit is a collection of vectors that are permuted versions of one another. A key
property of orbits is that they partition the set that the permutations act upon. This is
important in our application because our permutation test on W essentially conditions
on an orbit, and we would like the symmetries of our design P(L) to be propagated to
the conditional distribution of L given an orbit. The final property that guarantees such
symmetry propagation is equivariance.

DEFINITION 3—Equivariant maps: Fix a subgroup of the symmetric group II C Sy.
Sets X and X’ are closed under II in the sense that 7 X € X and 7 X' € X' for all X € X,
X' eX, and 7 € II. A function f : X — X' is equivariant with respect to I1 if

f(7X)=mf(X), forallXeX,mell

By definition, equivariant maps preserve a symmetry from their domain to their target
set. This concept is crucial for our main theoretical result, which we turn to next.

4.2. Main Result: Sufficient Conditions for Valid Permutation Tests on Exposures

We now state our main theoretical result, which establishes that if the exposure func-
tion, w'(-), and the focal unit selection function, u‘(-), are equivariant with respect to a
particular permutation subgroup, then the treatment exposure W is uniformly distributed
within an orbit defined by that subgroup.

THEOREM 1: Let P(L) denote a distribution of the group labels with support L =
{1,...,K¥". Let W = w*(L) € WV be the corresponding exposures, and let U = u*(L) €
{0, 1}V be the focal indicator vector, for some w'(-), u‘(-) defined by the analyst. Define
S4.v =Sy (A) NSy (U), which is the permutation subgroup of Sy that leaves A (the attribute
vector) and U (the focal unit vector) unchanged. Suppose that the following conditions hold.
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(@) P(L)=P(wL),forall meS,yand L €.
(b) w'(-) is equivariant with respect to S 4 .
(c) u‘(-) is equivariant with respect to S 4 .
Then, W is uniformly distributed conditional on the event {W € B}, where € O(WV; S, ).

Theorem 1 formalizes the intuition behind the example in Section 2.5: under the condi-
tions of the theorem, we can implement Procedure 2b by directly permuting the exposures
of only the focal units, and making sure that these permutations are stratified with respect
to the attribute value; the space of these permutations is exactly S 4 . The sharp null of
Procedure 1b is a special case of this result by defining u*(L) = 1y, that is, by selecting all
units to be focals. In this special case, S,y = Sy(A4) and so we can directly permute the
entire exposure vector, W, across units with the same attribute value.

All three conditions in Theorem 1 are intuitive and testable in practice. Condition (a)
expresses a design symmetry condition. This depends on the experimental design, and will
generally be satisfied for a permutation group that is larger than S 4 7, such as in the strat-
ified and completely randomized designs we consider in the next section. In particular,
the design symmetry condition holds for both our applications. For instance, in Cai and
Szeidl (2017), the design is invariant to permutations between firms of the same size and
industry in the same subregion (i.e., the attribute A is a vector of length 3); we discuss
this condition more in Section 6.

Condition (b) depends on the definition of the exposures, and is part of the analysis
rather than the design. This condition posits that, for two units with the same attribute 4
and focal status U, swapping the group label assignments also swaps their exposures; Con-
dition (b) does not require the exclusion restriction in Assumption 1. Finally, Condition
(c) is also under the analyst’s control and requires that swapping group label assignments
for two units also swaps their selection as focal units.

We note that Theorem 1 is more general than the specific group formation design set-
tings we consider in this paper. In particular, our definition of the exposure function w*(-)
in Equation (3) satisfies Condition (b), and our definition of the focal selection function
u‘() in Equation (9) satisfies Condition (c). In fact, Condition (c) holds more generally
whenever focal selection depends on whether the observed exposure belongs to a prede-
fined set. We summarize these results in the following lemma.

LEMMA 1: Conditions (b) and (c) of Theorem 1 hold under definitions in Egs. (3) and
(9)-

Since Conditions (b) and (c) hold in our setting, we will only check the design symmetry
in Condition (a) going forward.

As a technical note, Theorem 1 contributes to the existing theory of randomization
tests by providing sufficient conditions under which symmetry in distribution of a random
variable implies symmetry in distribution to a function of that variable. In our context,
while the standard theory of randomization tests (Lehmann and Romano (2005)) could
be applied on hypotheses in the space of labels (L), it is not directly applicable in the
exposure space, W = w*(L), because W is not generally invariant to permutations even
when L is. The toy example in Section 2.5 illustrated this point through permutations
of the exposure vector that were inconsistent with the experimental design. Theorem 1
delivers conditions under which W maintains a permutation symmetry like L. Crucially,
the theorem also characterizes the permutation subgroup (S 4.y) for which such symmetry
propagation is possible.
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5. PERMUTATION TESTS IN TWO GROUP FORMATION DESIGNS

We now apply the theory of the previous section in practice. We consider two designs,
the stratified randomized design and the completely randomized design, and show that
these designs have the required symmetries for permutation tests on exposures.

5.1. Stratified Randomized Design

The stratified randomized design is an important special case of group formation design
that satisfies the design symmetry condition in Theorem 1(a). Specifically, we consider
designs that, separately for each level of attribute A, assign K group-labels to N units
completely at random. In a simplified setting with a binary attribute and two individuals
per group, this design randomly assigns one individual of each type to each group.

DEFINITION 4—Stratified randomized design: Consider a distribution of group labels,
P(L), that assigns equal probability to all vectors L such that for every attribute a € A
and every group-label k € {1, ..., K}, the number of units with attribute 4; = a assigned
to group-label & is equal to a fixed integer 7, ;. The design P(Z) induced by such P(L) is
called a stratified randomized group formation design, denoted by SR(n,), where n4 =
(1.c) satisfies the constraint that Yy n,, =[{i € U: 4, =a}|.

The stratified randomized design generalizes the design in Li et al. (2019, Section 2.4.2)
by allowing the group sizes to vary. As an illustration, Figure 2 shows all possible as-

signments for two stratified randomized designs in a setting in which we allocate stu-
dents with a binary attribute to their dorm rooms. The design on the left is SR(n,) with

OEGLE]

SR(n,) SR(m})
Rooms Rooms
1 2 1 2

onojjee olenljen
ennjjoe olonllen
ennojjoe elonlllon
olon|jlon
O A=0 oloajon
L) A= elonljon

FIGURE 2.—Example of supports for two latent distributions P(L) inducing two stratified randomized
experiments. Both examples have N =5 units, K = 2 rooms labeled 1 and 2, and a binary attribute. Left:
(no,1,n02) = (1,2) and (ny,1, n12) = (2, 0). Right: (n(’m, n{)z) =(2,1) and (”/1,19 ”/1,2) =(1,1).
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(n0.1, no2) = (1, 2), meaning that there is one unit with attribute A4; = 0 assigned to room
1, and two to room 2; and (n,1, n12) = (2, 0), meaning that there are two units with at-
tribute A; = 1 assigned to room 1, and no unit assigned to room 2. The design on the right
is SR(n'y) with (n}, |, ny ,) = (2, 1) and (n) ;, 1} ,) = (1, 1).

As stated in Lemma 2 below, the stratified randomized design satisfies the design sym-
metry condition in Theorem 1 since the number of units assigned to any attribute-label
pair remains fixed under any permutation of the labels that stratifies on A.

LEMMA 2: Definition 4 satisfies Condition (a) in Theorem 1.

Our recommended procedure for testing the sharp null under a stratified design is as
follows:

PROCEDURE 1c—Sharp null under the stratified randomized design: Consider ob-
served assignment Z°" ~ SR(n,4) and corresponding exposure Wb,
1. Observe outcomes, Y = Y (W),
2. Compute T°% = T (W°bs; Yobs),
3. Forr=1,..., R, obtain W via a random permutation of W°, stratifying on the
attribute A, and then compute T") = T<(W®; Y°b),
4. Compute the approximate p-value pval(W°>) = R-' 3% 1(T®) > 7o),

In Step 3 above, we randomly permute W™ stratifying on attribute A, that is, we ran-
domly permute within each subvector of W° corresponding to a given value of A. This
procedure is identical to how one would analyze a stratified completely randomized multi-
arm trial in the non-interference setting—with the exposure vector W°" being the analog
to the treatment vector in that case (Imbens and Rubin (2015), Chapter 9). That is, given
the data (Y;, W;, A;)Y ,, the analyst simply performs a complete randomization test strat-
ified on A.

The analogy with the traditional setting extends to testing the non-sharp nulls intro-
duced in Section 3.2, with only minor modifications. Recall that for Procedure 2c, the test
statistics are restricted to focal units, that is, T'(z; Y, U). Our recommended procedure
for testing non-sharp nulls under a stratified design is then the following.

PROCEDURE 2c—Non-sharp nulls under the stratified randomized design: Consider
observed assignment Z°* ~ SR(n 4) and corresponding exposure W,

1. Observe outcomes, Y = Y (W),

2. Let U = u(Z°*) be the focal unit selection as in (9).

3. Compute T°% = T (Webs; Yobs {jobs),

4. For r =1,...,R, obtain W via a random permutation of W°%, restricted only
to focal units (U™ = 1) and stratifying on the attribute 4. Compute 7" =
T‘"(W(r); YObS, UObS).

5. Compute the approximate p-value pval(W*) = R\ "8 1(T®) > T°).

Although less obvious than in the case of Procedure 1c, Procedure 2c also connects
to traditional randomization tests. Given the data (Y;, W;, 4A;)¥ ,, the analyst first subsets
the array to contain only focal units (U = 1), and then simply performs a stratified
complete randomization test on these reduced data, stratifying on A. Interestingly, there
is a gap in the literature for randomization tests for non-sharp null hypotheses, even in
traditional stratified randomized experiments without peer effects. Our permutation test
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applies to the traditional setting as well. Finally, we note that both Procedures 1c and 2c
are finite-sample exact with a direct application of Theorem 1. See Appendix D.3 of the
Supplemental Material for details.

5.2. Completely Randomized Design

Another common design is the completely randomized design, which fixes the overall
number of units that receive each group-label, without stratifying on the attribute. Despite
this difference, we will show that the completely randomized design can be analyzed ex-
actly like a stratified randomized design by conditioning on the observed attribute-group
assignments.

DEFINITION 5—Completely randomized design: Consider a distribution of group-
labels, P(L), that assigns equal probability to all vectors L such that for every group-label
k €{1,..., K}, the number of units assigned to group-label k is equal to a fixed integer
ni. The design P(Z) induced by such P(L) is a completely randomized group formation

design, denoted by CR(n), where n = (n,, ..., ng) satisfies Zle ny=N.
LEMMA 3: Definition 5 satisfies Condition (a) in Theorem 1.

The completely randomized design generalizes the design in Li et al. (2019, Sec-
tion 2.4.1) by allowing the size of the groups to vary. Importantly, we can construct a
stratified randomized design from a completely randomized design by conditioning on
the number of units with each level of the attribute in each group. As a result, conditional
on n4, we can analyze a completely randomized group formation design exactly like a
stratified randomized design.

COROLLARY 1: Consider P(Z) ~ CR(n). The null hypotheses H, (resp. Hy""*) can be
tested with Procedure 1c (resp. Procedure 2¢) as if the design were SR(n ), where n 4 is the
observed number of units with each value of the attribute A assigned to each group.

This connection is important since many designs are not stratified on the attribute of
interest; for example, the application we analyze in Section 6.1 uses a completely random-
ized design rather than a stratified randomization design. Importantly, conditioning on n 4
is necessary to ensure the validity of the permutation test even in completely randomized
designs. Figure 1 gives an example in which the unconditional permutation test is invalid.

REMARK 1—Incorporating additional covariates: All our procedures can be extended
to incorporate additional covariates in the design and analysis stages. These strategies
will generally increase the power of the test, so long as covariates are predictive of the
potential outcomes (Zhao and Ding (2021)). Most immediately, we could stratify both
the permutations and the test statistic by an additional discrete covariate. We could also
consider regression-adjusted test statistics, rather than test statistics based on the raw out-
comes (Rosenbaum (2002)). We could further tailor these models to a particular interfer-
ence structure; for instance, Athey, Eckles, and Imbens (2018) proposed a test statistic
derived from the linear-in-means model. Importantly, this approach does not assume that
the linear-in-means model is correct, but rather that this parameterization captures de-
partures from the null hypothesis.
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6. APPLICATIONS

We illustrate our approach by re-analyzing two randomized group formation experi-
ments. The first application is from Li et al. (2019), who assessed the impact of randomly
assigned roommates on student GPA. Our conditional testing approach yields results
that are consistent with their randomization-based estimate. The second application is
from Cai and Szeidl (2017), who conducted a randomized experiment to estimate the ef-
fect of social connections on firm performance. Our approach complements the results
from their regression-based estimates by uncovering interesting heterogeneity in the peer
group effect.

6.1. Random Roommate Assignment

Li et al. (2019) explored the impact of the composition of randomly assigned room-
mates on student academic performance among students at a top Chinese university. For
ease of exposition, we restrict our analysis to the N = 156 male students admitted to the
Department of Informatics, the largest department in the original study. The attribute of
interest is whether students are admitted via a college entrance exam (A; = 1), known
as Gaokao, or via an external recommendation (A; = (). Students are assigned to dorm
rooms of size 4 via complete randomization, as described in Section 5.2; that is, the num-
ber of students of each background in each room is a random quantity.

The exposure of interest is the number of roommates admitted via the entrance
exam w;(Z) =, , A;. We focus on the null hypothesis Hy? - Y#(0) = Y (3) for all
i=1,..., N =156, that is, a student’s end-of-year GPA is the same if he is randomly
assigned to have zero Gaokao roommates versus three Gaokao roommates. Moreover,
following Li et al. (2019), we want to test this null hypothesis separately for Gaokao and
recommendation students, which we denote H{”*(1) and H{"(0), respectively. Here, As-
sumption 1 states that group formation only affects end-of-year GPA by changing the
number of Gaokao roommates for a student. This excludes, for example, the subject area
or sociability of roommates as important mechanisms for group peer effects. Among 17
students from Gaokao, 13 have observed exposure W,°* = 0 and 4 have observed exposure
W = 3; among 45 students from recommendation, 40 have observed exposure W™ =0
and 5 have observed exposure W™ = 3. Table I reports the p-value using a difference-in-
means test statistic, and the corresponding inverted confidence intervals for the overall
null hypothesis Hy> and the subgroup null hypotheses H.>(1) and H;"*(0).

Our results are substantively close to those obtained by Li et al. (2019). First, our point
estimates are identical to those from Li et al. (2019), since both are based on a difference
in means. Our p-values and confidence intervals are also similar, with the exception of
HJ?(1), the separate null hypothesis on Gaokao students. For this, Li et al. (2019) found

TABLE I

P-VALUES, DIFFERENCE-IN-MEANS POINT ESTIMATES, AND 95% CONFIDENCE INTERVALS FOR THE
APPLICATION OF LI ET AL. (2019).

p-value Estimate Confidence interval
HY? 0.04 —0.31 (~0.67, —0.02)
H?(0) 0.02 —0.37 (=0.73, —-0.05)

Hy? (1) 0.23 —0.28 (—0.81,0.12)
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a p-value < 0.05, while we cannot reject that null hypothesis. One possible explanation
for this discrepancy is that, while our p-values are exact, Li et al. (2019) instead used
an asymptotic approximation, which may be unwarranted given the small sample size.
We investigate this more in Appendix C.1 of the Supplemental Material, where we con-
duct simulation calibrated on this application and show that normal asymptotics can fail
severely.

6.2. Meeting Groups Among Firm Managers

We now turn to the study from Cai and Szeidl (2017), in which CEOs of Chinese firms
were randomly assigned to meetings where they discussed management practices, with
ten managers per group. Groups were encouraged to meet monthly for roughly a year;
firms assigned to control did not meet. The primary outcome of interest is growth in firm
sales, defined as the difference in (log) firm sales from endline to baseline.’

Cai and Szeidl (2017) focused on the impact of assigning CEOs to meeting groups
versus a business-as-usual control group. Here, we revisit a secondary analysis in their
paper that explores the role of peer composition. In particular, among treated firms,
the group formation design was stratified across three attributes: firm sector (manufac-
turing/service), location (26 subregions), and firm size (small/large).® Using this design,
Cai and Szeidl (2017) “ask whether firms randomized into groups with larger peers grew
faster,” finding evidence in the affirmative.

We revisit this question using our proposed randomization inference framework, where
firm size is the exposure of interest. In particular, we focus on the 1,323 firms with non-
missing data (on size and revenue) that were randomly assigned to meetings. We first
consider the global sharp null of any effect of peer size on sales, and then highlight a
source of peer effect heterogeneity by testing the sharp null within subgroups defined
by sector and size. In the Supplemental Material, we also consider alternative exposure
definitions and look at pairwise, non-sharp null hypotheses to further explore this source
of heterogeneity.

Global Sharp Null Hypothesis

We start with the global sharp null hypothesis that there is no effect whatsoever of peer
size on sales. The exposure of interest is W; = |711| >z Sizej, where Z; is the set of peer
firms for firm i, and size; is the log-number of employees in firm j at baseline. Let W C R
be the exposure domain; then the global sharp null hypothesis is

Hy: Y (w)=Y (W) forallicUandw,w e€W. (11)

That is, under H,, the average employee size of firm i’s peer group does not affect the
firm’s revenue. As we discuss in Section 2.3, Assumption 1 plays a critical role in inter-
preting a rejection of our null hypothesis. In this application, Assumption 1 states that
group formation only affects sales by changing the size of a firm’s peer companies. This

3Cai and Szeidl (2017) collected survey data at baseline, midline, and endline. While the authors analyzed
the experiment using panel data regression, we side-step the panel structure here by defining the outcome as
the difference in log firm sales between endline and baseline. We note, however, that our framework accom-
modates a wide range of outcomes and test statistics, including those generated by panel regressions.

SFirm size is dichotomized at median employment of the sample of firms in the corresponding subregion,
where the authors used the number of employees at baseline as a proxy for the quality of the firm.
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excludes, for example, the number of other peer firms’ clients (rather than number of em-
ployees) from affecting a firm’s own revenue. To check robustness, we explore alternative
definitions of the exposure in Appendix B of the Supplemental Material.

To mirror the analysis in Cai and Szeidl (2017), we set the test statistic to be the coeffi-
cient of W in the following linear regression:’

Kobs:g[—{-,BA:‘—FTI/Vi—I—g,-, (12)

where A} = sector; x location; x size; includes all interactions between firm sector, loca-
tion, and size for unit i. We can now employ Procedure 1b to test H,, computing a one-
sided p-value of p =0.02 over 20,000 replications. Importantly, even if the linear model
in Equation (12) is not correctly specified, the randomization test remains finite-sample
valid.

Heterogeneity by Firm Size and Type

Since our approach is exact in finite samples, we can easily restrict our analysis to sub-
sets of firms, here defined by sector and size following Cai and Szeidl (2017). We repeat
Procedure 1b separately within each subgroup, using the estimated coefficient = from
Equation (12), except with the levels of A* restricted to the appropriate subgroup. The
results in Figure 3 show substantial heterogeneity in peer group effects. In particular, the
signal is concentrated entirely among small service firms (p = 0.0015), and is essentially
zero for the other three subgroups.

Cai and Szeidl (2017) also explored heterogeneity, albeit only in the “direct effects”
from treatment (i.e., meetings versus no meetings) rather than in peer effects; they found
larger firms benefited more from the meetings. Our analysis complements this picture
by showing that the impact of larger peers was concentrated mainly among small service
firms. We emphasize that the regression specification of Cai and Szeidl (2017) in (11) can-
not easily capture the heterogeneity we show here. In particular, their regression model
needs to include all size-sector-subregion interactions (~85 in total) dictated by the ex-
perimental design in order to identify 7 (see Section I11.B in Cai and Szeidl (2017)). These
interactions, however, essentially “wash out” the size-sector interaction effect we observe
here. Thus, our randomization-based analysis complements the regression-based analyses
and offers new insights. Finally, an additional benefit of our analysis is that our p-values
are exact, which is especially important for subgroups. In Appendix C.2, we highlight this
through a simulation study showing that regression-based tests can be severely distorted
in simple but realistic group formation designs motivated by Cai and Szeidl (2017).

7. DISCUSSION

We have proposed valid randomization tests for testing peer effects in group formation
experiments. While a promising first step, there remain several open questions. First, our
results motivate new considerations for the design of group formation experiments. In
particular, arbitrary designs do not necessarily satisfy the sufficient conditions we propose
for valid permutation tests. We therefore recommend using the experimental designs like

"To aid interpretation, we follow the regression specification in Cai and Szeidl (2017). However, the random-
ization inference theory from Li et al. (2019) shows that a regression specification that includes the interaction
of A and W is also justified by the randomization itself.
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FIGURE 3.—Randomization distributions for H, in (11) within firm subpopulations according to size and
sector. The dashed lines indicate observed values of the test statistic; ‘n’ is the subpopulation size, and ‘p’ is
the one-sided p-value calculated from Procedure 1b.

the stratified and completely randomized designs in Section 5 if researchers want to use
our permutation-based tests.

Second, sometimes the group structures may be more elaborate than what we have
studied in this paper. For example, we might assign students to classrooms and then sep-
arately assign teachers to those classrooms. Alternatively, there may be multiple, possibly
overlapping groups, for example, students nested within classrooms nested within schools.
Finally, randomizing peers may often be infeasible or raise ethical concerns. Thus, ex-
tending the ideas in this paper to the observational study setting, especially for sensitivity
analysis, is a promising avenue for future work.
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APPENDIX A: EXTENSIONS
A.1l. Relaxing Assumption 1

TO CLARIFY THE ROLE OF Assumption 1, we can restate our hypotheses using more gen-
eral notation:

H,:Y(Z)=Y,(Z) forall Z,Z andforallieU

and

H'"™ :Y(Z) = Y:(Z') forall Z, Z' such that w;(Z), w;(Z') € {w;, w,} and for all i € U.

If Assumption 1 holds, the null hypotheses H, and I:I(;V "2 are equivalent to the null hy-
potheses H, and H,""*; if it does not hold, the null hypotheses H, and H,"" are not

well defined, while H, and I:I(V)V "2 can still be tested. In fact, the procedures in Section 3
used for testing H, and Hy"" can be used without any modification to test H, and Hy""
regardless of Assumption 1.

While Assumption 1 does not affect the mechanics of the test, it does impose restric-
tions on the alternative hypothesis, which changes the interpretation of rejecting the null
hypothesis. In particular, Assumption 1 imposes two levels of exclusion restriction: one
on the relevant attribute and one on the relevant group. Without this assumption, a num-
ber of different reasons could lead to rejecting the null hypotheses, H, or H,""*. For
instance, we would reject these hypotheses if a unit’s outcome depends on the compo-
sition of attributes other than A, or if A is the relevant attribute but a unit’s outcome
depends on the composition of groups other than its own. Assumption 1 rules out both of
these alternative channels for peer effects, narrowing the interpretation of rejecting the
null hypotheses.
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In summary, it is possible to test the null hypotheses H, and H,"""* using the procedures
in Section 3, regardless of the validity of Assumption 1. The price paid for the additional
flexibility is that rejecting the null becomes less informative, since the alternative hypoth-
esis includes channels of interference that were otherwise ruled out by Assumption 1.

As we discuss in the main text, there is little guidance for applied researchers on specity-
ing exposure mappings, in part because these mappings can be highly context dependent.
Thus, developing recommendations for exposure mappings in practice, as well as assess-
ing sensitivity to those choices, is a necessary next step.

A.2. Testing Weak Null Hypotheses

Our paper focuses on null hypotheses that impose a constant effect (usually zero) for
all units. A natural question is how to extend our approach to average (or weak) null
hypotheses. In the no-interference setting, Wu and Ding (2020) proposed permutation
tests for weak null hypotheses using studentized test statistics. The result in Wu and Ding
(2020, Section 5.1) suggests that our permutation tests in Section 5 can also preserve
the asymptotic type I error under weak null hypotheses with appropriately chosen test
statistics. For example, we can test the following weak null hypothesis:

H(;vl’wz : T(Wl, W2) = 0,

where 7(w;, wy) = N~! le Yi(w;)—N~! Zf\;l Y:(w,). Following the argument in Wu and
Ding (2020), Procedure 2c will deliver an asymptotically valid p-value for H,""* if we use
the studentized statistic

> M (YViaw, — Yiaw,)
T(z;Y,U)= ach ,
D T (St My + S/ M)

achA

where , is the proportion of 4; = a among all units i € U, and (7, Y, §2) are the sample
size, mean, and variance with subscripts denoting the attribute and exposure. As usual,
we can also construct an asymptotic confidence interval for the average treatment effect
7(w;, W,) by inverting permutation tests.

A.3. Connection With the Classic Stratified, Multi-Arm Trial

Our paper helps to clarify the relationship between randomized group formation ex-
periments and traditional randomized stratified experiments in settings without interfer-
ence or peer effects. In particular, we show that the designs we consider are equivalent
to classic stratified randomized experiments with multiple arms. The non-sharp null hy-
potheses of interest correspond to contrasts between different arms of a multi-arm trial,
possibly for a subset of units. Thus, at least with some reasonable simplifying assumptions,
the otherwise complex setting of randomized group formation experiments reduces to a
more familiar setup. As a byproduct, our proposed permutation tests are applicable to
the classic designs as well.
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APPENDIX B: ADDITIONAL ANALYSIS FOR CAI AND SZEIDL (2017)

This section provides additional analysis and discussion of the re-analysis of Cai and
Szeidl (2017) in Section 6.2.

B.1. Discussion of Assumption 1—Alternative Definitions of Exposures

As discussed in Section 2.3, the interpretation of our test hinges on W being well-
specified in the sense of Assumption 1. For instance, our tests could reject, in principle,
even if H, was true but firm revenues differed across group assignments that produced the
same peer size exposure. Here, we explore the robustness of our results to two alternative
specifications of the exposure. In the next section, we consider an additional specification,
which reflects the type of peer group exposure that was actually randomized by Cai and
Szeidl (2017).

In particular, we consider two additional definitions of exposures:

o _ 1
! |Zi]

. . 2 1 .
blnary S1Z€ or W( ) = — S1Z€; - TEvenue ;
! j° i | Z | ] 12
i

JjE€Z; JeZ;

where binary_size; = 1 if and only if firm j has size larger than the median size in j’s re-
gion; and revenue; is the log-revenue of firm j at baseline. The definitions capture coarser
or finer versions, respectively, of our original exposure. For both these definitions, we run
Procedure 1b and report the results in Table A.I.

From Table A.I, we observe that our results remain largely robust to the alternative
exposure specifications we consider. For instance, across all specifications, we find a sig-
nificant effect on small service firms, as in the previous section. There is one notable

difference, however. Under the coarser exposure definition, Wi(]), we find evidence for a
negative peer group effect on small manufacturing firms (two-sided p-value = 0.04). This
effect likely averages out the positive effect on small service firms (two-sided p-value =

0.007), and produces a nonsignificant overall effect under Wi(l) .

B.2. Pairwise Null Hypotheses

We now turn to pairwise non-sharp null hypotheses, extending the analysis of hetero-
geneity in the previous section. To that end, we focus on small manufacturing firms for
which we observed a negative peer group effect in the previous section. We also consider

TABLE A.I
TESTING THE SHARP NULL UNDER ALTERNATIVE EXPOSURES.

WO W
One-sided Two-sided One-sided Two-sided
Small service firms 0.004* 0.007* 0.001* 0.002*
Small manufacturing firms 0.980 0.041* 0.550 0.899
Large service firms 0.607 0.785 0.262 0.523
Large manufacturing firms 0.954 0.092 0.304 0.608

Note: ‘One-sided’ indicates the one-sided p-value (p) from Procedure 1b on a subpopulation; ‘two-sided’ is the corresponding
two-sided p-value, 2min(p, 1 — p); ‘x” indicates a significant p-value at 5% level.
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TABLE A.II

TWO-SIDED p-VALUES AND INVERTED RANDOMIZATION-BASED CONFIDENCE INTERVALS (AT 5% LEVEL) FOR
THE PAIRWISE WEAK NULLS OF SECTION B.2.

Null hypothesis n(ny/ny) p-value Point estimate Confidence interval
Hy S (small) 179 (84/95) 0.003 —0.449 (—1.062, —0.148)
Hy*™ (small) 139 (44/95) 0.712 ~0.549 (—=1.084, 0.885)
Hy"S"™ (small) 188 (104/84) 0.903 0.017 (=0.445, 0.404)
HE™S (small) 148 (104/44) 0.306 0.116 (~1.236,0.387)

Note: ‘n’ indicates the number of units tested under the respective null, Hgl ’W2; ‘ny’ is the number of firms exposed to wy, and
‘ny’ the number of firms exposed to wy (n=nq +ny).

a definition of treatment exposure that matches the type of exposure randomized in the
actual experiment.

In particular, Cai and Szeidl (2017) randomized firms into four group types, namely,
“small firms in the same sector,” “large firms in the same sector,” “mixed-size firms in
the same sector,” and “mixed-size firms with mixed sectors.” We thus define the following
discrete-valued exposure for a small manufacturing firm i:

S, if firm i’s peer group is all small manufacturing firms;

Sm, if firm ¢’s peer group is all small firms of various sectors;
SL, if firm 7’s peer group is mixed-size manufacturing firms;
SLm, if firm i’s peer group is mixed-size firms of various sectors.

w® = (B.1)

We consider four (weak) pairwise null hypotheses each comparing whether small man-
ufacturing firms benefit from having a certain exposure level over another. For instance,
Hy*"(small) denotes a null hypothesis to test whether there are benefits of having a mix
of large and small manufacturing peers as opposed to having only small manufacturing
peers; H,®" (small) denotes whether there are benefits of having a mix of small service or
small manufacturing peers as opposed to having only small manufacturing peers; and so
on.

Table A.Il summarizes the results from using Procedure 2b on these pairwise null hy-
potheses. These results add nuance to the negative peer group effect that we observed
on small manufacturing firms in Table A.L. In particular, we find that this negative peer
group effect on small manufacturing firms is mainly due to their exposure to other large
manufacturing firms. The relevant null, HS’SL, is strongly rejected (two-sided p-value =
0.003), and the inverted confidence interval from this test indicates a range of 15% to
65% in revenue loss from such exposure. In contrast, no negative effects are observed
when the exposure of small manufacturing firms is to small or large firms from a different
sector (service).

APPENDIX C: SIMULATION STUDIES

This section describes simulation studies that demonstrate the failure of asymptotic
approximations in our applications and highlight the importance of using exact tests.
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C.1. Simulation Study Calibrated to Li, Ding, Lin, Yang, and Liu (2019)

Our first simulation study illustrates the failure of asymptotics of the regression-based
(“Neymanian”) approach proposed by Li et al. (2019), in a setting calibrated to the room-
mates application in Section 6.1. Specifically, consider the following setup:
e N =156 students allocated at random in rooms of size 4, indexed by i.
e A random a% of students (a is a free parameter) has A =1 and the rest has 4 =0.
e Sample X; ~ N(0,1) i.i.d.; or X; = S; Weibull(0.3), where §; is random sign; or X; ~
mixture where mixture = (1 —B)&_, + BU[1 —¢€, 1+ €], where 6 is the delta function,
k, € are constants, and B is a Bernoulli random variable such that the mean is 0. All
distributions are also normalized to have variance 1.

e Sample ¢; i.i.d. using the distributions described above.

e Define the exposure model, W; =) A;, where room; is the set of students in
the same room as i.

e Define outcome V; =1+0-1(W;=2) + X; + (0.01 + A4,)e;.

Note that, under this data-generating process, Y“(0) = Y“(2) in distribution, and so
our randomization tests remain finite-sample valid.

In this model, even though room allocation is completely randomized and there is no
imbalance in room size, the joint distribution of (A, W) has a complex correlation struc-
ture due to the group formation design. In particular, roughly 3-5% of the units are
exposed to W = 2, which results in a highly leveraged exposure assignment. Moreover,
conditional on W; =2, unit i is more likely to be A; = 0. Thus, under a mixture error
distribution, the outcomes Y; of such units tend to be smaller than the outcomes under
other exposures. This difference becomes negligible in the limit with more samples, but it
is substantial in finite samples, and cannot be easily captured by a regression model even
under a robust specification.

To illustrate this point, we regress Y; ~ 1(W; = 2) + X; and use conservative
heteroscedasticity-robust errors (“HC0”). We then test (at 5% level) the hypothesis that
the regression coefficient of the exposure dummy variable is zero. The results are shown
in Table A.III below. Here, we want only to show the pathological cases for the regression
approach, and so we exclude the normal error setting for which regression performs well
and near the nominal level.

Based on the results reported in Table A.III, we observe that with Weibull errors (heavy
tailed), the regression-based test has a size distortion and tends to under-reject. Under a
mixture distribution for the errors, regression severely over-rejects. For instance, even
with N (0, 1) covariates, we observe rejection rates up to roughly 61%. In general, the
regression-based test deteriorates under imbalanced designs.

In contrast, the randomization test is finite-sample valid as expected. Table A.IV shows
a partial set of results relating to the pathological cases. We see that the randomization
test achieves near-nominal level performance, with deviations from the nominal level due
to Monte Carlo error.

Jjeroom;, j#i

C.2. Simulation Study Calibrated to Cai and Szeidl (2017)

We now consider the following simulation setup inspired by the analysis of Cai and
Szeidl (2017) in Section 6.2. Here, we focus on a subset of the data to illustrate the
key intuition. We have 13 firms in the same sector and subregion; two of the firms are
“large” and the remainder are “small.” In particular, their sizes in terms of log-number
of employees are A = (5,5, Zi, ..., Zi;), where Z; ~ Unif[1, 3] are i.i.d. uniform. Follow-
ing Cai and Szeidl (2017), we randomize the firms into two groups, one of type “mixed-
size” (SL) and another of type “small-size” (S). Since Z; are i.i.d., we can simply set as
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TABLE A.III
REJECTION RATES FROM ROBUST REGRESSION BASED ON A SIMULATION MOTIVATED BY LI ET AL. (2019).

a(%A=1) X & Rejection rate%
10.00 N(0,1) Weibull 1.63
30.00 1.20
50.00 1.40
10.00 Weibull Weibull 1.54
30.00 1.50
50.00 1.50
10.00 mixture Weibull 1.33
30.00 1.00
50.00 2.00
10.00 N(0,1) mixture 61.98
30.00 11.40
50.00 10.10
10.00 Weibull mixture 64.74
30.00 9.70
50.00 10.50
10.00 mixture mixture 66.05
30.00 12.40
50.00 11.40

L=(1,1,1,2,2,...,2), such that group 1 is of type (SL) with two large firms and one
small firm, and group 2 is of type (S) with all firms being small. The exposure of firm i is
defined as the average group size of other firms in i’s group:

1
lZAj.

[
|gr0upi jegroup;

We sample €; = N (0, o7), where o7 = 1/|group,| is the reciprocal of i’s group size, and
set the outcome modelas Y; =0- W, + ¢;.

A conventional econometric approach would be to regress Y ~ W + A and test whether
the coefficient on W is zero, either through regular OLS errors or ‘robust OLS’. However,
both approaches are severely biased even when we condition on the same sector, subre-
gion, and firm sizes. In a simulated study with 10,000 replications based on this model, the
nominal 5% rejection rate from regular OLS is 18.48%; and the rejection rate from ro-
bust OLS is 60.82%. For the same simulated data, the rejection rate of our randomization
test is 4.8%.

TABLE A IV
REJECTION RATES (%) FROM ROBUST REGRESSION AND THE GROUP FORMATION RANDOMIZATION TEST OF
PROCEDURE 2B.
a(%A=1) X £ Regression Randomization test
10.00 N(0,1) mixture 61.1 5.9
30.00 9.9 4.1

50.00 9.2 4.3
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The problem here is that OLS errors do not take into account the true correlation
structure in . For instance, in this model, both large firms have the exact same exposure
regardless of the particular treatment assignment. Due to the problem structure, with high
probability the errors in these two large groups can both be extreme, leading to a spurious
correlation between Y and W. Conditioning on firm characteristics in a regression model
cannot fix this issue. In contrast, a randomization test can leverage the true correlation
structure in W and has the correct level in finite samples.

APPENDIX D: PROOFS
D.1. Proof of Theorem 1

THEOREM 1: Let P(L) denote a distribution of the group labels with support L =
{1,...,K}". Let W = w*(L) € WV be the corresponding exposures, and let U = u‘(L) €
{0, 1}V be the focal indicator vector, for some w'(-), u‘(-) defined by the analyst. Define
Sauv=Sn(A)NSy(U), which is the permutation subgroup of Sy that leaves A (the attribute
vector) and U (the focal unit vector) unchanged. Suppose that the following conditions hold.

(a) P(L)y=P(wL),forall meS,yand L €.

(b) w'(-) is equivariant with respect to S 4 .

(c) u‘(-) is equivariant with respect to'S 4 7.

Then, W is uniformly distributed conditional on the event {W € B}, where B € O(W"; S 4 v).

PROOF: We start with two lemmas.

LEMMA D.1: Suppose that Conditions (a)-(c) of Theorem 1 hold. Let B € O(WV;S 4.1)
be an orbit such that P(B) > 0. Then, for any 7 € S 4, we have

P(wL|W € B,U) = P(L|W € B, U).

PROOF OF LEMMA D.1: L determines both U and W, and so

P(W € B,U|L) =1{w'(L) € B} - 1{U = u*(L)}. (D.1)
Similarly,
P(W e B,U|wL)=1{w'(wL) € B} - 1{U = u‘(wL)} from (D.1)
=1{mw'(L) € B} - 1{U = wu'(L)} from Conditions (b)—(c)
=1{w'(L) e B} - 1{#m'U=u'(L)} from orbit property of B
=1{w'(L)eB} - 1{U=u’(L)} wU=Usince meS,y
=P(W eB,U|L) from (D.1). (D.2)

It follows that
P(W eB,U|wL)P(wL)=P(W € B,U|L)P(L)from (D.2) and Condition (a)
P(W eB,U|wL)P(wL) B P(W e B,U|L)P(L)
P(B) B P(B)
= P(#@L|WeB,U)=P(L|WeB,U). O.E.D.

from P(B) >0
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Lemma D.1 shows that L retains its symmetry even conditionally on W beloning to
some orbit B and conditional on focal selection U. The subspace where its symmetry
holds is exactly the permutation subgroup S 4y, which leaves 4 and U fixed.

LEMMA D.2: Let w € WY be a fixed exposure vector, and define
L(w)={L eL:w'(L)=w}.
Then, for any € S 4 iy, we have that
L(mw) ={wL:LeL(w)}.

PROOF OF LEMMA D.2: The result follows from the equivariance property of w’ in
Condition (b). Specifically, equivariance implies that, for any L € L(w), then wL €
L(7w). Conversely, for any L' € L(7w), then 77'L’" € L(w). Q.E.D.

The crucial result in Lemma D.2 is that there exists a 1-1 mapping between the sets
L(w) and L(7w) for any m € S p.
We are now ready to prove the main result of Theorem 1. For a fixed w € W¥,

P(W=wWeB,U)=Y 1{w'(L)=w}P(L|W € B,U)

LelL

= Y P(L|WeB,U). (D.3)

Lel(w)
Moreover, for any w € S 4y,

P(W =mw|lW eB,U)=>Y 1{w'(L)=mw}P(L|W €B,U) from (D.3)

LelL

= > P(LIWeB,U)

LelL(mw)

= Z P(wL|W € B,U) from Lemma D.2

Lel(w)
= Z P(L|W eB,U) fromLemma D.1
Lel(w)
=P(W =w|W € B,U). (D.4)
B is an orbit, and so it can be generated by any of its elements. Since W € B, the orbit can
be generated by W, and so B ={#W : w € S 4 y}. Therefore, conditional on {W € B} and

focals U, the orbit B is the entire domain of . The result in (D.4) now implies that IV is
conditionally uniform given 3 and U. Q.E.D.

D.2. Proof of Lemma 1
Equivariance of w*

The exposure is defined in Equation (3) as w;(Z) ={A4;: j € Z;}. On the domain of
group levels, this can be rewritten as
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Now, let 7 € Sy(A) be any transposition acting on L, that is, a single swap between labels
L;, L; of units i and j, respectively. After the swap, i is in the “room” that j was, and
j is in the “room” that i was. From the definition of w’ above, the exposures are only
a function of other units’ attributes in the room, and so units i and j swap exposures.
The exposures of all units other than i, j are unaffected because i and j have the same
attribute (A; = A;) due to 7 € Sy (A).

Thus, we proved that w'(wL) = ww‘(L) whenever 7 is a transposition. Since every
permutation is a composition of transpositions, the result holds for any permutation in
Sy (A). Moreover, the result holds for 7 € S 4 as well since S 4y is a subgroup of Sy (A).

Equivariance of u*

Recall the definition of focal selection in our setting, as defined in Equation (9),
u;(Z) =1 if and only if w;(Z) € {w,, w,}. With a slight abuse of notation, this can be
rewritten as u‘(L) = 1{w*(L) € {w;, w,}}, where the operation on the right-hand side is
understood element-wise. Thus,

u'(wL) = 1{w'(wL) € {wy, wr}} = L{mw’(L) € {w;, wo}} = wl{w" (L) € {wy, w}}.

Here, the second equality follows from equivariance of w* and the last equality follows
from the element-wise operation.

D.3. Proof of Lemma 2

In the stratified randomized design, define m* : LN — NIAIXIE a9

m'(L),c =Y 1(L;=k)1(4; =a),

ielU

which counts how many units with attribute A; = a are assigned to group label k. Then,
a stratified randomized design satisfies P(L) o< 1{m°’(L) = n 4}, where n is fixed. For any
permutation 7 € Sy(A4), and any pair (a, k), we have

m“(WL)ayk

=Y 1{(7L); =k}1(A;=a)
ieU

= Z 1(L;=k)1{(wA);=a} fromidentity, (wx)'y=x'(my),for any x,y e R"
ieU

= Z]I(L,- =k)1(Ai=a) wA= Asince me Sy(A)
ieU

=m°(L),x. (D.5)

This result immediately implies that P(wL) = P(L) for any 7w € Sy(A). This holds also

in the focal selection setting. That is, P(wL) = P(L) for any m € S,y since S,y is a
subgroup of Sy(A4). Thus, Condition (a) holds.
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D.4. Proof of Lemma 3

In the completely randomized design, define m¢ : LY — N ag

m‘(L); =Y 1(Li=k),

ielU

which counts how many units are assigned to group label k. Then, P(L) o< 1{m°(L) =n},
where n = (ny, ..., ng) denotes how many units are to be assigned to each label, and is
fixed. For any permutation 7 € Sy and label k, we have

m(7L), =Y 1{(wL); =k} = WL;=k}=(L). (D.6)

iU iclU

This result immediately implies that P(wL) = P(L) for any 7 € Sy. This holds also for
any subgroup of Sy, including Sy(A) and S, . Both of these subgroups keep the at-
tributes fixed, and so Procedures 1c and 2c in the completely randomized design are
equivalent to the stratified randomized design with parameter n, = m*(L). Thus, Con-
dition (a) holds.

REFERENCES

CAI, JING, AND ADAM SZEIDL (2017): “Interfirm Relationships and Business Performance,” The Quarterly
Journal of Economics, 133, 1229-1282. [3-5]

L1, XINRAN, PENG DING, QIAN LIN, DAWEI YANG, AND JUN S. LIU (2019): “Randomization Inference for
Peer Effects,” Journal of the American Statistical Association, 114, 1651-1664. [5,6]

WU, JASON, AND PENG DING (2020): “Randomization Tests for Weak Null Hypotheses in Randomized Exper-
iments,” Journal of the American Statistical Association, 116, 1898-1913. [2]

Co-editor Guido W. Imbens handled this manuscript.

Manuscript received 2 September, 2021, final version accepted 19 November, 2023; available online 27 November,
2023.



	Introduction
	Setup and Framework
	From Regression to Randomization Inference for Peer Effects
	Linear-in-Means Model
	Heterogeneous Treatment Effect Model
	Motivating Regression From Randomization
	From Regression to Randomization-Based Testing

	Notation and Setup
	Notation

	Assumptions and Exclusion Restrictions
	Discussion of Assumption 1

	Sharp and Non-Sharp Null Hypotheses
	Toy Example and Sketch of Key Ideas
	Naive Permutation Tests Can Fail
	Randomization Tests Based on Draws From the Assignment Distribution Are Valid but Computationally Prohibitive
	Permutation Tests Stratiﬁed by Attribute Are Valid and Tractable for Both Sharp and Non-Sharp Null Hypotheses

	Valid Tests in Arbitrary Group Formation Designs
	Randomization Test for the Sharp Null
	Randomization Tests for Non-Sharp Nulls
	Focal Units
	Valid Tests
	Computational Challenges With Testing Non-Sharp Nulls

	Using Design Symmetry to Construct Computationally Tractable Permutation Tests
	Equivariant Maps and Stabilizers
	Main Result: Sufﬁcient Conditions for Valid Permutation Tests on Exposures


	Permutation Tests in Two Group Formation Designs
	Stratiﬁed Randomized Design
	Completely Randomized Design

	Applications
	Random Roommate Assignment
	Meeting Groups Among Firm Managers
	Global Sharp Null Hypothesis
	Heterogeneity by Firm Size and Type

	Discussion
	References




