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baseline, contemporary scientific publications often report covariate balance tables with not
only covariate means by treatment group but also the associated p-values from significance tests
of their differences. The practical need to avoid small p-values as indicators of poor balance
motivates balance check and rerandomization based on these p-values from covariate balance
tests (ReP) as an attractive tool for improving covariate balance in designing randomized
experiments. Despite the intuitiveness of such strategy and its possibly already widespread
use in practice, the literature lacks results about its implications on subsequent inference,
subjecting many effectively rerandomized experiments to possibly inefficient analyses. To fill
this gap, we examine a variety of potentially useful schemes for ReP and quantify their impact
on subsequent inference. Specifically, we focus on three estimators of the average treatment
effect from the unadjusted, additive, and interacted linear regressions of the outcome on
treatment, respectively, and derive their asymptotic sampling properties under ReP. The main
findings are threefold. First, the estimator from the interacted regression is asymptotically the
most efficient under all ReP schemes examined, and permits convenient regression-assisted
inference identical to that under complete randomization. Second, ReP, in contrast to complete
randomization, improves the asymptotic efficiency of the estimators from the unadjusted and
additive regressions. Standard regression analyses are accordingly still valid but in general
overconservative. Third, ReP reduces the asymptotic conditional biases of the three estimators
and improves their coherence in terms of mean squared difference. These results establish ReP
as a convenient tool for improving covariate balance in designing randomized experiments, and
we recommend using the interacted regression for analyzing data from ReP designs.

1. Introduction
1.1. Rerandomization based on p-values

Covariate balance increases comparability of units under different treatment conditions, thereby strengthening the causal
conclusions that can be drawn from data. Randomized experiments balance all observed and unobserved covariates on average,
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and provide the gold standard for estimating treatment effects. Chance imbalances are nonetheless common in realized allocations.
Rerandomization, termed by Cox (1982) and Morgan and Rubin (2012), enforces covariate balance by discarding randomizations
that do not satisfy a prespecified balance criterion. Bruhn and McKenzie (2009) conducted a survey of leading experimental
researchers in development economics, and suggested that rerandomization is commonly used yet often poorly documented.

To inform readers of the comparability of treatment groups at baseline, contemporary scientific publications are often encouraged
to report baseline covariate balance tables with not only covariate means by treatment group but also the associated p-values from
significance tests of their differences. The practical need to avoid small p-values as indicators of poor balance motivates conducting
rerandomization directly based on these p-values from balance tests (Bruhn and McKenzie, 2009; Ashraf et al., 2010). Formally,
rerandomization based on p-values (ReP) runs one or more statistical tests to check the covariate balance of a realized randomization,
and accepts the allocation if and only if the p-values of interest all exceed some prespecified thresholds. In their popular textbook
on modern field experiments, Gerber and Green (2012, Chapter 4.5) made this recommendation as a way to “quickly approximate
blocking”.

Despite its decade-long existence and close relevance to practice, the theory of ReP has not been addressed in the litera-
ture. Hansen and Bowers (2008) discussed two hypothesis testing-based techniques for balance check in randomized experiments but
did not touch the issue of rerandomization and corresponding inference. Gerber and Green (2012) gave the practical recommendation
yet did not discuss its theoretical implications. The existing discussion on rerandomization, on the other hand, focused mostly on
balance criteria based on the Mahalanobis distance between covariate means by treatment group (Morgan and Rubin, 2012, 2015;
Branson et al., 2016; Li et al., 2018, 2020; Li and Ding, 2020; Branson and Shao, 2021; Zhao and Ding, 2021, 2023; Johansson
et al., 2021; Johansson and Schultzberg, 2022). The resulting procedure, also known as ReM, is convenient in theory but in general
not a straightforward choice in practice. Another related literature is that on restricted randomization, also known as constrained
randomization, which improves covariate balance by blocking, stratification, matched pairing, covariate-adaptive adjustment, etc.
See, e.g., Bailey (1987), Imai et al. (2009), Bruhn and McKenzie (2009), Miratrix et al. (2013), Higgins et al. (2016), Bugni et al.
(2018, 2019), Fogarty (2018), Liu and Yang (2020), Wang et al. (2021), Pashley and Miratrix (2021), Bai et al. (2022), and Ye et al.
(2023). See also Johansson and Schultzberg (2022) for a discussion on the connection and comparison between stratification and
rerandomization. The existing work in this literature however concerns restrictions distinct from those based on covariate balance
tests. The gap between theory and practice causes many effectively ReP-based experiments to be analyzed as if they were completely
randomized, risking overconservative inferences that hinder the detection of statistically significant findings (Bruhn and McKenzie,
2009). Glennerster and Takavarasha (2014) took an extreme stance and advised to “avoid using this technique (rerandomization),
at least until there is more agreement in the literature about its pros and cons”. This paper fills this gap and clarifies the theoretical
implications of ReP.

1.2. Our contributions

First, we formalize ReP as a tool for improving covariate balance in randomized treatment-control experiments, and propose a
variety of potentially useful schemes based on standard statistical tests. The proposed ReP schemes use p-values from two-sample
t-tests, linear regression, and logistic regression to form the covariate balance criteria, allowing for easy implementation via standard
software packages.

Next, we quantify for the first time the impact of the proposed ReP schemes on covariate balance and subsequent inference.
Specifically, we focus on three estimators of the average treatment effect from the ordinary least squares (OLS) fits of the unadjusted,
additive, and interacted linear regressions of the outcome on treatment, respectively, and evaluate their sampling properties under
the proposed ReP schemes from the design-based perspective. In short, the design-based perspective assumes the finite-population
framework and takes the physical act of randomization as the sole source of randomness in evaluating the sampling properties of
quantities of interest (Neyman, 1923; Freedman, 2008b; Lin, 2013; Imbens and Rubin, 2015). The resulting inference is robust to
model misspecification and hence also known as model-assisted inference; see Negi and Wooldridge (2021) and the references therein
for the super-population counterpart. The main findings are threefold. First, ReP improves the covariate balance between treatment
groups, which in turn (i) simplifies the interpretation of experimental results, (ii) reduces the conditional biases of the estimators (c.f.
Ding, 2021b, Section 4.3), and (iii) promotes more coherent inferences between covariate-adjusted and unadjusted analyses (c.f. Zhao
and Ding, 2023, Section S5.3). Second, the estimator from the interacted regression is asymptotically the most efficient under all ReP
schemes considered, with the asymptotic sampling distribution unaffected by the rerandomization. It is thus our recommendation
for subsequent analysis under the proposed ReP schemes, allowing for convenient regression-based inferences identical to that under
complete randomization. Specifically, we can use the coefficient of the treatment in the OLS fit of the outcome on the treatment,
covariates, and their interactions as the point estimator of the average treatment effect, and use the associated Eicker-Huber-White
(EHW) standard error to estimate the true standard error. Third, ReP improves the asymptotic efficiency of the estimators from the
unadjusted and additive regressions, rendering inference based on the usual normal approximation overconservative. This highlights
the importance of rerandomization-specific inference under ReP when the unadjusted or additive regression is used and, by contrast,
demonstrates the advantage of the interacted regression for efficient and straightforward inference by normal approximation. We
thus recommend using the interacted regression for analyzing data from ReP designs.

Lastly, we extend the theory of ReP to experiments with more than two treatment arms and stratified experiments.

We make two novel technical contributions in the process. First, we clarify the value of the renowned Gaussian Correlation
Inequality (Royen, 2014) for establishing the theoretical properties of rerandomization. Most existing proofs of the theory of
ReM rely on the geometric properties of the Mahalanobis distance and do not generalize to rerandomization based on other
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balance criteria such as ReP. The Gaussian Correlation Inequality bridges this gap and provides a powerful tool for clarifying
the theoretical guarantees of a wide class of rerandomization schemes including ReM and ReP. See Lemmas S3-S4 in the
Supplementary Material. Second, we establish the asymptotic equivalence of the likelihood ratio test (LRT) and the Wald test for
logistic and multinomial logistic regressions from the design-based perspective, complementing the recent discussions in Freedman
(2008b), Hansen and Bowers (2008), and Guo and Basse (2023) on design-based inference from nonlinear regressions. See Theorem
S1 in the Supplementary Material. Without invoking any assumption of the logistic or multinomial logistic model, we view logistic
and multinomial logistic regressions as purely numeric procedures based on maximum likelihood estimation (MLE), and evaluate
the sampling properties of the test statistics over the distribution of the treatment assignments.

1.3. Notation and definitions

For a set of tuples {(;,v;1,...,0;1) : 4; ER, v; ERKI, i=1,...,N, [ =1,..., L}, denote by 1m(u; ~ v;; + - + v;;) the OLS fit of
the linear regression of u; on (v;y, ..., v;;) with (0],...,v])T as the regressor vector, and by logit(u; ~ v;; + - +v;r) the MLE fit of
the logistic or multinomial logistic regression of u; on (v;;, ..., v;; ). We allow each v;, to be a scalar or a vector and use + to denote

concatenation of regressors. Throughout, we focus on the numeric outputs of OLS and MLE without invoking any assumption of
the corresponding linear or logistic model. Assume default tests and p-values from standard software packages throughout unless
specified otherwise.

For two K x 1 vectors T = (t,,...,tx)" and a = (ay,...,ag)", denote by |T| < a if |t,| < a, for all k = 1,..., K. Denote by
diag(uk)le = diag(uy, ..., ug) the K x K diagonal matrix with u;’s on the diagonal. For a K x K symmetric matrix V = (V) x/=1.... K
with V> 0forallk=1,...,K, let 6(V) = diag(Vk]k/z)kK=l and D(V) = {c(V)}~'V{a(V)}~!. Intuitively, D(V) gives the corresponding
correlation matrix when V is a covariance matrix. Let ||¢||,, = €T {cov(e)}~'e denote the Mahalanobis distance of a random vector
¢ from the origin. Let ~ denote convergence in distribution, and let E, denote the expectation of the asymptotic distribution.

Lastly, we use peakedness (Sherman, 1955) to quantify the relative efficiency between estimators.

Definition 1. For two symmetric random vectors A and B in RX, we say A is more peaked than B if P(A € C) > P(B € C) for all
symmetric convex sets C in RX, denoted by A > B.

For K = 1, a more peaked random variable has narrower central quantile ranges. For A and B with finite second moments,
A > B implies cov(A) — cov(B) is negative semidefinite (Li et al., 2020, Proposition 4). For A and B that are both normal with zero
means, A > B is equivalent to cov(A) — cov(B) being negative semidefinite. This suggests peakedness as a more refined measure for
comparing relative efficiency of estimators than covariance. We formalize the intuition in Definition 2 below.

Definition 2. Assume that §; and , are two consistent estimators for parameter § € RX as the sample size N tends to infinity,
with VN, —6) » A, and Y/ N(0, — 0) ~ A, for some symmetric random vectors A; and A,. We say

(i) 4, and 8, are asymptotically equally efficient if A, and A, have the same distribution, denoted by 8, ~ 6,;
(ii) 8, is asymptotically more efficient than 0, if A; > A,, denoted by 8, >_, 6,.

By Definition 2, an asymptotically more efficient scalar estimator has not only a smaller asymptotic variance but also narrower
central quantile ranges.

2. Basic setting of the treatment-control experiment
2.1. Regression-based inference under complete randomization

Consider an intervention of two levels, indexed by ¢ = 0,1, and a finite population of N units, indexed by i = 1,..., N. Let
Y;(g) € R be the potential outcome of unit i under treatment level g € {0, 1} (Neyman, 1923; Imbens and Rubin, 2015). The individual
treatment effect is z; = Y;(1) — ¥;(0) for unit i, and the finite-population average treatment effect is z = N~! Z{i \T = Y1) -Y(0),
where Y(q) = N~! Z,]L Yi(9).

For some prespecified, fixed integer N, > 0, complete randomization draws a random sample of N, units to receive level 1 of
the intervention and then assigns the remaining N, = N — N > 0 units to level 0. Let e, = N,/N denote the proportion of units
under treatment level g € {0, 1}.

Let Z; € {0,1} denote the treatment level received by unit i. The observed outcome equals Y, = Z;Y;(1) + (1 — Z,)Y;(0). Let
Y(g) = Nq‘l > Zi=q Y; denote the average observed outcome under treatment level g € {0, 1}. The difference in means %, = Y(1)-Y(0)
is unbiased for r under complete randomization (Neyman, 1923), and can be computed as the coefficient of Z; from the simple,
unadjusted linear regression 1m(Y; ~ 1+ Z;) over i = 1,..., N.

The presence of covariates promises the opportunity to improve estimation efficiency. Let x; = (x;,...,x;;)" denote the J
pretreatment covariates for unit i, centered at X = N~! Z,]i X = 0,. Fisher (1935) suggested a covariate-adjusted estimator %,
for 7, as the coefficient of Z; from the additive linear regression 1m(Y; ~ 1+ Z; + x;) over i = 1,..., N. Freedman (2008a) criticized
the possible efficiency loss by £, compared to %,. Lin (2013) recommended an improved estimator, denoted by 7 , as the coefficient
of Z; from the interacted linear regression 1m(Y; ~ 14+ Z; + x; + Z;x;) over i = 1,..., N, and showed its asymptotic efficiency over
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£, and %,. In addition, Lin (2013) also showed that the corresponding EHW standard errors are asymptotically conservative for
estimating the true standard errors of %, and #,. This justifies large-sample Wald-type inference of = based on OLS.

We adopt the design-based perspective for all theoretical statements in this article, which views the physical act of randomization,
as represented by (Z,-),.’i |» as the sole source of randomness in evaluating the sampling properties of quantities of interest.
Accordingly, despite the estimators %, #,, and %, are all outputs from linear regressions, we invoke no assumption of the
corresponding linear models but evaluate the sampling properties of 7, (x = N,F,1) over the distribution of (Zi),-]i , conditioning
on the potential outcomes and covariates. All theoretical guarantees of the 7,’s are therefore design-based and hold even when the

linear models are misspecified; see Negi and Wooldridge (2021) and the references therein for the super-population counterpart.

2.2. Covariate balance and rerandomization

The regression adjustment by Fisher (1935) and Lin (2013) can be viewed as adjusting for imbalances in covariate means. Let
£, = %(1) — £(0) denote the difference in covariate means between treatment groups, with %(q) = Nq‘] > Z=q Xi for ¢ = 0,1. Let 3,
be the coefficient vector of x; from the additive regression 1m(Y; ~ 1 + Z; + x;) over i = 1,..., N, and let 7, = ey, | + ¢, where
7., denotes the coefficient vector of x; from the treatment group-specific regression 1m(Y; ~ 1 +x;) over {i : Z; = q}. Zhao and Ding
(2021, Proposition 1) showed that

2, =4, %17, for x=rL
This expresses %, and 7, as variants of %, after adjusting for a linear function of the difference in covariate means.

Rerandomization, on the other hand, enforces covariate balance in the design stage, and accepts an allocation if and only if
it satisfies some prespecified covariate balance criterion (Cox, 1982; Morgan and Rubin, 2012). Assume complete randomization
for the initial allocation. Morgan and Rubin (2012) and Li et al. (2018) studied a special type of rerandomization, known as ReM,
that uses the Mahalanobis distance of 7, as the balance criterion, and accepts a randomization if and only if ||Z,||,, < a, for some
prespecified threshold a,. The practical need to avoid small p-values in baseline covariate balance tables instead motivates ReP
that accepts a randomization if and only if the p-values from relevant balance tests all exceed some prespecified thresholds. To fill
the gap in the literature regarding the theoretical properties of ReP, we examine nine hypothesis testing-based covariate balance
criteria for conducting ReP under the completely randomized treatment-control experiment, and quantify their respective impact on
subsequent inference from the design-based perspective. We start with three two-sample r-test-based criteria in Section 3 given their
direct connections with the balance tables in practice, and extend the discussion to six regression-based alternatives in Section 4.
The results provide the basis for generalizations to experiments with more than two treatment arms and stratified experiments,
which we formalize in Sections 5 and 6.

3. ReP based on two-sample #-tests
3.1. Marginal, joint, and consensus rules

The difference in covariate means provides an intuitive measure of covariate balance under the treatment-control experiment.
Depending on whether we examine the J covariates separately or together, this motivates three two-sample t-test-based criteria for
ReP.

To begin with, recall x;; as the jth covariate of unit i. A common approach to balance check is to run one two-sample ¢-test for
each covariate j € {1,...,J} based on (x;;, Z,-){Z » and use the resulting two-sided p-value, denoted by p; ;, to measure the balance of
(x; /-)i]i . between treatment groups. This yields J marginal p-values, {p;; : j = 1,...,J}, that occupy the last column of the covariate
balance tables. An intuitive, and possibly already widely used, criterion for ReP is then to accept a randomization if and only if
Pt 2 @ for all j = 1,...,J for some prespecified thresholds a; € (0,1) (Bruhn and McKenzie, 2009). We call this the marginal
rule based on J marginal tests of individual covariates. This generalizes the “big stick” method discussed by Bruhn and McKenzie
(2009).

Alternatively, we can test the difference in means of all J covariates together by a multivariate analog of the two-sample #-test,
and accept a randomization if and only if the p-value from this joint test exceeds some prespecified threshold. Let £ be the pooled
estimated covariance of .. The two-sample Hotelling’s T2 test takes W; = #7027!%, as the test statistic, and computes a one-sided
p-value, denoted by py, by comparing W; against the Hotelling’s T2 distribution. Alternatively, we can replace the Hotelling’s 7?2
distribution with the asymptotically equivalent ;(} distribution and compute the p-value based on the joint Wald test. A joint rule
then accepts a randomization if and only if py, > «, for some prespecified threshold «, € (0. 1).

In situations where both marginal and joint balances are desired, we can adopt a consensus rule that accepts a randomization if
and only if it is acceptable under both the marginal and joint rules with p; > ; for all j=0,1,...,J.

Index by “mg”, “jt”, and “cs” the marginal, joint, and consensus rules, respectively. This defines three ReP schemes by two-sample
t-tests, summarized in Definition 3 below. Of interest are their implications on the subsequent inference based on %, (x = N, F,1). We
address this question in Sections 3.2 and 3.3 below.

Definition 3. Assume ReP by two-sample r-tests. Let Aimg = {pjx 2 9 forall j = 1,...,J}, Agje = {por = o}, and

Apes = Aymg N Agje = {pj¢ 2 a; forall j = 0,1,...,J} denote the acceptance criteria under the marginal, joint, and consensus
rules, respectively.
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3.2. Asymptotic theory

We derive in this subsection the asymptotic sampling properties of %, (x = N,F,1) under the three ReP schemes in Definition 3.
The results demonstrate the multiple benefits of ReP in strengthening causal conclusions from experimental data, and elucidate the
advantage of Lin (2013)’s method for convenient and efficient inference under ReP.

Let §2 = (N -1)7! Z,'i L x;x; denote the finite-population covariance of the centered (x;)¥ . Condition 1 below gives the standard
regularity conditions for design-based finite-population asymptotic analysis; see Li and Ding (2017) for a review.

Condition 1. As N — oo, () e, = N,/N has alimitin (0,1) for ¢ = 0, 1, (ii) the first two finite-population moments of {Y;(0), Y;(1), x; }i]il
have finite limits; S and its limit are both nonsingular, and (iii) N~ le\;l Y*(g) = 0(1) for g=0,1; N~! 21111 ||x,-||2 =0(1).

Let y, be the coefficient vector of x; from 1m{Y,(q) ~ 1 + x;} over i = 1,..., N. This is a theoretical fit with {Yl-(q)}i’i1 only
partially observable depending on the treatment assignment. Condition 1 ensures that e,, y,, and 52 all have finite limits as N
tends to infinity. For notational simplicity, we will use the same symbols to denote their respective limits when no confusion would

arise. Lemma 1 below follows from Zhao and Ding (2021) and states the asymptotic distributions of #, (* = N,F,1) under complete
randomization. This provides the baseline for evaluating the efficiency gains by ReP.

Lemma 1. Under complete randomization and Condition 1, we have

S Yo 1)) e
with v, = (ege;)”' 52,
ey =5S2eg o+t v, e =S8Her =g — ), ¢ =0y,
and v, — v, = cTvle, > 0 for = = N,F,L. We give the explicit expressions of v, (x = N,F,L) in the Supplementary Material.
Recall a; (j = 1,...,J) and q; as the thresholds for the marginal and joint rules. Let a, be the (I — «y)th quantile of the ;(}

distribution. Let a ; be the (1 — « ; /2)th quantile of the standard normal distribution, vectorized as a = (a;, ...,a;)'. Let € ~ N'(0, 1)
be a standard normal random variable. Let

Lr~elillel; <a), Ti~elllel<a), T/ ~elllel <a lleliy < ao) (€Y

be three truncated normal random vectors independent of e, with ¢, ~ NM'(0;, I;) and ¢, ~ N'{0;, D(v,)}. Proposition 1 below gives
the asymptotic sampling distributions of 7, (x = N,F,1) under the three ReP schemes in Definition 3. For comparison, we also include
the results under ReM to highlight the connection (Zhao and Ding, 2021). Let A ., = {lI%,|l,, < o} denote the acceptance criterion
under ReM with threshold a,,. Let § | A represent the distribution of § under rerandomization with acceptance criterion A.

Proposition 1. Assume Condition 1 and recall the notation in Lemma 1 and Eq. (1). Then

1/2 -1/2
UL/ e+c*Tvx / L,
1/2 -1/2
UL/ e+clvx / L,

1/2 _
UL/ €+ CIUXIO'(UX)T,

VNG, =) | Arem
VNG, —1) | Ay,
VNG, = 1) | Aimg
VNG, = 1) | Ay

for % = N,F, whereas /N (3, — 7) | A w N'(0,v,) for all A € { Ao Agjes Amgs Ates -

I

1/2 _
UL/ e+clvlo(w)T!

Proposition 1 has two implications. First, all three estimators remain consistent under all four rerandomization schemes, with
the joint rule being asymptotically equivalent to ReM. Second, the asymptotic distributions of #, remain the same as that under
complete randomization in Lemma 1, whereas those of 7, and %, change to convolutions of normal and truncated normal when
their respective c,’s are not 0;. We show in Lemma S4 in the Supplementary Material that £ > ¢, and 7;, 7, > ¢, by the Gaussian
correlation inequality. This provides the basis for quantifying the impact of ReP on the asymptotic efficiency of each Z,, as well as
the asymptotic relative efficiency of #, across = = n,r,. We formalize the intuition in Theorem 1 below.

Theorem 1. Assume Condition 1 and define p(J, ag) = P(x;1> < ag)/P(x; < ag) with p(J, ap) < 1. For all A € {Arery, Ajrs Armg: Atesh
we have

®
@ 1 A) 2o 2y (2)
Eg(1205 T Ag) EaCllEclI3 | Arem)
PN T =p(J,ap);
Ea(lI2:115) Ea(I12:115)
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(i)
By | A) 2o o G | A) 2o B0 (B | A~ F, @
(2, | A) = (B, | A) for s =nN,F,
with (£, | A) ~ %, ~ %, if and only if ¢, = 0, and (%, | A) ~ #, ~ %, if and only if ¢, = 0;
(iii) for € {N,F,1}, the asymptotic conditional bias of £, given £, satisfies
B, [{Bati. - 71 20 0]
T <1 @
E, [{Eatt. - 1 20}
E, [{Ea(%* -7 f'vat,jt)}z] E, [{]Ea(ﬁk -7 %varem)}z]
with I T = ag);
E, [{]Ea(f* —r]2)) ] E, [{Ea(@ —r]2)) ]
(iv) for x#xx € {N,F,L},
E {G, -%.)% 1A
a{(T* T**) | } Sl (5)

Ea {(f—* - %**)2}
Ea {(7?* - %**)2 I At,jt} _ Ea {(f-* - f**)z | Arem}
]Ea {(f* - %**)2} - ]Ea {(f* - %**)2}

For a random quantity 4, (9 | A) >, 8 implies that rerandomization increases the asymptotic peakedness of , whereas (4 | A) ~ §
implies that rerandomization has no effect asymptotically. The implications of Theorem 1 are hence threefold. First, Theorem 1(i)
establishes the utility of the two-sample ¢-test-based ReP to improve covariate balance in terms of the asymptotic distribution of 7,.
This gives another measure of improved covariate balance in addition to the self-evident improvement in the realized allocation.
Second, Theorem 1(ii) shows the utility of ReP in improving the asymptotic efficiency of £, and #,, and ensures the asymptotic
efficiency of %, over %, and %, under all three ReP schemes with the asymptotic efficiency unaffected by rerandomization. We thus
recommend using %, for inference under ReP, with details given in Section 3.3. Third, Theorem 1(iii)—(iv) are direct consequences
of Theorem 1(i) and illustrate the utility of ReP in reducing conditional biases and improving coherence across %, (+ = N,F,L).
In particular, we use E, (£, — 7 | ,,A) and E,(, — 7 | %,) to measure the asymptotic conditional biases of £, given %, under
rerandomization and complete randomization, respectively, in Theorem 1(iii), and use E,{(#, — %,,)* | A} and E,{(%, — %,,)*} to
measure the coherence between estimators 7, and %,, in Theorem 1(iv).

These implications together illustrate the value of ReP: despite having no effect on the asymptotic efficiency of 7,, ReP promotes
not only covariate balance between treatment groups but also more coherent inferences across different estimators. The combination
of ReP and Lin (2013)’s estimator therefore results in both covariate balance and efficient inference. The existing theory on
rerandomization focuses on the efficiency gain by ReM analogous to Theorem 1(ii). Here we give more comprehensive results
about the multiple benefits of ReP.

The asymptotic equivalence of (7, | A) and 7, for A € {Arem, Ajr, Aymgs Ares) In Proposition 1 and Theorem 1(ii) is no
coincidence but the consequence of %, being asymptotically independent of ¢, under complete randomization (c.f. Lemma 1). Balance
criteria based on 7, thus have no effect on 7, asymptotically, with Aeq, Agj, Armg, and A all being special cases. The same
argument underpins the asymptotic equivalence of £, and (£, | A) for *€ {n,r} when ¢, = 0; under special configurations of
the potential outcomes; an example is ¢, = 0, when the individual treatment effects z; are constant across all i’s. The resulting
£, (x € {N,F}) is asymptotically identically distributed as 7, under complete randomization by Lemma 1, with the asymptotic sampling
distribution unaffected by rerandomization.

More generally, the linear projection of #, on #, equals proj(¢, | #,) = 7 + c¢Tv 1%, with regard to the asymptotic distribution
under complete randomization in Lemma 1, and is asymptotically independent of the corresponding residual, denoted by res(z, |

with

= p(J, ap).

t) =1, —proj%, | £,) = £, — r — cTu;1%,. This ensures
%, = proj(¢, | £,) +res(z, | #,) = v+ clv 't +res(z, | £,), (6)

where res(?, | £,) satisfies v/ Nres(Z, | £,) » N (0,v,) and is asymptotically independent of #,. Balance criteria based on %, can thus

only affect the ¢Tv !4, part in Eq. (6) asymptotically, and turn it into a truncated normal with greater peakedness when c, # 0;.

This gives the intuition behind Proposition 1 and Theorem 1.
3.3. Wald-type inference

Proposition 1 and Theorem 1 together establish the asymptotic distributions and relative efficiency of %, (+ = N,F,1) under the
two-sample t-test-based ReP. The results provide two guidelines on subsequent Wald-type inference of the average treatment effect.
First, the Wald-type inference based on % is asymptotically the most efficient and can be conducted using the same normal
approximation as under complete randomization. Specifically, let se, denote the EHW standard error of 7, from the same OLS fit. Lin
(2013) and Li et al. (2018, Lemma A16) ensured that it is asymptotically appropriate for estimating the true standard error of 7,
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Table 1

Nine ReP schemes under the treatment-control experiment.
Rule Model option: 1 = t,1m, logit
marginal (mg) pip2za G=1,....J)
joint (jt) Po; 2 %
consensus (cs) pisza; G=0,1,...,J)

under both complete randomization and the three ReP schemes in Definition 3, justifying the Wald-type inference based on (%, se,)
and normal approximation. This illustrates the advantage of ReP for allowing for convenient regression-assisted analysis by the
interacted regression.

Second, ReP narrows the asymptotic sampling distributions of 7, and £, in general, rendering standard inference procedures
based on their EHW standard errors and normal approximation overconservative. As an illustration, denote by se, the EHW standard
error of 7, for * = N,F and by z,_,,, the 100(1 — a/2)% quantile of standard normal. The standard 100(1 — )% confidence interval
based on normal approximation equals 7, + z;_,/, X s, for * = N,F, and is overconservative under ReP. Rerandomization-specific
sampling distributions are thus necessary for better-calibrated inference based on %, (* = N, F). Recall (7, ., ;) as the sample analogs
of (yy.7;) from Section 2.2. With v, and ¢, being the only unknowns in the asymptotic distributions of %, (+ = N,¥) in Proposition 1,
we can estimate them using o, = Ns%.f and the sample analogs é, = Sﬁ(e(;lf/w + el"?u) and ¢, = S}%(el‘l - eal)(f/L‘, = 7.0)s
respectively, and conduct inference based on the resulting plug-in distributions (Li et al., 2018). Specifically, we can generate a
large number of independent draws from the plug-in sampling distribution, and use the empirical quantiles to approximate the
true quantiles for constructing confidence intervals. As an illustration, the plug-in distribution of %, under the marginal rule is
VN (B =7 | Agmg » ﬁi/ et &Tv lo(v,)T;. We can use a large number of independent draws of ¢ and 7; to simulate the distribution
of f{/ e+ v le(u T, Let g, /2 denote the 100(1 — «/2)% quantile of this empirical distribution. Then %, + q,_4/»/ VN gives an
approximate 100(1 — a)% confidence interval of z. This modification mitigates the overconservativeness of the Wald-type inference
based on normal approximation at the cost of additional computational efforts. This, by contrast, illustrates the convenience of Lin
(2013)’s method for efficient and well-calibrated inference under ReP.

4. ReP based on linear and logistic regressions
4.1. Linear and logistic regressions for assessing covariate balance

The two-sample #-tests measure covariate balance by the difference in covariate means and are numerically equivalent to
a component-wise regression of x; on (1, Z;), assessing how x; varies with different values of Z,. The idea of the propensity
score (Rosenbaum and Rubin, 1983), on the other hand, motivates an alternative measure of covariate balance by assessing how Z;
varies with x;.

Consider the linear regression of Z; on (1, x;), denoted by 1m(Z; ~ 1+x;;+---+x;;). Let ﬁj denote the coefficient of the jth covariate
x;; for j =1,..., J. The magnitude of ﬁj gives an intuitive measure of the influence of covariate j on the treatment assignment, with
a well-balanced assignment expected to have all ﬁj ’s close to zero; see, e.g., de Mel et al. (2009, Table 1) and Kuziemko et al. (2015,
Table 3) for balance tables based on these regression outputs. This motivates three linear regression-based ReP schemes under the
marginal, joint, and consensus rules, respectively.

To begin with, denote by p;,, the p-value associated with ﬁj from standard software packages. The marginal rule accepts a
randomization if and only if p;;, > a; for all j =1,...,J for some prespecified thresholds a; € (0, 1).

Alternatively, let p,, be the p-value from the F-test of 1Im(Z; ~ 1 + x;; + - + x;;) against the empty model 1m(Z; ~ 1). It
is a standard output of linear regression by most software packages and provides a summary measure of the magnitudes of all
ﬁj’s. The joint rule then accepts a randomization if and only if p,,, > «, for some prespecified threshold «, € (0, 1). This is the
recommendation by Gerber and Green (2012).

The consensus rule, accordingly, accepts a randomization if and only if it is acceptable under both marginal and joint rules with
Pim 2 @; for all j =0,1,...,J. This extends the three two-sample ¢-test-based criteria in Definition 3 to the linear regression of Z;
on (1, x;).

One concern with the above approach based on 1m(Z; ~ 1 + x;; + -+ + x;;) is that linear regression is not intended for
binary responses like Z;. An immediate alternative is to consider the logistic regression of Z; on (1, x;), denoted by logit(Z; ~
1 +x;; + -+ + x;5), instead and form acceptance criteria based on p-values from its MLE fit (Hansen and Bowers, 2008).

Specifically, let p; j4;: be the p-value associated with the coefficient of x;; from logit(Z; ~ 1+x;;+--+x;,) for j=1,...,J, and let
Pologit De the p-value from the likelihood ratio test (LRT) of logit(Z; ~ 1+x;,+--+Xx;;) against the empty model logit(Z; ~ 1). They
are all standard outputs of logistic regression by most software packages, and allow us to form the marginal, joint, and consensus
criteria in identical ways as those based on {pjs 17i=0,1,....J} for 1 =t,Im.

This defines in total nine ReP schemes, as the combinations of three model options—the two-sample ¢-tests of x; (“t”), the linear
regression of Z; on (1,x;) (“lm”), and the logistic regression of Z; on (1, x;) (“logit”)—and the marginal (“mg”), joint (“jt”), and
consensus (‘“‘cs”) rules, summarized in Table 1. We extend below the results under the two-sample z-test-based schemes to the
regression-based variants.
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4.2. Asymptotic theory

We derive in this subsection the asymptotic sampling properties of £, (x = N, , 1) under the six linear or logistic regression-based
ReP schemes in Table 1. Echoing the comments after Theorem 1, the result illustrates the utility of the six regression-based ReP
schemes in improving covariate balance, reducing conditional biases, and promoting coherence across different estimators, and
establishes the asymptotic efficiency of #, under all six schemes with the asymptotic sampling distribution unaffected by ReP.

To this end, we first introduce an additional regularity condition that underpins the design-based properties of logistic regression.
Let

<T
exp(%; 0)

7%, 0) = for % =(1,x")" and 6 € R'+!.

1 + exp(x10)
Then H(@) = —N~! Zfi | 7%, {1 — x(%;,0)}%,X gives the Hessian matrix of the log-likelihood function under the logistic model
scaled by N~!; we suppress the dependence of H(6) on N.

Condition 2. As N — oo, H(6) converges to a negative-definite matrix H,(0) < 0 for all 8 € R’*!, and the convergence is uniform over
6 on any compact set © c R/*1,

To gain intuition about the uniform convergence assumption in Condition 2, consider a superpopulation working model where
the x;’s are independent and identically distributed with finite second moment. The uniform law of large numbers ensures that
H(9) converges to some H_ (#) almost surely on R’*!, with the convergence being uniform on any compact set ©® c R/*! (Newey
and McFadden, 1994; Ferguson, 1996, Chapter 16). Accordingly, if the finite population is indeed an independent and identically
distributed random sample from some superpopulation with finite second moment, then the uniform convergence holds. This
suggests the mildness of our assumption on uniform convergence. In addition, we can show that H(9) < 0 for all # € R’/*!. This
suggests the mildness of the assumption on the negative definiteness of H_ (6).

For 1 = lm, logit, let Ao =A{pos 2 aphs Aimg = {pj+ 2 @ forall j=1,...,J}, and A, = Apje N Aymg = {pj 3 2 q; for all j =
0,1,...,J} denote the acceptance criteria under the six regression-based ReP schemes. Recall the definitions of v,, ¢, L, ay, and
a=(ay,...,a;)T from Section 3.2. Let

Tlm ~ €lm I {Ielml < a}, Th{n ~ €lm | {|€1m| <a, ”elm”M < aO} (7)

be two truncated normal random vectors independent of €, with e, ~ N'{0,, D(v;‘)}. The Gaussian correlation inequality ensures
that 7, 7! > €p; see Lemma S4 in the Supplementary Material. This underlies the improved asymptotic efficiency of 7, and %,
under regression-based ReP. We state the details in Proposition 2 and Theorem 2 below.

Proposition 2. Assume Condition 1 for + = lm and Conditions 1-2 for 1 = logit. Recall the notation in Lemma 1, Eq. (1), and Eq. (7).
For 1 € {lm, logit}, we have

VN@, -1 | Aje  » Ui/ze + czv;l/zﬁ,
VNG~ [ Aimg = 0 e+ o) i,
VN@, —7) | Aies = Ui/ze + c*Ta(u;l)Thfn,

for « = N, F, whereas \/N(fL -7 | Aw» N(0,v) forall A € {A;, : T=1m,logit; o= jt,mg,cs}.

Theorem 2. Theorem 1 holds for all A € {A;, : T =1m,logit; o = jt,mg,cs}.

All comments after Proposition 1 and Theorem 1 extend here with no need of modification. Proposition 2 gives the asymptotic
sampling distributions of 7, (* = N, F,1) under the six regression-based ReP schemes, and establishes the asymptotic equivalence of the
linear and logistic regression model options under all three rules. As a direct implication of Proposition 2, Theorem 2 highlights the
utility of the regression-based ReP in improving covariate balance, reducing conditional biases, and promoting coherence between
adjusted and unadjusted analyses, and ensures the asymptotic efficiency of #, under all six schemes. The interacted regression is
thus our recommendation for subsequent inference under the linear and logistic regression-based ReP as well, with all discussion in
Section 3.3 extending here verbatim.

Juxtapose Proposition 2 with Proposition 1. The three joint criteria are asymptotically equivalent to not only each other but also
ReM with threshold aj,. This is no coincidence but the consequence of the test statistics used by these criteria all being asymptotically
equivalent to ||, ]| ,.; see Remark S2 in the Supplementary Material for details. The marginal criteria based on the linear and logistic
regressions, on the other hand, differ from that based on the two-sample r-tests even asymptotically. The difference is nevertheless
immaterial based on simulation evidence.

Echoing the comments at the end of Section 2.1, we view the linear and logistic regressions as purely numeric procedures
based on OLS or MLE for computing the p-values and estimators, and invoke none of the underlying modeling assumptions in
evaluating the outputs. The results in Proposition 2 and Theorem 2 therefore hold regardless of how well (i) the linear and logistic
models underlying 1m(Z; ~ 1+ x;) and logit(Z; ~ 1 + x;) represent the true treatment assignment mechanism and (ii) the linear
models underlying 1m(Y; ~ 1+ Z)), Im(Y; ~ 1 + Z; + x;), and 1n(Y; ~ 1 + Z; + x; + Z;x;) represent the true outcome model. This
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Table 2
Four ReP schemes under multi-armed experiments.
Rule F-test Multinomial logistic regression
marginal pisza; forall j=1,....J Pyjlogit = @,; for all ¢j
joint n.a. Pologit = %o
consensus n.a. Pyilogit = @; for all gj, pyjogic = o

concludes our discussion on ReP under the treatment-control experiment. The criteria based on two-sample 7-tests are arguably the
most straightforward, making the discussion on the regression-based variants seem to be of theoretical interest only. The logistic
regression nevertheless provides a key stepping stone for extending the current results to experiments with more than two treatment
arms. We give the details in the next section.

5. ReP in multi-armed experiments
5.1. Basic setting and covariate balance criteria

Multi-armed experiments enable comparisons of more than two treatment levels simultaneously, and are intrinsic to applications
with multiple factors of interest. To conduct rerandomization in such settings, a straightforward option is to check balance for all
pairs of treatment arms, and accept a randomization if and only if all pairwise comparisons pass the balance check (Morgan, 2011).
Depending on the number of treatment arms in question, however, this may result in a large number of pairwise comparisons and
become unwieldy in practice. A more practical alternative is to use a test that directly measures the balance across all treatment
arms.

To this end, the covariate-wise F-test provides a natural way of extending the marginal two-sample 7-test to more than two
treatment arms, measuring the balance of individual covariates across all treatment arms simultaneously. See, e.g., de Mel et al.
(2013) and Dupas and Robinson (2013) for balance tables based on covariate-wise F-tests. The multinomial logistic regression, on
the other hand, is a straightforward extension of the logistic regression and provides a way to measure both covariate-wise and
overall balances across all treatment arms by the idea of the propensity score. See Gerber et al. (2009) for an example of balance
check based on the multinomial logistic regression. We formalize below their extensions to ReP.

Consider a multi-armed experiment with O > 2 treatment levels, indexed by ¢ € Q = {1,...,0}, and a study population of
N units, indexed by i = 1,..., N. Renew x; = (x4, ... ,x,-J)T as the centered covariate vector and Z; € Q = {1,...,Q} as the initial
treatment assignment of unit i. For j = 1, ..., J, let p; s denote the p-value from the marginal F-test on covariate j based on (x;;, Z ,-)fi y
The marginal F-test-based criterion for ReP accepts a randomization if and only if p; ¢ > a; for all j = 1,..., J for some prespecified
thresholds «; € (0, 1). Let 7,, = 1(Z; = ¢) denote the indicator of treatment level g. The p;¢ can also be computed as the p-value
from the F-test of Im(x;; ~ 1 +I; + -+ + I, o_) against the empty model 1m(x;; ~ 1).

The multinomial logistic regression, on the other hand, accommodates the marginal, joint, and consensus rules for ReP together
via one MLE fit. Renew logit(Z; ~ 1 + x;; + --- + x;;) as the multinomial logistic regression of Z;, € Q on (1,x;) over i = 1,..., N.
Assume without loss of generality level O as the reference level. The MLE fit of logit(Z; ~ 1+x;; + - +x;;) yields one coefficient of
x;; for each non-reference level g € Q, = {1,...,0 — 1}, denoted by ﬁq ;- We use the subscript + to signify quantities associated with
the non-reference levels. Let p; 1 be the p-value associated with §,; from standard software packages. The marginal rule accepts
a randomization if and only if p,; 1545 > ,; for all g € @, and j = 1,..., J for some prespecified thresholds «,; € (0, 1).

Alternatively, let pyjogic De the p-value from the LRT of logit(Z; ~ 1 +x;; + - +x;;) against the empty model logit(Z; ~ 1). It is
a standard output of multinomial logistic regression from most software packages and gives a summary measure of the magnitudes
of §,;’s as a whole. The joint rule then accepts a randomization if and only if py e > @, for some prespecified threshold a; € (0, 1).
The consensus rule, accordingly, accepts a randomization if and only if it is acceptable under both the marginal and joint rules. This
defines three additional criteria for conducting ReP under multi-armed experiments. We summarize the definitions in Table 2.

Other criteria can be formed based on tests for multivariate analysis of variance (Morgan, 2011) or linear regression of
1,, = 1(Z; = ¢) on (1,x;). These alternatives in general involve more technical subtleties and can be unwieldy in practice. To
save space, we will focus on ReP based on marginal F-tests and multinomial logistic regression in the main paper due to their
practical convenience, and relegate details on the alternative criteria to the Supplementary Material.

5.2. Treatment effects and regression estimators

We next define the average treatment effect and regression estimators under multi-armed experiments, extending the notation
and definitions in Section 2. Renew Y;(q) € R as the potential outcome of unit i if assigned to treatment level ¢ € O = {1,...,0}.
The observed outcome equals Y; = ¥, o Z,EY,.(q)_with L, = (Z; = q). Renew Y(q)=N"! Zfi | Yi(¢) as the average potential outcome
under treatment level g € Q, vectorized as Y = (Y (1), ..., ¥(Q))T € RC. The goal is to estimate the finite-population average treatment
effect

T=GY
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for some prespecified contrast matrix G with all row sums equal to zero. The 7 = Y (1)— Y (0) under the treatment-control experiment
is a special case with Y = (Y(1),Y(0))" and G = (1,-1).
Define

N 1nY; ~ Iy + e+ L),

FolmY; ~ I + -+ Iip + xp),

L2 InY; ~ Iy + o+ Lip + Ly x; + - + Ligx;)
as the unadjusted, additive, and interacted linear regressions of Y; on {1,, : ¢ € Q} and x;, respectively, indexed by *= n (unadjusted),
F (additive), and L (interacted). Let

Vo=, V@) (x =R
denote the coefficient vectors of (Z;;, ..., Z;o)T from these three regressions, respectively. They are consistent for estimating ¥ under
complete randomization (Lu, 2016; Zhao and Ding, 2023), and allow us to estimate 7 = GY by

£, = GY, (% =N,F,L).

Of interest are the validity and relative efficiency of £,’s under ReP. We give the details in the following.
5.3. Asymptotic theory

We present in this subsection the asymptotic theory of ReP under multi-armed experiments. Assume throughout that the initial
allocation is obtained by complete randomization. The experimenter assigns completely at random N, > 0 units to level g € Q with
Y0 N, =N, and accepts the allocation if and only if the assignments satisfy the prespecified covariate balance criterion.

5.3.1. Baseline efficiency under complete randomization

Recall the definitions of X(q) = Nq‘1 > Zi=gXi» € = N,/N, v, and Condition 1 in Sections 2-3 under the treatment-control
experiment. Renew them for multi-armed experiments with ¢ € @ = {1,...,Q}. Let = ()T, ..., 2(@)HT e R/C and y, = ¥, <0 €a¥qr
Lemma 2 below follows from Zhao and Ding (2023) and states the asymptotic distributions of ¥, (+ = N,r,1) under complete
randomization. The results ensure %, > %, %, under complete randomization and provide the baseline for evaluating the efficiency
gains under ReP. Let loso denote the O x Q matrix of all ones.

Lemma 2. Under complete randomization and the multi-armed version of Condition 1, we have

Y, -7 v, TV,
G5 = oo (i )} e

X

with V, = Ncov(3) = {diag(e;")se0 ~ loxo} ® S5
Iy =diag(y) )geo> Iy =diagl(r, — 1) Jyeor T =Opxso»

and V, =V, + IV, I} >V, for = = N,F,L. We give the explicit expressions of V,’s in the Supplementary Material.

5.3.2. Rep based on marginal F-tests

Let A = {p;s > @; forall j = 1,...,J} denote the acceptance criterion under ReP based on the marginal F-tests. Renew
. = (G, ® I,)%, where G, is a prespecified contrast matrix with all row sums equal to zero. It defines a general measure of the
difference in {%(q) : ¢ € Q}, extending %, = (1) — 2(0) under the treatment-control experiment to multi-armed experiments (Zhao

and Ding, 2023).

Theorem 3. Assume the multi-armed version of Condition 1.

() Egs. (2)-(3) hold for £, = (G, ® I)%, T, = GY* (* =N,E L), and A = Ay for arbitrary contrast matrices G and G,. In particular,
(| Ap ~ Ty ~ 7, ifFN = 0Q><.IQ and (| Ap ~ 1 ~ 7, ifFF = 0Q><.IQ'
(i) Analogous to Egs. (4)-(5), for s##x € {N,F,L}, we have
2
) | Af}
<1

2
E, [ E (2, — 7| fx,Af)Hz] E, {
<
§

E, [ i] E, {

Echoing the comments after Theorems 1-2, Theorem 3 illustrates the utility of the marginal F-test-based ReP for improving
covariate balance, reducing conditional biases, and promoting coherence across different estimators under multi-armed experiments,
and ensures the asymptotic efficiency of %, with identical asymptotic sampling distribution as under complete randomization.
Subsequent inference can thus be conducted based on #, and its EHW covariance in full parallel with the discussion in Section 3.3.
We relegate the details about the asymptotic distributions and inference to Section S1 of the Supplementary Material.

Ty = Tux

Ea(é\'* -7 | f'x) f* - %**

10
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5.3.3. Rep based on the multinomial logistic regression
We now address the ReP schemes based on the multinomial logistic regression of Z; on (1,x;). Recall x; = (l,xiT)T. For
0=, ... ,95_1)T € RVHDO-D with 6, € R7*!, let

exp(i[.TOq)

7,(%,.0) = -
o 1+ 3 eo, exp(X] 0,)

(g €Q,),

and let H(9) = (qu/(@))q,q/EQ+ with H,,(0) = N1 Zi’il 7 (%, {7y (%,0) — 1(g = q')}xix,.T. Then H () < 0 gives the Hessian matrix
of the scaled log-likelihood function under the multinomial logistic model. Condition 3 below extends Condition 2 to multi-armed
experiments and states the uniform convergence requirement on H(0).

Condition 3. As N — oo, H(6) converges to a negative-definite matrix H,(0) < 0 for all § € RU+D(©@-D_ and the convergence is uniform
over 0 on any compact set @ C RV+D(©@-D,

Let Alogit,jt = {p(),logit Z ay}, Alogit,mg = {qu,logit 2 Ay for all ¢}, and Alogit,cs = Alogjt’jt n Alogit,mg = {pO,logit > ap; Pgj logit >
a,; for all ¢j} denote the acceptance criteria under the joint, marginal, and consensus rules, respectively.

Theorem 4. Assume Condition 3 and the multi-armed version of Condition 1. Theorem 3 holds if we replace all A with Ay, for
o = jt,mg,cs.

All comments after Theorem 3 extend here after changing the “marginal F-test-based” to “multinomial logistic regression-based”.
We omit the details to avoid repetition. We give the explicit forms of the asymptotic sampling distributions of #, (+ = N,F,1) in
Proposition S2 of the Supplementary Material. Echoing the comments after Theorem 2, all results in Proposition S2 and Theorem 4
are design-based and hold regardless of how well the models corresponding to the multinomial logistic and linear regressions in
rerandomization and analysis represent the true data-generating processes. The proof of Proposition S2 further introduces a novel
technical result on the asymptotic equivalence of the LRT and the Wald test for logistic and multinomial logistic regressions from
the design-based perspective. We relegate the details to Theorem S1 in the Supplementary Material.

6. ReP in stratified randomized experiments

We now extend the results to stratified randomized experiments. Due to space limitations, we focus on the treatment-control
experiment in stating the results. Extension to multi-armed experiments is similar and omitted. Consider N units in K strata of sizes
Nyy k=1,....K; Z,’;l Ny = N). Stratified randomization conducts an independent complete randomization in each stratum, and
randomly assigns Ny, units to treatment level z in stratum k (k= 1,...,K; z=1,0; Nigi + Nigo = Nygp- Building on Sections 3-4,
we can define one covariate balance criterion within each stratum, and accept an allocation if and only if all strata satisfy the
corresponding stratum-wise balance criteria. Let A}, denote the acceptance criterion in stratum k. The overall acceptance criterion
is then

A=A N Ap NN Agge

Remark 1. There are other ways to define the balance criterion under stratified experiments. For example, we can run a global test
to quantify the covariate imbalance across all strata; see, e.g., Cai et al. (2015, Tables A1 and A2) and see Wang et al. (2021) for
an analog based on the Mahalanobis distance. We can also define the balance criterion based on both the global and stratum-wise
tests. We leave the corresponding theory for ReP to future research.

Assume Ap € {A;, 1 T =t Im, logit, ¢ = jt,mg, cs} throughout the rest of this section. For k = 1, ..., K, denote by {i € [k]} the
set of units in stratum k, ;) = Ny;;/N the relative size of stratum k, and 7 = N, Yie1Yi(1) = Y;(0)} the stratum-wise average
treatment effect. The finite-population average treatment effect equals

N K K
=N Y=Y} = Y N Y YD) =Y, = ) -
i=1 k=1 ielk] k=1
Let %, and se,;; denote the basic estimator and EHW standard error obtained from stratum k, where * can be N, F, and 1. With
a slight abuse of notation, renew £, = Z,If:l Tt @S @ point estimate of 7 and séi = Z,’; | ”[Zk]SAei[kJ as its squared EHW standard
error under stratified randomization. This abuse of notation causes little confusion because 7, and se, reduce to their definitions
under complete randomization when K = 1. To compute £, and se, from one global regression for each * = N,F,1, let S;, = 1(i € [k])
denote the indicator of unit i being in stratum k, and let S/, = S;, — 7, denote the centered version of S, with Z,’Z S, =0.
Without loss of generality, let K be the reference level and let S [’ = (Sl_’ s S 4 K1 )T be the concatenation of Si’k fork=1,...,K—1.

I,
Then 7, and se, (x = N,F,1) are the coefficients of Z; and the corresponding robust standard errors in

NG In(Y; ~ 1+ Z;+ S8/ +.5/Z),
FoAn(Y, ~ L4 Z4 x4 S+ 57+ S/ ® x), ®
LoIn(Y ~ 1+ Zi+ X+ Zix + S+ 8] Z+ 5] @ x; + S ® Zixy),

11
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respectively, where ® denotes the Kronecker product with S/ ®x; = (5, xI, .., LS‘,.’IFI)C,.T)T and S/ ® Z;x; = (5, ZxT, .. ,Si’Kle,-x,.T)T.

Let 7, denote the difference in covariate means in stratum k (k = 1,...,K). Theorem 5 below parallels Theorems 1-2 and
summarizes the asymptotic sampling properties of #, under rerandomized stratified experiments.

Theorem 5. Assume that Conditions 1-2 hold for all strata and 7y has a limit in (0, 1) for all k. For A = A3 N A N+ N Ak, where
Ap € { Ay, ¢ T =t 1m,logit, o= jt,mg,cs}, we have

@ Gy | A) 2o g for k=1,... . K;

(i)
Gl A Ze e GlAZGE GTA~E,
@1 A) = G | A) for *=NF

(iii) for + € {N,F,1}, the asymptotic conditional bias of %, given {Z,} ,’fz | satisfies
By [{Ealt, — 7 | (B}, )]
<

Ea [{Eali = 71 L} )]

(iv) for x#sxx € {N,F,L},
E, {(, - 2,07 | A}
Ea {(f* - %**)2}

All comments after Theorems 1-2 and in Section 3.3 extend here after minimal modification. From Theorem 5(ii), the Wald-
type inference based on %, is asymptotically the most efficient and can be conducted using the same normal approximation based
on se, as under complete randomization. On the other hand, ReP narrows the asymptotic distributions of %, and #, compared
with complete randomization. Standard inference procedures based on normal approximation are hence overconservative. From

Theorem 5(iii)-(iv), ReP reduces the conditional biases of the three estimators and improves their coherence in terms of mean
squared difference.

Remark 2. To recover #, and se,, the three regression specifications in Eq. (8) require the interactions between S and all regressors
in the unadjusted, additive, and interacted regressions that we used for completely randomized experiments; c.f. Section 2.1. A more
common formulation of the unadjusted and additive regressions under stratified randomized experiments is 1m(Y; ~ 1+ Z; +.5/) and
1n(Y; ~ 1+ Z; + x; + S)), without the interaction terms. See, e.g., Bugni et al. (2018) and Ding (2021a). Denote by 7, and 7, the
coefficients of Z; from these two more commonly seen specifications. Denote by e, = N, /Ny, the proportion of treatment in
stratum k for k=1, ..., K. Proposition 3 below shows that 7 and 7, are in general inconsistent for estimating 7 unless ef;;(1 —e[;)’s
have the same limit across all k. We hence focus on %, ( = N, F, 1) in this paper and relegate the theory of 7, and 7, to future research.

Proposition 3. Assume that Conditions 1-2 hold for all strata and =, has a limit in (0,1) for all k. Then 7, = Z,’;l o7k + op(1)
for =N, ¥, where wpy = e (1 — e/ Zf,zl ey (1 = epyry). We have wpyy = ry for all k if and only if e (1 — e))’s are constant
across all k.

7. Numerical examples

We now illustrate the finite-sample properties of ReP by simulation. The results are coherent with the asymptotic theory in
Sections 3-5, featuring improved covariate balances and overall efficiency of 7, over %, and %,.

Consider a treatment-control experiment with N = 500 units, indexed by i = 1,..., N, and treatment arm sizes (N,, N;) =
(400, 100). For each i, we draw a J = 5 dimensional covariate vector x; = (x;;,...,X;5)! with x;; as independent Uniform(-1, 1),
and generate the potential outcomes as Y;(0) ~ N (- Z;Zl x?j,O.lz) and Y;(1) ~ N (Zf:1 x?j,OAZ). We center the Y;(0)’s and Y;(1)’s
respectively to ensure z = Y(1) — Y(0) = 0, and fix {Y;(0), Y;(1), xi}ﬁ , in the simulation. For each iteration, we draw a random
permutation of N; 1’s and N, 0’s to obtain the initial allocation under complete randomization.

Fig. 1 shows the distributions of ||2,], = [|*(1) — £(0)|l,, £y — % %y — ., and %, — £, under complete randomization and the
three two-sample 7-test-based ReP schemes over 50000 independent initial allocations. The results under complete randomization
are summarized over all 50000 allocations, whereas those under ReP are summarized over the subsets of allocations that satisfy the
respective balance criteria. We vary the thresholds for the marginal rule from «; = 0.15 to a; = 0.5 for j = 1,...,J, and choose
accordingly to ensure that the joint rule has approximately the same acceptance rate as the marginal rule. The message is coherent
across different rules and thresholds: ReP reduces the difference in covariate means and the differences across different estimators,
both in line with the theoretical results in Theorem 1. Compare sub-plots (a) and (b) under different values of « ;’s. More stringent
thresholds result in greater reduction in the differences when everything else stays the same.

Fig. 2 shows the distributions of %, (x = N,F,1). The message is coherent across different rules and thresholds: ReP improves the
efficiency of 7, and £, but leaves that of #, unchanged, both in line with Theorem 1. Compare sub-plots (a) and (b) under different
values of «;’s. Increasing the thresholds improves the efficiency of 7, (+ = n,F) when everything else stays the same.
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(b) @;j =0.50 for j =1,...,J, and ap = 0.95.

Fig. 1. Distributions of ||7|l, = [|X(1) = X(0)|l,, #, — %, %y —%,, and %, — 7, under complete randomization and the three two-sample r-test-based ReP schemes over
50000 independent initial allocations. The results under complete randomization, labeled as “CRE”, are summarized over all 50000 allocations, whereas those
under ReP, labeled as “t_marginal”, “t_joint”, and “t_consensus”, respectively, are summarized over the subsets of allocations that satisfy the respective balance
criteria. The vertical lines correspond to the 0.025 and 0.975 empirical quantiles, respectively.

8. Discussion

ReP provides a tool for improving covariate balance in randomized experiments. We examined thirteen ReP schemes for
treatment-control and multi-armed experiments, and quantified their theoretical properties from the design-based perspective. The
theory clarifies three important issues regarding causal inference under ReP. First, the estimator from the interacted regression
is asymptotically the most efficient under all ReP schemes examined, with the asymptotic sampling distribution remaining
unchanged by ReP. We can thus conduct inference based on this estimator and its EHW standard error or covariance via identical
procedure as that under complete randomization. Second, ReP improves the asymptotic efficiency of the estimators from the
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Fig. 2. Distributions of 7, (x = N,F,1) under complete randomization and the three two-sample #-test-based ReP schemes over 50000 independent initial allocations.
The results under complete randomization, labeled as “CRE”, are summarized over all 50000 allocations, whereas those under ReP, labeled as “t_marginal”,
“t_joint”, and “t_consensus”, respectively, are summarized over the subsets of allocations that satisfy the respective balance criteria. The true 7 is 0. The vertical
lines correspond to the 0.025 and 0.975 empirical quantiles, respectively.

unadjusted and additive regressions relative to complete randomization, necessitating rerandomization-specific inference to avoid
overconservativeness. Third, ReP reduces conditional biases of the three estimators and ensures more coherent inferences across
them. These results illustrate the value of ReP for strengthening causal conclusions from experimental data, and highlight the value
of the interacted adjustment for convenient and efficient inference under ReP.

We focused on the thirteen criteria in Tables 1 and 2 because of their conceptual straightforwardness and connections with the
commonly used balance tests. The variety of other test options for balance check promises a spectrum of alternative schemes for
conducting ReP, catering to the needs of different studies. We give the details in the Supplementary Material.
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We focused on interval estimation based on asymptotic distributions for large-sample inference under ReP. Alternatively, the
Fisher randomization test provides a way to conduct finite-sample exact inference of the sharp null hypothesis of zero treatment
effects for all units. In addition, with properly chosen test statistics, the Fisher randomization test is also asymptotically valid
for testing the weak null hypothesis of zero average treatment effect. Zhao and Ding (2021) established the theory of the Fisher
randomization test for testing both sharp and weak nulls under ReM. All results therein extend to ReP with minimal modification.

We focused on inference under the finite-population, design-based framework. All results extend to superpopulation model-
assisted inference with minimal modification. In particular, we need to modify the EHW standard error from the interacted regression
to account for the additional variability in centering the covariates; see Zhao and Ding (2021, Section S1.2) for details.
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Supplementary Material

Section S1 gives the additional results for ReP in multi-armed experiments.

Section S2 presents extensions to alternative covariate balance criteria for ReP.

Section S3 reviews the test statistics that underlie the p-values we use to form ReP.

Section S4 states the key lemmas for proving the results in the main paper. In particular, Theorem
S1 is a novel technical result, and formalizes the design-based properties of the MLE outputs from logistic
and multinomial logistic regressions. The result establishes the asymptotic equivalence of the LRT and
the Wald test for logistic and multinomial logistic regressions from the design-based perspective.

Section S5 gives the proofs of the results in the main paper.

Section S7 gives the proof of Theorem S1.

Notation. Assume centered covariates with Z = N1 Zi\il x; = 0y throughout to simplify the presen-
tation. For two sequences of random vectors {Anx}%_; and {By}3_; with Ay ~» A and By ~» B in
R™, write Ay =« By if A= B, and write Ay ~ By if A and B have the same distribution. Definition
2 in the main paper is a special case of this definition of >, and ~, with él ~ ég and él 0 ég being
abbreviations of VN (f; — 0) ~ VN(fy — 0) and VN (61 — 0) =s VN(03 — 6), respectively, when the

meaning of # is clear from the context.

S1. Additional results for ReP with multiple arms

S1.1. Asymptotic sampling distributions of 7, (*x = N, F, L)

Proposition S1 below gives the asymptotic distributions of 7, (* = N,F,L) under ReP based on the
marginal F-tests with A¢ = {p;¢ > o forall j =1,...,J}. Renew € ~ N(0g, Ig) as a @ x 1 standard
normal random vector. Let T ~ ¢ | {qug eqe%’qj < a;S:%’j for all j =1,...,J} be a truncated normal
random vector independent of €, where €; = (€f,4j)qc0: j=1,...7 ~ N (019, Vz), S:%,j =(N-1)! Zf\il T,
and a’; denotes the (1—a;)th quantile of the ngq distribution. Lemma S4 ensures 7 > ¢; by the Gaussian

correlation inequality.

Proposition S1. Assume the multi-armed version of Condition 1. Recall the notation in Lemma 2.

Then

VNI, ~Y) [ A ~ VPt (x=N,¥),
VN = Y) [ A~ N(0g, Vi)

S1



Proposition S2 below gives the asymptotic distributions of 7, (* = N, F,L) under ReP based on the
multinomial logistic regression with Ajgit jt = {P0,logit = @0}, Alogit,mg = {Pgjlogit = Crg; for all ¢j}, and
Alogit,cs = Alogit.jt N Alogit,mg = {Po,logit = 05 Pgjlogit = 0gj for all gj}. Let agj be the (1 — ag;/2)th
quantile of the standard normal distribution for ¢ € Q, and 5 = 1,...,J. Without introducing new
notation, renew ag as the (1—ag)th quantile of the X%(Q—l) distribution, and renew a = (ag;)qe0.; j=1,...,.J
as the vectorization of aq; in lexicographical order. The definitions of ag and a reduce to those in (1)
with (aj,a;) = (15, a1;) when Q = 2.

Recall that € ~ N (0g, Ig). Let

L ~ e ’ {HGOH% < CL()}, /Hogit "~ €logit ’ {yelogit‘ < a}a ﬂégit "~ €logit | {|€10git| <a, ||610git”/vl < a()}

be three truncated normal random vectors independent of €, with ey ~ N (0 J(Q-1)s 1. J(Q_l)) and €jogit ~

N{OJ(Q,U, D(Vw)}. We have L > €y and Tiogit, 7.

ogit = €logit by the Gaussian correlation inequality; see

Lemma S4 in the Supplementary Material.
Recall the definition of 'y (* = N,F,L) from Lemma 2. Let I, = F*{(IQ,l,—eéle+)T ® I} for
* = N,F,Lwithe, = (er,...,eg—1)"; the subscript + signifies quantities associated with the non-reference

levels. Let U = {&~!diag(e )} ® (52)~! with diag(e,) = diag(ey)qeo, and ® = diag(e,) — e, eT. Let
Vi = Neov(z,) = (R7' = 1g-1)x(g-1)) ® Sa, Vo = Ncov(¥i,) = UV, U7

with 2, = (2(1)",...,2(Q — 1)")™T and cov(-) denoting covariance under complete randomization.
Let k = (Ig-1, —eéle+)T®IJ such that I, = 'y« for * = N, F, L. It follows from 0; = 7 = qug eqZ(q)
that

p=ri,, T@=Td  (x=NFL). (S1)

This gives the intuition behind the definition of T7,.

Proposition S2. Assume Condition 3 and the multi-armed version of Condition 1. Recall the notation

in Lemma 2. Then

VN, =) | Awgiege  ~ Vi Pe+ V2L,

VN =) | Agitang ~ Vi 2e+ T8 10(Va) Trogie,
git,mg g

VNV = V) | Aiggites  ~ W 2e+ L0 0(V)T;

!
ogit
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for * = N, F, whereas \/N(YL -Y) | Alogit,o ~» N(0g, Vi) for o = jt, mg, cs.

S1.2. Wald-type inference

Recall from Theorems 3 and 4 that 7, is asymptotically the most efficient under ReP with multiple arms,
with /N(?L —Y) | A~ N(0g, V) for all A € {Af, Ajogito : © = jt,mg,cs}. This suggests subsequent
inference based on 7, and its EHW covariance by normal approximation.

Specifically, let V' be the EHW covariance of Y; from the same OLS fit. Zhao and Ding (2023)
showed that it is asymptotically appropriate for estimating the true sampling covariance under complete
randomization; see Lemma S2 in Section S4.1. The same reasoning as in Li et al. (2018, Lemma A16)
ensures that the asymptotic appropriateness extends to ReP based on the marginal F-tests as well. This,
together with the asymptotic normality of 7, from Lemma 2 and Proposition S1 in the main paper,
justifies the Wald-type inference of 7 based on (7, GVL’GT) under both complete randomization and ReP.
The Fisher randomization test can be conducted similarly using 77 (GV/G") ™7, as the test statistic for
both the strong and weak null hypotheses (Wu and Ding 2021). This illustrates the convenience of the
interacted regression for inference under general experiments.

The asymptotic sampling distribution of 7, (* = N, F), on the other hand, is altered by ReP into a
convolution of independent normal and truncated normal when 'y # 0, resulting in greater peakedness
than that under complete randomization. Inference based on the usual normal approximation, as a result,
is overly conservative, deterring statistically significant findings. This, again, illustrates the value of the

interacted regression for convenient and efficient inference under ReP for general experiments.

S1.3. Extensions of the joint ¢{-test and linear regression

The marginal F-tests give an immediate extension of the marginal two-sample t-tests to more than two
treatment arms. The range of tests commonly used in multivariate analysis of variance, on the other hand,
provide reasonable substitutes to the Hotelling’s 72 test under the joint rule (Morgan 2011). Common
choices of test statistics include Wilks” A, the Lawley—Hotelling trace, the Pillai-Bartlett trace, and Roy’s
largest root. One complication is that the distributions of these test statistics are not well studied under
the design-based inference. Morgan (2011) recommended using the Fisher randomization test to generate
an empirical distribution for the test statistic of choice. This is sound in theory but can become unwieldy
in practice.

Generalization of the linear regression-based criteria can be accomplished by a dichotomization of
the treatment assignment variable. Recall that Z;; = 1(Z; = ¢) denotes the indicator for assignment to

treatment arm ¢ € Q@ = {1,...,Q} in a general experiment. We can conduct balance checks based on @
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separate linear regressions as Im(Ziy ~ 1+ +---+x;7) overi =1,..., N for ¢ =1,...,Q. The process
yields one joint and J marginal p-values for each ¢ € Q, measuring the influence of z;;’s on assignment
to treatment level q. We can form acceptance criteria accordingly based on whether some or all of
them exceed some prespecified thresholds. Despite the conceptual straightforwardness of this approach,
however, it requires additional data transformations, and gives only measures of covariate balance for the

Q@ treatment levels separately.

S1.4. Covariate-wise and treatment-wise p-values

The multinomial logistic regression of Z; on (1,x;) enables a variety of ways to conduct ReP under
general experiments. We formed the marginal rule based on (pg;iogit)qeQ.; j=1,....7, With one p-value for
each estimated coefficient qu, corresponding to the correlation between covariate j and assignment to
treatment level ¢ € Q,. Alternatively, most standard software packages also allow us to test the overall
effect of a given covariate j € {1,...,J} across all treatment levels; see, e.g., the test command in stata.
Denote by p.;1ogit the resulting p-value associated with the overall effect of covariate j. We can also form
the balance criterion using the p.;iogi¢’s, and accept a randomization if and only if p.; ot > «; for all
j=1,...,J. The resulting criterion parallels the marginal rules under the treatment-control experiment,
and yields analogous results with 7, being our recommendation.

More generally, we can arrange the qu’s into a matrix, with rows corresponding to the ¢ — 1 non-

reference treatment levels and columns corresponding to the J covariates:

Non-reference Covariate Treatment-wise
treatment level 1 . J . J p-value
1 Bi1 Y oo B D1 logit
q B o By oo B Pg- logit
Q-1 Bo-11 - Bo-1j - Bo-14 PQ—1, logit

Covariate-wise

P-1logit --- DPjlogit --- D-Jlogit Do logit
p-value

The pgj1ogit’Ss P-jlogit’s, and po logit then correspond to the cells, columns, and the entire matrix, respec-
tively, measuring the deviations of the corresponding qu’s from 0.
By symmetry, we can also conduct one Wald test for each row of the matrix, Bq = (th ceey Bq )7,

and accept a randomization if and only if the resulting treatment-wise p-values, denoted by py. 10git for
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q € Q,, satisfy some prespecified criterion. The magnitude of pg. 1ot intuitively reflects the covariate
balance between the treatment level ¢ € Q, and the reference level (). The acceptance rule based on
{Pg-1ogit : ¢ € Q. } hence involves @) — 1 pairwise comparisons of the non-reference levels to the reference
level, simplifying the approach that consults all pairwise comparisons.

This yields four types of p-values, namely py;ogit, P-jlogit> Pg-logit, and po logit, summarized in the
first row of Table S1. They measure the covariate balance at the treatment-covariate pair, covariate,
treatment, and overall levels, respectively, and provide the ingredients for defining a whole spectrum
of balance criteria under ReP. The marginal, joint, and consensus rules in Table 2 use {pgjiogit : ¢ €
Q.; j=1,...,J}, poogit; and their union to form the acceptance criteria, respectively, but the choice
can be general. A key consideration is that the joint p-value pgiogi¢ is invariant to non-degenerate
transformation of the covariate vector, in the sense of z; = Az; for some nonsingular J x J matrix
A, whereas the treatment-covariate-wise, covariate-wise, and treatment-wise p-values in general are not
unless A is diagonal. Emphases on specific covariates or treatment levels, on the other hand, justify the
use of covariate- or treatment-wise p-values, respectively.

The same discussion extends to the p-values from (i) the treatment-wise regressions 1m(l}-q ~14+xz;+
<+ x;y) over i =1,..., N for ¢ € Q; (ii) the covariate-wise regressions Im(z;; ~ 1 +Z;y; + - +Z; g—1)
over i =1,...,N for j € {1,...,J}; and (iii) the two-sample t-test of {z;; : Z; = ¢} and {z;; : Z; = Q}
for each pair of (¢,7) € Q, x {1,...,J}, respectively.

Specifically, recall that the treatment-wise regression 1Im(Zj; ~ 1+ x;1 + - - - + ;) extends the linear
regression of Z; on (1,z;) under the treatment-control experiment to general experiments, measuring
the influence of covariates on assignment to treatment level ¢ € Q. Denote by ,éq = (Bql, cee Bq 7)" the

coefficient vector of (z;1,...,2;7)" from the OLS fit. It yields two types of p-values, namely
(i) the marginal p-value associated with each individual qu, denoted by py;im; and

(ii) the treatment-wise p-value from the F-test of 1m(Z;; ~ 1 + 41 + -+ + x;7) against 1m(Z;; ~ 1),
denoted by pg. im-

They are analogous to the pgjiogit’s and pq. 1ogit’s from the multinomial logistic regression, respectively,
and allow us to form balance criteria like (i) pgjim > ag; for all ¢j, or (i) pg.im > aq for all ¢ € Q. See
the second row of Table S1.

Next, recall Im(z;; ~ 1+Z;; +---+7Z; g—1) as a regression formulation for computing the p; ¢ from the
marginal F-test of (x5, Zi)i]il. The resulting fit, in addition to yielding p; r as the p-value from the F-test
of Im(zs5 ~ 14+Z;1 +- - -+7Z; g—1) against Im(z;; ~ 1), also yields one marginal p-value for the coefficient of

each Z;, (q € Q.), denoted by py;¢. The two types of p-values are analogous to the pg;iogit’s and p.; 1ogit s,
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Table S1: Four strategies for forming the treatment-covariate-wise, covariate-wise, treatment-wise, and
joint p-values under general experiments. Let J = {1,...,J}

Treatment-covariate-wise Covariate-wise Treatment-wise

(¢:4) () (9) Joint
logit(Z; ~ 14w + -+ x47)
overi=1,...,N Pgj logit D-j logit Pq- logit D0, logit
1m(I’in1+xi1+"'+fEiJ) ‘ La a
overi=1,...,N for g € Q Pgjlm “e Dg-im -8
Tm( s ~ 1 Toq e Ty
m(x” B Fha ) DPqj t Djf n.a. n.a.

overi=1,...,N for j e J

Two-sample t-test of
{zij : Zi = q} and {x;; : Z; = Q} Dyjit n.a. n.a. n.a.
forj € J and g€ Q.

respectively, and allow us to form balance criteria accordingly. The p;;’s under the treatment-control
experiment are a special case with Q = 2 and Z;; = Z;. See also Barrera-Osorio et al. (2011, Table 2)
and Dupas and Robinson (2013, Tables 1 and A1) for applications that use the py;¢’s for balance check.

Last but not least, we can conduct one two-sample t-test of {x;; : Z; = ¢} and {z;; : Z; = Q} for each
pair of (¢,j) € Q, x {1,...,J}, comparing the balance of covariate j between treatment groups q € Q,
and . Denote by pg; ¢ the resulting two-sided p-value. It can be implemented by fitting 1m(z;; ~ 1+Z;q)
over {i: Z; € {q,Q}}, and allows us to form balance criteria like pg; ¢ > ay; for all ¢j for some prespecified
thresholds ag4; € (0,1).

This yields four strategies for forming treatment-covariate-wise, covariate-wise, treatment-wise, and
joint p-values under general experiments, summarized in Table S1. The multinomial logistic regression

accommodates all four types of p-values via one MLE fit, and is hence our recommendation in general.

S2. Alternative covariate balance criteria

S2.1. Rerandomization with tiers of covariates

When covariates vary in a priori importance, Morgan and Rubin (2015) proposed rerandomizing based on
Mahalanobis distance within tiers of covariate importance, imposing more stringent criteria for covariates
that are thought to be more important. Extension of ReP to such settings is straightforward under the
marginal rules by setting the covariate-wise thresholds according to the importance. To construct joint

rules for ReP with tiers of covariates, we can conduct one joint test for each tier of covariates, and set the

S6



tier-wise thresholds according to the importance. The consensus rules then follow as the intersections of
the corresponding marginal and joint rules. These ReP schemes complicate the asymptotic distributions

of 7. (¥ = N, F) but keep that of 7, unchanged. We recommend the same analysis based on 7.

S2.2. Alternative joint tests from regression

The discussion so far assumed default tests from standard software packages. As a result, we conducted
an F-test to construct the joint criterion under the linear regression model option, namely Ay, =
{Poim > ao}, and conducted an LRT to construct the joint criterion under the logistic and multinomial
logistic regression model options, namely Ajggit jt = {Po,logit = 0}, respectively. The Wald test, on the
other hand, enables definition of the joint criteria in a unified way.

Specifically, recall 1m(Z; ~ 1+ z;) and logit(Z; ~ 1+ z;) as the linear and logistic regressions under
the treatment-control experiment. Let 3 = (Bl, .. ,BJ)T and 8 = (B1,...,35)" be the coefficient vectors
of x; from the OoLS and MLE fits, respectively, with V and V as the corresponding estimated covariances.
The Wald tests of B and B compare Wi, = BTV*16A and Wiggit = ﬁTf/*16~ against the X% distribution,
and define two alternatives to the F-test and LRT, respectively, measuring the magnitudes of (Bj)}le and
(Bj)}]:1 as a whole. All results in Proposition 2 and Theorem 2 on Ajy, j; and Ajggis it extend verbatim to
the resulting ReP schemes, with 7, being our recommendation.

Likewise for all results in Proposition S2 and Theorem 4 on Ajugit jt to extend verbatim to the ReP
based on the Wald test of /5’ = (qu)q€Q+; j=1,..,;7 under the general experiment, with 7; being our
recommendation.

See Lemmas S1, S6, S9 and Theorem S1 in Section S4 for the proof of the asymptotic equivalence of
the Wald test to the F-test and LRT, respectively. See also de Mel et al. (2009, Table 1) for an application
of the Wald test to balance check.

S2.3. EHW standard errors for balance test

We assumed the default p-values from standard software packages for forming the balance criteria. The
standard error and covariance involved in their computation are hence in general the classic standard
errors and covariances derived under homoskedasticity. Alternatively, we can form the test statistics
using the EHW robust standard errors and covariances as in the analysis stage, and compute the p-values
accordingly. We give the explicit forms of the resulting test statistics in Remark S1 in Section S3.5,
and show in Remark S2 in Section S4.4 their equivalence with the classic counterparts as N tends to
infinity. All results thus extend to ReP based on the robustly studentized test statistics, with 7, being

our recommendation.
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S2.4. p-values from other standard statistical tests

The discussion so far concerned p-values from the linear, logistic, and multinomial logistic regressions
in standard software packages. Alternatively, the probit and multinomial probit regressions provide
two intuitive variants to the logistic and multinomial logistic regressions of Z; on (1, x;), respectively,
accommodating marginal, joint, and consensus rules via one MLE fit. We conjecture that the results are
analogous, and leave the technical details to future work.

In addition, the two-sample Kolmogorov—Smirnov test and the chi-square test of independence ex-
emplify alternative test choices for forming covariate balance criteria under the treatment-control and
general experiments, respectively. See Gerber et al. (2009) and Chen et al. (2010) for their applications

to covariate balance check. We leave the theory on their properties for rerandomization to future work.

S3. Test statistics and equivalent forms for acceptance criteria in

Tables 1 and 2

We review in this section the test statistics that underlie the p-values we use to form the ReP schemes
in Tables 1 and 2, respectively. To avoid repetition, we treat the logistic regression for treatment-control
experiments as a special case of the multinomial logistic regression with @) = 2 and level 2 relabeled as
level 0.

Assume «; (j = 1,...,J) and «p as the thresholds for the marginal and joint criteria under the
treatment-control experiment, respectively.

Assume o (7 =1,...,J), agj (¢ € Q4; j =1,...,J), and o as the thresholds for the marginal
F-tests and the marginal and joint tests based on the multinomial logistic regression, respectively, under

the general experiment.

S3.1. Two-sample t-tests

Marginal tests. Let 7, ; = 2;(1) — &;(0), where &;(¢q) = N; ! >i:71=q Tij» be the difference in means of

the jth covariate, equaling the jth component of 7,. The pooled standard error for 7, ; equals

. (N1 =182, (1) + (No-1S2,(0) /1 1
se; = J o ~ T~
J N -2 N Ny )’

with S’gj(q) =(N,—1)7! D iz AT — #;(g)}? for ¢ = 0,1. The two-sample ¢-test uses

tit = Tu,j/58;
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as the test statistic, and computes p;; based on the ty_o distribution as
Pjt = ]P)(’A| > ‘t]’7t|), where A ~ tN,Q.
Let Ty = (t14,...,tst)". The marginal criterion equals

Aimg = A{pjr>ajforallj=1,...,J} (S2)
= {’t],t‘ Saj,t for all]zl,,J}

= A{ITil < a},

with ay = (a1,...,a7¢)" and a; denoting the (1—c«;/2)th quantile of the ¢_ distribution. Numerically,
Trj> S€j, tjt, and pj¢ equal the coefficient, classic standard error, t-value, and p-value associated with
Z; from the oLs fit of Im(x;; ~ 1+ Z;) over i = 1,..., N, respectively. This gives an alternative

implementation of the marginal ¢-tests via OLS.

Joint test. Recall Wy = 7} (17, as the test statistic for the joint two-sample t-test. The pooled

estimated covariance equals

oo (= 1)S2(1) + (No — 1)52(0) < 11 ) 7 (83)

N2 ~M TN

with S2(¢) = (N, — 1)~* >izi=glzi — #(@) Hzi — 2(¢)}" for ¢ = 0,1. Assume the joint Wald test for

computing po ¢, with X% as the reference distribution. The acceptance criterion equals
At jt = {pot > ao} = {W; < ap},
where ag denotes the (1 — ag)th quantile of the x% distribution.

S3.2. Linear regression

Marginal tests. Let B= (Bl, .. ,BJ)T denote the coefficient vector of z; = (zi1,...,2;7)" from 1m(Z; ~
14+ xpn+ -+ ax;5). Let V be the associated estimated covariance, with ij as the (j,7)th element for

j=1,...,J. The marginal test of B]- takes

5 Yrl/2
tj,lm = 5]/‘/]]/
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as the test-statistic, and computes p;m based on the ¢y_1_; distribution as

pj,lm = P(’A| 2 ’tj71m|), where A ~ tN,1,J.
Let Tim = (t11m, - - - t7im)" - The marginal criterion equals
Aimmg = {pjm>¢jforallj=1,...,J} (S4)

= {|tjim| < ajm forall j=1,...,J}

- {’,Tlm‘ < alm}7

with aim = (@11m,---,a71m)" and a;1m, denoting the (1 — a;/2)th quantile of the ty_;_; distribution.

Joint test. The F-test for linear regression compares 1m(Z; ~ 1+x;1+- - -+z;7) against the empty model
1m(Z; ~ 1). Let RSSyp and RSS; denote the residual sums of squares from the null and full regressions,

respectively. The test statistic equals

_ (Rssp —Rssy)/J
~ RsS/(N—1-J)

and is compared against the F); y_1_; distribution to compute pg i, as
Po,lm = ]P’(A > F), where A ~ FJnylfJ.
The acceptance criterion equals

Aim jt = {pom > o} ={F < fin-1-7},

where f;n_1—; denotes the (1 — ag)th quantile of the F; xy_;_; distribution.
Whereas the F-test is the default joint test for linear regression returned by most software packages,
we can also compute the joint p-value by a Wald test with test statistic Wy, = ETV_l B . The resulting

p-value equals
Pom = P(A > Win), where A ~ x?%,

with {p > a0} = (Wi < ao}.
Lemma S1 below gives the numeric correspondence between F' and Wy, and underpins the asymptotic

equivalence between pom and pj ,,, for constructing the joint criterion from linear regression; see Lemma
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S6. For two sequences of events (An)F_; and (Bn)¥_;, write Ay = By if P(Ay\By) = o(1) and
P(Bn\An) = o(1).

Lemma S1. F = J~ W), and fin-1-J = JYag + o(1) such that

Anmjt = {Pojm > a0} = {F < frn-1-s} = {Win < ag} = {Win < a0} = {py1m > 0},
where af = J - fyn_1-7 = ag + o(1).

S3.3. Multinomial logistic regression

Recall level @ as the reference level when fitting logit(Z; ~ 1 + 241 + -+ + x;7) by MLE. The fitting

algorithm assumes that (z;, Z;)Y, are independent samples from
Z; | x; ~ multinomial{1; (m1(x;),...,7q(z:))},

with

10 WQ(J:Z')

g7:6q0+x36q forqE Q+:{1)-"aQ_1} and ﬁq:(ﬁqu-“wqu)T' (85)
mQ(zi)

Let Bq = (Bql, . ,ﬁNqJ)T be the MLE of B, for ¢ € Q.. Let B = (BlT, . néch—l)T = (,éqj)qegﬁ j=1,..J €
R7(@-1D | with V = (f/qj,q/ ;) as the estimated covariance from the same MLE fit. The notation simplifies to
B = (Bl, e 7,3J)T and V = (f/jj’)j,j’:l,---,J under the treatment-control experiment with @ =2, 9@, = {1},
B =B, and (8, Vi) = (Bij, Vija)-

Marginal tests. The marginal test of qu uses

5 r1)2
tgj logit = B‘Ij/‘/;]j,qj

as the test statistic, and computes py;1ogit as
Pyjlogit = P(|A| > [tgjlogit]), ~ where A~ N(0,1).
Let Tiogit = (tgjlogit)qe Qs ; j=1,...,7 € R7(@-D ip lexicographical order of gj. The marginal criterion equals

Alogit,mg = {qu,logit > Qgj forallge€ @, and j=1,..., J}
= {ltgjlonit| < agj forallge Q, and j=1,...,J}
= {‘z_iogit| < a}v
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with a = (agj)ge0,. j=1,..7 € R7@7Y and a,; denoting the (1— ay;/2)th quantile of the standard normal
distribution.

When Q = 2, we have (Bj,f/jj,pj710git,ozj) = (Bljv Vlj,ljyplj,logitaalj) for j = 1, ey J. The definition
of a simplifies to a = (a1,...,a;)T € R’, with a; equaling the (1 — a;/2)th quantile of the standard

normal distribution. The definition of Tiogi¢ simplifies to Tiogit = (1,10gits - - - » tologit) " With
5 1r1/2
tiogie = B/ V2.
The marginal criterion equals

Alogitmg = {Djlogit > o forall j=1,...,J} (S6)
= {|tj,logit| S(Ij fOl“ allj:1,...,J}

= {‘Tlogit‘ <a}.

Joint test. The LRT for multinomial logistic regression tests logit(Z; ~ 1+4x;) against the empty model
logit(Z; ~ 1). Denote by Aigr the resulting test statistic, with the explicit form given in (S30). Then

Po,logit is computed based on the X%(Q—l) distribution as
Po,logit = P(A > )\LRT)7 where A ~ X2J(Q,1)~
The joint criterion equals

Alogit,jt = {pO,logit > aO} = {)\LRT < a0}7

where ag denotes the (1 — ap)th quantile of the X%(Q—l) distribution. The definition of ag reduces to
that under the treatment-control experiment, namely the (1 — ap)th quantile of the X?} distribution, with
Q=2

Whereas the LRT is the default joint test for multinomial logistic regression returned by most software
packages, we can also compute the joint p-value via a joint Wald test with test statistic Wiogi = BTV_I B

The resulting p-value equals
P010git = P(A = Wiggit), where A ~ X%(Q—l)?

with {p], logit = ap} = {Wiegit < ag}. Theorem S1 in Section S4 ensures Appr — Wiggit = op(1). This

underpins the asymptotic equivalence between the LRT and the Wald test for constructing the joint

S12



criterion from multinomial logistic regression; see Lemma S6.

S3.4. Marginal F-tests under the general experiment

Renew #;j(q) = N > izi=q Tij for ¢ € @ ={1,...,Q}. The F-test of covariate j uses

>geo Vo3 ()/(Q — 1)

B S ey — @V N Q) (57
as the test statistic, and compares it against the Fy_1 y_¢ distribution to compute p; ¢ as
pis=P(A > F}), where A~ Fo_1n—Q-
The marginal criterion equals
Atmg = {pjr>ajforall j=1,...,J} ={F; <ajsforal j=1,...,J}, (S8)

where a; ¢ denotes the (1 — a;)th quantile of the Fig_; ny_¢ distribution.

S3.5. Unification

Table S2 summarizes the regression realizations, test statistics, and reference distributions for the thirteen
ReP schemes in Tables 1 and 2. Table S3 summarizes the alternative expressions of the nine criteria in
Table 1 for treatment-control experiments in terms of the test statistics.

In particular, recall T} = (t14,...,t5+)" as the vector of the marginal ¢-statistics for { = t,lm, logit
under the treatment-control experiment. Direct comparison shows that Qj]- = sfe? for j=1,...,J, and

allows us to unify the marginal criteria in (52), (S4), and (S6) as
Armg = {T3 <at}  (f = t,1m, logit),

with ajegi; = a and

T, = diag(se; )7 = ()%,
T = diag(V;"*)76 = o(V)'5
Toge = diag(V;""),8 = o(V)7'5.

The expressions in the last column of Table S3 also extend to the criteria based on the multinomial

logistic regression for general experiments with renewed definitions of Tj,gi; = (tqj,logit>qEQ v =1,
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Table S2: Regression realizations, test statistics, and reference distributions for the thirteen ReP schemes
in Tables 1 and 2. Let Z; , = (Z1,...,Z;g—1)" fori=1,...,N.

Model Regression Test statistics and reference distributions
@@ option realization Marginal Joint (default) Joint (Wald)
t Im(zij ~ 1+ Z;) 7:'357]‘{8;62 tN—2 igf}_lf‘f X2J
2 Im Im(Z; ~ 1+ x;) ﬁj/Vj/ IN-1-J F  Fjnoi-g p'V71p X3
. . > eri/2 Srtr—15
logit  logit(Z; ~ 1+ ;) ﬂj/ij/ N(0,1)  Awrr X BTV X4
w9 n(zij ~ 1+ 1) E Fo-1n-@
= . . > rl/2 STTr—15
logit  logit(Z; ~ 14 ;) ﬂqj/v:l]{qj N(@0,1)  Awgr X?I(Q—l) BTV1p X2J(Q—1)

a = (agj)eeq,; j=1,..,J, and ag.

Table S3: Acceptance criteria for § = t,lm, logit under the treatment-control experiment.

by p-values t Im logit
Aimg  pjt>a; (1=1,...,J) T3] < ay |Tim| < aim | Tiogit| < a
Ay st Po,i = Qo Wi < ag Wim < ag Arr < ag

Aies Pt >0 (1=0,1,...,J) |Ti| <a,, Wy <ap |Tim| < aim, Wim < ag [Tiogit] < a, Adrr < ag

The test statistics satisfy

T‘t = O'(Q 717A—x7 ﬂm U( )7137 ﬂogit = U(V)il/éa
Wy = A;;;FQ_lf-xa Win /BTV_lﬁ) I/Vlogit = /BTV_lﬁv

with a1 = a4+ o(1) (f = t,1m) and af = ag + o(1).

Remark S1. Recall se; as the classic standard error of 7, ; from 1m(z;; ~ 14 Z;). Echoing the discussion
in Section S2.3, we can replace it with the EHW standard error from the same OLS fit, denoted by SAeQ,
and conduct the marginal two-sample ¢-test based on the robustly studentized t-statistic t;’,t = Tuj/ s“e;-
forj=1,...,J.

Extensions to other criteria are straightforward by replacing the Q, V, and V in Tables S2 and S3 with
their respective heteroskedasticity-robust counterparts. In particular, the EHW counterparts of V and V
can be obtained as direct outputs from the same linear, logistic, and multinomial logistic regressions,
respectively. The robust counterpart of Q can be computed as ' = N;152(1) + N, 152(0), recalling
S%(q) as the sample covariance of {x; : Z; = ¢} for ¢ = 0,1. The resulting robust variant of the
Hotelling’s T? statistic, namely W/ = 7T (Y7, defines the multivariate Behrens-Fisher T? statistic. We
show in Remark S2 in Section S4.4 below the asymptotic equivalence between the classic and robust test

statistics for defining ReP.
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S4. Lemmas

We give in this section the key lemmas for quantifying the asymptotic sampling properties of 7, (x =

N, F, L) under ReP.

S4.1. Asymptotic theory under complete randomization

We review in this subsection the theory of regression adjustment under complete randomization. Assume
a general experiment with Q@ = {1,...,Q} throughout. The treatment-control experiment is a special
case with Q = 2 and level 2 relabeled as level 0.

Recall 74 as the coefficient vector of z; from Im{Y;(q) ~ 14z} overi=1,..., N. Let ve = >_ o €47
and let Sy = (Si4¢)qqc0 (x = N,F,L) be the finite-population covariance matrices of Y; x(q) = Yi(q),
Yix(q) = Yi(q) — 27y, and Y;,(q) = Yi(q) — a7, respectively, with S, 4 = (N — )71 N {V;.(q) —
Y(q)H{Yin(q') = Y(d)}. Let

Vi = diag(Ss,qq/€q)qeq — S« (* =N, F,L).

Condition 1 ensures that eq, vq, VT, 52 and Vi, all have finite limits as N tends to infinity. For notational
simplicity, we will use the same symbols to denote their respective limits when no confusion would arise.
Recall that & = (£(1)7,...,#(Q)")", with Z(q) = N, ! > izi=q Ti for g € Q. Let V! be the EHW covariance
of Y, from the same OLS fit. Lemma S2 follows from Zhao and Ding (2023), and clarifies the design-based

properties of Y, and f/*’
Lemma S2. Assume a completely randomized general experiment and Condition 1. For * = N, F, L,
(i)

. —Y V. .V,
\/N ~ N 0Q+JQ, ‘ R
i V.IT  V,

with V, = Nceov(#) = {diag(e;')geq — loxq@} ® 52, Vi = Vi + LV,IT >V, for
Iy = diag(%;r)qEQ7 T = diag{(vg — )" }4e0, I'y = 00xJq;
and hence }A/L " oo }A/N, YF;

(ii) NV! =V, = S, + op(1) with S, > 0.
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Lemma S2(i) ensures the consistency and asymptotic normality of 7, = GY, for estimating 7 =
GY under complete randomization. Lemma S2(ii) ensures the asymptotic appropriateness of the EHW
covariance for estimating the true sampling covariance, and thereby justifies the Wald-type inference of
7 based on (7, GV/G™) and normal approximation.

The theory under the treatment-control experiment then follows as a special case with 7, = Y, (1) —
}A/*(O) by the invariance of OLS to non-degenerate transformation of the regressor vector. Let se, be the

EHW standard error of 7, from the same OLS fit.

Corollary S1. Assume a completely randomized treatment-control experiment and Condition 1. For

* =N,F,L,

(i)

T — T Ve CF
\% N ~ N 0J+17 )
T Cy Vg

with v, = (=1, 1)Vi(=1,1)T, vy = (ege1) 152, and

1

CNn = 53(65170 + @1_1’71)7 Cr = S:%(el_ - 661)(% — ) o, =0y

satisfying v, — vy = cfvyte, > 0;

(i) N(ses)? —vs = (=1,1)S,(=1,1)" 4 op(1) with (—1,1)S.(—1,1)T > 0.

Parallel to the comments after Lemma S2, Corollary S1(i) states the consistency and asymptotic
normality of 7, for estimating 7 = Y (1)—Y (0) under complete randomization, and ensures the asymptotic
efficiency of 7, over 7y and 7. Corollary S1(ii) justifies the Wald-type inference based on (7, se,) and

normal approximation.

S4.2. Peakedness

Lemma S3 below states the celebrated Gaussian correlation inequality, with the recent breakthrough

proof due to Royen (2014); see also Latala and Matlak (2017).

Lemma S3 (Gaussian correlation inequality). Let u be an m-dimensional Gaussian probability measure
on R™ that is, p is a multivariate normal distribution, centered at the origin. Then u(C; N Cy) >

1(C1)p(Cs) for all convex sets C1,Co C R™ that are symmetric about the origin.

Lemma S3 immediately implies Corollary S2 below, which states that a mean-zero Gaussian measure

restricted to a symmetric convex set is more peaked than the original unrestricted measure.
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Corollary S2. Let € ~ N(0,,,%). Then € | {¢ € C} »= € for arbitrary convex set C C R™ that is

symmetric about the origin.

Proof of Corollary S2. Let T ~ ¢ | {e € C}. The result follows from

P(T €C) =Ple ey | eeC) = L& E(flé é)e O speea)
for arbitrary symmetric convex set C; C R™ by Lemma S3. 0
Recall that
Te  ~ el{lel<a}, T o~ e {lal <a, [lellyu < aol,
Tim  ~  €m | {lem| < a}, m o~ am | {lem] < a, flemlla < a0},
Togit  ~  €logit | {|€1ogit| < a}, logit  ~  €logit | {|€l0git] < @, [|€r0git/m < a0},
L~ el{lel <aol, Te o~ e {dD 40 eqegqj < a;-Sij forall j=1,...,J},

with e ~ N{0s, D(vz)}, €m ~ N{05, D(v; )}, €iogit ~ N{050-1), D(Va)}, €0 ~ N(05q-1), Lio-1))
and ef ~ N (05q, Vz).

Lemma S4. 7,,7] = ¢, for * = t,1m, logit, £ = €y, and T; = €.

Proof of Lemma S4. The results follow from Corollary S2 and the convexity of {u € R™ : |u| < a},
{ueR™: Jul < a, |lullu < ao}, {uw € R™ : Jull3 < ao}, and {u = (ugj)geg; j=1,..; € R7?: 3 cqequy; <
a}Sg’j forallj=1,...,J}.

O]

Lemma S5 below reviews three classical results in probability for comparing peakedness between
random vectors. Lemma S5(i)—(ii) are proved by Dharmadhikari and Joag-Dev (1988, Lemma 7.2 and
Theorem 7.5), and Li et al. (2020) used them. Lemma S5(iii) is from Sherman (1955, Lemma 3) and

underpins the results for stratified experiments.

Lemma S5. (i) If two m x 1 symmetric random vectors A and B satisfy A > B, then CA = CB for

any matrix C' with compatible dimensions.

(ii) Let A, Bj, and By be three independent m x 1 symmetric random vectors. If A is normal and

Bi = By, then A+ By = A+ Bs.
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(iii) Let Ay, Aa, By, By be continuous random variables such that (a) A; and Ay are independent, B;
and Bj are independent and (b) A; is more peaked than B; for ¢ = 1,2. Then A; + As is more
peaked than By + Bs.

S4.3. Design-based properties of multinomial logistic regression

Theorem S1 below is a novel technical result, and clarifies the design-based properties of the MLE outputs
from the logistic and multinomial logistic regressions, respectively. The result ensures the asymptotic
equivalence between the LRT and the Wald test in terms of both the test statistics and the corresponding
p-values. We relegate the proof to Section S7.

Recall that &, = (z(1)7,...,2(Q—1)")T, with V,,, = Ncov(&, ) denoting its scaled sampling covariance
under complete randomization. Recall that Vg = Ncov(V¥i,) = UV,, U7, with ¥ = {®~!diag(e,)} ®
(SH~t e, = (e1,...,e0-1)", and ® = diag(e,) — e et

4

Theorem S1. Consider a completely randomized experiment with ) > 2 treatment arms. Under

Conditions 1 and 3, we have

VN(B - Ti,) = op(1), VNB ~ N(059-1) Va), NV = Vg + op(1),
ALrT — NiTV_li}L = OIP’(l); vVlogit - N«%Ivg;rli# = OIP’(l)y ALrT — Wlogit = 0IP’<1)7

+Vz+

ALrr ~ X?](Qfl)’ Wiogit ~ X?I(Qfl)'

For a treatment-control experiment with () = 2 and the reference level ¢ = 2 relabeled as 0, the results

simplify to

VN{B —(82)'5,} = op(1), VNG~ N{0s, (eger) 1(S3)71},

NV = (eger)1(S2) 71 + op(1).

S4.4. Weak convergence

Lemma S6 below underpins the asymptotic equivalence between balance criteria based on asymptotically
equivalent thresholds or test statistics. The proof follows from standard probability calculation and is

thus omitted.

Lemma S6. Let (An)3_; be a sequence of m x 1 random vectors. Let (By)_; and (By)%_; be two
sequences of random variables with By — By, = op(1) and (An, By){_; having a continuous limiting
distribution, represented by (A, B). Let (by)3_; be a sequence of constants with a finite limit, bo, =

limy_s00 by < 00. Then
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(i) Apn | {BN < bN} ~ Apn ‘ {BN < boo} pI“OVided IP)(B < boo) > 0;
(i) An | {Bn < b} ~ Ay | {By < b} for arbitrary fixed b € R that satisfies P(B < b) > 0.

Definition S1 below extends the notion of rerandomization with general covariate balance criterion

(ReG) from Li et al. (2018).

Definition S1. Let ¢(B,C) be a binary covariate balance indicator function, where ¢(-,-) is a binary
indicator function and (B, C') are two statistics computed from the data. An ReG accepts a randomization

if ¢(B,C) = 1.

The definition of ReG is general and includes all nine criteria in Table S3 as special cases. Table S4
below summarizes the covariate balance indicator functions for ReM and the nine ReP schemes in Table
S3 under the treatment-control experiment, respectively. As an illustration, (B,C) = (V N7, N Q) under

the two-sample t-test model option, with ¢(-,) equaling

H{lo(v)tu| < as} under the marginal rule;
P(u,v) = ¢ 1(u"v tu < agp) under the joint rule;
H{lo(v)"tu| < ay, u™v"tu <ap}  under the consensus rule.

The resulting covariate balance indicator functions equal

{|o(Q) 17| < ai} under the marginal rule;
$(B,C) = ¢ 1(#7Q 17, < ag) under the joint rule;
{|o(Q) 17| < ay, 77017, <ag}  under the consensus rule

given ¢(u,v) = ¢(u/v/N,v/N) in all three cases.

Lemma S7 below is a generalization of Li et al. (2018, Proposition Al), and gives the asymptotic
distribution of arbitrary random elements under ReG. To this end, Condition S1 below imposes some
smoothness constraints on the associated ¢ to prevent the acceptance region from being a set of measure

zero. All covariate balance criteria in Table S4 satisfy Condition S1.

Condition S1. The binary indicator function ¢(-,-) satisfies: (i) ¢(-,-) is almost surely continuous; (ii)
for u ~ N'(07,v9), we have P{¢(u,v9) = 1} > 0 for all vg > 0, and cov{u | ¢(u,v9) = 1} is a continuous

function of vy.

Lemma S7 (Weak convergence under ReG). Assume (¢n)3_; as a sequence of binary indicator functions

under Condition S1 that converges to ¢. For a sequence of random elements (Ay, By,Cn)3_; that
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Table S4: The covariate balance indicator functions and the corresponding (B, C') for ReM and the nine
ReP schemes in Table S3 under the treatment-control experiment. The joint criterion under the “logit”
model option is given in terms of the asymptotically equivalent Wald statistic to highlight the analogy
across different model options.

ReM t

(B,0) (V' Ny, Ncov(7y,)) (V N7, NQ)
marginal n.a. 1{|0’(Q)_1fz| < a}

joint {7 cov(7,) 17 < a0} (7717, < ag)
consensus n.a. {|o(Q) 7| < ag, 77Q 4, < ag}

Im logit

(B,C) (VNB,NV) (VNB,NV)
marginal {|o(V)~18] < aim} H{o(V)"'B| < a}

joint 1BV 18 < ap) 1(B™V 3 < ap)

consensus  1{|o(V)"'4| < am, BV 18 <ai} 1{|o(V) '8 <a, BTV I3 <ag}

satisfies (An, By,Cn) ~ (A, B,C) as N — oo, we have

(An,BN) [ {¢n(BN,CNn) =1}~ (A, B) [{¢(B,C) =1}

in the sense that, for any continuity set S of (4, B) | {¢(B,C) = 1},

P{(Ay,By) €S | én(By,Cn) = 1} = P{(A, B) € S | $(B,C) = 1} + o(1).

Lemma S8 below gives the asymptotic joint distributions of 7, and the elements that determine the
covariate balance measures in Table S4. The result provides the basis for verifying Propositions 1 and 2

in a unified way.

Lemma S8. Assume a completely randomized treatment-control experiment and Conditions 1 and 2.

For x = N, F, L, we have

(VN (7 = 7),V/N#y, Neov(#,))  ~  (As, B,vy),

(VN(# = 7),V/Ntz, NQ) (A, B,vy),

(VN (# — 1), VNB,NV) (A ur'B o,

(VN(# —7),VNB.NV) (A (S2)7'B, (eoe) N (D)
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with

A, Vs Cy
~ N 041,

B Cy Vg
Proof of Lemma S8. The result on ReM follows from Corollary S1. The result on the “logit” model
option follows from Theorem S1. We verify below the results on the two-sample t-test (“t”) and linear
regression (“lm”) model options, respectively.
Result on the two-sample t-test model option. The joint distribution of v N (T4 — 7,74) follows
from Corollary S1. The probability limit of NQ follows from NQ = (ege1) 152 + op(1) = v, 4 op(1) by
(S3) and S2(¢) = S2 + op(1) under complete randomization and Condition 1.

Result on the linear regression model option. The Frisch—-Waugh—Lovell theorem ensures that

NoMy
(N —1)N

(53)2(1) = (53) 17w =

v, T (S9)

is a non-degenerate linear transformation of 7. The joint distribution of v/ N (T — T, B) then follows from
Corollary S1.
Further let

S%zli(zi—Z)QZ N eoel szzlifci(zi—z): al e1#(1)
]\7—1i:1 N -1 ’ ]\7—11,:1 N-1 ’

with Z = N71 é\il Z; = e1. The probability limit of V follows from
al LN
NV =52 E T = 528?71
V=¢ (i:1xxl> N1 (S7)
with

TA N -1

- m(b% + BTS2B — 2875, z) = eoer + op(1).

O

Lemma S9 gives the asymptotic joint distributions of (Y*, Z,) and (Y*, 3, V) under the general exper-

iment, respectively, analogous to Lemma S8.

Lemma S9. Assume a completely randomized general experiment and Conditions 1 and 3. Let A ~

N(0g, Vi), B ~ N(0;5q,V:), and B" ~ N(0;-1), Var) be independent normal random vectors. For
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* = N, F, L, we have
(i) VN(Yy = Y,2) ~ (A+T.B,B), VN(Y,—-Y,2,)~ (A+T.B, B);
(i) (WVN(Y, =Y),V/NB,NV) ~ (A+T.B', UB' Vy);

(iti) Vi | {hrr < a0} ~ Y| {Wiggie < ao}-

Proof of Lemma 89. The result on vN(Y, — Y, %) follows from Lemma S2. This, together with (S1),
further ensures VN(Y, — Y — i, ,&,) ~ (A, B’), and hence vVN(Y, —Y,%,) ~» (A+T.B',B) for
* =N, F, L.

The result on (v N(Y,—Y), VNS, NV) then follows from N (G—Wi,) = op(1) and NV = Vg +o0p(1)
by Theorem S1.

The asymptotic equivalence between Y, | {Aer < ap} and Y. | {Wiogit < ao} follows from Appr —

N&TV 12, = op(1) and Wiegit — N&TV, 12, = op(1) by Theorem S1 and Lemma S6. O

+ T+

Remark S2. Lemma S8 and its proof also imply some of the comments we made in the main text.
First, Lemma S8, together with (S9) and v/ N{B — (5§2)~'#,} = op(1) from Theorem S1, ensures
the asymptotic equivalence between ||7.||y = FXcov(fy) 17, Wy = %gfl*l%z, Wim = BTV~13, and
Wiogit = BTV ~15 in the sense that Wi —||72||m = op(1) for + = t,1m, logit. This elucidates the asymptotic
equivalence between ReM and the joint criteria under the treatment-control experiment by Lemma S6.
Next, recall se; and sé; as the classic and EHW standard errors of 7, ;, respectively, from Remark S1.

It follows from the Frisch-Waugh—Lovell theorem and Zhao and Ding (2021, Lemma S1) that

L 1 (S;j B ) () = (Z - InZ)" diag(e,)X((Z — InZ)

Tl ) s e 1Z =182l

with Z = (Zl, .. .,ZN)T, 52 ;= (N - 1)_1 Zz]\il m?j, €ij = X5 — Zﬂﬁxﬂ‘, and

Nsé? = (eoel)*lsg,j +op(1), N(sé9)2 = (6061)715’%,]- + op(1).

This ensures t;’,t = Tuj/ s%; =t;+ + op(1), and hence the asymptotic equivalence of the classic and EHW
standard errors for constructing the marginal criterion under the two-sample ¢-tests. The results for other
criteria are similar and thus omitted.

Importantly, the asymptotic equivalence between the classic and EHW standard errors does not hold
for s/, (* = N,F,L) and their classic counterparts based on the default outputs of 1m(Y; ~ 1 + Z;),
Im(Y; ~ 14+ Z;+a;), and Im(Y; ~ 14+ Z; + x; + Z;x;) in general. Specifically, the classic standard errors of

7« (* = N, F, L) are not necessarily asymptotically conservative for estimating the true sampling variances,
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and can thus lead to invalid inferences. As a result, the use of EHW standard errors is immaterial for

rerandomization yet crucial for analysis.

S5. Proofs of the results under complete randomization

S5.1. Asymptotic distributions in Propositions 1-2 and S1-S2

Proof of Propositions 1 and 2. Let

A, Vs CF
~ N 0J+1,

B Cy Vg

with /N (7, — 7,75)T ~~ (A4, B™)T for * = N, F, L. Recall the definitions of Aji o for t = t,1m, logit and

© = jt,mg, cs in terms of the test statistics from Table S3.

Two-sample t-tests. For « = N, F, L, let (Ay, By, Cn) = (VN (#,—7), VN7, NQ) with (Ayx, By, Cn) ~
(As, B,v;) by Lemma S8.

e Recall that Agji = {pot > o} = {W; < ap} under the joint rule. We have
VN -1) [ Ay = VN(—7) | {7107, < ag}
~ Ay | {B";'B < ag}
~ A [{lBllm < ao}
by applying Lemma S7 to (Anx, By,Cn) and ¢n(u,v) = ¢(u,v) = L(u"v" u < ap).
e Recall that A¢me = {pjt >, 7=1,...,J} = {|Ti| < a¢} under the marginal rule. We have

VNG 1) | Ay = VNG 1) {0 5] < a}
v A | {lo(:) "Bl < a}

by applying Lemma S7 to (Ay, By, Cn), ¢n(u,v) = 1{|o(v) " u| < a}, and ¢(u,v) = 1{|o(v) " u| <
a}.

e Recall that A¢cs = {pjt > oy, j=0,1,...,J} = {W; < ao, |Ti| < ai} under the consensus rule.

We have

\/N(%* - T) ’ At,cs = \/N(%* - T) ’ {7&5@717&1‘ < agp, |U(Q)7l7ﬁx‘ < at}
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~ Ay [ {|Bllm < ao, |o(ve) ' Bl < a}

by applying Lemma S7 to (An, By,Cn), én(u,v) = l(uTv_lu < ap) - 1{|J(v)_1u] < a}, and

d(u,v) = 1w u < ag) - 1{|o(v)"tu| < al.

It thus suffices to compute

A [ {I1Blla < a0}, As [ {lo(ve) ™' Bl < a},  Au [ {I|B]ln < a0, |o(vs) ™" Bl < a},

respectively.

To this end, write
A, = (Ax — cfv;'B) + cfv, ' B, (S10)
with A, — cfv; !B ~ N(0,v,) and independent of B. This ensures

A IBlu < a0y~ (Av—clvy'B) + To (B {IBllu < ao)]

~ e+ o (2L, (S11)

Likewise for the results under the marginal and consensus rules. In particular, let ¢, = o(v,) !B ~

N{0, D(v;)} to write
B=o(vs)e, {lo(ve) "Bl <a} ={|e| < a}.
This ensures

Bl {lo(w,) "Bl <a} = o(v)e ] {le] <a}

(v2)
(v2) Ts,
(v2)
(vz)

2
)

B | {”BHM < ao, |U(UI)_IB| < CL} = g

vz)es | {llecllm < ao, leg| < a}

~  o(vy 7;’,

and thus

A {lo) 7Bl <a) ~ et vy lo(u)T,

Ac | {IBllw < ao, |o(vs) "Bl <a} ~ o+ vy to(v) T,
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by (510).
Linear regression. For *+ = N, F, L, let (Ay, By,Cxn) = (VN (7, — 1), JNB,NV) with (Ax, By, CnN) ~
(As,v;1B,v; 1) by Lemma S8.

o Recall that A jt = {pom > a0} = {Wim < a¢} under the joint rule by Lemma S1. We have

VN(# = 7) [ Amg = VNGE—7) | {8V <ag)
~ Ay [ {(vy'B) v (v, ' B) < ag}

~ A H{lIBllm < ao}

by applying Lemma S7 to (Ax, By, Cn), ¢n(u,v) = 1(u™v " u < ay), and ¢(u,v) = 1(u v u < ag).

e Recall that Ajmmg = {Pjim > ¢, 7=1,...,J} = {|Tim| < aim} under the marginal rule. We have

VN =) [ Ay = VN =7) [{lo(V) 78] < a}
A {lo(wz ) Bl < a}

by applying Lemma S7 to (Ax, By, Cn), én(u,v) = 1{|a(v)_1u| < Qi }, and ¢(u,v) = 1{|a(v)_1u\ <

a}.

e Recall that A s = {Pjim > ¢, 7 =0,1,...,J} = {Wim < ar, |Tim| < aim} under the consensus

rule. We have

\/ﬁ('f_* - T) | Alm,cs - \/N('f—* - T) ‘ {BTV_lﬁA < ar, |0—(V)_1/3‘ < alm}
~ Ay [ {(v;'B) v (vy ' B) < ag, |o(v, ") Moy Bl < a}

~ A {lIBllas < ao, |o(vg

xT

N7l Bl < a)

by applying Lemma S7 to (Ax, By,Cn), on(u,v) = 1(uTv  u < ag) - 1{|o(v)"tu| < am}, and

d(u,v) = 1w u < ag) - 1{|o(v)"tu| < al.

It thus suffices to compute A, | {||B|lv < a0}, Ax | {lo(v; ) v, tB| < a}, and As | {||B|lu <
ao, |o(v; )" lw 1 B| < a}, respectively.
The distribution of A, | {||Blls < ao} is given by (S11). For A, | {|o(v;!)"tv;tB| < a} and

Ay [{IIB||m < ao, |o(vz;H Bl < al, let e = o(vy; ) to !B ~ N{0, D(v; 1)} to write

xT
B =v,00; Yem,  {lo(;)"0; Bl < a} = {aw < a}.
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This ensures

B |{lo(v;) oz Bl <a} = weo(vy e | {leml < a}

B | {||Bl|lm < ao, |o(w; ) tolB| <a} = wov

— T

and thus
A {lo(; ) Bl <a}  ~ o %e+ To(vy ) Tim,
A {IBllw < ao, |o(o; )0 Bl <a}  ~ o+ Ta(op )T

by (S10).

Logistic regression. For * = N, F, L, let (Ay, By,Cn) = (VN (7. —7), \/NB,NV) with (Ay, By, Cn) ~
(As, (SH)7IB, (ege1) 71 (S2)™1) by Lemma S8. We verify below that (7i | Aogite) ~ (Fx | Amo) for

© = jt, mg, cs.

e Recall that Ajogit jt = {P0,l0git > @0} = {Awrr < ao} under the joint rule. By Y, | {A\trr < ap} ~ Y, |

{Wiogit < ap} from Lemma S9, we have

To | Alogitjt = T | {Arr < ao} (S12)

~ 7A_* ‘ {MOgit S a/()} = 7A-* | {/Bval/é S (],0}7
with

VN =) [{BVTIB<ao} ~ A [{BY(S) ™ (eoerSH)(SD) 7' B < ao}
~ A [{lIBllm < ao}
by applying Lemma S7 to (Ax, By, Cy) and ¢n(u,v) = ¢(u,v) = 1(u™v~'u < ag). This ensures
VN(# = 1) | Awogiege  ~ Av [ {IBllu < ao},

identical to the limiting distribution of VN (7, — 7) | Aim i

e Recall that Ajogit,mg = {Pjlogit = ¢, 7 =1,...,J} = {|Tiogit| < a} under the marginal rule. We
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have

\/N(ﬁk - T) ‘ -Alogit,mg = \/N(%* - T) | {|U(V)_1/B| < (I}

~ A {lo(vz) o Bl < a}

by applying Lemma S7 to (Ay, By, Cx) and ¢y (u,v) = ¢(u,v) = 1{|o(v) " tu| < a}; in particular,
the limit of {|o(V) ™3| < a} follows from

c(1)'B = o ((eoer) (527 (5271 B

= 0 ((eoel)_%;l) (eoel)vng = a(v;l)vcc_lB

given v, = (epe1) 152 and o((eger) 2v;t) = (eger) to(vyt). This is identical to the limiting

distribution of VN (7, — 7) | Al meg-

Recall that Ajogit.cs = {Pjlogit > @j, J=0,1,...,J} = {Airr < a0, |Tiogit| < a} under the consensus

rule. The same reasoning as in (S12) ensures

Te — T | Alogit,cs = Tu—T | {)‘LRT < aop, |0'(‘~/)_15’ < a}

~ Fe—T [{BTVTB <ag, [o(V)71B| < a},

with

VN(@# =7) [ {8V '8 < ap, |o(V)'5| < a}

~ A [ {l| B[ m < ao, ‘0(1)71)7111;13] <a}

xT

by applying Lemma S7 to (Ax, By, Cy) and ¢y (u,v) = ¢(u,v) = 1(uTvtu < ag) - H|o(v)"tu| <

a}. This ensures
\/N(%* -7)] AIOgit,cs ~ o As Bl m < ao, ’U(Ugl)ilv;13| < a},

identical to the limiting distribution of VN (%, — 7) | Ajm.cs-

O

Proof of Proposition S1. Recall Agmg = {Fj < aj¢forall j=1,...,J} from (S8) with the explicit forms
of Fj in (S7). With (N —1)S2, = SN T3 = Youe0 Yoizi—g i — T5(@)}* + Y4e0 Not3(q) by direct
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algebra, the expression of A s can be simplified to

Atmg = {Fj < ajr forall j} = Z eq{\/ﬁi’j(q)}2 <aj forallyjp,
qeQ

where

" __ (N B 1)53%:] _ 152 4 (1)
TN QHQ =D +1 YT

by a;s = (Q — 1)’1a;- +o(1).
Observe that VNI ~ ¢ and vV N 2j(q) ~ €4 by Lemma S2. The result follows from Lemmas S7 and
S9 as

~

VNV, = Y) | At

= VN(

_;<>

~Y —T.&) + TNz Z eg{VNi;(q)}* < a; for all j
qeQ

VLl/Qe + yer Z eqeﬁqj < a;Sij for all j
qeQ

O]

Proof of Proposition S2. Renew ag as the (1 — ag)th quantile of the X%(Q—l) distribution. Renew a =
(agj)qe0y; j=1,..,7, where ag; denotes the (1 — ay;/2)th quantile of the standard normal distribution. The

marginal, joint, and consensus criteria based on the multinomial logistic regression equal

Alogit,mg = {|ﬂogit| < a}a Alogit,jt = {)\LRT < a0}7

Alogit,cs - {)\LRT < ap, ’ﬂogit‘ < a},

(S13)

respectively, with Tjogi = diag(vqgéf)ﬁ = 0(‘7)*13 and A\ — BTV 13 = op(1).

Let A ~ N(0g,V.) and B ~ N(0j-1),Ves) be two independent normal random vectors with
cov(¥B) = Vy. For x = N,F,L, let (Ay, By,Cy) = (VN(Ys —Y),V/NB,NV) with (Ay, By,Cy) ~
(A+T".B, VB, Vy) by Lemma S9.

e Under the joint rule, Lemma S9 ensures

Y* ’ Alogit,jt = Y* | {)\LR’I‘ < a()} ~ ?* ’ {BTf/il/g < (10} (814)
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with

VNV, =Y) [{B"V B <a} ~ A+T.B|{(¥B)"V; (VB) < ao}

~ A+T.B[{|Bl|lu < ao}
by applying Lemma S7 to (Ax, By, Cy) and ¢n(u,v) = ¢(u,v) = 1(u™v~'u < ag). This ensures

\/N(Y/:k - }7) ‘ -Alogit,jt ~ o A+ F;B ’ {HBHM < a’O}'

e Under the marginal rule, we have

VN~ Y) | Agrams = VNT =) [ {lo(V) 5] < a)

~  A+T.B | {le(Vg) ' ¥B| < a}

by applying Lemma S7 to (Ay, By, Cx) and ¢y (u,v) = ¢(u,v) = 1{|o(v) " u| < a}.

e Under the consensus rule, we have

}A/* ’ Alogit7cs - }A/* ’ {)\LRT S ag, |U(V)_IB| S CL}

~ Y | {BV B <ag, |o(V) 15| < a}
by (S14) with

VNV, =) [{8"V '8 < ao, [o(V) 75| < a}

~ A+ TB[{||Bw < ao, o(Ve) ' ¥B| < a}

by applying Lemma S7 to (Ax, By, Cy) and ¢y (u,v) = ¢(u,v) = 1(uTv~tu < ag) - H|o(v)"tu| <

a}. This ensures

\/N(?* - Y) | Alogit,cs ~ A+ F;B ’ {HBHM < ao, ‘U(V\II)71\I/B| < a}.

With A ~ VLl/ze and independent of B, it suffices to compute B | {||B|lu < a0}, B | {|lc(Ve) 1 ¥B| < a},
and B | {||Bllm < ao, |o(Vy) ' WB| < a}, respectively.

529



For the joint criterion, we have B | {||Bl|u < ao} ~ Vxl+/2£, and thus
A+T.B |[{|Bllu <ao} ~ Vile+TLVi/%C.
For the marginal and consensus criteria, let €t = 0(Vig) 1 WB ~ N{0, D(Vy)} to write

B = \I/_lo'(V\I/)flogity {’U(VW>_1\PB‘ < a} = {lflogit‘ < a}-

This ensures

B[{lo(Va) 'WB|<a} = U 'o(Vy)eiogi | {|eogi| < a}
~ U o(Ve) Togit,
B[ {||Bllm < ao, |o(Va) 'WB| <a} = Uo(Vy)eiogit | {|€wgit] < a, [letogitllu < ao}
~ Ulo(Vy) Togits

and thus

A+TLB | {o(Ve) " WB| <a) ~ Vet DL o(Va) T,

A+T.B | {|Blu < ao, [o(Vo) "B <a}  ~ Vi P+ TL0 o (Va) Ty

S5.2. Covariate balance and asymptotic relative efficiency in Theorems 14

Proof of Theorems 1—4. The asymptotic relative efficiency of 7. (x = N,F,L) follows immediately from
Propositions 1-2, Propositions S1-S2 and Lemmas S4-S5. We verify below the improved covariate balance
under the ReP schemes based on the multinomial logistic regression. The results under the two-sample
t-test-based, linear or logistic regression-based, and marginal F-test-based criteria are analogous and thus
omitted. Note that the asymptotic conditional bias and the difference between different estimators are
all functions of 7,. The results associated with the covariance reduction factor p(J, ap) under the joint
rules then follow from the results on ReM from Morgan and Rubin (2012) and Li et al. (2018).

Recall the acceptance criteria by test statistics from (S13). Recall from (S1) that & = k&, and hence

To = Gut = Gy, Let A~ N(05g-1), Vay) with VNi, ~ A and VN7, ~ GyxkA by Lemma S9. The
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result follows from

VN%y | Aogitge = Gak(VNEL) | {rr < a0}
N Ger(VNEL) | {NETV e, < agl
~ GekA | {ATV 1A < ag}
= GirA,
VN | Aogitmg = Gueri(VNEL) [ {lo(V) 8] < a}
~ Ger(VNE) | {lo(Ve)'VNVE,| < a}
= GerA | {|o(Ve) ' WAl <a}
= GirA,
VN | Alogites = Guei(VNEL) | {Aurr < ag, [0(V) 18] < a}
N Ger(VNEL) | {NETV e, <ao, [o(Ve) 'VNTE,| < a}

v GekA | {ATV A < ag, |o(Ve) ' WAl < a}

Y

GiKA.

In particular, the three “~” follow from Aypr— N2TV, 'z, = op(1), VN(B—Vi,) = op(1), and NV —Vy =

+ Vot

op(1); the three “~” follow from Lemma S7; the three “>” follow from Corollary S2. O

S6. Proofs of the results under stratified experiments

Proof of Theorem 5. Recall that 7, = Zi{:l Tk Tufk) for * = N, F, L under stratified experiments. Theo-
rems 1-2 ensure the improved efficiency of 7, and 7, within each stratum. The results about 7, then
follow from Lemma S5(i) and (iii). O

S6.1. Proof of Proposition 3

Lemma S10 below is a numeric result from Ding (2021, Theorem 5) that holds without any stochastic

assumptions. It gives the key building block for proving Proposition 3.

Lemma S10. 7 = Y4, w[k]{Y[k](l) — 17[,{](0)}, where ﬁk](q) is the sample mean under treatment level
q € {0,1} in stratum k.

Proof of Proposition 8. The result about 7y follows directly from Lemma S10. We verify below the result

about 7.
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Let S; = (1(i € [1]),...,1(i € [K]))" € RE to write Im{Y; ~ Z;+2; + 1(i € [1])+---+1(i € [K])} as

Let 4 denote the coefficient vector of x; from (S15). The definition of OLS ensures that 7 is the coefficient

of Z; from the oLS fit of

Applying Lemma S10 to (S16) ensures

=

o = f:w[k] Hff[k}(l) - @[k](l)T?} - { Vi) (0) — &3k (0)" H = v =y wp {3 (1) — 200} 4.
k=1

k=1

Observe that #;(1) — 24)(0) = op(1). To verify the probability limit of 7, it suffices to show that 4 has
a finite probability limit. We verify this below.

Let Y; denote the residual of unit 4 from Im(Y; ~ Z; +S;). Let Z; denote the residual of unit i
from 1m(z; ~ Z; + S;). By the Frisch-Waugh—Lovell theorem, 4 equals the coefficient vector of Z; from
1n(Y; ~ %) as

N -1 N
Y= (XTX)"HXTY) = (N—l Zi@f) (N_l Z@ﬁ) ;
i=1 i=1
where X = (Z1,...,@n)" and ¥ = (Y1,...,Yn)". Tt thus suffices to show that N~' SN #z" and
Nt va 1 #;Y; both have finite probability limits when Condition 1 holds for all strata. We show below
the finite probability limit of N~! ZZ | #;#F. The proof for N~! ZZ]\; 1 #,;Y; is analogous and omitted.
From Lemma S10, the coefficient of Z; from 1m(x; ~ Z; + S;) equals

T = Zw[kl {2 @) — 2 (0},

where Z)(q) = N[;]lq > _iclk],Zi=q Ti- Further recall 7,4 = Z)(1) — 214y (0) as the difference in covariate

means in stratum k € {1,..., K}. It follows from Ding (2021, Proof of Theorem 6) that

i — 2 (1) + (1 — Tolk) — Tz) if Z; =1
5o Ty (1) + (L — ep) (Fappy — 7o) 1 for i c [K].
xX; —f[k}(()) —6[@(7}%] —7}) if Zi =0
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with

Hfzw;r + {i’[k}(l) - (1 - e[k])(%x[k] — %w)} {«%[k](l) — (1 — e[kp(ﬁp[k} _ %m)}'r
—Zi {i'[k’]<1) - (1 - e[k])(%a:[k] - %m)}T — {i’[[ﬂ(l) — (1 — e[k])(ﬂv[k] - %m)} .CL‘;F if Z; =1,

xix] + {f[k}( )+ €lk] (Tx — Ty } {x[k] )+ ek (%x[k] o %w)}T

—i {E (4 (0) + e (Tap) — 7o)} — { &) (0) + ey (Fugpy — 7o) } 27 if Z; = 0.

This ensures

Z TE, = Z xiw]
1€[k]

F N {E (1) = (1= epg) (Fapg — 7o)} {Ep (1) — (1 — eq) () — )}
—Nin & (1) {2p (1) — (1 = ep) (Fapr) — )} — Nt {8y (1) — (1 — ep) (Fappg — 7o) } 2y (0)”
(0) + eqpy (Fagp) — 7o) } {2 (0) + e (Fapg — 7)}*

{

B (0) + ey (P — 7o)} — Niggo {2 (0) + ey (Fappy — 72) } 219 (0) ™

Let ) = N[k]_l > icpy Ti- 1t then follows from Zy(q) = Zp) + op(1) (¢ = 0,1), 7 = op(1), and

7o) = op(1) that when Condition 1 holds for all strata,

_1 Z ~ ~T N[k]_l Z l‘zl';r

1€[k]
+epg {2 (1) — (1= epw) (Topp) — 7o) § {23 (1) — (1 = e[k])(%x[k] — 7))}
—ed (1) {Ep (1) — (1 ep) Fa) — 7o)} — e {Epg (1) — (1 — ) (Fappg — 7o) } &1 (0)"
+(1 = ep) {21 (0) + epy (ﬁp[k — 72) } {1 (0) + epr (Fapp) — %x)}T
—(1 = eqa)2 8y (0) {1 (0) + ey (Fappg — 7o)} — (1= equy) {2741 (0) + eqpy (Fagp) — 7o) } s (0)"

= Ny~ D wia

1€[k]

+emTp Tl ~ MM — erTH T
+(1— e[k])j[k}jirk] - (1- e[k])j[k}f[Tk} - (1- e[k])f[k]i”[q;c} + op(1)
= Sy +or(1),
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where S? o[k = (N[k] - 1)~ Zze[k] (z; — i[k])(xz — f[k])T As a result,

N K
N*ZM?:ZW Ny ™' Y @i} Z”[k] = +or(1)

has a finite probability limit when Condition 1 holds for all strata.

S7. Proof of Theorem S1

We verify in this section the properties of the logistic and multinomial logistic regressions in Theorem S1.
The results ensure the asymptotic equivalence of the LRT and the Wald test for logistic and multinomial
logistic regressions from the design-based perspective. To this end, we first review some useful numeric
facts about the multinomial logistic regression in Section S7.1, and then give the proof in Section S7.2.

Recall that e, = (e1,...,eq-1)", diag(e,) = diag(eq)geo,, and ¥ = {®~diag(e,)} ® (S2)~!, with
® = diag(e,) — e eT. Let R, = diag(e,) be a shorthand for diag(e,) to write ¥ = (®71R,) ® (52)~!
with

e1(l—eq) —ejes . —e1eQ-1
—egeq ea(l—eq) ... —ege0—1
=R, —e.e, = ( ) @
—eg-1€e1  —eg-1e2 ... eg_1(l—eqg_1)

Recall that &, = (£(1)7,...,2(Q —1)")", with V., = Ncov(Z,). Then Vo, = (R71 — 1(g_1)x(@-1)) ® 52
equals the upper J(Q — 1) x J(Q — 1) submatrix of V, = {diag(e;')qeo — 1gxq@} ® Sz. This ensures

Vo = Ncov(¥z,) =0V, ¥" (S17)
= {(@7'R) @ (51 HEBT ~ Loyx@-1) @ 53} {(@7'R.)"® (S7)7"}
= (T RU(R — Lgnx(@-n) Re®T ) @ (S7)”
= 27 (s)™
given ® = R (R — 1(g_1)x(@-1))R+. As a result, we have ¥ = Vi (R, ® I;) and hence
(R, @ I)Vy(R, ® I;) ="V, "0 =V, 1. (S18)
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S7.1. Numeric facts about the multinomial logistic regression

Recall the multinomial logistic model from (S5). We have

eXP(@z‘TGq)

wo(x;) = me(Z;,0) = - for ¢g=1,...,Q, S19
‘I( ) ‘I( ) 1 +qu€Q+ exp(a:;fﬁq/) ( )
with 2, = (L))", 0g = 041, 0 = (Bgo,B4)" for ¢ € Q,, and 6 = (0],....05_;)". The scaled
log-likelihood function of (z;, Z;)Y; equals
N
L(O) = N log{mz, (x:)} (S20)
i=1

N
= N_IZ Z Tiq%; 0 —log < 1+ Z exp(Z; 0y)

i=1 | g€Q+ €2y
The score function of L(#) equals
5L(6) U1(0)
L(0 :
U = 55 = : (S21)
Ug-1(0)
with
OL(0) al
Uq(0) = 0. N7 Zi’i{ziq = mq(%4,0)} (q € Q).
d i=1

The Hessian matrix of L(6) equals

82L(0)

H(0) = 9000T (S22)

with the explicit form given by Condition 3.

S7.2. The proof

Lemmas S11 and S12 provide the basis for proving Theorem S1.

Lemma S11. (Rudin 1976, Theorem 7.17) Suppose { fn(z)}%_; is a sequence of functions, differentiable
on [a, b] and such that {fn(z0)}3_, converges for some point xy on [a, b]. If the sequence of derivatives,

{fN ()}, converges uniformly on [a,b], then {fn(z)}%_, converges uniformly on [a, ], to a function
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f(x), and

Jim fi(@) =) (a<w <),

Lemma S12. (Newey and McFadden 1994, Theorem 2.7) If there is a function Qo(#) such that (i) Qo(9)
is uniquely maximized at 6p; (ii) 0y is an element of the interior of a convex set © and Qn(6) is concave;
and (iil) Qn(0) = Qo(#) + op(1) for all # € O, then the maximizer of Qy(0), denoted by Oy, exists with

probability approaching one and 6y = 6 + op(1).

Proof of Theorem S1. Zhao and Ding (2021, Lemma S5) ensures that
z(q) = o(1) for all g € Q (S23)

almost surely under Condition 1. For notational simplicity, we assume that (S23) is true in the follow-
ing proof. The simplification does not affect the validity of the proof given all results concern either
convergence in probability or convergence in distribution.

Let Bq and 9~q = (qu,,@}g)T be the MLEs of 3, and 0, = (840,8;)" for ¢ € Q, in (S5), respectively,
concatenated as § = (Bir, .. ,5571)T and 6 = (~f, el ~571)T.

Convergence of 0. As a key intermediate result, we first verify
0= 6" +op(1) (S24)
for

0" = ((67),..., (05_1)")",  where 07 = (85,07)" with B = log(eg/eq).

By Lemma S12, it suffices to show that there exists a function L..(6) such that (i) Leo(#) is uniquely
maximized at 0*; (i) L(6) is concave on RUTD@=1: and (iii) L(0) = Loo(0)+0(1) for all § € RZHD@Q-1),
We verify below these three sufficient conditions in the order of (iii) to (i) to (ii).

First, it follows from 2707 = 87, = log(eq/eq) that my(Z;,0%) = ¢4 for all g € Qand i =1,..., N by
(S19). Plug this in the expressions of L(#), U(6), and H(f) from (S20), (S21), and Condition 3 to see

L") = Zeqlog(eq),

qeQ
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U (6%)

U9y = : . where U (6%) = , (S25)
Uqg-1(07)

H(E") = —2©(657) with Hyy(0%) = eg{ey —1(a = q')}(853),

where § =1~ N~!and $2 = (N —-1)7! Zf\;l 7,27 = diag(671, S2). Under (S23), this ensures that L(6),
U(6), and H(0) all converge pointwise at § = 6*, with

H* = Hyo(0*) = —® ® diag(1,52) < 0. (S26)

In addition, Condition 3 ensures that 0U (0)/00 = H(6) converges uniformly to Hy(6) on any compact
set in RUFD(@=D et U,;(0) = dL(0)/DB,; be the (gj)th element of U(0) for g € @, and j =0,1,...,J.
Applying Lemma S11 component-wise to fy = Uy ensures that there exists a function, denoted by

Us (), such that
U(Q) = Uoo(e) + 0(1)3 ano(g)/ae = Hoo(e)

for all 8 € R(‘]H)(Q_l), and the convergence is uniform on any compact set in RUAD@-1)
Sufficient condition (iii) then follows from applying Lemma S11 component-wise to fx = L, which

ensures that there exists a function, denoted by Lo (6), such that

L(H) = I_/oo(g) + 0(1)7 a[_/oo(e)/ae = Uoo(e)
for all § € RUHD(@-1),
Sufficient condition (i) then follows from 92 Lo, (0)/0000" = H..(0) < 0 by Condition 3 and Uw(0*) =
limy 00 U(6%) = 0 by (S25).
For sufficient condition (ii), let H;(0) = (H; 44 (0))q,yc0, With

H; 40 (0) = mq(Z3, 0){my (Z:,0) — 1(q = ¢') } 27 .

Then H(f) = N1 Ef\il H;(0) by the explicit form of H(6) in Condition 3. Observe that H;(0) =
—®; ® (7;2]), with ®; = (P 4¢/)q.¢c0, Where ®; 0 = 7, (Z;,0){1(q = ¢') — 7y (Z4,0)}. It follows from
®, > 0 that H;(#) < 0 and hence H () < 0.

Asymptotic equivalence of 5 and ¥Z,. We next verify v N (B —Wz,) = op(1). The proof follows from
the same reasoning as that of Newey and McFadden (1994, Theorem 3.1) for independent and identically
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distributed samples.
Recall Ugy;(0) = 9L(0)/0B,; as the (gj)th element of U(f) for ¢ € Q, and j = 0,1,...,J. Let
H,;(0) = 0U,;(0)/00 € RUFDQ=D " with

H(0) = 0U(0)/00" = (H1,0(0), H1,1(9), ..., Ho—1,7(0))" .
Expanding Ug;(0) at 6* yields
0 = Ugj(8) = Ug (6%) + {Hy; (6,5} (6 — 6), (527)

where ¢ ; € RUFD@=D is a point on the line segment between 6 and 6*. That 6 = 6* + op(1) from (S24)
ensures 0 ; = 0% + op(1) and hence Hy;(0;;) = Hy;(0") + op(1) for all g € Q, and j =0,1,...,J.
Let H' be the matrix with rows Hg;(6; ;) in lexicographical order of (¢j). Then H' = H* + op(1) with

H* < 0 and hence
1| = 1(H' is nonsingular) = 1 4 op(1)
by Condition 3. Stacking (S27) in lexicographical order of (¢j) yields 0 = U(0*) + H'(f — 0*) and hence
L VN (0 = 0%) = =10 (H') "W NU(97).

This, together with v/ NU(6*) being asymptotically normal by (S25) and Lemma S2, ensures

VNG —0") = 0p(1) (S28)
and hence
VN@—60%) = 1 VN(@O—0)+ (1 - L )VN@ - 07) (S29)
= Ly (H)WNU@O*) + (1 - 1 )VN (O — 07)
= —(H)T'VNU(O") + op(1)
by Slutsky’s theorem. Observe that (H*)™! = —®~! @ diag{1, (5?)7!'} from (526). Removing the

dimensions corresponding to {8y : ¢ € Q,} in (S30) yields

VNB ={o7' @ (S2) ™ MWWN(R, @ 1)@, + op(1) = VN, + op(1)
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by the explicit form of U(6*) from (S25).
Asymptotic normality of B. That VNS ~ N (0.5(9-1), V) then follows from the asymptotic normality
of 2, by Lemma S9 and Slutsky’s theorem.

Convergence of NV. Let H = H(f) be the value of H(#) evaluated at the MLE. Then V equals the
submatrix of (—N H )~1 after removing the rows and columns corresponding to the @ — 1 intercepts,

namely {f,0:q € Q.}. That NV = Vi + op(1) follows from

H™ = (H) ™ +op(1) = @' @ diag{1, (S7) 7'} + op(1)

by (S24) and (S26), and the definition of the Kronecker product.

Asymptotic equivalence of A\prr and N ifrvxjrlaf;. The LRT tests logit(Z; ~ 1+ x;) against Hy :
logit(Z; ~1). Let ©g = {0 = (07,...,05_1)" : 03 = (B40,07)"} be the restricted parameter space under

Hjy, with é(] € Og as the MLE. The test statistic equals

Aier = —2N { sup L(0) — sup E(G)} = 2N{L(6) — L(fy)}.
(USSR PecR(J+1)(Q—1)

For 0 € O, we have 10, = 3,0 such that (520) reduces to L(f) = >_qe0 €qlog(mg), with

eXP(ﬁqO)
Ty = for g € Q
1+ Zq’eQ+ exp(By0)
denoting the identical value of my(x;) across i = 1,...,N; see (S19). The invariance of MLE to non-

degenerate transformation of the parameters ensures that the MLEs of 7, and 40 equal e, and log(e,/eq) =

Byos respectively, for ¢ € Q,. This ensures 6y = 6* and hence
N = 2N{L(8) — L(6%)}. (530)

We verify below Appr — NiﬂIVm;liJr = op(1).
First, L(6*) = L(A) + 2~1(0* — 6)"H(#")(8* — ) for some & on the line segment of § and #*. This,

together with (S30), ensures
Airr = —N(0 — 0)TH(0')(6 — 6*) = —=N(6 — 0)TH* () — 6%) + op(1)

given H(0') = H* 4 op(1) by (S24) and v N (A — 6*) = Op(1) by (S28).
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Next, it follows from (S30) that
—N(O —6")TH* (0 — 6*) = —N{U(6*)}"(H*)"*U (6*) + op(1).
The result then follows from

=N{U (")} (1)U (07)

e1z(1)
= N(eiz(1)",...,e012(Q — ") {@ ' ® (S2)~'} :
eQ12(Q — 1)
= N{@ (R, @ I)}Ve{(Ry ® 1)3.}
= NijV.'a.

by (S25)-(S26) and (S17)—(S18).

Asymptotic equivalence of Wigi; and N §:$ijrl£+. The result follows from

Wiogit = BTV = N(W, )"V ' (Wd,) + op(1) = NETV, "2, + op(1)

+Vz+

with VN (B — Wi,) = op(1), NV — Vg = op(1) as we just proved and WV, ' = V.1 by (S18).
Asymptotic distributions of Aprr and Wiggit. The result follows from N jIfo:m ~ X?](Q_l) by
Lemma S9 and Slutsky’s theorem.

Simplification under the treatment-control experiment. The result follows from &, = &(1) = g7,

and ¥ = e;'(S2)7! such that Ui, = e;'(S2)~12(1) = (S2)1%, and Vg = (eger) 1 (S2) L. O

x
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