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A B S T R A C T

Randomized experiments balance all covariates on average and are considered the gold
standard for estimating treatment effects. Chance imbalances are nonetheless common in
realized treatment allocations. To inform readers of the comparability of treatment groups at
baseline, contemporary scientific publications often report covariate balance tables with not
only covariate means by treatment group but also the associated p-values from significance tests
of their differences. The practical need to avoid small p-values as indicators of poor balance
motivates balance check and rerandomization based on these p-values from covariate balance
tests (ReP) as an attractive tool for improving covariate balance in designing randomized
experiments. Despite the intuitiveness of such strategy and its possibly already widespread
use in practice, the literature lacks results about its implications on subsequent inference,
subjecting many effectively rerandomized experiments to possibly inefficient analyses. To fill
this gap, we examine a variety of potentially useful schemes for ReP and quantify their impact
on subsequent inference. Specifically, we focus on three estimators of the average treatment
effect from the unadjusted, additive, and interacted linear regressions of the outcome on
treatment, respectively, and derive their asymptotic sampling properties under ReP. The main
findings are threefold. First, the estimator from the interacted regression is asymptotically the
most efficient under all ReP schemes examined, and permits convenient regression-assisted
inference identical to that under complete randomization. Second, ReP, in contrast to complete
randomization, improves the asymptotic efficiency of the estimators from the unadjusted and
additive regressions. Standard regression analyses are accordingly still valid but in general
overconservative. Third, ReP reduces the asymptotic conditional biases of the three estimators
and improves their coherence in terms of mean squared difference. These results establish ReP
as a convenient tool for improving covariate balance in designing randomized experiments, and
we recommend using the interacted regression for analyzing data from ReP designs.

1. Introduction

1.1. Rerandomization based on p-values

Covariate balance increases comparability of units under different treatment conditions, thereby strengthening the causal
conclusions that can be drawn from data. Randomized experiments balance all observed and unobserved covariates on average,
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and provide the gold standard for estimating treatment effects. Chance imbalances are nonetheless common in realized allocations.
Rerandomization, termed by Cox (1982) and Morgan and Rubin (2012), enforces covariate balance by discarding randomizations
that do not satisfy a prespecified balance criterion. Bruhn and McKenzie (2009) conducted a survey of leading experimental
researchers in development economics, and suggested that rerandomization is commonly used yet often poorly documented.

To inform readers of the comparability of treatment groups at baseline, contemporary scientific publications are often encouraged
to report baseline covariate balance tables with not only covariate means by treatment group but also the associated p-values from
significance tests of their differences. The practical need to avoid small p-values as indicators of poor balance motivates conducting
rerandomization directly based on these p-values from balance tests (Bruhn and McKenzie, 2009; Ashraf et al., 2010). Formally,
rerandomization based on p-values (ReP) runs one or more statistical tests to check the covariate balance of a realized randomization,
and accepts the allocation if and only if the p-values of interest all exceed some prespecified thresholds. In their popular textbook
on modern field experiments, Gerber and Green (2012, Chapter 4.5) made this recommendation as a way to ‘‘quickly approximate
blocking’’.

Despite its decade-long existence and close relevance to practice, the theory of ReP has not been addressed in the litera-
ture. Hansen and Bowers (2008) discussed two hypothesis testing-based techniques for balance check in randomized experiments but
did not touch the issue of rerandomization and corresponding inference. Gerber and Green (2012) gave the practical recommendation
yet did not discuss its theoretical implications. The existing discussion on rerandomization, on the other hand, focused mostly on
balance criteria based on the Mahalanobis distance between covariate means by treatment group (Morgan and Rubin, 2012, 2015;
Branson et al., 2016; Li et al., 2018, 2020; Li and Ding, 2020; Branson and Shao, 2021; Zhao and Ding, 2021, 2023; Johansson
et al., 2021; Johansson and Schultzberg, 2022). The resulting procedure, also known as ReM, is convenient in theory but in general
not a straightforward choice in practice. Another related literature is that on restricted randomization, also known as constrained
randomization, which improves covariate balance by blocking, stratification, matched pairing, covariate-adaptive adjustment, etc.
See, e.g., Bailey (1987), Imai et al. (2009), Bruhn and McKenzie (2009), Miratrix et al. (2013), Higgins et al. (2016), Bugni et al.
(2018, 2019), Fogarty (2018), Liu and Yang (2020), Wang et al. (2021), Pashley and Miratrix (2021), Bai et al. (2022), and Ye et al.
(2023). See also Johansson and Schultzberg (2022) for a discussion on the connection and comparison between stratification and
rerandomization. The existing work in this literature however concerns restrictions distinct from those based on covariate balance
tests. The gap between theory and practice causes many effectively ReP-based experiments to be analyzed as if they were completely
randomized, risking overconservative inferences that hinder the detection of statistically significant findings (Bruhn and McKenzie,
2009). Glennerster and Takavarasha (2014) took an extreme stance and advised to ‘‘avoid using this technique (rerandomization),
at least until there is more agreement in the literature about its pros and cons’’. This paper fills this gap and clarifies the theoretical
implications of ReP.

1.2. Our contributions

First, we formalize ReP as a tool for improving covariate balance in randomized treatment-control experiments, and propose a
variety of potentially useful schemes based on standard statistical tests. The proposed ReP schemes use p-values from two-sample
t-tests, linear regression, and logistic regression to form the covariate balance criteria, allowing for easy implementation via standard
software packages.

Next, we quantify for the first time the impact of the proposed ReP schemes on covariate balance and subsequent inference.
Specifically, we focus on three estimators of the average treatment effect from the ordinary least squares (OLS) fits of the unadjusted,
additive, and interacted linear regressions of the outcome on treatment, respectively, and evaluate their sampling properties under
the proposed ReP schemes from the design-based perspective. In short, the design-based perspective assumes the finite-population
framework and takes the physical act of randomization as the sole source of randomness in evaluating the sampling properties of
quantities of interest (Neyman, 1923; Freedman, 2008b; Lin, 2013; Imbens and Rubin, 2015). The resulting inference is robust to
model misspecification and hence also known as model-assisted inference; see Negi and Wooldridge (2021) and the references therein
for the super-population counterpart. The main findings are threefold. First, ReP improves the covariate balance between treatment
groups, which in turn (i) simplifies the interpretation of experimental results, (ii) reduces the conditional biases of the estimators (c.f.
Ding, 2021b, Section 4.3), and (iii) promotes more coherent inferences between covariate-adjusted and unadjusted analyses (c.f. Zhao
and Ding, 2023, Section S5.3). Second, the estimator from the interacted regression is asymptotically the most efficient under all ReP
schemes considered, with the asymptotic sampling distribution unaffected by the rerandomization. It is thus our recommendation
for subsequent analysis under the proposed ReP schemes, allowing for convenient regression-based inferences identical to that under
complete randomization. Specifically, we can use the coefficient of the treatment in the OLS fit of the outcome on the treatment,
covariates, and their interactions as the point estimator of the average treatment effect, and use the associated Eicker–Huber–White
(EHW) standard error to estimate the true standard error. Third, ReP improves the asymptotic efficiency of the estimators from the
unadjusted and additive regressions, rendering inference based on the usual normal approximation overconservative. This highlights
the importance of rerandomization-specific inference under ReP when the unadjusted or additive regression is used and, by contrast,
demonstrates the advantage of the interacted regression for efficient and straightforward inference by normal approximation. We
thus recommend using the interacted regression for analyzing data from ReP designs.

Lastly, we extend the theory of ReP to experiments with more than two treatment arms and stratified experiments.
We make two novel technical contributions in the process. First, we clarify the value of the renowned Gaussian Correlation

Inequality (Royen, 2014) for establishing the theoretical properties of rerandomization. Most existing proofs of the theory of
ReM rely on the geometric properties of the Mahalanobis distance and do not generalize to rerandomization based on other
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balance criteria such as ReP. The Gaussian Correlation Inequality bridges this gap and provides a powerful tool for clarifying
the theoretical guarantees of a wide class of rerandomization schemes including ReM and ReP. See Lemmas S3–S4 in the
Supplementary Material. Second, we establish the asymptotic equivalence of the likelihood ratio test (LRT) and the Wald test for
logistic and multinomial logistic regressions from the design-based perspective, complementing the recent discussions in Freedman
(2008b), Hansen and Bowers (2008), and Guo and Basse (2023) on design-based inference from nonlinear regressions. See Theorem
S1 in the Supplementary Material. Without invoking any assumption of the logistic or multinomial logistic model, we view logistic
and multinomial logistic regressions as purely numeric procedures based on maximum likelihood estimation (MLE), and evaluate
the sampling properties of the test statistics over the distribution of the treatment assignments.

1.3. Notation and definitions

For a set of tuples {(ui, vi1,& , viL) ∶ ui * R, vil * R
Kl , i = 1,& , N, l = 1,& , L}, denote by Ċċ(ui < vi1 +ď + viL) the OLS fit of

the linear regression of ui on (vi1,& , viL) with (vT
i1
,& , vT

iL
)T as the regressor vector, and by ĊčąćĒ(ui < vi1 +ď+ viL) the MLE fit of

the logistic or multinomial logistic regression of ui on (vi1,& , viL). We allow each vil to be a scalar or a vector and use + to denote
concatenation of regressors. Throughout, we focus on the numeric outputs of OLS and MLE without invoking any assumption of
the corresponding linear or logistic model. Assume default tests and p-values from standard software packages throughout unless
specified otherwise.

For two K × 1 vectors T = (t1,& , tK )
T and a = (a1,& , aK )

T, denote by |T | d a if |tk| d ak for all k = 1,& , K. Denote by
diag(uk)

K
k=1

= diag(u1,& , uK ) the K ×K diagonal matrix with uk’s on the diagonal. For a K ×K symmetric matrix V = (Vkk2 )k,k2=1,&,K

with Vkk > 0 for all k = 1,& , K, let �(V ) = diag(V 1∕2

kk
)K
k=1

and D(V ) = {�(V )}−1V {�(V )}−1. Intuitively, D(V ) gives the corresponding
correlation matrix when V is a covariance matrix. Let ‖�‖û = �T{cov(�)}−1� denote the Mahalanobis distance of a random vector
� from the origin. Let þ denote convergence in distribution, and let Ea denote the expectation of the asymptotic distribution.

Lastly, we use peakedness (Sherman, 1955) to quantify the relative efficiency between estimators.

Definition 1. For two symmetric random vectors A and B in R
K , we say A is more peaked than B if P(A * ñ) e P(B * ñ) for all

symmetric convex sets ñ in R
K , denoted by A ⪰ B.

For K = 1, a more peaked random variable has narrower central quantile ranges. For A and B with finite second moments,
A ⪰ B implies cov(A) − cov(B) is negative semidefinite (Li et al., 2020, Proposition 4). For A and B that are both normal with zero
means, A ⪰ B is equivalent to cov(A) − cov(B) being negative semidefinite. This suggests peakedness as a more refined measure for
comparing relative efficiency of estimators than covariance. We formalize the intuition in Definition 2 below.

Definition 2. Assume that �̂1 and �̂2 are two consistent estimators for parameter � * R
K as the sample size N tends to infinity,

with
√
N(�̂1 − �) þ A1 and

√
N(�̂2 − �) þ A2 for some symmetric random vectors A1 and A2. We say

(i) �̂1 and �̂2 are asymptotically equally efficient if A1 and A2 have the same distribution, denoted by �̂1
ç

< �̂2;
(ii) �̂1 is asymptotically more efficient than �̂2 if A1 ⪰ A2, denoted by �̂1 ⪰@ �̂2.

By Definition 2, an asymptotically more efficient scalar estimator has not only a smaller asymptotic variance but also narrower
central quantile ranges.

2. Basic setting of the treatment-control experiment

2.1. Regression-based inference under complete randomization

Consider an intervention of two levels, indexed by q = 0, 1, and a finite population of N units, indexed by i = 1,& , N . Let
Yi(q) * R be the potential outcome of unit i under treatment level q * {0, 1} (Neyman, 1923; Imbens and Rubin, 2015). The individual
treatment effect is �i = Yi(1) − Yi(0) for unit i, and the finite-population average treatment effect is � = N−1 1N

i=1
�i = Ȳ (1) − Ȳ (0),

where Ȳ (q) = N−1 1N

i=1
Yi(q).

For some prespecified, fixed integer N1 > 0, complete randomization draws a random sample of N1 units to receive level 1 of
the intervention and then assigns the remaining N0 = N − N1 > 0 units to level 0. Let eq = Nq∕N denote the proportion of units
under treatment level q * {0, 1}.

Let Zi * {0, 1} denote the treatment level received by unit i. The observed outcome equals Yi = ZiYi(1) + (1 − Zi)Yi(0). Let
Ŷ (q) = N−1

q

1
i∶Zi=q

Yi denote the average observed outcome under treatment level q * {0, 1}. The difference in means �̂n = Ŷ (1)−Ŷ (0)

is unbiased for � under complete randomization (Neyman, 1923), and can be computed as the coefficient of Zi from the simple,
unadjusted linear regression Ċċ(Yi < 1 +Zi) over i = 1,& , N .

The presence of covariates promises the opportunity to improve estimation efficiency. Let xi = (xi1,& , xiJ )
T denote the J

pretreatment covariates for unit i, centered at x̄ = N−1 1N

i=1
xi = 0J . Fisher (1935) suggested a covariate-adjusted estimator �̂f

for �, as the coefficient of Zi from the additive linear regression Ċċ(Yi < 1 +Zi + xi) over i = 1,& , N . Freedman (2008a) criticized
the possible efficiency loss by �̂f compared to �̂n. Lin (2013) recommended an improved estimator, denoted by �̂l, as the coefficient
of Zi from the interacted linear regression Ċċ(Yi < 1 + Zi + xi + Zixi) over i = 1,& , N , and showed its asymptotic efficiency over
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�̂n and �̂f. In addition, Lin (2013) also showed that the corresponding EHW standard errors are asymptotically conservative for
estimating the true standard errors of �̂f and �̂l. This justifies large-sample Wald-type inference of � based on OLS.

We adopt the design-based perspective for all theoretical statements in this article, which views the physical act of randomization,
as represented by (Zi)

N
i=1
, as the sole source of randomness in evaluating the sampling properties of quantities of interest.

Accordingly, despite the estimators �̂n, �̂f, and �̂l are all outputs from linear regressions, we invoke no assumption of the
corresponding linear models but evaluate the sampling properties of �̂∗ (∗ = n, f, l) over the distribution of (Zi)

N
i=1

conditioning
on the potential outcomes and covariates. All theoretical guarantees of the �̂∗’s are therefore design-based and hold even when the
linear models are misspecified; see Negi and Wooldridge (2021) and the references therein for the super-population counterpart.

2.2. Covariate balance and rerandomization

The regression adjustment by Fisher (1935) and Lin (2013) can be viewed as adjusting for imbalances in covariate means. Let
�̂x = x̂(1) − x̂(0) denote the difference in covariate means between treatment groups, with x̂(q) = N−1

q

1
i∶Zi=q

xi for q = 0, 1. Let 
̂f
be the coefficient vector of xi from the additive regression Ċċ(Yi < 1 + Zi + xi) over i = 1,& , N , and let 
̂l = e0
̂l,1 + e1
̂l,0, where

̂l,q denotes the coefficient vector of xi from the treatment group-specific regression Ċċ(Yi < 1+ xi) over {i ∶ Zi = q}. Zhao and Ding
(2021, Proposition 1) showed that

�̂∗ = �̂n − �̂T
x

̂∗ for ∗ = f, l.

This expresses �̂f and �̂l as variants of �̂n after adjusting for a linear function of the difference in covariate means.
Rerandomization, on the other hand, enforces covariate balance in the design stage, and accepts an allocation if and only if

it satisfies some prespecified covariate balance criterion (Cox, 1982; Morgan and Rubin, 2012). Assume complete randomization
for the initial allocation. Morgan and Rubin (2012) and Li et al. (2018) studied a special type of rerandomization, known as ReM,
that uses the Mahalanobis distance of �̂x as the balance criterion, and accepts a randomization if and only if ‖�̂x‖û d a0 for some
prespecified threshold a0. The practical need to avoid small p-values in baseline covariate balance tables instead motivates ReP
that accepts a randomization if and only if the p-values from relevant balance tests all exceed some prespecified thresholds. To fill
the gap in the literature regarding the theoretical properties of ReP, we examine nine hypothesis testing-based covariate balance
criteria for conducting ReP under the completely randomized treatment-control experiment, and quantify their respective impact on
subsequent inference from the design-based perspective. We start with three two-sample t-test-based criteria in Section 3 given their
direct connections with the balance tables in practice, and extend the discussion to six regression-based alternatives in Section 4.
The results provide the basis for generalizations to experiments with more than two treatment arms and stratified experiments,
which we formalize in Sections 5 and 6.

3. ReP based on two-sample Ē-tests

3.1. Marginal, joint, and consensus rules

The difference in covariate means provides an intuitive measure of covariate balance under the treatment-control experiment.
Depending on whether we examine the J covariates separately or together, this motivates three two-sample t-test-based criteria for
ReP.

To begin with, recall xij as the jth covariate of unit i. A common approach to balance check is to run one two-sample t-test for
each covariate j * {1,& , J} based on (xij , Zi)

N
i=1
, and use the resulting two-sided p-value, denoted by pj,t, to measure the balance of

(xij )
N
i=1

between treatment groups. This yields J marginal p-values, {pj,t ∶ j = 1,& , J}, that occupy the last column of the covariate
balance tables. An intuitive, and possibly already widely used, criterion for ReP is then to accept a randomization if and only if
pj,t e �j for all j = 1,& , J for some prespecified thresholds �j * (0, 1) (Bruhn and McKenzie, 2009). We call this the marginal
rule based on J marginal tests of individual covariates. This generalizes the ‘‘big stick’’ method discussed by Bruhn and McKenzie
(2009).

Alternatively, we can test the difference in means of all J covariates together by a multivariate analog of the two-sample t-test,
and accept a randomization if and only if the p-value from this joint test exceeds some prespecified threshold. Let 
̂ be the pooled
estimated covariance of �̂x. The two-sample Hotelling’s T

2 test takes Wt = �̂T
x

̂−1�̂x as the test statistic, and computes a one-sided

p-value, denoted by p0,t, by comparing Wt against the Hotelling’s T
2 distribution. Alternatively, we can replace the Hotelling’s T 2

distribution with the asymptotically equivalent �2
J
distribution and compute the p-value based on the joint Wald test. A joint rule

then accepts a randomization if and only if p0,t e �0 for some prespecified threshold �0 * (0, 1).
In situations where both marginal and joint balances are desired, we can adopt a consensus rule that accepts a randomization if

and only if it is acceptable under both the marginal and joint rules with pj,t e �j for all j = 0, 1,& , J .
Index by ‘‘mg’’, ‘‘jt’’, and ‘‘cs’’ the marginal, joint, and consensus rules, respectively. This defines three ReP schemes by two-sample

t-tests, summarized in Definition 3 below. Of interest are their implications on the subsequent inference based on �̂∗ (∗ = n, f, l). We
address this question in Sections 3.2 and 3.3 below.

Definition 3. Assume ReP by two-sample t-tests. Let ït,mg = {pj,t e �j for all j = 1,& , J}, ït,jt = {p0,t e �0}, and
ït,cs = ït,mg K ït,jt = {pj,t e �j for all j = 0, 1,& , J} denote the acceptance criteria under the marginal, joint, and consensus
rules, respectively.
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3.2. Asymptotic theory

We derive in this subsection the asymptotic sampling properties of �̂∗ (∗ = n, f, l) under the three ReP schemes in Definition 3.
The results demonstrate the multiple benefits of ReP in strengthening causal conclusions from experimental data, and elucidate the
advantage of Lin (2013)’s method for convenient and efficient inference under ReP.

Let S2
x
= (N−1)−1

1N

i=1
xix

T
i
denote the finite-population covariance of the centered (xi)

N
i=1
. Condition 1 below gives the standard

regularity conditions for design-based finite-population asymptotic analysis; see Li and Ding (2017) for a review.

Condition 1. As N ³ @, (i) eq = Nq∕N has a limit in (0, 1) for q = 0, 1, (ii) the first two finite-population moments of {Yi(0), Yi(1), xi}
N
i=1

have finite limits; S2
x
and its limit are both nonsingular, and (iii) N−1 1N

i=1
Y 4
i
(q) = O(1) for q = 0, 1; N−1 1N

i=1
‖xi‖44 = O(1).

Let 
q be the coefficient vector of xi from Ċċ{Yi(q) < 1 + xi} over i = 1,& , N . This is a theoretical fit with {Yi(q)}
N
i=1

only
partially observable depending on the treatment assignment. Condition 1 ensures that eq , 
q , and S2

x
all have finite limits as N

tends to infinity. For notational simplicity, we will use the same symbols to denote their respective limits when no confusion would
arise. Lemma 1 below follows from Zhao and Ding (2021) and states the asymptotic distributions of �̂∗ (∗ = n, f, l) under complete
randomization. This provides the baseline for evaluating the efficiency gains by ReP.

Lemma 1. Under complete randomization and Condition 1, we have

√
N

(
�̂∗ − �

�̂x

)
þ ü

{
0J+1,

(
v∗ cT

∗

c∗ vx

)}
(∗ = n, f, l)

with vx = (e0e1)
−1S2

x
,

cn = S2
x
(e−1

0

0 + e−1

1

1), cf = S2

x
(e−1

1
− e−1

0
)(
1 − 
0), cl = 0J ,

and v∗ − vl = cT
∗
v−1
x
c∗ e 0 for ∗ = n, f, l. We give the explicit expressions of v∗ (∗ = n, f, l) in the Supplementary Material.

Recall �j (j = 1,& , J ) and �0 as the thresholds for the marginal and joint rules. Let a0 be the (1 − �0)th quantile of the �2
J

distribution. Let aj be the (1 − �j∕2)th quantile of the standard normal distribution, vectorized as a = (a1,& , aJ )
T. Let � < ü (0, 1)

be a standard normal random variable. Let

ú < �0 E {‖�0‖22 d a0}, Ăt < �t E {|�t| d a}, Ă 2
t < �t E {|�t| d a, ‖�t‖û d a0} (1)

be three truncated normal random vectors independent of �, with �0 < ü (0J , IJ ) and �t < ü {0J , D(vx)}. Proposition 1 below gives
the asymptotic sampling distributions of �̂∗ (∗ = n, f, l) under the three ReP schemes in Definition 3. For comparison, we also include
the results under ReM to highlight the connection (Zhao and Ding, 2021). Let ïrem = {‖�̂x‖û d a0} denote the acceptance criterion
under ReM with threshold a0. Let �̂ E ï represent the distribution of �̂ under rerandomization with acceptance criterion ï.

Proposition 1. Assume Condition 1 and recall the notation in Lemma 1 and Eq. (1). Then
√
N(�̂∗ − �) E ïrem þ v

1∕2
l � + cT

∗
v
−1∕2
x ú,

√
N(�̂∗ − �) E ït,jt þ v

1∕2
l � + cT

∗
v
−1∕2
x ú,

√
N(�̂∗ − �) E ït,mg þ v

1∕2
l � + cT

∗
v−1
x
�(vx)Ăt,√

N(�̂∗ − �) E ït,cs þ v
1∕2
l � + cT

∗
v−1
x
�(vx)Ă

2
t

for ∗ = n, f, whereas
√
N(�̂l − �) E ï þ ü (0, vl) for all ï * {ïrem,ït,jt,ït,mg,ït,cs}.

Proposition 1 has two implications. First, all three estimators remain consistent under all four rerandomization schemes, with
the joint rule being asymptotically equivalent to ReM. Second, the asymptotic distributions of �̂l remain the same as that under
complete randomization in Lemma 1, whereas those of �̂n and �̂f change to convolutions of normal and truncated normal when
their respective c∗’s are not 0J . We show in Lemma S4 in the Supplementary Material that ú ⪰ �0 and Ăt, Ă

2
t ⪰ �t by the Gaussian

correlation inequality. This provides the basis for quantifying the impact of ReP on the asymptotic efficiency of each �̂∗, as well as
the asymptotic relative efficiency of �̂∗ across ∗ = n, f, l We formalize the intuition in Theorem 1 below.

Theorem 1. Assume Condition 1 and define �(J , a0) = P(�J+2 d a0)∕P(�J d a0) with �(J , a0) < 1. For all ï * {ïrem,ït,jt,ït,mg,ït,cs},
we have

(i)

(�̂x E ï) ⪰@ �̂x (2)

with
Ea(‖�̂x‖22 E ït,jt)

Ea(‖�̂x‖22)
=

Ea(‖�̂x‖22 E ïrem)

Ea(‖�̂x‖22)
= �(J , a0);
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(ii)

(�̂n E ï) ⪰@ �̂n, (�̂f E ï) ⪰@ �̂f, (�̂l E ï)
ç

< �̂l,

(�̂l E ï) ⪰@ (�̂∗ E ï) for ∗ = n, f,
(3)

with (�̂n E ï)
ç

< �̂n
ç

< �̂l if and only if cn = 0J and (�̂f E ï)
ç

< �̂f
ç

< �̂l if and only if cf = 0J ;
(iii) for ∗* {n, f, l}, the asymptotic conditional bias of �̂∗ given �̂x satisfies

Ea

[{
Ea(�̂∗ − � E �̂x,ï)

}2]

Ea

[{
Ea(�̂∗ − � E �̂x)

}2] d 1 (4)

with
Ea

[{
Ea(�̂∗ − � E �̂x,ït,jt)

}2]

Ea

[{
Ea(�̂∗ − � E �̂x)

}2] =
Ea

[{
Ea(�̂∗ − � E �̂x,ïrem)

}2]

Ea

[{
Ea(�̂∗ − � E �̂x)

}2] = �(J , a0);

(iv) for ∗�∗∗* {n, f, l},

Ea

{
(�̂∗ − �̂∗∗)

2 E ï
}

Ea

{
(�̂∗ − �̂∗∗)

2
} d 1 (5)

with
Ea

{
(�̂∗ − �̂∗∗)

2 E ït,jt

}

Ea

{
(�̂∗ − �̂∗∗)

2
} =

Ea

{
(�̂∗ − �̂∗∗)

2 E ïrem

}

Ea

{
(�̂∗ − �̂∗∗)

2
} = �(J , a0).

For a random quantity �̂, (�̂ E ï) ⪰@ �̂ implies that rerandomization increases the asymptotic peakedness of �̂, whereas (�̂ E ï)
ç

< �̂

implies that rerandomization has no effect asymptotically. The implications of Theorem 1 are hence threefold. First, Theorem 1(i)
establishes the utility of the two-sample t-test-based ReP to improve covariate balance in terms of the asymptotic distribution of �̂x.
This gives another measure of improved covariate balance in addition to the self-evident improvement in the realized allocation.
Second, Theorem 1(ii) shows the utility of ReP in improving the asymptotic efficiency of �̂n and �̂f, and ensures the asymptotic
efficiency of �̂l over �̂n and �̂f under all three ReP schemes with the asymptotic efficiency unaffected by rerandomization. We thus
recommend using �̂l for inference under ReP, with details given in Section 3.3. Third, Theorem 1(iii)–(iv) are direct consequences
of Theorem 1(i) and illustrate the utility of ReP in reducing conditional biases and improving coherence across �̂∗ (∗ = n, f, l).
In particular, we use Ea(�̂∗ − � E �̂x,ï) and Ea(�̂∗ − � E �̂x) to measure the asymptotic conditional biases of �̂∗ given �̂x under
rerandomization and complete randomization, respectively, in Theorem 1(iii), and use Ea{(�̂∗ − �̂∗∗)

2 E ï} and Ea{(�̂∗ − �̂∗∗)
2} to

measure the coherence between estimators �̂∗ and �̂∗∗ in Theorem 1(iv).
These implications together illustrate the value of ReP: despite having no effect on the asymptotic efficiency of �̂l, ReP promotes

not only covariate balance between treatment groups but also more coherent inferences across different estimators. The combination
of ReP and Lin (2013)’s estimator therefore results in both covariate balance and efficient inference. The existing theory on
rerandomization focuses on the efficiency gain by ReM analogous to Theorem 1(ii). Here we give more comprehensive results
about the multiple benefits of ReP.

The asymptotic equivalence of (�̂l E ï) and �̂l for ï * {ïrem,ït,jt,ït,mg,ït,cs} in Proposition 1 and Theorem 1(ii) is no
coincidence but the consequence of �̂l being asymptotically independent of �̂x under complete randomization (c.f. Lemma 1). Balance
criteria based on �̂x thus have no effect on �̂l asymptotically, with ïrem,ït,jt,ït,mg, and ït,cs all being special cases. The same
argument underpins the asymptotic equivalence of �̂∗ and (�̂∗ E ï) for ∗* {n, f} when c∗ = 0J under special configurations of
the potential outcomes; an example is cf = 0J when the individual treatment effects �i are constant across all i’s. The resulting
�̂∗ (∗ * {n, f}) is asymptotically identically distributed as �̂l under complete randomization by Lemma 1, with the asymptotic sampling
distribution unaffected by rerandomization.

More generally, the linear projection of �̂∗ on �̂x equals proj(�̂∗ E �̂x) = � + cT
∗
v−1
x
�̂x with regard to the asymptotic distribution

under complete randomization in Lemma 1, and is asymptotically independent of the corresponding residual, denoted by res(�̂∗ E

�̂x) = �̂∗ − proj(�̂∗ E �̂x) = �̂∗ − � − cT
∗
v−1
x
�̂x. This ensures

�̂∗ = proj(�̂∗ E �̂x) + res(�̂∗ E �̂x) = � + cT
∗
v−1
x
�̂x + res(�̂∗ E �̂x), (6)

where res(�̂∗ E �̂x) satisfies
√
Nres(�̂∗ E �̂x) þ ü (0, vl) and is asymptotically independent of �̂x. Balance criteria based on �̂x can thus

only affect the cT
∗
v−1
x
�̂x part in Eq. (6) asymptotically, and turn it into a truncated normal with greater peakedness when c∗ � 0J .

This gives the intuition behind Proposition 1 and Theorem 1.

3.3. Wald-type inference

Proposition 1 and Theorem 1 together establish the asymptotic distributions and relative efficiency of �̂∗ (∗ = n, f, l) under the
two-sample t-test-based ReP. The results provide two guidelines on subsequent Wald-type inference of the average treatment effect.

First, the Wald-type inference based on �̂l is asymptotically the most efficient and can be conducted using the same normal
approximation as under complete randomization. Specifically, let ŝel denote the EHW standard error of �̂l from the same OLS fit. Lin
(2013) and Li et al. (2018, Lemma A16) ensured that it is asymptotically appropriate for estimating the true standard error of �̂l



Journal of Econometrics 241 (2024) 105724

7

A. Zhao and P. Ding

Table 1
Nine ReP schemes under the treatment-control experiment.

Rule Model option:  = t, lm, logit

marginal (mg) pj, e �j (j = 1,& , J )

joint (jt) p0, e �0
consensus (cs) pj, e �j (j = 0, 1,& , J )

under both complete randomization and the three ReP schemes in Definition 3, justifying the Wald-type inference based on (�̂l, ŝel)
and normal approximation. This illustrates the advantage of ReP for allowing for convenient regression-assisted analysis by the
interacted regression.

Second, ReP narrows the asymptotic sampling distributions of �̂n and �̂f in general, rendering standard inference procedures
based on their EHW standard errors and normal approximation overconservative. As an illustration, denote by ŝe∗ the EHW standard
error of �̂∗ for ∗ = n, f and by z1−�∕2 the 100(1 − �∕2)% quantile of standard normal. The standard 100(1 − �)% confidence interval
based on normal approximation equals �̂∗ ± z1−�∕2 × ŝe∗ for ∗ = n, f, and is overconservative under ReP. Rerandomization-specific
sampling distributions are thus necessary for better-calibrated inference based on �̂∗ (∗ = n, f). Recall (
̂l,0, 
̂l,1) as the sample analogs
of (
0, 
1) from Section 2.2. With vl and c∗ being the only unknowns in the asymptotic distributions of �̂∗ (∗ = n, f) in Proposition 1,
we can estimate them using v̂l = N ŝe2

l
and the sample analogs ĉn = S2

x
(e−1

0

̂l,0 + e−1

1

̂l,1) and ĉf = S2

x
(e−1

1
− e−1

0
)(
̂l,1 − 
̂l,0),

respectively, and conduct inference based on the resulting plug-in distributions (Li et al., 2018). Specifically, we can generate a
large number of independent draws from the plug-in sampling distribution, and use the empirical quantiles to approximate the
true quantiles for constructing confidence intervals. As an illustration, the plug-in distribution of �̂n under the marginal rule is√
N(�̂n − �) E ït,mg þ v̂

1∕2
l � + ĉT

n
v−1
x
�(vx)Ăt. We can use a large number of independent draws of � and Ăt to simulate the distribution

of v̂1∕2l � + ĉT
n
v−1
x
�(vx)Ăt. Let q̂1−�∕2 denote the 100(1 − �∕2)% quantile of this empirical distribution. Then �̂n ± q1−�∕2∕

√
N gives an

approximate 100(1 − �)% confidence interval of �. This modification mitigates the overconservativeness of the Wald-type inference
based on normal approximation at the cost of additional computational efforts. This, by contrast, illustrates the convenience of Lin
(2013)’s method for efficient and well-calibrated inference under ReP.

4. ReP based on linear and logistic regressions

4.1. Linear and logistic regressions for assessing covariate balance

The two-sample t-tests measure covariate balance by the difference in covariate means and are numerically equivalent to
a component-wise regression of xi on (1, Zi), assessing how xi varies with different values of Zi. The idea of the propensity
score (Rosenbaum and Rubin, 1983), on the other hand, motivates an alternative measure of covariate balance by assessing how Zi

varies with xi.
Consider the linear regression of Zi on (1, xi), denoted by Ċċ(Zi < 1+xi1+ď+xiJ ). Let �̂j denote the coefficient of the jth covariate

xij for j = 1,& , J . The magnitude of �̂j gives an intuitive measure of the influence of covariate j on the treatment assignment, with
a well-balanced assignment expected to have all �̂j ’s close to zero; see, e.g., de Mel et al. (2009, Table 1) and Kuziemko et al. (2015,
Table 3) for balance tables based on these regression outputs. This motivates three linear regression-based ReP schemes under the
marginal, joint, and consensus rules, respectively.

To begin with, denote by pj,lm the p-value associated with �̂j from standard software packages. The marginal rule accepts a
randomization if and only if pj,lm e �j for all j = 1,& , J for some prespecified thresholds �j * (0, 1).

Alternatively, let p0,lm be the p-value from the F -test of Ċċ(Zi < 1 + xi1 + ď + xiJ ) against the empty model Ċċ(Zi < 1). It
is a standard output of linear regression by most software packages and provides a summary measure of the magnitudes of all
�̂j ’s. The joint rule then accepts a randomization if and only if p0,lm e �0 for some prespecified threshold �0 * (0, 1). This is the
recommendation by Gerber and Green (2012).

The consensus rule, accordingly, accepts a randomization if and only if it is acceptable under both marginal and joint rules with
pj,lm e �j for all j = 0, 1,& , J . This extends the three two-sample t-test-based criteria in Definition 3 to the linear regression of Zi

on (1, xi).
One concern with the above approach based on Ċċ(Zi < 1 + xi1 + ď + xiJ ) is that linear regression is not intended for

binary responses like Zi. An immediate alternative is to consider the logistic regression of Zi on (1, xi), denoted by ĊčąćĒ(Zi <

1 + xi1 +ď + xiJ ), instead and form acceptance criteria based on p-values from its MLE fit (Hansen and Bowers, 2008).
Specifically, let pj,logit be the p-value associated with the coefficient of xij from ĊčąćĒ(Zi < 1+xi1+ď+xiJ ) for j = 1,& , J , and let

p0,logit be the p-value from the likelihood ratio test (LRT) of ĊčąćĒ(Zi < 1+xi1+ď+xiJ ) against the empty model ĊčąćĒ(Zi < 1). They
are all standard outputs of logistic regression by most software packages, and allow us to form the marginal, joint, and consensus
criteria in identical ways as those based on {pj, ∶ j = 0, 1,& , J} for  = t, lm.

This defines in total nine ReP schemes, as the combinations of three model options—the two-sample t-tests of xi (‘‘t’’), the linear
regression of Zi on (1, xi) (‘‘lm’’), and the logistic regression of Zi on (1, xi) (‘‘logit’’)—and the marginal (‘‘mg’’), joint (‘‘jt’’), and
consensus (‘‘cs’’) rules, summarized in Table 1. We extend below the results under the two-sample t-test-based schemes to the
regression-based variants.
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4.2. Asymptotic theory

We derive in this subsection the asymptotic sampling properties of �̂∗ (∗ = n, f, l) under the six linear or logistic regression-based
ReP schemes in Table 1. Echoing the comments after Theorem 1, the result illustrates the utility of the six regression-based ReP
schemes in improving covariate balance, reducing conditional biases, and promoting coherence across different estimators, and
establishes the asymptotic efficiency of �̂l under all six schemes with the asymptotic sampling distribution unaffected by ReP.

To this end, we first introduce an additional regularity condition that underpins the design-based properties of logistic regression.
Let

�(x̃i, �) =
exp(x̃T

i
�)

1 + exp(x̃T
i
�)

for x̃i = (1, xT
i
)T and � * R

J+1.

Then H(�) = −N−1 1N

i=1
�(x̃i, �){1 − �(x̃i, �)}x̃ix̃

T
i
gives the Hessian matrix of the log-likelihood function under the logistic model

scaled by N−1; we suppress the dependence of H(�) on N .

Condition 2. As N ³ @, H(�) converges to a negative-definite matrix H@(�) < 0 for all � * R
J+1, and the convergence is uniform over

� on any compact set � ⊂ R
J+1.

To gain intuition about the uniform convergence assumption in Condition 2, consider a superpopulation working model where
the xi’s are independent and identically distributed with finite second moment. The uniform law of large numbers ensures that
H(�) converges to some H@(�) almost surely on R

J+1, with the convergence being uniform on any compact set � ⊂ R
J+1 (Newey

and McFadden, 1994; Ferguson, 1996, Chapter 16). Accordingly, if the finite population is indeed an independent and identically
distributed random sample from some superpopulation with finite second moment, then the uniform convergence holds. This
suggests the mildness of our assumption on uniform convergence. In addition, we can show that H(�) d 0 for all � * R

J+1. This
suggests the mildness of the assumption on the negative definiteness of H@(�).

For  = lm, logit, let ï ,jt = {p0, e �0}, ï ,mg = {pj, e �j for all j = 1,& , J}, and ï ,cs = ï ,jt Kï ,mg = {pj, e �j for all j =

0, 1,& , J} denote the acceptance criteria under the six regression-based ReP schemes. Recall the definitions of vx, �, ú, a0, and
a = (a1,& , aJ )

T from Section 3.2. Let

Ălm < �lm E {|�lm| d a}, Ă 2
lm < �lm E {|�lm| d a, ‖�lm‖û d a0} (7)

be two truncated normal random vectors independent of �, with �lm < ü {0J , D(v−1
x
)}. The Gaussian correlation inequality ensures

that Ălm, Ă
2
lm

⪰ �lm; see Lemma S4 in the Supplementary Material. This underlies the improved asymptotic efficiency of �̂n and �̂f
under regression-based ReP. We state the details in Proposition 2 and Theorem 2 below.

Proposition 2. Assume Condition 1 for  = lm and Conditions 1–2 for  = logit. Recall the notation in Lemma 1, Eq. (1), and Eq. (7).
For  * {lm, logit}, we have

√
N(�̂∗ − �) E ï ,jt þ v

1∕2
l � + cT

∗
v
−1∕2
x ú,

√
N(�̂∗ − �) E ï ,mg þ v

1∕2
l � + cT

∗
�(v−1

x
)Ălm,√

N(�̂∗ − �) E ï ,cs þ v
1∕2
l � + cT

∗
�(v−1

x
)Ă 2
lm
,

for ∗ = n, f, whereas
√
N(�̂l − �) E ï þ ü (0, vl) for all ï * {ï ,æ ∶  = lm, logit; æ = jt,mg, cs}.

Theorem 2. Theorem 1 holds for all ï * {ï ,æ ∶  = lm, logit; æ = jt,mg, cs}.

All comments after Proposition 1 and Theorem 1 extend here with no need of modification. Proposition 2 gives the asymptotic
sampling distributions of �̂∗ (∗ = n, f, l) under the six regression-based ReP schemes, and establishes the asymptotic equivalence of the
linear and logistic regression model options under all three rules. As a direct implication of Proposition 2, Theorem 2 highlights the
utility of the regression-based ReP in improving covariate balance, reducing conditional biases, and promoting coherence between
adjusted and unadjusted analyses, and ensures the asymptotic efficiency of �̂l under all six schemes. The interacted regression is
thus our recommendation for subsequent inference under the linear and logistic regression-based ReP as well, with all discussion in
Section 3.3 extending here verbatim.

Juxtapose Proposition 2 with Proposition 1. The three joint criteria are asymptotically equivalent to not only each other but also
ReM with threshold a0. This is no coincidence but the consequence of the test statistics used by these criteria all being asymptotically
equivalent to ‖�̂x‖û; see Remark S2 in the Supplementary Material for details. The marginal criteria based on the linear and logistic
regressions, on the other hand, differ from that based on the two-sample t-tests even asymptotically. The difference is nevertheless
immaterial based on simulation evidence.

Echoing the comments at the end of Section 2.1, we view the linear and logistic regressions as purely numeric procedures
based on OLS or MLE for computing the p-values and estimators, and invoke none of the underlying modeling assumptions in
evaluating the outputs. The results in Proposition 2 and Theorem 2 therefore hold regardless of how well (i) the linear and logistic
models underlying Ċċ(Zi < 1 + xi) and ĊčąćĒ(Zi < 1 + xi) represent the true treatment assignment mechanism and (ii) the linear
models underlying Ċċ(Yi < 1 + Zi), Ċċ(Yi < 1 + Zi + xi), and Ċċ(Yi < 1 + Zi + xi + Zixi) represent the true outcome model. This
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Table 2
Four ReP schemes under multi-armed experiments.

Rule F -test Multinomial logistic regression

marginal pj,f e �j for all j = 1,& , J pqj,logit e �qj for all qj
joint n.a. p0,logit e �0

consensus n.a. pqj,logit e �qj for all qj, p0,logit e �0

concludes our discussion on ReP under the treatment-control experiment. The criteria based on two-sample t-tests are arguably the
most straightforward, making the discussion on the regression-based variants seem to be of theoretical interest only. The logistic
regression nevertheless provides a key stepping stone for extending the current results to experiments with more than two treatment
arms. We give the details in the next section.

5. ReP in multi-armed experiments

5.1. Basic setting and covariate balance criteria

Multi-armed experiments enable comparisons of more than two treatment levels simultaneously, and are intrinsic to applications
with multiple factors of interest. To conduct rerandomization in such settings, a straightforward option is to check balance for all
pairs of treatment arms, and accept a randomization if and only if all pairwise comparisons pass the balance check (Morgan, 2011).
Depending on the number of treatment arms in question, however, this may result in a large number of pairwise comparisons and
become unwieldy in practice. A more practical alternative is to use a test that directly measures the balance across all treatment
arms.

To this end, the covariate-wise F -test provides a natural way of extending the marginal two-sample t-test to more than two
treatment arms, measuring the balance of individual covariates across all treatment arms simultaneously. See, e.g., de Mel et al.
(2013) and Dupas and Robinson (2013) for balance tables based on covariate-wise F -tests. The multinomial logistic regression, on
the other hand, is a straightforward extension of the logistic regression and provides a way to measure both covariate-wise and
overall balances across all treatment arms by the idea of the propensity score. See Gerber et al. (2009) for an example of balance
check based on the multinomial logistic regression. We formalize below their extensions to ReP.

Consider a multi-armed experiment with Q > 2 treatment levels, indexed by q * ÿ = {1,& , Q}, and a study population of
N units, indexed by i = 1,& , N . Renew xi = (xi1,& , xiJ )

T as the centered covariate vector and Zi * ÿ = {1,& , Q} as the initial
treatment assignment of unit i. For j = 1,& , J , let pj,f denote the p-value from the marginal F -test on covariate j based on (xij , Zi)

N
i=1
.

The marginal F -test-based criterion for ReP accepts a randomization if and only if pj,f e �j for all j = 1,& , J for some prespecified
thresholds �j * (0, 1). Let ÷iq = 1(Zi = q) denote the indicator of treatment level q. The pj,f can also be computed as the p-value
from the F -test of Ċċ(xij < 1 + ÷i1 +ď + ÷i,Q−1) against the empty model Ċċ(xij < 1).

The multinomial logistic regression, on the other hand, accommodates the marginal, joint, and consensus rules for ReP together
via one MLE fit. Renew ĊčąćĒ(Zi < 1 + xi1 +ď + xiJ ) as the multinomial logistic regression of Zi * ÿ on (1, xi) over i = 1,& , N .
Assume without loss of generality level Q as the reference level. The MLE fit of ĊčąćĒ(Zi < 1+xi1+ď+xiJ ) yields one coefficient of
xij for each non-reference level q * ÿ+ = {1,& , Q−1}, denoted by �̃qj . We use the subscript + to signify quantities associated with
the non-reference levels. Let pqj,logit be the p-value associated with �̃qj from standard software packages. The marginal rule accepts
a randomization if and only if pqj,logit e �qj for all q * ÿ+ and j = 1,& , J for some prespecified thresholds �qj * (0, 1).

Alternatively, let p0,logit be the p-value from the LRT of ĊčąćĒ(Zi < 1+xi1 +ď+xiJ ) against the empty model ĊčąćĒ(Zi < 1). It is
a standard output of multinomial logistic regression from most software packages and gives a summary measure of the magnitudes
of �̃qj ’s as a whole. The joint rule then accepts a randomization if and only if p0,logit e �0 for some prespecified threshold �0 * (0, 1).
The consensus rule, accordingly, accepts a randomization if and only if it is acceptable under both the marginal and joint rules. This
defines three additional criteria for conducting ReP under multi-armed experiments. We summarize the definitions in Table 2.

Other criteria can be formed based on tests for multivariate analysis of variance (Morgan, 2011) or linear regression of
÷iq = 1(Zi = q) on (1, xi). These alternatives in general involve more technical subtleties and can be unwieldy in practice. To
save space, we will focus on ReP based on marginal F -tests and multinomial logistic regression in the main paper due to their
practical convenience, and relegate details on the alternative criteria to the Supplementary Material.

5.2. Treatment effects and regression estimators

We next define the average treatment effect and regression estimators under multi-armed experiments, extending the notation
and definitions in Section 2. Renew Yi(q) * R as the potential outcome of unit i if assigned to treatment level q * ÿ = {1,& , Q}.
The observed outcome equals Yi =

1
q*ÿ ÷iqYi(q) with ÷iq = 1(Zi = q). Renew Ȳ (q) = N−1 1N

i=1
Yi(q) as the average potential outcome

under treatment level q * ÿ, vectorized as Ȳ = (Ȳ (1),& , Ȳ (Q))T * R
Q. The goal is to estimate the finite-population average treatment

effect

� = GȲ
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for some prespecified contrast matrix G with all row sums equal to zero. The � = Ȳ (1)− Ȳ (0) under the treatment-control experiment
is a special case with Ȳ = (Ȳ (1), Ȳ (0))T and G = (1,−1).

Define

n ∶ Ċċ(Yi < ÷i1 +ď + ÷iQ),

f ∶ Ċċ(Yi < ÷i1 +ď + ÷iQ + xi),

l ∶ Ċċ(Yi < ÷i1 +ď + ÷iQ + ÷i1xi +ď + ÷iQxi)

as the unadjusted, additive, and interacted linear regressions of Yi on {÷iq ∶ q * ÿ} and xi, respectively, indexed by ∗= n (unadjusted),
f (additive), and l (interacted). Let

Ŷ∗ = (Ŷ∗(1),& , Ŷ∗(Q))T (∗ = n, f, l)

denote the coefficient vectors of (÷i1,& ,÷iQ)
T from these three regressions, respectively. They are consistent for estimating Ȳ under

complete randomization (Lu, 2016; Zhao and Ding, 2023), and allow us to estimate � = GȲ by

�̂∗ = GŶ∗ (∗ = n, f, l).

Of interest are the validity and relative efficiency of �̂∗’s under ReP. We give the details in the following.

5.3. Asymptotic theory

We present in this subsection the asymptotic theory of ReP under multi-armed experiments. Assume throughout that the initial
allocation is obtained by complete randomization. The experimenter assigns completely at random Nq > 0 units to level q * ÿ with1

q*ÿ Nq = N , and accepts the allocation if and only if the assignments satisfy the prespecified covariate balance criterion.

5.3.1. Baseline efficiency under complete randomization
Recall the definitions of x̂(q) = N−1

q

1
i∶Zi=q

xi, eq = Nq∕N , 
q , and Condition 1 in Sections 2–3 under the treatment-control
experiment. Renew them for multi-armed experiments with q * ÿ = {1,& , Q}. Let x̂ = (x̂(1)T,& , x̂(Q)T)T * R

JQ and 
f =
1

q*ÿ eq
q .
Lemma 2 below follows from Zhao and Ding (2023) and states the asymptotic distributions of Ŷ∗ (∗ = n, f, l) under complete
randomization. The results ensure �̂l ⪰@ �̂n, �̂f under complete randomization and provide the baseline for evaluating the efficiency
gains under ReP. Let 1Q×Q denote the Q ×Q matrix of all ones.

Lemma 2. Under complete randomization and the multi-armed version of Condition 1, we have

√
N

(
Ŷ∗ − Ȳ

x̂

)
þ ü

{
0Q+JQ,

(
V∗ �∗Vx

Vx�
T
∗

Vx

)}
(∗ = n, f, l)

with Vx = Ncov(x̂) = {diag(e−1
q
)q*ÿ − 1Q×Q}⊗S2

x
,

�n = diag(

T
q
)q*ÿ, �f = diag{(
q − 
f)

T}q*ÿ, �l = 0Q×JQ,

and V∗ = Vl + �∗Vx�
T
∗
e Vl for ∗ = n, f, l. We give the explicit expressions of V∗’s in the Supplementary Material.

5.3.2. Rep based on marginal F -tests
Let ïf = {pj,f e �j for all j = 1,& , J} denote the acceptance criterion under ReP based on the marginal F -tests. Renew

�̂x = (Gx ⊗ IJ )x̂, where Gx is a prespecified contrast matrix with all row sums equal to zero. It defines a general measure of the
difference in {x̂(q) ∶ q * ÿ}, extending �̂x = x̂(1) − x̂(0) under the treatment-control experiment to multi-armed experiments (Zhao
and Ding, 2023).

Theorem 3. Assume the multi-armed version of Condition 1.

(i) Eqs. (2)–(3) hold for �̂x = (Gx ⊗ IJ )x̂, �̂∗ = GŶ∗ (∗ = n, f, l), and ï = ïf for arbitrary contrast matrices G and Gx. In particular,
(�̂n E ïf)

ç

< �̂n
ç

< �̂l if �n = 0Q×JQ and (�̂f E ïf)
ç

< �̂f
ç

< �̂l if �f = 0Q×JQ.

(ii) Analogous to Eqs. (4)–(5), for ∗�∗∗* {n, f, l}, we have

Ea

[
‖‖‖Ea(�̂∗ − � E �̂x,ïf)

‖‖‖
2

2

]

Ea

[
‖‖‖Ea(�̂∗ − � E �̂x)

‖‖‖
2

2

] d 1,

Ea

{
‖‖‖�̂∗ − �̂∗∗

‖‖‖
2

2
E ïf

}

Ea

{
‖‖‖�̂∗ − �̂∗∗

‖‖‖
2

2

} d 1.

Echoing the comments after Theorems 1–2, Theorem 3 illustrates the utility of the marginal F -test-based ReP for improving
covariate balance, reducing conditional biases, and promoting coherence across different estimators under multi-armed experiments,
and ensures the asymptotic efficiency of �̂l with identical asymptotic sampling distribution as under complete randomization.
Subsequent inference can thus be conducted based on �̂l and its EHW covariance in full parallel with the discussion in Section 3.3.
We relegate the details about the asymptotic distributions and inference to Section S1 of the Supplementary Material.
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5.3.3. Rep based on the multinomial logistic regression
We now address the ReP schemes based on the multinomial logistic regression of Zi on (1, xi). Recall x̃i = (1, xT

i
)T. For

� = (�T
1
,& , �T

Q−1
)T * R

(J+1)(Q−1) with �q * R
J+1, let

�q(x̃i, �) =
exp(x̃T

i
�q)

1 +
1

q2*ÿ+
exp(x̃T

i
�q2 )

(q * ÿ+),

and let H(�) = (Hqq2 (�))q,q2*ÿ+
with Hqq2 (�) = N−1 1N

i=1
�q(x̃i, �){�q2 (x̃i, �) − 1(q = q2)}x̃ix̃

T
i
. Then H(�) d 0 gives the Hessian matrix

of the scaled log-likelihood function under the multinomial logistic model. Condition 3 below extends Condition 2 to multi-armed
experiments and states the uniform convergence requirement on H(�).

Condition 3. As N ³ @, H(�) converges to a negative-definite matrix H@(�) < 0 for all � * R
(J+1)(Q−1), and the convergence is uniform

over � on any compact set � ⊂ R
(J+1)(Q−1).

Let ïlogit,jt = {p0,logit e �0}, ïlogit,mg = {pqj,logit e �qj for all qj}, and ïlogit,cs = ïlogit,jt K ïlogit,mg = {p0,logit e �0; pqj,logit e

�qj for all qj} denote the acceptance criteria under the joint, marginal, and consensus rules, respectively.

Theorem 4. Assume Condition 3 and the multi-armed version of Condition 1. Theorem 3 holds if we replace all ïf with ïlogit,æ for
æ = jt,mg, cs.

All comments after Theorem 3 extend here after changing the ‘‘marginal F -test-based’’ to ‘‘multinomial logistic regression-based’’.
We omit the details to avoid repetition. We give the explicit forms of the asymptotic sampling distributions of �̂∗ (∗ = n, f, l) in
Proposition S2 of the Supplementary Material. Echoing the comments after Theorem 2, all results in Proposition S2 and Theorem 4
are design-based and hold regardless of how well the models corresponding to the multinomial logistic and linear regressions in
rerandomization and analysis represent the true data-generating processes. The proof of Proposition S2 further introduces a novel
technical result on the asymptotic equivalence of the LRT and the Wald test for logistic and multinomial logistic regressions from
the design-based perspective. We relegate the details to Theorem S1 in the Supplementary Material.

6. ReP in stratified randomized experiments

We now extend the results to stratified randomized experiments. Due to space limitations, we focus on the treatment-control
experiment in stating the results. Extension to multi-armed experiments is similar and omitted. Consider N units in K strata of sizes
N[k] (k = 1,& , K;

1K

k=1
N[k] = N). Stratified randomization conducts an independent complete randomization in each stratum, and

randomly assigns N[k]z units to treatment level z in stratum k (k = 1,& , K; z = 1, 0; N[k]1 +N[k]0 = N[k]). Building on Sections 3–4,
we can define one covariate balance criterion within each stratum, and accept an allocation if and only if all strata satisfy the
corresponding stratum-wise balance criteria. Let ï[k] denote the acceptance criterion in stratum k. The overall acceptance criterion
is then

ï = ï[1] Kï[2] Kď Kï[K].

Remark 1. There are other ways to define the balance criterion under stratified experiments. For example, we can run a global test
to quantify the covariate imbalance across all strata; see, e.g., Cai et al. (2015, Tables A1 and A2) and see Wang et al. (2021) for
an analog based on the Mahalanobis distance. We can also define the balance criterion based on both the global and stratum-wise
tests. We leave the corresponding theory for ReP to future research.

Assume ï[k] * {ï ,æ ∶  = t, lm, logit, æ = jt,mg, cs} throughout the rest of this section. For k = 1,& , K, denote by {i * [k]} the
set of units in stratum k, �[k] = N[k]∕N the relative size of stratum k, and �[k] = N[k]

−1 1
i*[k]{Yi(1) − Yi(0)} the stratum-wise average

treatment effect. The finite-population average treatment effect equals

� = N−1

N1

i=1

{Yi(1) − Yi(0)} =

K1

k=1

N−1
1

i*[k]

{Yi(1) − Yi(0)} =

K1

k=1

�[k]�[k].

Let �̂∗[k] and ŝe∗[k] denote the basic estimator and EHW standard error obtained from stratum k, where ∗ can be n, f, and l. With
a slight abuse of notation, renew �̂∗ =

1K

k=1
�[k]�̂∗[k] as a point estimate of � and ŝe

2
∗
=
1K

k=1
�2
[k]
ŝe2

∗[k]
as its squared EHW standard

error under stratified randomization. This abuse of notation causes little confusion because �̂∗ and ŝe∗ reduce to their definitions
under complete randomization when K = 1. To compute �̂∗ and ŝe∗ from one global regression for each ∗ = n, f, l, let Sik = 1(i * [k])

denote the indicator of unit i being in stratum k, and let S2
ik

= Sik − �[k] denote the centered version of Sik with
1N

i=1
S2
ik

= 0.
Without loss of generality, let K be the reference level and let S2

i
= (S2

i1
,& , S2

i,K−1
)T be the concatenation of S2

ik
for k = 1,& , K −1.

Then �̂∗ and ŝe∗ (∗ = n, f, l) are the coefficients of Zi and the corresponding robust standard errors in

n ∶ Ċċ(Yi < 1 +Zi + S2
i
+ S2

i
Zi),

f ∶ Ċċ(Yi < 1 +Zi + xi + S2
i
+ S2

i
Zi + S2

i
⊗ xi), (8)

l ∶ Ċċ(Yi < 1 +Zi + xi +Zixi + S2
i
+ S2

i
Zi + S2

i
⊗ xi + S2

i
⊗Zixi),
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respectively, where ⊗ denotes the Kronecker product with S2
i
⊗xi = (S2

i1
xT
i
,& , S2

i,K−1
xT
i
)T and S2

i
⊗Zixi = (S2

i1
Zix

T
i
,& , S2

i,K−1
Zix

T
i
)T.

Let �̂x[k] denote the difference in covariate means in stratum k (k = 1,& , K). Theorem 5 below parallels Theorems 1–2 and
summarizes the asymptotic sampling properties of �̂∗ under rerandomized stratified experiments.

Theorem 5. Assume that Conditions 1–2 hold for all strata and �[k] has a limit in (0, 1) for all k. For ï = ï[1] Kï[2] KďKï[K], where
ï[k] * {ï ,æ ∶  = t, lm, logit, æ = jt,mg, cs}, we have

(i) (�̂x[k] E ï) ⪰@ �̂x[k] for k = 1,& , K;

(ii)

(�̂n E ï) ⪰@ �̂n, (�̂f E ï) ⪰@ �̂f, (�̂l E ï)
ç

< �̂l,

(�̂l E ï) ⪰@ (�̂∗ E ï) for ∗ = n, f;

(iii) for ∗* {n, f, l}, the asymptotic conditional bias of �̂∗ given {�̂x[k]}
K
k=1

satisfies

Ea

[{
Ea(�̂∗ − � E {�̂x[k]}

K
k=1

,ï)
}2]

Ea

[{
Ea(�̂∗ − � E {�̂x[k]}

K
k=1

)
}2] d 1;

(iv) for ∗�∗∗* {n, f, l},

Ea

{
(�̂∗ − �̂∗∗)

2 E ï
}

Ea

{
(�̂∗ − �̂∗∗)

2
} d 1.

All comments after Theorems 1–2 and in Section 3.3 extend here after minimal modification. From Theorem 5(ii), the Wald-
type inference based on �̂l is asymptotically the most efficient and can be conducted using the same normal approximation based
on ŝel as under complete randomization. On the other hand, ReP narrows the asymptotic distributions of �̂n and �̂f compared
with complete randomization. Standard inference procedures based on normal approximation are hence overconservative. From
Theorem 5(iii)–(iv), ReP reduces the conditional biases of the three estimators and improves their coherence in terms of mean
squared difference.

Remark 2. To recover �̂∗ and ŝe∗, the three regression specifications in Eq. (8) require the interactions between S2
i
and all regressors

in the unadjusted, additive, and interacted regressions that we used for completely randomized experiments; c.f. Section 2.1. A more
common formulation of the unadjusted and additive regressions under stratified randomized experiments is Ċċ(Yi < 1+Zi +S2

i
) and

Ċċ(Yi < 1 + Zi + xi + S2
i
), without the interaction terms. See, e.g., Bugni et al. (2018) and Ding (2021a). Denote by �̃n and �̃f the

coefficients of Zi from these two more commonly seen specifications. Denote by e[k] = N[k]1∕N[k] the proportion of treatment in
stratum k for k = 1,& , K. Proposition 3 below shows that �̃n and �̃f are in general inconsistent for estimating � unless e[k](1 − e[k])’s
have the same limit across all k. We hence focus on �̂∗ (∗ = n, f, l) in this paper and relegate the theory of �̃n and �̃f to future research.

Proposition 3. Assume that Conditions 1–2 hold for all strata and �[k] has a limit in (0, 1) for all k. Then �̃∗ =
1K

k=1
![k]�[k] + oP(1)

for ∗= n, f, where ![k] = �[k]e[k](1 − e[k])∕
1K

k2=1
�[k2]e[k2](1 − e[k2]). We have ![k] = �[k] for all k if and only if e[k](1 − e[k])’s are constant

across all k.

7. Numerical examples

We now illustrate the finite-sample properties of ReP by simulation. The results are coherent with the asymptotic theory in
Sections 3–5, featuring improved covariate balances and overall efficiency of �̂l over �̂n and �̂f.

Consider a treatment-control experiment with N = 500 units, indexed by i = 1,& , N , and treatment arm sizes (N0, N1) =

(400, 100). For each i, we draw a J = 5 dimensional covariate vector xi = (xi1,& , xi5)
T with xij as independent Uniform(−1, 1),

and generate the potential outcomes as Yi(0) < ü (−
15

j=1
x3
ij
, 0.12) and Yi(1) < ü (

15
j=1

x3
ij
, 0.42). We center the Yi(0)’s and Yi(1)’s

respectively to ensure � = Ȳ (1) − Ȳ (0) = 0, and fix {Yi(0), Yi(1), xi}
N
i=1

in the simulation. For each iteration, we draw a random
permutation of N1 1’s and N0 0’s to obtain the initial allocation under complete randomization.

Fig. 1 shows the distributions of ‖�̂x‖2 = ‖x̂(1) − x̂(0)‖2, �̂n − �̂f, �̂n − �̂l, and �̂f − �̂l under complete randomization and the
three two-sample t-test-based ReP schemes over 50000 independent initial allocations. The results under complete randomization
are summarized over all 50000 allocations, whereas those under ReP are summarized over the subsets of allocations that satisfy the
respective balance criteria. We vary the thresholds for the marginal rule from �j = 0.15 to �j = 0.5 for j = 1,& , J , and choose �0
accordingly to ensure that the joint rule has approximately the same acceptance rate as the marginal rule. The message is coherent
across different rules and thresholds: ReP reduces the difference in covariate means and the differences across different estimators,
both in line with the theoretical results in Theorem 1. Compare sub-plots (a) and (b) under different values of �j ’s. More stringent
thresholds result in greater reduction in the differences when everything else stays the same.

Fig. 2 shows the distributions of �̂∗ (∗ = n, f, l). The message is coherent across different rules and thresholds: ReP improves the
efficiency of �̂n and �̂f but leaves that of �̂l unchanged, both in line with Theorem 1. Compare sub-plots (a) and (b) under different
values of �j ’s. Increasing the thresholds improves the efficiency of �̂∗ (∗ = n, f) when everything else stays the same.
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Fig. 1. Distributions of ‖�̂x‖2 = ‖x̂(1) − x̂(0)‖2, �̂n − �̂f, �̂n − �̂l, and �̂f − �̂l under complete randomization and the three two-sample t-test-based ReP schemes over
50000 independent initial allocations. The results under complete randomization, labeled as ‘‘CRE’’, are summarized over all 50000 allocations, whereas those
under ReP, labeled as ‘‘t_marginal’’, ‘‘t_joint’’, and ‘‘t_consensus’’, respectively, are summarized over the subsets of allocations that satisfy the respective balance
criteria. The vertical lines correspond to the 0.025 and 0.975 empirical quantiles, respectively.

8. Discussion

ReP provides a tool for improving covariate balance in randomized experiments. We examined thirteen ReP schemes for
treatment-control and multi-armed experiments, and quantified their theoretical properties from the design-based perspective. The
theory clarifies three important issues regarding causal inference under ReP. First, the estimator from the interacted regression
is asymptotically the most efficient under all ReP schemes examined, with the asymptotic sampling distribution remaining
unchanged by ReP. We can thus conduct inference based on this estimator and its EHW standard error or covariance via identical
procedure as that under complete randomization. Second, ReP improves the asymptotic efficiency of the estimators from the
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Fig. 2. Distributions of �̂∗ (∗ = n, f, l) under complete randomization and the three two-sample t-test-based ReP schemes over 50000 independent initial allocations.
The results under complete randomization, labeled as ‘‘CRE’’, are summarized over all 50000 allocations, whereas those under ReP, labeled as ‘‘t_marginal’’,
‘‘t_joint’’, and ‘‘t_consensus’’, respectively, are summarized over the subsets of allocations that satisfy the respective balance criteria. The true � is 0. The vertical
lines correspond to the 0.025 and 0.975 empirical quantiles, respectively.

unadjusted and additive regressions relative to complete randomization, necessitating rerandomization-specific inference to avoid

overconservativeness. Third, ReP reduces conditional biases of the three estimators and ensures more coherent inferences across

them. These results illustrate the value of ReP for strengthening causal conclusions from experimental data, and highlight the value

of the interacted adjustment for convenient and efficient inference under ReP.

We focused on the thirteen criteria in Tables 1 and 2 because of their conceptual straightforwardness and connections with the

commonly used balance tests. The variety of other test options for balance check promises a spectrum of alternative schemes for

conducting ReP, catering to the needs of different studies. We give the details in the Supplementary Material.
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We focused on interval estimation based on asymptotic distributions for large-sample inference under ReP. Alternatively, the
Fisher randomization test provides a way to conduct finite-sample exact inference of the sharp null hypothesis of zero treatment
effects for all units. In addition, with properly chosen test statistics, the Fisher randomization test is also asymptotically valid
for testing the weak null hypothesis of zero average treatment effect. Zhao and Ding (2021) established the theory of the Fisher
randomization test for testing both sharp and weak nulls under ReM. All results therein extend to ReP with minimal modification.

We focused on inference under the finite-population, design-based framework. All results extend to superpopulation model-
assisted inference with minimal modification. In particular, we need to modify the EHW standard error from the interacted regression
to account for the additional variability in centering the covariates; see Zhao and Ding (2021, Section S1.2) for details.
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Supplementary Material

Section S1 gives the additional results for ReP in multi-armed experiments.

Section S2 presents extensions to alternative covariate balance criteria for ReP.

Section S3 reviews the test statistics that underlie the p-values we use to form ReP.

Section S4 states the key lemmas for proving the results in the main paper. In particular, Theorem

S1 is a novel technical result, and formalizes the design-based properties of the mle outputs from logistic

and multinomial logistic regressions. The result establishes the asymptotic equivalence of the lrt and

the Wald test for logistic and multinomial logistic regressions from the design-based perspective.

Section S5 gives the proofs of the results in the main paper.

Section S7 gives the proof of Theorem S1.

Notation. Assume centered covariates with x̄ = N−1
∑N

i=1 xi = 0J throughout to simplify the presen-

tation. For two sequences of random vectors {AN}∞N=1 and {BN}∞N=1 with AN ⇝ A and BN ⇝ B in

R
m, write AN °∞ BN if A ° B, and write AN

·∼ BN if A and B have the same distribution. Definition

2 in the main paper is a special case of this definition of °∞ and
·∼, with ¹̂1

·∼ ¹̂2 and ¹̂1 °∞ ¹̂2 being

abbreviations of
√
N(¹̂1 − ¹)

·∼
√
N(¹̂2 − ¹) and

√
N(¹̂1 − ¹) °∞

√
N(¹̂2 − ¹), respectively, when the

meaning of ¹ is clear from the context.

S1. Additional results for ReP with multiple arms

S1.1. Asymptotic sampling distributions of τ̂∗ (∗ = N, F, L)

Proposition S1 below gives the asymptotic distributions of Ä̂∗ (∗ = n, f, l) under ReP based on the

marginal F -tests with Af = {pj,f g ³j for all j = 1, . . . , J}. Renew ϵ ∼ N (0Q, IQ) as a Q × 1 standard

normal random vector. Let Tf ∼ ϵf | {
∑

q∈Q eqϵ
2
f,qj f a′jS

2
x,j for all j = 1, . . . , J} be a truncated normal

random vector independent of ϵ, where ϵf = (ϵf,qj)q∈Q; j=1,...,J ∼ N (0JQ, Vx), S
2
x,j = (N−1)−1

∑N
i=1 xijx

T

ij ,

and a′j denotes the (1−³j)th quantile of the Ç2
Q−1 distribution. Lemma S4 ensures Tf ° ϵf by the Gaussian

correlation inequality.

Proposition S1. Assume the multi-armed version of Condition 1. Recall the notation in Lemma 2.

Then

√
N(Ŷ∗ − Ȳ ) | Af ⇝ V

1/2
l ϵ+ Γ∗Tf (∗ = n, f),

√
N(Ŷl − Ȳ ) | Af ⇝ N (0Q, Vl).
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Proposition S2 below gives the asymptotic distributions of Ä̂∗ (∗ = n, f, l) under ReP based on the

multinomial logistic regression with Alogit,jt = {p0,logit g ³0}, Alogit,mg = {pqj,logit g ³qj for all qj}, and
Alogit,cs = Alogit,jt ∩ Alogit,mg = {p0,logit g ³0; pqj,logit g ³qj for all qj}. Let aqj be the (1 − ³qj/2)th

quantile of the standard normal distribution for q ∈ Q+ and j = 1, . . . , J . Without introducing new

notation, renew a0 as the (1−³0)th quantile of the Ç2
J(Q−1) distribution, and renew a = (aqj)q∈Q+; j=1,...,J

as the vectorization of aqj in lexicographical order. The definitions of a0 and a reduce to those in (1)

with (³j , aj) = (³1j , a1j) when Q = 2.

Recall that ϵ ∼ N (0Q, IQ). Let

L ∼ ϵ0 | {∥ϵ0∥22 f a0}, Tlogit ∼ ϵlogit | {|ϵlogit| f a}, T ′
logit ∼ ϵlogit | {|ϵlogit| f a, ∥ϵlogit∥M f a0}

be three truncated normal random vectors independent of ϵ, with ϵ0 ∼ N (0J(Q−1), IJ(Q−1)) and ϵlogit ∼
N{0J(Q−1), D(VΨ)}. We have L ° ϵ0 and Tlogit, T ′

logit ° ϵlogit by the Gaussian correlation inequality; see

Lemma S4 in the Supplementary Material.

Recall the definition of Γ∗ (∗ = n, f, l) from Lemma 2. Let Γ′
∗ = Γ∗{(IQ−1,−e−1

Q e+)
T ¹ IJ} for

∗ = n, f, l with e+ = (e1, . . . , eQ−1)
T; the subscript + signifies quantities associated with the non-reference

levels. Let Ψ = {Φ−1 diag(e+)} ¹ (S2
x)

−1 with diag(e+) = diag(eq)q∈Q+
and Φ = diag(e+)− e+e

T

+. Let

Vx+ = Ncov(x̂+) = (R−1
+ − 1(Q−1)×(Q−1))¹ S2

x, VΨ = Ncov(Ψx̂+) = ΨVx+Ψ
T

with x̂+ = (x̂(1)T, . . . , x̂(Q− 1)T)T and cov(·) denoting covariance under complete randomization.

Let » = (IQ−1,−e−1
Q e+)

T¹IJ such that Γ′
∗ = Γ∗» for ∗ = n, f, l. It follows from 0J = x̄ =

∑
q∈Q eqx̂(q)

that

x̂ = »x̂+, Γ∗x̂ = Γ′
∗x̂+ (∗ = n, f, l). (S1)

This gives the intuition behind the definition of Γ′
∗.

Proposition S2. Assume Condition 3 and the multi-armed version of Condition 1. Recall the notation

in Lemma 2. Then

√
N(Ŷ∗ − Ȳ ) | Alogit,jt ⇝ V

1/2
l

ϵ+ Γ′
∗V

1/2
x+ L,

√
N(Ŷ∗ − Ȳ ) | Alogit,mg ⇝ V

1/2
l

ϵ+ Γ′
∗Ψ

−1Ã(VΨ)Tlogit,
√
N(Ŷ∗ − Ȳ ) | Alogit,cs ⇝ V

1/2
l

ϵ+ Γ′
∗Ψ

−1Ã(VΨ)T ′
logit
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for ∗ = n, f, whereas
√
N(Ŷl − Ȳ ) | Alogit,⋄ ⇝ N (0Q, Vl) for ⋄ = jt,mg, cs.

S1.2. Wald-type inference

Recall from Theorems 3 and 4 that τ̂l is asymptotically the most efficient under ReP with multiple arms,

with
√
N(Ŷl − Ȳ ) | A ⇝ N (0Q, Vl) for all A ∈ {Af,Alogit,⋄ : ⋄ = jt,mg, cs}. This suggests subsequent

inference based on τ̂l and its ehw covariance by normal approximation.

Specifically, let V̂ ′

l
be the ehw covariance of Ŷl from the same ols fit. Zhao and Ding (2023)

showed that it is asymptotically appropriate for estimating the true sampling covariance under complete

randomization; see Lemma S2 in Section S4.1. The same reasoning as in Li et al. (2018, Lemma A16)

ensures that the asymptotic appropriateness extends to ReP based on the marginal F -tests as well. This,

together with the asymptotic normality of τ̂l from Lemma 2 and Proposition S1 in the main paper,

justifies the Wald-type inference of τ based on (τ̂l, GV̂ ′

l
GT) under both complete randomization and ReP.

The Fisher randomization test can be conducted similarly using τ̂T

l
(GV̂ ′

l
GT)−1τ̂l as the test statistic for

both the strong and weak null hypotheses (Wu and Ding 2021). This illustrates the convenience of the

interacted regression for inference under general experiments.

The asymptotic sampling distribution of τ̂∗ (∗ = n, f), on the other hand, is altered by ReP into a

convolution of independent normal and truncated normal when Γ∗ ̸= 0, resulting in greater peakedness

than that under complete randomization. Inference based on the usual normal approximation, as a result,

is overly conservative, deterring statistically significant findings. This, again, illustrates the value of the

interacted regression for convenient and efficient inference under ReP for general experiments.

S1.3. Extensions of the joint t-test and linear regression

The marginal F -tests give an immediate extension of the marginal two-sample t-tests to more than two

treatment arms. The range of tests commonly used in multivariate analysis of variance, on the other hand,

provide reasonable substitutes to the Hotelling’s T 2 test under the joint rule (Morgan 2011). Common

choices of test statistics include Wilks’ Λ, the Lawley–Hotelling trace, the Pillai–Bartlett trace, and Roy’s

largest root. One complication is that the distributions of these test statistics are not well studied under

the design-based inference. Morgan (2011) recommended using the Fisher randomization test to generate

an empirical distribution for the test statistic of choice. This is sound in theory but can become unwieldy

in practice.

Generalization of the linear regression-based criteria can be accomplished by a dichotomization of

the treatment assignment variable. Recall that Iiq = 1(Zi = q) denotes the indicator for assignment to

treatment arm q ∈ Q = {1, . . . , Q} in a general experiment. We can conduct balance checks based on Q
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separate linear regressions as lm(Iiq ∼ 1+xi1+ · · ·+xiJ) over i = 1, . . . , N for q = 1, . . . , Q. The process

yields one joint and J marginal p-values for each q ∈ Q, measuring the influence of xij ’s on assignment

to treatment level q. We can form acceptance criteria accordingly based on whether some or all of

them exceed some prespecified thresholds. Despite the conceptual straightforwardness of this approach,

however, it requires additional data transformations, and gives only measures of covariate balance for the

Q treatment levels separately.

S1.4. Covariate-wise and treatment-wise p-values

The multinomial logistic regression of Zi on (1, xi) enables a variety of ways to conduct ReP under

general experiments. We formed the marginal rule based on (pqj,logit)q∈Q+; j=1,...,J , with one p-value for

each estimated coefficient β̃qj , corresponding to the correlation between covariate j and assignment to

treatment level q ∈ Q+. Alternatively, most standard software packages also allow us to test the overall

effect of a given covariate j ∈ {1, . . . , J} across all treatment levels; see, e.g., the test command in stata.

Denote by p·j,logit the resulting p-value associated with the overall effect of covariate j. We can also form

the balance criterion using the p·j,logit’s, and accept a randomization if and only if p·j,logit ≥ αj for all

j = 1, . . . , J . The resulting criterion parallels the marginal rules under the treatment-control experiment,

and yields analogous results with τ̂l being our recommendation.

More generally, we can arrange the β̃qj ’s into a matrix, with rows corresponding to the Q − 1 non-

reference treatment levels and columns corresponding to the J covariates:

Non-reference Covariate Treatment-wise

treatment level 1 . . . j . . . J p-value

1 β̃11 . . . β̃1j . . . β̃1J p1·,logit
...

...

q β̃q1 . . . β̃qj . . . β̃qJ pq·,logit
...

...

Q− 1 β̃Q−1,1 . . . β̃Q−1,j . . . β̃Q−1,J pQ−1,·,logit

Covariate-wise
p·1,logit . . . p·j,logit . . . p·J,logit p0,logit

p-value

The pqj,logit’s, p·j,logit’s, and p0,logit then correspond to the cells, columns, and the entire matrix, respec-

tively, measuring the deviations of the corresponding β̃qj ’s from 0.

By symmetry, we can also conduct one Wald test for each row of the matrix, β̃q = (β̃q1, . . . , β̃qJ)
T,

and accept a randomization if and only if the resulting treatment-wise p-values, denoted by pq·,logit for

S4



q ∈ Q+, satisfy some prespecified criterion. The magnitude of pq·,logit intuitively reflects the covariate

balance between the treatment level q ∈ Q+ and the reference level Q. The acceptance rule based on

{pq·,logit : q ∈ Q+} hence involves Q− 1 pairwise comparisons of the non-reference levels to the reference

level, simplifying the approach that consults all pairwise comparisons.

This yields four types of p-values, namely pqj,logit, p·j,logit, pq·,logit, and p0,logit, summarized in the

first row of Table S1. They measure the covariate balance at the treatment-covariate pair, covariate,

treatment, and overall levels, respectively, and provide the ingredients for defining a whole spectrum

of balance criteria under ReP. The marginal, joint, and consensus rules in Table 2 use {pqj,logit : q ∈

Q+; j = 1, . . . , J}, p0,logit, and their union to form the acceptance criteria, respectively, but the choice

can be general. A key consideration is that the joint p-value p0,logit is invariant to non-degenerate

transformation of the covariate vector, in the sense of x′i = Axi for some nonsingular J × J matrix

A, whereas the treatment-covariate-wise, covariate-wise, and treatment-wise p-values in general are not

unless A is diagonal. Emphases on specific covariates or treatment levels, on the other hand, justify the

use of covariate- or treatment-wise p-values, respectively.

The same discussion extends to the p-values from (i) the treatment-wise regressions lm(Iiq ∼ 1+xi1+

· · ·+ xiJ) over i = 1, . . . , N for q ∈ Q; (ii) the covariate-wise regressions lm(xij ∼ 1 + Ii1 + · · ·+ Ii,Q−1)

over i = 1, . . . , N for j ∈ {1, . . . , J}; and (iii) the two-sample t-test of {xij : Zi = q} and {xij : Zi = Q}

for each pair of (q, j) ∈ Q+ × {1, . . . , J}, respectively.

Specifically, recall that the treatment-wise regression lm(Iiq ∼ 1 + xi1 + · · ·+ xiJ) extends the linear

regression of Zi on (1, xi) under the treatment-control experiment to general experiments, measuring

the influence of covariates on assignment to treatment level q ∈ Q. Denote by β̂q = (β̂q1, . . . , β̂qJ)
T the

coefficient vector of (xi1, . . . , xiJ)
T from the ols fit. It yields two types of p-values, namely

(i) the marginal p-value associated with each individual β̂qj , denoted by pqj,lm; and

(ii) the treatment-wise p-value from the F -test of lm(Iiq ∼ 1 + xi1 + · · · + xiJ) against lm(Iiq ∼ 1),

denoted by pq·,lm.

They are analogous to the pqj,logit’s and pq·,logit’s from the multinomial logistic regression, respectively,

and allow us to form balance criteria like (i) pqj,lm ≥ αqj for all qj, or (ii) pq·,lm ≥ αq for all q ∈ Q. See

the second row of Table S1.

Next, recall lm(xij ∼ 1+Ii1+ · · ·+Ii,Q−1) as a regression formulation for computing the pj,f from the

marginal F -test of (xij , Zi)
N
i=1. The resulting fit, in addition to yielding pj,f as the p-value from the F -test

of lm(xij ∼ 1+Ii1+ · · ·+Ii,Q−1) against lm(xij ∼ 1), also yields one marginal p-value for the coefficient of

each Iiq (q ∈ Q+), denoted by pqj,f. The two types of p-values are analogous to the pqj,logit’s and p·j,logit’s,
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Table S1: Four strategies for forming the treatment-covariate-wise, covariate-wise, treatment-wise, and
joint p-values under general experiments. Let J = {1, . . . , J}

Treatment-covariate-wise Covariate-wise Treatment-wise
(q, j) (j) (q) Joint

logit(Zi ∼ 1 + xi1 + · · ·+ xiJ)
pqj,logit p

·j,logit pq·,logit p0,logitover i = 1, . . . , N

lm(Iiq ∼ 1 + xi1 + · · ·+ xiJ)
pqj,lm n.a. pq·,lm n.a.

over i = 1, . . . , N for q ∈ Q

lm(xij ∼ 1 + Ii1 + · · ·+ Ii,Q−1)
pqj,f pj,f n.a. n.a.

over i = 1, . . . , N for j ∈ J

Two-sample t-test of
{xij : Zi = q} and {xij : Zi = Q} pqj,t n.a. n.a. n.a.

for j ∈ J and q ∈ Q+

respectively, and allow us to form balance criteria accordingly. The pj,t’s under the treatment-control

experiment are a special case with Q = 2 and Ii1 = Zi. See also Barrera-Osorio et al. (2011, Table 2)

and Dupas and Robinson (2013, Tables 1 and A1) for applications that use the pqj,f’s for balance check.

Last but not least, we can conduct one two-sample t-test of {xij : Zi = q} and {xij : Zi = Q} for each

pair of (q, j) ∈ Q+ × {1, . . . , J}, comparing the balance of covariate j between treatment groups q ∈ Q+

and Q. Denote by pqj,t the resulting two-sided p-value. It can be implemented by fitting lm(xij ∼ 1+Iiq)

over {i : Zi ∈ {q,Q}}, and allows us to form balance criteria like pqj,t ≥ αqj for all qj for some prespecified

thresholds αqj ∈ (0, 1).

This yields four strategies for forming treatment-covariate-wise, covariate-wise, treatment-wise, and

joint p-values under general experiments, summarized in Table S1. The multinomial logistic regression

accommodates all four types of p-values via one mle fit, and is hence our recommendation in general.

S2. Alternative covariate balance criteria

S2.1. Rerandomization with tiers of covariates

When covariates vary in a priori importance, Morgan and Rubin (2015) proposed rerandomizing based on

Mahalanobis distance within tiers of covariate importance, imposing more stringent criteria for covariates

that are thought to be more important. Extension of ReP to such settings is straightforward under the

marginal rules by setting the covariate-wise thresholds according to the importance. To construct joint

rules for ReP with tiers of covariates, we can conduct one joint test for each tier of covariates, and set the
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tier-wise thresholds according to the importance. The consensus rules then follow as the intersections of

the corresponding marginal and joint rules. These ReP schemes complicate the asymptotic distributions

of τ̂∗ (∗ = n, f) but keep that of τ̂l unchanged. We recommend the same analysis based on τ̂l.

S2.2. Alternative joint tests from regression

The discussion so far assumed default tests from standard software packages. As a result, we conducted

an F -test to construct the joint criterion under the linear regression model option, namely Alm,jt =

{p0,lm ≥ α0}, and conducted an lrt to construct the joint criterion under the logistic and multinomial

logistic regression model options, namely Alogit,jt = {p0,logit ≥ α0}, respectively. The Wald test, on the

other hand, enables definition of the joint criteria in a unified way.

Specifically, recall lm(Zi ∼ 1+ xi) and logit(Zi ∼ 1+ xi) as the linear and logistic regressions under

the treatment-control experiment. Let β̂ = (β̂1, . . . , β̂J)
T and β̃ = (β̃1, . . . , β̃J)

T be the coefficient vectors

of xi from the ols and mle fits, respectively, with V̂ and Ṽ as the corresponding estimated covariances.

The Wald tests of β̂ and β̃ compare Wlm = β̂TV̂ −1β̂ and Wlogit = β̃TṼ −1β̃ against the χ2
J distribution,

and define two alternatives to the F -test and lrt, respectively, measuring the magnitudes of (β̂j)
J
j=1 and

(β̃j)
J
j=1 as a whole. All results in Proposition 2 and Theorem 2 on Alm,jt and Alogit,jt extend verbatim to

the resulting ReP schemes, with τ̂l being our recommendation.

Likewise for all results in Proposition S2 and Theorem 4 on Alogit,jt to extend verbatim to the ReP

based on the Wald test of β̃ = (β̃qj)q∈Q+; j=1,...,J under the general experiment, with τ̂l being our

recommendation.

See Lemmas S1, S6, S9 and Theorem S1 in Section S4 for the proof of the asymptotic equivalence of

the Wald test to the F -test and lrt, respectively. See also de Mel et al. (2009, Table 1) for an application

of the Wald test to balance check.

S2.3. EHW standard errors for balance test

We assumed the default p-values from standard software packages for forming the balance criteria. The

standard error and covariance involved in their computation are hence in general the classic standard

errors and covariances derived under homoskedasticity. Alternatively, we can form the test statistics

using the ehw robust standard errors and covariances as in the analysis stage, and compute the p-values

accordingly. We give the explicit forms of the resulting test statistics in Remark S1 in Section S3.5,

and show in Remark S2 in Section S4.4 their equivalence with the classic counterparts as N tends to

infinity. All results thus extend to ReP based on the robustly studentized test statistics, with τ̂l being

our recommendation.
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S2.4. p-values from other standard statistical tests

The discussion so far concerned p-values from the linear, logistic, and multinomial logistic regressions

in standard software packages. Alternatively, the probit and multinomial probit regressions provide

two intuitive variants to the logistic and multinomial logistic regressions of Zi on (1, xi), respectively,

accommodating marginal, joint, and consensus rules via one mle fit. We conjecture that the results are

analogous, and leave the technical details to future work.

In addition, the two-sample Kolmogorov–Smirnov test and the chi-square test of independence ex-

emplify alternative test choices for forming covariate balance criteria under the treatment-control and

general experiments, respectively. See Gerber et al. (2009) and Chen et al. (2010) for their applications

to covariate balance check. We leave the theory on their properties for rerandomization to future work.

S3. Test statistics and equivalent forms for acceptance criteria in

Tables 1 and 2

We review in this section the test statistics that underlie the p-values we use to form the ReP schemes

in Tables 1 and 2, respectively. To avoid repetition, we treat the logistic regression for treatment-control

experiments as a special case of the multinomial logistic regression with Q = 2 and level 2 relabeled as

level 0.

Assume αj (j = 1, . . . , J) and α0 as the thresholds for the marginal and joint criteria under the

treatment-control experiment, respectively.

Assume αj (j = 1, . . . , J), αqj (q ∈ Q+; j = 1, . . . , J), and α0 as the thresholds for the marginal

F -tests and the marginal and joint tests based on the multinomial logistic regression, respectively, under

the general experiment.

S3.1. Two-sample t-tests

Marginal tests. Let τ̂x,j = x̂j(1)− x̂j(0), where x̂j(q) = N−1
q

∑

i:Zi=q xij , be the difference in means of

the jth covariate, equaling the jth component of τ̂x. The pooled standard error for τ̂x,j equals

ŝej =

√

(N1 − 1)Ŝ2
x,j(1) + (N0 − 1)Ŝ2

x,j(0)

N − 2

(

1

N1

+
1

N0

)

,

with Ŝ2
x,j(q) = (Nq − 1)−1

∑

i:Zi=q{xij − x̂j(q)}
2 for q = 0, 1. The two-sample t-test uses

tj,t = τ̂x,j/ŝej

S8



as the test statistic, and computes pj,t based on the tN−2 distribution as

pj,t = P(|A| ≥ |tj,t|), where A ∼ tN−2.

Let Tt = (t1,t, . . . , tJ,t)
T. The marginal criterion equals

At,mg = {pj,t ≥ αj for all j = 1, . . . , J} (S2)

= {|tj,t| ≤ aj,t for all j = 1, . . . , J}

= {|Tt| ≤ at},

with at = (a1,t, . . . , aJ,t)
T and aj,t denoting the (1−αj/2)th quantile of the tN−2 distribution. Numerically,

τ̂x,j , ŝej , tj,t, and pj,t equal the coefficient, classic standard error, t-value, and p-value associated with

Zi from the ols fit of lm(xij ∼ 1 + Zi) over i = 1, . . . , N , respectively. This gives an alternative

implementation of the marginal t-tests via ols.

Joint test. Recall Wt = τ̂T

x Ω̂
−1τ̂x as the test statistic for the joint two-sample t-test. The pooled

estimated covariance equals

Ω̂ =
(N1 − 1)Ŝ2

x(1) + (N0 − 1)Ŝ2
x(0)

N − 2

(

1

N1

+
1

N0

)

, (S3)

with Ŝ2
x(q) = (Nq − 1)−1

∑

i:Zi=q{xi − x̂(q)}{xi − x̂(q)}T for q = 0, 1. Assume the joint Wald test for

computing p0,t, with χ2
J as the reference distribution. The acceptance criterion equals

At,jt = {p0,t ≥ α0} = {Wt ≤ a0},

where a0 denotes the (1− α0)th quantile of the χ2
J distribution.

S3.2. Linear regression

Marginal tests. Let β̂ = (β̂1, . . . , β̂J)
T denote the coefficient vector of xi = (xi1, . . . , xiJ)

T from lm(Zi ∼

1 + xi1 + · · · + xiJ). Let V̂ be the associated estimated covariance, with V̂jj as the (j, j)th element for

j = 1, . . . , J . The marginal test of β̂j takes

tj,lm = β̂j/V̂
1/2
jj
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as the test-statistic, and computes pj,lm based on the tN−1−J distribution as

pj,lm = P(|A| ≥ |tj,lm|), where A ∼ tN−1−J .

Let Tlm = (t1,lm, . . . , tJ,lm)
T. The marginal criterion equals

Alm,mg = {pj,lm ≥ αj for all j = 1, . . . , J} (S4)

= {|tj,lm| ≤ aj,lm for all j = 1, . . . , J}

= {|Tlm| ≤ alm},

with alm = (a1,lm, . . . , aJ,lm)
T and aj,lm denoting the (1− αj/2)th quantile of the tN−1−J distribution.

Joint test. The F -test for linear regression compares lm(Zi ∼ 1+xi1+· · ·+xiJ) against the empty model

lm(Zi ∼ 1). Let rss0 and rss1 denote the residual sums of squares from the null and full regressions,

respectively. The test statistic equals

F =
(rss0 − rss1)/J

rss1/(N − 1− J)
,

and is compared against the FJ,N−1−J distribution to compute p0,lm as

p0,lm = P(A ≥ F ), where A ∼ FJ,N−1−J .

The acceptance criterion equals

Alm,jt = {p0,lm ≥ α0} = {F ≤ fJ,N−1−J},

where fJ,N−1−J denotes the (1− α0)th quantile of the FJ,N−1−J distribution.

Whereas the F -test is the default joint test for linear regression returned by most software packages,

we can also compute the joint p-value by a Wald test with test statistic Wlm = β̂TV̂ −1β̂. The resulting

p-value equals

p′0,lm = P(A ≥ Wlm), where A ∼ χ2
J ,

with {p′0,lm ≥ α0} = {Wlm ≤ a0}.

Lemma S1 below gives the numeric correspondence between F andWlm, and underpins the asymptotic

equivalence between p0,lm and p′0,lm for constructing the joint criterion from linear regression; see Lemma
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S6. For two sequences of events (AN )∞N=1 and (BN )∞N=1, write AN
·
= BN if P(AN\BN ) = o(1) and

P(BN\AN ) = o(1).

Lemma S1. F = J−1Wlm and fJ,N−1−J = J−1a0 + o(1) such that

Alm,jt = {p0,lm ≥ α0} = {F ≤ fJ,N−1−J} = {Wlm ≤ af}
·
= {Wlm ≤ a0} = {p′0,lm ≥ α0},

where af = J · fJ,N−1−J = a0 + o(1).

S3.3. Multinomial logistic regression

Recall level Q as the reference level when fitting logit(Zi ∼ 1 + xi1 + · · · + xiJ) by mle. The fitting

algorithm assumes that (xi, Zi)
N
i=1 are independent samples from

Zi | xi ∼ multinomial{1; (π1(xi), . . . , πQ(xi))},

with

log
πq(xi)

πQ(xi)
= βq0 + xT

i βq for q ∈ Q+ = {1, . . . , Q− 1} and βq = (βq1, . . . , βqJ)
T. (S5)

Let β̃q = (β̃q1, . . . , β̃qJ)
T be the mle of βq for q ∈ Q+. Let β̃ = (β̃T

1 , . . . , β̃
T

Q−1)
T = (β̃qj)q∈Q+; j=1,...,J ∈

R
J(Q−1), with Ṽ = (Ṽqj,q′j′) as the estimated covariance from the same mle fit. The notation simplifies to

β̃ = (β̃1, . . . , β̃J)
T and Ṽ = (Ṽjj′)j,j′=1,...,J under the treatment-control experiment with Q = 2, Q+ = {1},

β̃ = β̃1, and (β̃j , Ṽjj′) = (β̃1j , Ṽ1j,1j′).

Marginal tests. The marginal test of β̃qj uses

tqj,logit = β̃qj/Ṽ
1/2
qj,qj

as the test statistic, and computes pqj,logit as

pqj,logit = P(|A| ≥ |tqj,logit|), where A ∼ N (0, 1).

Let Tlogit = (tqj,logit)q∈Q+; j=1,...,J ∈ R
J(Q−1) in lexicographical order of qj. The marginal criterion equals

Alogit,mg = {pqj,logit ≥ αqj for all q ∈ Q+ and j = 1, . . . , J}

= {|tqj,logit| ≤ aqj for all q ∈ Q+ and j = 1, . . . , J}

= {|Tlogit| ≤ a},
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with a = (aqj)q∈Q+; j=1,...,J ∈ R
J(Q−1) and aqj denoting the (1−αqj/2)th quantile of the standard normal

distribution.

When Q = 2, we have (β̃j , Ṽjj , pj,logit, αj) = (β̃1j , Ṽ1j,1j , p1j,logit, α1j) for j = 1, . . . , J . The definition

of a simplifies to a = (a1, . . . , aJ)
T ∈ R

J , with aj equaling the (1 − αj/2)th quantile of the standard

normal distribution. The definition of Tlogit simplifies to Tlogit = (t1,logit, . . . , tJ,logit)
T with

tj,logit = β̃j/Ṽ
1/2
jj .

The marginal criterion equals

Alogit,mg = {pj,logit ≥ αj for all j = 1, . . . , J} (S6)

= {|tj,logit| ≤ aj for all j = 1, . . . , J}

= {|Tlogit| ≤ a}.

Joint test. The lrt for multinomial logistic regression tests logit(Zi ∼ 1+xi) against the empty model

logit(Zi ∼ 1). Denote by λlrt the resulting test statistic, with the explicit form given in (S30). Then

p0,logit is computed based on the χ2
J(Q−1) distribution as

p0,logit = P(A ≥ λlrt), where A ∼ χ2
J(Q−1).

The joint criterion equals

Alogit,jt = {p0,logit ≥ α0} = {λlrt ≤ a0},

where a0 denotes the (1 − α0)th quantile of the χ2
J(Q−1) distribution. The definition of a0 reduces to

that under the treatment-control experiment, namely the (1−α0)th quantile of the χ2
J distribution, with

Q = 2.

Whereas the lrt is the default joint test for multinomial logistic regression returned by most software

packages, we can also compute the joint p-value via a joint Wald test with test statistic Wlogit = β̃TṼ −1β̃.

The resulting p-value equals

p′0,logit = P(A ≥ Wlogit), where A ∼ χ2
J(Q−1),

with {p′0,logit ≥ α0} = {Wlogit ≤ a0}. Theorem S1 in Section S4 ensures λlrt − Wlogit = oP(1). This

underpins the asymptotic equivalence between the lrt and the Wald test for constructing the joint
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criterion from multinomial logistic regression; see Lemma S6.

S3.4. Marginal F -tests under the general experiment

Renew x̂j(q) = N−1
q

∑
i:Zi=q xij for q ∈ Q = {1, . . . , Q}. The F -test of covariate j uses

Fj =

∑
q∈QNqx̂

2
j (q)/(Q− 1)

∑
q∈Q

∑
i:Zi=q{xij − x̂j(q)}2/(N −Q)

(S7)

as the test statistic, and compares it against the FQ−1,N−Q distribution to compute pj,f as

pj,f = P(A ≥ Fj), where A ∼ FQ−1,N−Q.

The marginal criterion equals

Af,mg = {pj,f ≥ αj for all j = 1, . . . , J} = {Fj ≤ aj,f for all j = 1, . . . , J}, (S8)

where aj,f denotes the (1− αj)th quantile of the FQ−1,N−Q distribution.

S3.5. Unification

Table S2 summarizes the regression realizations, test statistics, and reference distributions for the thirteen

ReP schemes in Tables 1 and 2. Table S3 summarizes the alternative expressions of the nine criteria in

Table 1 for treatment-control experiments in terms of the test statistics.

In particular, recall T† = (t1,†, . . . , tJ,†)
T as the vector of the marginal t-statistics for † = t, lm, logit

under the treatment-control experiment. Direct comparison shows that Ω̂jj = ŝe2j for j = 1, . . . , J , and

allows us to unify the marginal criteria in (S2), (S4), and (S6) as

A†,mg = {|T†| ≤ a†} († = t, lm, logit),

with alogit = a and

Tt = diag(ŝe−1
j )Jj=1τ̂x = σ(Ω̂)−1τ̂x,

Tlm = diag(V̂
−1/2
jj )Jj=1β̂ = σ(V̂ )−1β̂,

Tlogit = diag(Ṽ
−1/2
jj )Jj=1β̃ = σ(Ṽ )−1β̃.

The expressions in the last column of Table S3 also extend to the criteria based on the multinomial

logistic regression for general experiments with renewed definitions of Tlogit = (tqj,logit)q∈Q+; j=1,...,J ,
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Table S2: Regression realizations, test statistics, and reference distributions for the thirteen ReP schemes
in Tables 1 and 2. Let Ii,+ = (Ii1, . . . , Ii,Q−1)

T for i = 1, . . . , N .

Model Regression Test statistics and reference distributions
Q option realization Marginal Joint (default) Joint (Wald)

2
t lm(xij ∼ 1 + Zi) τ̂x,j/ŝej tN−2 τ̂T

x Ω̂
−1τ̂x χ2

J

lm lm(Zi ∼ 1 + xi) β̂j/V̂
1/2
jj tN−1−J F FJ,N−1−J β̂TV̂ −1β̂ χ2

J

logit logit(Zi ∼ 1 + xi) β̃j/Ṽ
1/2
jj N (0, 1) λlrt χ2

J β̃TṼ −1β̃ χ2
J

≥ 2
f lm(xij ∼ 1 + Ii,+) Fj FQ−1,N−Q

logit logit(Zi ∼ 1 + xi) β̃qj/Ṽ
1/2
qj,qj N (0, 1) λlrt χ2

J(Q−1) β̃TṼ −1β̃ χ2
J(Q−1)

a = (aqj)q∈Q+; j=1,...,J , and a0.

Table S3: Acceptance criteria for † = t, lm, logit under the treatment-control experiment.

by p-values t lm logit

A ,mg pj, ≥ αj (j = 1, . . . , J) |Tt| ≤ at |Tlm| ≤ alm |Tlogit| ≤ a
A ,jt p0, ≥ α0 Wt ≤ a0 Wlm ≤ af λlrt ≤ a0
A ,cs pj, ≥ αj (j = 0, 1, . . . , J) |Tt| ≤ at, Wt ≤ a0 |Tlm| ≤ alm, Wlm ≤ af |Tlogit| ≤ a, λlrt ≤ a0

The test statistics satisfy

Tt = σ(Ω̂)−1τ̂x, Tlm = σ(V̂ )−1β̂, Tlogit = σ(Ṽ )−1β̃,

Wt = τ̂T

x Ω̂
−1τ̂x, Wlm = β̂TV̂ −1β̂, Wlogit = β̃TṼ −1β̃,

with a = a+ o(1) († = t, lm) and af = a0 + o(1).

Remark S1. Recall ŝej as the classic standard error of τ̂x,j from lm(xij ∼ 1+Zi). Echoing the discussion

in Section S2.3, we can replace it with the ehw standard error from the same ols fit, denoted by ŝe′j ,

and conduct the marginal two-sample t-test based on the robustly studentized t-statistic t′j,t = τ̂x,j/ŝe
′
j

for j = 1, . . . , J .

Extensions to other criteria are straightforward by replacing the Ω̂, V̂ , and Ṽ in Tables S2 and S3 with

their respective heteroskedasticity-robust counterparts. In particular, the ehw counterparts of V̂ and Ṽ

can be obtained as direct outputs from the same linear, logistic, and multinomial logistic regressions,

respectively. The robust counterpart of Ω̂ can be computed as Ω̂′ = N−1
1 Ŝ2

x(1) + N−1
0 Ŝ2

x(0), recalling

Ŝ2
x(q) as the sample covariance of {xi : Zi = q} for q = 0, 1. The resulting robust variant of the

Hotelling’s T 2 statistic, namely W ′
t = τ̂T

x Ω̂
′τ̂x, defines the multivariate Behrens–Fisher T 2 statistic. We

show in Remark S2 in Section S4.4 below the asymptotic equivalence between the classic and robust test

statistics for defining ReP.
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S4. Lemmas

We give in this section the key lemmas for quantifying the asymptotic sampling properties of τ̂∗ (∗ =

n, f, l) under ReP.

S4.1. Asymptotic theory under complete randomization

We review in this subsection the theory of regression adjustment under complete randomization. Assume

a general experiment with Q = {1, . . . , Q} throughout. The treatment-control experiment is a special

case with Q = 2 and level 2 relabeled as level 0.

Recall γq as the coefficient vector of xi from lm{Yi(q) ∼ 1+xi} over i = 1, . . . , N . Let γf =
∑

q∈Q eqγq,

and let S∗ = (S∗,qq′)q,q′∈Q (∗ = n, f, l) be the finite-population covariance matrices of Yi,n(q) = Yi(q),

Yi,f(q) = Yi(q) − xT

i γf, and Yi,l(q) = Yi(q) − xT

i γq, respectively, with S∗,qq′ = (N − 1)−1
∑N

i=1
{Yi,∗(q) −

Ȳ (q)}{Yi,∗(q′)− Ȳ (q′)}. Let

V∗ = diag(S∗,qq/eq)q∈Q − S∗ (∗ = n, f, l).

Condition 1 ensures that eq, γq, γf, S
2
x, and V∗ all have finite limits as N tends to infinity. For notational

simplicity, we will use the same symbols to denote their respective limits when no confusion would arise.

Recall that x̂ = (x̂(1)T, . . . , x̂(Q)T)T, with x̂(q) = N−1
q

∑

i:Zi=q xi for q ∈ Q. Let V̂ ′
∗ be the ehw covariance

of Ŷ∗ from the same ols fit. Lemma S2 follows from Zhao and Ding (2023), and clarifies the design-based

properties of Ŷ∗ and V̂ ′
∗ .

Lemma S2. Assume a completely randomized general experiment and Condition 1. For ∗ = n, f, l,

(i)

√
N





Ŷ∗ − Ȳ

x̂





⇝ N







0Q+JQ,





V∗ Γ∗Vx

VxΓ
T

∗ Vx











,

with Vx = Ncov(x̂) = {diag(e−1
q )q∈Q − 1Q×Q} ¹ S2

x, V∗ = Vl + Γ∗VxΓ
T

∗ g Vl for

Γn = diag(γT

q )q∈Q, Γf = diag{(γq − γf)
T}q∈Q, Γl = 0Q×JQ,

and hence Ŷl °∞ Ŷn, Ŷf;

(ii) NV̂ ′
∗ − V∗ = S∗ + oP(1) with S∗ g 0.
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Lemma S2(i) ensures the consistency and asymptotic normality of τ̂∗ = GŶ∗ for estimating τ =

GY under complete randomization. Lemma S2(ii) ensures the asymptotic appropriateness of the ehw

covariance for estimating the true sampling covariance, and thereby justifies the Wald-type inference of

τ based on (τ̂∗, GV̂ ′

∗
GT) and normal approximation.

The theory under the treatment-control experiment then follows as a special case with τ̂∗ = Ŷ∗(1) −
Ŷ∗(0) by the invariance of ols to non-degenerate transformation of the regressor vector. Let ŝe∗ be the

ehw standard error of τ̂∗ from the same ols fit.

Corollary S1. Assume a completely randomized treatment-control experiment and Condition 1. For

∗ = n, f, l,

(i)

√
N





τ̂∗ − τ

τ̂x





⇝ N







0J+1,





v∗ cT
∗

c∗ vx











,

with v∗ = (−1, 1)V∗(−1, 1)T, vx = (e0e1)
−1S2

x, and

cn = S2
x(e−1

0
γ0 + e−1

1
γ1), cf = S2

x(e−1

1
− e−1

0
)(γ1 − γ0), cl = 0J

satisfying v∗ − vl = cT
∗
v−1
x c∗ ≥ 0;

(ii) N(ŝe∗)
2 − v∗ = (−1, 1)S∗(−1, 1)T + oP(1) with (−1, 1)S∗(−1, 1)T ≥ 0.

Parallel to the comments after Lemma S2, Corollary S1(i) states the consistency and asymptotic

normality of τ̂∗ for estimating τ = Ȳ (1)−Ȳ (0) under complete randomization, and ensures the asymptotic

efficiency of τ̂l over τ̂n and τ̂f. Corollary S1(ii) justifies the Wald-type inference based on (τ̂∗, ŝe∗) and

normal approximation.

S4.2. Peakedness

Lemma S3 below states the celebrated Gaussian correlation inequality, with the recent breakthrough

proof due to Royen (2014); see also Lata la and Matlak (2017).

Lemma S3 (Gaussian correlation inequality). Let µ be an m-dimensional Gaussian probability measure

on R
m, that is, µ is a multivariate normal distribution, centered at the origin. Then µ(C1 ∩ C2) ≥

µ(C1)µ(C2) for all convex sets C1, C2 ⊂ R
m that are symmetric about the origin.

Lemma S3 immediately implies Corollary S2 below, which states that a mean-zero Gaussian measure

restricted to a symmetric convex set is more peaked than the original unrestricted measure.
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Corollary S2. Let ϵ ∼ N (0m,Σ). Then ϵ | {ϵ ∈ C} ° ϵ for arbitrary convex set C ¢ R
m that is

symmetric about the origin.

Proof of Corollary S2. Let T ∼ ϵ | {ϵ ∈ C}. The result follows from

P(T ∈ C1) = P(ϵ ∈ C1 | ϵ ∈ C) =
P(ϵ ∈ C1, ϵ ∈ C)

P(ϵ ∈ C)
g P(ϵ ∈ C1)

for arbitrary symmetric convex set C1 ¢ R
m by Lemma S3.

Recall that

Tt ∼ ϵt | {|ϵt| f a}, T ′
t ∼ ϵt | {|ϵt| f a, ∥ϵt∥M f a0},

Tlm ∼ ϵlm | {|ϵlm| f a}, T ′
lm ∼ ϵlm | {|ϵlm| f a, ∥ϵlm∥M f a0},

Tlogit ∼ ϵlogit | {|ϵlogit| f a}, T ′
logit ∼ ϵlogit | {|ϵlogit| f a, ∥ϵlogit∥M f a0},

L ∼ ϵ0 | {∥ϵ0∥
2
2 f a0}, Tf ∼ ϵf | {

∑
q∈Q eqϵ

2
f,qj f a′jS

2
x,j for all j = 1, . . . , J},

with ϵt ∼ N{0J , D(vx)}, ϵlm ∼ N{0J , D(v−1
x )}, ϵlogit ∼ N{0J(Q−1), D(VΨ)}, ϵ0 ∼ N (0J(Q−1), IJ(Q−1)),

and ϵf ∼ N (0JQ, Vx).

Lemma S4. T∗, T
′
∗ ° ϵ∗ for ∗ = t, lm, logit, L ° ϵ0, and Tf ° ϵf.

Proof of Lemma S4. The results follow from Corollary S2 and the convexity of {u ∈ R
m : |u| f a},

{u ∈ R
m : |u| f a, ∥u∥M f a0}, {u ∈ R

m : ∥u∥22 f a0}, and {u = (uqj)q∈Q; j=1,...,J ∈ R
JQ :

∑
q∈Q equ

2
qj f

a′jS
2
x,j for all j = 1, . . . , J}.

Lemma S5 below reviews three classical results in probability for comparing peakedness between

random vectors. Lemma S5(i)–(ii) are proved by Dharmadhikari and Joag-Dev (1988, Lemma 7.2 and

Theorem 7.5), and Li et al. (2020) used them. Lemma S5(iii) is from Sherman (1955, Lemma 3) and

underpins the results for stratified experiments.

Lemma S5. (i) If two m× 1 symmetric random vectors A and B satisfy A ° B, then CA ° CB for

any matrix C with compatible dimensions.

(ii) Let A, B1, and B2 be three independent m × 1 symmetric random vectors. If A is normal and

B1 ° B2, then A+B1 ° A+B2.
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(iii) Let A1, A2, B1, B2 be continuous random variables such that (a) A1 and A2 are independent, B1

and B2 are independent and (b) Ai is more peaked than Bi for i = 1, 2. Then A1 + A2 is more

peaked than B1 +B2.

S4.3. Design-based properties of multinomial logistic regression

Theorem S1 below is a novel technical result, and clarifies the design-based properties of the mle outputs

from the logistic and multinomial logistic regressions, respectively. The result ensures the asymptotic

equivalence between the lrt and the Wald test in terms of both the test statistics and the corresponding

p-values. We relegate the proof to Section S7.

Recall that x̂+ = (x̂(1)T, . . . , x̂(Q−1)T)T, with Vx+ = Ncov(x̂+) denoting its scaled sampling covariance

under complete randomization. Recall that VΨ = Ncov(Ψx̂+) = ΨVx+Ψ
T, with Ψ = {Φ−1 diag(e+)} ⊗

(S2
x)

−1, e+ = (e1, . . . , eQ−1)
T, and Φ = diag(e+)− e+e

T

+.

Theorem S1. Consider a completely randomized experiment with Q ≥ 2 treatment arms. Under

Conditions 1 and 3, we have

√
N(β̃ −Ψx̂+) = oP(1),

√
Nβ̃ ⇝ N (0J(Q−1), VΨ), NṼ = VΨ + oP(1),

λlrt −Nx̂T

+V
−1
x+ x̂+ = oP(1), Wlogit −Nx̂T

+V
−1
x+ x̂+ = oP(1), λlrt −Wlogit = oP(1),

λlrt ⇝ χ2
J(Q−1), Wlogit ⇝ χ2

J(Q−1).

For a treatment-control experiment with Q = 2 and the reference level q = 2 relabeled as 0, the results

simplify to

√
N{β̃ − (S2

x)
−1τ̂x} = oP(1),

√
Nβ̃ ⇝ N{0J , (e0e1)−1(S2

x)
−1},

NṼ = (e0e1)
−1(S2

x)
−1 + oP(1).

S4.4. Weak convergence

Lemma S6 below underpins the asymptotic equivalence between balance criteria based on asymptotically

equivalent thresholds or test statistics. The proof follows from standard probability calculation and is

thus omitted.

Lemma S6. Let (AN )∞N=1 be a sequence of m× 1 random vectors. Let (BN )∞N=1 and (B′

N )∞N=1 be two

sequences of random variables with BN − B′

N = oP(1) and (AN , BN )∞N=1 having a continuous limiting

distribution, represented by (A,B). Let (bN )∞N=1 be a sequence of constants with a finite limit, b∞ =

limN→∞ bN < ∞. Then
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(i) AN | {BN ≤ bN} ·∼ AN | {BN ≤ b∞} provided P(B ≤ b∞) > 0;

(ii) AN | {BN ≤ b} ·∼ AN | {B′

N
≤ b} for arbitrary fixed b ∈ R that satisfies P(B ≤ b) > 0.

Definition S1 below extends the notion of rerandomization with general covariate balance criterion

(ReG) from Li et al. (2018).

Definition S1. Let φ(B,C) be a binary covariate balance indicator function, where φ(·, ·) is a binary

indicator function and (B,C) are two statistics computed from the data. An ReG accepts a randomization

if φ(B,C) = 1.

The definition of ReG is general and includes all nine criteria in Table S3 as special cases. Table S4

below summarizes the covariate balance indicator functions for ReM and the nine ReP schemes in Table

S3 under the treatment-control experiment, respectively. As an illustration, (B,C) = (
√
Nτ̂x, N Ω̂) under

the two-sample t-test model option, with φ(·, ·) equaling

φ(u, v) =



















1{|σ(v)−1u| ≤ at} under the marginal rule;

1(uTv−1u ≤ a0) under the joint rule;

1{|σ(v)−1u| ≤ at, uTv−1u ≤ a0} under the consensus rule.

The resulting covariate balance indicator functions equal

φ(B,C) =



















1{|σ(Ω̂)−1τ̂x| ≤ at} under the marginal rule;

1(τ̂T

x Ω̂
−1τ̂x ≤ a0) under the joint rule;

1{|σ(Ω̂)−1τ̂x| ≤ at, τ̂T

x Ω̂
−1τ̂x ≤ a0} under the consensus rule

given φ(u, v) = φ(u/
√
N, v/N) in all three cases.

Lemma S7 below is a generalization of Li et al. (2018, Proposition A1), and gives the asymptotic

distribution of arbitrary random elements under ReG. To this end, Condition S1 below imposes some

smoothness constraints on the associated φ to prevent the acceptance region from being a set of measure

zero. All covariate balance criteria in Table S4 satisfy Condition S1.

Condition S1. The binary indicator function φ(·, ·) satisfies: (i) φ(·, ·) is almost surely continuous; (ii)

for u ∼ N (0J , v0), we have P{φ(u, v0) = 1} > 0 for all v0 > 0, and cov{u | φ(u, v0) = 1} is a continuous

function of v0.

Lemma S7 (Weak convergence under ReG). Assume (φN )∞
N=1

as a sequence of binary indicator functions

under Condition S1 that converges to φ. For a sequence of random elements (AN , BN , CN )∞
N=1

that
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Table S4: The covariate balance indicator functions and the corresponding (B,C) for ReM and the nine
ReP schemes in Table S3 under the treatment-control experiment. The joint criterion under the “logit”
model option is given in terms of the asymptotically equivalent Wald statistic to highlight the analogy
across different model options.

ReM t

(B,C) (
√
Nτ̂x, Ncov(τ̂x)) (

√
Nτ̂x, N Ω̂)

marginal n.a. 1{|σ(Ω̂)−1τ̂x| ≤ at}
joint 1{τ̂T

x cov(τ̂x)
−1τ̂x ≤ a0} 1(τ̂T

x Ω̂
−1τ̂x ≤ a0)

consensus n.a. 1{|σ(Ω̂)−1τ̂x| ≤ at, τ̂T

x Ω̂
−1τ̂x ≤ a0}

lm logit

(B,C) (
√
Nβ̂,NV̂ ) (

√
Nβ̃,NṼ )

marginal 1{|σ(V̂ )−1β̂| ≤ alm} 1{|σ(Ṽ )−1β̃| ≤ a}
joint 1(β̂TV̂ −1β̂ ≤ af) 1(β̃TṼ −1β̃ ≤ a0)

consensus 1{|σ(V̂ )−1β̂| ≤ alm, β̂TV̂ −1β̂ ≤ af} 1{|σ(Ṽ )−1β̃| ≤ a, β̃TṼ −1β̃ ≤ a0}

satisfies (AN , BN , CN )⇝ (A,B,C) as N → ∞, we have

(AN , BN ) | {φN (BN , CN ) = 1} ⇝ (A,B) | {φ(B,C) = 1}

in the sense that, for any continuity set S of (A,B) | {φ(B,C) = 1},

P{(AN , BN ) ∈ S | φN (BN , CN ) = 1} = P{(A,B) ∈ S | φ(B,C) = 1}+ o(1).

Lemma S8 below gives the asymptotic joint distributions of τ̂∗ and the elements that determine the

covariate balance measures in Table S4. The result provides the basis for verifying Propositions 1 and 2

in a unified way.

Lemma S8. Assume a completely randomized treatment-control experiment and Conditions 1 and 2.

For ∗ = n, f, l, we have

(√
N(τ̂∗ − τ),

√
Nτ̂x, Ncov(τ̂x)

)

⇝ (A∗, B, vx),
(√

N(τ̂∗ − τ),
√
Nτ̂x, N Ω̂

)

⇝ (A∗, B, vx),
(√

N(τ̂∗ − τ),
√
Nβ̂,NV̂

)

⇝ (A∗, v
−1
x B, v−1

x ),
(√

N(τ̂∗ − τ),
√
Nβ̃,NṼ

)

⇝

(

A∗, (S
2
x)

−1B, (e0e1)
−1(S2

x)
−1

)
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with





A∗

B



 ∼ N







0J+1,





v∗ cT
∗

c∗ vx











.

Proof of Lemma S8. The result on ReM follows from Corollary S1. The result on the “logit” model

option follows from Theorem S1. We verify below the results on the two-sample t-test (“t”) and linear

regression (“lm”) model options, respectively.

Result on the two-sample t-test model option. The joint distribution of
√
N(τ̂∗ − τ, τ̂x) follows

from Corollary S1. The probability limit of N Ω̂ follows from N Ω̂ = (e0e1)
−1S2

x + oP(1) = vx + oP(1) by

(S3) and Ŝ2
x(q) = S2

x + oP(1) under complete randomization and Condition 1.

Result on the linear regression model option. The Frisch–Waugh–Lovell theorem ensures that

β̂ =
N1

N − 1
(S2

x)
−1x̂(1) =

N0N1

(N − 1)N
(S2

x)
−1τ̂x =

N

N − 1
v−1
x τ̂x (S9)

is a non-degenerate linear transformation of τ̂x. The joint distribution of
√
N(τ̂∗− τ, β̂) then follows from

Corollary S1.

Further let

S2
Z =

1

N − 1

N
∑

i=1

(Zi − Z̄)2 =
N

N − 1
e0e1, SxZ =

1

N − 1

N
∑

i=1

xi(Zi − Z̄) =
N

N − 1
e1x̂(1),

with Z̄ = N−1
∑N

i=1 Zi = e1. The probability limit of V̂ follows from

NV̂ = σ̂2

(

N
∑

i=1

xix
T

i

)−1

=
N

N − 1
σ̂2(S2

x)
−1

with

σ̂2 =
1

N − 1− J

N
∑

i=1

(Zi − Z̄ − xT

i β̂)
2 =

N − 1

N − 1− J
(S2

Z + β̂TS2
xβ̂ − 2β̂TSxZ) = e0e1 + oP(1).

Lemma S9 gives the asymptotic joint distributions of (Ŷ∗, x̂+) and (Ŷ∗, β̃, Ṽ ) under the general exper-

iment, respectively, analogous to Lemma S8.

Lemma S9. Assume a completely randomized general experiment and Conditions 1 and 3. Let A ∼
N (0Q, Vl), B ∼ N (0JQ, Vx), and B′ ∼ N (0J(Q−1), Vx+) be independent normal random vectors. For

S21



∗ = n, f, l, we have

(i)
√
N(Ŷ∗ − Ȳ , x̂)⇝ (A+ Γ∗B,B),

√
N(Ŷ∗ − Ȳ , x̂+)⇝ (A+ Γ′

∗B
′, B′);

(ii) (
√
N(Ŷ∗ − Ȳ ),

√
N ˜́, NṼ )⇝ (A+ Γ′

∗B
′,ΨB′, VΨ);

(iii) Ŷ∗ | {¼lrt f a0} ·∼ Ŷ∗ | {Wlogit f a0}.

Proof of Lemma S9. The result on
√
N(Ŷ∗ − Ȳ , x̂) follows from Lemma S2. This, together with (S1),

further ensures
√
N(Ŷ∗ − Ȳ − Γ′

∗x̂+, x̂+) ⇝ (A,B′), and hence
√
N(Ŷ∗ − Ȳ , x̂+) ⇝ (A + Γ′

∗B
′, B′) for

∗ = n, f, l.

The result on (
√
N(Ŷ∗−Ȳ ),

√
N ˜́, NṼ ) then follows from

√
N( ˜́−Ψx̂+) = oP(1) and NṼ = VΨ+oP(1)

by Theorem S1.

The asymptotic equivalence between Ŷ∗ | {¼lrt f a0} and Ŷ∗ | {Wlogit f a0} follows from ¼lrt −
Nx̂T

+V
−1
x+ x̂+ = oP(1) and Wlogit −Nx̂T

+V
−1
x+ x̂+ = oP(1) by Theorem S1 and Lemma S6.

Remark S2. Lemma S8 and its proof also imply some of the comments we made in the main text.

First, Lemma S8, together with (S9) and
√
N{ ˜́ − (S2

x)
−1Ä̂x} = oP(1) from Theorem S1, ensures

the asymptotic equivalence between ∥Ä̂x∥M = Ä̂T

x cov(Ä̂x)
−1Ä̂x, Wt = Ä̂T

x Ω̂
−1Ä̂x, Wlm = ˆ́TV̂ −1 ˆ́, and

Wlogit = ˜́TṼ −1 ˜́ in the sense that W −∥Ä̂x∥M = oP(1) for  = t, lm, logit. This elucidates the asymptotic

equivalence between ReM and the joint criteria under the treatment-control experiment by Lemma S6.

Next, recall ŝej and ŝe′j as the classic and ehw standard errors of Ä̂x,j , respectively, from Remark S1.

It follows from the Frisch–Waugh–Lovell theorem and Zhao and Ding (2021, Lemma S1) that

ŝe2j =
1

N − 2

(

S2
x,j

S2
Z

− Ä̂2x,j

)

, (ŝe′j)
2
=

(Z − 1N Z̄)T diag(ϵ2ij)
N
i=1(Z − 1N Z̄)

∥Z − 1N Z̄∥22

with Z = (Z1, . . . , ZN )T, S2
x,j = (N − 1)−1

∑N
i=1 x

2
ij , ϵij = xij − ZiÄ̂x,j , and

N ŝe2j = (e0e1)
−1S2

x,j + oP(1), N(ŝe′j)
2
= (e0e1)

−1S2
x,j + oP(1).

This ensures t′j,t = Ä̂x,j/ŝe
′
j = tj,t + oP(1), and hence the asymptotic equivalence of the classic and ehw

standard errors for constructing the marginal criterion under the two-sample t-tests. The results for other

criteria are similar and thus omitted.

Importantly, the asymptotic equivalence between the classic and ehw standard errors does not hold

for ŝe′∗ (∗ = n, f, l) and their classic counterparts based on the default outputs of lm(Yi ∼ 1 + Zi),

lm(Yi ∼ 1+Zi+xi), and lm(Yi ∼ 1+Zi+xi+Zixi) in general. Specifically, the classic standard errors of

Ä̂∗ (∗ = n, f, l) are not necessarily asymptotically conservative for estimating the true sampling variances,
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and can thus lead to invalid inferences. As a result, the use of ehw standard errors is immaterial for

rerandomization yet crucial for analysis.

S5. Proofs of the results under complete randomization

S5.1. Asymptotic distributions in Propositions 1–2 and S1–S2

Proof of Propositions 1 and 2. Let





A∗

B



 ∼ N







0J+1,





v∗ cT∗

c∗ vx











with
√
N(τ̂∗ − τ, τ̂T

x )
T
⇝ (A∗, B

T)T for ∗ = n, f, l. Recall the definitions of A ,⋄ for  = t, lm, logit and

⋄ = jt,mg, cs in terms of the test statistics from Table S3.

Two-sample t-tests. For ∗ = n, f, l, let (AN , BN , CN ) = (
√
N(τ̂∗−τ),

√
Nτ̂x, N Ω̂) with (AN , BN , CN )⇝

(A∗, B, vx) by Lemma S8.

� Recall that At,jt = {p0,t g α0} = {Wt f a0} under the joint rule. We have

√
N(τ̂∗ − τ) | At,jt =

√
N(τ̂∗ − τ) | {τ̂T

x Ω̂
−1τ̂x f a0}

⇝ A∗ | {BTv−1
x B f a0}

∼ A∗ | {∥B∥M f a0}

by applying Lemma S7 to (AN , BN , CN ) and φN (u, v) = φ(u, v) = 1(uTv−1u f a0).

� Recall that At,mg = {pj,t g αj , j = 1, . . . , J} = {|Tt| f at} under the marginal rule. We have

√
N(τ̂∗ − τ) | At,mg =

√
N(τ̂∗ − τ) | {|σ(Ω̂)−1τ̂x| f at}

⇝ A∗ | {|σ(vx)−1B| f a}

by applying Lemma S7 to (AN , BN , CN ), φN (u, v) = 1{|σ(v)−1u| f at}, and φ(u, v) = 1{|σ(v)−1u| f
a}.

� Recall that At,cs = {pj,t g αj , j = 0, 1, . . . , J} = {Wt f a0, |Tt| f at} under the consensus rule.

We have

√
N(τ̂∗ − τ) | At,cs =

√
N(τ̂∗ − τ) | {τ̂T

x Ω̂
−1τ̂x f a0, |σ(Ω̂)−1τ̂x| f at}
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⇝ A∗ | {∥B∥M f a0, |Ã(vx)
−1B| f a}

by applying Lemma S7 to (AN , BN , CN ), ϕN (u, v) = 1(uTv−1u f a0) · 1{|Ã(v)
−1u| f at}, and

ϕ(u, v) = 1(uTv−1u f a0) · 1{|Ã(v)
−1u| f a}.

It thus suffices to compute

A∗ | {∥B∥M f a0}, A∗ | {|Ã(vx)
−1B| f a}, A∗ | {∥B∥M f a0, |Ã(vx)

−1B| f a},

respectively.

To this end, write

A∗ = (A∗ − cT∗v
−1

x B) + cT∗v
−1

x B, (S10)

with A∗ − cT∗v
−1
x B ∼ N (0, vl) and independent of B. This ensures

A∗ | {∥B∥M f a0} ∼ (A∗ − cT∗v
−1

x B) + cT∗v
−1

x [B | {∥B∥M f a0}]

∼ v
1/2
l

ϵ+ cT∗v
−1

x (v1/2x L). (S11)

Likewise for the results under the marginal and consensus rules. In particular, let ϵt = Ã(vx)
−1B ∼

N{0, D(vx)} to write

B = Ã(vx)ϵt, {|Ã(vx)
−1B| f a} = {|ϵt| f a}.

This ensures

B | {|Ã(vx)
−1B| f a} = Ã(vx)ϵt | {|ϵt| f a}

∼ Ã(vx)Tt,

B | {∥B∥M f a0, |Ã(vx)
−1B| f a} = Ã(vx)ϵt | {∥ϵt∥M f a0, |ϵt| f a}

∼ Ã(vx)T
′
t ,

and thus

A∗ | {|Ã(vx)
−1B| f a} ∼ v

1/2
l

ϵ+ cT∗v
−1

x Ã(vx)Tt,

A∗ | {∥B∥M f a0, |Ã(vx)
−1B| f a} ∼ v

1/2
l

ϵ+ cT∗v
−1

x Ã(vx)T
′
t
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by (S10).

Linear regression. For ∗ = n, f, l, let (AN , BN , CN ) = (
√
N(Ä̂∗− Ä),

√
N ˆ́, NV̂ ) with (AN , BN , CN )⇝

(A∗, v
−1
x B, v−1

x ) by Lemma S8.

� Recall that Alm,jt = {p0,lm g ³0} = {Wlm f af} under the joint rule by Lemma S1. We have

√
N(Ä̂∗ − Ä) | Alm,jt =

√
N(Ä̂∗ − Ä) | { ˆ́TV̂ −1 ˆ́ f af}

⇝ A∗ | {(v−1
x B)Tvx(v

−1
x B) f a0}

∼ A∗ | {∥B∥M f a0}

by applying Lemma S7 to (AN , BN , CN ), ϕN (u, v) = 1(uTv−1u f af), and ϕ(u, v) = 1(uTv−1u f a0).

� Recall that Alm,mg = {pj,lm g ³j , j = 1, . . . , J} = {|Tlm| f alm} under the marginal rule. We have

√
N(Ä̂∗ − Ä) | Alm,mg =

√
N(Ä̂∗ − Ä) | {|Ã(V̂ )−1 ˆ́| f alm}

⇝ A∗ | {|Ã(v−1
x )−1v−1

x B| f a}

by applying Lemma S7 to (AN , BN , CN ), ϕN (u, v) = 1{|Ã(v)−1u| f alm}, and ϕ(u, v) = 1{|Ã(v)−1u| f
a}.

� Recall that Alm,cs = {pj,lm g ³j , j = 0, 1, . . . , J} = {Wlm f af, |Tlm| f alm} under the consensus

rule. We have

√
N(Ä̂∗ − Ä) | Alm,cs =

√
N(Ä̂∗ − Ä) | { ˆ́TV̂ −1 ˆ́ f af, |Ã(V̂ )−1 ˆ́| f alm}

⇝ A∗ | {(v−1
x B)Tvx(v

−1
x B) f a0, |Ã(v−1

x )−1v−1
x B| f a}

∼ A∗ | {∥B∥M f a0, |Ã(v−1
x )−1v−1

x B| f a}

by applying Lemma S7 to (AN , BN , CN ), ϕN (u, v) = 1(uTv−1u f af) · 1{|Ã(v)−1u| f alm}, and
ϕ(u, v) = 1(uTv−1u f a0) · 1{|Ã(v)−1u| f a}.

It thus suffices to compute A∗ | {∥B∥M f a0}, A∗ | {|Ã(v−1
x )−1v−1

x B| f a}, and A∗ | {∥B∥M f
a0, |Ã(v−1

x )−1v−1
x B| f a}, respectively.

The distribution of A∗ | {∥B∥M f a0} is given by (S11). For A∗ | {|Ã(v−1
x )−1v−1

x B| f a} and

A∗ | {∥B∥M f a0, |Ã(v−1
x )−1v−1

x B| f a}, let ϵlm = Ã(v−1
x )−1v−1

x B ∼ N{0, D(v−1
x )} to write

B = vxÃ(v
−1
x )ϵlm,

{

|Ã(v−1
x )−1v−1

x B| f a} = {|ϵlm| f a}.
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This ensures

B | {|Ã(v−1
x )−1v−1

x B| f a} = vxÃ(v
−1
x )ϵlm | {|ϵlm| f a}

∼ vxÃ(v
−1
x )Tlm,

B | {∥B∥M f a0, |Ã(v−1
x )−1v−1

x B| f a} = vxÃ(v
−1
x )ϵlm | {∥ϵlm∥M f a0, |ϵlm| f a}

∼ vxÃ(v
−1
x )T ′

lm,

and thus

A∗ | {|Ã(v−1
x )−1v−1

x B| f a} ∼ v
1/2
l ϵ+ cT∗Ã(v

−1
x )Tlm,

A∗ | {∥B∥M f a0, |Ã(v−1
x )−1v−1

x B| f a} ∼ v
1/2
l ϵ+ cT∗Ã(v

−1
x )T ′

lm

by (S10).

Logistic regression. For ∗ = n, f, l, let (AN , BN , CN ) = (
√
N(Ä̂∗−Ä),

√
N ˜́, NṼ ) with (AN , BN , CN )⇝

(A∗, (S
2
x)

−1B, (e0e1)
−1(S2

x)
−1) by Lemma S8. We verify below that (Ä̂∗ | Alogit,⋄)

·∼ (Ä̂∗ | Alm,⋄) for

⋄ = jt,mg, cs.

� Recall that Alogit,jt = {p0,logit g ³0} = {¼lrt f a0} under the joint rule. By Ŷ∗ | {¼lrt f a0} ·∼ Ŷ∗ |
{Wlogit f a0} from Lemma S9, we have

Ä̂∗ | Alogit,jt = Ä̂∗ | {¼lrt f a0} (S12)

·∼ Ä̂∗ | {Wlogit f a0} = Ä̂∗ | { ˜́TṼ −1 ˜́ f a0},

with

√
N(Ä̂∗ − Ä) | { ˜́TṼ −1 ˜́ f a0} ⇝ A∗ | {BT(S2

x)
−1(e0e1S

2
x)(S

2
x)

−1B f a0}

∼ A∗ | {∥B∥M f a0}

by applying Lemma S7 to (AN , BN , CN ) and ϕN (u, v) = ϕ(u, v) = 1(uTv−1u f a0). This ensures

√
N(Ä̂∗ − Ä) | Alogit,jt ⇝ A∗ | {∥B∥M f a0},

identical to the limiting distribution of
√
N(Ä̂∗ − Ä) | Alm,jt.

� Recall that Alogit,mg = {pj,logit g ³j , j = 1, . . . , J} = {|Tlogit| f a} under the marginal rule. We
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have

√
N(τ̂∗ − τ) | Alogit,mg =

√
N(τ̂∗ − τ) | {|σ(Ṽ )−1β̃| f a}

⇝ A∗ | {|σ(v−1
x )−1v−1

x B| f a}

by applying Lemma S7 to (AN , BN , CN ) and φN (u, v) = φ(u, v) = 1{|σ(v)−1u| f a}; in particular,

the limit of {|σ(Ṽ )−1β̃| f a} follows from

σ(Ṽ )−1β̃ ⇝ σ
(

(e0e1)
−1(S2

x)
−1

)

(S2
x)

−1B

= σ
(

(e0e1)
−2v−1

x

)

(e0e1)v
−1
x B = σ(v−1

x )v−1
x B

given vx = (e0e1)
−1S2

x and σ((e0e1)
−2v−1

x ) = (e0e1)
−1σ(v−1

x ). This is identical to the limiting

distribution of
√
N(τ̂∗ − τ) | Alm,mg.

� Recall that Alogit,cs = {pj,logit g αj , j = 0, 1, . . . , J} = {λlrt f a0, |Tlogit| f a} under the consensus

rule. The same reasoning as in (S12) ensures

τ̂∗ − τ | Alogit,cs = τ̂∗ − τ | {λlrt f a0, |σ(Ṽ )−1β̃| f a}
·∼ τ̂∗ − τ | {β̃TṼ −1β̃ f a0, |σ(Ṽ )−1β̃| f a},

with

√
N(τ̂∗ − τ) | {β̃TṼ −1β̃ f a0, |σ(Ṽ )−1β̃| f a}

⇝ A∗ | {∥B∥M f a0, |σ(v−1
x )−1v−1

x B| f a}

by applying Lemma S7 to (AN , BN , CN ) and φN (u, v) = φ(u, v) = 1(uTv−1u f a0) · 1{|σ(v)−1u| f
a}. This ensures

√
N(τ̂∗ − τ) | Alogit,cs ⇝ A∗ | {∥B∥M f a0, |σ(v−1

x )−1v−1
x B| f a},

identical to the limiting distribution of
√
N(τ̂∗ − τ) | Alm,cs.

Proof of Proposition S1. Recall Af,mg = {Fj f aj,f for all j = 1, . . . , J} from (S8) with the explicit forms

of Fj in (S7). With (N − 1)S2
x,j =

∑N
i=1 x

2
ij =

∑

q∈Q

∑

i:Zi=q{xij − x̂j(q)}2 +
∑

q∈QNqx̂
2
j (q) by direct
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algebra, the expression of Af,mg can be simplified to

Af,mg = {Fj ≤ aj,f for all j} =







∑

q∈Q

eq{
√
Nx̂j(q)}2 ≤ a′′j for all j







,

where

a′′j =
(N − 1)S2

x,j

(N −Q)/{(Q− 1)aj,f}+ 1
= a′jS

2
x,j + o(1)

by aj,f = (Q− 1)−1a′j + o(1).

Observe that
√
Nx̂⇝ ϵf and

√
Nx̂j(q)⇝ ϵf,qj by Lemma S2. The result follows from Lemmas S7 and

S9 as

√
N(Ŷ∗ − Ȳ ) | Af,mg

=
√
N(Ŷ∗ − Ȳ − Γ∗x̂) + Γ∗

√
Nx̂

∣

∣

∣

∣

∣

∣







∑

q∈Q

eq{
√
Nx̂j(q)}2 ≤ a′′j for all j







⇝ V
1/2
l ϵ+ Γ∗ϵf

∣

∣

∣

∣

∣

∣







∑

q∈Q

eqϵ
2
f,qj ≤ a′jS

2
x,j for all j







.

Proof of Proposition S2. Renew a0 as the (1 − ³0)th quantile of the Ç2
J(Q−1) distribution. Renew a =

(aqj)q∈Q+; j=1,...,J , where aqj denotes the (1−³qj/2)th quantile of the standard normal distribution. The

marginal, joint, and consensus criteria based on the multinomial logistic regression equal

Alogit,mg = {|Tlogit| ≤ a}, Alogit,jt = {¼lrt ≤ a0},
Alogit,cs = {¼lrt ≤ a0, |Tlogit| ≤ a},

(S13)

respectively, with Tlogit = diag(Ṽ
−1/2
qj,qj ) ˜́ = Ã(Ṽ )−1 ˜́ and ¼lrt − ˜́TṼ −1 ˜́ = oP(1).

Let A ∼ N (0Q, Vl) and B ∼ N (0J(Q−1), Vx+) be two independent normal random vectors with

cov(ΨB) = VΨ. For ∗ = n, f, l, let (AN , BN , CN ) = (
√
N(Ŷ∗ − Ȳ ),

√
N ˜́, NṼ ) with (AN , BN , CN ) ⇝

(A+ Γ′
∗B,ΨB, VΨ) by Lemma S9.

� Under the joint rule, Lemma S9 ensures

Ŷ∗ | Alogit,jt = Ŷ∗ | {¼lrt ≤ a0} ·∼ Ŷ∗ | { ˜́TṼ −1 ˜́ ≤ a0} (S14)
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with

√
N(Ŷ∗ − Ȳ ) | { ˜́TṼ −1 ˜́ f a0} ⇝ A+ Γ′

∗B | {(ΨB)TV −1
Ψ (ΨB) f a0}

∼ A+ Γ′
∗B | {∥B∥M f a0}

by applying Lemma S7 to (AN , BN , CN ) and ϕN (u, v) = ϕ(u, v) = 1(uTv−1u f a0). This ensures

√
N(Ŷ∗ − Ȳ ) | Alogit,jt ⇝ A+ Γ′

∗B | {∥B∥M f a0}.

� Under the marginal rule, we have

√
N(Ŷ∗ − Ȳ ) | Alogit,mg =

√
N(Ŷ∗ − Ȳ ) | {|Ã(Ṽ )−1 ˜́| f a}

⇝ A+ Γ′
∗B | {|Ã(VΨ)

−1ΨB| f a}

by applying Lemma S7 to (AN , BN , CN ) and ϕN (u, v) = ϕ(u, v) = 1{|Ã(v)−1u| f a}.

� Under the consensus rule, we have

Ŷ∗ | Alogit,cs = Ŷ∗ | {¼lrt f a0, |Ã(Ṽ )−1 ˜́| f a}
·∼ Ŷ∗ | { ˜́TṼ −1 ˜́ f a0, |Ã(Ṽ )−1 ˜́| f a}

by (S14) with

√
N(Ŷ∗ − Ȳ ) | { ˜́TṼ −1 ˜́ f a0, |Ã(Ṽ )−1 ˜́| f a}

⇝ A+ Γ′
∗B | {∥B∥M f a0, |Ã(VΨ)

−1ΨB| f a}

by applying Lemma S7 to (AN , BN , CN ) and ϕN (u, v) = ϕ(u, v) = 1(uTv−1u f a0) · 1{|Ã(v)−1u| f
a}. This ensures

√
N(Ŷ∗ − Ȳ ) | Alogit,cs ⇝ A+ Γ′

∗B | {∥B∥M f a0, |Ã(VΨ)
−1ΨB| f a}.

With A ∼ V
1/2
l ϵ and independent of B, it suffices to compute B | {∥B∥M f a0}, B | {|Ã(VΨ)

−1ΨB| f a},
and B | {∥B∥M f a0, |Ã(VΨ)

−1ΨB| f a}, respectively.
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For the joint criterion, we have B | {∥B∥M f a0} ∼ V
1/2
x+ L, and thus

A+ Γ′
∗B | {∥B∥M f a0} ∼ V

1/2
l

ϵ+ Γ′
∗V

1/2
x+ L.

For the marginal and consensus criteria, let ϵlogit = Ã(VΨ)
−1ΨB ∼ N{0, D(VΨ)} to write

B = Ψ−1Ã(VΨ)ϵlogit, {|Ã(VΨ)
−1ΨB| f a} =

{

|ϵlogit| f a}.

This ensures

B | {|Ã(VΨ)
−1ΨB| f a} = Ψ−1Ã(VΨ)ϵlogit | {|ϵlogit| f a}

∼ Ψ−1Ã(VΨ)Tlogit,

B | {∥B∥M f a0, |Ã(VΨ)
−1ΨB| f a} = Ψ−1Ã(VΨ)ϵlogit | {|ϵlogit| f a, ∥ϵlogit∥M f a0}

∼ Ψ−1Ã(VΨ)T ′
logit,

and thus

A+ Γ′
∗B | {|Ã(VΨ)

−1ΨB| f a} ∼ V
1/2
l

ϵ+ Γ′
∗Ψ

−1Ã(VΨ)Tlogit,

A+ Γ′
∗B | {∥B∥M f a0, |Ã(VΨ)

−1ΨB| f a} ∼ V
1/2
l

ϵ+ Γ′
∗Ψ

−1Ã(VΨ)T ′
logit.

S5.2. Covariate balance and asymptotic relative efficiency in Theorems 1–4

Proof of Theorems 1–4. The asymptotic relative efficiency of Ä̂∗ (∗ = n, f, l) follows immediately from

Propositions 1–2, Propositions S1–S2 and Lemmas S4–S5. We verify below the improved covariate balance

under the ReP schemes based on the multinomial logistic regression. The results under the two-sample

t-test-based, linear or logistic regression-based, and marginal F -test-based criteria are analogous and thus

omitted. Note that the asymptotic conditional bias and the difference between different estimators are

all functions of Ä̂x. The results associated with the covariance reduction factor Ä(J, a0) under the joint

rules then follow from the results on ReM from Morgan and Rubin (2012) and Li et al. (2018).

Recall the acceptance criteria by test statistics from (S13). Recall from (S1) that x̂ = »x̂+ and hence

Ä̂x = Gxx̂ = Gx»x̂+. Let A ∼ N (0J(Q−1), Vx+) with
√
Nx̂+ ⇝ A and

√
NÄ̂x ⇝ Gx»A by Lemma S9. The
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result follows from

√
Nτ̂x | Alogit,jt = Gxκ(

√
Nx̂+) | {λlrt f a0}

·∼ Gxκ(
√
Nx̂+) | {Nx̂T

+V
−1
x+ x̂+ f a0}

⇝ GxκA | {ATV −1
x+ A f a0}

° GxκA,

√
Nτ̂x | Alogit,mg = Gxκ(

√
Nx̂+) | {|σ(Ṽ )−1β̃| f a}

·∼ Gxκ(
√
Nx̂+) | {|σ(VΨ)

−1
√
NΨx̂+| f a}

⇝ GxκA | {|σ(VΨ)
−1ΨA| f a}

° GxκA,

√
Nτ̂x | Alogit,cs = Gxκ(

√
Nx̂+) | {λlrt f a0, |σ(Ṽ )−1β̃| f a}

·∼ Gxκ(
√
Nx̂+) | {Nx̂T

+V
−1
x+ x̂+ f a0, |σ(VΨ)

−1
√
NΨx̂+| f a}

⇝ GxκA | {ATV −1
x+ A f a0, |σ(VΨ)

−1ΨA| f a}

° GxκA.

In particular, the three “
·∼” follow from λlrt−Nx̂T

+V
−1
x+ x̂+ = oP(1),

√
N(β̃−Ψx̂+) = oP(1), andNṼ −VΨ =

oP(1); the three “⇝” follow from Lemma S7; the three “°” follow from Corollary S2.

S6. Proofs of the results under stratified experiments

Proof of Theorem 5. Recall that τ̂∗ =
∑K

k=1 π[k]τ̂∗[k] for ∗ = n, f, l under stratified experiments. Theo-

rems 1–2 ensure the improved efficiency of τ̂
∗[k] and τ̂x[k] within each stratum. The results about τ̂∗ then

follow from Lemma S5(i) and (iii).

S6.1. Proof of Proposition 3

Lemma S10 below is a numeric result from Ding (2021, Theorem 5) that holds without any stochastic

assumptions. It gives the key building block for proving Proposition 3.

Lemma S10. τ̃n =
∑K

k=1 ω[k]{Ŷ[k](1)− Ŷ[k](0)}, where Ŷ[k](q) is the sample mean under treatment level

q ∈ {0, 1} in stratum k.

Proof of Proposition 3. The result about τ̃n follows directly from Lemma S10. We verify below the result

about τ̃f.
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Let Si = ( 1(i ∈ [1]), . . . , 1(i ∈ [K]) )T ∈ R
K to write lm

{

Yi ∼ Zi+xi+1(i ∈ [1])+ · · ·+1(i ∈ [K])
}

as

lm(Yi ∼ Zi + xi + Si). (S15)

Let γ̂ denote the coefficient vector of xi from (S15). The definition of ols ensures that τ̃f is the coefficient

of Zi from the ols fit of

lm(Yi − xT

i γ̂ ∼ Zi + Si). (S16)

Applying Lemma S10 to (S16) ensures

τ̃f =

K
∑

k=1

ω[k]

[{

Ŷ[k](1)− x̂[k](1)
Tγ̂
}

−
{

Ŷ[k](0)− x̂[k](0)
Tγ̂
}]

= τ̃n −

K
∑

k=1

ω[k]

{

x̂[k](1)− x̂[k](0)
}

T

γ̂.

Observe that x̂[k](1)− x̂[k](0) = oP(1). To verify the probability limit of τ̃f, it suffices to show that γ̂ has

a finite probability limit. We verify this below.

Let Ỹi denote the residual of unit i from lm(Yi ∼ Zi + Si). Let x̃i denote the residual of unit i

from lm(xi ∼ Zi + Si). By the Frisch–Waugh–Lovell theorem, γ̂ equals the coefficient vector of x̃i from

lm(Ỹi ∼ x̃i) as

γ̂ = (X̃TX̃)−1(X̃TỸ ) =

(

N−1
N
∑

i=1

x̃ix̃
T

i

)−1(

N−1
N
∑

i=1

x̃iỸi

)

,

where X̃ = (x̃1, . . . , x̃N )T and Ỹ = (Ỹ1, . . . , ỸN )T. It thus suffices to show that N−1
∑N

i=1 x̃ix̃
T

i and

N−1
∑N

i=1 x̃iỸi both have finite probability limits when Condition 1 holds for all strata. We show below

the finite probability limit of N−1
∑N

i=1 x̃ix̃
T

i . The proof for N−1
∑N

i=1 x̃iỸi is analogous and omitted.

From Lemma S10, the coefficient of Zi from lm(xi ∼ Zi + Si) equals

τ̃x =
K
∑

k=1

ω[k]

{

x̂[k](1)− x̂[k](0)
}

,

where x̂[k](q) = N−1
[k]q

∑

i∈[k],Zi=q xi. Further recall τ̂x[k] = x̂[k](1) − x̂[k](0) as the difference in covariate

means in stratum k ∈ {1, . . . ,K}. It follows from Ding (2021, Proof of Theorem 6) that

x̃i =







xi − x̂[k](1) + (1− e[k])(τ̂x[k] − τ̃x) if Zi = 1

xi − x̂[k](0)− e[k](τ̂x[k] − τ̃x) if Zi = 0
for i ∈ [k],
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with

x̃ix̃
T

i =











































xix
T

i
+
{

x̂[k](1)− (1− e[k])(τ̂x[k] − τ̃x)
}{

x̂[k](1)− (1− e[k])(τ̂x[k] − τ̃x)
}

T

−xi
{

x̂[k](1)− (1− e[k])(τ̂x[k] − τ̃x)
}

T

−

{

x̂[k](1)− (1− e[k])(τ̂x[k] − τ̃x)
}

xT

i
if Zi = 1;

xix
T

i
+
{

x̂[k](0) + e[k](τ̂x[k] − τ̃x)
}{

x̂[k](0) + e[k](τ̂x[k] − τ̃x)
}

T

−xi
{

x̂[k](0) + e[k](τ̂x[k] − τ̃x)
}

T

−

{

x̂[k](0) + e[k](τ̂x[k] − τ̃x)
}

xT

i
if Zi = 0.

This ensures

∑

i∈[k]

x̃ix̃
T

i =
∑

i∈[k]

xix
T

i

+N[k]1

{

x̂[k](1)− (1− e[k])(τ̂x[k] − τ̃x)
}{

x̂[k](1)− (1− e[k])(τ̂x[k] − τ̃x)
}

T

−N[k]1x̂[k](1)
{

x̂[k](1)− (1− e[k])(τ̂x[k] − τ̃x)
}

T

−N[k]1

{

x̂[k](1)− (1− e[k])(τ̂x[k] − τ̃x)
}

x̂[k](0)
T

+N[k]0

{

x̂[k](0) + e[k](τ̂x[k] − τ̃x)
}{

x̂[k](0) + e[k](τ̂x[k] − τ̃x)
}

T

−N[k]0x̂[k](0)
{

x̂[k](0) + e[k](τ̂x[k] − τ̃x)
}

T

−N[k]0

{

x̂[k](0) + e[k](τ̂x[k] − τ̃x)
}

x̂[k](0)
T
.

Let x̄[k] = N[k]
−1∑

i∈[k] xi. It then follows from x̂[k](q) = x̄[k] + oP(1) (q = 0, 1), τ̃x = oP(1), and

τ̂x[k] = oP(1) that when Condition 1 holds for all strata,

N[k]
−1

∑

i∈[k]

x̃ix̃
T

i = N[k]
−1

∑

i∈[k]

xix
T

i

+e[k]
{

x̂[k](1)− (1− e[k])(τ̂x[k] − τ̃x)
}{

x̂[k](1)− (1− e[k])(τ̂x[k] − τ̃x)
}

T

−e[k]x̂[k](1)
{

x̂[k](1)− (1− e[k])(τ̂x[k] − τ̃x)
}

T

− e[k]
{

x̂[k](1)− (1− e[k])(τ̂x[k] − τ̃x)
}

x̂[k](0)
T

+(1− e[k])
{

x̂[k](0) + e[k](τ̂x[k] − τ̃x)
}{

x̂[k](0) + e[k](τ̂x[k] − τ̃x)
}

T

−(1− e[k])x̂[k](0)
{

x̂[k](0) + e[k](τ̂x[k] − τ̃x)
}

T

− (1− e[k])
{

x̂[k](0) + e[k](τ̂x[k] − τ̃x)
}

x̂[k](0)
T

= N[k]
−1

∑

i∈[k]

xix
T

i

+e[k]x̄[k]x̄
T

[k] − e[k]x̄[k]x̄
T

[k] − e[k]x̄[k]x̄
T

[k]

+(1− e[k])x̄[k]x̄
T

[k] − (1− e[k])x̄[k]x̄
T

[k] − (1− e[k])x̄[k]x̄
T

[k] + oP(1)

= S2
x[k] + oP(1),
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where S2
x[k] = (N[k] − 1)−1

∑

i∈[k](xi − x̄[k])(xi − x̄[k])
T. As a result,

N−1
N
∑

i=1

x̃ix̃
T

i =
K
∑

k=1

N[k]

N



N[k]
−1

∑

i∈[k]

x̃ix̃
T

i



 =
K
∑

k=1

π[k]S
2
x[k] + oP(1)

has a finite probability limit when Condition 1 holds for all strata.

S7. Proof of Theorem S1

We verify in this section the properties of the logistic and multinomial logistic regressions in Theorem S1.

The results ensure the asymptotic equivalence of the lrt and the Wald test for logistic and multinomial

logistic regressions from the design-based perspective. To this end, we first review some useful numeric

facts about the multinomial logistic regression in Section S7.1, and then give the proof in Section S7.2.

Recall that e+ = (e1, . . . , eQ−1)
T, diag(e+) = diag(eq)q∈Q+

, and Ψ = {Φ−1 diag(e+)} ⊗ (S2
x)

−1, with

Φ = diag(e+) − e+e
T

+. Let R+ = diag(e+) be a shorthand for diag(e+) to write Ψ = (Φ−1R+) ⊗ (S2
x)

−1

with

Φ = R+ − e+e
T

+ =

















e1(1− e1) −e1e2 . . . −e1eQ−1

−e2e1 e2(1− e2) . . . −e2eQ−1

...
...

...

−eQ−1e1 −eQ−1e2 . . . eQ−1(1− eQ−1)

















.

Recall that x̂+ = (x̂(1)T, . . . , x̂(Q− 1)T)T, with Vx+ = Ncov(x̂+). Then Vx+ = (R−1
+ − 1(Q−1)×(Q−1))⊗ S2

x

equals the upper J(Q− 1)× J(Q− 1) submatrix of Vx = {diag(e−1
q )q∈Q − 1Q×Q} ⊗ S2

x. This ensures

VΨ = Ncov(Ψx̂+) = ΨVx+Ψ
T (S17)

=
{

(Φ−1R+)⊗ (S2
x)

−1
}{

(R−1
+ − 1(Q−1)×(Q−1))⊗ S2

x

}{

(Φ−1R+)
T ⊗ (S2

x)
−1

}

=
{

Φ−1R+(R
−1
+ − 1(Q−1)×(Q−1))R+Φ

−1
}

⊗ (S2
x)

−1

= Φ−1 ⊗ (S2
x)

−1

given Φ = R+(R
−1
+ − 1(Q−1)×(Q−1))R+. As a result, we have Ψ = VΨ(R+ ⊗ IJ) and hence

(R+ ⊗ IJ)VΨ(R+ ⊗ IJ) = ΨTV −1
Ψ Ψ = V −1

x+ . (S18)
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S7.1. Numeric facts about the multinomial logistic regression

Recall the multinomial logistic model from (S5). We have

πq(xi) = πq(x̃i, θ) =
exp(x̃T

i θq)

1 +
∑

q′∈Q+
exp(x̃T

i θq′)
for q = 1, . . . , Q, (S19)

with x̃i = (1, xT

i )
T, θQ = 0J+1, θq = (βq0,β

T

q )
T for q ∈ Q+, and θ = (θT

1 , . . . , θ
T

Q−1
)T. The scaled

log-likelihood function of (xi, Zi)
N
i=1 equals

L̄(θ) = N−1

N
∑

i=1

log{πZi
(xi)} (S20)

= N−1

N
∑

i=1





∑

q∈Q+

Iiqx̃
T

i θq − log







1 +
∑

q∈Q+

exp(x̃T

i θq)









 .

The score function of L̄(θ) equals

U(θ) =
∂L̄(θ)

∂θ
=











U1(θ)
...

UQ−1(θ)











(S21)

with

Uq(θ) =
∂L̄(θ)

∂θq
= N−1

N
∑

i=1

x̃i{Iiq − πq(x̃i, θ)} (q ∈ Q+).

The Hessian matrix of L̄(θ) equals

H(θ) =
∂2L̄(θ)

∂θ∂θT
, (S22)

with the explicit form given by Condition 3.

S7.2. The proof

Lemmas S11 and S12 provide the basis for proving Theorem S1.

Lemma S11. (Rudin 1976, Theorem 7.17) Suppose {fN (x)}∞N=1
is a sequence of functions, differentiable

on [a, b] and such that {fN (x0)}
∞
N=1

converges for some point x0 on [a, b]. If the sequence of derivatives,

{f ′
N (x)}∞N=1

, converges uniformly on [a, b], then {fN (x)}∞N=1
converges uniformly on [a, b], to a function
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f(x), and

lim
N→∞

f ′
N (x) = f ′(x) (a ≤ x ≤ b).

Lemma S12. (Newey and McFadden 1994, Theorem 2.7) If there is a function Q0(θ) such that (i) Q0(θ)

is uniquely maximized at θ0; (ii) θ0 is an element of the interior of a convex set Θ and QN (θ) is concave;

and (iii) QN (θ) = Q0(θ) + oP(1) for all θ ∈ Θ, then the maximizer of QN (θ), denoted by θ̂N , exists with

probability approaching one and θ̂N = θ0 + oP(1).

Proof of Theorem S1. Zhao and Ding (2021, Lemma S5) ensures that

x̂(q) = o(1) for all q ∈ Q (S23)

almost surely under Condition 1. For notational simplicity, we assume that (S23) is true in the follow-

ing proof. The simplification does not affect the validity of the proof given all results concern either

convergence in probability or convergence in distribution.

Let β̃q and θ̃q = (β̃q0, β̃
T

q )
T be the mles of βq and θq = (βq0,β

T

q )
T for q ∈ Q+ in (S5), respectively,

concatenated as β̃ = (β̃T

1 , . . . , β̃
T

Q−1)
T and θ̃ = (θ̃T

1 , . . . , θ̃
T

Q−1)
T.

Convergence of θ̃. As a key intermediate result, we first verify

θ̃ = θ∗ + oP(1) (S24)

for

θ∗ = ((θ∗1)
T, . . . , (θ∗Q−1)

T)T, where θ∗q = (β∗
q0, 0

T

J)
T with β∗

q0 = log(eq/eQ).

By Lemma S12, it suffices to show that there exists a function L̄∞(θ) such that (i) L̄∞(θ) is uniquely

maximized at θ∗; (ii) L̄(θ) is concave on R
(J+1)(Q−1); and (iii) L̄(θ) = L̄∞(θ)+o(1) for all θ ∈ R

(J+1)(Q−1).

We verify below these three sufficient conditions in the order of (iii) to (i) to (ii).

First, it follows from x̃T

i θ
∗
q = β∗

q0 = log(eq/eQ) that πq(x̃i, θ
∗) = eq for all q ∈ Q and i = 1, . . . , N by

(S19). Plug this in the expressions of L̄(θ), U(θ), and H(θ) from (S20), (S21), and Condition 3 to see

L̄(θ∗) =
∑

q∈Q

eq log(eq),
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U(θ∗) =











U1(θ
∗)

...

UQ−1(θ
∗)











, where Uq(θ
∗) =





0

eqx̂(q)



 , (S25)

H(θ∗) = −Φ⊗ (δS2
x̃) with Hqq′(θ

∗) = eq{eq′ − 1(q = q′)}(δS2
x̃),

where δ = 1−N−1 and S2
x̃ = (N − 1)−1

∑N
i=1 x̃ix̃

T

i = diag(δ−1, S2
x). Under (S23), this ensures that L̄(θ),

U(θ), and H(θ) all converge pointwise at θ = θ∗, with

H∗ = H∞(θ∗) = −Φ⊗ diag(1, S2
x) < 0. (S26)

In addition, Condition 3 ensures that ∂U(θ)/∂θ = H(θ) converges uniformly toH∞(θ) on any compact

set in R
(J+1)(Q−1). Let Uqj(θ) = ∂L̄(θ)/∂βqj be the (qj)th element of U(θ) for q ∈ Q+ and j = 0, 1, . . . , J .

Applying Lemma S11 component-wise to fN = Uqj ensures that there exists a function, denoted by

U∞(θ), such that

U(θ) = U∞(θ) + o(1), ∂U∞(θ)/∂θ = H∞(θ)

for all θ ∈ R
(J+1)(Q−1), and the convergence is uniform on any compact set in R

(J+1)(Q−1).

Sufficient condition (iii) then follows from applying Lemma S11 component-wise to fN = L̄, which

ensures that there exists a function, denoted by L̄∞(θ), such that

L̄(θ) = L̄∞(θ) + o(1), ∂L̄∞(θ)/∂θ = U∞(θ)

for all θ ∈ R
(J+1)(Q−1).

Sufficient condition (i) then follows from ∂2L̄∞(θ)/∂θ∂θT = H∞(θ) < 0 by Condition 3 and U∞(θ∗) =

limN→∞ U(θ∗) = 0 by (S25).

For sufficient condition (ii), let Hi(θ) = (Hi,qq′(θ))q,q′∈Q+
with

Hi,qq′(θ) = πq(x̃i, θ){πq′(x̃i, θ)− 1(q = q′)}x̃ix̃T

i .

Then H(θ) = N−1
∑N

i=1Hi(θ) by the explicit form of H(θ) in Condition 3. Observe that Hi(θ) =

−Φi ⊗ (x̃ix̃
T

i ), with Φi = (Φi,qq′)q,q′∈Q+
where Φi,qq′ = πq(x̃i, θ){1(q = q′) − πq′(x̃i, θ)}. It follows from

Φi ≥ 0 that Hi(θ) ≤ 0 and hence H(θ) ≤ 0.

Asymptotic equivalence of β̃ and Ψx̂+. We next verify
√
N(β̃−Ψx̂+) = oP(1). The proof follows from

the same reasoning as that of Newey and McFadden (1994, Theorem 3.1) for independent and identically
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distributed samples.

Recall Uqj(θ) = ∂L̄(θ)/∂βqj as the (qj)th element of U(θ) for q ∈ Q+ and j = 0, 1, . . . , J . Let

Hqj(θ) = ∂Uqj(θ)/∂θ ∈ R
(J+1)(Q−1), with

H(θ) = ∂U(θ)/∂θT = (H1,0(θ), H1,1(θ), . . . , HQ−1,J(θ))
T .

Expanding Uqj(θ) at θ
∗ yields

0 = Uqj(θ̃) = Uqj(θ
∗) + {Hqj(θ

′
qj)}T(θ̃ − θ∗), (S27)

where θ′qj ∈ R
(J+1)(Q−1) is a point on the line segment between θ̃ and θ∗. That θ̃ = θ∗+ oP(1) from (S24)

ensures θ′qj = θ∗ + oP(1) and hence Hqj(θ
′
qj) = Hqj(θ

∗) + oP(1) for all q ∈ Q+ and j = 0, 1, . . . , J .

Let H ′ be the matrix with rows Hqj(θ
′
qj) in lexicographical order of (qj). Then H ′ = H∗+ oP(1) with

H∗ < 0 and hence

1|H′| = 1(H ′ is nonsingular) = 1 + oP(1)

by Condition 3. Stacking (S27) in lexicographical order of (qj) yields 0 = U(θ∗) +H ′(θ̃ − θ∗) and hence

1|H′|

√
N(θ̃ − θ∗) = −1|H′|(H

′)−1
√
NU(θ∗).

This, together with
√
NU(θ∗) being asymptotically normal by (S25) and Lemma S2, ensures

√
N(θ̃ − θ∗) = OP (1) (S28)

and hence

√
N(θ̃ − θ∗) = 1|H′|

√
N(θ̃ − θ∗) + (1− 1|H′|)

√
N(θ̃ − θ∗) (S29)

= −1|H′|(H
′)−1

√
NU(θ∗) + (1− 1|H′|)

√
N(θ̃ − θ∗)

= −(H∗)−1
√
NU(θ∗) + oP(1)

by Slutsky’s theorem. Observe that (H∗)−1 = −Φ−1 ⊗ diag{1, (S2
x)

−1} from (S26). Removing the

dimensions corresponding to {βq0 : q ∈ Q+} in (S30) yields

√
Nβ̃ = {Φ−1 ⊗ (S2

x)
−1}

√
N(R+ ⊗ IJ)x̂+ + oP(1) =

√
NΨx̂+ + oP(1)
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by the explicit form of U(θ∗) from (S25).

Asymptotic normality of β̃. That
√
Nβ̃ ⇝ N (0J(Q−1), VΨ) then follows from the asymptotic normality

of x̂+ by Lemma S9 and Slutsky’s theorem.

Convergence of NṼ . Let H̃ = H(θ̃) be the value of H(θ) evaluated at the mle. Then Ṽ equals the

submatrix of (−NH̃)−1 after removing the rows and columns corresponding to the Q − 1 intercepts,

namely {β̃q0 : q ∈ Q+}. That NṼ = VΨ + oP(1) follows from

H̃−1 = (H∗)−1 + oP(1) = −Φ−1 ⊗ diag{1, (S2
x)

−1}+ oP(1)

by (S24) and (S26), and the definition of the Kronecker product.

Asymptotic equivalence of λLRT and Nx̂T
+V

−1
x+ x̂+. The lrt tests logit(Zi ∼ 1 + xi) against H0 :

logit(Zi ∼ 1). Let Θ0 = {θ = (θT
1 , . . . , θ

T
Q−1)

T : θq = (βq0, 0
T
J)

T} be the restricted parameter space under

H0, with θ̃0 ∈ Θ0 as the mle. The test statistic equals

λlrt = −2N

{

sup
θ∈Θ0

L̄(θ)− sup
θ∈R(J+1)(Q−1)

L̄(θ)

}

= 2N{L̄(θ̃)− L̄(θ̃0)}.

For θ ∈ Θ0, we have x̃T
i θq = βq0 such that (S20) reduces to L̄(θ) =

∑

q∈Q eq log(πq), with

πq =
exp(βq0)

1 +
∑

q′∈Q+
exp(βq′0)

for q ∈ Q

denoting the identical value of πq(xi) across i = 1, . . . , N ; see (S19). The invariance of mle to non-

degenerate transformation of the parameters ensures that themles of πq and βq0 equal eq and log(eq/eQ) =

β∗
q0, respectively, for q ∈ Q+. This ensures θ̃0 = θ∗ and hence

λlrt = 2N{L̄(θ̃)− L̄(θ∗)}. (S30)

We verify below λlrt −Nx̂T
+V

−1
x+ x̂+ = oP(1).

First, L̄(θ∗) = L̄(θ̃) + 2−1(θ∗ − θ̃)TH(θ′)(θ∗ − θ̃) for some θ′ on the line segment of θ̃ and θ∗. This,

together with (S30), ensures

λlrt = −N(θ̃ − θ∗)TH(θ′)(θ̃ − θ∗) = −N(θ̃ − θ∗)TH∗(θ̃ − θ∗) + oP(1)

given H(θ′) = H∗ + oP(1) by (S24) and
√
N(θ̃ − θ∗) = OP (1) by (S28).
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Next, it follows from (S30) that

−N(θ̃ − θ∗)TH∗(θ̃ − θ∗) = −N{U(θ∗)}T(H∗)−1U(θ∗) + oP(1).

The result then follows from

−N{U(θ∗)}T(H∗)−1U(θ∗)

= N
(

e1x̂(1)
T, . . . , eQ−1x̂(Q− 1)T

)

{Φ−1 ⊗ (S2
x)

−1}











e1x̂(1)
...

eQ−1x̂(Q− 1)











= N{x̂T

+(R+ ⊗ IJ)}VΨ{(R+ ⊗ IJ)x̂+}

= Nx̂T

+V
−1
x+ x̂+

by (S25)–(S26) and (S17)–(S18).

Asymptotic equivalence of Wlogit and Nx̂T

+V
−1
x+ x̂+. The result follows from

Wlogit = β̃TṼ −1β̃ = N(Ψx̂+)
TV −1

Ψ (Ψx̂+) + oP(1) = Nx̂T

+V
−1
x+ x̂+ + oP(1)

with
√
N(β̃ −Ψx̂+) = oP(1), NṼ − VΨ = oP(1) as we just proved and ΨTV −1

Ψ Ψ = V −1
x+ by (S18).

Asymptotic distributions of λLRT and Wlogit. The result follows from Nx̂T

+V
−1
x+ x̂+ ⇝ χ2

J(Q−1) by

Lemma S9 and Slutsky’s theorem.

Simplification under the treatment-control experiment. The result follows from x̂+ = x̂(1) = e0τ̂x

and Ψ = e−1
0 (S2

x)
−1 such that Ψx̂+ = e−1

0 (S2
x)

−1x̂(1) = (S2
x)

−1τ̂x and VΨ = (e0e1)
−1(S2

x)
−1.
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